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Introduction

Selling point of TM

Composability
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Introduction

Parallel Nesting
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Time complexity analysis may be deceiving in TMs
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Outline

Compare three parallel nesting approaches
Q JVSTM

Q NesTM!

© PNSTM?
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Worst-case complexities - JVSTM

| [ WNSTM |
read O(maxDepth)
write 0(1)
commit || O(r + children)
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Worst-case complexities - JVSTM

| JvsT™M |
read O(maxDepth)
write 0(1)
commit || O(r + children)
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Worst-case complexities - JVSTM

[ JWvST™M ]
read O(maxDepth) °
write 0(1)
commit || O(r+children)

committed

} children
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Worst-case complexities - NesTM

H JVSTM ‘ NesTM ‘
read O(maxDepth) 0(1)
write 0(1) O(txDepth)
commit || O(r + children) | O(r + w)

6/18



Worst-case complexities - NesTM

[ JVSTM [ NesTM |
read O(maxDepth) 0(1)
write 0o(1) O(txDepth)
commit || O(r + children) |  O(r + w)

(D ©

txDepth
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Worst-case complexities - PNSTM

[ JVSTM | NesTM | PNSTM |
read O(maxDepth) 0(1) 0(1)
write 0(1) O(txDepth) | O(1)
commit || O(r + children) | O(r + w) O(1)
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Worst-case complexities

| | JvsTM | Nestm [[PNSTM]|
read O(maxDepth) o(1) 0(1)
write 0o(1) O(txDepth) 0(1)
commit || O(r + children) | O(r + w) 0(1)

Best one?
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Practical comparison

@ STMBench7 - running given number of transactions
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Practical comparison

STMBench? - running given number of transactions
Implementation of STMs
Same API

48 core machine

e 6 o o
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STMBench7
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STMBench7
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@ 5 and 15 times with 48 threads/parallel nested
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STMBench7 - Large depth count
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Discussion

What is causing this?
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Complexities of the fast-paths

|

| JVSTM | NesTM | PNSTM |

read

0(1)

o(1)

o(1)

write

0(1)

0(1)

o(1)
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Fast-paths occurrence

Fast-path | Slow-path
JVSTM 0.99 0.01
NesTM 0.39 0.61
PNSTM 0.39 0.61
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Fast-paths

occurrence

Fast-path | Slow-path | Time (us)
JVSTM 0.99 0.01 1046
NesTM 0.39 0.61 5200
PNSTM 0.39 0.61 7357
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Conflicts detected

Conflicts
JVSTM 845
NesTM 1627
PNSTM 84496
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Conflict detection

[ [ JVSTM | NesTM | PNSTM |
r-r - - yes
r-w yes yes yes
w-w || yes (if nested) yes yes
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Conflict detection

[ [ JVSTM | NesTM | PNSTM |
r-r - - yes
r-w yes yes yes
w-w || yes (if nested) yes yes

Cheaper complexity bounds, more conflicts detected?
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Summary

o Parallel nesting design is coupled with baseline TM
o Complexity analysis may be deceiving

@ Average case and conflict detection
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Thank you

Questions?
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PNSTM

Pool of free bitnums:

0

1
2
3
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PNSTM

Pool of free bitnums:
©

1
2
3

Access Stack of variable X

|1 ]ofofo] o
2 3

index 0 1

Tx reads X
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PNSTM

Access Stack of variable X

Pool of free bitnums:

wlrfofofof o
2 3

index 0 1
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PNSTM

Access Stack of variable X

Pool of free bitnums:
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PNSTM

Access Stack of variable X

Pool of free bitnums:

Te o
wlrfofofof o

index 0 1 2 3

Tg spawns a child
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PNSTM

Pool of free bitnums:

Tp reads X

Access Stack of variable X
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PNSTM

Access Stack of variable X

D nnn Conflict
To1]1]ofo] o

index 0 1 2

Pool of free bitnums:

w

Tp reads X
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NesTM

- global clock: 0
tid: 1
ts: 0
timestamp tid
variable X: 0 | 0 |

T7 starts
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NesTM

- global clock: 0
tid: 1
ts: 0
timestamp tid
variable X: 0 ‘ 1 ‘ Ok

T1 writes to X
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NesTM

global clock: 0

timestamp tid

variable X: 0 I 1 l

T1 spawns two children
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NesTM - read operation

global clock: 0

timestamp tid

variable X: 0 | 1 |

T3 reads X
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NesTM - write operation

global clock: 0

timestamp tid

variable X: 0 I 1 l

T3 spawns a child
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NesTM - write operation

global clock: 0
RS: X timestamp tid
variable X: 0 | 1 |
ts: 0

<— did not read X

T4 writes to X
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NesTM - write operation

global clock: 0

timestamp tid

X
\ variable X: 0 ‘ 1 ‘

X's timestamp < T3's timestamp

RS:
tid: 3
ts: 0

T4 writes to X
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NesTM - write operation

global clock: 0

timestamp tid

variable X: 0 | 1 |

previous owner: stop

T4 writes to X
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NesTM - write operation

global clock: 0
timestamp tid
variable X: 0 | 4 |Ok

T4 writes to X
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NesTM - commit operation

global clock: 0
timestamp tid
variable X: 0 I 4 l

T4 prepares commits
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NesTM - commit operation

global clock: 1
timestamp tid
variable X: 1 | 3 |

T4 commits
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JVSTM - write operation

A
variable X:

Ta writes to X
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JVSTM - write operation

variable X:

T spawns two children
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JVSTM - write operation

variable X:

Tc writes to X

24/18



JVSTM - write operation

variable X:

Tp is spawned and writes to X
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JVSTM - read operation

variable X:

Tp reads X
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JVSTM - read operation

variable X:

Tg reads X
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JVSTM - read operation

variable X:
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JVSTM - read operation

variable X:

Tg reads X
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JVSTM - read operation

variable X:

Tg reads X
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JVSTM - commit operation

variable X:

Orecq

Tp commits
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JVSTM - commit operation

variable X:

T¢c commits
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Evaluation - Top-level txs only

throughput (txs/sec)
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