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Abstract—Databases continue to be the most commonly used backend storage in enterprises, but they are often integrated with
vulnerable applications, such as web frontends, that allow injection attacks to be performed. The effectiveness of such attacks stems
from a semantic mismatch between how SQL queries are believed to be executed and the actual way in which databases process
them. This leads to subtle vulnerabilities in the way input validation is done in applications. We propose SEPTIC, a mechanism for
DBMS attack prevention, which can also assist on the identification of the vulnerabilities in the applications. The mechanism was
implemented in MySQL and evaluated experimentally with various applications and alternative protection approaches. Our results
show no false negatives and no false positives with SEPTIC, on the contrary to other solutions. They also show that SEPTIC introduces
a low performance overhead, in the order of 2.2%.
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1 INTRODUCTION

W EB applications have been around for more than two
decades and are now an important component of

the economy, as they often serve as an interface to various
business related activities. Databases continue to be the
most commonly used backend storage in enterprises, and
they are often integrated with web applications. However,
web applications can have vulnerabilities, allowing the data
stored in the databases to be compromised.

SQL injection attacks (SQLI), for example, continue to
rise in number and severity [3], [15], [31]. Commonly used
defenses are validation functions, web application firewalls
(WAFs), and prepared statements. The first two inspect web
application inputs and sanitize those that are considered
dangerous, whereas the third bounds inputs to placeholders
in the SQL queries1. Other anti-SQLI mechanisms have
been developed but less adopted. Some of these monitor
and block SQL queries that deviate from specific models,
but the inspection is made without full knowledge about
how they are processed by the DBMS [7], [8], [18], [28],
[42]. In all these cases, developers and system administra-
tors make assumptions about how the server-side scripting
language and the DBMS work and interact, which some-
times are simplistic while in others are blatantly wrong.
For example, programmers usually assume that the PHP
function mysql_real_escape_string always effectively
sanitizes inputs and prevents SQLI attacks, which is not
true. Also, they often assume that values retrieved from a
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1. We use the term SQL query, or simply query, to designate any SQL

statement (e.g., SELECT, INSERT).

database do not need to be validated before being inserted
in a query, leading to second order injection vulnerabilities.
This is visible when, for instance, the code admin’ -- is
sanitized by escaping the prime character before sending it
to the database, but the DBMS unsanitizes it before actually
storing it. Later, the code is retrieved from the database and
used unsanitized in some query, carrying out the attack.

Such simplistic/wrong assumptions seem to be caused
by a semantic mismatch between how a SQL query is ex-
pected to run and what actually occurs when it is executed
(e.g., the programmer expects it to be sanitized but the
DBMS unsanitized it). This mismatch may lead to vulner-
abilities, as the protection mechanisms may be ineffective
(e.g., they may miss some attacks). To avoid this problem,
SQLI attacks could be handled inside, after the server-side
code processes the inputs and the DBMS validates the
queries, reducing the amount of assumptions that are made.
The mismatch and this solution are not restricted to web
applications, meaning that the same problem can be present
in other business applications. In fact, injection attacks are
a generic form of attack, transversal to all applications that
use a database as backend.

This idea of handling attacks inside has been quite suc-
cessful in the realm of binary applications, to stop attacks
irrespectively of the developers ability to follow secure
programming practices or not. In that case, inside means
that protection mechanisms are inserted in programming
libraries or operating systems. Examples include address
space layout randomization (ASLR), data execution preven-
tion (DEP), or canaries/stack cookies [20], [24].

In this paper, we propose a similar idea for applications
backed by databases. We propose to block injection attacks
inside the DBMS at runtime. We call this approach SElf-
ProtecTIng databases from attaCks (SEPTIC). The DBMS is an
interesting location to add protections against such attacks
because it has an unambiguous knowledge about what will
be considered as clauses, predicates and expressions of a
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SQL statement. No mechanism that actuates outside of the
DBMS has such knowledge.

We address two categories of database attacks: SQL injec-
tion attacks, which continue to be among those with highest
risk [17] and for which new variants continue to appear
[37]; and stored injection attacks, including stored cross-site
scripting, which also involve SQL queries. For SQLI, we
propose to catch the attacks by comparing queries with
query models, improving an idea that has been previously
used only outside of the DBMS [7], [8], [18], [42], and by
comparing queries with validated queries with a similarity
method, improving detection accuracy. For stored injection,
we employ plugins to deal with specific attacks before data
is inserted in the database.

SEPTIC relies on two new concepts. Before detecting
attacks, the mechanism can be trained by forcing calls to all
queries in an application. The result is a set of query models.
However, as training may be incomplete and not cover all
queries, we introduce the notion of putting in quarantine
queries at runtime for which SEPTIC has no query model.
The second concept, aging, deals with updates to query
models after a new release of an application, something that
is inevitable in real world software. Both concepts allow a
reduction of the false negative (attacks not detected) and
false positive (alerts for non-attacks) rates.

We demonstrate the approach with a common deploy-
ment scenario: MySQL, probably the most popular open-
source DBMS [38], and PHP, the language most used to
build web applications (more than 80%) [45]. We also ex-
plore Java/Spring, the second most employed programming
language, and the Gambas language, used to develop many
business applications. SEPTIC is evaluated experimentally
to assess its effectiveness to block attacks, including in the
tests a set of non-trivial SQLI attacks [36], [37]. SEPTIC
is also compared with a number of alternative solutions,
including the ModSecurity WAF and recent anti-SQLI mech-
anisms proposed in the literature, with SEPTIC showing
neither false negatives nor false positives, on the contrary of
the others. The impact of our approach on the performance
of MySQL is analyzed by running BenchLab [10]. The exper-
iments give evidence of very low overheads, around 2.2%.

2 DBMS INJECTION ATTACKS

As we stated before, we denominate semantic mismatch as
an incorrect perception about how the SQL queries are
executed by the DBMS – the developer expects queries to
be processed in a certain way but they are actually run in
a different manner. This mismatch often leads to mistakes
in the implementation of protections in the source code of
applications, making these vulnerable to SQL injection and
other attacks involving the DBMS. The problem is subjective
in the sense that it depends on the programmer, but some
mistakes are usual. A common way to try to prevent SQLI
consists in sanitizing user inputs before they are used in
SQL queries.

The PHP function mysql_real_escape_string2, for

2. Notice that PHP 7 recommends the use of function
mysqli_real_escape_string to escape strings.
This function modifies strings in the same manner as
mysql_real_escape_string, and therefore leads to the
same problems as the latter.

instance, precedes special characters (like prime or double
prime) with a backslash, transforming these delimiters into
normal characters. However, sanitization functions do not
behave as envisioned when the special characters are repre-
sented differently from expected, e.g., ’ (prime) is encoded
as %27. In such case, the DBMS decodes and executes
the queries with the prime character. We identified several
DBMS injection attacks in the literature, including a variety
of cases related to semantic mismatch [11], [13], [14], [29],
[36], [37], [39]. Table 1 classifies these attacks. The first three
columns identify the classes, whereas the fourth and fifth
explain how the PHP sanitization functions and the DBMS
process the example malicious inputs of the sixth column.

As mentioned in the introduction, we consider two main
classes of attacks: SQL injection and stored injection (first
column). These classes are divided in sub-classes corre-
sponding to common designations of attacks targeting the
DBMS, namely, classes A to E for the former and class F
to H for the latter. However, class E might also fit on the
latter class of attacks. Classes S.1 and S.2 are related with
classes A to E and separate the attacks based on the way
they affect the syntactic structure of the SQL query. Class S.1
is composed of attacks that modify this structure, while class
S.2 encompasses attacks that change the query but mimic its
original structure.

1 $user = mysql_real_escape_string($_POST[’username’]);
2 $pass = mysql_real_escape_string($_POST[’password’]);
3 $query = "SELECT * FROM users WHERE username=’$user’ AND

password=’$pass’";
4 $result = mysql_query($query);

Listing 1: Script vulnerable to SQLI with encoded
characters.

Class A – obfuscation – contains five subclasses that
represent cases of semantic mismatch. As an example, con-
sider the code excerpt in Listing 1 implementing a login
script that checks the user credentials (username, password)
in the database.3 Both user inputs are sanitized by the
mysql_real_escape_string function (lines 1-2) before in-
serting them in the query (line 3) and submitting the request
to the DBMS (line 4). If an attacker injects the admin’--
string as username (line 1), the $user variable receives
this string sanitized, with the prime character preceded by
a backslash. The user admin\’-- does not exist in the
database, and so this SQLI attack is not successful.

On the contrary, this sanitization is ineffective if the
input uses URL encoding [6], leading to an attack of
class A.1. Imagine that the attacker inserts the same user-
name URL-encoded: %61%64%6D%69%6E%27%2D%2D%20.
mysql_real_escape_string function does not sanitize
the input because it does not recognize %27 as a prime.
However, MySQL receives that string as part of a query, and
decodes it, thus executing SELECT * FROM users WHERE
username=’admin’-- ’ AND password=’foo’. The at-
tack is effective because this query is equivalent to SELECT

* FROM users WHERE username=’admin’ (no password
has to be provided as the two characters -- indicate that
the rest of the code in the line should be ignored). This is
also an attack of class S.1 as the structure of the query is

3. All examples included in the paper were tested with Apache 2.2.15,
PHP 5.5.9 and MySQL 5.7.4
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TABLE 1: Classes of attacks against DBMSs.

Class Class name PHP sanit. func. DBMS Example malicious input
SQ

L
in

je
ct

io
n

A Obfuscation
A.1 - Encoded characters do nothing decodes and executes %27, 0x027
A.2 - Unicode characters do nothing translates and executes U+0027, U+02BC
A.3 - Dynamic SQL do nothing completes and executes char(39)
A.4 - Space character evasion do nothing removes and executes char(39)/**/OR/**/1=1--
A.5 - Numeric fields do nothing interprets and executes 0 OR 1=1--

B Stored procedures sanitize executes admin’ OR 1=1
C Blind SQLI sanitize executes admin’ OR 1=1
D Insert data sanitize unsanitizes and executes admin’ OR 1=1--
E Second order SQLI – executes any of the above

St
in

j F Stored XSS – – <script>alert(’XSS’)</script>
G Stored RCI, RFI, LFI – – malicious.php
H Stored OSCI – – ; cat /etc/passwd
S.1 Syntax structure sanitize executes admin’ OR 1=1
S.2 Syntax mimicry sanitize executes admin’ AND 1=1--

XSS: Cross-Site Scripting; RCI: Remote Code Injection; RFI:Remote File Inclusion; LFI: Local File Inclusion; OSCI: OS Command Injection

modified as the part that checks the password disappears.
The other subclasses of A involve alternative masquerading
techniques. In class A.2, the attacker encodes some charac-
ters in Unicode (e.g., the prime as U+02BC). In class A.3, a
function is inserted and called dynamically (e.g., the prime
is encoded as char(39)). Class A.4 uses spaces and equiv-
alent strings to manipulate queries (e.g., concealing a space
with a comment like /**/) [11]. In classes A.3, A.4, and A.5,
the DBMS decodes the obfuscated code before executing the
query. Class A.5 abuses the fact that numeric fields do not
require values to be enclosed with primes, and therefore a
tautology can be created without these characters (similar
to the example for A.1), fooling sanitization functions like
mysql_real_escape_string.

Class B – stored procedures – could be exploited in a
similar way as queries constructed in the application code.
These procedures may take inputs that modify or mimic
the syntactic structure of the query, leading to attacks of
classes S.1 or S.2. Class C – blind SQLI attacks – aims to
extract information from the database by observing how the
application responds to different inputs. These attacks may
also fall in classes S.1 or S.2.

Class D – insert data – aims to add crafted data to the
database (INSERT, UPDATE), so that later it can be retrieved
and used in another query of the application. This class of
attack is another case of semantic mismatch and it is the base
of stored injection attacks (see next classes). For example,
if an attacker provides the admin’ OR 1=1-- string, then
it might be sanitized with mysql_real_escape_string in
the application. However, once the string reaches the DBMS,
the input will be unsanitized before being saved in the
database. These attacks may fall in classes S.1 or S.2.

Classes E to H – stored injection – are characterized by
being executed in two steps: the first involves doing an
SQL query that inserts attacker data in the database; the
second uses this data to complete the attack. The specific
attack depends on the data and how it is used. In a second
order SQLI attack (class E), the data is a string specially
crafted to be included in another SQL query, which is then
executed in the second step. This second query is the attack
itself and it may fall in classes S.1 or S.2. This is another
case of semantic mismatch as the sanitization created by
functions like mysql_real_escape_string is removed by

the DBMS when the string is put in the database (first step
of the attack – class D). A stored XSS (class F) involves
placing a script (typically JavaScript) in the database in the
first step, and then returning it to the browser of one or
more users in the second step. The automatic execution of
the script at the client causes some malicious action to be
performed. In class G the data inserted in the database can
be a malicious PHP script or an URL of a website containing
such a script, resulting in a local or remote file inclusion, or
on remote code injection. In class H, the attack inserts data
in an operating system command, which is executed in the
second step.

3 SEPTIC APPROACH AND ARCHITECTURE

SEPTIC is implemented by a module inside the DBMS,
allowing every query to be checked for attacks. The seman-
tic mismatch problem is circumvented because queries are
evaluated for detection purposes near the end of the DBMS
data flow, just before the query is executed. As SEPTIC is
inside the DBMS, it is independent from the application
(e.g., from the application programming language) and the
way it builds queries (e.g., dynamically). This lets SEPTIC
analyze queries issued by any kind of application. How-
ever, with support from the application, SEPTIC can also
contribute to the identification of the vulnerabilities that are
being exploited (Section 7).

3.1 Approach overview

Figure 1 shows the architecture of a web and a non-web
application with a backend database. When the system
starts, SEPTIC may undergo a training phase in order to
obtain the query models for the application. We designate
administrator the person or persons in charge of managing
the DBMS and SEPTIC (e.g., decides when the training
mode ends).

Later on, when SEPTIC is put in normal operation, it
works basically in the following way:

1) An application requests the execution of a query.
Optionally, the query instruction may contain an
(external) identifier produced by the server-side lan-
guage engine or the application;
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2) The DBMS receives, parses and validates the query.
Before it executes the query, SEPTIC is called to
retrieve its associated query model, which is used
to detect and block a potential incoming attack. If
an external identifier arrives with the query, it is
extracted to get context information about the places
in the source code of the application where the
query was built. This information can be helpful to
locate a vulnerability in case an attack is found.

web application
server-side

application code

non-web
application

inputs

inputs

query
(Qinit) server-side

language engine

query (Qinit)
parse

validate

execute

SEPTIC

DBMS

Fig. 1: Two kinds of applications backed by a DBMS with
SEPTIC.

3.2 Architecture
SEPTIC runs in three modes, one for training during the
set up of the system (training mode) and two during nor-
mal operation (either prevention or detection mode). Figure
2 displays the various steps carried out by SEPTIC. The
figure should be read starting from the black arrow at
the top/left. Dotted-dashed arrows and processes represent
the training mode, whereas solid arrows and processes
represent common operations of normal mode for both
prevention and detection modes. Thin dotted arrows and
processes represent alternative paths for prevention mode,
while double-solid arrows represent detection mode.

training mode normal mode

learned
QMs

log of
used QMs

drop
Qval

(Ext, Int) IDentifier
Query (init, validated)
Query Model
Query Structure

create
QS

plugins

DBMS

SEPTIC

create
QM

       QinitEID Qvalparse validate

execute 
Qval

log of
attacks

SQL
injection

stored
injection

detect attacks

Qinit

get
QM

create query ID

get
EID

generate
IID

prevention mode detection mode

Fig. 2: Architecture and data flows of SEPTIC.

The query execution request received by the DBMS is
called the initial query (Qinit), while the query resulting after
the internal processing (parsing and validation) is named
validated query (Qval). SEPTIC operates mainly with Qval
but also resorts to Qinit in some cases.

Training is done by putting SEPTIC in training mode and
by running the application for some time without attacks
(Section 6.1). Training creates a set of query models (QMs),

each one associated with a query identifier (ID), and saves
this data in the learned QMs data store (Section 6). ID is
composed by an internal query identifier (IID) generated by
SEPTIC, optionally complemented with an external query
identifier (EID grey box in Figure 2) provided by the applica-
tion (Section 4.2).

In normal operation, SEPTIC generates a query structure
(QS) and an IID for every arriving request. The IID is used
to build the ID. In addition, if an EID is embedded in Qinit,
it is obtained and included in ID. SEPTIC enforces attack
detection firstly by comparing the QS with the QM that was
previously learned for that ID and secondly by looking for
disparities between the QS and the Qinit. A SQLI attack
is found if there is no match. Otherwise, SEPTIC runs a
set of plugins that look for specific stored injection prob-
lems. Queries deemed valid are allowed to proceed with
the DBMS processing, but before SEPTIC logs information
about the QM that matched the QS.

The action that is taken when an attack is found depends
on the mode of execution. In prevention mode, the attack is
aborted, i.e., the query is dropped to interrupt processing. In
detection mode, queries are run. In both modes, SEPTIC logs
information about the attacks that were caught.

4 QUERY REPRESENTATIONS AND IDENTIFIERS

SEPTIC processes queries validated by the DBMS and rep-
resents them by query structures (QSs) and query models
(QMs), depending if it executes in normal operation (pre-
vention or detection mode) or in training mode. Also, each
query model is known by a query identifier (ID). Therefore,
the core of SEPTIC relies on queries, their representations
and identifiers. This section presents detailed information
about them.

4.1 Queries, query structures and query models

A query is an SQL statement to be executed by a DBMS.
A query is composed by a set of elements, namely SQL
clauses, fields, operators and functions that act on data.
In an application, the great majority of these elements are
fixed, and the exceptions are the data fields that contain
inputs dynamically set by the applications (e.g., based on
user provided data).

Applications typically handle a query simply as a string,
since they have no need to separate or distinguish the
elements of the SQL statement (i.e., elements are just parts
of the string)4. On the other hand, SEPTIC needs more infor-
mation about these elements to be able to make the various
comparisons between the QS / QM / Qinit. Fortunately,
the DBMS also requires that information, and assigns each
of the queries’ elements (clause, field, etc.) to a category.
Therefore, from the point of view of SEPTIC, a query is a
SQL statement sent by an application, which it can analyse
with the same level of detail as the DBMS.

Arriving queries are parsed and validated by the DBMS
before they are executed. Qinit is received in the form of
a string and suffers several modifications until it becomes
Qval. Namely, it is parsed, the SQL syntax is checked,

4. An exception occurs with prepared statements.
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elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

elem_type elem_data_R

elem_type elem_data_ri

elem_type elem_data_le

WHERE empty

(...) (...)

elem_type elem_data

... ...

elem_type elem_data

clause_name elem_data

Fig. 3: A generic query structure.

the comments are removed, and encoded characters are
decoded. The query is finally executed iff no error is found.

SEPTIC assumes that Qval is in the form of a parse tree,
represented as a list of stacks data structure, which is the
usual way to maintain queries internally to the DBMS [5].
Every stack of the list corresponds to a clause (e.g., SELECT,
FROM, WHERE) or statement (e.g., INSERT, UPDATE) of the
query, and each of their nodes contains information about
a query element, such as category/type (e.g., field, function,
operator), data type (e.g., integer, string), and data value
(i.e., the value itself). Table 2 presents examples of these
elements that may compose a query.

TABLE 2: Examples of elements that can compose a query.

Clause/Statement Element Data typeCategory Data
SELECT operator +, -, between, like integer
FROM condition and, or, not real
WHERE field field name, table name string
ORDER BY function char, average, sum
GROUP BY
DELETE
UPDATE
INSERT

The query structure (QS) of a query is constructed by
merging the content of all stacks in the list into a single
stack. Figure 3 depicts a generic QS, showing from bottom
to top the clauses and their elements. In the figure, each row
represents a clause of the query or a query element. Clauses
have a name and data: 〈CLAUSE NAME, ELEM DATA〉. An
element of the query is represented by the element type
and the element data: 〈ELEM TYPE, ELEM DATA〉. The single
exception is the alternative format 〈DATA TYPE, DATA〉 that
represents an input value inserted in the query (DATA) and
its (primitive) data type (DATA TYPE). A part of the query
is considered to be an input if its type is primitive (e.g., a
string or an integer) or if it is compared to something in a
predicate. For the clauses with conditional expressions (e.g.,
WHERE) the elements are inserted in the QS by doing a post-
order traversal of the parse tree of the query (i.e., the left
child is visited and inserted in the stack first, then the right
child, and so on until the root). QS also contains a label with
the main SQL clause (SELECT, DELETE, UPDATE,. . . ) to
easily identify the type of the query. This label is designated
as the SQL command.

As mentioned in the previous section, in training mode
SEPTIC creates the query models (QMs). It builds a QM
whenever the DBMS processes a query, but the model is
only stored the first time the associated query ID is ob-
served. The QM is the query without input data and it

is constructed using the QS. The process consists simply
in substituting DATA (input data) by a special value ⊥ in
all 〈DATA TYPE, DATA〉 nodes. This allows representing any
input data independently of its content and length, since
benign inputs do not alter the query model. On the other
hand, the nodes without this special value are those that
represent the static part of the query. Moreover, this special
value is used to denote that these fields should not be
compared during attack detection since their content can
be different for each query received by SEPTIC for the same
QM. In contrast, all the other nodes are identical in the QM
and the QS, and so they must be compared during the attack
detection (Section 5).

Take as example the query SELECT name FROM users
WHERE user=’alice’ AND pass=’foo’. Figure 4 repre-
sents its (a) parse tree, (b) QS and (c) QM. In Figure 4(b) and
(c) the gray items at the bottom have the clauses SELECT,
FROM and WHERE. In Figure 4(b) the user input values are
represented in bold and in Figure 4(c) they have the special
value ⊥ as explained. In the left-hand column, each element
of the query takes a category (field, data type, condition op-
erator, etc.), whereas the right-hand column has the query’s
keywords, variables and primitive data type values. Notice
that primitive data type elements (real, integer, decimal and
string) also take a specific category, such as STRING ITEM

(e.g., in the fourth row).

Remark 1. SEPTIC processes any query that reaches the
DBMS, after it is parsed and validated. This means that
the DBMS is the component that handles the complexity of
queries, which can be simple (e.g., the usual SELECT state-
ments) or complicated (e.g., queries containing several pa-
rameters and sub-queries, including aggregated functions).
Consequently, it is the DBMS, not SEPTIC, that performs the
potentially hard job of identifying the different elements of
queries and representing them as stacks. SEPTIC, for its part,
does not need to deal with such difficulties, since it receives
the stacks, leverages from the query element identification
and categorization to construct QSs and QMs. Therefore,
SEPTIC deals with complex queries, but the initial part of
the processing is offloaded to the DBMS.

4.2 Identifiers
Query identifiers (IDs) are used to match queries with their
models. They are opaque, i.e., their structure is not rele-
vant for SEPTIC, but the information that they carry lets
them identify queries uniquely. SEPTIC always generates
an internal query identifier (IID) inside of the DBMS for every
query it receives. However, it can also handle other kinds
of identifiers, passed from the outside (the external query
identifier, EID). In this case, SEPTIC appends its own IID
to the EID in order to compose a single query identifier, the
ID (otherwise, the ID is the IID).

4.2.1 Internal query identifiers
The DBMS is arguably the best place to create an identifier
for transparency, as programmers/administrators can re-
main oblivious to their existence. Since the QM captures the
unique characteristics of a query (e.g., clauses, data elements
and data values), SEPTIC leverages this fact to produce
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foo
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name

(a) Query parse tree

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

Τ

Τ

WHERE WHERE

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

INT_ITEM 1

INT_ITEM 1

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

bottom of the stack

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM alice

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

push
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(b) Query structure

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM f

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

Τ

Τ

WHERE WHERE

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

INT_ITEM 1

INT_ITEM 1

FUNC_ITEM =

STRING_ITEM admin

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

bottom of the stack

WHERE WHERE

COND_ITEM AND

FUNC_ITEM =

STRING_ITEM foo

FIELD_ITEM pass

FUNC_ITEM =

STRING_ITEM alice

FIELD_ITEM user

FROM_TABLE users

SELECT_FIELD name

push
top, pop

(c) Query model

Fig. 4: Representation of a query as a parse tree, a structure (QS) and a model (QM).

distinct IIDs. In training mode, a model is constructed and
the related IID is calculated for every new query that will
be monitored. In normal operation, when a query with a
query model already known by SEPTIC is issued, it will
have the same IID and QM. This allows queries to be
compared against the original QM without confusion. Also,
this means that similar queries created at different places
of the application source code will be compared against the
same model.

The format of the IID can be any that represents
the QM and captures the characteristics that are con-
sidered relevant. In our current implementation, the IID
is formed by the database name concatenated with the
SQL command (e.g., SELECT), the SQL keywords for
ELEM_DATA and DATA elements (in the second column
of Fig. 3), and the CLAUSE_NAME of the QM (in the
first column of Fig. 3). For the query example presented
in Figure 4, and considering that the database name is
DB, the IID is DB_SELECT_WHEREAND=⊥pass=⊥userWHERE
usersFROM_TABLEnameSELECT_FIELD.

4.2.2 External query identifiers
This kind of identifier is produced outside the DBMS, for
example in the server-side language engine (SSLE) or in
the source code of the application (see Figure 1). It can
have an arbitrary value. For instance, it can contain infor-
mation about the places of source code where the query
is composed and/or is issued to the database. The EID is
transmitted with the Qinit (see Section 8).

4.2.3 Query identifiers
An ID is built by joining the EID with the IID, in case
the Qinit has an EID; otherwise, it is just the IID. This
combination of identifiers is interesting because the EID can
describe the query inside the application, whereas the IID
can find the model of a query for a given database. In this
way, it is possible to have identifiers that provide contextual
information and that are directly related to queries in a
singular way.

5 INJECTION ATTACK DETECTION

This section explains how SEPTIC discovers ongoing at-
tacks. This is achieved by dividing the classes of Table 1

in two groups that are processed differently: SQL injection
and stored injection.

5.1 SQLI detection
SQLI attacks are detected by finding out if queries fall in
either class S.1 or S.2. These classes are called primordial
for SQL injection because any SQLI attack belongs to one
of them. The rationale is that if an SQLI attack neither
modifies the query structure (class S.1) nor changes the
query mimicking the structure (class S.2), then it must leave
the query unmodified, i.e., it is not an SQL injection attack.

SEPTIC detects the attacks by checking Qval with the
associated query model structurally (for class S.1) and syn-
tactically (for class S.2), plus handling the case of non-unique
IDs by comparing Qval with Qinit (query similarity). An
attack is flagged if there are differences in any of these tests.

1 num_nodes_QS <- get number of nodes of QS
2 num_nodes_QM <- get number of nodes of QM
3
4 if num_nodes_QS <> num_nodes_QM then
5 return report a SQLI attack
6 else
7 foreach node_QS in QS and node_QM in QM do
8 if node_QS <> node_QM then
9 return report a SQLI attack

10 end
11 end
12 elements <- null
13 foreach node_QS in QS do
14 if node_QS is a clause_node then
15 if elements is not null then
16 if elements in [a..z, A..Z, comment tokens] then
17 return report a SQLI attack
18 else
19 elements <- get string elements from Qinit
20 end
21 else
22 elements <- get string elements from Qinit
23 end
24 else
25 elem_data <- get elem_data from node_QS
26 remove elem_data from elements
27 end
28 end
29 end

Listing 2: Algorithm for detecting SQLI attacks.

The attack detection algorithm (Listing 2) performs these
three tests in that order, ending when any of them fails, i.e.,
when any test detects an attack. Therefore, given a Qval with
a certain ID and the corresponding QS, detection involves
iterating over the nodes of QS and matching them with the
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ones of the stored QM (for that ID). Something equivalent
also has to be done with the Qinit:

1) Structural verification: if the number of nodes in
QS is different from the number of nodes in QM,
then Qval does not correspond to the model and
detection for QM ends (lines 1 to 5).

2) Syntactical verification: if the ELEM_TYPE and
DATA_TYPE of any of the nodes of QS is different
from the ones in QM for the same position (ex-
cept primitive types), then Qval does not match
the model and detection for QM ends (lines 6 to
11). Nodes are compared starting at the top and
going down the QS and QM stacks as represented
in Figures 4(b)–(c). Primitive data types (real, inte-
ger, decimal and string) are an exception because
DBMSs implicitly make type-casting between them
(e.g., integer to string), so these types are considered
equivalent.

3) Query similarity verification: if any item (string ele-
ment) of Qinit is distinct from the nodes of QS, then
this disagreement causes an attack to be flagged
(lines 12 to 28). In detail, the test is executed in
this way: i) in QS, SEPTIC identifies the clause
appearing in the first place from the top to bottom of
the stack; ii) in Qinit, it extracts the string elements
corresponding to that clause; iii) for each node of QS
from that clause, SEPTIC gets its ELEM_DATA and
removes it from the extracted string elements; iv)
after removing all the ELEM_DATA, if the reminiscent
string elements contain any word or comment to-
kens (e.g., - -, #, /**/) an attack is flagged, otherwise
the process is repeated for the next clause in QS.

There is no attack if all checks are valid. Otherwise, there
is an attack and in such case the action to be taken depends
on the mode in which SEPTIC is running: in prevention
mode the query processing is aborted; in detection mode
the query is executed.

Remark 2. The query similarity verification avoids the follow-
ing undesirable situation. A malicious query arrives and
after the validation the corresponding Qval (thus also the
QS) is equal to one of a benign query already stored by
SEPTIC. In this case, QS and QM would match structurally
and syntactically, causing the attack to go unnoticed. The
query similarity verification avoids this problem by compar-
ing the validated query with the initial query without any
processing. This means that the elements on the malicious
query that were removed in the validation process (e.g., the
commented elements) are noticed by the test because they
no longer appear in the query structure.

Example 1. Consider a query SELECT name FROM users
WHERE user=? AND pass=? where question marks repre-
sent inputs. Figure 4(c) illustrates the corresponding QM.
Imagine a second-order SQLI attack carried out in the
following steps: (i) a malicious user provides an input
that leads the application to insert adminU+02BC-- in the
database (i.e., admin’-- with the prime represented in
unicode as U+02BC); (ii) later this data is retrieved from the
database and inserted in the user field in the query above;
(iii) the DBMS parses and validates the query, decoding
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(b) Mimicry attack

Fig. 5: QSs resulting from a structural and a mimicry attack.

U+02BC into the prime character; the resulting query SELECT
name FROM users WHERE user= admin falls in class S.1
as it modifies the structure of the query. Figure 5(a) presents
the QS for this query. SEPTIC compares the QS with the QM
and during structural verification observes that they do not
match, as the number of nodes of both structures is different,
enabling the attack detection.

Example 2. Consider a syntax mimicry attack, the query
from the previous example and the malicious input
admin’ AND 1=1-- inserted as user. The resulting query
is SELECT name FROM users WHERE user= admin AND
1=1. Figure 5(b) represents its QS. SEPTIC compares the QS
with the QM (Figures 5(b) and 4(c)). First, during structural
verification it observes that they match, as the number of
nodes of both structures is equal; then during syntactical
verification it sees that the 〈INT ITEM, 1〉 nodes from QS
(fourth and fifth rows in Figure 5(b)) do not match with
the 〈STRING ITEM, ⊥〉 and 〈FIELD ITEM, PASS〉 nodes
from QM (Figure 4(c)), respectively. Although the first test
passes, as casting between data types is allowed, the second
comparison is considered invalid and the attack is flagged.

Example 3. Regarding query similarity verification, consider
an application that has two kinds of users: administrators
and normal users. The application also has two different
queries to validate the two types of users. Suppose also
that SEPTIC stores the QMs for these queries, namely
SELECT name FROM users WHERE user=’bob’ (for
administrators) and SELECT name FROM users WHERE
user=’alice’ AND pass=’foo’ (for normal users).
Later on, the DBMS receives the query (Qinit) SELECT
name FROM users WHERE user=’admin’-- ’ AND
pass=’foo’, which denotes an attempt of a normal user to
get access as administrator. The resulting Qval for this query
is SELECT name FROM users WHERE user=’admin’.
Since SEPTIC has a similar QM, there is a match for QS
and QM. Next, the similarity verification test is applied as
explained above, i.e., i) the WHERE clause is identified in
QS; ii) the user=’admin’-- ’ AND pass=’foo’ string
elements are extracted from Qinit; iii) the ELEM_DATA from
the WHERE clause in QS (user and ’admin’) are removed
from the extracted string elements; iv) at the end, there
are string elements -- ’ AND pass=’foo’ that remain.
Therefore, the query similarity verification step of the
algorithm detects that the query is an attack.
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5.2 Stored injection detection
Stored injection attacks are carried out in two steps. First,
some malicious data is inserted in the database; second,
that data is taken from the database and is used in some
erroneous way. For example, consider a stored XSS (class
F) where the data includes a bad script. In the first step,
the script is saved, while in the second it is obtained from
the database and placed in a web page to be returned to a
browser. These attacks cannot be detected as SQLI attacks
because they do not work by modifying queries.

SEPTIC detects stored injection attacks in their first step,
i.e., it searches for malicious data included in queries that
insert data in the database (i.e., INSERT and UPDATE), and
then tests these data with plugins. Therefore, a set of plugins
is used for this task, typically one for each type of attack.
The plugins analyze the queries searching for code that
might be executed by browsers (JavaScript, VB Script), by
an operating system (shell script, OS commands, binary
files) or by server-side applications (php). Since running the
plugins may introduce some overhead, a preliminary check
is done by the detection algorithm. The algorithm, therefore,
works in two steps:

1) Filtering – looks for suspicious strings such as: <,
>, href, and javacsript attributes (F); protocol key-
words (e.g., http) and extensions of executable or
script files (e.g., exe, php) (G); special characters (e.g.,
; and |) (H). If none is found, detection ends.

2) Testing – consists in passing the input to the proper
plugin for inspection. For example, if the filtering
phase finds the href string, the data is provided to
a plugin that detects stored XSS attacks. This plugin
inserts the input in a simple HTML page with the
three main tags (<html>, <head>, <body>), and
then calls an HTML parser to determine if other
tags appear in the page indicating the presence of
a script.

Example 4. Consider a web application that
registers new users and that a malicious client
inserts as his first name the JavaScript code
<script>alert(’’Hello!’’);</script>. When
SEPTIC receives the query, it does the filtering step and
finds two characters associated with XSS, < and >, so it
calls the plugin that detects stored XSS attacks. This plugin
inserts this input in a web page, calls an HTML parser, and
finds that the input contains a script. Thus, it flags a stored
XSS attack.

6 LEARNING QUERY MODELS

Whenever an organization wants to protect a new appli-
cation, SEPTIC needs to create the models (QMs) for the
various queries. Although so far we have suggested that
training is mandatory, in fact SEPTIC supports two alterna-
tive ways to learn models: training and incremental. Whereas
training is used specifically for SEPTIC to create models, the
incremental method allows SEPTIC to create them in an ad-
hoc manner, in normal operation. The incremental method
can be viewed as a complement of the former due to the
reasons: First, it can extract those QMs that were missed
by the training method. Second, it avoids the need to train

again SEPTIC when new releases of applications replace
previous ones. The incremental method creates the need
for the two concepts: quarantine to address suspicious QMs
(Section 6.2); and aging to deal with QMs that are not used
by the new releases of applications (Section 6.3).
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Fig. 6: Data flows for the incremental method.

6.1 Learning methods

Figure 2 and Figure 6 depicts the data flow for the train-
ing and incremental methods, respectively. Dotted-dashed
arrows correspond to the training mode and dotted arrows
to the incremental method.

6.1.1 Training method

This method involves putting SEPTIC in training mode and
trying to execute all defined queries of the application with
valid inputs (i.e., inputs that are not attacks). A training
task results in the creation and storage of a model with
an ID for every novel query, as described in Section 4. The
execution of the defined queries of the application can be
achieved in two fashions: (1) using the unit tests of the
application defined by the software developers. These tests
target the application in order to exercise its functionalities,
which can involve calls to the databases for the execution of
SQL queries with benign inputs; or (2) with the assistance
of an external module that attempts to force all queries to
be called. We have developed one of such modules, called
septic training. This module targets web applications and
it works like a crawler. For each web page, it searches for
HTML forms and collects information about the submission
method, action, variables and values. Then, it issues HTTP
requests for each form, causing the queries to be transmit-
ted. These queries can be static, or can depend on the results
of other queries, or contain inputs generated by the training
module emulating a user. Both approaches are triggered
by the administrator but otherwise executed automatically.
Their execution time depends on the size/complexity of the
application as well as the coverage of the unit tests and/or
external modules. When the training phase is completed,
SEPTIC can be put in normal operation and typically no
further intervention from the administrator is required.
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6.1.2 Incremental method
SEPTIC runs the incremental method in normal operation.
This allows dealing with incomplete training (some queries
not issued) and new releases of applications (Section 6.3).
The basic idea is that when SEPTIC processes a query for
which no QM is known, besides flagging as a possible
attack it also notifies the administrator that a new query
was observed.

1 if ID not in {learned QMs, malicious QMs, aged QMs,
quarantined QMs} then

2 execute query similarity verification
3 execute stored injection detection
4 if any test fails then
5 return report attack
6 else
7 generate QM
8 if quarantine is off then
9 save <ID, QM> in learned QMs data store

10 else
11 save <ID, QM> in quarantined QMs data store
12 notify administrator
13 end
14 end
15 else
16 if ID in malicious QMs then
17 return report attack
18 if ID in aged QMs then
19 move <ID, QM> to learned QMs data store
20 if ID in quarantined QMs then
21 return drop Qval
22 end
23
24 when administrator classifies QMs in quarantined QMs

data store do
25 if administrator classifies QM as valid then
26 move <ID, QM> to learned QMs data store
27 else
28 move <ID, QM> to malicious QMs data store
29 end
30 end

Listing 3: Incremental method algorithm.

Listing 3 presents the algorithm for the incremental
method (it also includes quarantine and aging, which we
leave for the following sections). As there is no QM for the
query, SEPTIC first verifies if the query is an attack using the
mechanisms presented in Section 5 (lines 2-3), namely the
query similarity verification and stored injection detection
(INSERT and UPDATE). If so, an attack is flagged (lines 4-5).
If not, SEPTIC builds a model QM for the query and stores
it in the learned QMs or quarantined QMs data store.

6.2 Quarantine

SEPTIC includes the quarantine mechanism to handle QMs
that are created in normal operation by the incremental
method. The idea is that SEPTIC cannot know if queries
that match such QMs are benign or attacks, so they have
to be analyzed by the administrator. This mechanism can
be turned on or off. The latter means that new QMs are all
considered benign and saved in the learned QMs data store
(Listing 3, lines 8-9).

The normal configuration is quarantine set to on. In that
situation, when a query is received for which there is no
model in the learned QMs data store, a QM is generated
and is saved in the quarantined QMs data store, and the
administrator is notified (lines 7 and 11-12). The quarantined
QMs data store serves as a temporary storage, where such
QMs are saved while the administrator does not intervene.
When the administrator evaluates these QMs, they are either

moved to the learned QMs data store or to the malicious
QMs data store, meaning that from now on queries match-
ing those QMs will be considered, respectively, benign or
attacks (lines 22 to 28).

This explanation leads to an extra rule that SEPTIC
applies — queries that match a model in the malicious QMs
data store are immediately flagged as an attack (lines 16-17).

6.3 New releases of applications

Attack detection has to continue to be effective when new
releases of applications replace older ones. When an ap-
plication is updated, queries may be added, removed, or
changed in the source code, leading to different queries
being made to the DBMS at runtime. This implies that
SEPTIC may possibly need to change the QMs it has for
that application. To address this issue, an administrator
might simply retrain SEPTIC to ensure that all QMs are
rebuilt by using the training method. However, this may
be unfeasible or unpractical, if the application needs to be
put in production immediately.

SEPTIC has a mechanism to allow updating applications
without retraining. SEPTIC can be maintained in normal
operation and left constructing the new QMs gradually
(incremental method). One needs, however, a solution to age
the stored models in order to ensure the (eventual) removal
of QMs associated to queries that no longer exist. SEPTIC
implements an aging mechanism for this purpose.

The mechanism registers at runtime the moments when
QSs are matched with QMs (log of used QMs in Figure 2) and
it is configured with a senescence period of time (e.g., 1 or
2 months). Models that are not utilized for the senescence
period are considered to belong to previous versions of
the applications and are moved from the learned QMs
data store to the aged QMs data store. However, an old
model can be brought back to life — in the incremental
method, if SEPTIC observes an unknown query whose QM
belongs to the aged QMs data store (Listing 3, lines 18-19), it
moves the QM back to the learned QMs data store. SEPTIC
understands such query as being a query of the current
application release that was not issued for a long time. Also,
in such case, an entry in the log of used QM is made.

The aging mechanism can also be configured to erase
the models that remain a long intervals in the aged QMs
data store (e.g., 6 months or 1 year) or to leave this task
to the administrator. This approach may lead QMs whose
queries are rarely issued to be wrongly aged and erased.
Nevertheless, when such a query is eventually issued, the
incremental method allows inserting the corresponding QM
again in the learned QMs data store, but after passing by the
quarantine procedure.
Remark 3. It is interesting to understand the impact of an
update on the identifiers. This is particularly relevant if an
EID (external query ID) carries context information about
the application. As the next section suggests, the EID are
defined by the application and may be related to the places
in the code where the queries are composed and/or where
the DBMS is called. Consider as an example a query that is
moved from a line x to a line y in the source code, which
used to have identifier IDx. We envisage two scenarios: (1)
no query existed in line y, which means that a new QM
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will be created with IDy (the query has a distinct EID but a
similar IID to the one in IDx); (2) there was a query in line y
previously; again a new QM will be built (even though the
EID may stay the same, the IID is now different). In both
cases, the old QMs are no longer used by the new version of
the application and are aged as usual. On the other hand, if
only the IID is used. Although the IID is not related with the
places in the code where the queries are composed, it shows
if the queries suffered changes between application versions
or if new queries were developed. In both cases, new QMs
will be built and old ones will be aged.

7 VULNERABILITY DIAGNOSIS AND REMOVAL

This section describes how to identify vulnerabilities in
the source code of applications by taking advantage of the
attack detection and the information carried in the EIDs. In
addition, it explains how the programs could be fixed by
providing a few rules.

7.1 Diagnosis

We propose two kinds of EIDs depending on where they are
generated: in the server-side language engine (SSLE) (for
web-applications) or in the source code of the application
(for any application).

7.1.1 SSLE-generated EIDs

In Figure 1 consider the scenario in which the server-side
application code issues the query to be executed by the
database. In this case, the SSLE observes a call to a function
like mysql_query. Therefore, the SSLE can intercept the
function call to add the EID to the query and then it can
let the request proceed.

The EID may include information about the places in
the source code where the query is composed (e.g., it may
contain the filename and line number in which the query
is issued). However, sometimes this might be not enough
to distinguish queries because some applications have a
single function that makes all calls to the database. Here,
the queries are built in various parts of the code and then
the single function is invoked. To address this issue, an
alternative EID format could be a sequence of file : line
pairs. In more detail, the first pair corresponds to the line
where the database is called and the rest to the lines where
the query is passed as argument to some function. file could
contain the complete pathname to distinguish queries from
different applications to the same DBMS.

Example 5. Consider that the code sample of Listing 1 is in
file login.php. The query is created in the function that
calls mysql_query, so the EID is simply ”login.php:4” (the
filename is shown without the full pathname for readabil-
ity). This means that the DBMS is called in line 4 of file
login.php.

Example 6. Consider that line 4 is substituted by $result
= my_db_query($query). Also, consider that function
my_db_query is defined in file my_db.php and it calls the
DBMS using mysql_query in line 10. In this case, the EID
is ”my db.php:10 | login.php:4”.

7.1.2 Application-generated EIDs
The developers of the application can also define their own
EIDs. These EIDs can have any format, e.g., a sequential
number or something similar to file:line. They can be added
to the queries in a few ways: (1) appended to the query
string when it is defined or when the database is called; or
(2) a wrapper is used as an indirection to the call to the
DBMS, whose responsibility is to add the identifier.

7.2 Removal with simple rules
When SEPTIC detects an attack, it logs the query (i.e., Qinit),
the ID and the test that was violated (both in detection
and prevention modes). The developers can use this log to
diagnose the vulnerability. The EID (included in the ID) can
correctly identify the query in the source code and the attack
query (Qinit) shows how the vulnerability was exploited.
Some rules of thumb on how to fix the application are:

• SQLI attack and user inputs are not sanitized: any
of the attacks of classes S.1 or S.2 in Table 1 may
have happened. Sanitization has to be inserted in the
source code;

• SQLI attack and user inputs were apparently sani-
tized: the attack probably belonged to class A, and
there was possibly a case of semantic mismatch. The
sanitization has to be checked and re-implemented
to deal with the problem;

• Stored injection: the attack most probably belonged
to classes F–H. The programmer has to develop
validation routines to apply to the inputs.

8 IMPLEMENTATION

This section explains the implementation of SEPTIC in
MySQL. In addition, it shows how external identifiers (EID)
can be added to queries in three quite diverse scenarios:
for web applications developed in PHP, by modifying the
runtime support in the Zend engine; for web applications
implemented in the Spring framework in Java, using aspect
oriented programming; and for business applications built
in Visual Basic and the Gambas platform, by employing a
wrapper. The first approach does not involve any changes
to the application, while the remaining two require small
modifications. Table 3 summarizes the changes made to
those software packages.

In all cases, the external identifiers are placed inside a
SQL comment to reduce the impact on the various com-
ponents and maximize transparency. Specifically, SEPTIC
assumes that if a query starts with a comment then the
content of this comment is the identifier.

8.1 Protecting MySQL
We implemented SEPTIC in MySQL 5.7.4. There was an
effort to minimize changes (i.e., number of MySQL files
altered and lines of code added) to facilitate the porting
of our approach to newer releases of MySQL. Overall the
main modifications were the following: a single MySQL file
had to be altered, sql_parser.cc; two new header files
were included (SEPTIC detector and SEPTIC setup); a few
modules were added, namely to support the configuration
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TABLE 3: Summary of modifications to software packages.
Software sfm sfc loc sa
MySQL 5.7.4
- sql_parser.cc 1 – 20 –
- SEPTIC detector – 1 1740 plugins
- SEPTIC aging – 1 180 –
- SEPTIC setup – 1 184 –
- SEPTIC configuration – 1 23 –
- septic training – 1 380 –
Zend engine / PHP 5.5.9
- mysql extension 1 – 6 –
- mysqli extension 2 – 21 –
- SSLE identifier – 1 249 –
Spring 4.0.5 / Java
- JdbcTemplate.java 1 – 16 –
- Spring identifier – 1 230 –
Gambas 3.5.1
- Gambas identifier – 1 187 –
sfm: source file modified loc: lines of code
sfc: source file created sa: software added

(SEPTIC configuration) and the aging of query models (SEP-
TIC aging); plus the plugins, which are external to the DBMS
and rely on open source tools (e.g., for stored XSS the plugin
is essentially the [21]). The septic training module also runs
separately from the DBMS.

The 20 lines added to the sql_parser.cc file call
the SEPTIC detector with two inputs corresponding to
Qval and Qinit. These lines were inserted in func-
tion mysql_parse, just before the call to the function
mysql_execute_command that finishes the processing of
the query. These two functions are native to MySQL.

In more detail, the SEPTIC detector is executed by the
compareQueryStructure function. This function calls the
processSelect_Lex and insertElementTemplate func-
tions to check the query command (e.g., SELECT, DELETE,
INSERT, UPDATE) and to build the QS. At the same time,
this function creates the IID, gets the EID (if applicable),
and composes the query ID. Then, it determines if there
is a QM for that ID in the learned QMs data store. If the
QM exists, and SEPTIC is in normal operation, the QM is
loaded and function compareQueryToTemplate is called
to check the QS with the QM and Qinit. If the QM is not
stored in the learned QMs data store, SEPTIC applies the
incremental method (or the training method if SEPTIC is
in training mode) as explained in Section 6. In both cases,
the QM is built from the QS and then saved either in the
quarantine or the learned QMs data stores.

Comparing the QS with the QM corresponds to the first
two steps of detection for SQLI attacks (Section 5.1). First,
there is a verification on the number of items in both stacks
(structural verification), followed by the checks per item
with function processItem (syntactical verification). This
function analyzes the 27 different types of items defined
in MySQL, i.e., the items that allow MySQL to distinguish
the different kinds of SQL keywords to categorize each one
(e.g., function, condition, field) and represent them as a list
of stacks data structure. It uses two auxiliary functions –
processField and isPrimitiveTypeBenign – to detect
differences between fields and to find out if an item is
a primitive data type (integer, real, string or decimal), al-
lowing casts between them. Lastly, the processItemQuery
function is called to determine if each item of Qinit is present
in QS (query similarity verification). If any item is not
present, a SQLI attack is flagged. In a similar way, the tests

for stored injection attacks are performed by the function
processItem for the INSERT and UPDATE SQL commands,
calling the appropriate plugins if special characters are
observed in the query.

The mechanisms for aging QMs runs in background
periodically and when MySQL is started, by calling function
agingQM. It accesses the log file that registers the QMs that
were matched with QS, and gets from the learned QMs data
store those QMs that do not appear in the log. Next, it moves
them to the aged data store. Finally, it schedules the date for
the next rotation.

SEPTIC is configured by setting five switches in the
SEPTIC configuration file. The first decides the mode of
operation, either in training phase, detection (logs attacks),
or prevention (logs and blocks attacks). The incremental
method is used in these two last modes. Other two en-
able/disable the detection of SQLI and stored injection
attacks. The fourth corresponds to the quarantine, and can
be on or off. The last allows to configure the time interval
between checking for aged model. When MySQL starts, the
switch values are loaded.

8.2 Inserting identifiers in Zend

We implemented SSLE-generated EIDs for the PHP lan-
guage by modifying the Zend engine. EIDs are formed
by pairs of file:line separated by |, and they are placed
as a comment at the beginning of the query. Overall, the
format of the query instruction becomes: /* file:line |
file:line | ... | file:line */ query.

All modifications to Zend could be concentrated in two
engine extensions (see Table 3), where a few lines of code
were added to call the module that implements the EIDs.
Extensions are used in Zend to group related functions. A
new header file was also developed to create and insert the
query EID identifier.

The identifiers have to be added when the DBMS is
called, so we modified in Zend the 11 functions used for
this purpose (e.g., mysql_query, mysqli::real_query,
and mysqli::prepare). Specifically, the identifier is in-
serted in these functions just before the line that passes
the query to the DBMS. This involved modifying three files:
php_mysql.c, mysqli_api.c and mysqli_nonapi.c.

Zend keeps a function call stack for running PHP pro-
grams. This stack contains data about the functions that are
executed, such as the function name, full pathname of the
file and line of code where the function was called, and the
array of the arguments of the function. This stack allows
backtracking until a function is found that does not contain
the query as argument. This provides the places where the
query was composed and/or was argument of a function,
letting query identifiers to be constructed in the format
above.

In Zend, we implemented the generate_EID function
to built the EID and to append the query to the identifier.
Listing 4 presents the algorithm to get the EID. Using the
call stack, the algorithm starts in the sensitive sink (e.g.,
mysql_query) and continues while the query is an argu-
ment of a function call, composing the backtrace. Therefore,
the stack is accessed by a TOP stack operation, getting the
call function in the top of the stack (line 5). The function
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name and the array of the function arguments are retrieved
(lines 6 and 7). Then, if the function is a sensitive sink, the
algorithm gets the query argument to start backtracking it
(lines 9 and 10). Otherwise, the algorithm checks if the query
belongs to the array of the arguments (line 12). If not, the
backtracking stops (line 13), otherwise the filename and the
line number where the function call was made are retrieved
(lines 18 and 19) to compose the pair file:line and concatenate
it with the previous identifier (lines 20 and 21). Next, a POP
stack operation is made (line 24) and a new loop iteration is
performed. After the loop, the identifier is concatenated to
the query and the result is passed to the function that calls
the DBMS.

1 identifier <- NULL
2 query <- NULL
3 backtrace <- true
4 while backtrace and is not empty stack do
5 func <- get the function of the TOP of the stack
6 function_name <- get function name of the func
7 array_args_func <- get arguments of the func
8
9 if function_name is equals a sensitive sink then

10 query <- get query from array_args_func
11 else
12 if query is not in the array_args_func then
13 backtrace <- false
14 end
15 end
16
17 if backtrace then
18 file <- get filename where the func is called
19 line <- get line number where the func is called
20 pair <- file:line
21 identifier <- concatenation(identifier, pair)
22 end
23
24 POP func from the top of the stack
25 end

Listing 4: Algorithm to compose the EID.

8.3 Inserting identifiers in Spring/Java

We implemented the second kind of EIDs, application-
generated EIDs (Section 7.1), in Spring/Java. Spring is a
framework aimed at simplifying the implementation of
enterprise applications in the Java programming language
[1]. In Spring applications connect to the DBMS via a JDBC
driver.

We used three different methods to insert the EIDs to
show the flexibility of doing it. The first solution consists in
inserting the EID directly in the query in the source code of
the application. Before the query is issued a comment with
the EID is added. This is a very simple solution that has the
inconvenient of requiring modifications to the application.
The second form uses a wrapper to catch the query request
before it is sent to the JDBC, and to insert the EID in a
comment prefixing the query. Using a wrapper avoids the
need to modify the source code of the application, except
for the substitution of the calls to the JDBC by calls to the
wrapper.

The third method does not involve modifications to the
application source code. We use Spring AOP, an imple-
mentation of Aspect-Oriented Programming, essentially to
create a wrapper [40]. Spring AOP allows the programmer
to create aspects for the application. These aspects support
the interception of method calls from the application, and
the insertion of code to be executed before the methods. In

TABLE 4: Code (attack) and non-code (non-attack) cases
defined by Ray and Ligatti [36], [37].

Case Attack/code

1 SELECT balance FROM acct WHERE password=’’ OR 1=1 -- ’ Yes
2 SELECT balance FROM acct WHERE pin= exit() Yes
3 ...WHERE flag=1000>GLOBAL Yes
4 SELECT * FROM properties WHERE filename=’f.e’ No
5 ...pin=exit() Yes
6 ...pin=aaaa() Yes
7 SELECT * FROM t WHERE flag=TRUE No
8 ...pin=aaaa Yes
9 SELECT * FROM t WHERE password=password Yes

10 CREATE TABLE t (name CHAR(40)) No
11 SELECT * FROM t WHERE name=’x’ No
12 SELECT * FROM files WHERE numEdits > 0 AND name=’f.e’ No
13 INSERT INTO users VALUES(’evilDoer’, TRUE)-- ’, FALSE) Yes
14 INSERT INTO trans VALUES(1, -5E-10); Yes

INSERT INTO trans VALUES(2, 5E+5)

our prototype, we use aspects for intercepting in runtime
calls to JDBC, inserting the EID in the query and proceeding
with the query request to MySQL.

8.4 Adding identifiers in non-web applications
We also implemented the application-generated EIDs in
business applications developed in Gambas. Gambas is a
platform offering a programming environment similar to
.NET / Visual Basic for Linux [16]. We used the two first
methods described for Spring/Java, i.e., inserting the EID
directly in the query in the source code of the application
and resorting to a wrapper.

9 EXPERIMENTAL EVALUATION

The objective of the experimental evaluation was to answer
the following questions: (1) Is SEPTIC able to detect and
block attacks against code samples and (real) applications?
(2) Is it more effective than other tools in the literature? (3)
Does it solve the semantic mismatch problem better than
other tools? (4) How does it perform in terms of false posi-
tives and false negatives? (5) Is SEPTIC able to learn query
models (resorting to the learning methods and quarantine
and/or aging functionalities)? (6) Is SEPTIC able to identify
vulnerabilities in application code? (7) Is the performance
overhead acceptable?

9.1 Attack detection
9.1.1 Detection with code samples
We evaluated SEPTIC with sets of 66 code samples of web
applications, namely with: (1) a set of simple queries that are
vulnerable to attacks from all classes in Table 1 (17 for the
semantic mismatch problem, 7 for other SQLI attacks, 5 for
stored injection); (2) 23 code samples from the sqlmap project
[41], unrelated with semantic mismatch and comprising
both simple and complex queries (i.e., queries composed of
different SQL clauses, beside the usual SELECT, FROM, and
WHERE clauses, and including sub-queries); (3) 14 samples
with the code and non-code injection cases presented in [36],
[37] (Table 4).

We compare SEPTIC with a Web Application Firewall
(WAF) and four anti-SQLI tools. Figure 7 shows the place
where the WAF and the anti-SQLI tools intercept, respec-
tively, the user inputs sent in HTTP requests and the query
produced by the web application. SEPTIC acts inside the
DBMS. The WAF was ModSecurity 2.9.1 [43], which was
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Fig. 7: Placement of the protections considered in the exper-
imental evaluation: SEPTIC, anti-SQLI tools, and WAF.

configured with two OWASP core rule sets (CRSs), CRS
2.2.9 and CRS 3.0. ModSecurity is the most adopted WAF
worldwide, with a stable rule set developed by experienced
security administrators. In fact, it has been argued that its
ability to detect attacks is hard to exceed [30]. It discovers
SQLI and other types of attacks by inspecting HTTP re-
quests. The anti-SQLI tools were: CANDID [4], AMNESIA
[18], DIGLOSSIA [39] and SQLrand [7]. More information
about them can be found in the related work (Section 12).
Table 5 shows an estimation of the human effort needed to
deploy and run SEPTIC in comparison to these tools. All
require some effort, but SEPTIC seems to be the one that
requires less.

TABLE 5: Features and human effort to deploy and use
SEPTIC, the anti-SQLI tools, and ModSecurity.

SE
PT

IC

SQ
Lr

an
d

A
M

N
ES

IA

C
A

N
D

ID

D
IG

LO
SS

IA

M
od

Se
cu

ri
ty

Fe
at

ur
es

Server-side language dependence (X) X X X X
Vulnerability diagnosis (X)
Quarantine X
Aging X
Detects SQLI attacks X X X X X X
Detects stored injection attacks X X
Monitors web applications X X X X X X
Monitors non-web applications X

H
um

an
ef
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rt

Client configuration (X) (X) (X) (X)
Application source code modification X X X
Application source code analysis X X
Training phase (X)* X X X X
Re-training phase for new app versions X X X X
Analyze logs X X X X X X
Modify the DBMS X

(X) optional
(X)* the training method is optional, but not the incremental method

In the experiments described next, we want to study the
detection capacities of SEPTIC when it learns the models
through both training and incremental methods, and re-
sorting to the quarantine functionality. To achieve this, we
split the experiments in four phases to, respectively, confirm
the existence of vulnerabilities, test the capacity of learning
using both training methods individually and mixed with
quarantine, and analyze of results in terms of detection.

Phase 1: Confirming the vulnerabilities. With SEPTIC turned
off, we injected malicious user inputs created manually to
confirm the presence of the vulnerabilities in the first set of
code samples. Also, we injected the inputs (code and non-
code) defined in the third set of samples (Table 4) to exploit
the vulnerabilities from this group. We also employed the
sqlmap tool to exploit automatically the vulnerabilities from
the first two groups of code samples. sqlmap is widely used
to perform SQLI attacks, both by security professionals and
hackers, by injecting pre-defined malicious inputs coming
with the tool and malcrafted inputs that it generates auto-

matically.

Phase 2: Learning the models using the training mode. With SEP-
TIC setup in training mode, we provided manually benign
inputs to the code samples for the mechanism to build the
models of all queries. We performed experiments both when
SEPTIC employed only its own identifier (i.e., ID = IID) and
when the Zend identifier was added to the IID as an EID
(i.e., ID = IID + EID). This means that the training phase
was carried out two times, for SEPTIC to learn the QM
using the two identifiers. In this way, the tests explained
next were also done two times to determine the efficiency
of each ID. Then, with SEPTIC in detection mode we run (i)
the queries with benign inputs (different from those used
in the training mode), to verify if SEPTIC learned the QMs
correctly, and (ii) we run the attacks from the first phase to
determine if they could be discovered. We observed that any
query of (i) was not flagged as attack independently of the
type of identifier used, meaning that SEPTIC learned and
handled the QMs correctly. In addition, regarding queries
of (ii) that detection outcomes were equivalent irrespective
of the type of identifier. Moreover, all attacks run with
SEPTIC knowing the QMs that were only identified by IID
were detected by the query similarity verification, whereas the
attacks deployed when SEPTIC only used QMs identified by
both IID and EID were detected by structural verification or
syntactical verification. Therefore, in the analysis of the results
phase (see below), we only discuss the tests carried out
when the external identifier was provided (i.e., ID = IID
+ EID).

Phase 3: Learning the models using both training methods. As
a third experiment, we setup SEPTIC using a mix of the
training and incremental methods and only IID as query
identifier (i.e., ID = IID). The training method was applied
only to a subset of the code samples, leaving a group of
queries unlearned. Afterwards, in normal operation (incre-
mental method) with quarantine enabled, (i) we injected
benign inputs in some of those unlearned queries, and
(ii) we run the attacks of the first phase in the remaining
unlearned queries. We observed that SEPTIC was able to
put in quarantine the QMs of the queries belonging to (i),
and reported as attacks the queries of (ii). This was possible
because the query similarity verification check was enough
to distinguish queries provided from (i) and (ii), and so
enough to discover the attacks. Next, the QMs stored in the
quarantined QMs data store were analyzed for correctness
and were moved to the learned QMs data store, and the QMs
resulting from the attacks (i.e., queries of (ii)) were put in
the malicious QMs data store. Then, the attacks from the first
phase were performed by exploiting the queries of (i) and
(ii), confirming that they could be identified, respectively,
by the query similarity verification check, since SEPTIC saw
those queries for first time, and by their QMs belonging to
the malicious QMs data store. Lastly, we run the queries of
(i) and (ii) using benign inputs. We observed that the queries
from (i) matched the QMs stored in the learned QMs data
stored, where these QMs were previously learned through
the incremental method and using the quarantine mecha-
nism, and the queries from (ii) were put in quarantine, since
they were new to SEPTIC.
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Phase 4: Analysis of the results. The results of the second phase
of experiments – learning the models using training mode –
with the external identifier (EID) as part of the query ID
(i.e., ID = IID + EID) are summarized in Table 6. There were
66 tests executed (third column), 61 of them corresponding
to vulnerable code samples and the remaining 5 to valid
codes (the 5 non-attack cases in Table 4).

SEPTIC found the 61 attacks (row 34) and did not flag
the 5 non-attack cases (row 11). With regard to case 10 of
Table 4, we highlight that although [36] considers it as being
vulnerable, we are in disagreement because the input is an
integer, which is the type expected by the char function. So,
in our analysis, it is accounted as one of the 5 non-attacks.
The last 3 cases of Table 4 were defined as being advanced
cases of SQLI [37]. Case 12 is similar to case 4 and both
were correctly found as non-attacks by SEPTIC. Case 13
mimics an INSERT query in its entirety; SEPTIC detected
it via the query similarity verification. The last case is the most
interesting as it transforms arithmetic operations (minus
and plus) into scientific numbers. The attack was identified
via structural verification, as SEPTIC considers the arithmetic
operations as being nodes of the QM. Therefore, the QS of a
query with a scientific number has less nodes than the QM.
SEPTIC had neither false negatives nor positives (rows 35–
36) and correctly handled the semantic mismatch problem
by discovering the attacks that exploited vulnerabilities of
classes A, D, and E (rows 17–21), B (row 7), C (rows 8–9),
and F–H (rows 26–30).

Columns 5 to 10 contain the results for the anti-SQLI
tools and ModSecurity with the two CRSs. These ap-
proaches were unable to locate a significant part of the
attacks (around 50%). For example, most of them could
not identify stored procedure (row 7) and stored injection
(rows 26–30) attacks. The anti-SQLI tools only discovered
one of the attacks from the semantic mismatch class (rows
17–21). ModSecurity did a bit better because it detected
this attack plus 1st order SQLI attacks with encoding and
space evasion (A.1 and A.4, rows 17 and 19). However,
ModSecurity could not locate 2nd order SQLI because in
the second step of these attacks the malicious input comes
from the DBMS, and not from the outside. The majority
of the approaches also had a few false positives (except
DIGLOSSIA and ModSecurity CRS 3.0). Overall, most of the
problems that were observed are justified by difficulties in
dealing with the semantic mismatch and the Ray and Ligatti
code samples (row 10), namely when the injected queries
included non-code characters that are not recognized by the
tools, but are at the base of the attacks.

The answer to the first five questions is positive. We
conclude that the proposed approach to detect and block
(SQL and stored) injection attacks is effective because it
uses the same information as the DBMS execution engine,
without the need of assumptions about how the queries are
run, which is the root of the semantic mismatch problem.
Moreover, the quarantine mechanism is beneficial to reduce
false positives and false negatives, and a way of com-
plementing SEPTIC’s training mechanism. Although not
shown in the table, the experiments with SEPTIC with the
two types of identifiers gave similar results. This indicates

that in terms of detection capability, the use of internal
identifiers (IID) is as effective as the combination of internal
and external identifiers (IID + EID). However, the second
kind of identifier brings the extra benefit of assisting on
the discovery of the exploited vulnerabilities. We used the
identifiers produced by Zend to look for the bugs in the code
samples, and they had a high level of accuracy to locate the
source of the problem. Therefore, this allows us to answer
positively to the question 6.

9.1.2 Detection with real software
SEPTIC was used to protect the database of 10 different open
source PHP web applications (e.g., hospital and school man-
agement, message forums, and bibliographic references)
and a non-web application. The wapiti scanner [46] carried
out the attacks in the experiments with the web applications.
wapiti searches web applications looking for scripts and
forms where it can place data. Then, it acts as a fuzzer
to do the attacks, injecting malicious data. When SEPTIC
stopped an attack, we resorted to the EIDs to help locate the
vulnerabilities in web applications code. Table 7 summarizes
the detection results with web and non-web applications.
SEPTIC identified 91 attacks associated with the exploitation
of 31 distinct vulnerabilities – 22 SQLI and 9 stored injection.
The stored injections were RFI, OSCI, RCI or stored XSS.

In the experiments described next, we want to study the
SEPTIC behavior when it resorts to the aging functionality,
processes complex queries such as dynamic queries (e.g.,
queries that are built dynamically by users), and deals with
non-web applications. To do so, the experiments are split in
four phases:

Phase 1: Aging functionality and vulnerability identification.
wapiti could successfully exploit three SQLI vulnerabilities
in ZeroCMS, which SEPTIC was able to stop before corrupt-
ing the database. The EIDs supported the discovery of the
vulnerabilities in the source code. These vulnerabilities are
actually not new as they appear in the public databases
CVE [12] and OSVDB [32] with identifiers CVE-2014-4194,
CVE-2014-4034 and OSVDB ID 108025.

We generated a new version of ZeroCMS by fixing the
vulnerabilities. The changes did not alter the queries, but
caused them to move from the original place in the files.
Notice that even though queries were not modified, and
therefore their IIDs remained the same, they had a new EID
because of the novel location in the code. Therefore, they
had an ID for which no QM existed. This new version of
the application was utilized to study the aging functionality
of SEPTIC. To do so, SEPTIC was kept in normal operation
(incremental method) and we configured the aging time for
three days (instead of the usual months). Then, ZeroCMS
was tested with benign and malicious inputs (attacks) to
exercise the queries that moved in the code.

The queries carrying benign inputs were learned (i.e., the
QM), while the queries resulting from the malicious inputs
were flagged as attacks by the query similarity verification
check. Afterwards, we repeated the attacks and confirmed
that they were immediately discarded. Three days later,
we also observed that the aged QMs data store had the
(new) QMs that were not tested again and the (old) QMs
from the previous ZeroCMS version. We manipulated the
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TABLE 6: Detection of attacks with code samples.

Type of attack N. Tests SEPTIC anti-SQLI tools ModSecurity WAF
SQLrand AMNESIA CANDID DIGLOSSIA CRS 2.2.9 CRS 3.0

SQLI without sanitization and semantic mismatch (S.1, S.2, B, C, D, E)
3 Syntax structure 1st order 1 Yes Yes Yes Yes Yes Yes Yes
4 Syntax structure 2nd order 1 Yes Yes Yes No No No No
5 Syntax mimicry 1st order 1 Yes No No No Yes Yes Yes
6 Syntax mimicry 2nd order 1 Yes No No No No No No
7 Stored procedure 1 Yes No No No No No No
8 Blind SQLI syntax structure 1 Yes Yes Yes Yes Yes Yes Yes
9 Blind SQLI syntax mimicry 1 Yes No No No Yes Yes Yes
10 Ray & Ligatti code 9 9 3 4 4 8 3 2
11 Ray & Ligatti non-code 5 (non-attacks) 0 2 1 2 0 1 0
12 sqlmap project 23 23 23 23 23 23 23 23
13 Flagged as attack – 39 31 31 31 35 31 29
14 False positives – 0 2 1 2 0 1 0
15 False negatives – 0 10 9 10 4 9 10
SQLI with sanitization and semantic mismatch (S.1, S.2, A.1–A.5, D, E)
17 Syntax structure 1st order 4 4 0 0 0 0 2 2
18 Syntax structure 2nd order 4 4 0 0 0 0 0 0
19 Syntax mimicry 1st order 4 4 0 0 0 0 2 2
20 Syntax mimicry 2nd order 4 4 0 0 0 0 0 0
21 Numeric fields 1 1 1 1 1 1 1 1
22 Flagged as attack – 17 1 1 1 1 5 5
23 False positives – 0 0 0 0 0 0 0
24 False negatives – 0 16 16 16 16 12 12
Stored injection (F–H)
26 Stored XSS 1 Yes No No No No No Yes
27 RFI 1 Yes No No No No No Yes
28 LFI 1 Yes No No No No No Yes
29 RCI 1 Yes No No No No No Yes
30 OSCI 1 Yes No No No No No Yes
31 Flagged as attack – 5 0 0 0 0 0 5
32 False positives – 0 0 0 0 0 0 0
33 False negatives – 0 5 5 5 5 5 0
34 Flagged as attack – 61 32 32 32 36 36 39
35 False positives – 0 2 1 2 0 1 0
36 False negatives – 0 31 30 31 25 26 22

TABLE 7: Detection of attacks in the exploitation of distinct
vulnerabilities in real applications.

Application version SQLI Stored inj. attacks
Care2x 2.4 2 4 6
Ceres CP 1.1.7 1 3 4
Churchinfo 0.1 – – –
Gambas application – 6 – 10
measureit 1.1.4 – 1 1
mybb 1.6.08 3 – 10
PHP Address Book 8.1.19 2 – 20
refbase 0.9.6 – – –
Schoolmate – – 1 1
WebChess 1.0.0 5 – 13
ZeroCMS 1.0 3 – 26
Total 22 9 91

application in order to force queries for those (new) QMs,
and we saw that they were moved back to the learned
QMs data store. Based on these experiments, we confirmed
that the aging functionality is beneficial for handling new
application releases. In addition, these results allow us to
answer positively to question 5.

Most of the other applications also had security prob-
lems. For example, in measureit and WebChess was found
respectively one attack that would exploit a stored injection
vulnerability and thirteen different attacks for the five SQLI.
SEPTIC managed to block all these attacks. In addition, we
inspected the source code with the assistance of the EID
identifiers registered in the log file, and they provided accu-
rate indications about the location of the bugs. No problems
were found in the Churchinfo and refbase applications. So,
overall these results allow us to answer affirmatively to
questions 1 and 5.

Phase 2: Analysis of results for false positives and negatives. To
extend the analysis on false positives/negatives, we looked
at three kinds of information kept by SEPTIC: (1) a log with
all analyzed queries was checked to determine if there were
malicious queries that had remained unblocked (false nega-
tives); (2) the log of attacks was verified to find out if SEPTIC
had erroneously flagged a benign query as malicious (false
positives); (3) the notifications of the queries that were put in
quarantine were inspected. We did not find any anomaly in
points (1) and (2), meaning that SEPTIC did not report false
positives and did not miss detections (false negatives). For
point (3), we observed that SEPTIC correctly quarantined
those queries for which there was no QM and that passed
all checks (namely the query similarity verification). Most
of these queries were actually benign, but a few of them
were malicious. This is the desired behavior, as it prevents
SEPTIC from making mistakes, allowing the administrator
to take the final decision with regard to the validity of the
queries. Therefore, these results give a positive answer to
question 4.

Phase 3: Process complex and dynamic queries. Here we want to
check how SEPTIC deals with complex and dynamic queries
in terms of learning QMs and detecting attacks. refbase is
a web application for managing bibliographic references.
Besides allowing to insert, delete and update references, it
also lets users search for references based on several criteria.
This means that it is possible to create from simple reference
searches (such as obtaining all references from a given
author) to more elaborated ones, as for instance getting the
references that contain 5 terms from a certain area, authors,
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and publisher. The application implements the queries as-
sociated with these searches dynamically, which sometimes
can result in complex queries. These search queries are built
at a single point of the source code, meaning that their EID is
always the same. On the other hand, their IID can be differ-
ent because dynamic queries can have diverse parameters,
thus resulting in statements that are syntactically distinct.
Therefore, when issued they may have an ID for which no
QM exists.

We setup SEPTIC in training mode and performed bib-
liographic reference searches with different parameters in
order to obtain simple and complex queries. Then, with
SEPTIC in normal operation, we repeated the same searches
and new ones for which there were no QMs. We observed
that these latter queries caused their QMs to be put in
quarantine, while the former queries matched the QMs
in the learned QMs data store. In addition, we executed
some attacks based on these queries and other new ones.
SEPTIC correctly detected all of them: the attacks that tried
to exploit queries corresponding to QMs that SEPTIC knew
were discovered by the first two SQLI verifications; the
novel attacks were found by the third SQLI verification.
Therefore, we can conclude that SEPTIC processes correctly
complex and dynamic queries, both by building their QMs
and detecting attacks.

Phase 4: Detection in non-web applications. We developed a
vulnerable Gambas application to manage contacts, i.e., an
address book [16]. The application contains eight queries
from which six are vulnerable to SQLI. We trained SEPTIC
using the incremental method (Section 6), i.e., by forcing the
application to issue non-malicious queries to the database.
Then, we injected different kinds of attacks, which were
correctly identified by SEPTIC. Row 5 of Table 7 shows these
results, where ten attacks were issued against the SQLI bugs.
Therefore, these results give a positive answer to question 1.

9.2 Performance overhead

To answer question 7, we evaluated the overhead of SEPTIC
using BenchLab v2.2 [10] with the PHP Address Book, refbase
and ZeroCMS applications. BenchLab is a testbed for web
application benchmarking. It generates realistic workloads,
then it replays their traces using web browsers while mea-
suring the application performance.

We have set up a network composed of six identical ma-
chines: Intel Pentium 4 CPU 2.8 GHz (1-core and 1-thread)
with 2 GB of RAM, running Linux Ubuntu 14.04. Two
machines played the role of servers: one run the MySQL
DBMS with SEPTIC; the other executed an Apache web
server with Zend and the web applications, and Apache
Tomcat to run the BenchLab server. The other four machines
were used as client machines, running BenchLab clients and
Firefox web browsers to replay workloads previously stored
by the BenchLab server, i.e., to issue a sequence of requests
to the web application being benchmarked. The BenchLab
server has the role of managing the experiments.

We evaluated SEPTIC with its four combinations of
protections turned on and off (SQLI and stored injection
on/off) and compared them with the original MySQL with-

out SEPTIC installed (base)5. For that purpose, we created
several scenarios, varying the number of client machines
and browsers. The ZeroCMS trace was composed of 26
requests to the web application with queries of several types
(SELECT, UPDATE, INSERT and DELETE). The traces for the
other applications were similar but for PHP Address Book the
trace had 12 requests, while for refbase it had 14 requests. All
traces involved downloading images, cascading style sheets
documents, and other web objects. Each browser executes
the traces in a loop many times.

Table 8 summarizes the performance measurements. The
main metric assessed was the latency, i.e., the time elapsed
between the browser starts sending a request and finishes
receiving the corresponding reply. For each configuration
the table shows the average latency and the average latency
overhead (i.e., the average latency divided by the latency
obtained with MySQL without SEPTIC, multiplied by 100).
These values are presented as a pair (latency (ms), overhead
(%)) and are shown in the 4th to 8th columns of the
table. The 1st column characterizes the scenario, varying
the number of client machines (PCs) and browsers (brws).
The next two columns show the number of times that each
configuration was tested with a trace (num exps) and the
total number of requests done in these executions (total reqs).
Each configuration was tested with 5500 trace executions, in
a total of 87,200 requests (last row of the table). The latency
obtained with MySQL without SEPTIC is shown in the 4th
column and the SEPTIC combinations in the next four.

TABLE 8: Performance overhead of SEPTIC measured with
Benchlab for three web applications: PHP Address Book,
refbase and ZeroCMS. Latencies in ms, overheads in %.
N. PCs Num Total Base SEPTIC: SQL injection – stored injection
& brws exps reqs off–off on–off off–on on–on
refbase varying the number of PCs, one browser per PC
1 PC 70 980 430, – 431, 0.23 432, 0.47 433, 0.70 434, 0.93
2 PCs 120 1680 430, – 433, 0.70 433, 0.70 433, 0.70 436, 1.40
3 PCs 170 2380 435, – 437, 0.46 440, 1.15 441, 1.38 442, 1.61
4 PCs 220 3080 435, – 438, 0.69 439, 0.92 442, 1.61 443, 1.84
refbase with four PCs and varying the number of browsers
8 brws 420 5880 504, – 506, 0.40 510, 1.19 513, 1.79 516, 2.38
12 brws 620 8680 530, – 532, 0.38 535, 0.94 539, 1.70 544, 2.64
16 brws 820 11480 540, – 541, 0.19 545, 0.93 550, 1.85 553, 2.41
20 brws 1020 14280 570, – 573, 0.53 575, 0.88 581, 1.93 584, 2.46
PHP Address Book with four PCs
20 brws 1020 12240 79, – 79.26, 0.33 79.50, 0.63 80.60, 2.03 81, 2.53
ZeroCMS with four PCs
20 brws 1020 26520 239, – 240, 0.42 241, 0.84 243, 1.67 245, 2.51
AO/Total 5500 87200 –, – 0.41% 0.82% 1.65% 2.24%

The first set of experiments evaluated the overhead of
SEPTIC with the refbase application (rows 3–6). We run a
single Firefox browser in each client machine but varied
the number of these machines from 1 to 4. For each addi-
tional machine we increase the number of experiments (num
exps) by 50. Figure 8 represents graphically these results,
showing the (a) latency measurements and the (b) latency
overhead of the different SEPTIC configurations. SQLI and
stored injection on/off is represented by Y/N. The most
interesting conclusion taken from the figure is that the
overhead of running SEPTIC is very low, always below 2%.
Another interesting conclusion is that SQLI detection has

5. Notice that the off–off combination is not the same as the base
because some code of SEPTIC is executed to check if protections are
turned on or off.

16



1 Firefox

Page 1

Cada PC com 1 firefox

Variação por combinação do SEPTIC e comparação com a base

Variação por PC e combinações

base NN YN NY YY
425
427
429
431
433
435
437
439
441
443
445

1 PC 2 PC's 3 PC's 4 PC's
Base configuration and SEPTIC combinations

La
te

nc
y 

(m
s

)

1 PC 2 PC's 3 PC's 4 PC's
425

428

431

434

437

440

443

base NN YN NY YY

NN YN NY YY
0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

2.00%

1 PC 2 PC's 3 PC's 4 PC's

SEPTIC combinations

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

1 PC 2 PC's 3 PC's 4 PC's
0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%
1.75%
2.00%

NN YN NY YY

Number of PC's executing one browser

A
ve

ra
g

e
 la

te
nc

y 
o

ve
rh

e
a

d
 (%

)

(a) Latency

1 Firefox

Page 1

Cada PC com 1 firefox

Variação por combinação do SEPTIC e comparação com a base

Variação por PC e combinações

base NN YN NY YY
425
427
429
431
433
435
437
439
441
443
445

1 PC 2 PC's 3 PC's 4 PC's
Base configuration and SEPTIC combinations

La
te

nc
y 

(m
s

)

1 PC 2 PC's 3 PC's 4 PC's
425

428

431

434

437

440

443

base NN YN NY YY

NN YN NY YY
0.00%

0.25%

0.50%

0.75%

1.00%

1.25%

1.50%

1.75%

2.00%

1 PC 2 PC's 3 PC's 4 PC's

SEPTIC combinations

A
ve

ra
g

e
 la

te
n

cy
 o

ve
rh

e
a

d
 (

%
)

1 PC 2 PC's 3 PC's 4 PC's
0.00%
0.25%
0.50%
0.75%
1.00%
1.25%
1.50%
1.75%
2.00%

NN YN NY YY

Number of PC's executing one browser

A
ve

ra
g

e
 la

te
nc

y 
o

ve
rh

e
a

d
 (%

)

(b) Overhead
Fig. 8: Latency and overhead with refbase varying the num-
ber of PCs, each one with a single browser.
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Fig. 9: Overhead with refbase with 4 PCs and varying the
number browsers.

less overhead than stored injection detection, as the values
for configuration NY are just slightly higher than those for
YN. Finally, the overhead tends to grow with the number of
PCs and browsers as the load increases.

The second set of experiments were again with refbase,
this time with the number of client machines (PCs) set to 4
and varying the number of browsers (Table 8, rows 8–11).
Figure 9 shows how the overhead varies when going from 1
to 4 PCs with browsers varying from 8 (2 per PC) to 20 (5 per
PC). The results lead to similar conclusions as the first set
of experiments. They also show that raising the number of
browsers initially increases the overhead (Figure 8(b)), then
stabilizes (Figure 9), as neither the CPU at the PCs nor the
bandwidth of the network were the performance bottleneck.

The third and fourth sets of experiments used the
PHP Address Book and ZeroCMS web applications and 20
browsers in 4 PCs (Table 8, rows 13 and 15). The overhead
of all applications is similar for each SEPTIC configuration.
This is interesting because the applications and their traces
have quite different characteristics, which suggests that the
overhead imposed by SEPTIC is independent of the server-
side language and web application.

The average of the overheads varied between 0.82% and
2.24% (AO in last row of the table). This seems to be a
reasonable overhead when compared to the overheads (as
reported in original the papers) of the anti-SQLI tools used
in Section 9.1.1: 3.35% for SQLrand; between 3.2% and 42.8%
for CANDID; and a maximum of 13% for DIGLOSSIA. This
suggests that SEPTIC is usable in real settings, answering
positively question 7.

10 PROTECTING OTHER DBMSS

The SEPTIC approach is not specific to MySQL. To show that
this is the case, we discuss how to implement the approach
in two other DBMSs, based on an analysis we have made of
their source code. We analyzed MariaDB 10.0.20 [27] and

PostgreSQL 9.4.4 [35]. MariaDB is a fork of MySQL cre-
ated around 2009 due to concerns over Oracle’s acquisition
of MySQL. PostgreSQL is the second most popular open
source DBMS, after MySQL [38].

10.1 MariaDB

MariaDB has essentially the same architecture as MySQL.
When a query is received, it parses, validates, and executes
it (see Figure 2). The outcome of the parsing and validation
phases is the same as in MySQL, a list of stacks where each
stack of the list represents a clause of the query, and each of
its nodes contains data about the query element. Moreover,
the file that contains the calls to the functions that perform
parsing, validation and execution of a query is the same
as in MySQL: sql_parser.cc. Therefore, SEPTIC can be
implemented in MariaDB similarly to how it was in MySQL
(Section 8.1).

10.2 PostgreSQL

The implementation of SEPTIC in PostgreSQL has some
differences but also many similarities to the MySQL and
MariaDB cases. The processing of a query in PostgreSQL
involves four phases: parsing/validation, rewriting, plan-
ning/optimization, and execution. Again the SEPTIC mod-
ule is inserted after the parsing phase, before the rewriting
phase. Similarly to MySQL, a single file has to be modified
(postgresql.c), adding essentially the same 20 lines of
code that were added to MySQL. That file contains the
function exec_simple_query that runs the four processing
phases of a query. The code would be inserted after the
call to function pg_parse_query that parses and validates
the query, just before the call to the function that executes
the rewriting phase (pg_analyze_and_rewrite). SEPTIC
might also be inserted after the rewriting phase, but the
adaptation would be harder as rewriting produces a dif-
ferent data structure, a query tree.

The data structure resulting from the parsing phase is
slightly different from MySQL’s but still a list of stacks. Again
each stack of the list represents a clause of the query (e.g.,
SELECT, FROM) and its nodes a query element. PostgreSQL
tags the query elements with their types and distinguishes
the primitive types (e.g., integer, float/real, string). The
nodes of the stacks contain this information similarly to
what happens in MySQL, but the tags, the structure of
the nodes, and the way they are organized in the stack
are different from MySQL. Therefore, the data structures
used in PostgreSQL and MySQL are similar, but the current
implementation of the module SEPTIC detector has to be
modified, specifically: (1) the navigation in the list of stacks;
(2) the identification of the data about the query elements
in the nodes; and (3) the collection of this data. These
modifications are related with the construction of query
structure for every query.

11 DISCUSSION AND FUTURE WORK

The detection of injection attacks to databases has deserved
a significant attention by the research community, with
several approaches and tools being proposed in the past.
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SEPTIC explores a new point in the design space by identi-
fying the attacks inside the DBMS, which has the benefit of
precluding the semantic mismatch problem. The current de-
sign, implementation and evaluation has several limitations
that suggest interesting open problems for future research:

• Our design assumes that the DBMS represents a
query as a list of stacks. Although this is the most
common method, other DBMSs could resort to differ-
ent data structures. In this case, either it is possible to
perform a translation between data structures or the
tests for attack detection would have to be adapted
to leverage from the available information.

• SEPTIC still requires some manual effort by the
administrator, for instance to initiate the training or
to assess the QM in the quarantine data store. A
significant effort was made to eliminate this sort of
tasks from the critical path of putting an application
in production, but it would have been nice if a fully
automated solution could have been created.

• The aging process allows queries to proceed if they
correspond to a QM of a previous version of the
application. However, it is possible that these models
are no longer acceptable, as they may let attacks
fit these QM. One solution to avoid this limitation
is to employ a more aggressive senescence period,
but this introduces trade-offs that need to be better
understood.

• The current evaluation focuses mostly on SQL injec-
tion. The detection of stored injection attacks, includ-
ing XSS, would need extra work to be thoroughly
studied (but this probably requires a new, equally
longer, paper).

12 RELATED WORK

There is a vast corpus of research in web application secu-
rity, so we survey only related runtime protection mecha-
nisms, which is the category in which SEPTIC fits.

All the works we describe have a point in common that
makes them quite different from our work: their focus is on
how to do detection or protection. On the contrary, our work
is more concerned with an architectural problem: how to do
detection/protection inside the DBMS, so that it runs out of the
box when the DBMS is started. None of the related works
does detection inside the DBMS.

AMNESIA [18] and CANDID [4] are two of the first
works about detecting SQLI by comparing the structure
of an SQL query before and after the inclusion of inputs
and before the DBMS processes the queries. Both use query
models to represent the queries and do detection. AMNESIA
creates models by analyzing the source code of the applica-
tion and extracting the query structure. Then, AMNESIA
instruments the source code with calls to a wrapper that
compares queries with models and blocks attacks. CANDID
also analyses the source code of the application to find
database queries, then simulates their execution with benign
strings to create the models. On the contrary, SEPTIC does
not involve source code analysis or instrumentation. With
SEPTIC we aim to make the DBMS protect itself, so both

model creation and attack detection are performed inside
the DBMS. Moreover, SEPTIC aims to handle the semantic
mismatch problem, so it analyses queries just before they
are executed, whereas AMNESIA and CANDID do it much
earlier. These two tools also cannot detect attacks that do
not change the structure of the query (syntax mimicry).

Buehrer et al. [8] present a similar scheme that man-
ages to detect mimicry attacks by enriching the models
(parse trees) with comment tokens. However, their scheme
cannot deal with most attacks related with the semantic
mismatch problem. SqlCheck [42] is another scheme that
compares parse trees to detect attacks. SqlCheck detects
some of the attacks related with semantic mismatch, but not
those involving encoding and evasion. Again, both these
mechanisms involve modifying the application code, unlike
SEPTIC.

DIGLOSSIA [39] is a technique to detect SQLI attacks
that was implemented as an extension of the PHP inter-
preter. The technique first obtains the query models by map-
ping all query statements’ characters to shadow characters
except user inputs, and computes shadow values for all
string user inputs. Second, for a query execution it computes
the query and verifies if the root nodes from the two parsed
trees are equal. Like SEPTIC, DIGLOSSIA detects syntax
structure and mimicry attacks but, unlike SEPTIC, it neither
detects second-order SQLI once it only computes queries
with user inputs, nor encoding and evasion space characters
attacks as these attacks do not alter the parse tree root nodes
before the malicious user inputs are processed by the DBMS.
Although better than AMNESIA and CANDID, it does not
deal with all semantic mismatch problems.

Works based on anomaly intrusion detection systems
also aim to detect SQLI attacks by comparing models with
queries sent by web applications. Valeur et al. present one
of these works [44]. The system also undergoes a train-
ing phase to create models (a set of profiles) of normal
access to the database. In runtime it detects deviations from
that model. SQL-IDS [22] is another system that compares
queries against query specifications that define the query
syntactic structure (a kind of model) implemented in the
application. However, there is no information about how
such specifications are created, despite the authors arguing
that their source code does not need instrumentation. SQL-
Prob [26] is a proxy-based system that also uses models
previously extracted by a specific data collection phase.
Afterwards, the system evaluates the queries produced by
applications, parsing them, and extracting their user inputs,
then validates the inputs against the parse tree, resorting to
an input repository. For web services Laranjeiro et al. [25]
propose a similar approach to discover SQL and XPath in-
jection attacks. In a first phase, their approach learns regular
requests by representing them into invariant statements (a
kind of models), and later protects web services by match-
ing incoming requests with those collected in the learning
phase. Moreover, the approach uses heuristics to deal with
incoming requests which the approach does not learn as
invariant. All these systems, like the previously mentioned
tools, are external to the DBMS, so they do not use our
approach to deal with the semantic mismatch problem.

Machine learning approaches for detection SQLI have
been emerging. idMAS-SQL is one of these works [34].
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SOFIA [9] also uses machine learning to classify queries
issued by applications, resorting to a clustering algorithm.
The tool has a training phase to get the parse tree from
legitimate queries and to create clusters with these trees.
Afterwards, in evaluating phase it classifies as attack the
queries that do not fit any cluster.

Dynamic taint analysis tracks the flow of user inputs in
the application and verifies it they reach dangerous instruc-
tions. Xu et al. [47] show how this technique can be used to
detect SQLI and reflected XSS. They annotate the arguments
from source functions and sensitive sinks as untrusted and
instrument the source code to track the user inputs to verify
if they reach the untrusted arguments of sensitive sinks
(e.g., functions that send queries to the database). ARDILLA
[23] creates attack vectors which contain mutations of user
inputs generated previously, and then deploys such vectors,
tracking the inputs and verifying if they exploit SQLI and
XSS vulnerabilities. A different but related idea is imple-
mented by CSSE that protects PHP applications from SQLI,
XSS and OSCI by modifying the platform to distinguish
between what is part of the program and what is external
(input), defining checks to be performed to the latter [33]
(e.g., if the query structure becomes different due to inputs).
WASP does something similar to block SQLI attacks [19].
SEPTIC does not track inputs in the application, but runs in
the DBMS.

Recently, Masri et al. [28] and Ahuja et al. [2] pre-
sented two works about prevention of SQLI attacks. The
first presents a tool called SQLPIL that simply transforms
SQL queries created as strings into prepared statements,
preventing SQLI in the source-code. The second, presents
three new approaches to detect and prevent SQLI attacks
based on rewriting queries, encoding queries and adding
assertions to the code. However, these approaches are not
even evaluated experimentally. Again, both works involve
instrumenting and modifying the application code, unlike
SEPTIC that works inside the DBMS.

13 CONCLUSION

The paper explores a new form of protection from attacks
against web and business application databases. It presents
the idea of catching attacks inside the DBMS, letting it
protected from SQLI and stored injection attacks. Moreover,
by putting protection inside the DBMS, we show that it is
possible to detect and block sophisticated attacks, including
those related with the semantic mismatch problem. As a sec-
ond idea, it presents a form of identifying vulnerabilities in
application code, when attacks are detected. The paper also
presents SEPTIC, a mechanism implemented inside MySQL.
In order to do detection, SEPTIC resorts to a learning phase,
and quarantine and aging processes that deal with models
of queries, creating and managing them. The mechanism
was experimented both with synthetic code with vulner-
abilities inserted on purpose and with open source PHP
web applications, and other type of applications. This eval-
uation suggests that the mechanism can detect and block
the attacks it is programmed to handle, performing better
that all other tools in the literature and the WAF most
used in practice, and can identify the vulnerabilities in code
of applications, when the attacks attempted exploit them.

The performance overhead evaluation of SEPTIC inside
MySQL shows an impact of around 2.2%, suggesting that
our approach can be used in real systems.
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