
Scientific Report for STSM project

”T-Rex: A Dynamic Race Detection Tool for

C/C++ Transactional Memory Applications”

March 13, 2012

1



1 Purpose of the STSM

The dominance of multi-core processors has made concurrent programming es-
sential to achieve peak performance from modern systems. Unfortunately, de-
spite the performance benefit, parallel programming introduces high software
complexity and is prone to synchronization bugs such as data races, atomicity
violations, deadlock and livelock.

Transactional Memory (TM) is one of the suitable models that addresses
ease of programmability of parallel programs while keeping up with performance
expectations of multi-core processors. Using TM, programmers mark sections of
code they intend to execute atomically, rather than protecting shared memory
locations with locks, and need not worry about deadlocks. There have been
significant efforts to develop TM systems, hardware (HTM) [3, 6] and software
(STM) [4, 10, 2, 7] and compilers with TM support [8, 1]. However, there is
still lack of software development tools and integrated environments that help
programmers debug and analyze TM applications, such as race detection tools.

The purpose of this short term scientific mission (STSM) was to tackle the
problem of identifying race conditions in C/C++ TM programs running on
STM systems, independently of the particular STM implementation used by
the programmer. Data race detection for lock-based applications has been in-
tensively studied in the literature but, to the best of our knowledge, this work is
the first to explicitely address race detection for real C/C++ TM applications.
Informally, a data race is defined as a condition where multiple threads access
a shared memory location without proper synchronization and there is at least
one write among the memory operations. Data races are difficult to diagnose
and reproduce because they often manifest under certain, likely to be very rare,
thread interleavings. Although the definition of data race is orthogonal to the
synchronization mechanism, critical sections protected by locks and transactions
are semantically different and present distinct characteristics and requirements,
thus race detection tools used for lock-based applications cannot be directly
extended to transactional memory. With TM, a transaction either executes
completely and atomically or should appear as if it were never executed. This
means that transactions’ effects should be permanently visible, and thus can
generate data races, only once a transaction has successfully committed.

We propose T-Rex, a novel dynamic race detection tool for C/C++ trans-
actional memory applications. Our tool records read and write accesses to
shared memory locations, both inside and outside transactions, into per-thread
metadata and then detects races at synchronization points. Moreover, T-Rex is
agnostic of thread interleavings, as it does not depend on the particular threads’
execution ordering to determine data races. T-Rex is transparent to the under-
lying TM systems and track memory accesses through Pin, a dynamic binary
instrumentation tool.

We evaluate T-Rex with a widely-used STM design, TL2[4], a lazy-acquiring,
lazy-updating TM system, using applications from the STAMP benchmark suite
on an 8-core Intel Nehalem server.

2



2 Description of the work carried out during the
STSM

This section describes the formal definition of a race condition for transactional
memory applications and presents the implementation of T-Rex .

2.1 Preliminaries

We propose the following definition of a data race:

Definition 1. A data race among N > 1 threads {T1, ..., TN} that access the
same shared memory location occurs when:

i. at least one access is a write, and

ii. at least one access is unprotected.

This definition is agnostic of thread interleaving and relies on the more intuitive
idea that two accesses to a shared memory location without the proper synchro-
nization mechanism would probably result in a data race, even if they do not
generate a race in that particular execution.

Let’s define Wu
i and Ru

i as the sets of memory locations written and read
by thread Ti inside unprotected regions, respectively, and W p

i and Rp
i as the

sets of memory locations written or read by thread Ti within protected regions,
respectively. Then, a race occurs between thread Ti and Tj iff at least one of
the following is true:

c1i (j) = Wu
i ∩ {Ru

j ∪Wu
j ∪Rp

j ∪W p
j } 6= � (1)

c2i (j) = Ru
i ∩ {Wu

j ∪W p
j } 6= � (2)

c3i (j) = W p
i ∩ {R

u
j ∪Wu

j } 6= � (3)

c4i (j) = Rp
i ∩ {W

u
j } 6= � (4)

We denote with Si(j) the set of races that thread Ti has with thread Tj ; Si(j)
is the sum of (1), (2), (3), and (4):

Si(j) = c1i (j) ∪ c2i (j) ∪ c3i (j) ∪ c4i (j) (5)

It follows that thread Ti has data races with thread Tj iff Si(j) 6= �.
For N > 2 concurrent threads, a thread Ti may have races with multiple

threads at the same time. This would require computing a combinatory number
of sets of races, which would be impractical from a performance point of view.
However, the following theorem holds true:

Theorem 1. The set of races that thread Ti has with threads {Tj , Tk} is equiv-
alent to the union of the set of races that thread Ti has with thread Tj and with
Tk:

Si(j, k) = Si(j) ∪ Si(k)

3



Proof. This theorem can be proved using the commutativity and distributivity
properties of set unions and intersections. Let’s consider N = 3 threads, namely
Ti, Tj , and Tk, with i 6= j 6= k. Then conditions (1)-(4) can be re-written as:

c1i (j, k) = Wu
i ∩ {{Ru

j ∪Ru
k} ∪ {Wu

j ∪Wu
k }

∪ {Rp
j ∪Rp

k} ∪ {W
p
j ∪W p

k }}
(6)

c2i (j, k) = Ru
i ∩ {{Wu

j ∪Wu
k } ∪ {W

p
j ∪W p

k }} (7)

c3i (j, k) = W p
i ∩ {{R

u
j ∪Ru

k} ∪ {Wu
j ∪Wu

k }} (8)

c4i (j, k) = Rp
i ∩ {W

u
j ∪Wu

k } (9)

By applying the distributivity property to, for instance, (6) and
re-grouping the terms, we obtain:

c1i (j, k) = Wu
i ∩ {Ru

j ∪Wu
j ∪Rp

j ∪W p
j } ∪

Wu
i ∩ {Ru

k ∪Wu
k ∪Rp

k ∪W p
k } = c1i (j) ∪ c1i (k)

The same principle can be applied to (7)-(9) with the same results. Putting
everything together, we obtain the thesis.

The equality in Theorem 1 can be also read in the reverse order: if Si(j) and
Si(k) are known, Si(j, k) can be simply obtained by summing the known sets.
This is of practical importance for T-Rex, as Si(j) and Si(k) can be determined
independently and in parallel. Theorem 1 can be generalized to N > 3 through
the following corollary:

Corollary 1. The set of races that thread Ti has with threads {Tj11, Tj2, . . . , Tjm}
is equivalent to the union of the set of races that thread Ti has with thread Tj1,
Tj2,. . . ,Tjm:

Si(j1, j2, . . . , jm) =

m⋃
k=1

Si(jk)

Proof. The corollary can be proved using the same technique applied to the
proof of Theorem 1. For brevity, we omit the formal proof.

Using Corollary 1, the definition of set of races (5) can easily be extended to
N > 2 threads:

Definition 2. Given N concurrent threads, the set of races, Si, of thread Ti

with threads Tj , ∀j 6= i is:

Si =
⋃
i6=j

Si(j) (10)

From the practical point of view, however, this definition still requires com-
puting Si(j) for each i, j = 1..N, i 6= j, where N is the number of concur-
rent threads. The total number of sets of races to compute for N threads is
N × (N −1): this procedure is time consuming, especially for large values of N .
The following theorem reduces the complexity of computing Si for i = 1..N .

4



Theorem 2. The set of races that thread Ti has with thread Tj is equivalent to
the set of races that thread Tj has with thread Ti:

Si(j) = Sj(i)

Proof. The theorem can be proved by applying the commutativity and dis-
tributivity properties of set unions and intersection and by properly grouping
terms.

Theorem 2 states that Sj(i) can be easily obtained if Si(j) is known. The
theorem reduces the number of sets of races to be computed to N × (N − 1)/2.

Definition 1 is very generic and not all unprotected accesses to shared mem-
ory locations necessarily generate data races. There might be cases in which
the programmer knows that a data race can never occur, e.g., because there
is an explicit (barrier()) or implicit synchronization, or sequential semantic
is guaranteed by the underlying memory model (i.e., atomic variables in C++
0x). Moreover, the following corollary holds true:

Corollary 2. Serial sections of an application do not generate data races.

Proof. During serial sections of an application the number of concurrent threads
is N = 1. From Definition 1, it follows that there cannot be races with N = 1
active threads.

This corollary implies that a race detection system need not record those ac-
cesses (reducing runtime overhead) while still maintaining precision. It also
allows the intuitive programming paradigm of initializing global variables in
the main thread or writing the final results of an application without using
synchronization primitives.

Race detection systems may provide false positives — potential races that
are, indeed, not races. Examples of false positives include accesses to atomic

variables in C++ 0x unprotected regions or accesses to shared memory locations
protected by implicit synchronization mechanism (e.g., reading from a common
file or mechanism provided by the programmer). In these cases, the race detec-
tion tool reports races and then it is up to the programmer to distinguish which
ones are real and which ones are false positives. Obviously, if the number of
false positives is very high, this task becomes daunting. In some cases, however,
the number of false positives can be drastically reduced by identifying explicit
synchronization points. The next Theorem formalizes this concept:

Theorem 3. Accesses to shared memory locations across global synchronization
primitives do not generate a race.

Proof. The Theorem can be demonstrated by contradiction. Let’s assume that
two application threads Ti and Tj (the extension to more than 2 threads is
trivial) reach a global synchronization point at time t = tb. Let’s also assume
that a thread Ti accesses a shared memory location l at time t = t1 < tb while

5



another thread Tj accesses the same memory location at time t = t2 > tb and
that this accesses generate a race across the barrier. By Definition 1, there is
a possible execution in which Ti and Tj access concurrently l, hence t1 = t2.
However, by definition a global synchronization primitive (such as barriers, join,
etc.) is a point in the program that has to be reached by all threads before
proceeding to the next section. Hence Ti and Tj are either both before the
synchronization point (t1, t2 < tb) or both after (t1, t2 > tb), which contradicts
the initial hypothesis (t1 < tb and t2 > tb), thus Ti and Tj cannot possibly
generate a race across barriers when accessing l.

2.2 Design and Implementation

2.2.1 Threads Data Access Table

To detect possible data races agnostically of thread interleaving, all individual
protected and unprotected accesses to shared memory locations and the access
mode (read/write, protected/unprotected) have to be recorded. T-Rex stores
each access into a per-thread data access table (DAT), shown in Figure 1a. The
per-thread DAT is implemented as a hash table and the hash function uses the
last 22 bits of the memory address (bits [21:0]) to index the table. Addresses
that map to the same hash table bucket (aliases) are stored in a linked list,
thus all individual accesses are precisely stored and there are no false negatives.
However, because of memory and architectural constraints, we detect data races
at word level (4 bytes), hence false positives are possible if two threads access,
for example, two disjoint portions of the same word. Notice that hardware-
level race detection tools usually detect races at cache line granularity (64-128
bytes), which may cause a considerable number of false positives. Gupta et
al. [5] conclude that then number of false positives would greatly be reduced
if they could use word-level race detection. However, a realistic multiprocessor
system cannot be expected to have a 4-byte cache line.

Figure 1b shows the structure of each entry in the per-thread DAT. The
first word stores the upper part of the memory address (bits [31:22]) and it is
used to disambiguate memory addresses that map to the same hash table bucket.
Bits [3:0] (access mode bitmask) store the access modes (protected/unprotected,
read/write) the location has been accessed by the thread: this bitmask is cross
checked with the other threads’ to determine possible data races.

2.2.2 Binary instrumentation Framework

Dynamic race detection implies tracking read and write accesses to shared mem-
ory locations. For C/C++ applications, the most effective solution to trace
read/write accesses would be to have a compiler instrumenting shared memory
accesses and the race detection tool detecting whether there is a possible race.
Unfortunately, currently, compilers for TM applications only allow programmers
to automatic instrument transactional accesses. None of them, to the best of
our knowledge, instruments non-transactional accesses or provides hooks for race

6



HeadTail

31 21 0

IndexKey

K

K

Address:

DAT

(a) Data Access Table

21

Transaction ID

Generation ID

Next Entry Ptr

31 7 3 0

Key

Access mode bitmask
Temporal access mode bitmask

(b) Data Access Entry

Figure 1: T-Rex bookkeeping data structures.

detection tools. Manual instrumentation, on the other hand, is only possible
for simple applications, such as micro-benchmarks, and is prohibitive for large,
real applications such as the ones tested in this work. We, thus, implemented
T-Rex on top of Pin [9], a dynamic instrumentation tool that allows program-
mers to instrument transactional and non-transactional read and write accesses,
as well as functions’ entry and exit points. Pin enables users to dynamically
modify binary applications on the fly, with no static annotation inserted by the
programmer and with no need of re-compiling/re-linking applications, to call
custom routines before or after the instrumented instruction is executed. The
drawback of dynamic binary instrumentation is the potential runtime overhead
introduced. We believe that TM compiler will eventually provide functionalities
to instrument shared memory accesses that may generate races. Despite the in-
strumentation overhead, our results show that T-Rex overall overhead is in the
same order of state-of-the-art race detection tools.

In oder to distinguish transaction (protected) from non-transactional (un-
protected) code, we instrument TM BEGIN() and TM END(): In our implemen-
tation, we add a call to PIN TM BEGIN() before a TM BEGIN() is executed.
PIN TM BEGIN() sets a flag (is in cs) indicating that the thread has now en-
tered a protected section (transaction). A commit stage, TM END(), the STM
library checks whether there are unresolved conflicts and, if not, the transaction
commits. This is the moment when all the memory locations modified by the
transaction become visible to the other threads, hence, this is the moment when
races may eventually occur. PIN TM END() is invoked at the end of TM END()

and marks the memory locations modified by the transaction as permanent.
The is in cs is also cleared. Notice that, on abort, TM END() does not end (the
transaction restarts from the beginning), thus, PIN TM END() is not invoked.

2.2.3 Unprotected Memory Accesses

While transactional memory accesses are annotated, either by the programmer
or by the TM compiler, non-transactional shared memory accesses are not an-
notated there is no easy way to instrument them for C/C++ applications. We
use Pin to instrument each non-transactional memory access, though the over-
head of such instrumentation is usually larger than compiler-assisted or manual
instrumentation. In order to reduce runtime overhead and false positives, we

7



only instrumented unprotected read and write accesses to shared memory lo-
cations performed within the application’s code. We discard libraries’ memory
accesses because they are not under the control of the programmer; moreover,
we discard per-thread memory accesses (i.e., variables on the stack), as they do
not usually generate races.

Unprotected accesses directly modify the access mode bitmask (bits [3:0]).
At every unprotected access, Pin executes either PIN READ() or PIN WRITE()

and inserts/updates the entry corresponding to the memory location in the
thread’s DAT. PIN READ() and PIN WRITE() set the unprotected read (bit [1]) or
unprotected write (bit[0]) bit, respectively. Both PIN READ() and PIN WRITE()

first look for the memory location address into the threads’ DAT and, if found,
updates the access mode bitmask. If the thread has never accessed that par-
ticular memory location, a new entry is added and the access mode bitmask
is initialized with the current access mode. For performance reason, we store
both head and tail of each bucket list: the last element of a bucket list (tail)
is returned if the required address is not found, making inserting a new item
easier.

2.2.4 Protected Memory Accesses

Managing protected accesses to shared memory locations is, instead, more com-
plicated: the semantic of transactional memory implies that modified memory
locations are permanently visible to other threads only once the transaction
has committed. On the other hand, instrumenting protected accesses is sim-
pler because transactional memory applications are already annotated, either
by the programmer or by the TM compiler, with statements that mark read
and write accesses to shared memory locations within transaction (STM READ()

and STM WRITE(), respectively).
One key design point of T-Rex is the STM implementation transparency.

This means that T-Rex cannot rely on the particular STM implementation
and data structures (e.g., the read- and write-set) or any other assumption
only valid for a specific STM library. A possible implementation consists of
using shadow temporal data structures to record transactional read and write
accesses. Once the transaction commits and the memory accesses become per-
manent, the values in the temporal structures are copied to the thread’s DAT.
From the performance point of view, however, keeping separate data structures
may introduce considerable overhead (memory copy) at commit phase. We,
instead, implemented a commit zero-copy algorithm to keep track of transac-
tional accesses. Bits [7:4] in Figure 1b store a temporal access mode bitmask
used during transaction execution: We use a transaction ID (second word in
Figure 1b) to identify memory locations already accessed by the current trans-
action from those that have never been accessed in the scope of the current
transaction. On transactional read/write access, the thread’s DAT is searched
and, if the memory address is already present in the table, its transaction ID is
compared to the current transaction ID. If the entry’s transaction ID is smaller
than the current transaction ID, this is the first attempt to access that location

8



transactionally and T-Rex copies the access mode bitmask (bits [3:0]) to the
temporal access mode bitmask (bits [7:4]), updates the access mode bitmask
and the entry’s transaction ID, and records the DAT entry. From that moment
on, every other transactional operation to the same memory location in the
scope of the current transaction directly updates the access mode bitmask (bit
[3] or bit [2] for STM READ() and STM WRITE(), respectively). If the memory
location is not found in the thread’s DAT, a new entry is added and its bitmask
and transaction ID are initialized with the current access mode and transaction
ID.

If the transaction commits, no further updates of the thread’s DAT are
required (zero-copy on commit). On aborts, the access mode bitmasks of the
locations accessed during the transaction must be rolled back to their original
values (stored in the temporal access mode bitmasks). The memory locations
that have to be rolled back are stored in the list of individual memory locations
accessed by the current transaction. Moreover, memory locations added by
the current transaction (temporal access mode bitmask is 0) are removed from
the thread’s DAT. With our scheme, aborting a transaction is more expensive
than committing. On the other hand (see Section 3), the number of commits
is, on average, orders of magnitude higher than the number of aborts, thus we
generally have a net gain.

2.2.5 Race detection

According to Definition 1, a race occurs iff at least one of the conditions (1)-(4)
is true. In our implementation, for each thread Ti, the set Rp

i , W p
i , Ru

i , and
Wu

i are determined by the access mode bitmask in each entry of the thread Ti’s
DAT (DATi). For example, if the entry for the location X stores the access
mode bitmask 0110, then X ∈ W p

i and X ∈ Ru
i , hence thread Ti can have a

race on X with any thread Tj , with j 6= i, if X ∈ {Wu
j ∪Ru

j } (condition (3)) or
X ∈ {Wu

j ∪W p
j } (condition (2)).

We can express conditions (1)-(4) in terms of bit operations and detect races
through a logic function determined with Karnaugh maps techniques. Let’s
define Bi(X) the access mode bitmask of thread Ti for location X (Bi(X) = 0x0
if X 6∈ DATi). Then, for threads Ti and Tj , conditions (1)-(4) can be expressed
as:

(1)⇒ (Bi(X) ∧ 0x1) ∧Bj(X) (11)

(2)⇒ (Bi(X) ∧ 0x2) ∧ (Bj(X) ∧ 0x5) (12)

(3)⇒ (Bi(X) ∧ 0x4) ∧ (Bj(X) ∧ 0x3) (13)

(4)⇒ (Bi(X) ∧ 0x8) ∧ (Bj(X) ∧ 0x1) (14)

for each X ∈ DATi and the number of races between Ti and Tj on location X
can be computed as the sum of the hamming weights of the bitmasks computed
in (11)-(14).

By Theorem 1 and Theorem 2, ∀i, j, k : i 6= j 6= k, Sj(i) and Sk(i) can be
independently computed by threads Tj and Tk and Si(j, k) can be obtained by

9



Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans
0

5

10

15

20

25

30

35

40

45

50

O
ve

rh
ea

d

 

 

Naive Generation Zero−copy
78 215 57 81 59

(a) T-Rex runtime overhead.

Genome Intruder Labyrinth Ssca2 Vacation Yada Bayes Kmeans
0

5

10

15

20

25

30

35

40

45

50

O
ve

rh
ea

d 
B

re
ak

do
w

n 
(%

)

 

 

Pin−only Bookkeping Race detection

(b) T-Rex runtime overhead breakdown.

Figure 2: T-Rex overall overhead and overhead breakdown for STAMP applications.

summing these two sets. Sj(i) and Sk(i) can be computed in parallel because
each thread’s DAT is disjoint from the others and race detection only requires
reading the threads’ DATs (no need to synchronize accesses to DATs). We,
thus, implemented a parallel race detection algorithm in which each thread Ti

detects races with thread Tj , with i 6= j. Moreover, by Theorem 2, we only need
to compute the set for one thread (e.g., Ti) and replicate it for the other thread
(e.g., Tj). It follows that thread Ti only needs to determine Si(j), ∀j > i.

3 Description of the main results obtained

This section evaluates the performance of T-Rex over native execution of STAMP
applications. STAMP applications are widely used to evaluate TM systems and

10



present different characteristics, such as large/short transactions, large/small
read- and write-sets, high/low conflict rate, etc. We evaluated our dynamic
race detection tool with applications on a Intel Nehalem system (8 cores, 16GB
of RAM); STAMP applications are compiled with gcc 4.4.5 with optimization O3

for 32-bit architectures. We use TL2 as underlying STM system, also compiled
with gcc 4.4.5 and optimization O3 for 32-bit architectures.

3.1 Overhead analysis

Although race detection tools are not intended to be run in production but only
in development and debugging sessions, a low runtime overhead facilitates race
analysis and increases productivity. Figure 2a shows the overhead of our race
detection tool over the native execution of STAMP applications running with
the TL2 STM runtime library. We report the overhead of three different imple-
mentations: Näıve uses our race detection algorithm but deallocates/allocates
threads’ DATs at each global synchronization point, after performing race de-
tection, and uses shadow data structures to store temporal transactional read
and write accesses that are copied back to the thread’s DAT after successful
commits. Temporal data structures are allocated at the beginning of a trans-
action and deallocated at commit phase and on abort. Generation employs
generation across global synchronization points (no need to deallocate/allocate
threads’ DATs) but still uses shadow data structures for transactional accesses.
To the contrary of the previous case, temporal data structures are not deallo-
cated at the end of transactions but invalidated through a specific generation
ID. Finally, Zero-copy uses both our optimizations: generation across global
synchronization points and zero-copy commit phase.

By comparing versions Näıve, Generation and Zero-copy we can perceive
the effects of each optimization. The use of generations across global syn-
chronization points considerably improve performance for those applications
(Genome, Kmeans and SSCA2 ) that use strict synchronization through barri-
ers or fork/join (see Table 1). Moreover, version Generation does not deallo-
cate/allocate temporal data structures for transactional accesses, hence appli-
cations with a large number of commits (Intruder, SSCA2 and Kmeans) also
report large performance improvements. Including our zero-copy on commit op-
timization (version Zero-copy), instead, generally improves performance for all
the applications. Our zero-copy on commit technique removes the memory copy
overhead of moving transactional accesses from the temporal data structure to
the threads’ DATs, thus applications with a large number of commits, such as
Kmeans, Intruder and SSCA2, and/or large read- and write-sets, such as Vaca-
tion and Yada, are the ones that benefits the most from this optimization. As
we can see from Figure 2a, the T-Rex overhead (Zero-copy) is generally below
10x. This value is comparable to state-of-the-art dynamic lock-based race de-
tection tools despite the fact that race detection for TM applications requires
extra work to keep track of temporal transactional accesses, make transactional
accesses visible to other threads at commit phase and handle aborts.

In some case, such as SSAC2 and Intruder, the runtime overhead is partic-

11



Protected Unprotected
App. Commits Aborts Syn. Accesses Accesses

Rd Wr Rd Wr
Intruder 23428K 302K 1 559.4 28.9 180.9 15.4
Ssca2 22362K 0.01K 47 22.4 44.7 1,204.4 163.2
Kmeans 8825K 2K 302 2.2 2.1 173.4 0.1
Vacation 4194K 9K 1 1,199.9 22.8 133.8 62.7
Genome 2489K 2K 258 90.2 2.2 9.2 0.1
Yada 2415K 235K 1 141.9 39.2 4.8 0.0
Bayes 2K 0.1K 4 0.1 0.0 0.0 0.0
Labyrinth 1K 0.1K 1 0.2 0.2 0.0 0.0

Table 1: STAMP applications’ characteristics. Number of protected/unprotected read and write
accesses are reported as millions.

ularly high. In order to identify the reasons of this large overhead, we analyzed
the overhead breakdown (Figure 2b) and discovered that, for these benchmarks,
the pure Pin instrumentation overhead (no bookkeeping and no race detection)
is already very large. The Pin overhead is 9.5x, 13.8x and 17.5x for Kmeans,
Intruder and SSCA2, respectively. Other applications, however, show a much
lower instrumentation overhead: For Labyrinth, for example, the instrumen-
tation overhead is 1.6x. We further examined the reasons why we experience
large overhead for SSAC2 and Intruder : Table 1 reports the number of com-
mits, aborts, synchronization points, and protected/unprotected read and write
accesses. As we can see, there is a correlation between the number of commits
and the Pin overhead: applications with a large number of commits present
high Pin overhead caused by the frequent library calls.

From Figure 2b and Table 1 we can also derive conclusions about the book-
keeping, the read and write instrumentation and the race detection overheads.
In the graph, bookkeeping also includes the Pin instrumentation overhead of
detecting transactional and non-transactional shared memory location accesses.
Applications with large numbers of memory accesses, such as SSCA2 and Va-
cation, show larger bookkeeping overhead. On the other hand, Intruder and
Kmeans present a lower number of memory accesses, thus their bookkeeping
overhead is small. This explains why, although Intruder and SSCA2 show a
comparable number of commits (therefore a similar instrumentation overhead),
the overall overhead of SSCA2 is larger than that of Intruder.

Finally, Figure 2b shows that the pure overhead of our race detection algo-
rithm is marginal with respect to the instrumentation and bookkeeping over-
head. Overall, the overhead of race detection is lower than 5% of the overall
overhead for all applications, with only SSCA2 and Kmeans between 5% and
10%, and Genome above 20%. These three applications are the only ones that
frequently use global synchronization primitives, thus T-Rex performs race de-
tection several times. As we will see in the following, however, performing race
detection at synchronization points considerably reduces the number of false
positives.

12



App. # Races # Additional Races # Additional Races
Detected w/ bug injection w/o RDSP

Intruder 1422547 7723∗ 0
Ssca2 90 3 NA
Kmeans 0 3546 151860
Vacation 0 758354 0
Genome 0 1706 20
Yada 0 6 0
Bayes 260 3 47
Labyrinth 0 7 0

Table 2: Number of detected data races for STAMP applications for 1) the original version, 2)
a version with synthetic bugs injected, and 3) without race detection at synchronization points
(RCSP). ∗Intruder crashed because of the injected bug.

4 Future collaboration with host institution

Both participant sides (BSC and Koc University) are currently discussing the
opportunity of publishing a joint paper containing the results of this STSM.
The paper will target a high-profile conference like OOPSLA.

5 Confirmation by the host institution of the
successful execution of the STSM

The Hosts Serdar Tasiran from the Koc University confirm that Gokcen Kestor
achieved all the targets that we defined for this collaboration with distinction.
She designed a race checker tool for C/C++ Transactional Memory applica-
tions. In fact, this race checker tool is the first attempt in order to detect races
for complexed applications that use Transactional Memory as a programming
models, and this tool will also enable the researchers to debug their transactional
applications without introducing undesirable slowdown.

References

[1] D. Christie, J. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fetzer,
M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere. Dresden TM
Compiler (DTMC). In Proc. of the 5th ACM European Conference on
Computer Systems, 2010.

[2] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining STM
by abolishing ownership records. In Proc. of the 15th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, Jan. 2010.

[3] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a com-
mercial hardware transactional memory implementation. In Proceeding of
the 14th international conference on Architectural support for programming
languages and operating systems, 2009.

13



[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proc. of
the 20th Intl. Symp. on Distributed Computing, Stockholm, Sweden, Sept.
2006.

[5] S. Gupta, F. Sultan, S. Cadambi, F. Ivancic, and M. Rotteler. Using
hardware transactional memory for data race detection. In Proc. 23rd
International Parallel and Distributed Processing Symposium, 2009.

[6] Ruud Haring. The Blue Gene/Q compute chip. In The 23rd Symposium
on High Performance Chips (Hot Chips), 2011.

[7] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2nd edition, 2010.

[8] Intel Corporation. Intel transactional memory compiler and runtime appli-
cation binary interface, May 2009. Document No. 318523-002US, revision
1.1.

[9] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: building customized program analysis
tools with dynamic instrumentation. In Proc. of the 2005 ACM SIGPLAN
Conf. on Programming Language Design and Implementation, pages 190–
200, 2005.

[10] T. Riegel, C. Fetzer, and P. Felber. Time-based Transactional Memory with
scalable time bases. In 19th ACM Symp. on Parallelism in Algorithms and
Architectures, 2007.

14


