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ABSTRACT

Middleware platforms empower the developers and users with
an additional layer, enhancing scalability and performance.
Cloud computing offers variety of resources and involves a
tremendous amount of entities. Due to the limited access,
along with varying availability of cloud resources, prototypes
are often tested against cloud simulation environments. While
computing has been evolving with multicore programming,
MapReduce paradigms, and middleware platforms, cloud and
MapReduce simulations still fail to exploit these developments
themselves. This paper describes the research for the de-
sign, development and evaluation of a complete fully paral-
lel and distributed cloud simulation platform (Cloud?Sim),
which tries to fill the gap between current simulations and the
actual technology that they are trying to simulate.

First, Cloud®Sim provides a concurrent, distributed and
elastic cloud simulator, by extending CloudSim cloud simula-
tor, using Hazelcast in-memory key-value store. Then, it also
provides an assessment of the MapReduce implementations
of Hazelcast and Infinispan, as well as elastically distribut-
ing their execution in a cluster, providing means of simulating
MapReduce executions. A dynamic scaler solution scales out
the cloud and MapReduce simulations to multiple nodes run-
ning Hazelcast and Infinispan, based on load. The distributed
execution model and adaptive scaling solution could further
be leveraged as a general purpose auto-scaler middleware for
a multi-tenant deployment.

JVES

1. INTRODUCTION

Cloud simulations are used in evaluating architectures, al-
gorithms, topologies, and strategies that are under research
and development, tackling many issues such as resource man-
agement, application scheduling, load balancing, workload ex-
ecution, and optimizing energy consumption. While the exact
environment of the cloud platform may not be accessible to
the developers at the early stages of development, simulations
give an overall idea on the related parameters, resource re-
quirements, performance, and output. With the increasing
complexity of the systems that are simulated, cloud simula-
tions are getting larger, and the larger simulations tend to take
longer and longer to complete being run in a single node. Also,
cloud simulation environments require a considerable amount
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of memory and processing power to simulate a complex cloud
scenario. Processors are increasingly becoming more power-
ful with multi-core architectures and the computing clusters
in the research laboratories themselves could be used to run
complicated large simulations in a distributed manner. How-
ever, current simulation tools provide very limited support
to utilize these resources, as they are mostly written with a
sequential execution model targeting to run on a single server.

Java In-memory data grids provide a distributed execution
and storage model for problems in the grid-scale. They of-
fer scalability and seamless integration with persistent stor-
age. Hazelcast [16], Infinispan [25], and Terracotta BigMem-
ory! are some of the currently most used platforms for dis-
tributed execution and storage [13]. Using these platforms,
users could create data grids and distributed caches on util-
ity computers, to execute much larger jobs that could not
run on any single computer, or that would take a huge time
to execute with slow response. Functionality and scalabil-
ity of the cloud simulators could thus be extended using in-
memory data grids solutions. Existing cloud simulators also
lack the ability to simulate MapReduce tasks, while there are
simulators just specific to MapReduce. However, a MapRe-
duce simulator could be implemented along with the cloud
simulator, to simulate complex scenarios involving MapRe-
duce tasks and cloud applications, such as load balancing the
MapReduce tasks into different datacenters and power-aware
resource scheduling. Cloud and MapReduce simulations can
be executed on top of in-memory data grids, that execute over
the computer clusters.

Public resource sharing or cycle sharing models allow ac-
quiring resources for computing and storage from the volun-
teers for the tasks that are heavy in such requirements. This
volunteer computing paradigm enables distributed execution
of embarrassingly parallel jobs on the private computers of ge-
ographically distributed volunteers. Specific CPU and mem-
ory intensive research areas have utilized the volunteer com-
puting model, where millions of volunteers offer their com-
puter resources, while they are idle. BOINC (Berkeley Open
Infrastructure for Network Computing) is a software that en-
ables scientists to operate on public resource sharing model [1].
It is a server, client, and statistics system, that is later used
by SETI@home and other projects [5]. SETI (Search for
Extraterrestrial Intelligence) [2], Folding@home [31, 5], and
Gnome@home [20], tackle problems of different domains, with
geographically distributed computing resources provided by
the volunteers. Condor is a scheduling system that maximizes
the utilization of the workstations. Under-utilized or idling
workstations offer their computing resources to the worksta-
tions that are overloaded. This resource sharing increases the
overall productivity of the research labs or the cluster of work-
stations [21].

Exploiting the existing simulation approaches that are heav-
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ily centralized, and the distributed execution platforms, cloud
simulations can be made distributed, such that they would
be able to utilize the computer clusters in the research labs.
Distributed simulations could enable larger simulations to ex-
ecute in a shorter time with a better response, whilst making
it possible to simulate scenarios that may not even be possible
on a single instance. Utilizing distributed computers to share
the cycles to the simulation, as required by the simulation,
would enable simulating larger and more complex scenarios
that could not be simulated effectively in a single node, or
it could be a very time consuming execution. While cycle
sharing and volunteer computing is used in scientific research
and grid computing projects, the cycle sharing model is not
utilized to provide computing resources for cloud simulations.
Moreover, when the resource providers are inside a trusted
private network such as a research lab, security concerns re-
lated to cycle sharing could be considered lightly. Hence, the
cycle sharing model can be leveraged to operate in a private
cluster to provide a scalable middleware platform.

This paper describes first Cloud?Sim, an adaptively scal-
ing middleware platform for concurrent and distributed cloud
simulator, by leveraging CloudSim [8, 7] as the core mod-
ule, whilst taking advantage of the distributed shared mem-
ory provided by Hazelcast and in-memory key-value data grid
of Infinispan. The Hazelcast based distributed simulator is
implemented along with prototype deployments and samples.
Infinispan is integrated into CloudSim, such that it can be
used to implement the middleware platform to scale the simu-
lator. Second, we describe two distributed implementations of
a MapReduce simulator, leveraging centralized Hazelcast and
Infinispan MapReduce implementations as core modules. Cy-
cle sharing of the instances in the cluster, inspired by volunteer
computing, is used as the model to achieve a scalable, adap-
tive, and elastic middleware platform for all the simulations.
Hazelcast and Infinispan are integrated into core CloudSim
as a compatibility layer for a seamless integration and invo-
cation of cloud simulations. The whole simulation platform
is implemented as a scalable middleware platform for cloud
and MapReduce simulations, but it can be extended for other
applications as well. Therefore, being elastic and adaptive,
and thus cloud-ready, Cloud®Sim can be the basis of a con-
current and distributed Simulation-as-a-Service for Cloud and
MapReduce simulations.

In the upcoming sections, we will further analyze the pro-
posed adaptively scaling middleware platform for the simu-
lations in a distributed and concurrent manner. Section 2
will address background information on cloud and MapReduce
simulators, and distributed execution frameworks. Section
3 discusses the solution architecture of Cloud?Sim, the pro-
posed middleware platform, and how CloudSim is enhanced
and extended as to become a distributed and concurrent cloud
simulator. Section 4 deals with the implementation details of
Cloud®Sim. Cloud?Sim was benchmarked against CloudSim
and was evaluated on multiple nodes, with results discussed
in Section 5. Finally, Section 6 closes the paper discussing the
research current state and future enhancements.
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2. RELATED WORK

2.1 Cloud Simulators

CloudSim [8], EmuSim [6], and DCSim [32] are some of the
mostly used cloud simulation environments. OverSim [4] and
PeerSim [26] are simulation toolkits for overlay and peer-to-
peer networks respectively. GridSim, a Grid Simulation tool,
was later extended as CloudSim, a Cloud Simulation environ-
ment [7]. It is capable of simulating application scheduling
algorithms, power-aware data centers, and cloud deployment

Table 1: Comparison of Cloud Simulators

CloudSim || SimGrid GreenCloud
Programming C++ and TCL
Language(s) Java C (Tool Command Language)
User Interface Console Console Graphical
Features
Grid Simulations v v v
Cloud Simulations v v v
Application Scheduling v v X
Modeling Data Centers v v v
Modeling Energy-Aware
Computational Resources v v v
P2P Simulations X v X
MPI Simulations X v X
Packet-level Simulations X ‘With ns-3 ‘With ns-2
Modeling and Simulation of
Federated Clouds v v X

topologies. It has been extended into different simulation tools
such as CloudAnalyst [37], WorkflowSim [11], and Network-
CloudSim [15]. Simulation environments have a trade-off of
accuracy/speed [33], with faster less-accurate simulators and
slower accurate simulators. Researchers focus on enhancing
the speed and accuracy of existing simulators. Extensions to
CloudSim tend to address its limitations or add more features
to it. NetworkCloudSim enables modeling parallel applica-
tions such as MPI and workflows in CloudSim [15]. Work-
flowSim simulates scientific workflows, through a higher level
workflow management layer [11].

SimGrid [9] is a toolkit initially developed for simulation
of application scheduling. As a generic versatile simulator for
large scale distributed computing, SimGrid offers two APIs,
for researchers and developers respectively [10]. SimGrid ap-
proximates the behavior of the TCP networks, using a flow-
level approach [14]. GreenCloud is a packet level simulator
that simulates energy-efficient cloud data centers [18]. The
Network Simulator - ns-2, a real-time network emulation tool [24],
is extended for simulating energy-aware clouds. VM power
management and migration in Internet Data Centers (IDC)
are modeled, using Xen? as the VMM [22].

Optimizing the energy consumption is one of the major tar-
gets in cloud systems. Simulating energy-aware solutions has
become part of the cloud simulators such as CloudSim, to
optimize the energy consumption of data centers. Simula-
tors are also developed exclusively for power systems. In-
ternet technology based Power System Simulator (InterPSS)
is a distributed and parallel simulation tool for optimizing
and enhancing the design, analysis, and operation of power
systems [17]. Cloud simulators have overlapping features,
while some of the features are specific to only a few simu-
lators. While some simulators are quite generic, others tend
to be more focused. A comparison of three cloud simulators,
CloudSim, SimGrid, and GreenCloud is presented by Table 1.

MapReduce Simulators. As MapReduce applications are be-
coming widespread, the need to simulate them in order to
study their performance, efficiency, scalability, and resource
requirements became apparent. Some MapReduce simulators
were built from scratch, while some were developed on top of
existing simulation frameworks of cloud or network. We will
look at some of the MapReduce simulators below. SimMR is
a MapReduce simulator that can replay the tasks from the
logs of the real workloads produced by Hadoop, executing the
tasks within 5% of the time the MapReduce task originally
takes to execute [34]. MRPerf is a simulator of the MapRe-
duce implementation of Hadoop, built using ns-2 [35]. Job
execution time, amount of data transferred, and time taken
for each of the phases of the job are output from the sim-
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ulator [36]. HSim, another Hadoop MapReduce simulator,
following the same design paradigm of MRPerf, claims to im-
prove the accuracy of MapReduce simulations for the complex
Hadoop applications [23]. MRSG is a MapReduce Simulator
built on top of SimGrid, providing APIs to prototype MapRe-
duce policies and evaluate the algorithms [19]. Since MapRe-
duce tasks are often run on bigger clusters, energy becomes a
most important concern to address. BEEMR (Berkeley En-
ergy Efficient MapReduce) is a MapReduce workload man-
ager that is energy efficient [12]. High memory and processing
power requirements of MapReduce executions as well as the
simulations indicate that a scalable platform can benefit the
execution.

2.2 Distributed Execution

Multiple Java in-memory data grids exist, both open source
and commercial. Hazelcast and Infinispan are two of the open
source in-memory grids that are used in research.

Hazelcast is a distributed in-memory data grid that provides
the distributed implementations for the java.util.concurrent
package [16]. Computer nodes running Hazelcast can join
or create a Hazelcast cluster using either multicast or tcp-
ip based join mechanisms. Additionally, Amazon web ser-
vice EC2 instances with a hazelcast instance running, can use
the Hazelcast/AWS join mechanism to form a Hazelcast clus-
ter as well. Multiple Hazelcast instances can also be created
from a single node by using different ports, hence providing
a distributed execution inside a single machine. As Hazelcast
distributes the objects to remote JVMs, the distributed ob-
jects should be serializable, or custom serializers should be
developed and registered for each of the classes that are dis-
tributed. Hazelcast custom serialization requires the classes
to be serialized to have public setters and getters for the prop-
erties that should be serialized. Hazelcast is partition-aware,
and exploiting its partition-awareness, related objects can be
stored in the same instance, reducing data transmission and
remote invocations. Hazelcast supports both synchronous and
asynchronous backup for fault tolerance. Hazelcast has been
already used in research to distribute the storage across mul-
tiple instances [27].

Infinispan is a distributed key/value data-grid [25]. As an
in-memory data-grid, Infinispan has been used in many re-
searches. Palmieri et al have developed a self-adaptive mid-
dleware platform to provide transactional data access services,
based on the in-memory data management layer of Infinis-
pan [28]. JBoss RHQ 3 provides an enterprise management
solution for Infinispan as well as the other projects from JBoss,
which can be used to monitor the state and health of the In-
finispan distributed cache instances. Infinispan offers JCache?
and MemCached® APIs. Goal-oriented self-adaptive scalable
platforms are researched using Infinispan as an in-memory
persistence and cache solution [29].

Typically, the simulators are sequential, and run on a single
computer, where computer clusters and in-memory data grids
can be leveraged to execute larger simulations that cannot be
executed on a single computer.

ZL

3. SOLUTION ARCHITECTURE

As designed to run top of a cluster, Cloud®Sim attempts to
execute larger and more complicated simulations that would
not run on a single node or terminal, or consume huge amount
of time. In-memory data grid libraries are used to form a clus-
ter. The user can form an in-memory data grid on the com-
puter cluster. Once the data grid is formed, simulations are
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executed on the cluster, utilizing the resources such as stor-
age, processing power, and memory, provided by the individ-
ual nodes, as indicated by Figure 1. Hazelcast and Infinispan
are used as the in-memory data grid libraries.

Initialize the fiata gria  User Execife Simulation
on the clustgr on thy cluster
In-memory Data Grid

u |

Larger simulation 3

<
vides )
Instancel Instance2 Instance3 Instanced Instance5

Figure 1: High Level Use-Case of Cloud®Sim
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Cloud? Sim functions in two basic modes, as a concurrent
and distributed simulator, for cloud simulations and for MapRe-
duce simulations. It was decided to extend an existing cloud
simulator to be concurrent and distributed, instead of writ-
ing a new cloud simulator from scratch. Developed as a Java
open source project, CloudSim could be modified by extend-
ing the classes, with a few changes to the CloudSim core. Its
source code is open and maintained. Hence, CloudSim was
picked as the core module to build Cloud?Sim. Cloud simu-
lation further uses Hazelcast to distribute the storage of VM,
Cloudlet, and datacenter objects and also to distribute the
execution according to the scheduling to the instances in the
cluster. Users have the freedom to choose Hazelcast based
or Infinispan based distributed execution for the cloud and
MapReduce simulator, as the simulator is implemented on
top of both platforms following the same design. Classes of
CloudSim are extended and a few are also modified to be able
to extend CloudSim with further functionality. External de-
pendencies such as Hazelcast and Infinispan are used unmod-
ified. Cloud and MapReduce simulations are independent by
design. Cloud and MapReduce simulations can be executed
independently, though experiments could be run utilizing both
cloud and MapReduce simulations.

3.1 Concurrent and Distributed Middleware Plat-
form for Simulations

As multiple instances execute the single simulation, mea-
sures are taken to ensure that the output is consistent as
simulating in a single instance, while having enhanced perfor-
mance. Data is partitioned across the instances by leveraging
Hazelcast and Infinispan. Each member of the cluster exe-
cutes part of the logic on the objects that are stored in the
local partitions of the respective nodes. Execution of simula-
tions is leveraged, utilizing the multi-core environments, and
exploiting multi-thread programming.

While CloudSim provides some means for a concurrent ex-
ecution, its support is very limited. Applications should be
written utilizing the multi-thread environments, while the sim-
ulator itself should run the tasks concurrently, whenever that
is possible and efficient. Runnables and callables are used to
submit tasks to be run in a separate thread, while the main
thread is executing its task. The relevant checkpoints ensure
that the threads have finished their execution and the values
are returned from the callables, as required.

Instances form a cluster with the same cluster group. Multi-
ple clusters could be used to execute parallel cloud or MapRe-
duce simulations, as multiple tenants of the nodes. As each
cluster is unaware of the other clusters, tenant-awareness is
ensured that the parallel experiments can be independent and



secured from the other parallel simulations. Partitioning of
data and execution is done by 3 different approaches, as listed
below.

1. Simulator - Initiator based approach. Simulator is the
complete Cloud?Sim with the simulation running. Hazelcast
instance is started by Cloud?Sim Initiator, which keeps the
computer node connected to the Hazelcast cluster, offering the
resources of the node to the data grid. Simulator instance is
run from the master instance, where an instance of Initiator
is run from the other instances. Simulator acts as the mas-
ter, distributing the logic to the Initiator instances. Part of
the logic is executed in the master itself, and the execution
is partitioned evenly among all the instances, using the Ex-
ecutorService. This approach is used for the tasks that are
effectively scheduled by the single master to all the instances
that are joined, such as the MapReduce simulator.

2. Simulator - SimulatorSub based approach. One in-
stance contains the Simulator, which is the master, where
others run SimulatorSub, which are the slave instances. Mas-
ter coordinates the simulation execution. However, unlike the
Simulator - Initiator based approach, execution is started by
all the instances. Some of the non-parallelizable tasks could
be delegated to the primary worker, which is an instance other
than the master instance, that is decided upon the cluster for-
mation. This mitigates overloading the master instance. This
is implemented in the specific simulations where master and
worker instances perform completely different tasks, when it
is not effective to unify them to dynamically allocate the re-
sponsibilities.

3. Multiple Simulator instances approach. This is similar
to the Simulator - SimulatorSub based approach, except that
there is no specific Simulator master. The instance that joins
first becomes the master at run time. Data is partitioned
evenly across the instances, as in the previous cases. Logic
is partitioned across the instances using the Partitioning al-
gorithms defined in Cloud®Sim. PartitionUtil manages the
partitioning of the data and execution of the data structures
across the instances. It provides the initial and final IDs of
the data structure such as cloudlets and VMs, given the total
number of structures and the initial offset.

Multi-tenancy in Cloud®Sim. A multi-tenanted experiment
executes over a deployment, composed of multiple clusters of
(Hazelcast) instances, across multiple physical nodes. A ten-
ant is a part of the experiment, represented by a cluster. An
instance is attached to a single cluster, and is tenant-specific.
Data specific to a tenant is stored in its instances of the cluster.
The specific instance to store is defined by the Cloud?Sim de-
sign, leveraging and configuring the HazelcastInstanceAware
and PartitionAware features to decide the optimal instance.

A coordinator node has instances in multiple clusters and
hence enables sharing information across the tenants through
the local objects of the JVM. Due to the 1:1 mapping between
a cluster and a tenant, a tenant may not span across multiple
clusters. This does not cause under-utilization, as multiple
clusters can co-exist in and utilize the same nodes. Fault-
tolerance is easily ensured by enabling synchronous backups,
by just changing the configuration file. Thus, even if a node
goes down, the tenants will not suffer.

Figure 2 depicts a sample deployment of 6 nodes configured
into 7 clusters to run 6 experiments in parallel. Both clusterl
and cluster3 contain 2 nodes - the Master/Supervisor and one
Initiator instance, running an experiment. Cluster2 contains
3 nodes, with the third node having 2 Initiator instances run-

Supervisor|
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Initiator Nod e2 clusterl |

Supervisol Experimentl -

i N/ Master 1

Cluster0

Supervisol
| Master

cluster3

!
i cluster6 -
!

Experiment3

Figure 2: A Multi-tenanted Deployment of Cloud?Sim

ning. Cluster4 contains an instance of Initiator, ready to join
a simulation job, when the Master instance joins. Clusterb
consists of node4, which hosts both Initiator and Master in-
stances. Cluster6 contains node5 and node6, both running
Initiator instances. Nodel hosts 2 Master instances, one in
clusterl, and the other in cluster2. It also hosts an Initiator
instance in cluster3. It has a Coordinator running on clus-
ter0. Coordinator coordinates the simulation jobs running on
clusterl and cluster2 from a single point, and prints the final
output resulting from both experiments or tenants. This is
done externally from the parallel executions of the tenants,
and enables a combined view of multi-tenanted executions.

Cloud Simulations. Cloud®Sim is designed on top of CloudSim,

where cloud2sim-1.0-SNAPSHOT could be built using maven
independently without rebuilding CloudSim. Modifications to
CloudSim are minimal. Cloud?Sim enables distributed execu-
tion of larger CloudSim simulations. The Compatibility layer
of Cloud®Sim enables the execution of the same CloudSim
simulations, either on top of the Hazelcast and Infinispan
based implementations, as well as pure CloudSim distribu-
tion, by abstracting away the dependencies on Hazelcast and
Infinispan. Partition-awareness features of Hazelcast are ex-
ploited in storing the distributed objects, such that the data
that are associated with each other are stored in the same
partition to minimize remote invocations. Distributed Execu-
tors pulled the logic to the data, reducing the communication
costs.

MapReduce Simulations. Design of the MapReduce simu-
lator is based on a real MapReduce implementation. A simple
MapReduce application executes as the Simulator is started.
The number of times map() and reduce() are invoked could
easily be configured. MapReduce simulator is designed on
two different implementations, based on Hazelcast and Infin-
ispan, making it possible to benchmark the two implementa-
tions against each other. Multiple simulations are executed
in parallel, without influencing others, where an instance of a
coordinating class could collect the outputs from the indepen-
dent parallel MapReduce jobs carried out by different clusters.

3.2 Scalability

Cloud®Sim achieves scalability through both static scal-
ing and dynamic scaling. Static scaling is the scenario where
Cloud?Sim uses the storage and resources that are initially
made available, when instances are started and joined manu-
ally to the execution cluster. Multiple nodes can be started



simultaneously at start-up time for large simulations that re-
quire high amount of resources. Initiator instances can also be
started manually at a later time, to join the simulation that
has already started. Simulations begin when the minimum
number of instances specified have joined the simulation clus-
ter. Cloud?Sim scales smoothly as more Hazelcast instances
join the execution.

Scaling can also be done by Cloud®Sim itself dynamically
without manual intervention, based on the load and simu-
lation requirements. When the load of the simulation envi-
ronment goes high, Cloud?Sim scales itself to handle the in-
creased load. Dynamic scaling of Cloud?Sim provides an elas-
tic, cost-effective, cloud-ready solution, instead of having mul-
tiple instances being allocated to the simulation even during
the low load scenarios. Since scaling introduces the possibil-
ity of nodes joining and leaving the cluster, as opposed to the
static execution or manual joins and exits of instances, scal-
able simulation mandates availability of synchronous backup
replicas, to avoid losing the distributed objects containing the
simulation data upon the termination of an instance.

A health monitor is designed to monitor the health of the
instances, and trigger scaling accordingly. Health monitoring
module runs from the master node and periodically checks the
health of the instance by checking the process CPU load, sys-
tem CPU load, and the load average. Based on the policies
defined in the cloud2sim.properties file, the health monitor
triggers the scaling action. During scale out, more instances
are included into the simulation cluster, where scale in re-
moves instances from the simulation cluster, as the opposite
of scale out. Dynamic scaling is done in two modes - auto
scaling and adaptive scaling, as discussed below.

Auto Scaling. By default, the auto scaler spawns new in-
stances inside the same node/computer. This feature is avail-

able out-of-the-box for Hazelcast paid/enterprise versions. When

the availability of clusters is limited to simulate a large sce-
nario, Cloud?Sim can be run on an actual cloud infrastruc-
ture. Hazelcast can be configured to form a cluster on Amazon
EC2 instances, with the Hazelcast instances running on the
same AWS® security group. When using AWS join mechanism
provided by Hazelcast to form the cluster, Hazelcast uses the
access key and secret key to authorize itself into forming the
cluster. If no AWS security group is mentioned, all the run-
ning EC2 instances will be tried, where mentioning a security
group will limit the search to only the instances of the same se-
curity group. Ports involved in the Hazelcast clustering should
be allowed in the EC2 instances. Scaling can be done using
Cloud? Sim health monitoring or with scaling policies config-
ured with AWS Auto Scaling and Amazon Cloud Watch.

Adaptive Scaling. Adaptive Scaling is a scenario where, in a
clustered environment, more computer nodes will be involved
in an application execution based on the load. More instances
will be attached to the simulation cluster when the load is
high, and instances will be detached or removed from simu-
lation when the load is low. Scaling decisions are made in a
separate cluster. Figure 3 shows the execution of two inde-
pendent simulations in a cluster with adaptive scaling.
Health monitor in the main instance (in cluster-main) mon-
itors its load and shares with the AdaptiveScalerProbe thread
in cluster-sub, using the local objects, as they are from the
same JVM. AdaptiveScalerProbe shares this information with
Intelligent AdaptiveScaler (IAS) instances, which are threads
from all the other 5 nodes that are connected to Sub-Cluster.
When TAS from one instance notices the high load in the
master, it spawns an Initiator instance in the cluster-main,

https://aws.amazon.com /

and sets the flag to false to avoid further scaling outs/ins.
Monitoring for scaling out happens when there is no Initiator
instance in the node, and monitoring for scaling in happens
when there is an Initiator instance, for each individual node.
This ensures 0 or 1 of Initiator instance in each node, and
avoids unnecessary hits to the Hazelcast distributed objects
holding the health information. Since IAS is in a separate
cluster (cluster-sub) from the simulation (cluster-main), the
executions are independent.

Adaptive Scaling is used to create prototype deployments.
When the simulations finish, the Hazelcast instances running
in the main cluster will be terminated, and the distributed ob-
jects stored in the sub cluster will be released. These instances
just require Hazelcast and the adaptive scaler thread to keep
them connected, providing their CPU and storage for the sim-
ulation work voluntarily, in a BOINC-like cycle sharing model.
The entire simulation code could be kept only on the master
node. All the member nodes are from the same network, that
they have joined by tcp-ip or multicast. Hence the cycle shar-
ing used in Cloud®Sim is not public as in voluntary comput-
ing. Due to this nature, the security implications involved in
voluntary computing are not applicable for Cloud?Sim. The
scaling decision flag should be get and set in a concurrent and
distributed environment atomically, ensuring that exactly one
instance takes action of it. Access to the object that is used
as the flag should be locked upon the access, from any other
instance in the distributed environment.

Multiple Hazelcast clusters can execute from a single com-
puter cluster or a single machine. Exploiting this feature,
multiple experiments could be run on Cloud?Sim in paral-
lel, as different clusters are used for independent simulations.
Different simulations are initialized from the same node. The
adaptive scaling solution could be extended to have the node
cluster providing its resources to different applications or sim-
ulations running on different Hazelcast clusters, as they are
not expected to know the application logic.

Cluster - Sub

Cluster - Main

Node 1
ey AdaptiveScalerProbe

Node 2

Node 3

Node 4
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Nede 6 Monitor g
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Figure 3: An Elastic Deployment of Cloud?Sim

3.3 Software Architecture and Design

Distributed storage and execution for CloudSim simulations
is achieved by exploiting Hazelcast. Infinispan integration
with the compatibility layer ensures easy integration of In-
finispan to replace Hazelcast as the in-memory data grid for
CloudSim simulations. Figure 4 depicts a layered architecture



Table 2: Cloud®Sim and CloudSim

Extended
Cloud®Sim Class CloudSim class Core Responsibilities
HzCloudSim CloudSim * Core class of the Simulator

* Initializes distributed data structures
* Implements distributed scheduling
* Starts Simulation based on the configuration
* Starts supportive threads
for scaling and health monitoring

HzDatacenterBroker || DatacenterBroker

Cloud*SimEngine

PartitionUtil - Calculates the partitions of the data structures
HzCloudlet Cloudlet * Extends Cloudlet
HzVm Vm * Extends Vm
HazelSim - * Singleton of Hazelcast integration
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Figure 4: Cloud®>Sim Architecture

Hazelcast monitoring and heart beats are run on a separate
thread, hence not interfering with the main thread that runs
the simulations. Simulation objects, cloudlets and VMs were
ported from Java lists to Hazelcast distributed maps. This
enabled storing these objects in a distributed shared memory
provided by Hazelcast spanning across the cluster. Instances
of Hazelcast IMap are used as the data structure. The core
CloudSim class, CloudSim is extended as HzCloudSim to ad-
dress the Hazelcast specific initializations. Similarly, Cloudlet
and Vm are extended as HzCloudlet and HzVm respectively.
This extended class hierarchy enabled modifying the internals
of Vm and Cloudlet classes by sub-classing them to use Hazel-
cast distributed maps as the storage data structure, instead
of lists. As extending CloudSim, Cloud?Sim provides an API
compatible with CloudSim, for the cloud simulations. Classes
of CloudSim are extended as shown by Table 2.

Scheduling. Scheduling package handles scheduling in com-
plex scenarios that involves searching large maps consisting of
VMs, cloudlets, and the user requirements. Distributed appli-
cation scheduling is done by the extended datacenter brokers
that are capable of submitting the tasks and resources in a
distributed manner.

Compatibility Layer. A new package named “compatibility”
composed of the core classes such as HazelSim was left in-
side CloudSim to integrate Hazelcast, Infinispan, and other
new dependencies, and to enable multiple modes of operation
(Such as Hazelcast or Infinispan based and regular CloudSim
simulations). HazelSim is the single class that is responsi-
ble for initiating the Hazelcast clusters and ensuring that the
minimum number of instances are present in the cluster be-
fore the simulation begins. Hazelcast could also be configured

programmatically for Cloud®Sim using HazelSim. HzObject-
Collection provides access to the distributed objects such as
Hazelcast maps. InfiniSim provides similar functionality for
the Infinispan based distribution. Cloud®Sim.properties is
used to input MapReduce and CloudSim specific parameters
such as the number of resources and users to be present in the
simulation, such that simulations could be run with varying
loads, without recompiling.

Clustering and Grouping. Hazelcast and Infinispan based
clustering is done via TCP and UDP multicasting. When
groups are formed inside a single node, UDP multicasting
is used for detecting the instances and creating the cluster.
Properties of the Hazelcast cluster such as whether the caching
should be enabled in the simulation environment, and when
the unused objects should be evicted from the instances are
configured by hazelcast.xml, and infinispan.xml is used to con-
figure the Infinispan cache.

When running across the nodes in a physical cluster, TCP
based discovery is used, where the instances are predefined,
in hazelcast.xml for Hazelcast based implementation, and in
jgroups-tcp-config.xml for Infinispan based implementation.
JGroups [3] is configured as the core group communication
technology beneath Infinispan clustering, and the respective
TCP or UDP configuration files are pointed from infinispan.xml.

The packages cloudsim.hazelcast and cloudsim.infinispan re-
spectively integrate Hazelcast and Infinispan into the simula-
tor. Concurrency layer consists of callables and runnables for
asynchronous invocations to concurrently execute. As com-
plex objects should be serialized before sending them to other
instances over the wire, custom serializers are needed for Vm,
Cloudlet, Host, Datacenter, and the other distributed objects.
Utilities module provides the utility methods used throughout
Cloud?Sim.

MapReduce Layer. MapReduce Layer provides MapReduce
representation and implementations based on Hazelcast and
Infinispan MapReduce modules. Two different implementa-
tions for Hazelcast and Infinispan exist following the same
design. MapReduce Simulator can be configured with health
monitoring and scaling. Hence, the execution time for varying
the number of map() and reduce() invocations, as well as the
health parameters, such as load average and CPU utilization
could be measured.

Dynamic Scaling. Auto scaling and adaptive scaling are im-
plemented by the packages scale.auto and scale.adaptive. To
prevent loss of information when the cluster scales in, syn-
chronous backups are enabled by marking synchronous backup
count as 1 in hazelcast.xml. This makes Cloud?Sim able to
tolerate crashes, and avoid wasted work in long simulations,
due to the availability of backups in different hazelcast in-
stances. Hazelcast stores the backups in different physical
machines, whenever available, to minimize the possibility of
losing all the backups during a hardware failure of a computer
node. Distributed objects are removed by the user simulations
as appropriate at the end of simulations. This enables the Ini-
tiator instances to join the other simulations without the need
to restart them.

Application Layer. Application layer provides sample cloud
and MapReduce simulations, and structures that assist devel-
oping further simulations on top of them. The execution flow
of a distributed simulation of an application scheduling sce-
nario with Round Robin algorithm is shown by Figure 5. It
shows the simulation utilizing the core modules of Cloud?Sim,
and CloudSim to execute in a distributed manner.
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4. IMPLEMENTATION

Based on the design, Cloud?Sim was implemented as a con-
current and distributed cloud simulator using Hazelcast, by
extending CloudSim.

4.1 Concurrent and Distributed Cloud Simula-
tor

CloudSim simulations can run on Cloud®Sim with minor
changes to facilitate distribution. Distributing the simulation
environment has been implemented using an incremental ap-
proach. CloudSim trunk version was forked and extended in
the implementation. Hazelcast version 3.2 and Infinispan ver-
sion 6.0.2 were used in the implementations and evaluations.
JGroups is a reliable multicasting toolkit [3] that is used in-
ternally by Infinispan for clustering and grouping, and ver-
sion 3.4.1 is used by the Infinispan 6.0.2. Built using Apache
Maven, the project is hosted on SourceForge”, with the Git
distributed version control system.

Sample concurrent simulations were implemented, with con-
current data center creation, concurrent initialization of VMs
and cloudlets, and submission of them to the brokers. Though
the initialization of threads and executor frameworks intro-
duced an overhead for small simulations, they provided a
speed-up for the larger simulations. Very small simulations do
not require distributed execution, as they perform reasonably
well in a single node in a sequential manner. Simulations that
fail to execute or perform poorly due to the processing power
requirements on a single thread, perform much better on the
concurrent environments utilized by Cloud®Sim. Hence, the
overheads imposed by the initializations is not a limitation to
usability, as the performance gain is higher. Sample proto-
type developments show concurrent creation of data centers
increases the performance, overcoming the overheads.

Hazelcast IExecutorService is utilized to make the execu-
tion distributed. Multiple instances are started and the first

instance to join the cluster becomes the master and executes
the core fractions of the logic which must not be distributed,
decentralized, or run in parallel for a correct execution of the
simulation. Callables and runnables were made to implement
HazelcastInstanceAware interface, to ensure the members of
the clusters executed part of the logic on the data partition
that is stored in themselves. This minimizes remote invoca-
tion, by increasing data locality. As the CloudSim objects to
be distributed are custom objects that cannot be serialized,
custom serializers were written for them, extending Hazelcast
StreamSerializer interface. The serializers are registered with
the respective classes that they serialize using hazelcast.xml.

Partitioning of data and execution is calculated iteratively
for each instance. The number of instances currently in the
cluster is tracked by deploymentList, an instance of distributed
map. An instance will have an offset value assigned to it,
which is the number of instances that have joined previously.
Hence the offset of the first instance will be zero and initial ID
of the partition will be zero as well. Final ID of the instance
that joins last, will be same as the last ID of the distributed
data structure. The partition logic permits dynamic scaling,
where the instances could join and leave during execution.
This implementation enables easy integration of auto scaling
implementations into the simulation. By default, the back up
count is set to zero, though it is set to 1 when the dynamic
scaling is enabled.

Cloud2SimEngine is started as the initial step of Cloud®Sim
cloud simulations, starting the timer and calls HzConfigReader
to read the configurations. If health checks are enabled, health
monitor thread starts to periodically monitor the instance sta-
tus and report as configured. If adaptive scaling is enabled,
AdaptiveScalerProbe is started in a separate thread, to com-
municate with the Intelligent AdaptiveScaler instances in the
other nodes to adaptively scale the simulation. Cloud?SimEngine
finally initializes HzCloudSim, where Hazelcast simulation clus-
ter is initialized with the simulation job, and CloudSim simula-
tion is started. Data centers are created concurrently. Brokers
extending HzDatacenterBroker create instances of HzVm and
HzCloudlet and start scheduling in a distributed manner, us-
ing all the instances in the simulation cluster. Core simulation

is done by the master instance, invoking HzCloudSim.startSimulation().

When the simulation finishes, the final output is logged by the
master instance. Based on the simulation implementation, the
instances could either be terminated or the distributed objects
are cleared and the instances are reset for the next simulation.

Scalable Middleware Platform. The health monitoring mod-
ule exploits the system health information that can be re-
trieved using com.sun.management.OperatingSystemM X Bean.
It facilitates scaling based on a few parameters such as CPU
load, and also provides an API to extend it further. Scaling
policies are defined on the maximum and minimum thresh-
olds of the defined properties, along with the maximum and
minimum number of instances that should be present in the
simulation cluster. Once a new instance is spawned, the adap-
tive scaler will wait for a user-defined period, which is usually
longer than the time interval for health checks, for the next
scaling action. This longer wait between scaling decisions pre-
vents cascaded scaling where multiple instances are added or
removed at once, or within a very short period of time inter-
val, during the time taken for the scaling effect to be reflected
on the simulation. The gap between the high and low thresh-
olds is kept reasonably high, to prevent the jitter effect, where
instances are added and removed frequently, as the high and
low thresholds are frequently met. Health monitor configura-
tion provides means to configure the scaling and monitoring to
fit the application requirements and extend the module fur-

7Checkout the source code at https://sourceforge.net/p/cloud2sim/code/ci/master/tree/, ther to fine tune according to the app]jcation requirements.

with user name, “cloud2sim” and password, “Cloud2Simtest”.



Scaling decisions are made atomically in the distributed envi-
ronment, to make the adaptive scaling work without simulta-
neously starting or shutting down multiple instances. This is
implemented using the distributed flags, leveraging Hazelcast
TAtomicLong data structure.

4.2 MapReduce Simulator

MapReduce Simulator has two different implementations,
based on Hazelcast and Infinispan. A basic MapReduce ap-
plication was implemented using Hazelcast and Infinispan and
incorporated into Cloud®Sim. Complex MapReduce scenar-
ios were simulated using this small application. Cloud?Sim
integrates MapReduce implementations with Hazelcast and
Infinispan. Infinispan is integrated using the compatibility
layer in CloudSim, to facilitate later distribution of CloudSim
simulations with Infinispan. This also enables the same design
and architecture for both Hazelcast and Infinispan based dis-
tributions. Infinisim in the compatibility layer configures the
DefaultCacheManager of Infinispan, using the infinispan.xml
pointed by Cloud?Sim.properties. A transactional cache is
created from the cache manager. An instance of cache in Infin-
ispan is similar to the instances in Hazelcast. Hence, multiple
instances of Cache form a cluster and execute the jobs. Cache
instance initialized by the master node acts as the supervisor
of the MapReduce jobs, and distributes the tasks across the
Initiator instances.

InfJob and HzJob classes implement the Job interface. HzJob

and InfJob get the job, and the real implementation is done by

such as load average could be monitored. The execution flow
of a MapReduce simulation using Infinispan implementation
is shown by Figure 6. Hazelcast execution is similar, with the
respective classes of Hazelcast implementation.
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Figure 6: Execution flow of a MapReduce simulation

the classes in mapreduce.hazelcast.impl and mapreduce.infinispan.iniith the Infinispan Implementation

packages. The application behind the MapReduce simulations
is a simple word count application that reads and counts big
files that are stored in the folder pointed by the property load-
Folder in cloud2sim.properties. This example implementation
can be changed to different sample applications by the users.
Huge text files such as the files collected from USENET Cor-
pus were used [30]. Current implementation can stand as a
working sample, following the CloudSim approach of provid-
ing examples.

Both Hazelcast and Infinispan based MapReduce implemen-
tations have an Initiator class that starts an instance of Hazel-
cast or Infinispan respectively and joins with the instance that
runs the main simulation. While the HzMapReduceSimulator
or InfMapReduceSimulator that runs from the master node
coordinates and initiates the MapReduce jobs, the instances
running Initiator join the cluster and do the equal share of the
jobs. Master node hosts the supervisor of the MapReduce job.
In the verbose mode, local progress of the individual map/re-
duce executions could be viewed from all the instances, where
the final outcome is printed only to the master instance.

Customizing the MapReduce job invocations. In the sim-
ple MapReduce simulation, the number of invocations of map()
is proportional to the number of files present in the load folder,
or to a smaller number defined by the user. Similarly, reduce()
is proportional to the number of lines in the file. By using du-
plicate files, invocations of map() are increased, keeping the
reduce() invocations constant. Keeping the same number of
files, and increasing the number of lines read, increases the
reduce() invocations, keeping the map() invocations constant.
By increasing both the size and number of files, both map()
and reduce() invocations can be increased simultaneously.
This simple configuration helps to develop a sample MapRe-
duce application with varying number of map() and reduce()
invocations. More complex MapReduce applications can be
visualized by this simulator, which is a simple MapReduce
application implemented on Hazelcast and Infinispan. Scala-
bility by increasing the number of physical nodes and its ef-
fects on the execution time and status change of the instances

S. EVALUATION

A cluster with 6 identical nodes (Intel(R) Core(TM) i7-
2600K CPU @ 3.40GHz and 12 GB memory) was used for
evaluations. Multiple simulations were experimented on the
system using 1 to 6 nodes. Each node executed one Hazelcast
or Infinispan instance, except during the experiments involv-
ing auto scaling in a single node.

5.1 CloudSim Simulations

The master node always completed the last, as the final
outcome is printed by the master node in the simulations con-
sidered. Time taken by the master node is noted down, as
other nodes finished the execution before the master. nohup
was used to start the process to avoid interrupts, and the out-
put was directed to an output file called nohup.out.

Table 3 shows the time taken to simulate a round robin
application scheduling simulation with 200 users, 15 data-
centers, with and without workload for a varying number of
VMs and cloudlets. CloudSim outperformed Cloud?Sim in
the base execution without a workload, due to the inherent
overheads involved in Cloud?Sim. Cloud®Sim with multiple
nodes showed a considerable 10-fold improvement in the exe-
cution time when the cloudlets contained a relevant workload
to be simulated once scheduled. Time taken (in seconds) for
an experiment in Cloud?Sim with 1, 2, 3, and 6 nodes as well
as in CloudSim is depicted by Table 3 for 200 VMs and 400
cloudlets.

In a simulation where each cloudlet does a complex job,
time taken for the simulation increases with the number of
cloudlets. With the number of VMs fixed at 200, simulation
time taken on 1 - 6 nodes was measured. Figure 7 depicts how
the application scales with varying number of cloudlets.

5.2 Distributed Execution

The experiment was repeated with different combinations
of VMs and Cloudlets, with and without a complex math-
ematical operation to be performed for each cloudlet as its



Table 3: Execution time (sec) for CloudSim Vs.
Cloud®Sim
Simple Simulation with
Deployment Simulation a workload
CloudSim 3.678 1247.400
Cloud?Sim (1 node) 20.914 1259.743
Cloud?®Sim (2 nodes) 16.726 120.009
Cloud?Sim (3 nodes) 14.432 96.053
Cloud®Sim (6 nodes) 20.307 104.440
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Figure 7: Simulation of Application Scheduling Sce-
narios

workload. Four different cases of scalability were noticed, as
described below.

5.2.1 Success Case (Positive Scalability)

Figure 8 depicts the scenarios of (noOfVMs = 200, noOf-
Cloudlets = 400, isLoaded = true) and (noOfVMs = 100,
noOfCloudlets = 200, isLoaded = true), where the time taken
for simulation is decreasing with the number of nodes. This is
a desired scenario of scaling where the task is so much CPU
intensive for each cloudlet to handle in a single node, such
that introducing more nodes distribute the tasks, reducing
the simulation time. As shown by Figure 8, time taken for the
simulations is converging. Introducing further nodes beyond
a certain maximum number of nodes may not be economically
feasible, and at a point this may become the case 3, which is
explained below.
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Figure 8: Distributed Execution - Positive Scalability

Table 4: Load averages with Adaptive Scaling on 6
nodes

No. of Master
Instances I0 I1 I2 Event
1 0.30 - - Spawning I1
2 0.30 0.24 - Waiting Time
2 0.25 0.24 - Spawning 12
3 0.23 0.23 || 0.13 || Waiting Time
3 0.21 0.19 || 0.13 Monitoring
3 0.09 0.18 || 0.09 Monitoring
3 0.06 0.18 || 0.08 Monitoring

Dynamic Scaling. With the dynamic scaling enabled, this
case introduced more instances into the execution, as the load
goes high. In the evaluations, memory used by the applica-
tion, as a percentage of the total memory used, was employed
as the health monitoring measure. It could be replaced by load
average, CPU or memory utilization. With the adaptive scal-
ing, the environment of 200 VMs and 400 cloudlets with load
scaled up to 3 instances, for a CPU utilization of 0.20, even
when more than 3 instances were included in the sub-cluster.
Reducing the maximum threshold made the main-cluster to
scale out earlier, making the system closer to the static case,
involving all the available instances to the simulation.
Adaptive scaling was not observed in the other cases, except
when the maximum process CPU load is reduced below 0.15
from the configurations. This shows that a single instance was
sufficient to run the sample simulations of the other 3 cases
discussed below. The low threshold was kept low enough, such
that there was no scale ins. When the minimum process CPU
load was increased beyond 0.02, scale in was monitored in sim-
ulation scenarios. For the scenario of scale ins, synchronous
backups should be enabled to prevent the data loss, which
eliminates the possibility of a comparison, as the simulations
with the fixed number of instances are run with no backups.

Load Average. With adaptive scaling configured, logs of load
averages were noticed during and after the scaling events. Ta-
ble 4 shows the load averages for the simulation environment
with 6 nodes available. Up to 3 nodes were involved in the sim-
ulation by the IntelligentAdaptiveScaler. Waiting time acts as
a buffer to prevent cascading scaling events. Health is mon-
itored periodically, except during the buffer time introduced
immediately following the scaling events. These intervals are
configured to fit the requirements and the nature of the sim-
ulation.

5.2.2  Other Cases of Scalability

Figure 9 depicts 3 different cases of scalability, where the ex-
ecution time changes in different patterns with the increasing
number of nodes. The scenarios are analysed below.

Controlling/Base Case (Negative Scalability). Simulation
time is increasing with the number of nodes, for the case of
(noOfVMs = 200, noOfCloudlets = 400, isLoaded = false).
This is because the cloudlets are not doing any task or no ac-
tual workload is attached to each cloudlet to perform. Hence,
Hazelcast integration imposes a load, on an application for
which a sequential and centralized execution is good enough.
As in Case 1, the time is converging here as well. Introducing
further nodes will not increase the time any more, after some
number of nodes.

Common/Regular Case (Positive Scalability followed by
Negative Scalability). Simulation time is decreasing with
the number of nodes steadily till a number of nodes, and then



25

Timels

MNodes

VMs =200, Cloudlets = 400, isLoaded = False ——
VMs =100, Cloudlets = 175, isLoaded = Trug —s«—
VMs =100, Cloudlets = 150, isLoaded = Trueg ——
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of Scaling

it starts to increase steadily, for the case of (noOfVMs = 100,
noOfCloudlets = 175, isLoaded = true). This is one of the
commonest cases, where a memory-hungry application that
can hang (infinitely long time) a single node, runs faster (10x
speedup) in 2 nodes and also in 3 nodes, where further nodes
may decrease the performance. In this particular example,
5 nodes was the ideal scenario and introducing the 6th node
created a negative scalability. Here the communication and
serialization costs start to dominate the benefits of the scala-
bility at latter stages.

Complex Case (Weird Patterns and borderline cases).
Scenario (noOfVMs = 100, noOfCloudlets = 150, isLoaded
= true) initially shows a negative scalability, followed by a
positive scalability and then by a negative scalability again.
Through repeating different experiments, a pattern was no-
ticed in this rarely occurring scenario. Initially, introducing
Hazelcast causes an overhead over the performance enhance-
ments it provides, hence increasing the execution time. Then,
the application starts to enjoy the advantages of scalability
when the distribution dominates over the initial overheads of
distribution, specially the serialization and initialization costs
of Hazelcast. Later, communication costs tend to overtake
the advantages of the distribution, causing negative scalabil-
ity again. These are borderline cases, where an ideal number
of nodes for the distribution cannot be easily predicted.
Among all the cases, there was a pattern, and it was possi-
ble to predict and adapt to the changing scalability pattern,
based on the curves for the other number of cloudlets and VMs
combinations, given that the application remained unchanged.

Hazelcast for Cloud®Sim. The effectiveness of using Hazel-
cast to distribute the storage and execution for the simulation
was evaluated by observing the overhead it imposes. Its dis-
tribution of execution and storage was measured by observing
Hazelcast Management Center. Distributed objects and dis-
tributed execution were monitored by Hazelcast Management
Center. Objects were evenly distributed among the available
Hazelcast instances, consuming almost the same amount of
entry memory from each instance. Partitions of different in-
stances were equally hit or accessed. This shows an ideal par-
titioning of the distributed objects by Hazelcast. Figure 10
shows a screenshot of Hazelcast Management Center, while
Cloud®Sim was running a sample simulation.

5.3 MapReduce Implementations

Map Memory Data Table
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Figure 10: Distributed Objects as Observed by Hazel-
cast Management Center

Hazelcast-based and Infinispan-based MapReduce simulator
implementations were benchmarked against multiple chunk
files of 6 - 8 MB, each consisting of more than 125,000 lines.
Figure 11 represents the time taken for both implementations
on a single server with 3 map() invocations, along with the
increasing number of reduce invocations with the size. Here
the size is measured by the number of lines taken into consid-
eration for the MapReduce task.

+

Hazelcast implementation +
Infinispan implementation *

Figure 11: Reduce invocations and time taken for dif-
ferent sizes of MapReduce tasks

The results showed Infinispan outperforming Hazelcast by
10 to 100 folds. Infinispan based simulator was still fast, even
when operating verbose. Infinispan MapReduce is matured.
Hazelcast MapReduce is young, and still could be inefficient.
Infinispan performs well in a single-node mode, as it functions
better as a local cache. Hazelcast is optimized for larger set
ups with very high number of real server nodes, and probably
Hazelcast could outperform Infinispan, when large number of
nodes (such as 50) are involved.

MapReduce simulations are distributed by nature, even in
a single node. This is not the case for general applications like
CloudSim simulations. Infinispan model is perfect for a single
node (or even a few node) MapReduce tasks.

5.3.1 Hazelcast MapReduce Implementation

As Hazelcast based MapReduce simulator was slow when
run in a single mode, it is tested on 1 - 6 nodes in verbose
mode to check the improvements in execution time. One node
starts the MapReduce simulator, where other nodes start the
Initiator class, which just connects to the cluster. Hazelcast
MapReduce implementation perfectly distributes the jobs. All
the Initiator nodes were started to form a cluster, before start-
ing the instance running the simulator. The time taken for dif-
ferent sizes of the task to run on different number of instances
is shown in Figure 12. The number of map() invocations was
kept constant at 3, as 3 files were used during the experiments.
Infinispan with single node was noticed to be still faster than
all 6 nodes running MapReduce in Hazelcast.
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Figure 12: Distributing the Hazelcast MapReduce ex-
ecution to multiple nodes

Table 5: Time (sec) taken for multiple Hazelcast in-

stances to execute the same task
Instances 1 2 3 4
Time 416.687 || 2580.087 || 1600.655 || 1275.664
6 8 10 12
553.296 || 432.926 320.055 312.414

For the size of 10,000, Hazelcast running on a single instance
was fast enough, and distributing the execution to multiple
nodes started with a considerable negative scalability. This
is because the communication costs were higher than the op-
timizations by the distributions. However, positive scalabil-
ity, though not significant, was achieved when more than 8
instances were used, as shown by Table 5. Up to 2 Hazel-
cast instances were executed from each of the nodes during
this. This shows that even for smaller applications, distribu-
tion may be advantageous overtaking the communication and
other costs introduced by distributing the execution.

The sample application failed to run on single node for
the size of 50,000 due to the heap space limitations. It ran
smoothly on 2 instances, and showed a perfect positive scal-
ability, when the nodes were joined to the cluster up to 6.
The application failed to run on a single node for the size of
100,000, due to the out of memory issue in heap space. The
issue persists even when the cluster size was increased up to
5 nodes. The application only ran successfully when 6 nodes
were involved. The last two cases show the requirement of a
distributed MapReduce simulations for larger tasks, as single
or a fewer nodes in the cluster were proven to be insufficient
for the higher memory requirements for the MapReduce tasks.

Bugs and Limitations. A few critical bugs were encountered
during the evaluations of Hazelcast MapReduce implementa-
tion. If a new Hazelcast instance joins a cluster that is running
a MapReduce job, it is noticed to crash the instance running
the MapReduce task and hence failing the MapReduce task®.
This was because of the newly joined instance not knowing
the supervisor of the job, due to a missing null-check, accord-
ing to the core Hazelcast/MapReduce developer. As a work-
around, the master instance that starts the MapReduce jobs
was started and joined the cluster, only after all the Initiator
instances have started and formed the cluster. This prevented
incorporation of the Hazelcast-based auto scaling and adap-
tive scaling that were already implemented during this work.
Moreover, in a long running heavy task, instances were no-
ticed to leave the cluster, to exhibit a split-brain syndrome®.
This limited the usability of the MapReduce implementation

8
https://github.com/Hazelcast/Hazelcast/issues/2354
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to shorter MapReduce jobs. These issues were reported to the
Hazelcast issue tracker.

5.3.2 Infinispan MapReduce Implementation

Infinispan implementation was tested for its scalability, with
the same MapReduce job distributed to different number of
nodes. Figure 13 shows the scaling of Infinispan MapReduce
implementation to multiple nodes, with the time taken to ex-
ecute different number of map() invocations. Number of re-
duce() invocations was kept constant at 159,069. Number of
map() invocations is equal to the number of files present in the
word count execution used. Hence, the numbers of files were
increased for different scenarios. As the number of instances
were increased, the jobs were distributed to the available in-
stances.

250

200
Map()
Invacations
150 72
m75
100 =80
mas
0 XXX XXX X
1 2 3 4 5 6

Nodes

Timels

Figure 13: Distributing the Infinispan MapReduce ex-
ecution to multiple nodes

When the number of map() invocations was increased, jobs
started to fail in single instance, due to the out of memory
(Java heap space) issue. Further, garbage collection (GC)
overhead limit was exceeded in some scenarios. These issues
prevented larger invocations to execute in smaller number of
instances. When the number of instances was increased, the
jobs that failed started to execute successfully. Moreover, a
positive scalability was observed, when the number of nodes
was increased. These evaluations prove that memory and pro-
cessing requirements increase as the map() and reduce() in-
vocations are increased. Further, distributing the execution
enables larger executions, and makes the executions faster.

6. CONCLUSION AND FUTURE WORK

Typically, cloud and MapReduce simulators are sequential,
and thus run on a single computer, where computer clusters
and in-memory data grids could be leveraged to execute larger
simulations that cannot be executed on a single computer.
Even the simulations that could run on a single node can
take advantage of more resources from the cluster, that it
can run faster and more effectively. The cycle sharing model
could be utilized to provide means of sharing the resources
across the simulation instances, allowing multiple independent
simulations to execute in parallel, in a multi-tenant way. A
scalable middleware platform for concurrent and distributed
cloud and MapReduce simulations can leverage an existing
cloud simulator, whilst exploiting the in-memory data grid
platforms for an elastic environment, deploying an adaptive
scaling strategy inspired by the volunteer computing model.

Cloud?Sim presents an architecture that enables the exe-
cution of larger simulations in a cluster, that could not be
run on single nodes due to the requirement of huge heap
space, and long execution times. Cloud®Sim has the advan-
tages of CloudSim while being efficient, faster, customizable,
and scalable. By virtue of being elastic and adaptive, it is



cloud-ready and can be the basis of a concurrent and dis-
tributed Simulation-as-a-Service for Cloud and MapReduce

simulations.

MapReduce implementations stand as an ex-

tension and proof that the same distributed execution model

could be extended beyond cloud simulations.

The design of

the adaptively scaling middleware platform can be extended
to other cloud and MapReduce simulators, as the design of
Hazelcast and CloudSim based Cloud?Sim distributed cloud
simulator is not tightly coupled to CloudSim or Hazelcast.
Currently, the Hazelcast based distributed cloud simulator is
implemented completely, along with an Infinispan integration
to facilitate distributed execution with Infinispan. Following
the same design, a complete distributed cloud simulator with
Infinispan can also be built. Moreover, the adaptive scaler de-
sign suits many applications, not just limited to simulations.
Hence this can be extended to use on any application that has
an elastic scaling requirement.
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