On the design space of Parallel Nesting

Nuno Diegues Jodo Cachopo

nmld, joao.cachopoQ@ist.utl.pt
INESC-ID/Technical University of Lisbon

July 19, 2012

1/18

Introduction

Selling point of TM

Composability

2/18

Introduction

Parallel Nesting

2/18

Time complexity analysis may be deceiving in TMs

3/18

Outline

Compare three parallel nesting approaches
Q JVSTM

Q NesTM!

© PNSTM?

1
W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested parallel transactions in

software transactional memory. In SPAA '10.
2J. Barreto, A. Dragojevi¢, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel nesting in transactional memory.
In PPoPP '10.
4/18

Outline

Compare three parallel nesting approaches
Q JVSTM <—
Q NesTM!
© PNSTM?

1
W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested parallel transactions in

software transactional memory. In SPAA '10.
2J. Barreto, A. Dragojevi¢, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel nesting in transactional memory.
In PPoPP '10.
4/18

Worst-case complexities - JVSTM

| [WNSTM |
read O(maxDepth)
write 0(1)
commit || O(r + children)

5/18

Worst-case complexities - JVSTM

| JvsT™M |
read O(maxDepth)
write 0(1)
commit || O(r + children)

() ()

maxDepth

5/18

Worst-case complexities - JVSTM

[JWvST™M]
read O(maxDepth) °
write 0(1)
commit || O(r+children)

committed

} children

5/18

Worst-case complexities - NesTM

H JVSTM ‘ NesTM ‘
read O(maxDepth) 0(1)
write 0(1) O(txDepth)
commit || O(r + children) | O(r + w)

6/18

Worst-case complexities - NesTM

[JVSTM [NesTM |
read O(maxDepth) 0(1)
write 0o(1) O(txDepth)
commit || O(r + children) | O(r + w)

(D ©

txDepth

6/18

Worst-case complexities - PNSTM

[JVSTM | NesTM | PNSTM |
read O(maxDepth) 0(1) 0(1)
write 0(1) O(txDepth) | O(1)
commit || O(r + children) | O(r + w) O(1)

7/18

Worst-case complexities

| | JvsTM | Nestm [[PNSTM]|
read O(maxDepth) o(1) 0(1)
write 0o(1) O(txDepth) 0(1)
commit || O(r + children) | O(r + w) 0(1)

Best one?

8/18

Practical comparison

@ STMBench7 - running given number of transactions

9/18

Practical comparison

@ STMBench7 - running given number of transactions

@ Implementation of STMs

9/18

Practical comparison

@ STMBench7 - running given number of transactions
@ Implementation of STMs
@ Same API

9/18

Practical comparison

STMBench? - running given number of transactions
Implementation of STMs
Same API

48 core machine

e 6 o o

9/18

STMBench7

o

a

g

5

Q

<

()]

=]

e 6Ff i

=1
4 - i
58 = —{+ - = = ':ZI

e

0 Il Il Il Il Il
1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

threads tops(nested)

10/18

STMBench7

o

a

w

Z

5

Q

<

(=]

=3

e 6 r i

s
4l i
25_ —= = = =) ':ZI

e

0 Il Il Il Il Il
1(1) 1(2) 1(3) 2(3) 4(3) 8(3) 16(3)

threads tops(nested)

@ 5 and 15 times with 48 threads/parallel nested

10/18

STMBench7 - Large depth count

10

jvstm —6—
nestm —H—
s B—o pnstm —x%—
"’\6\0
o
&
g sf 1
5
(=3
=
g 4r b
I
s B\s\
2T \B\
il
0 | |
1 8 32 128

depth

11/18

Discussion

What is causing this?

12/18

Complexities of the fast-paths

|

| JVSTM | NesTM | PNSTM |

read

0(1)

o(1)

o(1)

write

0(1)

0(1)

o(1)

13/18

Fast-paths occurrence

Fast-path | Slow-path
JVSTM 0.99 0.01
NesTM 0.39 0.61
PNSTM 0.39 0.61

14/18

Fast-paths

occurrence

Fast-path | Slow-path | Time (us)
JVSTM 0.99 0.01 1046
NesTM 0.39 0.61 5200
PNSTM 0.39 0.61 7357

14/18

Conflicts detected

Conflicts
JVSTM 845
NesTM 1627
PNSTM 84496

15/18

Conflict detection

[[JVSTM | NesTM | PNSTM |
r-r - - yes
r-w yes yes yes
w-w || yes (if nested) yes yes

16/18

Conflict detection

[[JVSTM | NesTM | PNSTM |
r-r - - yes
r-w yes yes yes
w-w || yes (if nested) yes yes

Cheaper complexity bounds, more conflicts detected?

16/18

Summary

o Parallel nesting design is coupled with baseline TM
o Complexity analysis may be deceiving

@ Average case and conflict detection

17/18

Thank you

Questions?

18/18

PNSTM

Pool of free bitnums:

0

1
2
3

19/18

PNSTM

Pool of free bitnums:

©

1
2
3

19/18

PNSTM

Pool of free bitnums:
©

1
2
3

Access Stack of variable X

|1]ofofo] o
2 3

index 0 1

Tx reads X

19/18

PNSTM

Access Stack of variable X

Pool of free bitnums:

wlrfofofof o
2 3

index 0 1

T spawns two children

19/18

PNSTM

Access Stack of variable X

Pool of free bitnums:

wlfr]ofo]
|1]ofofo] o
2 3

index 0 1

Tpg reads X

19/18

PNSTM

Access Stack of variable X

Pool of free bitnums:

wlfr]ofo] o
|1]ofofo] o
2 3

index 0 1

Tpg reads X

19/18

PNSTM

Access Stack of variable X

Pool of free bitnums:

Te o
wlrfofofof o

index 0 1 2 3

Tg spawns a child

19/18

PNSTM

Pool of free bitnums:

Tp reads X

Access Stack of variable X

19/18

PNSTM

Access Stack of variable X

D nnn Conflict
To1]1]ofo] o

index 0 1 2

Pool of free bitnums:

w

Tp reads X

19/18

NesTM

- global clock: 0
tid: 1
ts: 0
timestamp tid
variable X: 0 | 0 |

T7 starts

20/18

NesTM

- global clock: 0
tid: 1
ts: 0
timestamp tid
variable X: 0 ‘ 1 ‘ Ok

T1 writes to X

20/18

NesTM

global clock: 0

timestamp tid

variable X: 0 I 1 l

T1 spawns two children

20/18

NesTM - read operation

global clock: 0

timestamp tid

variable X: 0 | 1 |

T3 reads X

21/18

NesTM - write operation

global clock: 0

timestamp tid

variable X: 0 I 1 l

T3 spawns a child

22/18

NesTM - write operation

global clock: 0
RS: X timestamp tid
variable X: 0 | 1 |
ts: 0

<— did not read X

T4 writes to X

22/18

NesTM - write operation

global clock: 0

timestamp tid

X
\ variable X: 0 ‘ 1 ‘

X's timestamp < T3's timestamp

RS:
tid: 3
ts: 0

T4 writes to X

22/18

NesTM - write operation

global clock: 0

timestamp tid

variable X: 0 | 1 |

previous owner: stop

T4 writes to X

22/18

NesTM - write operation

global clock: 0
timestamp tid
variable X: 0 | 4 |Ok

T4 writes to X

22/18

NesTM - commit operation

global clock: 0
timestamp tid
variable X: 0 I 4 l

T4 prepares commits

23/18

NesTM - commit operation

global clock: 1
timestamp tid
variable X: 1 | 3 |

T4 commits

23/18

JVSTM - write operation

A
variable X:

Ta writes to X

24/18

JVSTM - write operation

variable X:

T spawns two children

24/18

JVSTM - write operation

variable X:

Tc writes to X

24/18

JVSTM - write operation

variable X:

Tp is spawned and writes to X

24/18

JVSTM - read operation

variable X:

Tp reads X

25/18

JVSTM - read operation

variable X:

Tg reads X

25/18

JVSTM - read operation

variable X:

Tg reads X

25/18

JVSTM - read operation

variable X:

Tg reads X

25/18

JVSTM - read operation

variable X:

Tg reads X

25/18

JVSTM - commit operation

variable X:

Orecq

Tp commits

26/18

JVSTM - commit operation

variable X:

T¢c commits

26/18

Evaluation - Top-level txs only

throughput (txs/sec)

18

16

14

12

10

—g =) = = = I
1 1 1 1 1
1 2 3 6 12 24 48
threads

27/18

	Appendix

