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Abstract—For decades, relational databases provided a strong foundation for constructing applications due to their ACID properties.
However, distributed applications reached a scale, both in terms of data volume and number of concurrent clients, that traditional
databases cannot accommodate. NoSQL databases addressed this problem by trading consistency for scalability, namely through
horizontal scalability schemes supported by optimistic replication protocols, which only guarantee eventual consistency.
In this paper, we explore a novel design between the two extremes, which is able to scale to large deployments while still offering
strong consistency guarantees in the form of serializable transactions. Our key insight is to leverage recent advances in membership
services that provide strongly consistent views at scale. Those assurances from the membership layer simplify building efficient and
consistent storage protocols. Our evaluation of the resulting system, SCONEKV, in a realistic scenario shows that it scales and
performs better than CockroachDB while being competitive with Cassandra.
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1 INTRODUCTION

D ISTRIBUTED systems began at a much smaller scale
than today. Initially, these systems were comprised

of a few client nodes connected to a centralized database
for storage. Relational databases provided a dependable
foundation, offering transactional support and strong con-
sistency for client operations. Today, this paradigm has
changed and users demand highly scalable systems that are
always available. Traditional relational databases were able
to scale vertically, but now systems require databases that
scale horizontally, with low latency, worldwide.

Early approaches to distributed scalable storage lever-
aged peer-to-peer distributed hash tables (DHTs) [1], [2], [3],
[4], [5], which provide the location of objects at a large scale,
but only replicate immutable data or provide very weak
consistency guarantees. Modern key-value stores leverage
the same principles as DHTs but offer more robust guar-
antees. For instance, Apache Cassandra [6] combines high
availability and reliability with low latency, and allows for
custom quorum sizes to control the consistency probability.
However, its consistency guarantees are much weaker than
those in relational databases. Moreover, and despite scaling
to a large number of nodes, the semantics of Cassandra are
brittle in the presence of churn and faults [7], which are the
norm rather than the exception as the system grows. At the
other end of the consistency spectrum, CockroachDB [8], [9]
is a distributed database with ACID properties, built on top
of a transactional and strongly consistent key-value store.
However, CockroachDB cannot scale above a few tens of
nodes (around 20), as we show in §6.2, and the same applies
to systems that follow similar approaches. This limitation
stems from the use of consensus, which is an expensive
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primitive, known to scale poorly with the system size.
This state of affairs leaves modern application devel-

opers with a conundrum: either one sacrifices consistency
for scalability, resulting in applications that are harder to
program and maintain, or one chooses strong consistency
but is limited to a small-scale system.

In this paper, we aim to show that programmers do not
necessarily have to choose between consistency and scala-
bility. To this end, we present SCONEKV, a scalable trans-
actional key-value store with strong consistency guarantees
that provides serializable transactions. Our key insight to
address this tension is that it is possible to simplify the
protocols required for strong consistency, and minimize the
amount of synchronization they impose, by layering them
on top of a membership layer that offers strong semantics
at scale, effectively pushing the burden of simultaneously
achieving consistency and scalability to the lower layers of
the system. In particular, we build on recent research that
showed, for the first time, how to build a scalable consistent
membership service (e.g., Rapid [10] or PRIME [11]) that
guarantees that all correct nodes share a common view of
the system. Then, with these strong guarantees in place,
other fundamental aspects of a distributed key-value store
such as data partitioning, replication, and transactional pro-
cessing can be substantially simplified, resulting in a leaner
and scalable design.

Nonetheless, several challenges need to be addressed by
the design of SCONEKV, such as designing mechanisms for
horizontal partitioning, consistent replication and a coordi-
nation protocol, while also handling membership changes.
We show, through our design, how starting from strong
guarantees at the foundational levels allows the upper levels
to be scalable, provide strong semantics, while also facilitat-
ing the reasoning about the system correctness.

In our experimental evaluation, we compare SCONEKV
with Cassandra and CockroachDB, two state-of-the-art pro-
duction systems, using the YCSB [12] and TPC-C [13]
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benchmarks. The experimental results show that SCONEKV
outperforms CockroachDB in terms of throughput in write
intensive workloads by up to 15× while being competi-
tive with Cassandra in all workloads. We also show that
SCONEKV scales well in both write and read intensive
workloads, whereas CockroachDB does not scale even with
a small fraction of writes. Our contributions include:
• a layering of storage protocols on top of a novel class

of membership service protocols, showing that these new
models for group membership can significantly improve
the characteristics of modern key-value stores;

• the design of SCONEKV, a scalable transactional key-
value store that provides serializable transactions;

• a prototype implementation of SCONEKV, and a compar-
ative evaluation with state-of-the-art production systems.

The rest of the paper is organized as follows. §2 presents
some background on membership protocols. §3 discusses
related work. §4 describes the design of SCONEKV. §5 de-
tails the implementation of the prototype and explains some
optimizations. §6 presents the experimental evaluation. §7
concludes the paper and discusses future work directions.

2 BACKGROUND

In this section, we provide some background on mem-
bership protocols given their importance in the design of
SCONEKV. Group membership protocols fall into one of two
categories. Logically centralized services [14], [15] present a
simple solution, using a small group of processes to main-
tain a system view, while the majority of members query it
periodically. Besides the simple design, this approach also
offers strong consistency semantics, assuming that there is
an agreement between this small group of nodes. However,
relying on that small group limits the scalability and avail-
ability of the membership service.

Alternatively, fully decentralized solutions [16], [17]
have been proposed as a means to tackle the aforementioned
downsides of centralized services. These approaches use
gossip-based techniques to disseminate membership up-
dates, thus achieving a much higher scale while also being
more resilient. However, this comes at the cost of sacrificing
the consistency of views across large-scale clusters.

Recently, a novel class of membership protocols has
emerged. PRIME [11] and Rapid [10] are fully decentralized
but manage to offer strongly consistent views at scale.
Essentially, both protocols detect failures by having each
node monitor K other nodes, and require multiple reports
to remove a node from the group. They differ in the way
the updates are processed and disseminated. Rapid [10]
employs multi-process cut detection to combine multiple
node failures in a single membership update, using lead-
erless Fast-Paxos [18] to reach a decision in the normal case,
or classic Paxos [19], [20] if it is unable to reach a fast
agreement. PRIME [11] processes failures individually but
uses a probabilistic total order dissemination algorithm [21]
to convey membership updates. This algorithm ensures that
nodes eventually agree on the set of updates received with
high probability and process these updates in a total order,
thus guaranteeing that views progress consistently. In sum,
both approaches offer a scalable membership abstraction
that delivers view updates in a consistent way.

3 RELATED WORK

Early approaches to distributed storage leveraged the rout-
ing mechanisms of distributed hash tables [1], [2], [3] to
scale. For example, OceanStore [5] is a globally persis-
tent storage service that provides serialized updates on
replicated objects on an untrusted infrastructure. It uses
Tapestry [4] to construct a routing overlay and allows for
concurrent updates without wide-area locking by employ-
ing predicate-based update conflict resolution. OceanStore
resolves conflicts by determining an order for the updates,
evaluating the predicates and applying them atomically.

Dynamo [22] and Cassandra [6] are systems that opted to
weaken their consistency guarantees in order to scale and be
highly available, employing optimistic replication protocols
and delegating conflict resolution to the client. Cassandra
relies on a membership solution with weak consistency
guarantees, further affecting the consistency the system is
able to provide during view changes. As different nodes can
have conflicting views, nodes can be assigned overlapping
token ranges upon joining [7], resulting in inconsistent client
operations. This also impacts system bootstrap - deploying
large clusters takes a long time as nodes need to be slowly
added one at a time [7] to allow the token range selections
to propagate throughout the system.

Causally consistent systems, such as Eiger [23],
COPS [24] or ChainReaction [25], strike a balance between
eventual and strong consistency by guaranteeing the order
between causally dependent updates. Moreover, these sys-
tems remain available and maintain their consistency guar-
antees even in the event of a network partition if the client
remains connected to the same server nodes. However, they
provide weak guarantees regarding write conflict resolu-
tion, specially when involving multiple objects, which might
result in a divergence of replica’s state. These solutions can
scale but are limited to applications for which this level of
guarantees is enough.

On the strongest end of the consistency spectrum we
have systems such as Google Spanner [26], which is a highly
scalable SQL database with ACID guarantees. It shards data
across Paxos [19], [20] state machines, and relies on GPS
and atomic clocks to order transactions. It provides strong
consistency at scale but requires specialized hardware and
an infrastructure not generally accessible to smaller players.
CockroachDB [8], [9] is an industry solution that draws
inspiration from Spanner’s design. It is a distributed SQL
database with ACID properties, built on top of a strongly
consistent key-value store. It uses Raft [27] for state machine
replication and replaces Spanner’s atomic clocks and GPS
with a software solution relying on Hybrid Logical Clocks
(HLC) [28]. HLC combine physical time with logical clocks,
offering wait-free transaction ordering and consistent snap-
shots for a specified timestamp. HLC allows for some clock
skew, but CockroachDB still requires replica clocks to be
within a configurable offset (500ms by default) to work
correctly, shutting down nodes that get out of sync with
80% of the cluster. Besides this reliance on clock synchro-
nization, which is harder to achieve in a geo-replicated
deployment, CockroachDB is also limited in its scalability,
due to the inherent cost of consensus, as we will show in
our evaluation. Physalia [29] and EdgeKV [30] are examples
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of a strongly consistent key-value stores that achieve scal-
ability through sharding, however neither supports cross-
shard transactions. SCORe [31] leverages vector clocks to
guarantee serializability and abort-free read-only transac-
tions. This main contribution, i.e. the use of vector clocks,
is orthogonal to SCONEKV’s layered design, in the sense
that, it could be integrated with our proposed transaction
management and replication layers and guarantee the same
semantics — abort-free read-only transactions. This problem
was also targeted by recent blockchain-based solutions but
with a different fault-model (i.e. byzantine) and different
application scenarios and performance characteristics [32],
[33], [34].

4 SCONEKV
In this section, we present the design of SCONEKV, a dis-
tributed key-value store that provides strictly serializable
transactions (without opacity). We assume a shared-nothing
architecture and a crash-failure model. We also assume the
partial synchrony model [35]. In this model, there may be
an unstable period, where messages exchanged between
correct processes are arbitrarily delayed. However, there is a
known bound ∆ on the worst-case network latency and an
unknown Global Stabilization Time (GST), such that after
GST, all messages between correct processes arrive within
∆. Note that safety is always preserved even in the presence
of asynchrony and the partial synchrony assumptions are
only necessary to ensure liveness.

4.1 Overview

We start by presenting an overview of SCONEKV and dis-
cussing its layered design. The key insight is that using a
scalable and consistent membership base layer (§2) simpli-
fies the design of the layers above, particularly when trying
to enforce strong semantics. This lower layer interacts with
the layers above by asynchronously delivering a new view
after each update, consisting of a view identifier and a list of
nodes. Finally, we note that the membership layer is not in
the critical path of the storage protocols, as described next.

The next problem that needs to be addressed is ensuring
consistent replication. For the sake of better scalability and
the flexible reconfiguration, based on balancing data or pro-
cessing load, we opted to employ horizontal partitioning.
SCONEKV’s namespace is an identifier ring divided into
sections we call buckets. Nodes and data items are assigned
to buckets, rather than points in the space, using consistent
hashing [36]. Each data item is assigned to a single bucket
and is managed and replicated by the set of nodes that
belong to that bucket. To ensure consistency within a bucket,
we employ Viewstamped Replication (VSR) [37], [38], turn-
ing each bucket in an independent state machine following
a primary-backup scheme.

In VSR, each update to the state of a bucket represents
an entry in a log, and log entries flow from the primary
to the replicas. Briefly, the algorithm works as follows. To
replicate a log entry, the primary issues a PREPARE. Once
a replica receives the message, it processes the entry iff
it has processed all previous entries and replies to the
primary with PREPAREOK. When the primary receives f
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Fig. 1: SCONEKV cluster topology and layered architecture
of each node. P represents a primary node, R represents a
replica. The red dotted lines divide the cluster into buckets.

PREPAREOK’s, the entry is consistently propagated and can
be safely committed to the log. This ensures safety inside
each bucket if no more than f nodes are faulty at any given
moment, provided that each bucket has at least 2f+1 nodes.
For full details on VSR we refer the reader to [37], [38]

Through the use of a consistent membership layer, we
guarantee that all nodes in a bucket agree on its configura-
tion for a given view. Thus, to determine the primary, each
member runs a deterministic function (for instance, selecting
the node with the lowest identifier). This, combined with the
view change algorithm described in the revisited paper [38],
allows each bucket to be abstracted as a single entity that
guarantees linearizable updates and is tolerant to faults.

Finally, SCONEKV needs to coordinate different buckets
in order to provide distributed transactions. For that, we
employ a two-phase commit protocol (2PC) with locking
semantics. Each transaction is decided on by the primaries
of the buckets involved and each phase of the protocol is
consistently replicated inside the respective bucket, as an en-
try in the log, before interacting with the other buckets. This,
combined with a retry mechanism, ensures that we tackle
2PC’s known weak liveness properties [39]. Furthermore,
the locking semantics ensure that we guarantee serializable
transactions. Since the consistent membership layer ensures
that all nodes agree on the configuration of the system as a
whole for a given view, and thus agree on the primaries of
each bucket for that same view, it does not require a leader
election to determine the coordinator for a given transaction.

The cluster topology, as well as the layered architec-
ture of each SCONEKV node, is depicted in Figure 1. To
summarize, the design of SCONEKV leverages the strong
properties of the foundational membership layer to reduce
the complexity and synchronization costs of the replication
and transaction management protocols employed above. In
contrast to traditional databases, that aggregate all respon-
sibilities (including membership management, replication,
and transaction management) in a single protocol, leading to
complex solutions that are difficult to reason about, desegre-
gating these responsibilities in different layers allows for the
delegation of certain guarantees, which in turn simplifies
the design and reasoning about the behaviour of the fi-
nal protocol. Notably, SCONEKV accomplishes this without
compromising on the properties offered by the system as a
whole, namely scalability, safety, and liveness.
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4.2 Client Interactions

SCONEKV exposes the following operations to its clients:
read(key) returns the current value for that key,
write(key, value) inserts or updates the key with the
given value, delete(key) removes the key-value pair
from the store, commit() attempts to apply all the pending
modifications (write and delete operations) to the system,
and abort() discards all pending operations. Values are
arrays of bytes, opaque to the system, and a write to a given
key overwrites the previous value. Each key-value pair is
associated with a version, its own lock and lock queue.
Versions are returned by all operations. They are initially set
to zero and incremented by one with each write operation.

Each operation performed by a client corresponds to
a request to a SCONEKV node belonging to the bucket
that holds the respective key. All operations are performed
in the context of a transaction. The client library locally
maintains the read-write set for each transaction, containing
the versions for each accessed key. Each transaction has an
identifier (txID), generated by the client library. The txID is
the concatenation of an ascending local counter with the
client identifier, thus ensuring uniqueness. To externalize
the pending operations, which are stored in the local read-
write set, the client must issue a commit. This operation
will be successful or unsuccessful, depending on whether
the versions observed by the transaction (those in the read-
write set) match the current most up-to-date versions for the
same keys at the time the commit is issued.

SCONEKV offers strictly serializable transactions but
without opacity. This means that, at any point in time, the
state of the system as a whole is equivalent to some serial
order of the transactions committed up to that point. Addi-
tionally, this ordering is consistent with real-time, meaning
that if TA is committed before TB begins, then TA precedes
TB in the serial order. Not providing opacity means that
aborted transactions do not necessarily observe a consistent
snapshot of the database.

Finally, it is worth emphasizing that clients are not part
of the system membership. Upon starting, a client contacts
any node in the system to obtain the current view. This
view is used throughout the client’s lifetime and is only
updated in case of a timeout contacting a node (resulting in
the client requesting a new view to another node) or if the
client sends a request to an incorrect node (wrong bucket
and/or incorrect primary), in which case the contacted node
replies with an updated view of the system.

4.3 Transaction Processing

We now present how SCONEKV processes transactions and
guarantees strict serializability. For simplicity, we present
the algorithm in a fault-free scenario and further discuss
how SCONEKV handles failures in §4.5.

As described before, clients operations do not modify
the system state until the client attempts to commit the
transaction. Commit requests are routed to the primary
which then replicates them inside the bucket. Depending on
the keys accessed, a transaction can span multiple buckets.
In that case, the primaries of the buckets involved need to
coordinate to determine whether the transaction can commit
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Fig. 2: Messages exchanged in a transaction involving 2
buckets. Primary 1 is the transaction coordinator, both pri-
maries accept the transaction locally and commit it. For
simplicity, the replicas for each bucket are represented as a
single entity each. The replication and the client interactions
(with the exception of the commit request) were omitted
from the algorithms due to space constraints.

or not, using a two-phase commit protocol with locking se-
mantics. The coordinator of a transaction spanning multiple
buckets is selected deterministically as the primary of the
bucket with the lowest identifier.

Following 2PC’s semantics, transactions are processed in
two distinct phases entailing a local and a global decision.
Figure 2 shows an example of the messages exchanged
during a transaction that spans multiple buckets. Suppose
that a transaction accesses keys x, y and z assigned to
two different buckets. The client initiates a transaction and
performs a series of operations by contacting nodes in B1

(steps 1 and 2 ) and B2 ( 3 ). The client attempts to commit
the transaction by sending to the primaries of each bucket
the read-write subset of keys assigned to their bucket and
a list of all buckets involved ( 4a and 4b ). Upon receiving
the commit request, each primary locally decides whether
the transaction can commit (following Algorithm 1, which
we detail later), and replicates the request and local deci-
sion to the bucket’s replicas ( 5a and 5b ). Once replicated,
the primary of B2 communicates the local decision to the
transaction coordinator ( 6 ), ending the first phase of the
protocol. Once the transaction coordinator receives the local
decisions of all buckets involved, it starts the second phase
of the protocol by deciding the outcome of the transaction
(commit or abort) and communicates this decision to all the
other primaries ( 7 ) which in turn replicate the global de-
cision within their respective buckets ( 8a and 8b ). Finally,
the coordinator replies to the client ( 9 ).

According to 2PC, a transaction is committed iff all par-
ticipants accept the transaction locally. It is well-known that
two-phase commit has weak liveness properties [39], and
requires a recovery mechanism upon failures. In SCONEKV,
due to our layered design, we are able to reduce this com-
plexity. In particular, upon a failure, all nodes will receive a
new view without the failed node and restart the protocol
if needed (for instance, due to a failure of the coordinator).
This is also the reason why the coordinator does not need
to wait for an acknowledgment from all the other primaries
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Fig. 3: Sequence of events to commit a transaction. Red
arrows indicate the event was triggered in a remote node.

before replying to the client (end of the second phase in
Figure 2). Since the primaries replicate the request and local
decision before sending the local decision to the coordinator
( 5a , 5b ), upon the failure of a primary, the replicas will run
the view change protocol described in [38] and guarantee
that the new primary has the required log entries to apply
the pending transaction. We detail this in §4.5.

We now detail the life cycle of a transaction from when
it is submitted by the client until it is committed or aborted.
Figure 3 outlines the general flow, and Algorithm 1 and
Algorithm 2 show the pseudocode for the first and second
phases, respectively. In detail:
1) The client issues commit to each primary involved in the
transaction. Each request includes only the subset of keys
that are assigned to that specific bucket. Once a primary
receives the request, it sets the transaction state as received
and triggers MAKELOCALDECISION (Figure 3, step 1 , and
Algorithm 1 lines 13–35). Each local decision is processed
independently by the primary of each bucket involved by
verifying the following:

a) Guarantee that each operation inside the transaction
was performed on the most recent version of that key (Al-
gorithm 1 line 15 and lines 46–54), otherwise the transaction
is locally rejected, eventually leading to an abort because it
does not respect serializability (Algorithm 1, lines 31–32).

b) Check if all locks of the keys accessed by the
transaction inside that bucket are available. If that is the
case, they are acquired (Algorithm 1 lines 16–18). If any
lock acquisition fails, all lock acquisitions are queued (Al-
gorithm 1 line 22) to reduce contention and, possibly, allow
other transactions to commit.

Note that, to simplify the presentation, the pseudocode
assumes that events are not processed concurrently. In prac-
tice, to ensure correctness, the lock must be acquired before
checking the version of a key.
2) If the transaction failed to acquire all locks, it will wait
in a queue for the conflicting transaction(s) to conclude
and trigger MAKELOCALDECISION to restart the process.
Otherwise, the transaction state is set to prepare-commit and
the local decision is replicated inside the bucket ( 2 , 3 , 4 ,
Algorithm 1 lines 19–20).
3) Once replicated, the local decision is sent to the transac-
tion coordinator ( 5 and 6 , Algorithm 1 lines 37–44).
4) The coordinator reaches a global decision and informs all
participants ( 7 , Algorithm 2 lines 1–16).
5) Upon receiving the global decision, each primary changes
the transaction state to to-commit or to-abort, as appropriate,

Algorithm 1 Local Decision - First Phase

1: upon event 〈INIT〉 do
2: txs← ∅

. map with all transactions, indexed by the transaction ID, contain-
ing rwSet (only with keys assigned to that bucket), buckets involved,
current transaction state and local decision responses

3: end event
4:

. Triggered by the client issuing the commit request
5: upon event 〈primary, COMMITREQUEST| txID, rwSet, buckets〉 do
6: txs[txID].rwSet← rwSet
7: txs[txID].buckets← buckets
8: txs[txID].state← received
9: txs[txID].responses← 0

10: trigger 〈MAKELOCALDECISION|txID〉
11: end event
12:
13: upon event 〈primary, MAKELOCALDECISION| txID〉 do
14: if txs[txID].state = received then
15: if CHECKVALIDTRANSACTION(txID) then

. validate the versions used in the tx
16: owners← GETLOCKOWNERS(txID)
17: if owners = ∅ then
18: ACQUIRELOCKS(txID)
19: txs[txID].state← prepare-commit
20: trigger 〈SMR.PREPARE|txs[txID]〉

. PREPARE is triggered in the SMR layer, and once the decision is
replicated it triggers SENDLOCALDECISION

21: else
22: QUEUELOCKS(txID)
23: if txID < MIN(owners) then

. if txID as a lower identifier than all current lock owners, it should
be executed first to avoid a distributed deadlock

24: for each otherTxID ∈ owners do
25: otherCoord← GETCOORD(txs[t].buckets)
26: send 〈REQUESTREVERTLOCALDECISION|otherTxID〉

to otherCoord
27: end for
28: end if
29: end if
30: else
31: txs[txID].state← prepare-abort
32: trigger 〈SMR.PREPARE|txs[txID]〉
33: end if
34: end if
35: end event
36:
37: upon event 〈primary, SENDLOCALDECISION| txID〉 do
38: txCoord← GETCOORD(txs[txID].buckets)
39: if txs[txID].state = prepare-commit then
40: send 〈LOCALDECISIONRESPONSE|txID, commit〉 to txCoord
41: else
42: send 〈LOCALDECISIONRESPONSE|txID, abort〉 to txCoord
43: end if
44: end event
45:
46: function CHECKVALIDTRANSACTION(txID)
47: for each (key, , version, ) ∈ txs[txID].rwSet do
48: currentV ersion← GETVERSION(key)
49: if currentV ersion 6= version then
50: return False
51: end if
52: end for
53: return True
54: end function
55:
56: function GETLOCKOWNERS(txID)
57: owners← ∅
58: for each (key, , , ) ∈ txs[txID].rwSet do
59: lockOwner ← GETLOCKER(key)
60: if lockOwner 6= NULL ∧ lockOwner /∈ owners then
61: owners← owners ∪ lockOwner
62: end if
63: end for
64: return owners
65: end function
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Algorithm 2 Global Decision - Second Phase

1: upon event 〈coordinator, LOCALDECISIONRESPONSE| txID, re-
sponse〉 do

2: if response = abort∧ txs[txID].state /∈ {aborted, to-abort} then
. transaction was rejected locally but not yet globally

3: for each bucket ∈ txs[txID].buckets do
4: primary ← GETPRIMARY(bucket)
5: send 〈GLOBALDECISION|txID, abort〉 to primary
6: end for
7: else

. transaction was accepted locally
8: txs[txID].responses← txs[txID].responses+ 1
9: if txs[txID].responses = #txs[txID].buckets then

10: for each bucket ∈ txs[txID].buckets do
11: primary ← GETPRIMARY(bucket)
12: send 〈GLOBALDECISION|txID, commit〉 to primary
13: end for
14: end if
15: end if
16: end event
17:
18: upon event 〈primary, GLOBALDECISION| txID, decision〉 do
19: if decision = commit then
20: txs[txID].state← to-commit
21: else if decision = abort then
22: txs[txID].state← to-abort
23: end if
24: trigger 〈SMR.PREPARE|txs[txID]〉
25: end event
26:
27: upon event 〈primary, COMMIT| txID〉 do
28: for each (key, value, version, type) ∈ txs[txID].rwSet do
29: if type = WRITE then
30: newV ersion← version+ 1
31: PUT(key, value, newV ersion)
32: else if type = DELETE then
33: DELETE(key)
34: end if
35: end for
36: txs[txID].state← committed
37: if ISCOORDINATORTX(txID) then
38: send 〈TXRESULT|txID, commit〉 to txID.client
39: end if
40: RELEASELOCKS(txID)
41: end event
42:
43: upon event 〈primary, ABORT| txID〉 do
44: txs[txID].state← aborted
45: if ISCOORDINATORTX(txID) then
46: send 〈TXRESULT|txID, abort〉 to txID.client
47: end if
48: RELEASELOCKS(txID)
49: end event
50:
51: function RELEASELOCKS(txID)
52: restartTx← ∅
53: for each (key, , , ) ∈ txs[txID].rwSet do
54: if UNLOCKKEY(key, txID) then
55: nextInQueue← GETNEXTINLOCKQUEUE(key)
56: if nextInQueue 6= ∅∧nextInQueue /∈ restartTx then
57: restartTx← restartTx ∪ nextInQueue
58: end if
59: end if
60: end for
61: for each tx ∈ restartTx do
62: trigger 〈MAKELOCALDECISION|tx〉
63: end for
64: end function
65:
66: function UNLOCKKEY(key, txID)

. If txID holds the lock associated with key, the lock is released and
returns true, otherwise returns false.

67: end function
68:
69: function GETNEXTINLOCKQUEUE(key)

. Returns the lowest txID in the queue for the lock associated with
key, if one exists.

70: end function

and replicates it ( 8 , 9 , 10 , Algorithm 2 lines 18–25).
6) Once the global decision is consistently replicated in-
side each bucket involved, and according to it, each node
commits or aborts the transaction and sets its final state as
committed or aborted ( 11a or 11b , Algorithm 2 lines 27–41 or
43–49, respectively).
7) The transaction coordinator responds to the client.
8) Finally, each primary releases the locks of the transaction,
and triggers MAKELOCALDECISION to process the remain-
ing transactions that have queued locks, if any (Algorithm 2,
lines 51–64).

4.4 Avoiding Distributed Deadlocks
This design, like any lock-based protocol, may lead to a
distributed deadlock, e.g., when transactions, TA and TB

concurrently acquire locks on keys that belong to two dif-
ferent buckets, B1 and B2, and the primary of B1 (P1)
receives TA first, whereas the primary of B2 (P2) receives
TB first. We address this problem by giving priority to the
transaction with the lowest identifier. Figure 4 illustrates the
example above with two conflicting transactions TA and TB .
Primary P2 that locally accepted transaction TB (Figure 4,
1 ) upon receiving a conflicting transaction TA, informs the

transaction coordinator (P1) that P2’s decision for TB should
be reverted as TA has a lower identifier and hence higher
priority (Figure 4, 2 ). This request is granted (Figure 4,
3 ) iff the transaction coordinator (P1) has not yet issued

a global decision for TB .
This logic is triggered during MAKELOCALDECISION

(Algorithm 1). If a transaction fails to acquire the locks, the
primary queues the locks and determines if that transac-
tion should be processed before all other transactions that
currently own any of those locks (Algorithm 1, lines 14–
21). If that is the case, that primary will request to revert
its local decision for those transactions. For each transaction
with a lower priority, the respective transaction coordinator
accepts the request to revert the local decision iff it has
not issued a global decision for that transaction. Upon that,
the requesting node replicates the reversion of the decision
inside its bucket, then it releases the locks and allows the
other transactions to proceed.

Our objective with this ordering policy is to ensure live-
ness without compromising safety. Note that in an extreme
scenario this might lead to some starvation. However, this is
unlikely since clients generate txIDs in ascending order, and
thus any transaction that experiences momentary starvation
will eventually have the lowest identifier. Nevertheless,
this ordering policy and/or identifier generation procedure
could be replaced by others that further reduce the potential
for starvation (e.g. assigning ranges of identifiers to clients).

4.5 Fault Tolerance
We now discuss how SCONEKV handles failures and, gener-
ically, any membership changes. Recall that, although all
nodes in the system belong to a single membership group,
each bucket effectively works as an independent state ma-
chine with linearizable semantics.

As discussed before, the membership layer monitors
nodes and provides a consistent view to all correct processes
even in the presence of failures. This by itself does not
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Commit(TA)

TxResult(TA,COMMIT)
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Write(a)

Write(b)

CommitRequest(TB)
CommitRequest(TB)

LocalDecision(TB)

LocalDecisionResponse(TA,COMMIT)

PrepareResponse(TB,ABORT)

Abort(TB)
TxResult(TB,ABORT)

RequestRevert

Response(TB)
RevertLocalDecision 

1
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3

Fig. 4: Messages exchanged during two concurrent trans-
actions that need to acquire locks for the same keys. (1)
Primary P2 begins by locking key b for transaction TB , (2)
later receives transaction TA (which also requires the lock
for b and has a lower identifier) and thus asks to revert
the first decision, in order to release the lock. The request
is accepted (3) and TA commits, after which TB aborts.
Replication was omitted for simplicity.

guarantee that our system exhibits correct behaviour in the
presence of faults. For example, if the primary of a bucket
participating in a transaction fails before externalizing its
local decision, all other primaries would wait indefinitely
for its response without reaching a global decision nor
releasing the locks they acquired. To address this, we once
more leverage Viewstamped Replication’s [37], [38] view-
change algorithm with minor adaptations that do not affect
the main protocol logic (the algorithm details were omitted
due to space constraints). First, since buckets work as inde-
pendent state machines, view-changes are restricted to the
buckets of their respective nodes, i.e, if a node n is added
or removed from bucket i in a membership update, this
does not affect any bucket j, where j 6= i. Second, the
dedicated membership layer allows to remove the failure
detection logic from the state machine replication layer.
Third, as the membership layer provides consistent views
across all members, we do not need a leader election to
determine the primary of the bucket. We simply require a
deterministic function such that any node from inside or
outside the bucket or a client can determine the primary
of a bucket by knowing its participants. This eliminates the
need for leader-election and facilitates communication with
the client. In fact, the client has a copy of the view which
provides one-hop access to all the buckets without the need
for extra synchronization between client and server nodes.

Finally, inside a given bucket, a view change results in
one of three scenarios. First, the simplest scenario is when
a replica failed and was removed from the membership. If
it happens, the primary remains the same and the bucket
remains available, assuming there are at least 2f + 1 nodes
in the bucket. Second, if a new node joins the bucket, but
the primary remains the same, then this new node becomes
a replica and requests a state exchange to bring it up to date.
Third, the view change results in a change of the primary
for that specific bucket. This can happen either because

the previous primary failed and was removed from the
membership group or because a new node joined the bucket
and the deterministic function that selects the primary
determines that the new node should be the primary. In
either case, we execute the view change algorithm presented
in [38]. This guarantees that the new primary has the most
up-to-date log from all replicas, and thus guarantees that
the bucket remains consistent. During the view change, a
bucket can be temporarily unavailable, as a stable bucket
(meaning it is not undergoing a view change affecting its
primary) is required to ensure serializability.

The safety of 2PC is ensured as follows. The primaries
keep information about each ongoing transaction (Algo-
rithm 1 in lines 6–9). More precisely, the read-write set
and the set of buckets involved in the transaction are
replicated before the local decision is externalized, while
the transaction state is replicated upon each modification
as described earlier. After a view change that results in
a change of primary for a specific bucket, and before the
bucket becomes available for new requests, the new primary
checks all currently active transactions involving that bucket
(meaning transactions whose state is not committed nor
aborted), acquire all the necessary locks (when appropriate),
and determine whether its bucket should act as the coor-
dinator of that transaction or not. If so, it requests local
decisions from all other buckets, after which it performs the
second phase of 2PC as normal. Otherwise, the new primary
asks the coordinator if the system reached a global decision
during the view change, and acts accordingly.

4.6 Correctness

We sketch a correctness proof for the system, which follows
from the correctness of its individual building blocks.

In particular, as far as safety is concerned, the up-
per layer consists of a classical 2PC protocol, which was
proven [39] to ensure that all participants in a transaction
agree on its outcome and this outcome can only be a commit
if all participants agree to commit (i.e., that the reads and
writes of the transaction are compatible with a serializa-
tion of all transactions). The participants of this protocol
are the buckets. The state of the buckets is maintained
by Viewstamped Replication which ensures linearizable se-
mantics and implies that each bucket behaves as a single
centralized node with correct behavior even across changes
to the bucket replicas [37], [38]. However, VSR requires
the participants to receive a consistent set of views, with
the property that all nodes agree on the contents of each
view. That safety property, in turn, is ensured by the design
of the membership layer [10], [11]. Note that there is an
inevitable delay between a view change and that change
being conveyed to the upper layers but such discrepancies
between real instantaneous state and what is perceived by
nodes still exist in tightly coupled systems. Although this
could be exacerbated in a layered system, such delays never
compromise safety as explained above.

A similar analysis applies to liveness. In particular, the
termination property of 2PC states that all processes even-
tually decide if there are no failures [39]. This is enforced
by the lower layer, since VSR is able to mask individual
node failures and ensure that the replicated system as a
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whole makes progress, as long as the system moves between
views until a view containing a set of non-faulty nodes with
network links that meet synchrony bounds is reached. This
condition is met by the properties of the membership layer
that enables it to replace faulty nodes [10], [11], and by our
partial synchrony assumptions, which are required for any
system that can be used to solve consensus with a single
faulty node [40].

Finally, it is important to clarify that none of the modi-
fications we introduce in these protocols break any of their
safety and liveness properties. This is true because the only
modification to VSR was to replace its fault detection mecha-
nism with the membership layer, and using the latter’s view
identifiers as VSR’s view numbers. This does not affect the
correctness of VSR, as the protocol itself is unchanged.

5 IMPLEMENTATION

SCONEKV is implemented in Java 13 and Kotlin, follow-
ing an event-based architecture. Every time an event is
triggered, it is added to an event queue and processed by
worker threads. This allows the implementation to closely
follow the algorithms and rationale presented in §4. The
communication is done via TCP using ØMQ which provides
the abstraction of an asynchronous message queue, and
Cap’N Proto is used for message serialization. To provide
durability, in the event of a catastrophic failure, updates
are batched and persisted to disk using RocksDB with a
configurable time period, following an approach similar
to Cassandra [6]. For the membership layer we rely on
PRIME [11] but other scalable and consistent implementa-
tions such as Rapid [10] could be used. The full implemen-
tation of SCONEKV consists of 5500 lines of code. We now
discuss some implementation optimizations.
Fast Aborts The algorithm presented in §4.3 can lead to
long lock queues on frequently accessed keys, especially
when running workloads with skewed key access distri-
butions. All transactions on the queue for a key expect a
specific version. If a write on that key occurs, the version
is incremented and therefore all transactions waiting in the
queue for that key can be immediately aborted.
Read-Write Locks To mitigate potential long lock queues
for popular keys, we use read-write locks, which allow for
greater parallelism in read-intensive workloads.
Request Targets Clients can select which nodes they wish
to connect to when performing requests. To ensure serial-
izabilty, commit requests are always sent to the primaries.
However, read, write, and delete requests can be addressed
to either primaries or replicas. Targeting replicas provides a
much better load balance but can increase the percentage of
aborted transactions, depending on the workload, as they
can have slightly outdated versions of the values.

6 EVALUATION

We evaluated SCONEKV and compared it with two other
state-of-the-art industrial systems, Cassandra [6] and Cock-
roachDB [8], [9]. We selected those systems because they
are mature and have a wide usage in the industry, and also
because they represent different points in the consistency
versus scalability spectrum: Cassandra provides eventual

consistency and good scalability, while CockroachDB offers
strong consistency but scales poorly as we will show.

To make a fair comparison with the other systems, Cas-
sandra was configured to use quorums on both reads and
writes, although this change is not enough to consider it
strongly consistent given its optimistic replication protocol.

We selected two benchmarks: YCSB [12], as it is the de
facto standard for evaluating cloud based data stores, and
TPC-C [13], a standard OLTP benchmark. We evaluate each
system according to the following metrics:
• Throughput - the number of operations/transactions per-

formed per second.
• Goodput - because SCONEKV and CockroachDB are

transactional, not all operations are guaranteed to commit.
Goodput is the fraction of the throughput which corre-
sponds to the number of committed operations/transac-
tions per second.

The evaluation is organized as follows. §6.1 presents the
results for YCSB workloads with an increasing number of
clients with a small cluster of 20 nodes. §6.2 studies the
scalability of the systems running YCSB benchmarks with
an increasing number of servers. §6.3 details the exper-
iments performed using the TPC-C benchmark targeting
transaction processing. §6.4 evaluates the fault recovery
capabilities of the systems.

6.1 YCSB - Small cluster

The first phase of our experimental evaluation was per-
formed using Docker containers on a cluster with 6 phys-
ical machines, with one machine dedicated to running the
clients and the others dedicated to the servers. The machines
were equipped with 40GB of RAM and 8 Core Intel Xeon
E5506 2.13GHz processors.

Each system was deployed in a cluster of 20 nodes
(containers) with a replication factor of 4. In the case of
SCONEKV this corresponds to 5 buckets of 4 nodes each.
SCONEKV uses all optimizations presented in §5.

We built an YCSB driver for SCONEKV and extended the
existing CockroachDB JDBC driver to provide transactional
support. In both cases, each transaction corresponds to 5 op-
erations grouped together. We selected the core workloads
provided by YCSB, in detail: Workload A (50% read, 50%
write), Workload B (95% read, 5% write), Workload C (100%
read) and Workload F (read-modify-write). All workloads
were run using a skewed i.e. zipfian distribution leading to
80% of the operations being performed on the hotset (20%
of the keys), as this is more representative of real world
workloads [12]. Each experiment (combination of workload,
number of clients and number of servers) was run three
times, with a duration of 300 seconds.
YCSB Workload A The throughput and goodput results for
this write-intensive workload are shown in Figure 5a and
Figure 5b, respectively. SCONEKV performs in between the
baselines, as expected. As it is possible to observe, Cassan-
dra scales well with an increasing number of clients, while
CockroachDB demonstrates that it does not handle well
write heavy workloads. This is explained by their design
based on classical consensus which is a costly primitive. As
expected, SCONEKV provides a good compromise between
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Fig. 5: Throughput and Goodput for YCSB Workload A with
an increasing number of clients.
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the raw performance of Cassandra and the strong consis-
tency guarantees of CockroachDB. A closer look comparing
the throughput and goodput of SCONEKV shows a signif-
icant transaction abort rate, around 40% at its highest (256
concurrent clients). This is justified by the distribution of
the requests as the highly skewed workload inevitably leads
to an extremely high number of concurrent updates on the
same keys, which cannot be serialized. Interestingly, Cock-
roachDB reaches an abort rate of 22% with 256 concurrent
clients, but by only committing 254 operations per second,
thus further illustrating that consensus-based systems scale
poorly. In fact, SCONEKV achieves 11 times more good-
put than CockroachDB (and 15 times more throughput).
To further study this behaviour in SCONEKV, we ran an
additional workload with an uniform distribution (writes
and reads are evenly distributed across all keys). The results
are depicted in Figure 6. As it is possible to observe, the
throughput and goodput are almost identical due to the
lower write contention that leads to fewer aborts.

YCSB Workload B The throughput and goodput results
for this read-intensive workload are shown in Figure 7a
and Figure 7b, respectively. The results show that SCONEKV
scales, although at a lower rate than Cassandra. This can be
explained by the fact that, from a transactional standpoint,
SCONEKV does not differentiate writes from reads, apply-
ing the same protocol to decide the transactions’ outcomes.
It is noteworthy that CockroachDB’s performance stagnates
after 128 concurrent clients, demonstrating that even a 5%
update rate is enough to negatively affect its scalability. The
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Fig. 7: Throughput and Goodput for YCSB Workload B with
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Fig. 8: Goodput for YCSB Workload C with an increasing
number of clients.

abort rate on this workload is substantially lower than for
Workload A due to the low rate of concurrent updates.
Therefore, for all systems, the achieved goodput is very
close to the throughput, as can be observed in Figure 7b.
YCSB Workload C This is a read-only workload and, there-
fore, we only present the goodput (Figure 8), as it is identical
to the throughput since there are no updates. Interestingly,
for this workload, CockroachDB exhibits better performance
than Cassandra. This can be explained in two ways: on one
hand, CockroachDB’s does not need to acquire any locks for
read-only transactions, and, on the other hand Cassandra
was configured to use a quorum of reads instead of a single
read, to provide better consistency guarantees. SCONEKV
does not achieve the same raw performance as either Cas-
sandra or CockroachDB, but it scales with an increasing
number of clients. We attribute this difference to the fact
that the other systems have been highly optimized over the
years, but with additional engineering effort it should be
possible to improve SCONEKV’s raw performance.
YCSB Workload F This workload selects a key follow-
ing the distribution of requests, and reads, modifies, and
writes to it. The results for the throughput and goodput
are depicted in Figure 9a and Figure 9b, respectively. Once
more, we observe that CockroachDB does not scale with
update-intensive workloads. SCONEKV shows better per-
formance than Cassandra in terms of throughput. This can
be explained by the fact that SCONEKV is a transactional
data store and thus, if inside the same transaction a client
performs multiple operations on the same key, only the
first operation results in an external request to retrieve the
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Fig. 9: Throughput and Goodput for YCSB Workload F with
an increasing number of clients.

version (all others will be handled by the client library,
without the need for extra RTTs). However, the highly
skewed distribution of requests leads to a high abort rate
as can be observed in the goodput results (Figure 9b).

6.2 YCSB - Scalability
Due to resource constraints, and the need for more servers,
we ran the next set of experiments in the Google Cloud Plat-
form rather than in our premises. We used e2-highmem-4
instances (each with 4 vCPUs and 32 GB of memory), de-
ploying 4 nodes per instance. For each system, we deployed
20, 40 and 80 nodes using update-intensive (Workload A)
and read-intenstive (Workload B) workloads. We start with a
keyspace of 1M keys and 256 concurrent clients for a cluster
of 20 nodes (similar to the deployment used in the previous
sections), and increased the workload proportionately with
the size of the system, maintaining a replication factor of 4.

The results for the write-intensive workload are shown
in Figure 10. As it is possible to observe, for both Cassandra
and SCONEKV, goodput increseases as number of nodes
increases (albeit SCONEKV does so with a lower slope),
whereas CockroachDB’s performance not only is much
worse than the other two systems but it also degrades as
the system size grows. This stems from the cost of con-
sensus which gets more expensive as the number of nodes
increases. As before, it is possible to observe a significant
abort rate for SCONEKV, reflected in the goodput results
(Figure 10b) due to the skewed nature of the workload.

The goodput results for the read-intensive workload are
shown in Figure 11. We observe the same pattern as before,
Cassandra and SCONEKV are able to scale but CockroachDB
performance degrades as the system grows due to the costly
synchronization primitives.

6.3 TPC-C
Next, we evaluated the 3 systems using TPC-C, the indus-
try standard OLTP benchmark. Traditionally this is a SQL
benchmark, however, as our system does not support SQL,
we used an in-house implementation that uses read and
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Fig. 10: Throughput and Goodput for YCSB Workload A
with an increasing system size.
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Fig. 11: Goodput for YCSB Workload B with an increasing
system size.

write operations following the guidelines of the bench-
mark described in [13]. We used the same experimental
setup described in §6.2, starting with 256 concurrent clients
and 768 warehouses (3× clients) for a cluster of 20 nodes,
increasing the number of clients and warehouses propor-
tionately with the size of the system. We maintained the
replication factor of 4 in all experiments. Each experiment
was ran 3 times and accounted for 300 seconds (discarding
warm-up and cool-down).

The results are shown in Figure 12. Similarly to the
results shown in the previous section, we observe that
SCONEKV and Cassandra are able to scale while Cock-
roachDB is not (achieving negligible throughput with the
maximum system size). It is worth noting that TPC-C
transactions are much larger than those of our transactional
YCSB implementation (15-30 operations per transaction in
comparison with 5 operations per transaction). Neverthe-
less, SCONEKV still scales while also using the completely
naive partitioning function described in §4 which frequently
results in transactions spanning all buckets. A partition-
ing function fit for the TPC-C workload could improve
SCONEKV’s performance even more. Nonetheless, we con-
sider this orthogonal to the present work.

As a final note, the results shown here for CockroachDB
are not aligned with those published in [9]. The reason
for this discrepancy is twofold. First, the experiments per-
formed in [9] had much lower contention, increasing system
size 5× while increasing the number of warehouses by 10×.
Second, the authors do not specify the number of concurrent
client threads used in their workload. For those reasons, we
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do not consider those results comparable to ours.

6.4 Fault Recovery
Finally, we evaluated the fault recovery period of the three
systems. We set up a 20 node cluster with a replication factor
of 4 and submitted them to a light TPC-C workload with 32
concurrent clients. After warm-up, we crashed a primary
node in SCONEKV, or a leaseholder in CockroachDB. We
omit replica failures as they do not visibly affect SCONEKV
or CockroachDB results. In Cassandra all nodes are uniform
as there is no notion of a primary hence we simply crashed
one node at random. Each experiment was run 5 times and
Figure 13 shows the average throughput over time.

Cassandra is the least affected due to its design as there
is no primary node for a given partition. Both SCONEKV
and CockroachDB’s throughput drops to zero while the
membership layer generates a new view. For SCONEKV, the
performance drop is explained by the fact that the system is
small and transactions are large and hence all transactions
are likely to touch all the buckets. In a larger system or
with smaller transactions, the performance impact would
be limited to the set of transactions accessing the faulty
bucket. It is worth noting that this is, purposely, a worst
case scenario. A failure to any replica would have negligible
impact in performance regardless of the time it took for the
membership layer to update the view accordingly.

Nevertheless, the majority of the time is spent waiting
for a new view to be propagated throughout the cluster (∼16
seconds), after which performance increases to the levels
displayed before the fault occurred. If there was another
membership component that delivered the new view in less
time, it could be integrated into SCONEKV and severely
reduce the impact of faults to primary nodes. CockroachDB
displays a quicker recovery time (∼7 seconds), but, as
always, while providing much lower performance.

6.5 Discussion
Overall the conducted experiments reveal that SCONEKV
is able to scale as the load and size of the system in-

creases while still retaining strong consistency guarantees.
This contrasts with Cassandra, which scales at the cost of
consistency, and CockroachDB, which is not able to scale.
In fairness, neither system scales perfectly. Nevertheless,
their goodput increases as we increase system size and load,
presenting a lower-than-perfect slope. In sum, SCONEKV’s
results support our argument that programmers do not nec-
essarily have to choose between consistency and scalability.

Due to space constraints we omit resource usage results.
Briefly, SCONEKV did not exhaust the CPU (in contrast
with Cassandra during the scalability experiments) and
its memory requirements are comparable to CockroachDB
(which is written in Go, typically less demanding in terms
of memory usage when compared to Java). CockroachDB
generally required less resources than the others systems,
but also provided much less performance, especially in the
scalability experiments.

7 CONCLUSION

In this paper, we aimed at demonstrating that recent ad-
vances in distributed computing can lead to interesting new
trade-offs in the longstanding tension between consistency
and scalability when selecting a key-value store. Our key
insight is that by building on top of recent work on scalable
and consistent membership services, the fundamental data
management aspects of a key-value store, such as data
partitioning, replication and transaction processing can be
substantially simplified, resulting in a leaner and more
scalable design. The resulting system, SCONEKV provides a
scalable key-value store with strong consistency guarantees.
Our comparison with two industrial state-of-the-art sys-
tems, Cassandra and CockroachDB, shows that SCONEKV is
able to scale in all workloads, as opposed to CockroachDB,
a database with strong consistency guarantees, and has per-
formance competitive with Cassandra, a database that only
ensures eventual consistency - while still offering strong
consistency to the application.
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João Gonçalves is a PhD student in Computer
Science, a Teaching Assistant at Instituto Su-
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