
CRM-HLL-VM: A Checkpointing-enabled Java VM for
Efficient and Reliable e-Science Applications in Grids∗

Tiago Garrochinho
INESC-ID / IST

Av. Prof. Cavaco Silva
Oeiras, Portugal

tiago.garrochinho@ist.utl.pt

ABSTRACT
Object-oriented programming languages are in current days,

the dominant paradigm of application development (mostly

Java and .NET languages). Recently, increasingly more Java

applications have long (or very long) execution times and

manipulate large amounts of data/information, gaining rel-

evance in fields related with e-Science (with Grid and Cloud

computing). Significant examples include chemistry, com-

putational biology and bio-informatics, with many available

Java-based APIs (e.g., Neobio).

Often, when the execution of one of those applications is

terminated abruptly due to a failure (regardless of it be-

ing caused by hardware of software fault, lack of available

resources,...), all of its work already carried out is simply

lost and, when the application is later re-executed, it has to

restart its work from scratch, wasting resources and time,

and being prone to another failure, to delay its completion

with no deadline guarantees.

A possible solution to solve these problems, is through mech-

anisms of checkpoint and migration. This makes applica-

tions more robust and flexible by being able to move to other

nodes, without intervention from the programmer. This ar-

ticle provides a solution to Java applications with long ex-

ecution times, by incorporating such mechanisms in a Java

VM (JikesRVM).

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications;

D.4.5 [Reliability]: Checkpoint/restart; D.3.4 [Processors]:

Run-time environments; D.3.2 [Language Classifications]:

Object-oriented languages

Keywords
Virtual machines, checkpointing, migration, Java VM, e-

Science

∗Expanded version of the article published in MGC2010,
Middleware for Grids, Clouds and e-Science, integrated in
the conference Middleware 2010.

1. INTRODUCTION
Object-oriented programming languages are in current days,

the dominant paradigm of application development (mostly

Java and .NET languages). They prevail in desktop applica-

tions, application development itself (Eclipse), web applica-

tion servlets, components, beans in application servers, and

even in games, mostly in mobile scenarios. More recently,

there are also increasingly more applications that have long

(or very long) execution times and manipulate large amounts

of data/information. This is becoming more and more rel-

evant in various fields related with e-Science (mostly in the

context of Grid and Cloud computing) where Java is becom-

ing more and more popular, albeit used by researchers (pro-

grammers) who are often not computer engineers/computer

scientists. Relevant examples include chemistry, computa-

tional biology and bio-informatics [11, 10, 14], with many

available Java-based APIs (e.g., Neobio).1

Often, when the execution of one of those applications is

terminated abruptly due to a failure (regardless of it be-

ing caused by hardware of software fault, lack of available

resources,...), all of its work already carried out is simply

lost and, when the application is later re-executed with the

same parameters and input (e.g., as in the case of a data-

processing job), it has to restart its work from scratch, wast-

ing resources and time, and being prone to another failure,

to delay its completion with no deadline guarantees.

A possible solution to solve these problems, is through mech-

anisms of checkpoint and migration. With these mecha-

nisms, an application becomes more robust, as it is fault

tolerant and gains flexibility by being able to move to other

nodes, without intervention from the programmer.

Prior and existing mechanisms of checkpoint and migration

are supported at different levels: 1) process level (whether

initiated by application with its own code or via specific li-

braries, or as a facility offered by the modified or extended

operating system [16]); 2) system virtual machine (System

VM, e.g. Robert Bradford et al. [7]). These approaches are

insufficient. They either: i) require to store/transfer infor-

mation that is not on the application itself (e.g. informa-

1
http://www.bioinformatics.org/neobio/



tion on the operating system on which it runs), or ii) limit

application portability. Therefore, as the majority of the

object-oriented programming languages execute their appli-

cations on object-oriented virtual machines (OO VM, also

known as HLL VM,2 e.g. Java VM, .NET CLR), our solu-

tion proposes an approach to the checkpoint and migration

mechanisms at this level.

There is already some research in the area of checkpoint and

migration solutions at OO VM level, however, existing so-

lutions are embedded in the context of mobile agents and

for that, are very limited, i.e. only portray a single thread

on a very limited and controlled environment (e.g. Mobile-

JikesRVM [8]). Other solutions either: i) have efficiency

problems (e.g. JavaGo [19], JavaGoX [18], Brakes [23], ITS [5],

with performance penalty in application runs exceeding an

average of 300%); or ii) pass the responsibility to the pro-

grammer (e.g. WASP [9]) that must cooperate with the

checkpointing mechanisms, which limits transparency; or iii)

are solutions in which completeness is not well addressed,

and the problem is specifically related to the external state

of an application (e.g. files and sockets).

This article provides a solution to Java applications with

long execution times, by incorporating checkpoint and mi-

gration mechanisms in a Java VM (JikesRVM [3]). The main

objectives are focused on the problems of transparency and

completeness. Our proposed solution takes into account the

following set of properties:

• Transparency: The mechanisms should not be con-

structed in such a way that gives responsibilities to

the programmer. So, no application changes are re-

quired. It is provided a controller program (command

line input) which communicates with the applications

to take advantage of these mechanisms (that can be

used by other users than the developer himself). Ap-

plications should not realize changes of environment,

or that they were recovered using checkpoint or trans-

ported to another environment using migration.

• Flexibility: Although there are no mandatory re-

sponsibilities to the programmer, we propose an API3

that allows himself to control checkpoint and migra-

tion mechanisms in his application.

• Consistency: The state of an application, remains

free of inconsistencies, even after a rescue operation.

In functional terms, the application continues its exe-

cution as the checkpoint or migration never happened

(does not include temporal matters).

• Completeness: The mechanisms must portray the

whole state of an application: code, data (e.g. heap),

execution state (e.g. stack, threads), external links

2
High-Level Language Virtual Machine.

3
Application Programming Interface.

(files and sockets), state regarding native execution

(JNI), and Java synchronization monitors. Note that

it is not intended to store/carry the whole virtual ma-

chine as a block. It is intended to take only into ac-

count the minimum state relative to the application

itself, so that this minimum is enough to reconstruct

the execution state of the application on another vir-

tual machine instance (local or remote).

• Portability: Partly provided by OO VM approach,

but it is necessary to have the VM modified/extended

in all machines/nodes. It is also desirable that the

same VM source code compiled in particular operating

system and architecture may be able to use checkpoints

generated by the same VM compiled on other systems.

• Efficiency: The additional cost of performance when

running the application should be minimal or none.

The cost performance during the execution of the mech-

anisms should be proportional to size of running ap-

plications.

• Robustness: The mechanisms at least, shall not af-

fect the application or be a source of new exceptions

that were not envisioned by the developer (e.g. when

it is not possible to do a checkpoint or migration, the

application must continue normally).

This paper is organized as follows: in Section 2 we will

overview the related work. In Section 3, we describe the

architecture and general vision of the components of the pro-

posed solution. Section 4 addresses the most relevant details

of the implementation. In Section, 5 we present results ob-

tained in the evaluation of the developed mechanisms, as a

form to measure their efficiency. Section 6 closes the paper

with some conclusions.

2. RELATED WORK
Existent mechanisms for checkpoint and migration are im-

plemented at different levels: System VM, Process level,

and OO VM, the main subject of this work. Naturally, the

level of implementation influences the type of information

maintained, i.e. depending on the level of implementation,

we can obtain checkpoint and migration of: operating sys-

tems (i.e., a complete machine or platform installation), ap-

plications, or threads. Regardless the level of implemen-

tation, the execution state which the mechanisms have to

persist can be divided into two parts: internal and external

state. The internal state includes pending signals, address

space (heap, stack and any region mapped) and internal

registers. External state covers file descriptors, the actual

contents of the files and sockets.

Regarding the internal state, the problem in general is more

or less well addressed, however, although not explicitly stated,

some of existing solutions require the execution environment



to be well defined and controlled (e.g., mobile agents). Con-

versely, for external state, solutions already have some prob-

lems. They are either incomplete and may not work around

the issue of files mobility, or address it simply by imposing

the usage of a distributed file system. For some scenarios,

such as large-scale settings, it can be costly in terms of per-

formance, or plainly incompatible, to be dependent on a

distributed file system [7].

Due to limited space we address specifically only the OO

VM level. At this level, the vast majority of checkpoint and

migration solutions use a serialization mechanism provided

by the VM itself. As an example, the serialization mecha-

nism of Java VMs allows to store and retrieve the state of an

object, and also allows the transfer of the same object be-

tween different machines/nodes. With only one mechanism,

we can have information persistence and transfer.

OO VM checkpoint and migration solutions can be further

subdivided in two classes regarding their approach (both

address threads and application data - object heap):

• OO VM internal level: this approach fulfills the re-

quirement of completeness, by having access to whole

execution state. However, these solutions have prob-

lems of efficiency and portability (other VM implemen-

tations also have to incorporate code changes in or-

der to make the checkpointing and restore mechanisms

work). This approach is usually accomplished through

modifications or extensions of the OO VM own in-

ternal code, introducing new features from libraries,

providing checkpoint or migration. Examples of such

solutions include: Merpati [21], OCVM [2], CIA [12],

MobileJikesRVM [8], Sumatra [1], JavaThread [6], No-

mads [22], ITS [5], Jessica2 [13].

• OO VM application level: this approach has the

main advantage of being portable (it needs no mod-

ifications to be applied to VM code), but has effi-

ciency issues (code expansion) and does not meet the

requirement of completeness. At this level, the appli-

cation code (source code or bytecode) is transformed

by a preprocessor (or a bytecode enhancer) that adds

new instructions to the application code (instructions

which serve to capture or restore the application state

or trigger other code that performs it). Examples of

such solutions include: WASP [9], JavaGo [19], Jav-

aGoX [18], Brakes [23], M-JavaMPI [15].

Additionally, some of these solutions, such as CIA [12] and

M-JavaMPI [15], take advantage of the debugging library

provided by the Java VM architecture, known as the JPDA,4

to store and retrieve the execution state of an application.

Nonetheless, JPDA when used to implement mechanisms

4
Java Platform Debugger Architecture.

of checkpoint and migration, has some limitations, the most

significant being that these solutions are only able to extract

the state of a single thread.

Analysis: Among the solutions already mentioned at the

OO VM level, there are few that support checkpoint or mi-

gration of applications. Next, we offer a brief comparison of

those solutions with the solution we propose in this article.

Merpati [21] is an application checkpoint solution. It cannot

deal with application threads already blocked prior to per-

forming checkpoint, and it can not handle state that does

not belong to the virtual machine, as is the case of native

state. Our approach can deal with threads already blocked,

and JNI-related5 state is processed in such a way that it is

not explicitly saved, but at the same time we ensure consis-

tency of the virtual machine and application upon restore.

OCVM [2] is a checkpoint solution designed for applications

at OO VM internal level, although, it is very high-level,

which compromises its completeness, and is also very re-

stricted in scope because it does not target a VM with a

widely used programming language such as Java.

WASP [9] is a solution for the migration of mobile agents,

but it can deal with multiple threads. This solution manipu-

lates Java source code in order to add additional instructions

to support migration. This has two main disadvantages: it

does not support applications whose Java source code is not

provided and, maybe worse, it needs the assistance of the

programmer to address limitations of the solution, regard-

ing when and where checkpoint can be performed and data

to be included in it. Our approach does not suffer from these

limitations.

Lastly, M-JavaMPI [15] was designed to support application

migration, but it employs JPDA as the core of the solution,

and for that reason, it can only support applications with

a single thread. In general, both Merpati, WASP and M-

JavaMPI have transparency problems (in worst case, they

force the programmer to modify his program in order to

explicitly invoke the provided mechanisms, or the program-

mer has to be aware of an additional programming model,

e.g. MPI).6 The extraction of external state is also an is-

sue. Most solutions support neither sockets nor files; in

most cases applications are relocated simply by using a dis-

tributed file system, which raises performance, scalability,

and administrative issues in large-scale settings.

3. ARCHITECTURE
In this section we describe the main aspects of the architec-

ture of the checkpoint-enabled OO VM. We start with an

overview description of the mechanisms for checkpoint/restore

and migration, and then with the internal architecture of the

5
Java Native Interface.

6
Message Passing Interface.



Figure 1: CRM-HLL-VM mechanisms usage

overview.

extended VM. Figure 1 presents an overview of the features

supported by this work:

1. Checkpoint to local disk and its corresponding restore.

2. Checkpoint for a distributed file system, and any node

that is connected to this system, can restore the per-

sisted state. This can be considered as an indirect mi-

gration and/or indirect replication, as more instances

can be launched with the restored checkpoint and their

replicas of files.

3. Migration between two nodes. The migration is done

directly between two nodes.

The architecture of this work presented in Figure 2 consists

of a set of components that focus on the transparency prop-

erty described earlier, and/or data transfer. There are three

primary components:

• Application: executing in the context of an extended

VM with mechanisms to support checkpoint, restore

and migration.

State extraction captures the execution state related

with all threads within the application. Checkpoint

has the obligation to stop all threads (to guarantee

consistency), then calls state extraction and finally

saves the state persistently into a file system. Migra-

tion calls checkpoint and sends that execution state

via network.

State restoration has the responsibility to rebuild the

execution state in a newly created application, which

corresponds to reconstruct and resume the execution

of all stack frames7 for all threads, and when ready,

restart execution. Restore guarantees that the newly

created application can initiate state restoration, and

additionally if requested, obtains the state from a file

system. Migration daemon is used in migration, and

receives the state from the network. When the state

is available, migration daemon calls restore with that

state.

7
A stack frame corresponds to a call to a subroutine which has not

yet terminated with a return.

Figure 2: CRM-HLL-VM Architecture in one node.

CheckpointTo and migrationTo methods/services (they

are also available to the applications) are triggered by

the controller. A special thread is listening in a specific

socket, that makes possible to receive external orders.

When triggered, corresponding commands are passed

into checkpoint or migration internal components. Mi-

grateFrom and restoreFrom triggers, are just simple

input channels, to receive execution state information.

• Controller: Command line program, which commu-

nicates with the application to take advantage of the

mechanisms developed. With it, a user controls the

mechanisms developed on an application, parameter-

izing it with commands/instructions depending on the

desired result.

• Migration Service: Server present on all nodes, which

aims to receive migrated applications. This server also

responds to requests for classes and files transfer that

are handled on-demand.

In order to use checkpoint and migration mechanisms ex-

ternally, the controller must discover the socket port that

the application is listening (to receive checkpointTo or mi-

grationTo trigger commands). Basically, the controller also

listens in a specific socket port, and sends an operating sys-

tem signal [20] to the application (using its process identi-

fication, e.g. Unix Process ID). Note that in the case, we

regard as the application the whole process running the VM

instance executing the application. Interactions are actually

performed by VM code. When the application receives that

signal, it performs a callback by connecting to the controller

by socket, and from that moment it is possible to exchange

messages between both.

In case of application migration, the interaction between the

various components is done as follows. The application VM



instance communicates with the remote Migration service

to initiate a migration. This service is responsible for start-

ing a newly created application that will listen on a given

socket (internal Migration Daemon). Once the state can be

transferred, the Migration service responds to the original

application with the port it must send the state to. From

this moment on, the state is transferred from the original

application to the newly created application directly.

4. IMPLEMENTATION
The mechanisms of checkpoint and migration are being de-

veloped in the JikesRVM virtual machine (3.1.0). JikesRVM

is a virtual machine designed to run Java programs, whose

distinctive feature compared to other Java virtual machines

is that is implemented in Java. Unlike other Java in Java

virtual machines, JikesRVM does not need to rely on a sec-

ond Java virtual machine to bootstrap and run.

In this section, we focus on implementation details that pro-

vide better understanding of the solution created. We de-

scribe how the execution state can be saved persistently on

disk and transferred across network. Also, state extraction

and restoration is detailed taking into account the consis-

tency property.

Execution state: disk persistence and transfer. Most

solutions discussed in related work at OO VM level, use a

serialization mechanism supported by the virtual machine,

on which they develop the checkpoint or migration mech-

anisms. This solution is no different. We are taking ad-

vantage of the Java serialization mechanism, implemented

by GNU CLASSPATH,8 supported in JikesRVM, to persist and

carry the information related to the execution state of a

running application.

However, Java serialization requires that any class that must

be serialized implements the Serializable interface. Thus,

we would have to trust that all application classes imple-

mented that interface, and consequently we would give re-

sponsibilities to the programmer to do it so (violating the

property of transparency). However, this interface serves

only to mark which classes are serializable or not, because,

taking for example the Thread class, this class has depen-

dencies on the environment it runs on (operating system

system-calls or native libraries dependencies) and cannot be

automatically serializable. Because our solution addresses

the issue of mobility of such objects, there is no need for

application code to explicitly implement this or any other

interface.

Additionally, if a class is not easily serialized (e.g. RVMThread9

and internal synchronization locks, both with very strong

environment dependencies), then we have two solutions:

8
http://www.gnu.org/software/classpath/

9
Object that represents a thread within the virtual machine.

1. Create an special externalized version of the object

with the minimum required information (represented

by primitive data types), that allows the reconstruc-

tion of the object on restore.

2. Avoid serializing the object, walking back the thread

stack to a frame position where the object had not

yet been created. This is only possible when code on

restore is deterministic and can recreate all the infor-

mation like it was before. This type of solution was

used for the thread synchronized state. We present

more details in section 4 (Execution state: thread syn-

chronized state).

Execution state: consistency. To obtain a consistent

state of the virtual machine for its checkpoint, it is required

to ensure that all non system threads are stopped (we only

need to take into account application threads). JikesRVM

has support for yield points, which are inserted automat-

ically by the just-in-time compiler, on method prologues,

epilogues and loop back edges. These yield points are safe

points where the virtual machine can take control over a

thread in order to make it stop, because in such points,

threads are not changing virtual machine state or executing

any application instructions (bytecodes).

This would be sufficient for threads that are not blocked.

But, if a thread is already blocked (e.g. in a read from

input), then it cannot reach an yield point. Although, if a

thread is already blocked it is in a safe point by the same

reasons of yield points (thus called effectively safe). So, if

all threads are in safe points or effectively safe, the virtual

machine can be stopped in a consistent state, with some

additional care.

It is true that effectively safe threads are indeed running (as

far as the VM is concerned), but if they return some result

to the virtual machine, they are blocked before continuing,

enforcing the desired property of consistency.

Execution state: stack frames saved. Figure 3, shows

which stack frames are saved for each type of thread. Shaded

stack frames are the only ones saved. Black fill marks the

first frame to be saved.

A thread in a safe point has always the same first stack

frame. Effectively safe threads do not, but every time a

thread is effectively safe it enters into native code (internal

VM code, not JNI) and is forced to save the FP10 and the

IP11 pointers. This FP marks the first stack frame to be

saved in a effectively safe thread.

Effectively safe threads are always restored in the same safe

point. If a thread returns from its effectively safe state while

10
Frame pointer, stack pointer that points to the last created frame.

11
Instruction pointer, points to the next instruction to be executed.



Figure 3: Safe and effectively safe thread examples.

in state extraction (Figure 3, transition from thread #2 to

#3), then on restore it will appear as if it never advanced

execution (it will look exactly like thread #2), which is the

desired state.

Execution state: extraction. We are taking advantage

of OSR (on-stack-replacement) to extract and restore the

execution state of the threads of a running application. OSR

makes it possible to take a stack frame from the stack and

substitute it with another one.

JikesRVM has support for two compilers: baseline and opti-

mized. Baseline stack frames are fully observable and easily

extracted, but optimized are not. The optimized compiler

chooses points in code where OSR can occur (points where

important OSR maps are created), and for that, we cur-

rently only support baseline stack frame extraction. We are

aware of the work made in [17] which disabled some opti-

mizations without losing significative performance, but we

also know that this solution only works 60% of the times.

So, future work must me made to support optimized stack

frame extraction.

Baseline stack frame extraction is done as follows. First, it

analyzes bytecodes in order to determine the type of locals

and stack operands at certain bytecode index, just like a

common bytecode verifier. The produced result has to be

adjusted with GC maps because there can be object vari-

ables (references) that can be uninitialized at the current

bytecode index. Additionally, the numbers of locals and

stack operands are counted. When ready, the baseline ex-

tractor uses both type/number of locals and stack operands

to retrieve the full data from the stack frame. The structure

of the information retrieved is the following:

• Local and stack operand variables (includes method

arguments and reference to object this).

• Bytecode IP.

• Compiler type (baseline or optimized).

• Method name (composed by class/descriptor/method

(e.g. mypackage.myclass/(I)V/mymethod)).

• Next stack frame execution state.

Execution state: restoration. On restore, every stack

frame execution state is recompiled with a special prologue

with the following additional bytecode instructions that have

the responsibility to:

• Recover local and stack operand variables.

• For every checkpointed stack frame, recursively, recre-

ate it by invoking its prologue code.

• And finally after that, recover the bytecode IP pre-

served.

After recompilation, for every checkpointed thread, a new

thread reruns all compiled stack frames in the same or-

der they were before, and when finished, the thread auto-

matically blocks, to make the restore consistent. When all

threads are ready, the virtual machine can restart with the

previously checkpointed execution state.

Execution state: thread synchronized state. A thread

within synchronized methods or statements can be in one of

three states: monitor owner; blocked in the entry set; or

blocked in the wait set. Because we avoid saving internal

synchronization locks, on restore they have to be recreated.

The owner of the lock on restore always reacquires it again.

Entry and wait set threads are walked back to a stack frame

that on restore reruns the lock and wait code again, that

makes them lock in the right set. It is true that the order

in both sets can be different from the old state, but monitor

owner competition is very implementation dependent, and

for that this is not a requirement, as it is usually regarded

as bad programming to rely on relative speed of threads for

correctness in an application.

Additional issues. A thread with JNI state is just like an

effectively safe thread. State extraction starts on the last

frame that makes the JNI call. If JNI returns, it will block.

On restore it will happen as if that JNI call never happened,

and so is repeated again. This stays consistent within the

virtual machine.

Finally, current work is focused mainly on external state.

This problem should not be a responsibility for the program-

mer, even because who uses the checkpoint/restore and mi-

gration mechanisms may not be the programmer itself. We

want to take care of common external state like files and

sockets.



Figure 4: State extraction and restoration internal

component benchmarks.

5. EVALUATION
Current implemented mechanisms have been tested for per-

formance evaluation. We created test programs that carry

out a microbenchmark of all internal components (state ex-

traction and restoration, checkpoint, restore and migration)12

presented in the CRM-HLL-VM architecture.

The results are depicted in Figures 4 and 5. The microbench-

marks were executed with several combinations of the three

relevant parameters manipulated by the implemented mech-

anisms:

• Number of stack frames in the running application (50-

300) for all tests.

• Number of heap objects (representing individual atoms,

molecules, particles, ...) referenced by those stack frames

(50-300 for regular sized objects, 750-1250 for large ob-

jects, 50-300 for very large objects).

• (Average) Size of the objects in the heap.

The times measured are expressed in seconds and are av-

erage values computed across multiple runs with outliers

discarded, on a Intel(R) Core(TM)2 Duo CPU T9300 @

2.50GHz, with 1 GB RAM, in a local network with a transfer

speed of 100 MB/sec.

Three groups of tests were made in order to discover possible

bottlenecks and evaluate the cost associated with the oper-

ation of each internal component. The first group evaluates

the typical application with few data (first three samples in

the graphs). The second group evaluates applications with

more objects of larger size. Finally, the third group evalu-

ates applications with few objects but of very large size large.

This allows us, in summarized form, to study the load caused

by increasing numbers of objects and of increased size, both

individually and combined.

12
Migration is the time taken to transfer the execution state between

two different nodes.

Figure 5: Checkpoint, restore and migration inter-

nal component benchmarks.

From these results, some conclusions can be taken. First,

the results are very encouraging since the imposed latency is

very small regarding the long execution times of the intended

applications; therefore, checkpointing can be performed of-

ten with significant gains in reliability and long-term perfor-

mance in the presence of failures.

Secondly, applications with large graphs of objects refer-

enced from the stacks only suffer performance penalties in

the state extraction component (Figure 4, samples from

group number 2). The reason why this happens is because

we perform type inference over stack frames. This is very

time consuming for lots of objects.

Finally, in Figure 5, serialization and de-serialization mecha-

nisms (used in the checkpointing and restore components re-

spectively) caused the greatest overhead to the mechanisms.

For applications that have some large objects, checkpointing

time rose above 2 seconds. For this reason, it is worth to

explore an incremental/diferential checkpointing approach,

as we intend to pursue. We highlight that, within a cluster

setting, the actual cost of migration with data transfer is

very reduced.

Additionally, we performed some tests on migration to illus-

trate the usage of the implemented mechanisms in a large

scale scenario (such as in Grid and Cloud computing), where

jobs consisting of applications running on OO VMs can

be checkpointed, restored, and migrated (or replicated), to

more available nodes. This, without the complexity and

overhead of having to checkpoint the entire operating sys-

tem instance where the OO VM is executing (as it would be

with System VM checkpointing).

The results showed, as it was expected, that the most signifi-

cant source of overhead is migration (70 second average time

on migration on a 80 Kbit/sec line, for the same tests pre-

sented). In order to reduce this, we compressed the check-

point and, checkpoint, compression and migration combined

took 25% less time. Moreover, in Figure 6, the overhead

during normal execution against original JikesRVM is under



Figure 6: DaCapo benchmarks [4], overhead in

runtime imposed by the checkpoint and migration

mechanisms.

10% in all runs, for the baseline compiler. For optimized

compiler (not yet supported, but we intend to), the over-

head is even less, only under 5% in all runs.

6. CONCLUSION
Today, more and more applications in e-Science fields (chem-

istry, bio-informatics) are developed in Java. They usually

have long execution times and process vast amounts of data.

When they fail during long executions, all performed work

is lost, unless programmers explicitly implement some form

of intermediate save of results already calculated. However,

they are often designed by non-computer-scientists, and such

an explicit approach must be re-implemented each time over.

In this paper, we described a solution to these problems

(CRM-OO-VM) by extending a Java VM with checkpoint-

ing, restore and migration mechanisms that can be employed

with transparency to the programmers which need not mod-

ify their applications. The proposed solution was imple-

mented and we evaluated its adequacy and performance,

with encouraging results.

In the future, we intend to integrate with better serialization

mechanisms, give full support in extraction for optimized

compiled methods and explore an incremental/diferential

checkpointing approach. We also intend to test our solu-

tion in more demanding scenarios of load balancing across

clusters and investigate the adoption of a similar approach

in the context of .NET-related virtual machines.

7. REFERENCES
[1] A Acharya, M Ranganathan, and J Saltz. Sumatra: A language

for resource-aware mobile programs. Lecture Notes in

Computer Science, 1222:111–130, 1997.

[2] Adnan Agbaria and Roy Friedman. Virtual-machine-based

heterogeneous checkpointing. Software: Practice and

Experience, 32(12):1175–1192, Outubro 2002.

[3] B. Alpern, C.R. Attanasio, J.J. Barton, M.G. Burke, P. Cheng,

J.D. Choi, A. Cocchi, S.J. Fink, D. Grove, M. Hind, et al. The

Jalapeno virtual machine. IBM Systems Journal, 39(1):211,

2000.

[4] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,

S.Z. Guyer, et al. The DaCapo benchmarks: Java

benchmarking development and analysis. In Proceedings of the

21st annual ACM SIGPLAN conference on Object-oriented

programming systems, languages, and applications, pages

169–190. ACM, 2006.

[5] S Bouchenak and D Hagimont. Pickling threads state in the

Java system. In Third European Research Seminar on

Advances in Distributed Systems, 1999.

[6] S. Bouchenak, D. Hagimont, S. Krakowiak, N. De Palma, and

F. Boyer. Experiences implementing efficient Java thread

serialization, mobility and persistence. Software: Practice and

Experience, 34(4):355–393, 2004.

[7] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and

Harald Schiöberg. Live wide-area migration of virtual machines

including local persistent state. Proceedings of the 3rd

international conference on Virtual execution environments -

VEE ’07, pages 169–179, 2007.

[8] G. Cabri, L. Leonardi, and R. Quitadamo. Enabling Java

mobile computing on the IBM Jikes research virtual machine.

Proceedings of the 4th international symposium on Principles

and practice of programming in Java, pages 62–71, 2006.

[9] S. Ffinfrocken. Transparent migration of Java-based mobile

agents. Springer, Volume 147:26–37, 1998.

[10] Dominik Gront and Andrzej Kolinski. Utility library for

structural bioinformatics. Bioinformatics, 24(4):584–585, 2008.

[11] Richard C. G. Holland, Thomas A. Down, Matthew R. Pocock,

Andreas Prlic, David Huen, Keith James, Sylvain Foisy,

Andreas Dräger, Andy Yates, Michael Heuer, and Mark J.

Schreiber. Biojava: an open-source framework for

bioinformatics. Bioinformatics, 24(18):2096–2097, 2008.

[12] T. Illmann, T. Krueger, F. Kargl, and M. Weber. Transparent

migration of mobile agents using the java platform debugger

architecture. Lecture Notes in Computer Science, pages

198–212, 2001.

[13] F.C.M. Lau. JESSICA2: a distributed Java Virtual Machine

with transparent thread migration support. Proceedings. IEEE

International Conference on Cluster Computing, pages

381–388.

[14] Ivan López-Arévalo, René Bañares-Alcántara, Arantza Aldea,

and A. Rodŕıguez-Mart́ınez. A hierarchical approach for the

redesign of chemical processes. Knowl. Inf. Syst.,

12(2):169–201, 2007.

[15] R.K.K. Ma, C.L. Wang, and F.C.M. Lau. M-JavaMPI: A

Java-MPI binding with process migration support. The Second

IEEE/ACM International Symposium on Cluster Computing

and the Grid, pages 1–9, 2002.

[16] DS Milojicic, F Douglis, Y Paindaveine, and R. Process

migration. ACM Computing Surveys, 2000.

[17] R. Quitadamo and L. Leonardi. The Issue of Strong Mobility:

an Innovative Approach based on the IBM Jikes Research

Virtual Machine. PhD thesis, University of Modena and

Reggio Emilia, 2008.

[18] T Sakamoto, T Sekiguchi, and A Yonezawa. Bytecode

transformation for portable thread migration in Java. Lecture

Notes in Computer Science, pages 16–28, 2000.

[19] T Sekiguchi, H Masuhara, and A Yonezawa. A simple extension

of Java language for controllable transparent migration and its

portable implementation. in Coordination Models and

Languages, 1999.

[20] Richard W. Stevens and Stephen A. Rago. Advanced

Programming in the UNIX(R) Environment (2nd Edition).

Addison-Wesley Professional, 2005.

[21] T. Suezawa. Persistent execution state of a Java virtual

machine. Proceedings of the ACM 2000 conference on Java

Grande, pages 160–167, 2000.

[22] N Suri, J M Bradshaw, M R Breedy, P T Groth, G A Hill, and

R Jeffers. Strong mobility and fine-grained resource control in

NOMADS. Lecture Notes in Computer Science, pages 2–15,

2000.

[23] E Truyen, B Robben, B Vanhaute, T Coninx, W Joosen, and

P Verbaeten. Portable support for transparent thread migration

in Java. Lecture notes in computer science, pages 29–43, 2000.


