
PulsarCast

Scaling PubSub over the Distributed Web

João Antunes, j.goncalo.antunes@tecnico.ulisboa.pt

Instituto Superior Técnico

Abstract. The Publisher Subscriber paradigm is a wildly popular form
of communication in complex distributed systems. A lot of research ex-
ists around it, with solutions ranging from centralised message brokers,
to fully decentralised scenarios. When we are focusing on scalability, de-
centralisation poses the best option. There is however a clear lack of
decentralised systems accounting for reliability, message delivery guar-
antees and, more importantly, persistence.
To this end we present PulsarCast, a decentralised, highly scalable, pub-
sub system seeking to give guarantees that are traditionally associated
with a centralised architecture such as persistence and delivery guaran-
tees.

Keywords:
Publish Subscribe, Peer to peer, Web, Reliability, Persistence

Table of Contents

1 Introduction . 1
2 Objectives . 2
3 Related Work . 2

3.1 Distributed Publish-Subscribe Paradigm . 2
3.2 Relevant Pub-Sub Systems . 13
3.3 Web Technologies . 17

4 Proposed Solution . 20
4.1 Subscription Model and Data Structures . 21
4.2 Overlay Structure . 23
4.3 Subscription Management . 25
4.4 Event Dissemination . 26
4.5 Quality of Service . 26

5 Evaluation . 27
6 Conclusions . 28
A Appendix . 29

A.1 Work Scheduling Example . 29
References . 30

1 Introduction

The publish-subscribe (pub-sub) interaction paradigm is an approach that has
received an increasing amount of attention recently [12] [10]. This is mainly due
to its special properties, that allow for full decoupling of all the communicating
parties. First we should define what the publish-subscribe pattern is. In this
interaction paradigm, subscribers (or consumers) sign up for events, or classes
of events, from publishers (or producers) that are subsequently asynchronously
delivered. Taking a closer look at this definition one can see that this comes hand
in hand with the way information is consumed nowadays, with the exponential
growth of social networks like Twitter and the usage of feeds such as RSS.

The previously discussed decoupling can be broken in three different parts.
The decoupling in time, space and synchronisation. The time decoupling comes
from the fact that publishers and subscribers do not need to be actively in-
teracting with each other at the same time; this means that the publisher can
publish some events while the subscriber is disconnected and the subscriber can
be notified of an event whose publisher is disconnected. Space decoupling gives
both parties the benefit of not needing to know each other in order to communi-
cate, given that consumers and producers are focused on they are specific roles
(consuming/producing) and do not care for who is doing what, or how many
producers are for example. Synchronization decoupling is a consequence of the
asynchronous nature of the pub-sub pattern, as publishers do not need to be
blocked while producing events and subscribers can be asynchronously notified.
The decoupling that this kind of system offers makes it the ideal candidate for
very large networks that need a way to communicate in a efficient way.

Due to the properties described above, a lot of applications rely on the
publish-subscribe paradigm and a lot of work as been done by companies like
Twitter 1 and LinkedIn into making these systems highly scalable, with the
creation of tools like Kafka 2, which aim at guaranteeing low latency and high
event throughput. Other examples are the multiple message queue systems like
Apache Active MQ 3, RabbitMQ 4, Redis 5, etc. These solutions are, of course,
centralised and as such suffer from all the common issues that affect centralised
solutions: it is quite hard to maintain and scale these systems to a large number
of clients. Peer-to-Peer networks on the other hand, have proven numerous times,
that this is where they shine, with examples such as Gnutella, Skype and most
recently IPFS 6. All of these systems are a living proof of the high scalability
P2P can offer, with pub-sub systems over P2P networks being an active research
topic with a lot of attention.

1 https://www.infoq.com/presentations/Twitter-Timeline-Scalability
2 http://kafka.apache.org/documentation/#design
3 http://activemq.apache.org/
4 https://www.rabbitmq.com/
5 https://redis.io/topics/pubsub
6 https://ipfs.io/

1

2 Objectives

As we are going to cover in the next sections, lots of different solutions exist in
the field. However, most of them either rely on a centralised or hierarchic network
to have a reliable system, with stronger delivery and persistence guarantees, or
end up sacrificing these same properties in order to have a decentralised system
with the potential to scale to a much larger network.

The solution we propose is a pub-sub module to IPFS with a strong focus
on reliability, delivery guarantees and data persistence, while maintaining the
ability to scale to a vast number of users, using the network infrastructure we
have in place today. There is also, to the best of our knowledge, a lack of pub-sub
systems with such a strong focus on persistence, which is something our solution
does.

3 Related Work

In this section we will cover the research work and industry references that can
be considered relevant to our initial objective. The following section 3.1 will lay
the ground to define how pub-sub systems are structured. In section 3.2 we will
cover a set of systems defined as relevant. Finally, section 3.3 will address some
of the web technologies of interest in this area.

3.1 Distributed Publish-Subscribe Paradigm

In this section we will cover the basis of the pub-sub paradigm, defining a tax-
onomy we will later use to classify relevant systems. We will start by covering
the Subscription Model 3.1, followed by the Network Architecture 3.1 and Over-
lay Structure 3.1. Finally we address the Subscription Management and Event
Dissemination 3.1.

Subscription Model When considering pub-sub systems, there is a set of
different options that will lay ground for the behaviour of the whole system. We
call these options, design dimensions. Specifically, in our case, one of the biggest
decisions when designing a pub-sub system is what kind of subscription model to
use.The subscription model determines how subscribers will define which events
they are interested in. There are three major approaches covered by relevant
literature [12] [10] and that implementations usually follow:

– Topic based subscriptions
– Content based subscriptions
– Type based subscriptions

Topic based subscription model employs, as the name states, the no-
tion of topics or subjects to allow participants to subscribe to relevant content.
These topics are identified by keywords and can be naturally viewed as a group

2

or a channel to which participants can send messages (publish) and receive mes-
sages (subscribe). This approach was one of the earliest models in the pub-sub
paradigm, with references such as TIBCO 7, mainly due to its similarity with
the group communication systems already in place at the time. Some examples
of the topic based approach allow to build a topic hierarchy. A specific one is
using a UNIX path like approach, which allows to build topic hierarchy just like
paths in a file system. Consider as an example:

/fruits

/fruits/citrus

/fruits/citrus/orange

The list above is an example of 3 topics, that act as 3 different tiers on a
hierarchy. This allows for specialisation and the possibility to extend the sub-
scription structure already in place. There are numerous solutions that cover the
topic based subscription scenario. Specifically in the distributed/decentralised
area we have solutions like Scribe [7], Bayeux [26], Tera [3] and Poldercast [18].

The content based subscription model brought a different approach that
sought to use the content of the event message itself as a way for subscribers to
specify the messages they were interested in [4]. Essentially, subscribers could
define fields, or conditions on those same fields that would make an event match
a subscription or not. Consider the following example of a simple message and
subscription, represented using JSON 8.

Message

{

exchange: "Euronext Lisboa",

company: "CTT",

order: "buy",

number: "100",

price: "5.55",

}

Subscription

{

exchange: "Euronext Lisboa",

order: "buy",

number: ">50",

price: "<10",

}

7 https://www.tibco.com/
8 https://www.json.org/

3

The example above translates into a subscription to a stock exchange pub-
sub system, where the client would receive all the event messages for buy orders
of more than 50 stock actions for a maximum price of 10e. The notion of sub-
scription is much more complex in this model, but allows for a much more pow-
erful, expressive and accurate message filtering. Usually, in order to implement
this, systems rely on the definition of schemas as a way to create subscriptions.
Some examples of solutions that follow a content based subscription model are
Gryphon [21], Jedi [8], Siena [6], Meghdoot [11], Mercury [5] and Sub-2-sub [23].

Also worth referencing is the type based subscription model. [9]. The
type based model seeks to use the type scheme of a programming language
without introducing a topic hierarchy. Instead it focuses on the idea that, in
practice, messages part of the same topic usually are of the same type and
notify the same kind of event. As such we can rely on a straightforward type-safe
interpretation of messages belonging to the same topic, since most topic based
systems only offer, at most, weakly typed interfaces. This, of course, comes quite
handy when working with strongly typed languages such as Java and C++. One
other aspect also worth mentioning is that, similar to topic based systems, the
type based system also offers a notion of hierarchy through sub-typing. In this
area, Hermes [14] is a reference system implemented on top of a distributed
network.

While looking back at these different models its crucial to understand how
they are tied to the expressiveness of the system as a whole. Choosing a topic
based subscription model will allow for an easier implementation when it comes
to message filtering at each node, but it will clearly affect the capabilities of
the system. On the other end, a content based subscription model allows for a
lot more expressiveness in subscription definition, but it makes it a lot harder
to implement a scalable way of filtering messages. It is also important to note
that these three categories are not strict distinct models, but somewhat fluid
and subject to hybridisation, as is quite possible to have solutions in between,
such as content based filtering through the use of special topics, or content based
filtering only for pre-set fields. As such, not all approaches are easy to categorise
and, for some specific scenarios and systems, the line is quite thin between the
multiple subscription models.

It is also interesting to look at the application space and notice that not all
applications have the same expressiveness requirements. This makes the exis-
tence of multiple subscription models not only justifiable but required. Consider
the example given above for a stock exchange system: these kind of applications
have a need for a complex set of subscription patterns, quite different from the
ones you would probably have for a chat or social media application, which would
rely heavily in the notion of topics and groups.

Network Architecture Independently of the subscription model used, the
system approach to the network architecture is crucial as it will, not only set the

4

way clients interact with it, but will also determine a lot of the properties that
the solution will benefit from (such as scalability, reliability, etc.). Networks can
generally be categorised as centralised or decentralised.

Fig. 1. Example of a Centralised and a Decentralised network

Note that the goal of a pub-sub system is to enable the exchange of events
in a asynchronous manner, with the decoupling of producers from consumers
as previously discussed. This can be easily achieved using an entity which is
responsible for receiving the messages from the producers, storing them and
distributing them across all the consumers. This is what we refer to as a cen-
tralised architecture, motivated by the need of this central entity. This is the
approach adopted by a lot of the message queue systems like Apache Active MQ,
RabbitMQ and Redis. The usual focus for applications relying on this kind of
systems is on reliability and data consistency but with a low data throughput.
Typically expected to operate in a more stable environment, such as datacen-
ters. Figure 2 is an example to illustrate how would a centralised pub-sub system
work.

Fig. 2. Example of a centralised message broker

5

Being the broad term that it is, centralised encompasses a lot of different
solutions. One can have centralised solutions that employ a distribution of load
through different nodes in order to improve the overall scalability of the system.
In the pub-sub field, these networks of servers are commonly referred to as
brokers. There are multiple pub-sub systems that follow this approach. More
precisely Gryphon [21], Siena [6] and Jedi [8]. But, even between them there are
some clear differences on how these broker networks organise. In both Gryphon
and Jedi these nodes organise in hierarchical fashion, or define what we call a
broker hierarchy. As for Siena, the nodes resort to not following a specific
structure, making it effectively a broker mesh.

The asynchronous nature of the pub-sub paradigm also allows for a differ-
ent approach on message forwarding, with both producers and consumers being
responsible for storing and forwarding messages, without the need of an inter-
mediary entity. This approach is referred to as a decentralised architecture
as there is no central entity that could easily become a bottleneck for the whole
system. Additionally, when the network is fully decentralised it is commonly
referred to as peer to peer (P2P) architecture, for it relies solely on the commu-
nication between peers in the same network. An example of a pub-sub system
following this approach is Scribe [7]. These kind of systems have a great focus
on scalability and, consequently, on efficient message delivery.

Overlay structure Working with a P2P architecture has its own set of chal-
lenges. When we rely on the communication between peers we need a way to
create and maintain links between multiple nodes in a network. Hence the overlay
networks. The idea is to have a structure of logical links and nodes, independent
of the physical network beneath them that actually powers the communications
through. Unlike traditional layer-3 networks, the structure of these overlays is
not dictated by the fairly statical physical topology (presence and connectivity of
hosts), but by logical relationships between peers. This way we have the poten-
tial to manipulate the logical network at the application level, without needing
to change the network backbone that connects the nodes. This approach was
key to deploy P2P applications such as Gnutella 9, Kazaa 10 or Skype 11 on top
of the existing Internet infrastructure.

In practical terms, each node maintains a view of its neighbours in the overlay
network, which translates into the communication links between them. There are
different approaches to the way this state is stored and maintained, with two
main categories dominating the P2P ecosystem. At one end of the spectrum we
have the unstructured overlay networks, where peers form a network with no
clear structure or hierarchy (commonly referred to as a network mesh) with each
peer connected to a subset of other nodes independent of their ID, localisation,
network IP address, etc.

9 https://web.archive.org/web/20000620113133/http://gnutella.wego.com
10 https://web.archive.org/web/20040701062605/http://www.kazaa.com:80/us/index.htm
11 https://www.skype.com

6

Unstructured overlays: These rely on membership protocols that try to
preserve a couple of key properties, such as the network diameter and its average
degree. A great amount of these membership protocols use gossip based (also
referred to as epidemic) approaches in order to do this. These approaches exploit
properties that arise when information is disseminated in a random, or close to
random, way. These probabilistic approaches help keeping the overlay connected
in the event of network failures.

One relevant example is Cyclon [22], a membership protocol that uses a
gossip based approach to help maintain a network which resembles a random
graph in terms of degree distribution, clustering coefficient and path length.
In order to do this, the approach followed by Cyclon is, at each node, besides
keeping a fixed size of neighbours (other nodes in the network), to also keep
information on when for the last time that node was contacted. Periodically,
each node contacts the oldest node of its neighbours (i.e. the node which has
been the longest time without being contacted) and shares with it a fixed size
partial list of its neighbours, to which the contacted peer replies back with its
own partial view of its neighbours. Each node updates its neighbours list with
the new info (either by filling empty cache slots or by replacing entries that were
sent in the previous contact). It is also worth noting that during this exchange,
the node that initiated the contact will drop the contacted node of its neighbour
list, as the contacted node will inversely add the node that established contact
to his. This way we end up with a uniform and organic way to disseminate node
information across the network. This approach is based on a technique named
shuffling [19].

Fig. 3. A comparison between the physical network and a logical overlay

7

The unstructured overlay has an interesting set of properties, such as its
ability to accommodate for a highly dynamic network with a high resilience to
network failures and churn (i.e. high volumes of changes in network participants).
However, the lack of structure in the network usually limits the kind of queries
for content one can run through. The delivery of messages in the network will
always follow a probabilistic best effort approach. Finally, unstructured gossip
based approaches rely on a pre-set of conditions that, if not met accordingly,
may affect the whole behaviour of the system [2]. For example, the selection
of neighbours is a key aspect and should assume a random or pseudo-random
fashion. If disturbed by a small set of nodes that could either be malfunctioning
or behaving selfishly, the basic properties of the network like its resilience could
be severely affected.

Structured overlays: On the other end of the spectrum of overlay networks
we have the structured overlay, where peers are organised according to a
specific structure, like a ring, a tree or a multi-dimensional space. This is usually
achieved by imposing constraints on how the nodes should be organised based
on their identifiers. In order to do this, a common approach is to think of the
ID space as a hash table to where the content should then be distributed. The
distribution of content is then done based the value of the keys generated for
each piece of information, keys with values close to a node ID will be stored in
that node. This is commonly referred to as a Distributed Hash Table (or DHT
for short), since the key space is distributed across multiple nodes. For example,
Chord [20], one of the first examples of a DHT, organises the nodes in a ring
like structure based on their ID (which results from the SHA-1 hash 12 of its
ip adress). The content is then distributed in this key space, using the same
hashing function to produce the content key that was used to produce the node
ID.

Fig. 4. Example of a simple Chord ring and the finger table of a node

12 https://tools.ietf.org/html/rfc3174

8

It is common for Distributed Hash Tables to have a cost of O(logN) in terms
of number of nodes contacted, on average, to search for a given key (where N is
the number of nodes in the network). Chord base structure per se only gives us
O(N), as such, Chord uses a mechanism to allow for a speedier search. At each
node, an additional routing table is kept with m entries, where m is the number
of bits in the key space. Each ith entry in this table will be this node’s successor
(next node in the ring in a clockwise direction) with an ID, at least, bigger than
2i−1 (modulo 2m) in the key space. For example, for a node with ID 8, the 4th
entry will be the first node in the ring with an ID larger than 16. This table, also
referred to as finger table, will allow for a logarithmic search as demonstrated in
Chord’s specification.

Another approach is followed by Kademlia DHT [13]. Just as in Chord,
nodes have 160 bit identifiers and content is stored in the nodes whose IDs are
close to the content key (160 bit identifiers too), but the way the routing tables
are structured and maintained is quite different. For starters, Kademlia relies
on a XOR based distance metric between 2 keys, where the distance between 2
keys is the resulting bitwise XOR operation interpreted as an integer. The XOR
metric gives us an interesting set of properties. It is unidirectional (just like
Chord clockwise direction) ensuring that lookups for the same key converge along
the same path but, unlike Chord, it is symmetric, as such, the distance between
x and y is the same as the distance between y and x. This symmetry allows
Kademlia queries to give valuable insights along every node they go through,
helping out in populating each node’s routing table.

Kademlia nodes keep contact information about each other in a list, size m
where m is the number of bits used for the keys in the system, and where each
entry is a list itself of maximum size k (a system wide parameter) containing
all the known nodes of distance between 2i and 2i+1 of itself. These lists are
appropriately called k-buckets and are kept sorted by time last seen (least re-
cently seen node at the head). Whenever a node receives a message, it updates
the appropriate k-bucket for the sender’s node ID, inserting it in the respective
k-bucket or moving it to the tail of the list if it is already there. K-buckets aim
at implementing a least-recently seen eviction policy, where live nodes are never
removed. This stems from a careful analysis of Gnutella trace data [17] where
the longer a node has been up, the more likely it is to remain up for another
hour. Whenever a node wants to retrieve or store content it uses a recursive node
lookup procedure in order to find the k closest nodes to a given key. This lookup
can be run with multiple queries in parallel, because nodes have the flexibility
to forward messages to any of the k nodes in a bucket, aiming for lower latency.

A completely different method is used in the Content Addressable Net-
work DHT[15]. In CAN, the key space used to address the content stored in the
DHT is a virtual d-dimensional Cartesian coordinate space. In order to store and
retrieve content, the generated keys use a uniform hashing function that maps
the key into the d-dimensional space, resulting in a point. The overall space is
split into different areas referred to as zones. Each node is responsible for a zone
and, consequently, for all the keys stored in that zone. Retrieving a key can be

9

done by calculating its corresponding point in the d-dimensional space and, if
the point does not belong to this node space or any of its neighbours (nodes
responsible for adjacent zones) it can be routed through CAN infrastructure in
order to find the node responsible for storing the key. Intuitively, routing in CAN
works by following the straight line from the source to the destination coordinate
in the Cartesian space. In practice this is done by forwarding the message to the
neighbour closest to the destination coordinate. Interestingly enough, the usage
of a multidimensional space as the key space for the DHT, makes the distance
metric in the CAN DHT as a simple Cartesian distance between two points.

Fig. 5. Example of a 2 dimensional CAN routing command

Other popular examples in the DHT field are Pastry [16] and Tapestry [25]
(that we kept out for the sake of simplicity, although a lot of the mechanisms
described above apply to these). DHTs present a set of interesting benefits,
such as good routing performance (usually logarithmic in the number of nodes),
the limited size of state kept at each node (usually logarithmic routing tables),
a better support for exact match and other complex queries and also present
stronger guarantees on message delivery. If the hashing function is properly
selected it can also be ensured that the load is balanced properly across the
network. However, these networks lack the tolerance for heavy network partitions
and network churn that the usual unstructured network can bare with.

Hybrid overlays: As with everything discussed so far, not every solution
lies in each end of the spectrum, and overlay structure is no different. Recent
research has been pushing more and more towards hybrid solutions that take
advantages of both sides. Such example is Vicinity [24] which employs Cyclon
(discussed above) as a peer sampling service to help out in building an ideal
structure that links nodes based on their proximity (for some notion of proximity,
e.g. latency, localisation, etc.). In the end, we get a structured overlay, generated
from a unstructured, gossip based, overlay (hence the hybrid solution). More

10

importantly, this overlay will have properties that guarantee that it is an almost
ideal structure for a given proximity metric. The Vicinity system discusses that
the usage of probabilistic mechanisms helps out in keeping an healthy and reliable
structure.

Subscription Management and Event Dissemination Now that we have
set the underlying structures that power up the network, it is time to cover
the specific requirements of a pub-sub system. We have two different aspects
to cover: subscription management and event dissemination. By subscription
management we refer to a set of key factors that will determine the overall
performance of the pub-sub system, specifically in terms of matching events
with subscribers, the selected representation for subscriptions, registering new
subscriptions and deleting subscriptions. Event dissemination dictates how will
the events be propagated through the system, in a way that avoids burdening
specific nodes, but assures that all the subscription requirements are met. It is
natural that in some ways these two aspects are connected (e.g. the way we store
our subscriptions will probably impose a set of restrictions in how our events will
be propagated) but it is still possible to make a clear distinction between how
they work and their role in the overall system.

As discussed before, in order to match subscribers with publishers, some
kind of state must be kept (what we refer as subscriptions). There are plenty of
ways of doing this and factors like network architecture and subscription model
come into play here. For a system with a centralised architecture, this is not
such a big challenge, since the central nodes will be responsible for keeping and
managing the state, matching events with the correct subscribers and making
sure the event propagation works accordingly. However, in a distributed or a
decentralised scenario, this is not such a trivial problem to solve.

One interesting property of topic based systems in a decentralised and dis-
tributed scenario is that their subscription management and event dissemination
can be easily implemented with an application level multicast system if we clus-
ter subscribers of some topic/group in a single structure (e.g. a multicast tree).
For example, consider the topic /foobar issued by a particular node in a pub-sub
system. If , when new subscriptions are issued to this node, a tree like structure
is built that allows events related to this topic to flow accordingly, disseminating
a new event in /foobar is just a matter of sending the event to the root of
the tree. From there, dissemination can flow blindly through the multiple links.
Subscriptions are then represented as simple dissemination trees for each topic,
which, interestingly enough, ends up also representing how the actual events
will be propagated in each topic. The root node (or nodes) acts as a rendezvous
which, as the name suggests, it is where events are targeted at and new subscrip-
tions issued to. The core idea is that, by relying on such nodes, eventually, all
the system state will be synchronised (all the events will be propagated to the
expected nodes and no subscription is left unattended). This does not mean that
other nodes cannot cache state though, the idea of the rendezvous is to have a
basic reassurance in subscription management and event dissemination. Ideally

11

this would be implemented in a distributed fashion, keeping as much pressure
out of the rendezvous node as possible. This is the approach followed by Scribe
and Bayeux.

The usage of rendezvous nodes and tree like structures to represent subscrip-
tions is not something particular to topic based systems. There are examples of
these techniques in content based systems also, specifically Gryphon and Jedi.
Hermes on the other hand is an example of the same mechanisms with a type
based subscription model. A more detailed description of how this is done in
Gryphon and Scribe will be made further along, since they have different ap-
proaches motivated by their different options in network architecture and sub-
scription model.

For content based systems though, a common approach is to use multidi-
mensional spaces as a way to represent subscriptions. The idea is to have each
dimension refer to a specific attribute of the pub-sub schema.

{

exchange: String,

company: String,

order: String,

number: Integer,

price: Float,

}

Considering the example above, we could map each of the given attributes
to a given dimension and end up with a 5 dimensional space that we could use
to route events accordingly. Meghdoot is an example of a content based pub-sub
system that follows an approach close to this one, using a CAN DHT with 2n
dimensions, where n is the number of attributes in the schema. We will cover
Meghdoot further down, but it is worth mentioning that are other alternatives
to using a multidimensional space DHT to replicate this behaviour. Mercury for
example relies on the usage of several ring-based DHTs to recreate this multidi-
mensional space and support range queries, using one DHT per attribute.

A different approach to managing subscriptions and disseminating events
in topic based systems is by having an overlay for each different topic. The
idea is that by clustering nodes one can afford an easier event dissemination
as well as an easy way of matching events with subscribers, since it is just a
matter of propagating a given event inside its overlay. In order to keep everything
connected, a general overlay can be used, that will allow all the nodes to have
visibility on the whole set of topics. In this scenario, subscriptions are simply
represented as being part of a specific network of peers, that could take any form
or shape, or even be unstructured. For an unstructured network, the propagation
of events could be a simple flooding algorithm, as it happens in Tera. Tera, a
topic based pub-sub system, follows an approach close to this one. It keeps two
distinct gossip based overlays, one responsible for keeping state on entrypoints
for each topic (peers which are subscribed to a given topic and that can act as
dissemination points for it) and another used to keep the subscribers of each

12

topic. This clustering approach, where subscribers of a given topic are kept in
a topic specific overlay, helps out in the dissemination step after an event has
been published and reached the cluster. Another example following this approach
is Poldercast, which uses a set of three different overlays to keep the pub-sub
network running. We will cover Poldercast more thoroughly later on.

3.2 Relevant Pub-Sub Systems

We now describe in further detail the systems which most resemble the work we
are going to do.

Gryphon Gryphon [21] is a content based pub-sub system built on top of
a centralised broker hierarchy topology. Developed at IBM, Gryphon uses an
interesting approach to match events with subscriptions [1]. Gryphon relied on
a distributed broker based network to build a tree structure representing the
subscription schema. Considering a schema with multiple attributes - A1, . . . , An
- each level on the subscription tree would represent a specific attribute. So, for
example, if we were to have an event with a value V 1 for the attribute A1, at
the root node (which represents the attribute A1) the link followed by the event
would be the one that would represent the value V 1. The event would then
be propagated through the multiple branches of the tree until it arrived at the
broker node that represented all the specific values for that event. From there
it would then be propagated to all the subscribers registered with that broker
node. Figure 6 illustrates this approach.

Fig. 6. extracted from [12]. When the event e =< 1, 2, 3, 1, 2 > is published, all dark
circles (representing brokers) are visited. Each level of the broker tree represents an
attribute.

13

When a client issues a new subscription, the same approach will be followed
until the subscription arrives at the broker node that represents it. If by some
reason, the tree does not have an edge for a specific value of an attribute, a new
edge will be created. During both of these approaches (subscription and event
propagation), a subscription or event that does not name an attribute at a given
level will follow the edge with label ∗ (do not care).

Gryphon has been successfully deployed over the Internet for real-time sports
score distribution at the Grand Slam Tennis events, Ryder Cup, and for moni-
toring and statistics reporting at the Sydney Olympics 13. In 2001, during the
Wimbledon tournament, it managed to withstand almost 100,000 concurrently
connected clients.

Siena Siena [6] is a content based pub-sub system built on top of a centralised
broker mesh topology. Siena does not make any assumptions on how the com-
munication between servers and client-server works, as this is not vital for the
system to work. Instead, for server to server communication, it provides a set of
options ranging from P2P communication to a more hierarchical structure, each
with its respective advantages and shortcomings.

Events in Siena are treated as a set of typed attributes with values. Con-
sequently, subscriptions (or event filters as they are referred to in Siena) select
events by specifying a set of attributes and constraints on its values. When issu-
ing a new subscription, a client sends its subscription to its broker node, which
then forwards it throughout the network. At each node, the subscription leaves
some state behind, identifying it and the neighbour which previously forwarded
the message. This is crucial, for these will be the dissemination paths that events
will follow when travelling through the network. Siena also defines an interesting
concept of subscription coverage. A subscription S is covered by a subscription
M if, whenever S is matched by an event e, then M is matched by e as well.
Although a simple concept, it saves a considerable overhead during subscription
dissemination and processing. A broker that detects a link with a more general
subscription will not need to forward subscriptions that are covered by it.

Event dissemination will work based on the previously set state at each broker
node. In the end events will technically follow the reverse paths of the subscrip-
tions. A detail worth noting is that Siena optimises for downstream replication,
that is, events should be routed as one copy as far as possible and should replicate
only downstream.

Interestingly enough Siena also proposed another influential idea, which is
the idea of advertisements. This concept could be viewed as a reverse subscrip-
tion.The concept is simple, a node advertises to the network the type of content
it is producing. In this paradigm, advertisements are propagated throughout the
network and when a subscription is issued, it follows the paths previously set by
the advertisements, effectively activating the path. Events are then forwarded
trough these activated paths.

13 https://www.research.ibm.com/distributedmessaging/gryphon.html

14

Scribe Scribe [7] is a topic based pub-sub system built on top of a fully decen-
tralised network (P2P). In order to do this it relies on Pastry DHT as its overlay
structure. This allows it to leverage the robustness, self-organisation, locality
and reliability properties of Pastry. Pastry DHT is at all similar to the DHTs
described in the previous section (Chord and Kademlia), with a specific effort
on achieving good network locality and a routing mechanism close to that of
Kademlia.

Scribe subscriptions are represented by a multicast tree, with each different
tree representing a specific topic (or group as it is referred in Scribe). The root
of this tree acts as the rendezvous node for the group. Each group has a groupId
assigned to it, as such, the rendezvous node will be the one with the closest
ID in the network. This multicast tree is built by joining the multiple Pastry
routes from each group member to the rendezvous. This dynamic process happens
whenever a new node decides to join a group. In order to do that, it asks Pastry
to route a JOIN message with the groupId as the key. At each node along the
path, the Scribe forward method is invoked to check this node is already part
of this group (also called a forwarder). If it is, it accepts the JOIN request and
sets the node as its child, else this node will become a forwarder for the group,
sets the requesting node as its child and it sends a JOIN request to this group.
Note that any node can be a forwarder for any group, it does not need to be an
active part of it (i.e. subscriber or publisher).

Disseminating an event in a group is a matter of disseminating it through its
respective multicast tree. Fault tolerance mechanisms can be implemented on top
of this system but, out of the box, Scribe provides only best effort delivery. As
for the rendezvous nodes, their state can be replicated across the k closest nodes
in the leaf set of the root node. Whenever a failure is detected by a children, it
will issue a JOIN message which, thanks to Pastry’s properties will be routed
to a new root node which has access to the previous state of the rendezvous.

Meghdoot Meghdoot [11] is a content based pub-sub system. It is built on
top of a P2P network, specifically CAN DHT (already covered in the previous
section). Meghdoot leverages the multidimensional space provided by the CAN
DHT in order to create an expressive content based system.

In Meghdoot, subscriptions are defined over a schema of n attributes. Each
attribute has a name, type and domain, and can be described by a tuple {Name:
Type, Min, Max}. Min and Max describe the range of domain values taken by
the given attribute. All the peers in the system will use this same model. A sub-
scription will then be a set of predicates over the previously defined attributes. In
order to map this to the CAN DHT, Meghdoot defines the n attributes schema
as a 2n dimensional space in the DHT. Subscriptions will be a point in this mul-
tidimensional space, where the range query it defines will be represented as two
separate dimensions per attribute in the DHT (hence the 2n space). Each sub-
scription is routed through the CAN DHT until it reaches the peer responsible
for managing the zone it is part of.

15

Event dissemination in Meghdoot will be a matter of routing each event
through the CAN DHT. The events too will be defined by points in the mul-
tidimensional space. The point will be represented by the value of that same
attribute in each of dimensions used to map it. For example, for a 2 dimensional
space (x, y) (only one attribute), an event with a value z would be mapped to
a point x = y = z. Once the event arrives at the node responsible for manag-
ing that specific zone in the DHT, it will be up to it to route the event to all
of its neighbours that are part of the region affected by the it. An interesting
property of the 2n dimensional space is that half of it is left unexplored by the
default subscription algorithm. This allows that space to persist replicas of the
subscriptions on the other half, making Meghdoot a system with fault tolerance
by default.

Poldercast Poldercast [18] is a recent pub-sub system with a strong focus on
scalability, robustness, efficiency and fault tolerance. It follows a topic based
model and follows a fully decentralised architecture. The key detail about this
system is that it tries to blend deterministic propagation over a structured over-
lay, with probabilistic dissemination through gossip based unstructured overlays.
In order to do this, Poldercast uses 3 different overlays. Two of them, Cyclon and
Vicinity, we covered in the previous section and the third one closely resembles
Chord in many ways.

Poldercast subscriptions are represented as a structured ring overlay. Each
topic has its own overlay in fact, with all subscribers (and only them) of the
corresponding topic connected to it. This overlay is maintained by a module
referred to as the Rings Module and its overall mechanisms closely resemble
Chord’s ones. In order for each node to have visibility across the whole pub-sub
network, Vicinity, with the help of Cyclon, will be responsible for keeping an
updated set of peers participating in each of the available topics in the network.
Subscribing to a topic will then be a matter of consulting this set of peers and
joining the specific overlay for the topic.

Propagating events will be a matter of forwarding the event through the
specific topic overlay. It is important to notice that Poldercast assumes only peers
subscribed to a topic can publish to that same topic. The way this propagation
works is through the ring overlay that, despite being similar to Chord, it has
some important differences. It does not use a finger table at each node to speed
up propagation. Instead, with the help of Vicinity, each node keeps a random
set of peers for the topics it is part of. With them, whenever a node receives
a message from a specific topic, it will propagate the event through a set of
these peers. This propagation will be based on a system wide fanout parameter.
It will also forward the event to its successor or predecessor (depending where
the event originated from), or will simply ignore if it is not the first time it has
received it. These mechanisms, depending of the fanout parameter, guarantee
average dissemination paths for each topic to be asymptotically logarithmic.

Through the multiple mechanisms described above, Poldercast attempts to
provide a set of guarantees. To start with, only nodes subscribed to a topic

16

will receive events published to that topic. In other words, no relay nodes are
used. It also focuses on handling churn through the use of a mixture of gossip
mechanisms, ensuring an highly resilient network, with a focus on high hit ratio
(number of subscriptions covered). Finally, it seeks to reduce message duplication
factor (proportional to the fanout parameter) without compromising the network
resilience.

Systems Overview We will now compare some of the systems we have men-
tioned so far. The table 1 will serve as a useful comparison mechanism for this.
A couple of notes on the terminology used. We address delivery guarantees as
the ability to deliver a message under normal working conditions and refer to
fault tolerance as the ability to keep such guarantees under churn. This of course
depends on the persistence of subscriptions and mechanisms to replicate these.
The rest of the criteria have been addressed throughout the previous sections.

3.3 Web Technologies

When building any kind of network focused system nowadays, there is no ques-
tion that one should take advantage of the full potential that the web has to
offer. Browsers are a lot more complex and allow for a vast world of possibilities
in terms of applications that can be built on top of it. P2P applications are
no exception here. In the next sections we will cover a set of technologies that
allow for a modern distributed application to run, not only on the desktops and
servers we are used to, but also in browsers running in multiple platforms.

It is indisputable that one cannot think of modern web development without
speaking of Javascript 14. Javascript is a lightweight, interpreted, programming
language, known as the scripting language for the web. Initially created with the
purpose of allowing the creation of simple interactions and animations in web
pages it is now one of the main programming languages for the web 15. It is
used, not only for client side programming, but also to power server side appli-
cations. Since Javascript has different runtimes, it became necessary to create a
standardised base from which the multiple browser vendors and runtime main-
tainers could work from. Hence ECMAScript, the standard for the Javascript
implementation.

As it was previously said, nowadays, Javascript is not restrict to browsers
only. NodeJS 16 was the first successful implementation of a Javascript runtime
for the server, built on top of Chrome’s V8 JavaScript engine 17. This allowed
developers to write and run Javascript programs in multiple architectures and
operating systems, with access to a set of common native libraries that allow
to interact with relevant parts of the system 18 such as network, filesystem and

14 https://www.ecma-international.org/publications/standards/Ecma-262.htm
15 https://insights.stackoverflow.com/survey/2017
16 https://nodejs.org
17 https://developers.google.com/v8/
18 https://nodejs.org/api/

17

S
y
stem

s
/

P
ro

p
erties

S
u
b
scrip

tio
n

M
o
d
el

A
rch

itectu
re

O
v
erlay

S
tru

ctu
re

S
u
b
scrip

tio
n

M
a
n
a
g
em

en
t

E
v
en

t
d
issem

in
a
tio

n
R

elay
F

ree
R

o
u
tin

g
D

eliv
ery

G
u
a
ra

n
tees

F
a
u
lt

T
o
lera

n
ce

G
ry

p
h
o
n

co
n
ten

t
b
a
sed

cen
tra

lised
b
ro

k
er

h
iera

rch
y

N
/
A

ro
u
te

to
b
ro

k
er

n
o
d
e

resp
o
n
sib

le
fo

r
su

b
scrip

tio
n

tree
h
iera

rch
y

N
/
A

y
es

b
est

eff
o
rt

S
ien

a
co

n
ten

t
b
a
sed

cen
tra

lised
b
ro

k
er

m
esh

N
/
A

ro
u
te

th
ro

u
g
h

th
e

w
h
o
le

sy
stem

,
k
eep

sta
te

a
t

ea
ch

n
o
d
e

fl
o
o
d

w
ith

ca
ch

ed
sta

te
a
t

ea
ch

n
o
d
e

N
/
A

y
es

b
est

eff
o
rt

J
ed

i
co

n
ten

t
b
a
sed

cen
tra

lised
b
ro

k
er

h
iera

rch
y

N
/
A

ro
u
te

th
ro

u
g
h

th
e

w
h
o
le

sy
stem

,
k
eep

sta
te

a
t

ea
ch

n
o
d
e

tree
h
iera

rch
y

N
/
A

y
es

b
est

eff
o
rt

B
ay

eu
x

to
p
ic

b
a
sed

d
ecen

tra
lised

T
a
p

estry
D

H
T

ro
u
te

to
ren

d
ezv

o
u
s

n
o
d
e

m
u
ltica

st
tree

n
o

y
es

b
est

eff
o
rt,

n
o

su
b
scrip

tio
n

p
ersisten

ce
S
crib

e
to

p
ic

b
a
sed

d
ecen

tra
lised

P
a
stry

D
H

T
ro

u
te

to
ren

d
ezv

o
u
s

n
o
d
e

m
u
ltica

st
tree

n
o

y
es

b
est

eff
o
rt,

n
o

su
b
scrip

tio
n

p
ersisten

ce
M

ed
h
d
o
o
t

co
n
ten

t
b
a
sed

d
ecen

tra
lised

C
A

N
D

H
T

p
o
in

ts
in

C
A

N
D

H
T

C
A

N
ro

u
te

(lin
e

in
m

u
lti-

d
im

en
sio

n
a
l

sp
a
ce)

n
o

y
es

rep
lica

ted
su

b
scritio

n
s

H
erm

es
ty

p
e

b
a
sed

d
ecen

tra
lised

P
a
stry

D
H

T
ren

d
ezv

o
u
s

n
o
d
e

m
u
ltica

st
tree

n
o

y
es

b
est

eff
o
rt

T
era

to
p
ic

b
a
sed

d
ecen

tra
lised

g
o
ssip

b
a
sed

ov
erlay

ra
n
d
o
m

w
a
lk

o
u
tsid

e
clu

ster,
fl
o
o
d

a
fter

n
o

n
o

b
est

eff
o
rt

M
ercu

ry
co

n
ten

t
b
a
sed

d
ecen

tra
lised

rin
g

b
a
sed

D
H

T
s

ov
erlay

p
er

a
ttrib

u
te

in
sch

em
a

ro
u
te

th
ro

u
g
h

rin
g

ov
erlay

s
n
o

y
es

b
est

eff
o
rt

S
u
b
-2

-S
u
b

co
n
ten

t
b
a
sed

d
ecen

tra
lised

rin
g

b
a
sed

D
H

T
/

g
o
ssip

b
a
sed

ov
erlay

rin
g

ov
erlay

w
ith

su
b
scrib

ers

g
o
ssip

o
u
tsid

e
clu

ster,
ro

u
te

th
ro

u
g
h

rin
g

a
fter

n
o

n
o

b
est

eff
o
rt

P
o
ld

erca
st

to
p
ic

b
a
sed

d
ecen

tra
lised

rin
g

b
a
sed

D
H

T
/

V
icin

ity
/

C
y
clo

n

rin
g

ov
erlay

w
ith

su
b
scrib

ers

ro
u
te

th
ro

u
g
h

rin
g

ov
erlay

y
es

y
es

(ev
ery

p
u
b
lish

er
is

a
su

b
scrib

er)

h
ig

h
resillien

ce
to

ch
u
rn

,
n
o

su
b
scrip

tio
n

p
ersisten

ce

T
a
b
le

1
.

C
o
m

p
a
riso

n
ta

b
le

fo
r

th
e

releva
n
t

sy
stem

18

others. A key aspect in NodeJS was the way it chose to deal with the lack of
support from Javascript for multithreading: the use of an event loop that powers
an event-driven architecture capable of asynchronous I/O.

Yet another key element in the NodeJS and Javascript ecosystem is NPM 19,
its package manager. NPM was one of the main drivers of a philosophy that is
deeply ingrained in the JS ecosystem which focuses on building small reusable
packages that everyone can use and build on top of. This is heavily inspired by the
UNIX philosophy summarised by Doug McIlroy 20 - ”Write programs that do one
thing and do it well. Write programs that work together”. This approach ended
up being a major differentiator on how modern web applications are developed.
Currently NPM is one of the largest package registries in the world 21. This
mindset though is really important, for it allows applications to be built on top
of previously published packages, making modularity and code reusability core
values of the ecosystem. Even more interesting is the sudden possibility offered
by having the same programming language supporting different environments
(browsers, servers, desktops, etc.), all of this powered by a common way of
publishing and sharing code.

When focusing specifically on P2P apps, the past years have brought together
a set of new network protocols that empower communication between browsers
in a real-time fashion and also provide alternatives to TCP 22. WebSockets 23

aimed at providing a real-time, full-duplex communication between clients and
servers over TCP, but it was WebRTC 24 that paved the way for new P2P
applications that could run in the browser. WebRTC focuses on powering real-
time communications, like audio/video stream or just arbitrary data, between
browsers, without the need of an intermediary. This of course is a real break-
through in the P2P field as it allows browsers to receive incoming connections.
On other hand, alternatives to the TCP transport, such as uTP 25 and QUIC 26

, came through, seeking to bring reliability and order delivery without the poor
latency and congestion control issues of TCP. This provided new suitable alter-
natives to communication between peers on top of UDP, a transport that has
been vital in P2P applications that need an affordable way to perform NAT 27

traversal.
In the application realm, there have been quite a few in the past years that

seek to leverage all these new technologies and breakthroughs. One of the ex-
amples most worth mentioning is the InterPlanetary File System (IPFS) 28,
a P2P hypermedia protocol designed to create a persistent, content-addressable

19 https://www.npmjs.com/
20 https://archive.org/details/bstj57-6-1899
21 http://blog.npmjs.org/post/143451680695/how-many-npm-users-are-there
22 https://tools.ietf.org/html/rfc793
23 https://tools.ietf.org/html/rfc6455
24 https://www.w3.org/TR/webrtc/
25 http://www.bittorrent.org/beps/bep 0029.html
26 https://datatracker.ietf.org/wg/quic/about/
27 https://tools.ietf.org/html/rfc2663
28 https://ipfs.io

19

network on top of the distributed web. At the core of IPFS is what they refer to
as the Merkle DAG 29. The Merkle DAG is a graph structure used to store and
represent data, where each node can be linked to based on the hash of its con-
tent. Each node can have links to other nodes, creating a persistent, chain like,
structure that is immutable. IPFS has an interface around this structure referred
to as InterPlanetary Linked Data (IPLD) which focuses on bringing together
all the hash-linked data structures (e.g. git, blockchains, etc.) under a unified
JSON-based model. In order to interact with IPLD, IPFS exposes an API that
allows us to insert and request random blobs of data, files, JSON objects and
other complex structures. Having implementations in both Go and Javascript,
IPFS leverages the modularity mantra in a fascinating way, focusing on creat-
ing common interfaces that allow for different pieces of the architecture to be
changed and selected according to one’s needs. All of this without impacting
the overall application and its top level API. These came from the observation
that the web we have today is a set of different heterogeneous clients, that have
different needs and resources. As such, not everyone can rely on the same set of
transports, storage management and discovery mechanisms. These small mod-
ules that constitute IPFS have recently been brought together under the same
umbrella, as libp2p 30, a set of packages that seek to solve common challenges
in P2P applications. Interestingly enough, a recent addition to libp2p, and con-
sequently IPFS, was a pub-sub module, with a naive implementation using a
simple network flooding technique.

Fig. 7. An illustration on the IPFS architecture

4 Proposed Solution

We now describe our proposed solution. Since our goal is to have a highly scalable
system with reliability and persistence in mind, we decided to take advantage of
the IPFS ecosystem and all of its different modules. Our pub-sub module will
provide an alternative to the naive implementation of pub-sub, currently in place
in IPFS. The modularity of the IPFS system allows users to choose what is more
convenient for them. Besides, the existence of a base implementation allows us

29 https://github.com/ipld/specs/tree/master/ipld
30 https://libp2p.io

20

to have a baseline for improvement, one from which we can extract metrics and
relevant data.

We will start by covering our subscription model and the multiple structures
that describe events and subscriptions. Afterwards we will take a closer look at
the overlay structure used. We will then cover how the system works in terms of
subscription management, focusing on how new subscriptions are handled, how
new topics are issued and how the topic hierarchy works. Finally we will cover
event dissemination followed by quality of service, focusing on the mechanisms
we have used to bring persistence, fault tolerance and delivery guarantees to the
network.

4.1 Subscription Model and Data Structures

Our subscription model follows a topic based approach. It has however some nice
properties that make it far more expressive than what would be expected of a
regular topic based system. To do this, we take advantage of the core structure
of IPFS, the Merkle DAG, through its previously described interface IPLD.
We start by defining two basic structures: the topic descriptor and the event
descriptor.

The topic descriptor defines the basic structure of our topics. It is ver-
sioned by default and possesses links (or merkle-links as it is referred to in the
IPLD specification) to its sub-topics. A metadata object also helps to store other
relevant information such as the protocol version. The following is an example
using the JSON format which IPLD uses.

{

name: <topic-name>,

metadata: <json-object>, // creation date, protocol version, etc.

#: {

<sub-topic-name>: <merkle-link to topic descriptor>,

...

},

parent: <merkle-link to topic descriptor>

}

These structures are addressed by the hash of its content, which in IPFS are
referred to as Content Identifiers 31 or CID. In fact, given the definition of these
objects, all the content of the structure itself is addressable based on its CID.
For example, if we had a topic descriptor with a CID ¡foobar-hash¿u we could
address it using a UNIX path approach such as /¡foobar-hash¿. However we could
access its properties directly such as /¡foobar-hash¿/# to get the sub-topics list,
or /¡foobar-hash¿/parent to get the previous version of this topic. These paths
are referred to under IPFS as merkle-paths.

Given the immutable nature of the IPLD structure, the parent link allows
us to create new updated versions of the topic descriptor (with a new sub-topic

31 https://github.com/ipld/cid

21

for example) while maintaining a history of previous topic descriptors for this
topic. The key # on the other hand contains a JSON object with merkle-links
for all of sub-topics indexed by name.

The topic name is a string following a UNIX like path pattern. For example
/sports. If we are speaking about sub-topics though, there is an extra require-
ment, given that a sub-topic name needs to be consistent with its parent hierar-
chy. This means that, for a topic /sports, it cannot have a sub-topic /fruits, or
/fruits/apples. /sports/football however is a valid example.

The event descriptor defines the structure of our events. Each object has
links to its topic and its parent which represents the previous event in this
stream. A metadata object is used to store creation timestamps an other relevant
information. The publisher key will be a reference to the ID of the publisher node.
Finally we have the payload object, which will contain the actual information of
the event. The following is an example of it.

{

topic: {

name: <topic-name>, // Name of the topic

link: <merkle-link> // Link to the topic of this message

},

publisher: <publisher node ID>

parent: <merkle-link to previous event>,

metadata: <json-object>, // Timestamp and other relevant info

payload: <json-object>, // The actual message content

}

It is worth noticing the importance of both parent links in each structure.
These allow both graph structures to build a complex history. On one side we
have the topic descriptors with a versioning system and on the other we have
a stream of events represented as a chain of immutable objects. These concepts
are very important for the overall system.

We still need however one more structure to help us build our system. Given
the immutability of the objects above, we need a way to point to the latest version
of a given topic descriptor so that other peers can easily find it. Fortunately, this
scenario is already covered by the IPFS ecosystem through IPNS 32, which aims
at providing mutability over all these immutable structures. An IPNS record has
a special CID, generated through the hash of a public key from a cryptographic
key pair. These records can be used to point to a specific CID and are generated
using asymmetric cryptography to sign the record. The records are ephemeral
though, so it requires the owner of the asymmetric keys to republish the record
every 24 hours. We have two important guarantees with this structure: mutabil-
ity, which allow creators of topics to point to a new version of a topic descriptor
seamlessly, keeping the same CID as an entry point for the topic; authenticity
of the given topic, given that peers can check the IPNS record signature and
decide if they trust the peer owning that record or not.

32 https://github.com/ipfs/specs/tree/master/iprs

22

4.2 Overlay Structure

Since our work will be a libp2p compatible module, we will be able to leverage the
multiple modules that already exist in libp2p ecosystem. This includes network
transports, discovery and routing mechanisms as well as other useful data types
and utility methods. Figure 9 illustrates where our work will take place and
some of the other modules we will be able to use. In order to understand it
though there are some key aspects around libp2p that we need to cover first.
libp2p tries to separate concerns of peer communication and data transports.
In order to do that, it has different transport implementations under a common
interface 33, which can then be leveraged through lip2p-swarm 34, a connection
abstraction that can deal with multiple connections under different protocols.
On top of this we then have the peer communication, which can be split into two
big mechanisms. On one end we have the discovery mechanisms 35, which focus
on ways of finding and connecting to new peers. On the other end we have peer
routing 36, which focus on transferring data between already connected peers.

33 https://github.com/libp2p/interface-transport
34 https://github.com/libp2p/js-libp2p-swarm
35 https://github.com/libp2p/interface-peer-discovery
36 https://github.com/libp2p/interface-peer-routing

Fig. 8. A digram with an example of how these structures relate to each other

23

Our work will mostly reside in three different modules: the pub-sub module
implementation; adding extra functionality to the Kademlia DHT peer routing
module; building a small module to power gossip based communication between
peers.

Fig. 9. The libp2p architecture and where will our work take place

IPFS currently relies on a Kademlia DHT implementation to provide a struc-
tured overlay mechanism through which it can route messages. We plan on using
this same overlay as a routing mechanism for our system. In order to do that we
have to understand the methods already provided by it.

– put: insert a value with a given key in the DHT.
– get: get a value of given key from the DHT.
– findPeer: find the peer with the given peer ID in the DHT.
– findPeerLocal: find the peer with the given peer ID in the list of peers to

which we are already connected to.
– getClosestPeers: find the k(system wide parameter) closest peers to a given

key.
– provide: let the network know that this peer can also distribute a given key.
– findProviders: find providers for a given key.

Some methods are basic functions of Kademlia as explained in the previous
section (e.g. getClosestPeers is basically a node lookup operation). However, some
of these methods are not part of the Kademlia definition, specifically provide and
findProviders. The way the provide method works is by setting special records
at the node that is housing the key we want to provide. This way, when peers

24

query for providers or for the actual content, the Kademlia routing mechanism
will ensure that the message will arrive at the same set of nodes consistently.

We also make use of a gossip based communication mechanism to build a
simple unstructured overlay. We will cover its use case later but in functionality
terms it is quite simple. At each node a fixed size list of peers should be kept, with
its size being a system wide parameter. Periodically, the nodes should exchange
its lists and update info accordingly. Finally the module should support a simple
network flood, disseminating info across all the nodes.

4.3 Subscription Management

In our system, subscriptions are represented as multicast trees, with a different
tree per topic. When a new subscription is issued, a peer, having the CID of
an IPNS record for a given topic, will issue a getClosestPeers method for that
given CID. These peers are in charge of acting as a rendezvous for incoming
subscriptions and events. Similar to Scribe, when performing the recursive node
lookup mechanism, at each step, the initiator peer checks to see if some of the
peers that resulted from this step are already part of the multicast tree. In an
affirmative case, the initiator node joins the tree as a child of this specific node, if
not, it chooses the closest one and issues a special command for this peer to join
the multicast tree. The node upon receiving a command to join the multicast
tree registers the initiator node as its child on the multicast tree and again repeat
the same process until eventually a node belonging to the tree is found.

Peers that belong to a multicast tree are responsible for making sure that
both parent and children nodes are healthy (through periodic pings) and recon-
structing the tree at their level if needed be. For that, they keep extra state
on extra levels of the tree. However, if a network partition causes these mecha-
nisms to fail, nodes can always rejoin the network through the procedure detailed
above.

Since our system accounts for topic hierarchy, it is possible to create sub-
topics. If a peer wants to add a sub-topic to a topic it created, all it needs to do
is add a new sub-topic link to the parent topic descriptor and afterwards issue
a new IPNS record pointing to the new version of the parent topic descriptor.
If the node does not own the parent topic it will need to request for the new
sub-topic to be added to the node responsible for the parent topic. If the request
is accepted the procedure will be the same as the one described previously.

It is important to notice that, in our topic hierarchy, subscribers of a parent
topic will not automatically be subscribed to the sub-topics of it. It is easy how-
ever to subscribe to these, since whenever a new update to the topic descriptor
is made, the node responsible for the topic will issue a special event and dis-
seminate it through the multicast tree. Since updates to the sub-topic list will
trigger topic descriptor updates, subscribers only have to monitor for changes
on the special key # of the topic descriptor.

25

4.4 Event Dissemination

Event dissemination in our system is a matter of propagating the event through
the multicast tree. Nodes that are already part of the tree just need to send the
event through the different links the participant has. For nodes not part of the
tree it is just a matter of targeting the rendezvous nodes. A really important
note though is that before disseminating the event through the multicast tree,
the publisher should always invoke the put method of the DHT with the event
and respective CID. This will ensure the persistence of the event and help with
the delivery guarantees which we will later discuss.

4.5 Quality of Service

We will now discuss the mechanisms we employ in order to provide the quality
of service guarantees we set as goals for this system. We will cover the fault
tolerance mechanisms, the delivery guarantees and data persistence.

Looking at fault tolerance we should start by the rendezvous nodes. We
need to make sure these do not become a bottleneck for the system. Hence the
usage of the k closest nodes of the given topic CID, this way, through the exist-
ing DHT, we get a natural mechanism for selecting replicas for the rendezvous
node. When a new topic is created, the node responsible for creating it is also
responsible for calculating the k closest nodes to the topic CID and communi-
cating with the peers in order for them to become part of the network. To keep
the rendezvous nodes synchronised, a simple gossip overlay is used (described
in the previous sections). Another approach is to use the provide method of the
DHT as a mechanism for a node to register as a rendezvous.

We then need to cover the IPNS record issue, for it can also become a bot-
tleneck. An important thing to keep in mind though is that the IPNS records
come with a notion of ownership which, if you take a closer look, actually makes
sense here. Since the peer that created the topic is actually responsible for up-
dating the respective descriptor and serving as rendezvous for the network. This
ownership however does not translate at all in lock in though, the usage of these
graph structures allows anyone who wants to, to create a new topic based on
any previous topic that you do not even need to own. Better yet, you get all the
topic history and previous event streams connected to this new graph, for free.
With that said, if a set of peers really wants to create a mechanism where the
failure of the node that created the topic does not imply that the current IPNS
record will eventually disappear, they will need to share the key pair responsible
for the record among them, so that they can keep renovating it in case of failure.
This of course will imply some kind of consensus between the peers, which is
outside of the scope of this work.

On the delivery guarantee front we developed a simple mechanism that
ensures that every node subscribed to a given topic will eventually get the same
event stream as every other node in the network. This is because of the way the
event stream is linked. Given that through the parent key of an event descriptor,
a node can check if it is missing any message from the stream. If it is, it will query

26

the Kademlia DHT using the get method for that specific key. This approach
can ultimately been seen as a simple negative ACK mechanism.

Finally, on the persistence front, we see these graph structures as the key
to create a P2P pub-sub system that finally addresses data persistence properly.
In order to this, having easily addressable structures is not enough. As such,
we devised a way to guarantee a smooth mechanism for replicating event data.
When propagating an event through the multicast tree, each peer will, with a
given probability p (a system wide parameter) invoke the provide method for
this specific event. This ensures data is persisted across multiple nodes which
will allow for peers to eventually build their event stream from any given point.
Hence our last mechanism, when a peer subscribes to a new topic, it will almost
immediately receive the set of leaf events from the graph stream. This simple
approach will give it the ability to rebuild the stream of events as far as it likes.

5 Evaluation

We now define the metrics and procedures that are going to help us evaluate the
overall system. These are focused on, not only testing the overall architecture,
but also to test the fulfilment (or not) of the objectives we set in the beginning
of this work.

We want to keep track of three important metrics at each node during all of
our tests. CPU load, memory usage, bandwidth usage adn disk usage. This will
help us attest the efficiency of the system. As comparison we are going to use
two systems. A baseline one where publishers send messages directly to all of its
subscribers. And naturally, the current pub-sub system in IPFS.

The metrics we are going to track are:

– Ratio of messages sent by each node, correlated with the CPU, memory and
bandwidth usages.

– Ratio of throughput speedup vs disk storage used at each node.
– Ratio between latency (total propagation time of an event) reduction vs disk

storage used at each node.
– Ratio of subscriptions covered under heavy network churn (network parti-

tions and arrival of new peers).
– Ratio of subscriptions covered after a severe network partition and its recov-

ery.
– State of event streams at each node under heavy network churn (only appli-

cable to our system). Monitor discrepancies in state across nodes and how
long does it take to converge.

– State of event streams at each node after a network partition and its recovery
(only applicable to our system). Monitor discrepancies and how long does it
take to converge.

From all of these metrics we want to extract average, median and percentiles
(75, 90, 95 and 99). As input data we are going to use synthetic datasets of both

27

events and subscriptions, of different sizes and with different kinds of distribu-
tions (uniform, unbalenced, Zipfian, etc.).

In order to test these assumptions, we are going to run it on a simulator,
either using PeerSim 37 or using IPTB 38 to run a cluster of sandboxed IPFS
nodes.

6 Conclusions

In this work we have presented a pub-sub system for the distributed web. We
started out by presenting the motivation that has led us to this work, defining a
set of objectives that we seek for our system. We then documented our literature
review in the subject, classifying the reviewed systems accordingly. After that
we described our solution, considering all the literature and systems studied
previously. Finally, we presented the metrics that will allow us to asses our
solution and evaluate the quality of the work done.

37 http://peersim.sourceforge.net/
38 https://github.com/whyrusleeping/iptb

28

A Appendix

A.1 Work Scheduling Example

Estimated schedule for the remaining work presented in table 2.

Table 2. Work Scheduling

Month Work

February (2 weeks) Explore the pub-sub solution of IPFS

February (2 weeks) Extract relevant metrics form the pub-sub solution of IPFS

March (1 week) Plan the libp2p needed changes

March (3 week) Implement the libp2p changes

April Implement the new pub-sub module

May Implement the new pub-sub module

June Evaluate implemented solution, compare with base module

July Write thesis report

August Write thesis report

September Report review and submission

29

References

1. Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and
Tushar D. Chandra. Matching events in a content-based subscription system.
Proceedings of the eighteenth annual ACM symposium on Principles of distributed
computing - PODC ’99, pages 53–61, 1999.

2. Lorenzo Alvisi, Jeroen Doumen, Rachid Guerraoui, Boris Koldehofe, Harry Li,
Robbert van Renesse, and Gilles Tredan. How robust are gossip-based communi-
cation protocols? ACM SIGOPS Operating Systems Review, 41(5):14, 2007.

3. R Baldoni, R Beraldi, V Q Ema, L Querzoni, and S Tucci-Piergiovanni. TERA:
Topic-based Event Routing for peer-to-peer Architectures. 2007.

4. G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C.
Sturman. An efficient multicast protocol for content-based publish-subscribe sys-
tems. Proceedings. 19th IEEE International Conference on Distributed Computing
Systems (Cat. No.99CB37003), pages 262–272, 1999.

5. Ar Bharambe, Sanjay Rao, and Srinivasan Seshan. Mercury: a scalable publish-
subscribe system for internet games. 1st Workshop on Network and Systems Sup-
port for Games (NetGames ’02), pages 3–9, 2002.

6. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and eval-
uation of a wide-area event notification service. Foundations of Intrusion Tolerant
Systems, OASIS 2003, 19(3):283–334, 2003.

7. Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, and Antony Rowstron.
Scribe:A large-scale and decentralized application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communication, 20, 2002.

8. G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure
and its application to the development of the OPSS WFMS. IEEE Transactions
on Software Engineering, 27(9):827–850, 2001.

9. Patrick Eugster, Rachid Guerraoui, Joe Sventek, and Agilent Laboratories Scot-
land. Type-Based Publish/Subscribe. Technical report, Swiss Federal Institute of
Technology, Lausanne, 2000.

10. Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–
131, 2003.

11. Abhishek Gupta, Ozgur D Sahin, Divyakant Agrawal, and Amr El Abbadi. Megh-
doot: Content-Based Publish/Subscribe over P2P Networks. Springer LNCS,
3231/2004(Middleware 2004):254–273, 2004.

12. Anne-Marie Kermarrec and Peter Triantafillou. XL peer-to-peer pub/sub systems.
ACM Computing Surveys, 46(2):1–45, 2013.

13. Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. pages 53–65. 2002.

14. P. R. Pietzuch and J. M. Bacon. Hermes: A distributed event-based middleware
architecture. Proceedings - International Conference on Distributed Computing
Systems, 2002-Janua:611–618, 2002.

15. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. ACM SIGCOMM Computer Communi-
cation Review, 31(4):161–172, 2001.

16. Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems. Number November
2001, pages 329–350. 2001.

30

17. Stefan Saroiu, P Krishna Gummadi, and Steven Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. SPIE MMCN ’02: Proc. of the Annual
Multimedia Computing and Networking, 4673:156–170, 2002.

18. Vinay Setty and Maarten Van Steen. Poldercast: Fast, robust, and scalable archi-
tecture for P2P topic-based pub/sub. Proceedings of the 13th . . . , pages 271–291,
2012.

19. Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. A Lightweight, Robust P2P
System to Handle Flash Crowds. 22(1):6–17, 2002.

20. I Stoica, R Morris, D Karger, M F Kaashoek, and H Balakrishnan. Chord: A
Scalable Peer-to-peer Pookup Service for Internet Applications. Sigcomm, pages
1–14, 2001.

21. Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller,
Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon: An Informa-
tion Flow Based Approach to Message Brokering. Arxiv preprint cs9810019,
cs.DC/9810:1–2, 1998.

22. Spyros Voulgaris, Daniela Gavidia, and Maarten Van Steen. CYCLON: Inexpensive
membership management for unstructured P2P overlays. Journal of Network and
Systems Management, 13(2):197–216, 2005.

23. Spyros Voulgaris, Etienne Rivière, Anne-Marie Kermarrec, and Maarten Van
Steen. Sub-2-Sub: Self-Organizing Content-Based Publish and Subscribe for Dy-
namic and Large Scale Collaborative Networks. Technical report, 2005.

24. Spyros Voulgaris and Maarten Van Steen. VICINITY: A pinch of randomness
brings out the structure. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8275
LNCS:21–40, 2013.

25. B.Y. Zhao, Ling Huang, Jeremy Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubi-
atowicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications, 22(1):41–53, jan 2004.

26. Shelley Q Zhuang, Ben Y Zhao, Anthony D Joseph, Randy H Katz, and John D
Kubiatowicz. Bayeux. In Proceedings of the 11th international workshop on Net-
work and operating systems support for digital audio and video - NOSSDAV ’01,
number June, pages 11–20, New York, New York, USA, 2001. ACM Press.

31

