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Abstract

In this work, we study the scalability, performance, design and implementation

of basic data structure abstractions, such as a queue, for next generation multicore

systems. We propose two algorithms for concurrent queue. Our first algorithm, a

wait-free queue, provides an efficient replacement to a lock-free queue. Lock-free

queue is considered very efficient, but does not provide local progress guarantee

for each thread. It also performs badly under stressed conditions. Our wait-free

queue, not only provides local progress guarantee, but also depicts high perfor-

mance and positive scalability under highly stressed conditions. Our second al-

gorithm, a sequentially consistent queue, further achieves high performance by

changing the consistency model. All the queue algroithms provide linearizabil-

ity, which orders the operations on a global time scale. However, our sequen-

tially consistent queue orders the operations in a program order, which is local

to a thread. Our experimental results shows that our algorithms outperforms

existing state-of-the-art algorithm by a factor of 10 to 15.





Resumo

Neste trabalho estudamos a escalabilidade, desempenho de estruturas de dados

fundamentais como queues, para potenciar o seu desempenho e escalabilidade

com vista à próxima geração de sistemas multicore. Propomos dois algoritmos

para uma queue concorrente. O primeiro, uma queue wait-free, permite substi-

tuir com mais eficiência uma queue lock-free. Esta última é considerada muito

eficiente mas não oferece garantias de progresso a todas as threads numa com-

putação concorrente, além de ter mau desempenho sob carga elevada. A nossa

queue wait-free, não só oferece as garantias de progresso referidas como também

obtém alto desempenho e escalabilidade sob carga elevada. O nosso segundo al-

goritmo, uma queue com consistência sequencial, consegue atingir desempenho

ainda superior através da modificação do modelo de consistência. Todos os algo-

rtimos cumprem linearizability, que ordena as operações globalmente. Contudo,

a nossa queue com consistência sequencial ordena as operações de acordo com a

ordem no programa, que apenas é local a cada thread. Os resultados experimen-

tais revelam que os nossos algoritmos ultrapassam o desempenho do estado da

arte por um factor de 10 a 15.
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Introduction

1.1 Background and Motivation

Multicore systems have been in practice since its inception in early 80s. How-

ever, the usage was limited to scientific computing. On the verge of Moore’s law

[26], as it is constantly getting harder to put more transistors in a single processor,

multicore machines are bound to represent the present and future of computing

systems [7]. In last 5-6 years multicore systems have come to main stream and

can be seen in mobile devices, desktop machines, laptops, network gears and en-

terprise servers.

Contrary to the rapid development in multicore hardware architectures, soft-

wares are still not able take full advantage of these massively parallel working

units. Much of the problem lies in the way applications are designed and the

way they utilize basic data structures. Parallel and concurrent programming is

naturally hard. Therefore, programmers tend to pursue conservative approaches

in order to avoid race conditions, while working on shared memory systems on

multicores [9]. In a multithreaded application, threads running on different cores

access the globally shared data structures. Concurrent access to these data struc-

ture becomes a bottleneck if the access rate is very high, which consequently re-

sults in degraded application performance. This problem increases as the number

of threads in an application and number of cores in a machine increases [15].

The ever growing challenge for programmers is to build applications that

could benefit from these massive parallel machines. While the efforts are being

made at hardware level to come up with better multicore architectures, comput-

ing industry should also aim to redefine the way software uses these machines.
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To ease the multithreaded application programming and to achieve better per-

formance, number of efforts have been made one of which is java.utils.concurrent

library. This library provides sophisticated basic concurrent data structure ab-

stractions such as queue, stack, maps and counters and implements few of the

best known concurrent algorithms for these abstractions. These algorithms ben-

efit the applications in two ways. First, they provide thread safe abstractions,

where programmers do not need to worry about the synchronization and race

conditions. Second, they provide lock freedom, which results in better perfor-

mance.

1.2 Shortcomings of current solutions

Although existing algorithms for concurrent data structures have achieved good

results, yet they are far from being ideal in terms of scalability and performance.

Future promises us that multicore machines are here to stay and grow. With the

increasing number of cores, dynamic interaction among threads and inter com-

munication is only going to increase [27]. According to the famous Amdahl’s law,

scalability of a program is limited by the portion of the code that needs to be run

sequentially [13]. If f be the fraction of code that can be run in parallel and n be

the number of cores in a multicore machine, the achievable speedup e of an ap-

plication is only limited to 1

(1−f)+ f
n

. Figure 1.1 depicts the speedup with different

values of n and f.

Linear scalability is the ideal desired outcome for any application running on

multicore machine. However, our experimental results shows us that few of the

sophisticated concurrent data structure algorithms are far from achieving ideal

linear scalability. Infact, they do not even achieve positive scalability. Figure 1.2

presents the scalability of state-of-the-art Michael and Scott’s lock-free queue al-

gorithm which is also implemented in java.util.concurrent library. This algorithm

shows negative scalability under high concurrent access rate. On 32 cores, this

algorithm is only able to perform 200 operation/ms as compared to 6000 oper-

ation/ms on a single core machine where it needs to perform all the operations

2



 1

 2

 4

 8

 16

 32

 1  2  4  8  16  32

M
ax

im
um

 S
pe

ed
up

# of cores

f=0.95
f=0.90
f=0.80
f=0.50
f=1.00

Figure 1.1: Maximum achievable speedup by Amdahl’s Law with different frac-
tion of parallel code

sequentially. Therefore, the problem is not with running the code sequentially,

but with the inherent underlying communication overheads, which these data

structures suffer from on a multicore machines.

1.3 Thesis Objective

Considering the scalability and performance issues with existing algorithms, we

foresee a fundamental shift in data structure’s design for next generation multi-

cores. Therefore, we are interested in designing and implementing efficient algo-

rithms that are more scalable and perform better under stressed conditions. Cur-

rently, all the practiced algorithms provide semantics such as linearizability and

lock-freedom. However, we look into alternate directions. We explore wait-free

algorithms which can perform better than lock-free algorithms. Wait-free algo-

rithms have gained the attention only recently, and they are not widely covered

in the literature [16].

Unlike lock-free algorithms, which provide progress guarantee for one worker,

wait-free algorithms provide a progress guarantee for all the workers. We empha-
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size that, with cloud computing being the future, where compute is governed by

service level agreements (SLAs) and the quality of service (QoS), wait-free algo-

rithms will replace lock-free algorithms. Therefore, we work on the design of

efficient wait-free algorithms.

We also explore the trade-off between the correctness and performance. High

performance can be obtained at the expense of correctness. Therefore, we con-

sider the relaxation of consistency model from linearizability to sequential con-

sistency and apply it to basic data structures. We apply our techniques to con-

current queue and introduce two new efficient algorithms for a wait-free con-

current queue and a sequentially consistent concurrent queue. However, same

techniques can also be applied to other concurrent data structures such as stacks,

linked lists and skip lists.

Our primary aim is to target situations, where applications heavily access the

concurrent objects and cause high contention. For other cases, existing algorithms

provide fair results and is out of the scope of this thesis.
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1.4 Contributions

This thesis summarizes my contributions related to scalability and performance

of concurrent data structures with queue as a design example. Our main contri-

butions are:

• We present an overview of some of the state-of-the-art concurrent data struc-

ture’s design techniques and algorithms.

• We present a wait-free linearizable queue as a replacement to state-of-the-art

Michael and Scott’s lock-free linearizable queue, which is also implemented

in JAVA concurrent library. Our simple algorithm uses an external ded-

icated helper that performs operations on behalf of other worker threads

while being fair everyone.

• We present a sequentially consistent queue. We achieve high performance

by semantically relaxing the consistency model from linearizability to se-

quential consistency. In this algorithm, we try to reduce the synchroniza-

tion among the worker threads by providing local enqueue operations.

1.5 Document Roadmap

The remainder of this document is organized as follows. Chapter 2 covers the

related work in the concurrent data structures on multicores, consistency models

and state-of-the-art queue algorithms. Chapter 3 covers the algorithmic design and

implementation of two algorithms, a wait-free queue and a sequentially consis-

tent queue. Chapter 4 covers the performance and scalability evaluation of both

the algorithms. Finally, chapter 5 concludes the thesis with a brief discussion and

a roadmap for future research.
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Related Work

In this chapter, we analyze the multicore architectures, consistency models and

various algorithms and techniques for concurrent data structures in multicore

machines. In 1st section, we analyze different types of multicore architectures

and their associated problems with regard to the concurrent data structures. In

2nd section, we audit different types of consistency models in the literature. In

3rd section, we examine the synchronization techniques and progress guarantees

used for concurrent data structure. Finally, in 4th section, we study the various

algorithms for concurrent queues.

2.1 Multicore or Multiprocessing systems

With the growth of multiprocessing machines 1, parallel and concurrent program-

ming has become the part of main stream. In this section, we will consider two

classes of multicore architecture. First and most common is Symmetric Multipro-

cessing (SMP) architecture. In this architecture two or more identical processing

units are connected to a shared main memory. These types of machines can be

found in mobile phones, laptops, desktops and servers. The second type of archi-

tecture is Non-Uniform Memory Access (NUMA) architecture. In NUMA architec-

ture, many SMP machines are connected using a network. This provides scaling

over SMP machines. In following subsections we will briefly analyze both the

architectures are some of their known issues.

1There is a minor difference between the multiprocessor and multicore machines. However,
in this document we use both the terms exchangeably to describe a machine that has two or more
processing units. These processing units can be either be a processor or a core.
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2.1.1 Symmetric Multiprocessing Machines (SMP)

SMP machines were first introduced by IBM in 1960s [2]. This main idea behind

symmetric multiprocessing is to allow hardware level parallelism for the soft-

wares running on these machines. In this architecture, all the processing units

have global view of system’s resources such as memory, I/O and the network.

A single instance of operating systems governs the execution of application run-

ning on these machines. Figure 2.1 depicts the architecture of a SMP machine.

Main Memory 

Cache Cache Cache 

Processor 
1 

Processor 
2 

Processor 
n 

I/0 

Bus Arbiter 

System Bus 

Figure 2.1: Symmetric Multiprocessing (SMP) architecture

Shared interconnect between the processors in SMP machines provides a ho-

mogeneous access to the resources. However, this design does not work well as

the number of processors increases. The shared bus connecting the processors to

memory becomes a bottleneck due to the limited bandwidth [31]. For example, a

4 processor SMP machines is only 2.7 times faster than a uniprocessor machine.

This bottleneck at the hardware level does not allow applications to fully utilize

the computational power of these machines.
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2.1.2 Non-Uniform Memory Access (NUMA) machines

Non-Uniform Memory Access provides a scalable solution to limited bandwidth

problem in SMP machines. A NUMA machine is a set of smaller SMP machines

connected through a DSM network. There exists commercial NUMA machines

which has more than 1000 cores. Figure 2.2 presents a general architecture of a

NUMA machine. In a NUMA machine, the memory access time depends on its

location with respect the to position of processing unit. Each SMP machine (also

called node) within a NUMA, has its own local main memory. This memory is

shared between all the cores within the node. Whenever, a core in a node need to

access memory from some other node, it needs to send the request to the remote

node using the long path through the network.

Main Memory 

P 

DSM Network with Directory 

System Bus 

P P 

Main Memory 

P 

System Bus 

P P 

Main Memory 

P P P 

System Bus 

Main Memory 

P P P 

System Bus 

Figure 2.2: Non uniform memory access (NUMA) architecture

Although this architecture allows fast access to local memory, it becomes prob-

lematic for a multithreaded program running across the nodes which accesses a

9



globally shared data structure. The problem becomes worse in case of cache co-

herent NUMA machine where cache has to be kept consistent cross the nodes.

If the threads running across the nodes, access the shared data structure too fre-

quently, in becomes impossible for data to remain locally available. Therefore, it

causes the remote memory access in almost every operation on the shared data

structure. This creates a ping-pong type behavior which saturates the network.

This increased contention results in severally reduced performance of an applica-

tion [3].

The other issue with NUMA machines is the unfair access patterns. For exam-

ple, if a two threads running on node 1 and node 2 respectively simultaneously

access a memory location which belongs to node 1, there are high chances that

the thread running on node 1 will win. This happens because the time taken for

a request arriving from a remote node is longer than the time taken by a request

arriving from local node.

2.2 Consistency Model

In a shared memory system, consistency model, provides a set rules for memory

consistency. It these rules are followed by the programmers, system will provide

a predictable outcome of memory operations. In this section we cover two types

of consistency models, linearizability and sequential consistency.

2.2.1 Linearizability

Linearizability was first introduced by Herlihy and Wing in 1990 as a consistency

model [12]. This model became widely popular in multiprocessor programming,

where the globally shared data structures are accessed concurrently by processes

running on different cores. Most of the implementations of basic concurrent data

structures such as queue, stack, hash map, linked-list and trees provide lineariz-

ability as the correctness reasoning which provide execution equivalent to a se-

quential execution.

10



According to this consistency model, for an observer each operation applied

by processes sharing a concurrent data structure (object), happens to take ef-

fect instantaneously at some point between the operation’s invocation and the

response. Therefore, all the operations can be given a pre-condition and a post-

condition. Pre-condition defines the state of a concurrent object before the oper-

ation invocation event, whereas, post-condition defines the state of a concurrent

object after the operation response event. Linearizability is considered one of the

strongest level of consistency guarantee. It provides a global ordering of opera-

tions on a linear time scale.

Linearizability is commonly achieved with the help of mutual exclusions,

semaphores, locks and primitives such as CAS (compare-and-swap). It gives an

illusion that an instruction or a set of instructions came in effect instantaneously.

This can be further understood with a formal example. Queue events presented

in figure 2.3.a is linearizable because the enqueue and dequeue operations take

effect on global time scale. Element x is enqueued first and therefore, it is de-

queued first. However, events in Figure 2.3.b and 2.3.c violate the linearizability

property.

2.2.2 Sequential Consistency

Sequential consistency is a weaker consistency model as compared to lineariz-

ability. Unlike linearizability, which considers global time as the basis of order-

ing, sequential consistency considers program order as the basis of ordering. This

model was introduced by Lamport as a consistency model for multiprocessor sys-

tems [18]. According to this model, for an observer, all the operations applied on

a shared concurrent object, happens to come in effect according to program order.

Program order is defined by the order in which a process (thread in case of

multithreaded program) applies the operations to a concurrent shared object. The

preservation of program order in sequential consistency restricts an observer to

view an inconsistent ordering of the operations issued by the same process. How-

ever, it does not restrict a global order to come in effect in which operations be-

tween the processes are reordered.

11



 

 
                            q.enq(x)                                             x     q.deq() 
    
                                t1                                                               t3  
  
 
                                                       q.enq(y)                                                  y    q.deq() 
  
                                                                  t2                                                          t4 
 
a).    Process 1 enqueues an element x at time t1. Process 2 enqueues element y at time t2.  
         Process 1 dequeues element x at time t3. Process t2 dequeues the element y at  time t4.   
 
 
 
                       q.enq(x)                                                  y     q.deq() 
         
                            t1                                                                     t3 
 
  
                                                         q.enq(y)                                                  x    q.deq() 
 
                                                             t2                                                                  t4      
 
b).    Process 1 enqueues an element x at time t1. Process 2 enqueues element y at time t2.  
         Process 1 dequeues element y at time t3. Process 2 dequeues the element x at  time t4.   
 
 
 
 
                      q.enq(x)                               q.enq(y)                    
         
                            t1                                            t2 
 
 
                                                                                                                          y     q.deq() 
 
                     t3 
      
c).     Process 1 enqueues an element x at time t1. Process 1 enqueues element y at time t2.  
         Process 2 dequeues element y at time t3.   
 
 

Figure 2.3: A sequence of events (operations) on a queue by two different pro-
cesses
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This relaxed notion gives the system a freedom to interleave the operations

coming from different processes in any order as long as the program order is pre-

served. Therefore, sequential consistency is preferred in scenarios where global

time ordering is not required. Figure 2.3 gives a pictorial representation of the

sequence of events on a queue. Events presented in Figure 2.3.a and 2.3.b are se-

quentially consistent as it follows the program order with respect to FIFO prop-

erty of a queue. However, figure 2.1.c violates the program order as y is dequeued

before x while x was enqueued first.

2.3 Concurrent Data Structures

In this section we will formally understand how the concurrent data structures

are designed on a multicore machine. Concurrent data structures (objects) on

a multicore machines are accessed simultaneously by different processes, and

therefore requires careful consideration. Generally, the correctness and progress

of a concurrent data structure is provided by defining two essential properties

namely, safety and liveliness [14].

Safety property ensures that something incorrect such as the lost updates or

the violation of happens-before relationship never occurs. The other property,

liveliness guarantees that something productive continues to happens as the time

elapses. Liveliness property is generally provided by the the implementation

whereas safety property can be provided by the design.

Following subsections describes how the safety and liveliness can be achieved

by employing different techniques such as by using the blocking access, lock-free

access or the wait-free access.
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2.3.1 Lock-based or Blocking

The traditional approach, to provide safe access to a concurrent shared data struc-

ture, is the usage of locks. Lock synchronizes the access to the shared data struc-

ture and provides mutual exclusion. Different synchronization primitives are

used to provide a safe access to these shared data structures. Some of such prim-

itive includes mutex, critical section and semaphore. These primitives are essen-

tial for safety because they restrict the processes from simultaneously access and

modify a shared data structure. In absence of these means, processes that simul-

taneously act on these shared data structure might corrupt the memory of these

data structures.

Despite the common usage in resource protection, many problems are associ-

ated with the locks. These problems are widely known in literature [5, 20, 28, 19].

Following are few such problems.

• Locks cause blocking. That means, at any given time, only one process will

be able to continue the work, while others have to wait until the lock is

released.

• Locks require careful usage and implementation. A poorly used lock can

result in a deadlock causing the complete halt of execution progress.

• If, a process holding the lock gets blocked due to a byzantine fault or gets

scheduled out, the other processes waiting for the lock might have to wait

indefinitely.

• Locks increase the underlying communication overhead. This creates con-

tention and limits the scalability of program.

• A low priority process, holding a common lock with a high priority process,

might halt the progress of high priority process indefinitely. This behavior

is unwanted and works against the notion of priority.
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2.3.2 Lock-free and Non-Blocking

Considering the some of problems associated with locks, lock-free and non-blocking

algorithms were introduced. Lock-freedom ensures that processes accessing the

shared data structure will not have to block indefinitely due to the mutual exclu-

sion. Also, unlike locking, lock-freedom guarantees program level progress at at

any time.

Lock-freedom is generally achieved using the hardware read-modify-write prim-

itives. One of the widely used read-modify-write primitive is compare-and-swap

(CAS). CAS was first introduced in IBM 370 architecture [8]. CAS instruction

takes three parameters, an address of a memory location, an expected value and

a new proposed value. If, the value at the provided memory location is equal to

the expected value, the value at memory location is changed to the new value.

All these steps are combined and executed atomically by the hardware. There-

fore, CAS behaves as a single atomic instruction. Listing 2.1 gives an exemplary

code skeleton of a CAS operation.

Listing 2.1: Code skeleton for compare-and-swap (CAS) operation

1 bool CAS( addr , expected , new) {

2 i f ( valueAt ( addr ) ==expected ) {

3 valueAt ( addr ) =new ;

4 return true ;

5 } e l s e {

6 re turn f a l s e ;

7 }

8 }

Most of the lock-free algorithms use the CAS to provide safety and progress

guarantee. With the help of CAS, lock-free algorithms overcome the problems

associated with the lock, and as a result, provide an efficient alternative to lock-

based or blocking algorithms. Although lock-free algorithms provide overall sys-

tem level progress guarantee, they do not provide process or thread level progress

guarantees. In many execution scenarios, one or more threads in a program can
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be starved despite the overall progress.

2.3.3 Wait-Free

Wait-freedom provides local progress guarantee. That means, all the processes or

threads in a program will be able to make progress irrespective of each other. This

eliminates the possibility of starvation for any process or thread. It is a stricter

progress guarantee compared to lock-freedom, which only guarantees the global

progress. Wait-freedom is desired by live systems, which requires progress for

all the processes. Different processes are generally associated to different clients

which requires a minimum quality of service for each of them. Generally, wait-

freedom ensures that any operation by a process or a thread will be completed in

a bounded number of steps.

Despite the stronger and desired guarantees provided wait-free algorithms,

it is extremely hard to design and implement an efficient wait-free algorithm.

Lock-free algorithm uses primitives such as CAS for better performance. How-

ever, Herlihy proved that it is impossible to design a wait-free algorithm by only

using the low level synchronization primitives such as CAS [11]. Therefore, many

of the wait-free algorithms relies on complex out of the box techniques to provide

wait-freedom. This results in a complex wait-free algorithm, which does not pro-

vide better performance when compared to the lock-free algorithms [23].

2.4 Concurrent Queues

In this section, we critically analyze various concurrent first-in first-out (FIFO)

queue algorithms. First, we analyze the blocking queue algorithms which use

locks for mutual exclusion, followed by the lock-free queue algorithms, which

uses low level atomic primitive such as CAS. Finally, we analyze the wait-free

queue algorithms.
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A concurrent queue supports two fundamental operations, enqueue and de-

queue. Enqueue operation appends the element to end (tail) of the queue, whereas

a dequeue operation remove the element from the start (head) of the queue. Head

holds the element which is present in the queue for the longest time, whereas, tail

holds the element which is in queue for the shortest time.

2.4.1 Blocking queues

Just like other blocking algorithms, blocking queue synchronizes the access to the

queue. Queue has two access points, head and tail. In a conservative approach,

a single lock can be used for the queue which synchronizes the enqueue and

dequeue operations. This gives a safe implementation of a concurrent queue.

However, Amdahl’s law suggest that concurrent data structures whose opera-

tions hold exclusive lock fails to scale [10].

Since, a queue has two access points, it is advantageous to hold separate locks

for enqueue and dequeue operations. First such practical blocking algorithm for

concurrent queue was presented by Michael and Scott [22]. The algorithmic steps

for enqueue and dequeue operations are given in the listing 2.2. In both the oper-

ations, enqueue and dequeue, respective locks are acquired before modifying the

head and tail references. This gives a thread safe implementation of the queue

which is correct as per the sequential specification.

Listing 2.2: Algorithm for Michael Scott’s blocking queue

1 enqueue ( e ) {

2 // c r e a t e a new node

3 node = new_node ( e , n u l l ) ;

4 //lock the t a i l

5 t a i l _ l o c k ( ) ;

6 //append new node the the t a i l

7 t a i l . next = node ;

8 //update the t a i l r e f e r e n c e to new node

9 t a i l = node ;
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10 // unlock the t a i l

11 t a i l _ u n l o c k ( ) ;

12 }

13

14

15 E dequeue ( ) {

16 //lock the head

17 head_lock ( ) ;

18 // get the top node

19 node = head . next ;

20 // queue i s empty

21 i f ( node == n u l l ) {

22 // unlock head

23 head_unlock ( ) ;

24 re turn n u l l ;

25 }

26 // change the head pointer

27 head = node ;

28 // unlock the head

29 head_unlock ( ) ;

30 //return element

31 return node . e ;

32 }

2.4.2 lock-free or non-blocking queues

Lock-free algorithms presents an efficient alternative to blocking algorithms. Not

only the lock-free algorithms provide better performance, they also provide a

global progress guarantees. Most of the practical lock-free algorithms are based

on compare-and-swap (CAS) primitive.

One of the most efficient lock-free concurrent queue algorithm was presented

by Michael and Scott [22]. In literature, it is considered as state-of-the-art lock-free

algorithm [10, 30, 17]. Following is the brief description of the basic queue struc-

18



ture and the functioning of enqueue and dequeue operations as presented in this

algorithm.

• Basic Structure: This algorithm implements an unbounded thread-safe queue

based on linked nodes. The head of the queue is the element which has been

in the queue for the longest time whereas, tail of the queue holds the ele-

ment which is in the queue for the shortest time. Queue globally maintains

the reference to head and tail of the queue and updates them as and when

elements are enqueued or dequeued.

• Enqueue operation: The algorithmic step in enqueue operation is presented

in listing 2.3. It has two atomic steps. First, to append the element to the

tail of the queue (line 16). Second, to update the tail reference to the new

appended element (line 18). Both of these steps are done atomically using

the CAS. The algorithm loops indefinitely until it manages to apply first

step (first CAS, line 16). Meanwhile, if it fails to append the element, it tries

to fix the tail reference which is modified by some other thread (line 24).

• Dequeue operation: Dequeue operation also works similar to enqueue op-

eration. It loops indefinitely until it manages to remove the first (top) ele-

ment from the queue and update the head pointer. If the queue is empty it

returns the null element (line 15-18). In other case, it tries to atomically get

the element and update the head reference to the next element in the queue

(line 23-31). The algorithmic steps are presented in listing 2.4.

There are other variants of lock-free queue algorithms, which have been pro-

posed to solve different problems. One such variants uses doubly linked list and

single CAS for dequeue operation as compared to two CAS which are used in this

algorithm. However, this new variants still uses 2 CAS for the enqueue operation.

Therefore, it is only optimized for dequeue operations [17]. Another variant uses

elimination and random back-off techniques for the better performance [24].
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Listing 2.3: Algorithm for enqueue operation (Michael and Scott)

1 bool enqueue ( E e ) {

2 // c r e a t e a new node

3 n = new_node ( e , n u l l ) ;

4 // keep t r y i n g u n t i l enqueue i s done

5 while ( t rue ) {

6 //read t a i l r e f e r e n c e

7 t = t a i l ;

8 // read t a i l next

9 next = t . next ;

10 // i s t a i l c o n s i s t e n t

11 i f ( t == t a i l ) {

12 // i s t a i l point ing to l a s t node

13 i f ( next == n u l l ) {

14 // t r y to l i n k the node at the end

15 // of l inked l i s t

16 i f (CAS( t . next , next , n ) ) {

17 // update t a i l r e f e r e n c e

18 CAS( t a i l , t , n ) ;

19 // enqueue i s done

20 return true ;

21 }

22 } e l s e {

23 // c o r r e c t t a i l r e f e r e n c e

24 CAS( t a i l , t , next ) ;

25 }

26 }

27 }

28 }

20



Listing 2.4: Algorithm for dequeue operation (Michael and Scott)

1 E dequeue ( ) {

2 // keep t r y i n g u n t i l dequeue i s done

3 while ( t rue ) {

4 // read head

5 h = head ;

6 // read t a i l

7 t = t a i l ;

8 // read f i r s t element

9 f i r s t = h . next ;

10 // i s head c o n s i s t e n t

11 i f ( h == head ) {

12 // i s queue empty or t a i l legging behind

13 i f ( h == t ) {

14 // i s queue empty

15 i f ( f i r s t == n u l l ) {

16 // dequeue not p o s s i b l e

17 return n u l l ;

18 } e l s e {

19 // advance t a i l

20 CAS( t a i l , t , f i r s t ) ;

21 }

22 // t r y moving head pointer to f i r s t

23 } e l s e i f (CAS( head , h , f i r s t ) ) {

24 // read the element

25 E item = f i r s t . getItem ( ) ;

26 i f ( item != n u l l ) {

27 // f r e e f i r s t element

28 f i r s t . se t I tem ( n u l l ) ;

29 // dequeue done return element

30 return item ;

31 }

32 }

33 }

34 }
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35 }

2.4.2.1 Critical Analysis

A lock-free algorithm based on CAS works very efficiently as compared to lock

based algorithms. It does not require any conservative locking while accessing

the globally shared data structure, the queue. Also, it provides a global progress

guarantee. However, the efficient functioning of queue depends a lot on the con-

tention level and the multicore topology. Although it provides global progress

guarantee, there can be cases where one of the threads will have to wait unfairly

long to complete its operations as compared to other threads. This leads to star-

vation. One such case arises due to data locality.

Let’s consider a case where a previous enqueue operation was successfully ap-

plied by a thread running on core 1 in a multicore systems. Now, another thread

running on core 2 wants to perform an enqueue operation. If, at the same time,

thread running on core 1 issues another enqueue operation, intuitively there are

high chances that thread running on core 1 will be able successfully perform the

enqueue operation using the CAS, whereas, the other thread will fail on CAS.

This happens mainly in a contended systems where the required data has be

brought in from the cache line of some other core. The time taken for the thread

running on core 1 to access the tail node of the queue, which is locally available

to it, will be far less in comparison of the thread running on core 2, for whom

it has to be brought in from remote memory (cache-miss). This local-access vs

remote-access problem is very much prevalent in NUMA multicore machines [3].

2.4.3 Wait-free Queues

Although, Lock-free concurrent queue algorithms provide global progress guar-

antee, they do not provide process (thread) level progress guarantee. To over-

come this problem, wait-free queue algorithms were proposed. However, as we

described in section 2.3.3, constructing a wait-free algorithm is not easy and they
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generally do not perform well as compared to lock-free queues.

One of the first wait-free algorithm was proposed by Lamport [1]. He pre-

sented a single producer (enqueuer) and single consumer (dequeuer) wait-free

circular buffer. Subsequently, this circular buffer can also be used to implement

a single producer and single consumer queue. Although, this implementation is

wait-free, it limits the concurrency to only one consumer and one producer. Also,

since the circular buffer is based on a static array, it limits the number of elements

a queue can hold.

David proposed another wait-free algorithm that supports multiple concur-

rent dequeuers but only one enqueuer. This queue is based on an array which

is infinitely large [4]. This requirement makes the algorithm impractical. There

have been other proposals but none of them presented a multiple enqueuer and

multiple dequeuer queue algorithm.

This first practical multiple enqueuer and multiple dequeuer concurrent queue

algorithm is presented by Kogan and Petrank [16]. In this algorithm, faster threads

try to help other slower threads in applying their operations. Each operation,

enqueue or dequeue starts by choosing a phase number. This phase number is

higher than all the phase numbers chosen previously by other threads. The thread

performing the operation, records its operation information at a designated posi-

tion in a state array.

The size of state array is proportional to the number of threads (each thread

has a thread id ranging from 0 to n-1, where n is the maximum number threads

which is predetermined). After storing its operation information in state array,

thread traverses through the state array. It looks for the pending operation whose

phase value is equal or lesser than its own phase value. If found, it completes

those operations on behalf of the other threads. These pending operations in-

clude its own operation as well. After finishing the help, the thread can be sure

that either its operation is applied by the thread itself or by some other thread.

Same procedure applies for dequeue operation.
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This algorithm has a very complex implementation. Though, it provides the

wait-freedom, results shows that it does not perform better than the Michael

Scott’s lock-free algorithm.

2.4.4 Semantically Relaxed Queues

Despite of all the efforts, previously mentioned algorithms performs badly un-

der high concurrency. This is due to the synchronization bottleneck. Though

lock-free algorithms claim to be lock-free, still the CAS primitive in itself is a fine

grained lock provided by the hardware.

An altogether different approach can be to allow the relaxation of the sequen-

tial specification of a concurrent FIFO queue [15]. The issue with the sequential

specification of a concurrent FIFO queue is that it leaves very little space for op-

timization [22]. A queue has only two access points, head and tail. Therefore, if

the number of threads accessing the queue is high, it is natural to have a poor

performance and scalability.

One interesting solution in this direction is presented by Krisch et al [25]. They

systematically change the sequential specification of concurrent data structures

for better performance. They introduce k-FIFO queue, which is a relaxed version

of strict FIFO queue. A FIFO queue dequeues the element which is in the queue

for the longest time. In comparison of that, k-FIFO queue allows dequeue of any

element from a queue, which is in the range from oldest to kth-oldest. The imple-

mentation of this k-FIFO queue is linearizable according to the relaxed sequential

specification.
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2.5 Summary

This section summaries the the related work and the relevant study. We have

studied that:

• At hardware level, SMP machines provide homogeneous access to all the

resources such as memory and I/O. However, SMP machines fails to scale

beyond few cores because of the saturation in bus that connects the cores.

NUMA machines provide a scalable solution, but non uniform memory ac-

cess provide different read-write latency for threads running on different

machines. This affects thread specific performance for multithreaded appli-

cations which run across the nodes in a NUMA machine.

• There are different consistency models. Linearizability provides execution,

which is consistent with the sequential execution of a program. It orders the

event based on a global time. Whereas, sequential consistency is a weaker

form of consistency model. Instead of providing global ordering, it provides

program ordering, which is process (or thread) specific.

• At software level, algorithms for concurrent data structures such as a con-

current queue, must provide safety and progress guarantee. Such algo-

rithms that uses coarse grained locks, fail to achieve good performance on

a multicore machine. They also do not guarantee progress. To avoid this

problem, lock-free algorithms substitutes locks with atomic primitive such

as CAS. However, lock-free algorithms only provide a global progress guar-

antee. A thread in a multithreaded application using lock-free algorithm

can be starved for resource. This also depends on the multicore topology.

Wait-free algorithms provide thread level progress guarantee. But, design-

ing a wait-free algorithm is very complex and they do not perform as good

as lock-free algorithms. Under high concurrent accesses to a shared data

structure, both lock-free and wait-free algorithms performs badly and do

not scale.
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Table 2.1 summaries the different properties, performance and scalability of

concurrent queue algorithms.

Table 2.1: A comparison of Queues

 
  Queue  

Type 

 
 Global  

  Progress 

 
 Local  

 Progress 

 
 High    
Stress 

      
    Medium  

Stress 

     
    Low Stress 

 
Scalability  

Blocking  
Queue 

 
No 

 

 
No 

 
    Very Bad 

   
        Low 

 
   Medium 

 
       Negative  

Lock-Free 
Queue 

 
Yes 

 
No 

 
   Very Bad 
  

 
       Good 

 
      Good  

 
      Negative  

Wait-Free 
Queue 

 
Yes  

 
Yes 

 
   Very Bad 

 
       Good 

    
       Good 

 
      Negative  

 Progress     
Guarantees  

      
Performance under stress   
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Scalable and Performance-Critical Queues

Queues are fundamental and ubiquitous in producer and consumer type com-

puting scenarios. The very two fundamental operations a FIFO concurrent queue

supports are enqueue and dequeue. An enqueue operation appends an element to

the bottom of the queue. Similarly, dequeue operation removes the element from

head of the queue. To avoid races and faults, access to a concurrent queue should

be atomic. When multiple workers (threads) aggressively access the shared data

structure such as a queue, performance deteriorates drastically. Not only the per-

formance deteriorates but some of the workers may get easier access to the shared

data structure as compared to others. This depends on which core the worker is

running and what is the multicore architecture and topology. With the increase

in number of workers, this problem gets worse.

In this chapter, we try to solve these problems at software level by designing

and implementing two algorithms for concurrent queues which are optimized to

work under heavy stress levels. The first algorithm, a wait-free linearizable Queue,

provides an alternative to lock-free algorithms that fail to provide starvation free

execution guarantee. The second algorithm, a sequentially consistent Queue, relies

on relaxing the semantics of queue from linearizability to sequential consistency.

Latter algorithm exploits the trade-off between the performance and correctness.

3.1 Wait-Free Linearizable Queue

3.1.1 Background

Lock-free algorithms for queues are well known and various such algorithms have

been proposed in recent past. One such most popular algorithm is Michael and
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Scott’s non blocking lock-free queue, which is considered state-of-the-art. In the

era of cloud computing where compute is governed by service level agreements

(SLAs), it is more important than ever to provide a guarantee that a worker will

complete its operations in a bounded number of steps. As mentioned previously,

lock freedom only guarantees that at given point of time one of the workers will

be able to make process. This may not be acceptable in many scenarios where all

the workers or clients require progress guarantee. Wait-free algorithms provide

such progress guarantees.

Having studied existing wait-free algorithms in literature, we have come to a

conclusion that designing a simple and efficient wait-free algorithm is not easy.

As covered in detail in related work sections, one of the most practical wait-free

algorithm resort to use mutual helping during process execution. If few of the

workers are not able to complete their operations, one of the workers which is

fast enough, and is able to get hold of the object, helps other waiting workers in

completing their operations. However, most of the wait-free algorithms are very

complex in nature and do not perform better overall in throughput as compared

to lock-free algorithms. Therefore, while designing this queue, our prime focus is

to come up with a wait-free algorithm which is practical, simple and yet provides

very efficient access to a concurrent queue.

3.1.2 Insight

Our queue is based on an underlying singly linked list which holds references to

head and tail of the queue. Our idea extends the notion of mutual help in previous

wait-free algorithms to an external help provided by a dedicated worker, whose

job is to help other threads to complete their operations in a fair manner. Follow-

ing are the two additions to our wait-free queue algorithm.

• External Helper: Queue maintains an external helper for queue operations.

The workers (enqueuers and dequeuers) do not directly interact with the

underlying queue structure which is a linked list. Instead, they submit their

requests to Helper which, in turn, completes their requests by enqueuing or
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dequeuing the elements to/from the queue.

• State Array: Queue internally maintains a state array that acts as a place-

holder for incoming requests for enqueues and dequeues. The size of state

array is equal to the number of workers in the program. Each position in the

state array is dedicate to a worker. Whenever a worker needs to do an opera-

tion on the queue, it places the request at its designated position in the array.

3.1.3 Algorithm

The basic logic behind the algorithm is simple. Each worker puts its request for

enqueue or dequeue in the state array and waits for its operation to be applied to

the queue. Helper worker traverse through the state array, looking for new incom-

ing requests. If a new request is found, it processes it on behalf of the requester.

Workers wait until their operations are successfully picked up and applied by the

Helper.

Queue also maintains an internal linked list of nodes where each node contains

an element e and a pointer to the next node in the list. Queue keeps head and tail

references for the linked list and updates them as the queue shrinks or grows. First

node in the linked list is a sentinel (dummy) node. It also keeps a counter of total

elements in the queue. Listing 3.1 presents the global fields and queue initializa-

tion.

When an application creates an instance of queue, it can specify the number

of workers. Accordingly, the state array is initialized. Requests are put using the

Request structure. It contains the type of operation, value place holder for queue

element and a flag specifying if the operation is completed. Figure 3.1 depicts an

enqueue operation visually.
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Listing 3.1: Global fields and queue initialization (Wait-Free Queue)

1 //globa l f i e l d s

2 Node head ;

3 Node t a i l ;

4 i n t workers ;

5 Request [ ] s t a t e A r r ; // s t a t e array

6 i n t s i z e ;

7

8 // i n i t i a l i z a t i o n

9 i n i t i a l i z e Q u e u e ( i n t n ) {

10 head = getNewNode ( n u l l ) ;

11 t a i l = head ;

12 workers = n ;

13 s t a t e A r r = Request [ n ] ;

14 s i z e = 0 ;

15 // s t a r t the Helper

16 s t a r t H e l p e r ( ) ;

17 }

18 }

Following is a brief description of how the enqueue and dequeue operations

are performed. Peek is another operation which a queue provides. Peek opera-

tion returns the element from the top of the queue without removing it.

• Enqueue: Algorithm for enqueue operation is given in Listing 3.2. Worker

creates a Request with the element e and operation type as ENQUEUE. It

then places this request in its designated position in the state array and waits

for the operation to be picked up by the Helper. It continuously checks the

status of the Request by checking isCompleted flag. If it is set true that means

the operation has been completed by the Helper. Following that, it clears

the request from State Array and method returns as success. This operation

never fails, assuming that the Helper will always complete the operation.
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Bracket on left side shows the worker’s flow, state array is in middle and on right side the
queue structure is presented. Step 1: worker starts enqueue operation. Step 2: a request

is put in the state array. Step 3:Helper applies previous request by worker 0. Step 4:
Helper picks the request for worker 4. Step 5: Element is enqueued in queue and

isCompleted flag is set to true. Step 6: Request is cleared from state array. Meanwhile a
new request arrives from worker 7.

Figure 3.1: A visual example of the algorithmic steps in an enqueue operation for
worker with id 4.
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Listing 3.2: Algorithm for enqueue operation (Wait-Free Queue)

1 bool enqueue ( e ) {

2 // get the thread id of the worker

3 id = getThreadId ( ) ;

4 // c r e a t e a new request with element e

5 req = createRequest ( e ,ENQUEUE) ;

6 // post t h i s request in s t a t e array

7 s t a t e A r r [ id ] = req ;

8 // wait u n t i l the operat ion i s completed

9 while ( ! req . isCompleted ) ;

10 // c l e a r the request from s t a t e array

11 s t a t e A r r [ id ] = n u l l ;

12 // operat ion i s completed , re turn

13 return true ;

14 }

• Dequeue: Just like the enqueue operation, dequeue also creates a Request

with empty element field and operation type as DEQUEUE. It places this

request in its position in state array. The Helper threads picks this request

and processes it. Once completed, the element field in Request structure

contains the top element from the queue and isCompleted flag is marked as

true. When the operation completes, the request is cleared from state array

and the element is returned. Listing 3.3 presents the algorithm.

• Peek: Peek operation works exactly similar to dequeue operation. How-

ever, it does not remove the top element from the queue. It reads and return

the element, which is in the queue for the longest time. The algorithm for

peek operation is presented the Listing 3.4.
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Listing 3.3: Algorithm for dequeue operation (Wait-Free Queue)

1 E dequeue ( ) {

2 // get the thread id of the worker

3 id = getThreadId ( ) ;

4 // c r e a t e request with empty value f i e l d

5 req = createRequest ( null ,DEQUEUE) ;

6 // put the request in s t a t e array

7 s t a t e A r r [ id ] = req ;

8 // wait u n t i l the operat ion completes

9 while ( ! req . isCompleted ) ;

10 // c l e a r the request from s t a t e array

11 s t a t e A r r [ id ] = n u l l ;

12 //return the top value which has top element

13 return req . e ;

14 }

Listing 3.4: Algorithm for peek operation (Wait-Free Queue)

1 E peek ( ) {

2 // get the thread id of the worker

3 id = getThreadId ( ) ;

4 // c r e a t e request with empty value f i e l d

5 req = createRequest ( null , PEEK) ;

6 // put the request in s t a t e array

7 s t a t e A r r [ id ] = req ;

8 // wait u n t i l the operat ion completes

9 while ( ! req . isCompleted ) ;

10 // c l e a r the request from s t a t e array

11 s t a t e A r r [ id ] = n u l l ;

12 //return the top element

13 return req . e ;

14 }

The algorithm for Helper is given by Listing 3.5. It traverse through the state

array in a round robin fashion in a tight loop. If it sees a Request from a worker

it fulfills it before moving to next index in state array. It first reads the operation

field in Request. If it is an enqueue operation, it creates a new node with the ele-
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ment in request field. It then appends the node to the tail and updates the tail of

the linked list. In the end it marks the operation as completed (line 11-22).

If it is a dequeue operation, it checks if the linked list is empty. If it is empty,

it returns null and marks the operation as completed. If the list is not empty, it

removes the top element and updates the references to head and tail (if required)

respectively. It changes the element field in Request from null to the removed ele-

ment and marks the flag isCompleted as success (line 25-52). Similarly, if it is peek

operation, it updates the element field in Request with the top element without

removing it and marks the operation as completed (line 54-70).

Listing 3.5: Algorithm of Helper (Wait-Free Queue)

1 void helper ( ) {

2 //index of s t a t e array

3 id = 0 ;

4 // i n f i n i t e loop

5 while ( t rue ) {

6 // read the request from s t a t e array

7 req = s t a t e A r r [ id ] ;

8 // i f there i s a request

9 i f ( req != n u l l && ! req . isCompleted ) {

10 // Enqueue or Offer

11 i f ( req . operat ion == ENQUEUE) {

12 // c r e a t e new node with value e

13 n = new_node ( req . e ) ;

14 // append the node to the t a i l

15 t a i l . next =n ;

16 // update the t a i l r e f e r e n c e

17 t a i l = n ;

18 // i n c r e a s e the s i z e of queue

19 s i z e ++;

20 // mark the request as completed

21 req . isCompleted = true ;

22 } // enqueue completes
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23

24 // Dequeue or P o l l

25 i f ( req . operat ion == DEQUEUE) {

26 // check i f the queue i s empty

27 i f ( head . next == n u l l ) {

28 // queue i s empty , update request

29 req . e = n u l l ;

30 // mark operat ion as completed

31 req . isCompleted = true ;

32 }

33 // queue has elements

34 e l s e {

35 // get the top element

36 n = head . next ;

37 // unlink top element from queue

38 head . next = n . next ;

39 // queue w i l l be empty a f t e r removal

40 i f ( n . next==n u l l ) {

41 //update the t a i l

42 t a i l = head ;

43 }

44 // update the request with element

45 req . e = n . e ;

46 // decrease the s i z e of queue

47 s ize −−;

48 // mark the request as completed

49 req . isCompleted = true ;

50 }

51 } // dequeue completes

52

53 // Peek but not remove

54 i f ( req . operat ion == PEEK) {

55 // check i f queue i s empty

56 i f ( head . next == n u l l ) {

57 // queue i s empty
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58 req . e = n u l l ;

59 // mark operat ion as completed

60 req . isCompleted = true ;

61 }

62 // queue i s not empty

63 e l s e {

64 // read the top element

65 req . e = head . next . e ;

66 // mark operat ion as completed

67 req . isCompleted = true ;

68 }

69 } // peek completes

70 }

71 id = incrementId ( ) ; //increment index id++%worker

72 }

73 }

3.1.4 Discussion on Correctness

We claim that our algorithm implements a concurrent wait-free queue, which is

linearizable, wait-free and safe. In this section we will cover a brief discussion

on wait-freedom, linearizability and thread safety for our algorithm. Table 3.1

presents general safety properties which our algorithm holds. First, we start

by discussing the computation model assumed in our design. Subsequently, we

prove the wait-free and linearlizability property of our algorithm.

Property Holds at
Linked list is always connected. Listing 3.5, line 15 and 38
Node is only inserted at tail. Listing 3.5, line 15
Node is only removed at head. Listing 3.5, line 36 and 38
Tail always points to last node. Listing 3.5, line 17
Head always points to sentinel node. Listing 3.5, line 36

Table 3.1: General Safety Properties

36



• Computation Model: Our model of multithreaded concurrent system fol-

lows linearizability and assumes a shared memory system. Program is exe-

cuted by n deterministic threads which are predetermined. One important

assumption we make is that, the Helper runs on a dedicated core and never

gets scheduled out. This assumption is made to receive maximum compu-

tational power for the Helper. However, the other threads can schedule out

at any time. Thread scheduling is performed solely by operating system’s

scheduler. We also assume that each thread has a unique thread ID whose

value is between 0 to n-1 where n is total number of threads. The id of

Helper is n. A thread can perform series of operations (eneuque or dequeue)

in program order and the thread waits until its operation is completed.

• Linearizability: An operation is linearizable, if it happens to be applied

atomically at some point between the invocation and the response of the

operation. For a queue to be linearizable, the enqueue operation where a

worker enqueues an element e, has to be placed in the queue before the call

returns to the worker. In our case, a worker places its request in the state

array, and the call for enqueue only returns, when the element is placed on

the tail of the queue. Similarly, the call for dequeue operation finishes, when

the element has been successfully removed and return from the head of the

queue. Linearization point for enqueue and dequeue are at line 15 and 36

(Listing 3.5) respectively.

• Wait-Freedom: Wait-freedom comes from the fact that an operation com-

pletes in a bounded number of steps. If we consider the number of workers

predetermined and known, we can instantiate the size of state array to a

size proportional to the number of workers. In our case, any enqueue or

dequeue operation will complete in maximum n steps, given there are n

workers. This is so, because Helper iterates over the state array. Let’s con-

sider the worst case, where a worker Ti places a request in state array when

the pointer of Helper is at location i+1. Now, the helper needs to complete

the whole round by jumping n places before it comes back to location i.

Therefore, the upper bound for enqueue and dequeue operation is n, which

is fixed.
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• Thread-Safety: We claim that our queue implementation is thread-safe,

which means multiple threads can access the queue without the need of

external synchronization. The thread-safe program execution in a multi-

threaded environment is essential for any concurrent data structure. Since,

at any given point of time, only one request is served by the Helper, there

is no possibility of race conditions among threads. This abstraction helps

programmers to not worry about the race conditions and synchronization

issues which are covered in the internal implementation of queue. This

makes programming easy and yet fault-proof.
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3.2 Sequentially Consistent Queue

3.2.1 Background

It is practically impossible to provide a very fast FIFO Queue implementation that

works on large multicore systems under stressed conditions. However, perfor-

mance can be achieved by weakening the consistency. In our design, we explore

the possibility of changing the consistency guarantees from linearizability to se-

quential consistency. There are cases such as graph exploration where strict or-

dering guarantees are not required, however, applications are very performance

critical. In absence of any weaker practical implementations of queue, program-

mers either resort to use linearizable queue or use some complex algorithmic

techniques for better performance. Some of such techniques includes graph par-

titioning and work stealing.

3.2.2 Algorithm

This algorithm is an optimized enhancement to our previous wait-free algorithm.

The basic structural details of this algorithm remains similar to our previous de-

sign. Additionally, this queue maintains an internal local linked list structure for

each worker. On enqueue, an element is appended to the local linked list. This lo-

cal list is exclusive to the worker. Therefore, there is no possibility of contention

and race among workers. This allows very fast enqueue operation. Queue also

maintains a global linked list structure where workers perform dequeue opera-

tions. However, this global structure is not directly accessed by the workers.

Instead, they submit their request to Helper with the help of state array and wait

until the operation is completed.

The Helper continuously checks for dequeue requests in state array, and if

found it processes them. The Helper also, in the background, periodically merges

the local lists with the global list. The Helper freezes (locks) the local linked list for a

worker when it merges it with global linked list. This is done to avoid updating in-

correct or stale references by enqueue operation. Following, is the discussion on

how enqueue and dequeue operations work for this sequentially consistent queue.
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• Enqueue The algorithm for enqueue operation is presented in the Listing

3.6. The enqueue operation starts by setting the lock for enqueue operation

so that Helper does not start merging its local list with global list at the same

time. Once the lock is acquired, it retrieves the local list, creates a node with

the element and appends to the tail of the local list.

• Dequeue Dequeue operation is performed by putting the dequeue request

in the state array. Steps involved in dequeue operation are shown in List-

ing 3.7. Operation starts by creating a Request for dequeue operation with

empty element. This request is put in its designated position in the state

array. The worker waits until the operation is completed by the Helper. It

continuously checks for isCompleted flag in the Request structure. If com-

pleted, it clears its request from state array and returns the element which is

updated in Request structure.

Listing 3.6: Algorithm for enqueue operation (Sequentially Consistent Queue)

1 bool enqueue ( E e ) {

2 //get thread ( worker ) id

3 id = getThreadId ( ) ;

4 // t r y to f r e e z e the l o c a l l inked l i s t

5 while ( ! lock [ id ] . CAS( f a l s e , t rue ) ) ;

6 // read the t a i l of l o c a l l inked l i s t

7 t a i l = l o c a l T a i l s [ id ] ;

8 // i t should not be n u l l : e r r o r

9 i f ( t a i l == n u l l )

10 re turn f a l s e ;

11 // append new element to t a i l

12 t a i l . next = new_node ( e ) ;

13 // update the t a i l to new element

14 l o c a l T a i l s [ id ] = t a i l . next ;

15 // unfreeze l o c a l l inked l i s t

16 lock [ id ] . s e t ( f a l s e ) ;

17 // operat ion completed

18 return true ;

19 }
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Listing 3.7: Algorithm for dequeue operation (Sequentially Consistent Queue)

1 E dequeue ( ) {

2 // get worker ( thread ) id

3 id = getThreadId ( ) ;

4 // c r e a t e new dequeue request

5 req = createRequest (DEQUEUE) ;

6 // put the request in s t a t e array

7 s t a t e A r r [ id ] = req ;

8 // wait u n t i l helper completes the operat ion

9 while ( ! req . isCompleted ) ;

10 // operat ion completed , c l e a r request

11 s t a t e A r r [ id ] = n u l l ;

12 // return the dequeued element

13 return req . e ;

14 }

One of the important tasks of the Helper is to merge the local linked lists with

the global linked list. How Helper performs this operation is shown in Listing 3.8.

Merge() for each worker is called periodically by the Helper. The period of merge

operation can be configurable. In our case, Helper performs merge, when it visit

the worker’s position in state array looking for dequeue requests. This is done to

avoid a case, where the global linked list is empty, even though there are elements

in local linked list.

To merge, Helper retrieves the local head and local tail reference for a worker. It

then compares the local head and local tail reference to check if there are elements

in the local linked list. If there are elements in the local linked list, it freezes the

list for the worker and joins it with the global linked list. If the local linked list is

already freezed for enqueue, it waits until the list is unfreezed. We should note,

the merge is performed just by updating the references. Tail of global linked list is

joined by the localHead.next (first node after the sentinel node) and global tail is

updated to the local tail.

Once the local linked list is merged with the global linked list, it should not be

directly accessible to worker for enqueue operation. Therefore, local linked list is
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cleared by updating the head and tail for local linked list. All the steps in merge pro-

cess are finite. Once the merge completes, the Helper unfreezes the local linked list

which has no element in it. The workers keep on enqueuing in the local linked list

until the merge happens. Helper also processes the dequeue requests from work-

ers. However, we have not described it here as the procedure is exactly similar to

the one shown in wait-free linearizable queue.

Listing 3.8: Algorithm for merge operation (Sequentially Consistent Queue)

1 void merge ( id ) {

2 // read head of l o c a l l inked l i s t

3 localHead = localHeads [ id ] ;

4 // read t a i l of l o c a l l inked l i s t

5 l o c a l T a i l = l o c a l T a i l s [ id ] ;

6 // to merge , l i s t should not be empty

7 i f ( localHead != l o c a l T a i l ) {

8 // t r y to f r e e z e the l o c a l l inked l i s t

9 while ( ! lock [ id ] . CAS( f a l s e , t rue ) )

10 // update g loba l t a i l with l o c a l head . next

11 t a i l . next = localHead . next ;

12 // update g loba l t a i l to l o c a l t a i l

13 t a i l = l o c a l T a i l ;

14 // c l e a r l o c a l l inked l i s t

15 l o c a l T a i l s [ id ]= localHeads [ id ] ;

16 // unfreeze the l o c a l l inked l i s t

17 lock [ id ] . s e t ( f a l s e ) ;

18 }

19 }

3.2.3 Discussion on Correctness

As we have mentioned previously, the motivation behind this algorithm is to

provider faster operations on queue in a multithreaded environment. We seman-

tically relax the queue by changing the consistency model from linearizability to

sequential consistency. In this subsection, we will discuss, why this algorithm
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provides the sequential consistency. We will first briefly discuss the guarantees

provided by sequential consistency model. A detailed discussion on the same is

done in related work section.

Sequential consistency guarantees the program order. The order in which a

worker (thread) issues operations is called program order. This order is unre-

lated to how and when operations are issued by different threads. If, on a linear

time scale, a worker A performs queue.enqueue(x) at time 1 and worker B performs

queue.enqueue(y) at time 2, it is possible that at time 3 when worker performs

queue.dequeue() operation, it may returns y. This type of behavior is acceptable in

program order and is sequentially consistent. This behavior might look unjusti-

fied as x was enqueued first and it should have been dequeued first. However,

there are applications which do not require strict ordering guarantees as long as

the program order is followed.

We claim that our algorithm is sequentially consistent but not linearizable.

This is so because enqueue() call returns as soon as the element is appended in

the local linked list. Helper does not guarantee which local list will be merged

first, therefore, it is possible that an element, enqueued at a later time by dif-

ferent worker, may be dequeued first by some other worker. This violates the

linearizability property. Nonetheless, our program still follows the program or-

der as two elements enqueued by the same worker will be dequeued in same

order irrespective of who performed the dequeue operation. Our algorithm pre-

serves this property because the local ordering is maintained when a worker is-

sues enequeue operations in local linked list.

3.3 Implementation

We have implemented these algorithms in Java. There are few implementation

specific details, we would like to discuss in this section. Following are few of the

implementation specific issues:
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• Volatile Variables: On a multicore machine, each core has its own local

cache. Therefore, a global variable also has cached copies at each core. If

this variable is accessed concurrently by different threads running on dif-

ferent cores, there are chances that some of them may still see the old value

available in local cache. This is particularly important in our implementa-

tion of queue, because, there are many internal variables which are accessed

by different threads. This problem can be avoided using the volatile primi-

tive of Java. Marking a field as volatile makes sure that every time a thread

running on a core accesses the variable, it read the copy from main memory

instead of local cache of that core [21].

The state array and the request structure is accessed by different threads si-

multaneously, therefore, to avoid races we have set them volatile. Similarly,

in case of sequentially consistent queue, localHead and localTail are accessed

frequently by both the Helper thread and the workers. Therefore, these vari-

ables are also marked as volatile.

• False Sharing: Memory management on multicore generally provides cache

coherence. False sharing is a phenomenon that occurs when threads run-

ning on different cores modifies different memory location that resides on

same cache lines [29]. Cache coherence protocol forces whole cache line to

be invalidated, even if different threads were accessing different memory

locations in the cache line.

In our implementation, this problem is natural to occur, because the entries

in state array are accessed by threads running on different cores simulta-

neously. We have avoided this problem, by separating the entries of each

thread in state array by 8 times. The other entries in between two correct

entries are dummy place holders. This padding allows all the thread spe-

cific entries to fall into different cache line, thereby avoid the false sharing

among core.

• Memory Management: We create node object for queue’s internal linked list

on Helper Thread. Alternatively, this could have been done inside the en-

queue method call. If we have chosen the latter approach, linked list would
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have its node residing on the main memory of different nodes of a multi-

core. This will make the linked list structure spanned across the multicore

memory. It can cause extra overhead for garbage collector for memory man-

agement. Also, it will cause more remote accesses during the dequeue oper-

ation which is performed by the Helper. Instead, the Helper creates the node

objects, which in most likelihood will remain on same node of multicore

during its execution. This allows, the linked list structure to remain avail-

able locally for Helper, which increases the cache performance.

3.4 Analysis

We have presented two new algorithms for a wait-free linearizable concurrent

queue and a sequentially consistent concurrent queue. However, there are few

open questions which we have not addressed in our design and implementation.

We have assumed that the Helper never stops and continues to help other work-

ers. Though, it is practically possible to achieve this behavior, the Helper becomes

single point of failure. If Helper thread stops or crashes, the queue becomes inac-

cessible. The more sound solution will be to have a pool of Helpers or at least a

reserved backup Helper so that in case something goes wrong with the primary

Helper, others can take over. We leave this enhancement as a future work. This

enhancement will provide fault tolerance to our implementation.

We also assume a dedicated core for Helper. This is done to provide full com-

putational power Helper. In case, the Helper does not get enough CPU, it will

impact the performance of enqueue and dequeue operations. For example, if

Helper gets only 50 percent CPU, it will increase the operation time by a factor of

2.

In wait-free algorithm, we are using single state array and single Helper for

both enqueue and dequeue operations. Since, both the operations are done on

different end of the queue, it can be advantageous to have separate state array and

separate Helper for enqueue and dequeue operation. This will further increase the

performance by a factor of 2. However, this will require 2 dedicated threads, one
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of enqueue Helper and one for dequeue Helper. It will incur an extra computa-

tional overhead. We did not explore this trade-off between the performance and

overhead computation in our implementation.
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Evaluation

In this chapter, we evaluate the performance and scalability of both of our algo-

rithms, the wait-free linearizable queue (WF Queue) and the sequentially con-

sistent queue (SC Queue). We compare the performance and scalability of these

algorithms with state-of-the-art lock-free queue algorithm presented by Michael

and Scott (discussed in section 2.4.2).

4.1 Experimental Setup

We implemented both the algorithms in java in a controlled configurable environ-

ment. We have also implemented a benchmark framework for experiments. All

the experiments are run on a 48 core NUMA machine with x86 64 bit architecture

running Linux with kernel 3.0.0. The machine has 4 sockets and 8 nodes where

each node has 6 cores. All the micro benchmarks are taken in a careful manner in

order to minimize the noise. Our evaluation framework emulates a multi worker

(producer-consumer) workload where each worker is allowed to perform both

enqueue and dequeue operations.

To eliminate external influences such as migration of threads from one core

to another and to avoid running multiple threads on same core, each worker

is made to run to a separate dedicated core (using core affinity). Similarly, the

Helper also runs on a separate core. This allows workers and the Helper to fully

utilize the computational power available in machine. Each experiment is run

4-5 times and an average is taken. Standard deviation was minimal and is there-

fore, not shown for better readability. There are many different ways to evaluate

the performance and the scalability of a queue. However, we have selected three

benchmarks which we find relevant and important for the evaluation of our al-
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gorithms. Following are the benchmarks used.

• Enqueue-Dequeue pair: The queue is initially empty. At each iteration,

each worker enqueues a random integer in the queue followed by a de-

queue operation. This emulates the 50-50 percent producer-consumer work-

load under the stressed conditions. Each experiment performs approxi-

mately 2.5 million operations divided equally between all the workers. The

number of maximum workers is 32 which is unchanged in all the experi-

ments. Helper runs on a separate core.

• Think-Time: Think-Time is nothing but the work done by the worker be-

tween the two operations. We measure the performance of our algorithms

as a function of increasing Think-Time. Ideally, with the increasing Think-

Time contention in the system should decrease. Think-Time is presented in

number of cycles. Each experiment performs approximately 2.5 million op-

erations divided equally between all the workers. The number of maximum

workers are 32.

• Application:We also evaluate the performance of our wait-free queue and

sequentially consistent queue for graph exploration and compare it with

lock-free queue. Graph is represented as connected nodes, where a node in

graph only knows about its neighbors. Graph contains 8.3 million nodes.

We evaluated the performance on 16 and 32 cores respectively.

4.2 Performance and Scalability

4.2.1 Per operation Completion time

In this experiment we have measured average per operation completion time for

each of the three algorithms, lock-free (LF) Queue, wait-free (WF) Queue and se-

quentially consistent (SC) Queue under very high contention. Results are shown

in Figure 4.1. Under such stressed conditions, is it important to known how long
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does each operation takes to complete. As we can see from the graph, it is evi-

dent that our algorithms takes far less time as compared to LF queue. With the

increasing number of workers, per operation time increases for all the Queue im-

plementations. For LF queue, by doubling the number of workers, per operation

time increases by approximately 4 times, however, for WF queue and SC queue

it increases approximately twice which is understandable.

With 32 workers, one single operation in LF queue takes as much as 0.1 ms.

This converts to 300000 cycles of work, which LF queue does in a single enqueue

or a dequeue operation. In comparison to that, our WF queue takes 9 times lesser

time and our SC queue takes 16 times lesser time. SC queue perform better than

WF queue because of weaker consistency semantics. If we increase the number

of workers, this performance gap between LF queue and WF queue increases.
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Figure 4.1: A per operation completion time comparison with the increasing
number of threads (workers)

4.2.2 Total Execution Time

The performance of an application depends on how fast it completes a given task

irrespective of how workers perform it individually. In this experiment, we eval-
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uate the time taken to complete the whole execution of the program. Results are

shown in Figure 4.2. We can see from the graph that upto 2 threads (workers),

WF Queue and SC Queue take more time to complete the task. However, for LF

queue, as the number of workers increase, the total execution time increases dras-

tically. This depicts the worst kind of negative scalability and goes against the

very purpose of parallel programming. On the contrary, WF depicts some posi-

tive scalability, where total execution time either remains stable or decreases. SC

Queue performs best, where its total execution is least among all. Also, similar to

WF Queue, it depicts positive scalability. With 32 workers, WF queue performs

approximately 10 times faster and SC Queue performs approximately 15 times

faster.
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Figure 4.2: A total execution time comparison with the increasing number of
threads (workers)

4.2.3 Throughput

Scalability and performance of a queue also depends on how many operations it

can successfully perform in a unit time. In this experiment, we show the through-

put as a function of increasing number of workers. Results are presented in Fig-

ure 4.3. In this case also, LF queue depicts negative scalability and the throughput
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decreases with increasing number of workers. WF Queue and SC queue shows

sharp positive scalability upto 6 workers, after which throughput remains stable

with the increasing number of workers. However, in comparison with the LF

Queue, throughput remains approximately 10 times more for WF queue and 15

times more for SL queue. This higher throughput directly translates to better per-

formance for an application using the concurrent queue.
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Figure 4.3: Throughput comparison with the increasing number of threads
(workers)

4.2.4 Think Time

In real scenarios, applications do some work between two operations. For some

applications, this work can be computationally intensive, for others it can be com-

putationally low. We call this work as think time. In this experiment we compare

the performance of the Queues with increasing think time. In our experiment, it

ranges from 0 to 1 million cycles. The number of workers are fixed to 32. Helper

runs on a separate core. Results are shown Figure 4.4. Up to 1000 cycles of think

time, per operation time remains stable for all three queues. Also, in comparison

with LF queue, WF queue and SL queue take 10 to 15 times lesser time to com-

plete an operation. After 10,000 cycles of think time, contention starts to reduce
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and performance improves for all three algorithms. Nonetheless, our algorithms

still perform significantly better in comparison of LF queue.
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Figure 4.4: Performance comparison with increasing Think Time (work done be-
tween two operations)

4.2.5 Fair Share

A chain is as strong as its weakest link. For a better multithreaded program, it

is necessary that all the workers perform equally well. Overall program comple-

tion time depends on the last finishing worker. Even if, a single worker takes very

long to complete, the whole job gets delayed. Therefore, wait-freedom becomes

crucial in such scenarios. It guarantees that all the workers get equal opportunity

to access the shared data structure so that they will not have to wait for more than

a fixed number of steps to apply their operations.

In this experiment, we compare LF queue with WF queue, to check how long

does each worker take to finish its share of operations. Results are shown in Fig-

ure 4.5. As we can see, in LF queue, workers do not take same time to complete

their operations. Whereas, in case of WF queue, all of the workers preciously

takes equal amount of time to complete their share of operations.
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Figure 4.5: Worker completion time in a pool of 32 workers.
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4.3 Graph Exploration

Queues are used in many graph exploration algorithms such as breath first search

(BFS), level order traversal, spanning trees and topological sorting [6]. We have

evaluated the performance of our wait-free queue and sequentially consistent

queue by using them in a graph traversal. We have also compared them with

lock-free queue.

The graph has approximately 8.5 million nodes. Our graph exploration visits

a node and atomically marks it visited. If a worker, during the exploration, finds

a node which is already visited by some other worker, it ignores it. At the end

of execution, the algorithm has explored all the nodes and returns a count of the

total size of graph. The exploration has used 16 and 32 workers (threads) in dif-

ferent executions.

Figure 4.6 presents the results. On 16 cores, in comparison of WF queue and

SC queue, LF queue takes 2.5 and 3.75 times more time to complete the graph

exploration. Similarly, on 32 cores, LF queue takes approximately 5 and 7.5 times

more time. This shows that, for LF queue, as the number of cores (workers) will

increase, the execution time of graph exploration (with same number of nodes)

will increase exponentially. In case of WF queue and SC queue, it slightly de-

creases. Ideally, with the desired linear scalability, the execution time should de-

crease proportionally. However, graph exploration is not an embarrassingly par-

allel problem. Therefore, we must also account for synchronization such as the

operations on shared concurrent queue used by the exploration. Even though,

the graph exploration time do not decrease significantly by using WF queue and

SC queue, there is a possibility to do computations during the exportation, that

can be done in parallel.
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Figure 4.6: Graph exploration completion time on 16 and 32 cores respectively.

4.4 Analysis

A queue is a fundamental structure which has a variety of usages. There are many

wait-free and lock-free queue implementations but none of them provide positive

scalability under high concurrency. As we have seen in our results, one of the best

known implementation of concurrent queue, fails at achieving good results with

the increasing number of workers. With our algorithms, we have presented very

simple, yet highly efficient queue implementations. Our algorithms are highly

efficient and do not depict negative scalability.

High performance and wait freedom both are necessary properties required

for next generation softwares running on multicore machines. Wait-free algo-

rithms are gaining momentum and are being considered a replacement for lock-

free algorithms. Yet, we did not find any wait-free algorithm in literature for

queues, which can perform 8 to 10 times better than lock-free algorithms. We

have achieved this performance gap with just 32 workers. If, we increase the

number of workers, this gap will further increase. We believe that this is the first

time an algorithm is able to provide wait-freedom and high performance at the

same time. Similarly, we also did not find any sequentially consistent version of

a queue. It is a known fact that high performance can be achieved by compromis-

ing strict notions of correctness. Yet there was no implementation, which exploit
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the trade-off between the performance and correctness in terms of the consistency

model.

We believe that there are many applications which do not require strong or-

dering guarantees and will function correctly with the weaker semantics, such

as sequential consistency. For example, we tested our sequentially consistent

queue algorithm for graph exploration, which uses queues internally. Graph ex-

ploration is widely used in social networks, computer networks and web crawl-

ing. Results shows that our algorithms reduce total exploration time significantly.

We also, performed graph exploration using our wait-free algorithm. In this case

also, our algorithm exhibits high performance.

Another application of a sequentially consistent queue can be a network switch

or a router. Core routers and switches handle millions of packets per second.

They use queues internally for header processing and forwarding. Generally, a

switch or a router is connected to other switches and routers from whom it re-

ceives the packets. In this case, it does not need to provide global time ordering

for the packets arriving from different connected routers and switches. However,

it must provide ordering among the packets, which are coming from same switch

or a router. In such scenario, sequentially consistent queue becomes invaluable.

There are other applications, which require FIFO guarantees and high perfor-

mance for all the workers. Few of such applications are online ticket reservation

systems, online inventory transactions (e-shopping) and banking systems. These

systems, generally use backend applications running on a huge multicore ma-

chines, where client’s requests are handled by different threads. In this case, it

becomes necessary to provide a certain quality of service for each client, irrespec-

tive of which thread handles the client’s request. In these systems, our wait-free

algorithm can provide substantial performance benefits and local progress guar-

antees, without compromising the FIFO ordering.
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Conclusion

This thesis summarizes my work on the scalability and performance of concur-

rent data structures on multicore machines. We showed that it is possible to im-

plement a wait-free algorithm that can perform better than a lock-free algorithm.

We also showed that it is possible to exploit the trade-off between the perfor-

mance and the notion of correctness. We presented our algorithms for concur-

rent queue which is one of the widely used basic data structure. Our wait-free

queue outperforms existing state-of-the-art Michael and Scott’s lock-free queue

while providing stricter local progress guarantee for each worker. We further

achieved high performance by relaxing the FIFO ordering of a queue. Both of

our algorithms also depict positive or stable scalability, which was non existent

in previous algorithms.

In our algorithmic design, we introduced the concept of external Helper. This

concept can be applied to other concurrent data structures such as stack, skip-

lists and linked-lists. For example, a stack is very similar to a queue. The only

difference is the order in which elements are inserted and removed. Queue pro-

vides FIFO ordering while stack provides LIFO ordering. We believe that our

techniques and algorithms will become highly beneficial in future, as the number

of cores continues to grow on multicore machines.

Table 5.1 summaries the comparison of different properties, performance and

scalability of previous concurrent queue algorithms with our algorithms.
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Table 5.1: A comparison of previous Queue algorithms with our Queue algo-
rithms

 
  Queue  

Type 

 
 Global  

  
Progress 

 
 Local  

 Progress 

 
 High    
Stress 

      
    Medium  

Stress 

     
    Low Stress 

 
Scalability  

Blocking  
Queue 

 
No 

 

 
No 

 
    Very Bad 

   
        Low 

 
     Medium 

 
       Negative  

Lock-Free 
Queue 

 
Yes 

 
No 

 
   Very Bad 
  

 
       Good 

 
      Good  

 
      Negative  

Wait-Free 
Queue 

 
Yes  

 
Yes 

 
   Very Bad 

 
       Good 

    
      Good 

 
      Negative  

Our wait-
Free Queue 

Yes Yes   Good Very Good Good  Positive or Stable  

Our 
Sequentially 
Consistent 

Queue 

Yes No      Very Good  Very Good Good  Positive or Stable 

 Progress     
Guarantees  

      
Performance under stress   

5.1 Future Work

At present, our algorithms do no provide fault tolerance. As we mentioned pre-

viously, if the Helper dies, it becomes impossible to access the qeueue. In future,

we would like to implement fault tolerance by replacing the Helper with a pool of

Helpers.

We would also like to implement our techniques for other data structures. We

are presently working on replicated maps. Maps are highly used and they do not

scale on a multicore machine. For high scalability, we are replicating the map on

each core. We are also utilizing the concept of Helper, replication, commutativity

and eventual consistency for better performance. We find this work interesting

as the future demands a radical change in software development on multicore

machines.
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