MiNEMA Workshop 2008

Vector-Field Consistency: Middleware for Ad-hoc Gaming and Beyond

Luís Veiga

Distributed Systems Group @ INESC-ID / Technical University of Lisbon

work partially described in
Vector-Field Consistency for Ad-hoc Gaming
Nuno Santos, Luís Veiga, Paulo Ferreira
ACM/IFIP/Usenix Middleware 2007

Talk Outline

...Introduction
- Motivation
- Problems and Current Approaches
- Insights and Basic Idea

...Vector-Field Consistency...
- Approach Model, Entities, Architecture,
- Mobihoc: VFC for Ad-hoc Gaming
- Evaluation and Language Integration

Beyond...
- Current Development
- On-going and Future Work
Motivation

Ad-hoc Networks
Distributed Multiplayer Games
Enforce Game Rules
Data Sharing

Problem: Consistency vs Playability Tradeoff

Strong Consistency (Update Propagation) Hard! Good Playability (Speed/Fluidity, Scope)
Shortcomings of Current Approaches

- Programming tweaks by application programmers
 - Configure messaging infrastructure
 - Game-play prediction (e.g., based on position, direction, speed)
 - Difficult and error-prone management

- Locality aware middleware for multiplayer games
 - Server hand-off
 - Explicit scenery division (e.g., walls, doors, portals)
 - Game-play inflexibility
 - Limited consistency management (all or nothing)

- Optimistic Replication schemes (e.g. TACT)
 - User and application semantics, Divergence bounding
 - Cooperative Work, Databases
 - No notion of spatial locality associated with data
 - Fixed parameters → Reduced adaptability to game dynamics

Some Insights

- Locality clearly drives/rules game interactions
 - Most game entities have associated spatial position (e.g., 2D/3D world)
 - e.g., player, enemy, monster, bonus/treasure, trap, flag, shot fired
 - Interactions between nearby entities
 - more probable and more relevant to game logic (e.g., to hit/not to hit enemy)

- Influence of events on game entities fades out with distance
 - Limited weapon shooting range/speed
 - Limited player/enemy speed
 - Limited visualization scope/area
 - Less likely to affect (e.g., attack) or be affected by farther entities
 - exceptions: capture opponents’ flag, special weapons, etc.

- Strict consistency not always required
 - Events taking place far from player, interesting but not essential
 - Require less update recency, frequency, and accuracy
 - Players can still make “consistent” decisions with limited information
Basic Idea

- Provide player with **better** information w.r.t. closer events
 - More important for game decision and *real-time* action
 - Ensures player perceives compliance of game rules
- Provide player with **some** information w.r.t. far events
 - still important for overall game strategy and quality
 - avoids player perceiving simulation disruption or limitation
 - open field simulation, no *artificial* boundaries (walls, doors, portals)
- Apply discreet **consistency field** to game data
 - Inspired on gravitational and electrical fields.
 - Intensity decreases continuously with distance
 - Inspired on dolphins/bats/submarine echo location
 - Longer range readings imply less precision in results
- Combine the advantages of existing work

Talk Outline

- **...Introduction**
 - Motivation
 - Problems and Current Approaches
 - Insights and Basic Idea
- **...Vector-Field Consistency...**
 - Approach, Model, Entities, Architecture
 - Mobihoc: VFC for Ad-hoc Gaming
 - Evaluation
- **Beyond...**
 - Current Development
 - On-going and Future Work
Our Approach

Tolerate bounded inconsistencies

How to bound inconsistency?

VFC - Approach
Viewpoints & Consistency Zones

Consistency Level

stronger weaker

Viewpoint

Consistency Zones
VFC - Consistency Vectors

Consistency Level
- Stronger
- Weaker

Consistency Vector
- \([t, s, v]\)

Time
- \(0\) to \(\infty\)
- Time unit

Sequence
- \(0\) to \(\infty\)
- Number of lost updates

Value
- \(0\) to 100
- Percentage

Contribution

Vector-Field Consistency (VFC)
- Consistency model
- Locality-awareness techniques
- Techniques for limiting replica divergence
- Straightforward abstractions
- Mobihoc platform (J2ME)
VFC
Virtual World & Replicated Views

Virtual World

Replicated Views

VFC
Consistency Management

Viewpoint (P)

Consistency zones (Z)

\[Z = \{ z_1, \ldots, z_n \} \]

\[C = \langle K_{t_1}, \ldots, K_{t_n}, K_{s_1}, \ldots, K_{s_m} \rangle \]

\[K_i = [t, s, v] \]

E.g., \([0.1, 2, 3, 10\%)\]

K_1 > K_2 > K_3 > K_4

consistency vectors
VFC Specification Example

VFC Parameters

\[P = \{ 0_5 \} \]
\[Z = [1, 2, 3, 4] \]
\[C = [-2, -4, -6, -8] \]

VFC Generalizations

Multi-Viewpoint

Multi-Zones
Mobihoc Architecture

- Prototype in J2ME
- Communication using Bluetooth
- Data as graphs of objects
- VFC parameters as class attributes
- Serialization library

Mobihoc Replica Management

VFC Messages
- Contain players’ VFC parameters
Mobihoc
Replica Management

- Update Messages
 - Contain player nodes' updates

- Round Messages
 - Periodic (1/round)
 - Contain updates

- Primary Replica

Mobihoc
VFC Algorithm

- Send the minimum updates to enforce the players' VFC parameters - \(\phi(c) \)

- Main steps
 - Obtain the consistency degree per object per player
 - Send updates if it is necessary to enforce consistency degree

HUB

When the round alarm triggers, do:

- For each player node \(c \)
 - For each object \(o \)
 - Get \(\kappa \) consistency degree of object \(o \) based on \(\phi(c) \) and the current state
 - If \(\kappa_s \) or \(\kappa_o \) or \(\kappa_v \) do not hold
 - Attach \(o \) update to \(c \) round message

Send round messages to player nodes
Mobihoc
VFC Algorithm Cost

Tests performed on Nokia 6600 phones
6 MB onboard to act as memory and storage space

VFC - Multiplayer Pacman Game

- Proof-of-concept
- Distributed multiplayer Pacman
 - Nokia phones
 - Bluetooth
 - 8x8 Maze Grid
- VFC application
 - 3 Zones
 - Room
 - Adjacent
 - Rest of Grid
 - sequence dimension
VFC – Language Integration

Integration with high-level programming languages
- e.g., Java and C#.
- Key aspect to usability
- VFC \(\varphi \) settings.
- Pivots
 - registered by name, e.g.,
 - `setPivot(String, Object)` and `setPivot(String, Object [])`.
- Sets of objects
 - selected by applying VFC declarative tags to object classes in source code
 - Java annotations, e.g., `@VFCPlane[]`, `@VFCZone[]`
 - .Net attributes `([VFCPlane()], [VFCZone()])`
 - parameters stating zone ranges and \(\kappa \)-tuple components
 - (e.g. `@VFCZone(int range, float time, int sequence, float valueDiff)`).

Java support for annotations is limited.
- In J2SE, it disallows multiple applications of the same annotation
- Even with different parameters to the same class.
- We make use of composite annotations (e.g. `@VFCPlane[]`)
- Encapsulate parameters of multiple `@VFCZone[]` annotations.
- Difficult to write and syntax-error-prone.

J2ME has no support for annotations whatsoever.
- We parse annotations as source code comments
- Extend classes to bear annotation parameters as private static fields
VFC – Language Integration

- .Net has fully flexible attribute framework
 - including .Net CF
 - supports multiple application of attributes to classes
 - eases programmers’ lives
 - E.g., [VFCZone(range, time, sequence, valueDiff)]
 - applied as

 [VFCZone(10, 0.5, 5, 0.2)],
 [VFCZone(20, 1.5, 15, 0.6)],
 [VFCZone(30, 4.5, 25, 0.9)].

VFC – Language Integration

- To allow inspection of objects by Mobihoc,
 - classes implement IVFCConsistency interface with three methods:

 getPosition()
 - for objects to provide their current coordinates in the virtual world,

 getValue()
 - to provide their internal data to be propagated,

 valueDiff(object)
 - to provide an application-dependent measure (in percentage) of difference w.r.t. contents of another object.
Talk Outline

- Introduction
 - Motivation
 - Problems and Current Approaches
 - Insights and Basic Idea
- Vector-Field Consistency...
 - Approach, Model, Entities, Architecture
 - Mobihoc: VFC for Ad-hoc Gaming
 - Evaluation and Language Integration
- Beyond...
 - Current Development
 - On-going and Future Work

Current Development – Bytecode Enhancement

- To apply VFC when source code unavailable
 - Extracts available information from:
 - annotations/attributes/comments
- Phase 1: Analysis
 - Processes XML files with additional information:
 - relevant object field names
 - e.g. player position, etc.
 - Analyses class byte-codes
 - looks for operations on replicated data
 - reads and updates to relevant fields
 - annotates methods with Read/Write tags and places custom op-codes
Current Development – Bytecode Enhancement

- Phase 2: Perform class extension
 - Bytecode enhancement
 - Injects middleware code
 - Read and write operations previously identified
 - Insert bytecodes to invoke VFC class library

- Leverages existing tools
 - BIT,
 - BCEL,
 - JOIE,
 - Javassist, etc.

Current Development – Multiplayer Games

<table>
<thead>
<tr>
<th>Game Type</th>
<th># Max Players</th>
<th>Max Latency (ms)</th>
<th>Scenery Size</th>
<th># Entities Controlled by</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPS</td>
<td>12 to 32</td>
<td>100</td>
<td>small</td>
<td>1</td>
</tr>
<tr>
<td>RPG (MMORPG)</td>
<td>2 to 12 (thousands)</td>
<td>500</td>
<td>large</td>
<td>1</td>
</tr>
<tr>
<td>RTS</td>
<td>6 to 12</td>
<td>1000</td>
<td>medium</td>
<td>10 to 100s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Game Type</th>
<th>Architecture</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>World of Warcraft</td>
<td>RPG</td>
<td>Server network</td>
</tr>
<tr>
<td>MiMaze</td>
<td>FPS</td>
<td>P2P</td>
</tr>
<tr>
<td>Age of Empires</td>
<td>RTS</td>
<td>P2P</td>
</tr>
<tr>
<td>Mercury</td>
<td>FPS</td>
<td>P2P</td>
</tr>
<tr>
<td>NPSNET 3D (vehicle simulator)</td>
<td>FPS</td>
<td>P2P</td>
</tr>
</tbody>
</table>
Current Development – Multiplayer Games

- VFC better suited for FPS
 - Actually designed for them
 - Easier to identify pivots, and define *consistency zone radius*
 - Also applies to RPG but less demanding

- VFC less suited to RTS
 - User controls large number of entities
 - No single spatial position for each user
 - More difficult to identify pivots
 - More pivots to manage
 - hopefully, will imply smaller consistency zones

MINEMA Workshop 2008 - Luis Veiga, et al. 2008/04/01
Current Development - XNA

- VFC in distributed desktop/TCP scenario
 - More sophisticated setting than PacMan
 - More players
 - Larger scenario
 - Faster game
 - More kinds of interaction among players
 - Not just eating dots
 - More lasting influence of game events
 - e.g., shots, explosions have range and time duration

- VFC for .Net XNA Games
 - C#.NET with XNA Game Studio 2.0

Current Development – XNA Net Rumble

- FPS game: Net Rumble
 - Complete XNA Game Studio game
 - Build, play, and modify sceneries
 - Showcase new multiplayer features in XNA Game Studio
 - Two-dimensional shooter
 - Up to sixteen players compete online
 - Death match arena
 - ships, asteroids, lasers.
Current Development – XNA Net Rumble

- Overall Approach
 - Impact: Measure source code modifications
 - Favouring declarative and autogenerated source code extensions
 - Partial class feature in C# from 2.0
 - Evaluation:
 - Confirm game rules compliance inspite of divergence bounding
 - Performance:
 - Measure traffic reduction
 - Different scenarios (zones, players, etc)
 - Measure CPU load
Current Development – XNA Net Rumble

Architecture

- **Centralized (Client-Server)**
 - Simplified development
 - Game rules verification
 - Reference for performance measurements

- **Distributed (P2P)**
 - Increased availability and performance
 - Larger number of players
 - Potentially increase VFC benefits

- **Still on-going work**
 - Currently employs one peer as coordinator

VFC XNA Net Rumble Architecture

![Architecture Diagram](image-url)
VFC XNA Net Rumble Architecture

Coordinator
- Handling node enrollment
- Game coordination (start, stop)
- Decides load-balancing parameters
- Clock sync if needed

Update Messages
- Asynchronous
- Contain player nodes’s updates
- Sent to primary of each scenery fraction

Primary Messages
- Contain updates
- Tailored to replica consistency requirements
- Not periodic
 - Omitted when unneeded

Player
- Exchanges VFC messages
- Manages fraction of replicated data
- Propagates updates

Advantages for Developers
- VFC intuitive for game developer
- Easy to decide pivots, consistency zones, consistency vectors
- Adaptable to different game settings
- Avoid explicit coding for synchronization/consistency
- Better resource usage
 - Does not require artificial limitations on game scenery

Advantages for Players
- Increased Gaming Experience
 - Game rule compliance is preserved, game logic does not crumble down
 - User provided with enough (more) information to decide playing
 - Even if some is partially inconsistent, better than none
VFC XNA Net Rumble

- Larger Scenery
- Wider Visualization
- Consistency Zones

XNA Net Rumble with VFC

Shooting And Explosion
Future Work - Next

- More games
- Fully decentralized version of VFC
- Employ different data propagation approaches
 - Pull (pre-fetch) vs push
 - Check on use
- Combination with opportunistic approaches
 - Use forwarding of update notifications (no actual content)
 - E.g., just forwarding number of updates performed to
 - Trigger pulling updated values before divergence bound is reached.

Other Directions

- Application to Distributed VMs
 - E.g., Terracotta Java DVM
- Cooperative Editors
 - Optimistic Consistency
- Development tools for programmers
 - Code synchronization/change notification
- Web, Wikis, other graph/network data
 - Replication/Caching management
 -
Conclusion

- VFC – Vector-Field Consistency
 - Unifies locality-awareness with replica divergence bounding techniques
 - Efficient regarding CPU and network bandwidth
 - Intuitive for game designers in describing consistency requirements
 - Not necessarily programmers
 - Continuing work...

The End

- Thank you
- More info on

 http://www.gsd.inesc-id.pt/
- Questions?
- Other people in VFC team
 - Colleagues
 - Nuno Santos, Paulo Ferreira
 - Students
 - José Lopes, Tiago Bernardo
 - Dinis Lage,
 - Stoyan Garbatov, Ivo Anjo, Hugo Rito