On the design space of Parallel Nesting

Nuno Diegues João Cachopo

nmld, joao.cachopo@ist.utl.pt
INESC-ID/Technical University of Lisbon

July 19, 2012

Introduction

Selling point of TM

Composability

Introduction

Selling point of TM

Composability

Parallel Nesting

Time complexity analysis may be deceiving in TMs

Outline

Compare three parallel nesting approaches

- JVSTM
- NesTM¹
- PNSTM²

¹W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested parallel transactions in software transactional memory. In SPAA '10.

²J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel nesting in transactional memory. In PPoPP '10.

Outline

Compare three parallel nesting approaches

- JVSTM ←
- NesTM¹
- PNSTM²

¹W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Implementing and evaluating nested parallel transactions in software transactional memory. In SPAA '10.

²J. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka. Leveraging parallel nesting in transactional memory. In PPoPP '10.

Worst-case complexities - JVSTM

	JVSTM	
read	O(maxDepth)	
write	O(1)	
commit	O(r + children)	

Worst-case complexities - JVSTM

	JVSTM	
read	O(maxDepth)	
write	O(1)	
commit	O(r + children)	

Worst-case complexities - JVSTM

	JVSTM	
read	O(maxDepth)	
write	O(1)	
commit	O(r+children)	

Worst-case complexities - NesTM

	JVSTM	NesTM	
read	O(maxDepth)	O(1)	
write	O(1)	O(txDepth)	
commit	O(r + children)	O(r+w)	

Worst-case complexities - NesTM

	JVSTM	NesTM
read	O(maxDepth)	O(1)
write	O(1)	O(txDepth)
commit	O(r + children)	O(r+w)

Worst-case complexities - PNSTM

	JVSTM	NesTM	PNSTM
read	O(maxDepth)	O(1)	O(1)
write	O(1)	O(txDepth)	O(1)
commit	O(r + children)	O(r+w)	O(1)

Worst-case complexities

	JVSTM	NesTM	PNSTM
read	O(maxDepth)	O(1)	0(1)
write	O(1)	$O(t \times Depth)$	0(1)
commit	O(r + children)	O(r+w)	0(1)

Best one?

• STMBench7 - running given number of transactions

- STMBench7 running given number of transactions
- Implementation of STMs

- STMBench7 running given number of transactions
- Implementation of STMs
- Same API

- STMBench7 running given number of transactions
- Implementation of STMs
- Same API
- 48 core machine

STMBench7

STMBench7

• 5 and 15 times with 48 threads/parallel nested

STMBench7 - Large depth count

Discussion

What is causing this?

Complexities of the fast-paths

	JVSTM	NesTM	PNSTM
read	0(1)	O(1)	O(1)
write	O(1)	O(1)	O(1)

Fast-paths occurrence

	Fast-path	Slow-path
JVSTM	0.99	0.01
NesTM	0.39	0.61
PNSTM	0.39	0.61

Fast-paths occurrence

	Fast-path	Slow-path	Time (μs)
JVSTM	0.99	0.01	1046
NesTM	0.39	0.61	5200
PNSTM	0.39	0.61	7357

Conflicts detected

	Conflicts
JVSTM	845
NesTM	1627
PNSTM	84496

Conflict detection

	JVSTM	NesTM	PNSTM
r-r	-	-	yes
r-w	yes	yes	yes
W-W	yes (if nested)	yes	yes

Conflict detection

	JVSTM	NesTM	PNSTM
r-r	-	-	yes
r-w	yes	yes	yes
W-W	yes (if nested)	yes	yes

Cheaper complexity bounds, more conflicts detected?

Summary

- Parallel nesting design is coupled with baseline TM
- Complexity analysis may be deceiving
- Average case and conflict detection

Thank you

Questions?

Pool of free bitnums:
0
1
2
3

Pool of free bitnums:

0
1
2
3

 T_A reads X

index

Ok

 T_A spawns two children

 T_B reads X

 T_B reads X

 T_B spawns a child

PNSTM

 T_D reads X

PNSTM

 T_D reads X

NesTM

global clock: 0

	timestamp	tid
variable X:	0	0

NesTM

global clock: 0

	timestamp	tid	_
variable X:	0	1	Ok

NesTM

 \mathcal{T}_1 spawns two children

NesTM - read operation

 T_3 spawns a child

 T_4 writes to X

NesTM - commit operation

 T_4 prepares commits

NesTM - commit operation

 T_4 commits

 T_D is spawned and writes to X

JVSTM - commit operation

JVSTM - commit operation

Evaluation - Top-level txs only

