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Abstract
Function-as-a-Service is an emerging CloudComputingmodel
that is proving to be very suitable for processing the large
amounts of data being generated by devices in the expanding
Internet of Things. Bringing this computing model closer
to the source of data can provide a response to the reduced
latencies and bandwidth requirements of the applications
that reside at the edge of the Internet. Edge Computing en-
vironments are typically characterized by their large scale
architecture, decentralized nature, and resource-constrained
devices, which causes Function-as-a-Service approaches to
currently still lack the ability to fulfill these service require-
ments, while efficiently leveraging resource utilization on
distributed edge devices.
In this work, we present a solution to implement the

Function-as-a-Service model in an Edge Computing envi-
ronment, by utilizing resources volunteered by other edge
nodes and discovered through the IPFS network, to deploy
functions written in several possible language runtimes, that
allow near universal deployability on edge devices, using the
Apache OpenWhisk framework.

CCS Concepts: • Computer systems organization →
Cloud computing; Peer-to-peer architectures.

Keywords: Function-as-a-Service, Edge Computing, Cloud
Computing, Volunteer Computing, Peer-to-Peer Data Net-
works

1 Introduction
Function-as-a-Service (FaaS) is an emerging paradigm [12]
aimed to simplify Cloud Computing and overcome its draw-
backs by providing a simple interface to deploy event-driven
applications that execute the function code, without the re-
sponsibility of provisioning, scaling, or managing the un-
derlying infrastructure. In the FaaS model, the management
effort is detached from the responsibilities of the consumer,
since the cloud provider transparently handles the lifecycle,
execution, and scaling of the application. This model was
originally proposed for the cloud but has since been explored
for deployments in geographically distributed systems [7].

With the expansion of the Internet of Things, the cloud has
become an insufficient solution to respond to the growing
amounts of data transmitted and the variety of Internet of
Things applications that require low latency and location-
aware deployments, as stated by CISCO [18], which led to the
introduction of the Edge Computing paradigm, designed to

reduce the overload of information sent to the cloud through
the Internet, by bringing the resources and computing power
closer to the end user and processing the data at the edge of
the network.

The intersection between Function-as-a-Service and Edge
Computing presents a captivating area of research and inno-
vation since the growing demand for low latency, real-time
applications urges the need to explore the integration of FaaS
in Edge Computing devices. At the same time, this integra-
tion also needs to address its inherent challenges, such as
managing distributed architectures, optimizing resource al-
location, and ensuring compatibility with the heterogeneous
characteristics of edge devices.
Most cloud service platforms still rely on centralized ar-

chitectures and services that are not designed to operate
on resource-constrained environments nor on the hetero-
geneous devices that characterize edge systems. Solutions
to bring Function-as-a-Service deployments to the edge of
the network have been explored [8], [15] but few have man-
aged to realize efficient resource provisioning and allocation
[6], by leveraging volunteered resources in a completely
distributed and decentralized manner [3].

By investigating the feasibility, performance implications,
and architectural considerations, this research attempts to
contribute valuable insights into how Function-as-a-Service
can improve the capabilities of edge devices and the devel-
opment of edge applications, and ultimately enhance dis-
tributed computing.
Our contribution consists of a FaaS@Edge system that

uses volunteer resources from multiple users, that are an-
nounced and discovered through the IPFS network, to submit
and invoke user functions on their volunteered edge devices
using the Apache OpenWhisk framework.

The rest of the document is structured as follows: Section 2
presents an analysis of the related work in Function-as-a-
Service, Edge Computing, and Peer-to-Peer Content, Storage
and Distribution. Section 3 describes FaaS@Edge’s architec-
ture and algorithms. Section 4 describes the implementation
details of our solution. Section 5 presents the evaluation of
our prototype. Finally, Section 6 wraps up the document with
our closing remarks.

2 Related Work
We present the related work in three topics associated with
our system: Function-as-a-Service is the service we want
to implement, Edge Computing is the computing paradigm
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where we want to implement it, and Peer-to-Peer content,
storage and distribution is what we have to realize to discover
and schedule the volunteered resources.

2.1 Function-as-a-Service
The excitement surrounding utility computing and the po-
tential of Cloud Computing has grown larger since 2009 with
some of the advantages pointed out, by Armbrust et al. [5],
back then being the illusion it creates of infinite comput-
ing resources, the elasticity to add or remove resources, not
needing to make upfront investments, and the pay-as-you-go
business model, whilst also mentioning the potential it offers
to create economies without needing to afford large data
centers, and improving resource utilization via virtualization
and hardware sharing.
Nowadays, Cloud Computing is a highly popular para-

digm with several service delivery models and deployment
methods that diverge from each other in the control and
responsibilities that the consumer and the service provider
have over the cloud infrastructure. The three main service
delivery models available are:

• Infrastructure-as-a-Service - Provides a cloud in-
frastructure where the consumer can deploy and run
software including operating systems, runtime en-
vironments, and applications. The consumer has no
control over the underlying physical infrastructure
but can manage storage space, networking proper-
ties, and have access to computing resources that may
be virtualized (e.g., Amazon’s Elastic Compute Cloud
(EC2)1).
• Platform-as-a-Service - Provides a cloud infrastruc-

ture where the consumer applications can be deployed
without having the responsibility to manage the un-
derlying infrastructure, including the physical layer
and operating systems. The consumer can deploy and
manage the applications and their configurationswith-
out being concerned about resource provisioning or
capacity planning (e.g., Google App Engine (GAE)2).
• Software-as-a-Service - Provides the consumer the
ability to use product applications hosted by the ser-
vice provider on a cloud infrastructure. The consumer
does not have the responsibility of managing the un-
derlying infrastructure, including servers, storage, and
network components that constitute the physical layer,
nor the operating systems and application runtime en-
vironment where the application is running. The con-
sumer can simply interact with the interface provided
by the service to utilize the application’s capabilities
(e.g., Google Apps3).

1https://aws.amazon.com/ec2/
2https://cloud.google.com/appengine
3https://workspace.google.com/

Function-as-a-Service, first presented by Amazon, in the
form of Lambda4 functions, allows the consumer to run their
function code automatically, at a more fine-grained level,
when a request occurs, i.e., an event is triggered, without
having to provision virtual machine instances or monitor
and upgrade the system.

Apache OpenWhisk5 is an open source serverless frame-
work that provides the application function execution capa-
bilities without having to manage the servers and underlying
infrastructure. In OpenWhisk, functions that execute code
are called Actions and can be written in multiple program-
ming languages. Their execution can be driven by events,
called Triggers, coming from a variety of sources, or manu-
ally, using the designated CLI or REST API. Rules can also be
employed to associate Triggers with Actions. OpenWhisk’s
performance is challenged by low latency applications, due
to cold starting containers, and by resource-constrained de-
vices like the ones used in Edge Computing environments.

2.2 Edge Computing
Edge Computing is a particular incarnation of Cloud Comput-
ing that seeks to provide a solution for some of its challenges,
in particular, network bandwidth pressure, privacy, and real-
time needs, by bringing Cloud Computing capabilities closer
to the source of data [10].
Caravela [16] is a completely decentralized Edge Cloud

system that utilizes volunteered user resources where users
can deploy their applications using Docker containers. It has
a distributed and decentralized architecture, based on a ring
structure of nodes built upon a Chord peer-to-peer overlay
that is used in the resource discovery mechanism to find a
node with resources available to deploy a container. Peers
in Caravela can act as suppliers, publishing offers to supply
their resources, buyers, searching for resource offers in order
to deploy a container, or traders, registering and mediating
the offers made within their resource region. For the sched-
uling process, there is a search for favorable resource offers,
according to the scheduling policy selected, and the buyer
node requests a deployment indicating the container config-
urations to be run using the resources previously discovered.
SETI@home [2] is a volunteer computing project that

uses Internet-connected computers to analyze radio signals
in search of extraterrestrial intelligence. It uses the BOINC [1]
software platform for volunteer computing and users simply
run a program on their own computer that downloads the
data from a centralized server and analyzes it. This system
is only designed for this specific set of applications but there
are other extensions of BOINC for cycle-sharing applications,
such as the system nuBOINC [17].

4https://aws.amazon.com/lambda/
5https://openwhisk.apache.org/
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2.3 Peer-to-Peer Content, Storage and Distribution
As computational progress evolves rapidly on a global scale
with the emergence of increasingly more powerful proces-
sors and more data being stored and shared through the
Internet, cloud storages have been more sought after to han-
dle these data management functions. However, the typical
characteristics of centralized management and single-entity
infrastructure providers which are linked to cloud storages
may pose several privacy and security concerns and threaten
data accessibility and availability [11]. Peer-to-Peer Data Net-
works aim to overcome these issues by creating overlay net-
works where peers can autonomously share their resources
with each other. While other data-sharing and content distri-
bution approaches like Content Delivery Networks [13], that
addressed the lack of dynamic management of Web content,
focus on fulfilling the customer’s (often a company) require-
ments for performance and Quality-of-Service, Peer-to-Peer
Data Networks’ main goal is to efficiently locate and transfer
files across peers (often final users) [14].

IPFS [9] is a highly distributed file system that combines
DHTs, block exchanges, version control, and self-certified
file systems ideas to build a decentralized peer-to-peer data
network. A Kademlia-based DHT is used in IPFS to discover
peers in the network and locate content that is being stored
locally by specific nodes. The objects stored in IPFS are split
into chunks that are content-addressed and used to build
a Merkle DAG with links between objects. An object can
then be retrieved using the root of its Merkle DAG. Data
distribution in the network is achieved using the BitSwap
protocol, in which peers maintain a list of content identifiers
of chunks they want to retrieve and another list of the ones
they are willing to offer in exchange. Support for publish-
subscribe based notifications has also been developed [4].
The previous systems address some of the aspects that

we are going to tackle in our solution, but none achieves
the implementation of all aspects. Apache OpenWhisk is a
framework for FaaS deployments, but it was not intentionally
designed to maintain performance in an edge environment
and does not feature content distribution. Caravela uses a
peer-to-peer network with similar capabilities as IPFS and
introduces the execution of long-running container appli-
cations, however, it is not designed for FaaS deployments.
SETI@home uses large-scale volunteer computing, but still
relies on a centralized server. IPFS focuses on content storage
and distribution, which is highly important in peer-to-peer
edge environments but involves no computation execution
by itself.

3 Architecture
FaaS@Edge is a distributed and decentralized middleware
that allows Function-as-a-Service deployments in volunteer
Edge Computing devices to reduce latency during executions,
realize efficient resource utilization, and promote content

distribution and availability. FaaS@Edge participant nodes
must have the following components (pictured in Figure 1):
• FaaS@Edge’s middleware running as daemon;
• An initialized IPFS Kubo node;
• The IPFS daemon running;
• An OpenWhisk stack running as a Java process (if the
node is supplying its resources to execute function
requests).

Figure 1. FaaS@Edge participant node’s complete compo-
nents.

3.1 Distributed Architecture
The distributed architecture of FaaS@Edge sits on top of
IPFS’ peer-to-peer architecture that relies on a Kademlia-
based DHT. The DHT maps the content identifiers to the
identifiers of nodes that are storing the content and their IP
addresses. Its protocol for performing lookups, routing, and
content retrieval makes it suitable for efficient content distri-
bution on a large scale, also as a result of its inherent caching
capabilities. Since all FaaS@Edge nodes have access to IPFS
and are uniquely identified by their PeerID, a SHA-256 multi-
hash of the public key, we can take advantage of it to realize
a distributed and decentralized resource discovery process
in our network where nodes with available resources can
publish offers in IPFS, as files containing a pre-defined string
with the memory value being offered, and their respective
content identifiers (CID) can then be discovered by nodes
searching for available offers to submit their user functions.

3.2 Resource Discovery
Having introduced the distributed architecture of FaaS@Edge
and before delving into the details of the algorithms driving
the discovery of user resources, we first introduce the main
data structures used in these algorithms:
• Offer contains the resources a supplier node is offering
and is published in IPFS as a text file with the string
faas-edge-MEM, where MEM is the memory being
offered (only one offer file is published per memory
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amount, the rest is incremented/decremented in the
map presented next);
• Supplier’s Active Offers Map keeps a record of the
number of offers made of each resource value;
• Available Offer contains the resources and supplier
IP address of an offer discovered in IPFS.

The nodes that are running the OpenWhisk component
are described as supplier nodes and are the ones volunteer-
ing their resources to the system, indicating the maximum
memory amount they are willing to offer in the start com-
mand. However, all nodes can send function deployment
requests. During the initialization of a node, the CIDs of all
the possible offer values (ranging from 128MB to 512MB, in
power of 2 sizes) are calculated with IPFS’ only-hash add
command and stored to be used by the supply and discovery
algorithms.

Algorithm 1: Supplier’s resource supplying algo-
rithm.
Data: 𝑠𝑢𝑝𝑝𝐴𝑐𝑡𝑖𝑣𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠𝑀𝑎𝑝 , 𝑠𝑢𝑝𝑝𝑂𝑓 𝑓 𝑒𝑟𝑃𝑙𝑎𝑛

Function SupplyResources(𝑓 𝑟𝑒𝑒𝑅𝑒𝑠,𝑚𝑎𝑥𝑅𝑒𝑠):
𝑢𝑠𝑒𝑑𝑅𝑒𝑠 ← 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝐼𝑛𝑈𝑠𝑒 (𝑓 𝑟𝑒𝑒𝑅𝑒𝑠,𝑚𝑎𝑥𝑅𝑒𝑠)
𝑟𝑒𝑚𝑜𝑣𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟𝑂 𝑓 𝑓 𝑒𝑟𝑠 ()
𝑜 𝑓 𝑓 𝑒𝑟𝐶𝑜𝑢𝑛𝑡, 𝑜 𝑓 𝑓 𝑒𝑟𝑆𝑖𝑧𝑒 ←
𝑠𝑢𝑝𝑝𝑂𝑓 𝑓 𝑒𝑟𝑃𝑙𝑎𝑛.𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠 ()

foreach 𝑜 𝑓 𝑓 𝑒𝑟𝐶𝑜𝑢𝑛𝑡, 𝑜 𝑓 𝑓 𝑒𝑟𝑆𝑖𝑧𝑒 do
𝑛𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑂 𝑓 𝑓 𝑒𝑟 (𝑜 𝑓 𝑓 𝑒𝑟𝑆𝑖𝑧𝑒)
𝑠𝑢𝑝𝑝𝐴𝑐𝑡𝑖𝑣𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠𝑀𝑎𝑝.𝐴𝑑𝑑 (𝑛𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟 )

Algorithm 1 is run by a supplier node when it first joins
the system or any time its available resources change due
to being consumed, in order to deploy a user function, or
released, when a user function deployment fails and the
selected resources need to become available again. The node
starts by calculating the amount of resources currently in
use, given the maximum value of resources they are willing
to provide and the current value of free resources they have,
and then removing all active offers in order to calculate the
new number of offers of each size that matches the current
resource availability. This operation is achieved by making
one call to the IPFS client to remove the offer file’s pin per
each size of active offer, the remaining offers are simply
decremented in the supplier’s active offers map. Given the
distributed nature of IPFS and its caching capabilities, there
is no direct way to delete a file, only to unpin it from storage
and let the garbage collector reclaim it.
After this, the algorithm will calculate the number and

size of offers to be made, according to the respective offering
plan. For each of these, it will then use Algorithm 2 to publish
the file in IPFS and create a new offer object that is added
to the supplier’s active offers map. Adding the offer files to
IPFS during each resource availability update can serve as
an offer refresh and help to ensure liveness.

Algorithm 2: Supplier’s create offer algorithm.
Data: 𝑠𝑢𝑝𝑝𝐴𝑐𝑡𝑖𝑣𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠𝑀𝑎𝑝 , 𝐼𝑃𝐹𝑆𝐶𝑙𝑖𝑒𝑛𝑡
Result: 𝑁𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟

Function CreateOffer(𝑜 𝑓 𝑓 𝑒𝑟𝑅𝑒𝑠):
if 𝑠𝑢𝑝𝑝𝐴𝑐𝑡𝑖𝑣𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠𝑀𝑎𝑝 [𝑜 𝑓 𝑓 𝑒𝑟𝑅𝑒𝑠.𝑉𝑎𝑙𝑢𝑒] < 1 then

𝑜 𝑓 𝑓 𝑒𝑟𝑆𝑡𝑟 ← 𝐺𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑆𝑡𝑟𝑖𝑛𝑔(𝑜 𝑓 𝑓 𝑒𝑟𝑅𝑒𝑠)
𝑜𝑘 ← 𝐼𝑃𝐹𝑆𝐶𝑙𝑖𝑒𝑛𝑡 .𝐴𝑑𝑑 (𝑜 𝑓 𝑓 𝑒𝑟𝑆𝑡𝑟 )
if 𝑜𝑘 = 𝑓 𝑎𝑙𝑠𝑒 then

return 𝐸𝑟𝑟𝑜𝑟 ("Unable to create offer")

/* Only add to IPFS if there are no active
offers of that memory value, otherwise,
just create the new offer to add to the
map. */

𝑛𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟 ← 𝑁𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟 (𝑜 𝑓 𝑓 𝑒𝑟𝑅𝑒𝑠)
return 𝑛𝑒𝑤𝑂𝑓 𝑓 𝑒𝑟

Algorithm 2 starts by checking if the node already has
active offers of that value in its offers map, or if it needs to
make the offer available in IPFS. To do so, the node retrieves
the string representative of that offer value and calls the
IPFS client to add a file with the string to its distributed file
system. If the publishing operation was successful or there
was no need to publish, because at least one offer of that
memory value was already being made in IPFS, the function
can finally create a new offer object containing the resources
being offered.

When the supplier node has available resources to supply,
it can follow several options on how to arrange different
combinations of resource offers. These offering plans will
achieve different results when it comes to effective resource
utilization, fragmentation, and resource allocation. The dif-
ferent offering plan options are the following:

• Balanced - Provides the same number of offers for
each size, without exceeding its maximum resource
capacity.
• Overbook - Generates all the possible resource combi-

nations that it can offer, thus overbooking its available
resources. This approach favors resource utilization
and avoids fragmentation since there are offers of all
sizes. Free resources will be a result of the different
supply and demand in the system.
• BalancedRanges - Equivalent to the Balanced option
except the offer sizes are limited within one of the
following ranges: Small (128MB), Medium (256MB),
or Large (512MB).
• Overbook Ranges - Equivalent to the Overbook op-

tion except the offer sizes are limited within one of the
ranges Small, Medium, and Large presented above.
• Random Balanced - Each supplier node randomly
chooses the offering plan between the Balanced and
the three Balanced Ranges plans.
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• Random Overbook - Each supplier node randomly
chooses the offering plan between the Overbook and
the three Overbook Ranges plans.

Having described how the supplier nodes provide/publish
their available resources to the system in the form of offers,
we can move on to a client node’s discovery of those re-
sources to submit its user function. Algorithm 3 describes
how the resource discovery process is carried out. A node
receives a user request for a function submission containing
the resource restrictions. In order to find providers for that
function, the node starts by fitting the resources within our
range of values, which will assign the lowest memory size
that can fit the resources needed, and then it can retrieve the
corresponding CID. Next, the node calls the IPFS client’s Find
Providers operation to perform a lookup for that CID on the
distributed hash table and return the peer records contain-
ing the providers’ IPFS addresses. For each of the providers
found (at most 20, by default), a new Available Offer object
is created containing the resources and the supplier node’s
IP address (retrieved from its IPFS address).

Algorithm 3: Resource’s discovery algorithm.
Data: 𝐼𝑃𝐹𝑆𝐶𝑙𝑖𝑒𝑛𝑡
Result: 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠

Function DiscoverResources(𝑛𝑒𝑒𝑑𝑒𝑑𝑅𝑒𝑠):
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠 ← ∅
𝑓 𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑠 ← 𝐹𝑖𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑛𝑒𝑒𝑑𝑒𝑑𝑅𝑒𝑠)
𝑟𝑒𝑠𝐶𝐼𝐷 ← 𝐺𝑒𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝐶𝐼𝐷 (𝑓 𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑠)
𝑝𝑟𝑜𝑣𝑠 ← 𝐼𝑃𝐹𝑆𝐶𝑙𝑖𝑒𝑛𝑡 .𝐹𝑖𝑛𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 (𝑟𝑒𝑠𝐶𝐼𝐷)
foreach 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 in 𝑝𝑟𝑜𝑣𝑠 do

𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟 ←
𝑁𝑒𝑤𝐴𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟 (𝑓 𝑖𝑡𝑡𝑒𝑑𝑅𝑒𝑠, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 .𝐼𝑃)

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠.𝐴𝑑𝑑 (𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟 )
return 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑂 𝑓 𝑓 𝑒𝑟𝑠

3.3 Scheduling
Now that we explained our resource discovery algorithms
that support the leveraging of volunteer resources, we will
describe the algorithms carried out during the scheduling
phase. Algorithm 4 is calledwhen a user’s submission request
is received through the CLI application that interacts with
FaaS@Edge’s daemon, containing the function’s configura-
tion (source code’s CID, function’s name, function’s runtime
kind, and resources needed). It takes the resources needed
for the deployment and calls the DiscoverResources function
from our resource discovery process (see Algorithm 3) to
find a set of available offers. Then, this set of offers is sorted
in random order in order to avoid overloading any supplier
nodes. Finally, it will iterate over the sorted offers, and send
a SubmitFunction message, through the node’s remote client,
containing the function’s configuration, the offer to be used,
and the node’s own IP address. If no supplier node is able to

submit the function successfully, an error is returned to the
user and the request can be manually repeated. Otherwise, a
deployed function object with the function’s configuration
and the supplier node’s IP address is stored in a map, where
it is identified by its function name to be used later during
the function’s invocation.

Algorithm 4: Algorithm to schedule function in sup-
plier node.
Function Schedule(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔):

𝑟𝑒𝑠𝑁𝑒𝑒𝑑𝑒𝑑 ← 𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔.𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟𝑠 ← 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑟𝑒𝑠𝑁𝑒𝑒𝑑𝑒𝑑)
𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑂𝑟𝑑𝑒𝑟 (𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟𝑠)
foreach 𝑜 𝑓 𝑓 𝑒𝑟 in 𝑎𝑣𝑎𝑖𝑙𝑂 𝑓 𝑓 𝑒𝑟𝑠 do

𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠 ←
𝑆𝑢𝑏𝑚𝑖𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔, 𝑜 𝑓 𝑓 𝑒𝑟, 𝑠𝑒𝑙 𝑓 .𝐼𝑃)

if 𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑜𝑘 then
𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝐹𝑛 ←
𝐷𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝐹𝑛(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔, 𝑜 𝑓 𝑓 𝑒𝑟 .𝑆𝑢𝑝𝑝𝐼𝑃)
𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑀𝑎𝑝.𝐴𝑑𝑑 (𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑𝐹𝑛)
return 𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠

return 𝐸𝑟𝑟𝑜𝑟 ("Unable to schedule function")

Regarding the supplier node’s scheduling responsibilities,
when it receives a function submission message from a client
node, the supplier node runs Algorithm 5 that starts by signal-
ing the use of the resources provided in that offer, triggering
the update of the supplied offers to adjust to the decrease in
the node’s available resources. Then it calls the OpenWhisk
component, passing the function’s configuration so that it
can retrieve the source code file from IPFS using its CID, and
insert/create the function in OpenWhisk. If the creation is
successful, the node stores a new local function object in a
map, where it keeps the functions of each client node, to be
able to invoke them when requested, and informs the client
node of the successful deployment. In case of failure, the
supplier’s resources are released, and an error message is
returned to the client node that requested the deployment.

3.4 Function Invocation Command
Regarding the invocation command, when an invocation
command is issued by the user, containing the invocation’s
arguments (function’s name, parameters, and if it returns
results), the client node uses the function’s stored supplier IP
to send an InvokeFunction message directly to the respective
supplier node containing the invocation’s arguments and
the user’s IP address. When the supplier node receives this
message, it uses the function’s name and the IP address to
validate the function’s existence and then calls the Open-
Whisk component to activate/execute the function. After the
activation, the supplier node sends the response to the user
node containing the invocation results, if indicated in the
arguments, or an error message.
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Algorithm 5: Supplier node’s OpenWhisk deploy-
ment algorithm.
Data: 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟,𝑂𝑝𝑒𝑛𝑊ℎ𝑖𝑠𝑘

Function DeployFunction(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔, 𝑜 𝑓 𝑓 𝑒𝑟, 𝑐𝑙𝑖𝑒𝑛𝑡𝐼𝑃):
if 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 .𝑈𝑠𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑜 𝑓 𝑓 𝑒𝑟 .𝑅𝑒𝑠)! = 𝑜𝑘 then

return 𝐸𝑟𝑟𝑜𝑟 ("Resources not valid")
𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠 ← 𝑂𝑝𝑒𝑛𝑊ℎ𝑖𝑠𝑘.𝐼𝑛𝑠𝑒𝑟𝑡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔)
if 𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑜𝑘 then

𝑙𝑜𝑐𝑎𝑙𝐹𝑛 ← 𝐿𝑜𝑐𝑎𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑓 𝑛𝐶𝑜𝑛𝑓 𝑖𝑔, 𝑐𝑙𝑖𝑒𝑛𝑡𝐼𝑃)
𝑙𝑜𝑐𝑎𝑙𝐹𝑛𝑀𝑎𝑝.𝐴𝑑𝑑 (𝑙𝑜𝑐𝑎𝑙𝐹𝑛)
return 𝑓 𝑛𝑆𝑡𝑎𝑡𝑢𝑠

else
𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 .𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (𝑜 𝑓 𝑓 𝑒𝑟 .𝑅𝑒𝑠)
return 𝐸𝑟𝑟𝑜𝑟 ("Unable to submit function")

4 Implementation
For our FaaS@Edge implementation, our prototype was writ-
ten in Go since the most widely used implementation of IPFS,
called Kubo, is written in Go, and both IPFS and OpenWhisk
offer Go client libraries to access their respective APIs.

Figure 2 provides an overview of FaaS@Edge’s node com-
ponents, interfaces, and their relations. Note that only the
supplier nodes comprise the OpenWhisk Client Wrapper
and Function Manager components. The main components
are:
• Node - Super component that drives the initialization
of all other components, receiving the configuration
parameters from the user through the CLI tool, and
passing them to its internal components. The node
makes its scheduling services available to the other
nodes and to the user through interfaces exposed via
REST API;
• Scheduler - Responsible for the function deployments

and subsequent invocations, exposes interfaces to the
user, to inject requests, and to remote nodes, allow-
ing them to send message requests to deploy/invoke
functions in this node. Interacts with the Discovery
component to find available resources for a deploy-
ment;
• Discovery - Implements the resource discovery al-
gorithms to find resources offered by other provider
nodes and to oversee the supplier node’s resources
and offers, according to the offering plan. Interacts
with the IPFS Client Wrapper to add offer files to IPFS,
query the DHT to find providers, and get the CID of
each offer value;
• Function Manager - Manages the function deploy-

ments in the local node’s OpenWhisk platform through
the OpenWhisk Client Wrapper. Provides an interface
used by the Scheduler to submit and invoke functions
requested by other nodes and interacts with the Dis-
covery component to validate the use of the node’s

resources for deployments and release them in case
an error is received from OpenWhisk;
• IPFS Client Wrapper - Wraps the Go client library
for the HTTP RPC API exposed by IPFS’ daemon in
order to provide a simplified interface that isolates the
use of IPFS at our middleware’s level from IPFS’ core
API that provides direct access to the core commands;
• OpenWhisk Client Wrapper - Wraps the Go client

library for the OpenWhisk API to access the running
OpenWhisk services, isolating our middleware’s func-
tion management from OpenWhisk’s API details. Ex-
poses an interface to be used by the Function Manager
component to insert, invoke, and delete functions and
enforces the system limit for how much memory a
function can allocate, defined during the function’s
insertion in OpenWhisk;
• HTTP Web Server - Serves the REST API endpoints
and redirects requests to the respective FaaS@Edge
components. Implemented using the net/http pack-
age from Go’s standard library, with a custom request
router from the gorilla/mux package to match in-
coming requests against their respective handler. The
server is started by the Node component once the user
issues a start command.

Figure 2. FaaS@Edge’s components and interfaces.

FaaS@Edge provides a CLI tool to consume the REST API,
similar to OpenWhisk’s CLI tool, that allows users to perform
the following operations:
• Start - Start running a new FaaS@Edge node. This

command should be issued to run as a daemon since it
is in charge of all FaaS@Edge’s operations. The com-
mand can specify two flags: an integer flag detailing
the maximum amount of memory (in MB) that the
node is willing to offer, and a boolean flag specifying
that the node is running the OpenWhisk application.
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• Exit - Shut down the instance node.
• Submit - Submit a user function in FaaS@Edge. The

command should specify the CID in IPFS of the func-
tion’s source code, the function’s name, the kind of
programming language, and the memory limit that it
can allocate.
• Invoke - Invoke a function previously submitted in
FaaS@Edge. The command should specify the func-
tion’s name, the function’s parameters in JSON format,
and whether the invocation should return a result or
not.

5 Evaluation
To evaluate the FaaS@Edge prototype, we used a testbed
configuration consisting of a cluster deployment setup of 1 to
15 virtual machines with 2 vCPUs and 2048MB of RAM and
a remote client node on a geographically distant machine
with 2 vCPUs and 4096MB of RAM. The IPFS Kubo nodes in
each instance were set up in a private IPFS network using a
custom bootstrap nodes list and a swarm key, to maintain a
level of privacy and confidentiality.

In order to test our system accordingly, we used FaaSwork-
load functions that we developed, using the Go language,
to be supported by our prototype and simulate typical FaaS
scenarios:
• Content Hashing - Receives data contents as a func-

tion parameter and generates the SHA256 hash of that
content. The resulting hash is returned to the user if
requested.
• Database Query - The user can request the initializa-

tion of an in-memory database that stores information
regarding a library’s books in JSON format. Then, the
user can query the database for any specific book
by passing its International Standard Book Number
(ISBN) as a parameter.
• Image Transformation - Receives a public image

URL which is used to get the image data using HTTP.
Then, performs a transformation to flip the image
vertically and returns the image data in base64 format.

Our dataset consisted of submission and invocation re-
quests of the three types of functions with function memory
allocation sizes of 128MB, 256MB, and 512MB, respecting the
limits allowed by the OpenWhisk platform. During an exe-
cution, all client nodes perform the same amount of requests
in parallel and the supplier nodes together offer enough
resources to accommodate all the requests.
Our evaluation assesses the overhead, derived from its

distributed architecture and algorithms, that FaaS@Edge
imposes on the system compared to a local OpenWhisk de-
ployment, and determines its feasibility and performance on
edge devices.

The metrics considered to do so were: function latency,
separating OpenWhisk’s execution time, from the complete

request latency, bandwidth consumed per node, CPU
usage per node, memory used per node, and request
success rate. In addition, we also assess if the offering plan
chosen has any influence on these metrics. The default offer-
ing plan selected during the test executions was the Balanced
plan.
The tests were performed using a total of six different

deployment setups, which included:
• Local deployment of OpenWhisk on a single node
instance;
• One client node and one supplier node on remotely
distant machines;
• One client node and one supplier node on the same
machine;
• Five nodes with two supplier nodes and three client
nodes on the same machine;
• Ten nodes with five supplier nodes and four client
nodes on the same machine, and a client node on a
remote machine;
• Fifteen nodes with eight supplier nodes and six client
nodes on the same machine, and a client node on a
remote machine.

The remainder of this section presents the results of our
evaluation.

5.1 Function Latency
Figure 3 presents the distribution of the submission latency
times for each of the deployments mentioned previously,
measured since the client nodes sent the submission requests
until an answer was received, excluding the time it took the
supplier node available to create the function in OpenWhisk.
The values observed are situated between the interval of
0.02s and 0.1s, and the lower latency values belong to the
2 nodes and 5 nodes deployments, and higher values corre-
spond to the 15 nodes deployment.

Figure 3. Submission latency times per nodes (Box plot).
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The function memory values specified in a submission
request have an important role in our algorithms to select the
available provider, contrary to the function types that have
no influence, but the results returned relatively close values
of overhead time, which indicates a leveled distribution of
the different sizes of resources as a result of our offering
strategy.
Figure 4 provides a comparison between the submission

times obtained by client nodes located in a cluster machine,
where the supplier nodes are also running, and the client
node in a remote machine. A remote client node spends≈70%
more time during resource discovery and/or exchanging of
messages to fulfill the submission request.

Figure 4. Submission times comparison between client node
in cluster machine and remote machine.

Figure 5 presents the distribution of the latency times
obtained for each of the deployments, again, excluding the
time it takes for the function to execute in OpenWhisk. The
results fitted all within an interval of 0.04s, as predicted since
the invocation request has no additional overhead from re-
source discovery or scheduling algorithms, already handled
during the function’s submission.

Figure 5. Invocation latency times per nodes (Box plot).

These results only consider warm start invocations, where
there is already a running container, as a way to normalize

their averages. The image transformation function (that is
more CPU demanding) revealed a significantly higher total
invocation time than the rest, which was spent in Open-
Whisk. The function memory allocation values do not cause
significant implications on the total and latency invocation
times.

Contrary to what we witnessed with the submission times,
the remote client took only 2.9% more invocation total time,
indicating that the physical distance between nodes can have
an impact on IPFS’ lookup protocol during the resource dis-
covery but does not impose a lot of added time on the ex-
ecution of invocation requests (maintaining an acceptable
network throughput).

In comparison to a local deployment, the results indicate
that a submission using FaaS@Edge takes on average 0.1150s,
≈90.9% longer than a simple local deployment, a time dura-
tion acceptable in a FaaS scenario if it provides a less pow-
erful edge node the capability to still benefit from the FaaS
model without depending on cloud providers. An invocation
averages closer by taking only around 0.1173s, 25.5% more
time to complete than in the local deployment, which means
there is very little performance loss in using FaaS@Edge, es-
pecially given the fact that we predict a user would generally
perform more invocation requests than submission requests.

5.2 Bandwidth consumed per node
Figure 6 presents the overall bandwidth consumed by the
supplier node instances in the different deployments during
test executions with each fulfilling an arbitrary number of
requests. Notice that the amplitude of bandwidth values de-
creases with the increase of nodes in the deployment and
the median values are all situated between 8659B and 9604B.
Bandwidth consumption over time typically suffered 2-3 in-
creases of transmitted bandwidth by intervals of ≈3000B,
with the exception of the image transformation function
which also revealed an increase in the received data due to
an HTTP request performed to retrieve the image data. The
Bandwidth consumed per node did not show any direct rela-
tion to the number of requests a supplier node executed, thus
we can simply conclude that the average consumption dur-
ing the program’s execution in an edge device is admissible
and does not hinder the node’s performance.

5.3 CPU usage per node
The CPU and Memory used per node metrics were retrieved
periodically over time on both supplier and client nodes,
during each test execution.
The average CPU usage observed in supplier nodes and

client nodes for each deployment gradually decreased from
5.61% to 2.31% as the number of nodes in the deployments
increased, indicating an efficient utilization of the extra re-
sources and good load balancing between the supplier nodes.
The usage in client nodes is also significantly lower (averag-
ing between 0.30%-0.80% CPU) than in supplier nodes seeing
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Figure 6. Bandwidth consumed per nodes.

as the latter are the ones satisfying the requests and running
the OpenWhisk platform thus using more processing power.

Figure 7. CPU usage per node and memory value for each
function type.

5.4 Memory used per node
Table 1 presents the maximum and minimum values, along
with the average values retrieved for the supplier nodes and
client nodes, seeing as we did not verify any relation between
the memory used per node and the number of nodes in a
deployment.
Figure 7 and Figure 8 present comparisons of the CPU

and Memory used per node, respectively, for every function
memory value and the three FaaS workload function types.
Both the CPU and Memory metrics returned the highest
results for functions with 128MB of memory, followed by
the 512MB value, and finally the functions with 256MB. By
analyzing the resource usage of the running containers, we
noticed that the containers that were limited to 128MB of
function memory allocation had to realize larger amounts of
data swapping to read from and write to memory blocks on
the host device, compared to the other memory limits. This
frequent data swapping to and from the disk resulted in per-
formance degradation and an increase in I/O that caused the

system to provide a lower quality of service with fewer re-
sources. Overall, the CPU and Memory used per node proved
to be reasonable considering that running the middleware
would not waste a large amount of these resources in edge
nodes, allowing the devices to still be utilized by the user for
other desired functionalities whilst they are participating in
the FaaS@Edge network.

Minimum - Maximum Average
Supplier Node 557.70 MB - 752.44 MB 624.32 MB
Client Node 239.67 MB - 248.33 MB 246.27 MB

Table 1. Memory usage per nodes.

Figure 8.Memory used per node and memory value for each
function type.

5.5 Request Success Rate
The request success rate measures how many user requests
to submit and invoke a function the FaaS@Edge system was
able to successfully fulfill, which directly translates into the
resource discovery and scheduling algorithms’ efficacy and,
in turn, the user’s satisfaction.

Request Success Rate

Function Type Submission Invocation

Content Hashing 99.49% 100.00%
Database Query 95.16% 94.98%

Image Transformation 100.00% 100.00%

Function Memory

128 MB 95.24% 97.28%
256 MB 99.49% 98.73%
512 MB 100.00% 100.00%

Total Requests 98.76% 98.69%
Table 2. Request Success Rates.
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Table 2 represents the request success rate specified for each
FaaS workload function and function memory value used in
the evaluation, as well as in the totality of requests executed
during the evaluation. Note that certain types of functions
were more utilized in the test executions than others (e.g.
content hashing with 256MB was the default function used
for performing assessments where the function type was
not relevant for comparison). The user requests to submit
or invoke the image transformation function proved to be
the most successful and the database query function was the
one that resulted in more failed requests.
Invocation failures could have been a subsequent result of
submission failures (could be prevented in a real user sce-
nario by manually retrying the submission before requesting
the invocation). Submission failures were more likely to be
caused by a process crash in the supplier node than fragmen-
tation of resources, since we offer enough resources to fulfill
all requests and their offering strategy prioritizes offers with
lower values, or other exterior errors in IPFS or OpenWhisk.
The tests also revealed that the offering plan has no no-
ticeable influences on the bandwidth consumption, CPU or
memory usage, likely due to the fact that when a supplier
node’s offers are updated only one offer file is published in
IPFS for each offer value. The results obtained for executions
with the same quantities of resources being offered and re-
quested represented the same values for the request success
rates and function latencies, regardless of the offering plan
chosen, since the demand and supply were globally balanced
and there was no horizontal scaling or churn in the network
that could have caused failures in the allocation of resources.

6 Conclusion
In this work, we introduced FaaS@Edge, a decentralized
system to implement the FaaS model in Edge Computing
environments by taking advantage of edge nodes’ resources
to deploy user functions in Apache OpenWhisk.
We observed that our middleware introduced an overhead
of almost double the function latency time to execute a sub-
mission request compared to a single local deployment of
OpenWhisk whereas the invocation times were very similar
which is favorable given there are usually more invocations
than submissions for each function. The bandwidth consump-
tion, CPU and memory usage proved to be within acceptable
values that can be supported by edge devices and FaaS@Edge
demonstrated a very high success rate.
The scalability and performance of the system seemed to be
very tied to IPFS’ capability to discover content and peers in
the network, and is currently still very limited compared to
all the functionalities supported byOpenWhisk, nevertheless,
FaaS@Edge was successful in providing a distributed and de-
centralized alternative that realizes FaaS executions with low
latencies and efficient resource utilization and distribution,
supported by devices in Edge Computing environments.
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