
An Elastic Middleware Platform for Concurrent and
Distributed Cloud and MapReduce Simulations

(Extended abstract of the MSc dissertation)

This paper is a modified version of the paper titled “An Adaptive Distributed Simulator for Cloud and MapReduce Algorithms and
Architectures”, accepted to be published at the IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC 2014)

Pradeeban Kathiravelu
INESC-ID Lisboa

Instituto Superior Técnico, Universidade de Lisboa
Lisbon, Portugal

Email: pradeeban.kathiravelu@tecnico.ulisboa.pt

Abstract—Scalability and performance are crucial for simula-
tions as much as accuracy is. Due to the limited availability and
access to the variety of resources, cloud and MapReduce solutions
are often evaluated on simulator platforms. As the complexity
of the architectures and algorithms keep increasing, simulations
themselves become large and resource-hungry. Simulators can be
designed to be adaptive, exploiting the clusters and data-grid
platforms. This paper describes the research for the design, devel-
opment, and evaluation of a complete fully parallel and distributed
cloud and MapReduce simulator (Cloud2Sim), leveraging the
Java in-memory data grid platforms. Cloud2Sim provides a con-
current and distributed cloud simulator, by extending CloudSim
cloud simulator, using Hazelcast in-memory key-value store. It
also provides an assessment of the MapReduce implementations
of Hazelcast and Infinispan, with means of simulating MapReduce
executions. Cloud2Sim scales out the cloud and MapReduce
simulations to multiple nodes running Hazelcast and Infinispan,
based on load. The distributed execution model and adaptive
scaling solution could further be leveraged as a general purpose
auto-scaler middleware for a multi-tenanted deployment.

I. INTRODUCTION

Cloud simulations are used in evaluating architectures, algo-
rithms, topologies, and strategies that are under research and de-
velopment, tackling many issues such as resource management,
application scheduling, load balancing, workload execution, and
optimizing energy consumption. While the exact environment
of the cloud platform may not be accessible to the developers at
the early stages of development, simulations give an overall idea
on the related parameters, resource requirements, performance,
and output.

With the increasing complexity of the systems that are
simulated, cloud simulations are getting larger and the larger
simulations tend to take longer and longer time to complete
being run in a single node. Also, cloud simulation environments
require a considerable amount of memory and processing power
to simulate a complex cloud scenario.

Processors are increasingly becoming more powerful with
multi-core architectures and the computing clusters in the
research laboratories themselves can be used to run complicated
large simulations in a distributed manner. However, current
simulation tools provide very limited support to utilize these
resources, as they are mostly written with a sequential execution
model targeting to run on a single server.

Java in-memory data grids provide a distributed execution
and storage model for problems in the grid-scale. They offer
scalability and seamless integration with persistent storage.

Hazelcast [1], Infinispan [2], Terracotta BigMemory1, and Ora-
cle Coherence [3] are some of the currently most used platforms
for distributed execution and storage [4]. Using these platforms,
users can create data grids and distributed cache, on the utility
computers, to execute much larger jobs that cannot be run on
any single computer, or that would take a huge time to execute
often with a slower response.

Exploiting the existing simulation approaches that are heav-
ily centralized, and the distributed execution platforms, cloud
simulations can be made distributed, such that they can be
able to utilize the computer clusters in the research labs.
Distributed simulations can enable larger simulations to execute
in a shorter time with a better response, whilst making it
possible to simulate scenarios that may not even be possible
on a single instance. Utilizing distributed computers to share
the cycles to the simulation, as required by the simulation,
would enable simulating bigger and more complex scenarios
that cannot be simulated effectively in a single node, or it could
be a very time consuming execution. While cycle sharing and
volunteer computing are used in scientific research and grid
computing projects, these models are not widely utilized to
provide computing resources for cloud simulations. Moreover,
when the resource providers are inside a trusted private network
such as a research lab, security concerns related to cycle sharing
can be considered lightly. Hence, the cycle sharing model can
be leveraged to operate in a private cluster to provide a scalable
middleware platform.

This paper describes Cloud2Sim, an adaptively scaling
middleware platform for concurrent and distributed cloud and
MapReduce simulations, by leveraging CloudSim [5], [6] as
the core simulation module, whilst taking advantage of the
distributed shared memory provided by Hazelcast and in-
memory key-value data grid of Infinispan. In the upcoming
sections, we will further analyze the proposed adaptively scaling
middleware platform for the simulations in a distributed and
concurrent manner. Section II will address background infor-
mation on cloud and MapReduce simulators, and distributed
execution frameworks. Section III discusses the solution ar-
chitecture of Cloud2Sim, the proposed middleware platform,
and how CloudSim is enhanced and extended as to become
a distributed and concurrent cloud simulator. Section IV deals
with the implementation details of Cloud2Sim. Cloud2Sim
was benchmarked against CloudSim and was evaluated on
multiple nodes, with the results discussed in Section V. Finally,
Section VI closes the paper discussing the current state of the

1http://terracotta.org/products/bigmemory



research and future enhancements.

II. RELATED WORK

A. Cloud Simulators

Some of the cloud simulators are quite generic, while
others tend to be more focused to a narrower domain. Cloud
simulators have overlapping features as well as features specific
to only a few simulators. CloudSim [5], EmuSim [7], and
SimGrid [8], [9] are some of the mostly used general-purpose
cloud simulation environments. OverSim [10] and PeerSim [11]
are simulators for peer-to-peer and overlay networks. GridSim,
a Grid Simulation tool, was later extended as CloudSim, a
Cloud Simulation environment [6]. CloudSim is capable of
simulating application scheduling algorithms, power-aware data
centers, and cloud deployment topologies. It has been extended
into different simulation tools such as CloudAnalyst [12],
WorkflowSim [13], and NetworkCloudSim [14]. Simulation
environments have a trade-off of accuracy/speed [15], with
faster less-accurate simulators and slower accurate simulators.
Researchers focus on enhancing the speed and accuracy of
existing simulators. Extensions to CloudSim tend to address
its limitations or add more features to it. NetworkCloudSim en-
ables modeling parallel applications such as MPI and workflows
in CloudSim [14]. WorkflowSim simulates scientific workflows,
through a higher level workflow management layer [13].

Optimizing the energy consumption is a major focus in
cloud infrastructure, since power consumed by cloud data
centers is enormous. Simulating energy-aware solutions has
become part of the cloud simulators such as CloudSim [16], as
energy-aware simulation is becoming a major research interest
for cloud scientists. Simulators are also developed exclusively
for power systems. Internet technology based Power System
Simulator (InterPSS) is a distributed and parallel simulation
tool for optimizing and enhancing the design, analysis, and
operation of power systems [17].

B. MapReduce Simulators

As MapReduce applications and systems are developed with
an increasing complexity, necessity to simulate MapReduce
executions became apparent, in order to study their (and that of
underlying algorithms’) performance, efficiency, scalability, and
resource requirements. Some of the MapReduce simulations
were built from scratch, while some were developed on top
of the existing simulation frameworks of cloud or network.
MapReduce simulators are often built on top of the frameworks
of the MapReduce implementation that they try to simulate,
such as Hadoop.

SimMR is a MapReduce simulator that can replay the tasks
from the logs of the real workloads produced by Hadoop,
executing the tasks within 5% of the time the MapReduce
task originally takes to execute [18]. MRPerf is a simulator
of the MapReduce implementation of Hadoop, built using ns-
2 [19]. Job execution time, amount of the data transferred,
and time taken for each phase of the job are output from the
simulator [20]. HSim, another Hadoop MapReduce simulator
following the same design paradigm of MRPerf, claims to
improve the accuracy of the MapReduce simulations for the
complex Hadoop applications [21].

MRSG is a MapReduce Simulator built on top of SimGrid,
providing APIs to prototype MapReduce policies and evaluate
the algorithms [22]. Since MapReduce tasks are often run on
bigger clusters, energy becomes a very important concern to
address. BEEMR (Berkeley Energy Efficient MapReduce) is a
MapReduce workload manager that is energy efficient [23].

C. Distributed Execution

Multiple Java in-memory data grids exist, both open source
and commercial. Hazelcast and Infinispan are two of the open
source in-memory grids that are widely used in research.

Hazelcast is a distributed in-memory data grid that pro-
vides distributed implementations for the java.util.concurrent
package [1]. Computer nodes running Hazelcast can join or
create a Hazelcast cluster using either multicast or TCP-IP
based join mechanisms. Additionally, Amazon web service
EC2 instances with a hazelcast instance running, can use the
Hazelcast/AWS join mechanism to form a Hazelcast cluster
with the other EC2 instances. Multiple Hazelcast instances
can also be created from a single node by using different
ports, hence providing a distributed execution inside a single
machine. As Hazelcast distributes the objects to remote JVMs,
the distributed objects must be serializable, or custom serializers
must be developed and registered for each of the classes that are
distributed. Hazelcast custom serialization requires the classes
to be serialized to have public setters and getters for the
properties that need be serialized. Hazelcast is partition-aware,
and exploiting its partition-awareness, related objects can be
stored in the same instance, reducing the data transmission and
remote invocations. Hazelcast supports both synchronous and
asynchronous backup for fault tolerance. Hazelcast has been
already used in research to distribute the storage across multiple
instances [24].

Infinispan is a distributed key/value data-grid [2]. As an in-
memory data-grid, Infinispan has been used in many researches.
Palmieri et al have developed a self-adaptive middleware
platform to provide transactional data access services, based
on the in-memory data management layer of Infinispan [25].
JBoss RHQ 2 provides an enterprise management solution for
Infinispan as well as the other projects from JBoss, which
can be used to monitor the state and health of the Infinispan
distributed cache instances. Infinispan offers JCache3 and Mem-
Cached4 APIs. Goal-oriented self-adaptive scalable platforms
are researched using Infinispan as an in-memory persistence
and cache solution [26].

In-memory data grids and cycle sharing model provide
resources for a distributed execution. They can be leveraged
to execute larger simulations, to increase the performance
of existing simulators, without sacrificing the performance.
Currently, no cloud or Map-Reduce simulator is able to provide
scale-out.

III. SOLUTION ARCHITECTURE

As designed to run top of a cluster, Cloud2Sim attempts
to execute larger and more complicated simulations that would

2http://rhq.jboss.org/
3https://jcp.org/en/jsr/detail?id=107
4http://memcached.org/



not run on a single node or terminal, or consume huge amount
of time. A cluster of shared resources can be built over a cluster
of computers, using the in-memory data grid frameworks.
Simulations are executed on the cluster, utilizing the resources
such as storage, processing power, and memory, provided by
the individual nodes, as indicated by Figure 1. Hazelcast and
Infinispan are used as the in-memory data grid libraries in
Cloud2Sim.

Fig. 1. High Level Use-Case of Cloud2Sim

Cloud2Sim functions in two basic modes as a concurrent
and distributed simulator: cloud and MapReduce. It was decided
to extend an existing cloud simulator to be concurrent and
distributed, instead of writing a new cloud simulator from the
scratch, to be able to take advantage of existing simulations.
Developed as a Java open source project, CloudSim can be
easily modified by extending the classes, with a few changes
to the CloudSim core. Its source code is open and maintained.
Hence, CloudSim was picked as the core simulation module to
build the distributed simulator, while configuring and leveraging
Hazelcast to distribute the storage of VM, Cloudlet, and Dat-
acenter objects and also to distribute the execution, according
to the scheduling, to the instances in the cluster. Users have
the freedom to choose Hazelcast based or Infinispan based
distributed execution for the cloud and MapReduce simulator,
as the simulator is implemented on top of both platforms
following the same design. Classes of CloudSim are extended
and a few are also modified to be able to extend CloudSim with
further functionality. External dependencies such as Hazelcast
and Infinispan are used unmodified, for added transparency and
portability. The definition of cloud simulations and MapReduce
simulations are independent by design. Cloud and MapReduce
simulations can be executed independently, though experiments
can be run utilizing both cloud and MapReduce simulations.

A. Distributed Middleware Platform for Simulations

As multiple instances execute a single simulation, measures
are taken to ensure that the output is consistent as if simulating
in a single instance, while having enhanced performance and
scalability. Data is partitioned across the instances by leveraging
and configuring the in-memory data grid. Each member of the
cluster executes part of the logic on the objects that are stored
in the local partitions of the respective nodes.

Execution of simulations is improved, by leveraging the
multi-core environments, and exploiting the multi-threaded
programming. While CloudSim provides some means for a
concurrent execution, its support is very limited. Simulations

should be executed utilizing the multi-threaded environments,
where the simulator itself runs the tasks concurrently, whenever
that is possible and efficient. Runnables and callables are used
to submit tasks to be run in a separate thread, while the main
thread is executing its task. The relevant check points ensure
that the threads have finished their execution and the values are
returned from the callables, as required.

A cluster can be formed by multiple instances. Multiple
clusters can be used to execute parallel cloud or MapReduce
simulations, as multiple tenants of the nodes. As each cluster
is unaware of the other clusters, tenant-awareness is ensured so
that the parallel experiments can be independent and secured
from the other parallel simulations.

Pulling data from each of the nodes for execution has a
higher communication cost. To overcome this, the data locality
features provided for Hazelcast distributed executors are lever-
aged and used appropriately to send the logic to the data instead.
Partition-awareness feature of Hazelcast is exploited in storing
the distributed objects, such that the data that are associated
with each other are stored in the same partition to decrease the
remote invocations. Partitioning of data and execution is done
by 3 different strategies, as listed below.

1. Simulator - Initiator based Strategy: Simulator
is the complete Cloud2Sim with the simulation running. A
Hazelcast instance is started by Cloud2Sim Initiator, which
keeps the computer node connected to the Hazelcast cluster,
offering the resources of the node to the data grid. The
Simulator instance is run from the master instance, where
an instance of Initiator is spawned from the other instances.
Simulator acts as the master, distributing the logic to the
Initiator instances. Part of the logic is executed in the master
itself, and the execution is partitioned uniformly among all the
instances, using the ExecutorService.

2. Simulator - SimulatorSub based Strategy: One in-
stance contains the Simulator, which is the master, where others
execute SimulatorSub, which are the slave instances. Master
coordinates the simulation execution. Execution is started by
all the instances and parts of the execution are sent by each
instance respectively to the other instances, using the Execu-
torService. Hence, the load on the master is reduced. Some
of the unparallelizable tasks can be delegated to the primary
worker, which is an instance other than the master instance,
that is decided upon the cluster formation. This mitigates
overloading the master instance.

3. Multiple Simulator Instances Strategy: There is no
predefined Simulator master in this strategy. The instance that
joins first becomes the master at run time, where other instances
function as SimulatorSub instances. Logic is partitioned
across the instances using the partitioning algorithms defined
in Cloud2Sim distributed data center brokers. PartitionUtil
manages the partitioning of the data and execution, manipu-
lating the data structures across the instances. It provides the
initial and final IDs of the data structure such as cloudlets and
VMs, given the total number of the data structure elements and
the initial offset.

The Simulator - Initiator based Strategy is chosen for the
implementation of the simulations that are effectively scheduled
by the single master to all the instances that are joined, such
as the MapReduce simulator. The multiple Simulator instances



strategy is used in the CloudSim simulations such as the sim-
ulation of matchmaking-based application scheduling, where
the simultaneous instances are more effective, than having a
single static master that handles most of the task. The Simulator
- SimulatorSub based strategy is proposed for the compound
simulations involving both Cloud and MapReduce executions,
or simulating MPI workflows. The multiple Simulator instances
strategy is usually preferred over the Simulator - SimulatorSub
based strategy as it is easier to maintain since it does not
fragment the logic, and also electing the master at run time
is more effective in terms of scalability and fault-tolerance.

Existence of the master instance is always ensured in the
multiple Simulator instances strategy. The instance that joins
the cluster as the first instance in the cluster becomes the
master, where in the Simulator - SimulatorSub based strategy,
the instance of Simulator should be manually started before the
sub instances, and this may become a bottleneck. Moreover,
when backups are available, the multiple Simulator instances
strategy is resilient to failures as when the assigned master fails,
another instance can take over as the master. This is not possible
in the other strategies, as the master is chosen statically, and
the other nodes do not contain the same code as the master
instance.

Cloud Simulations: Cloud2Sim is designed on top of
CloudSim, where cloud2sim-1.0-SNAPSHOT can be built using
Maven independently without rebuilding CloudSim. Modifi-
cations to CloudSim are very minimal. Cloud2Sim enables
distributed execution of larger CloudSim simulations. The
compatibility layer of Cloud2Sim enables the execution of
the CloudSim simulations with minimal code change, on top
of either the Hazelcast and Infinispan based implementations,
or the pure CloudSim distribution, by abstracting away the
dependencies on Hazelcast and Infinispan, and providing a
compatible API.

MapReduce Simulations: Design of the MapReduce
simulator is based on a real MapReduce implementation. A
simple MapReduce application executes as the Simulator is
started. The number of times map() and reduce() are invoked
can easily be configured. The MapReduce simulator is designed
on two different implementations, based on Hazelcast and Infin-
ispan, making it possible to benchmark the two implementations
against each other. Multiple simulations are executed in parallel,
without influencing others, where an instance of a coordinating
class could collect the outputs from the independent parallel
MapReduce jobs carried out by different clusters.

B. Scalability and Elasticity

Cloud2Sim achieves scalability through both static scaling
and dynamic scaling. Static scaling is the scenario where
Cloud2Sim uses the storage and resources that are initially
made available, when instances are started and joined man-
ually to the execution cluster. Multiple nodes can be started
simultaneously at the start-up time for large simulations that
require large amount of resources. Initiator instances can
also be started manually at a later time, to join the simulation
that has already started. Simulations begin when the minimum
number of instances specified have joined the simulation cluster.
Cloud2Sim scales smoothly as more Hazelcast instances join
the execution.

Scaling can also be achieved by Cloud2Sim itself dy-
namically without manual intervention, based on the load and
simulation requirements. When the load of the simulation
environment goes high, Cloud2Sim scales itself to handle
the increased load. Dynamic scaling of Cloud2Sim provides
a cost-effective solution, instead of having multiple instances
being allocated to the simulation even when the resources are
under-utilized. Since scaling introduces the possibility of nodes
joining and leaving the cluster, as opposed to the static execu-
tion or manual joins and exits of instances, scalable simulation
mandates availability of synchronous backup replicas, to avoid
losing the distributed objects containing the simulation data
upon the termination of an instance.

A health monitor was designed to monitor the health of
the instances, and trigger scaling accordingly. The health mon-
itoring module runs from the master node and periodically
checks the health of the instance by monitoring the system
health parameters such as the process CPU utilization, system
CPU utilization, and the load average. Based on the policies
defined in the configuration file, the health monitor triggers
the dynamic scaler. When the current observed value of the
monitored health parameter (such as load average or process
or system CPU utilization) is higher than the maxThreshold
and the number of total instances spawned is less than the
maxInstancesToBeSpawned, a new instance will be added
to the simulation cluster. Similarly, when the current observed
value is lower than the minThreshold, an instance will be
removed from the simulation cluster.

During scale out, more instances are included into the
simulation cluster, where scale in removes instances from the
simulation cluster, as the opposite of scale out. Dynamic scaling
is done in two modes - auto scaling and adaptive scaling, as
discussed below.

Auto Scaling: By default, the Cloud2Sim auto scaler
spawns new instances inside the same node/computer. When
there is only a limited availability of resources in the local
computer clusters that is insufficient to simulate a large sce-
nario, Cloud2Sim can be run on an actual cloud infrastructure.
Hazelcast can be configured to form a cluster on Amazon EC2
instances, with the Hazelcast instances running on the same
AWS5 account. When using AWS join mechanism provided by
Hazelcast to form the cluster, Hazelcast uses the access key
and secret key to authorize itself into forming the cluster. Ports
that are involved in Hazelcast clustering should be open and
permitted in the EC2 instances. Scaling can be triggered by
the Cloud2Sim health monitoring or using the scaling policies
configured with AWS Auto Scaling and Amazon Cloud Watch.

Adaptive Scaling: Adaptive Scaling is a scenario, where
in a clustered environment, more computer nodes will be
involved in an application execution based on the load. More
instances will be attached to the simulation cluster when the
load is high, and instances will be detached or removed from
simulation when the load is low. Scaling decisions are made in
a separate cluster.

The health monitor in the main instance monitors the
load and health status of the main instance with simula-
tion running in cluster − main, and shares this informa-
tion with the AdaptiveScalerProbe thread in cluster −

5https://aws.amazon.com/



sub, using the local objects, as they are from the same
JVM. AdaptiveScalerProbe shares this information with
IntelligentAdaptiveScaler (IAS) instances, which are threads
from all the other nodes that are connected to cluster − sub.

When IAS from one instance notices the high load in the
master, it spawns an Initiator instance in the cluster −main,
and sets the flag to false to avoid further scaling outs/ins.
Monitoring for scaling out happens when there is no Initiator
instance in the node, and monitoring for scaling in happens
when there is an Initiator instance, for each individual node.
This ensures 0 or 1 of Initiator instances in each node, and
avoids unnecessary hits to the Hazelcast distributed objects
holding the health information. Since IAS is in a separate cluster
(cluster-sub) from the simulation (cluster-main), the executions
are independent.

Adaptive Scaling is used to create prototype deployments
with elasticity. When the simulations complete, the Hazelcast
instances running in the cluster-main will be terminated, and
the distributed objects stored in the cluster-sub will be cleaned.
These instances just require Hazelcast and the adaptive scaler
thread to keep them connected, providing their CPU and storage
for the simulation work voluntarily, in a BOINC6-like cycle
sharing model. The entire simulation code can be loaded and
kept only on the master and exported transparently to other
nodes joining it, and execute from all the nodes, following the
Simulator− Initiatorbasedstrategy. All the member nodes
are from the same network, that they have joined by TCP-IP or
multicast. Hence the cycle sharing in Cloud2Sim is not public
as in voluntary computing. Due to this nature, the security
implications involved in voluntary computing are not applicable
to Cloud2Sim.

The scaling decision flag should be get and set in a con-
current and distributed environment atomically, ensuring that
exactly one instance takes action of it. Access to the object
that is used as the flag must be locked during update from any
other instance in the distributed environment.

Multiple Hazelcast clusters can be run from a single com-
puter cluster or even a single machine. By exploiting this
feature, multiple experiments can be run on Cloud2Sim in
parallel, as different clusters are used for independent sim-
ulations. The adaptive scaler is further extended to have the
node cluster providing its resources to different applications or
simulations running on different Hazelcast clusters. Figure 2
shows the execution of two independent simulations in a
cluster with adaptive scaling. The adaptive scaler functions as a
Coordinator instance, coordinating and allocating its resources
to multiple tenants. Here, instead of representing the scaling
decisions using single keys, distributed hash maps are used,
mapping the scaling decisions and health information against
the cluster or tenant ID. Similarly, the pointers to the master
instances are mapped against the cluster ID, making it possible
to refer to and coordinate multiple tenants from the coordinator.

C. Software Architecture and Design

Distributed storage and execution for CloudSim simulations
is achieved by exploiting Hazelcast. Infinispan integration with
the compatibility layer ensures easy integration of Infinispan

6http://boinc.berkeley.edu/

Fig. 2. An Elastic Deployment of Cloud2Sim

to replace Hazelcast as the in-memory data grid for CloudSim
simulations. Figure 3 depicts a layered architecture overview of
Cloud2Sim, hiding the fine architectural details of CloudSim.

Fig. 3. Cloud2Sim Architecture

Hazelcast monitoring and heart beats are run on a separate
thread, hence not interfering with the main thread that runs the
simulations. Simulation objects, cloudlets and VMs were ported
from Java lists to Hazelcast distributed maps. This enabled
storing these objects in a distributed shared memory provided
by Hazelcast spanning across the cluster. Instances of Hazelcast
IMap are used as the data structure. The core CloudSim
class, CloudSim is extended as HzCloudSim to address the
Hazelcast specific initializations. Similarly, Cloudlet and V m
are extended as HzCloudlet and HzVm respectively. This
extended class hierarchy enabled modifying the internals of
Vm and Cloudlet classes by sub-classing them to use Hazelcast



TABLE I. Cloud2Sim AND CLOUDSIM

Extended
Cloud2Sim Class CloudSim class Core Responsibilities

HzCloudSim CloudSim * Core class of the Simulator
* Initializes distributed data structures

HzDatacenterBroker DatacenterBroker * Implements distributed scheduling
- * Starts Simulation based on the configuration

Cloud2SimEngine * Starts supportive threads
for scaling and health monitoring

PartitionUtil - Calculates the partitions of the data structures
HzCloudlet Cloudlet * Extends Cloudlet

HzVm Vm * Extends Vm
HazelSim - * Singleton of Hazelcast integration

HzObjectCollection - * Provides unified access to distributed objects

distributed maps as the storage data structure, instead of Java
lists. As extending CloudSim, Cloud2Sim provides an API
compatible with CloudSim, for the cloud simulations. Classes
of CloudSim are extended as shown by Table I, while preserving
the invocation interfaces and preserving code generality.

The scheduling package handles scheduling in complex
scenarios that involve searching large maps consisting of VMs,
cloudlets, and the user requirements. Distributed application
scheduling is done by the extended data center brokers that are
capable of submitting the tasks and resources in a distributed
manner. A new package named ”compatibility” composed of
the core classes such as HazelSim is placed inside CloudSim
to integrate Hazelcast, Infinispan, and other new dependencies,
and to enable multiple modes of operation (Such as Hazelcast
or Infinispan based and regular CloudSim simulations).

The concurrency layer consists of callables and runnables
for asynchronous invocations to concurrently execute. As com-
plex objects must be serialized before sending them to other
instances over the wire, custom serializers are needed for
V m, Cloudlet, Host, Datacenter, and the other distributed
objects to be able to distribute them across the instances, store
and access them remotely in a binary format, effectively. The
utilities module provides the utility methods used throughout
Cloud2Sim.

The MapReduce layer provides MapReduce representation
and implementations based on Hazelcast and Infinispan MapRe-
duce modules. MapReduce Simulator can be configured with
health monitoring and scaling. Hence, the execution time for
varying the number of map() and reduce() invocations as well as
the health parameters such as load average and CPU utilization
can be measured.

IV. IMPLEMENTATION

Based on the design, Cloud2Sim7 was implemented as a
concurrent and distributed cloud and MapReduce simulator.

A. Concurrent and Distributed Cloud Simulator

CloudSim simulations can run on Cloud2Sim with minor
changes to facilitate distribution. Distributing the simulation
environment has been implemented using an incremental ap-
proach. The CloudSim trunk version was forked and used in the
implementation. Hazelcast version 3.2 and Infinispan version
6.0.2 were used in the implementations and evaluations. A
complete distributed cloud simulator was built with Hazelcast,
having CloudSim as the core simulation module.

7Checkout the source code at https://sourceforge.net/p/cloud2sim/code/ci/master/tree/, with user name, “cloud2sim” and
password, “Cloud2Simtest”.

Sample concurrent simulations were implemented, with
concurrent data center creation, concurrent initialization of VMs
and cloudlets, and submission of them to the brokers. Though
the initialization of threads and executor frameworks introduced
an overhead for small simulations, it provided a speed-up for
the larger simulations. Very small simulations do not require
distributed execution, as they perform reasonably well, and were
never the target of this work. Simulations that fail to execute
or perform poorly due to the processing power requirements
on a single thread, perform much better on the concurrent
environments utilized by Cloud2Sim. Hence, the overheads
imposed by the initializations is not a limitation to usability, as
the performance gain is higher. Sample prototype developments
with concurrent creation of data centers showed an increased
performance, overcoming the overheads.

Hazelcast IExecutorService was utilized to make the exe-
cution distributed. While MapReduce executions are effectively
executed in the Simulator - Initiator based strategy, cloud
simulations rather follow a model where all the instances initiate
and send logic fractions. Initially implemented as different
classes, following Simulator - SimulatorSub based strategy,
the master and other instances were later unified, following
the multiple Simulator instances Strategy, such that a same
Simulator class can be run from all the instances. The first
instance to join the cluster becomes the master and executes
the core fractions of the logic which must not be distributed,
decentralized, or run in parallel for a correct execution of the
simulation. Callables and runnables were made to implement
HazelcastInstanceAware interface, to ensure the members
of the clusters executed part of the logic on the data partition
that is stored in themselves, to minimize remote invocation, by
increasing data locality. Cloud2Sim optimizes the data locality
of the distributed objects by storing the related objects together,
as they frequently access each other.

Partitioning of data and execution is calculated iteratively
for each instance. The number of instances currently in the
cluster is tracked by an instance of distributed map, called
deploymentList. An instance will have an offset value as-
signed to it, which is the number of instances that have joined
previously. Hence the offset of the first instance will be zero
and initial ID of the partition will be zero as well. Final ID of
the data partition of the instance that joins last, will be same
as the last ID of the distributed data structure.

Cloud2SimEngine is started as the initial step of
Cloud2Sim cloud simulations. Cloud2SimEngine.start()
starts the timer and calls HzConfigReader to read the con-
figurations. If health checks are enabled, it starts the health
monitor thread, to periodically monitor the instance status
and report as configured. If adaptive scaling is enabled, it
also starts the AdaptiveScalerProbe in a separate thread, to
communicate with the IntelligentAdaptiveScaler instances
in the other nodes to adaptively scale the simulation. It finally
initializes HzCloudSim, where Hazelcast simulation cluster is
initialized with the simulation job, and CloudSim simulation
is started. Data centers are created concurrently. Brokers ex-
tending HzDatacenterBroker create instances of HzVm
and HzCloudlet and start scheduling in a distributed manner,
using all the instances in the simulation cluster. The core
simulation is started using HzCloudSim.startSimulation(),
and executed by the master instance. When the simulation



finishes, the final output is logged by the master instance. Based
on the simulation, the instances are either terminated or their
distributed objects are cleared and the instances are reset for
the next simulation.

Scalable Middleware Platform: The
health monitoring module exploits the system
health information that can be retrieved using
com.sun.management.OperatingSystemMXBean. It
facilitates scaling based on a few parameters such as CPU
load, and also provides an API to extend it further. Scaling
policies are defined on the maximum and minimum thresholds
of the defined properties, along with the maximum and
minimum number of instances that should be present in
the simulation cluster. Once a new instance is spawned, the
adaptive scaler will wait for a user-defined period, which is
usually longer than the time interval for health checks, for the
next scaling action. This longer wait between scaling decisions
prevents cascaded scaling and jitter where multiple instances
are added or removed at once, or within a very short period
of time interval, during the time taken for the scaling effect to
be reflected on the simulation. The gap between the high and
low thresholds is kept reasonably high, to prevent the jitter
effect, where instances are added and removed frequently, as
the high and low thresholds are frequently met. The health
monitor configuration provides means to configure the scaling
and monitoring to fit the application requirements and extend
the module further to fine tune according to the application
requirements.

Scaling decisions are made atomically in the distributed
environment, to make the adaptive scaling work without simul-
taneously starting or shutting down multiple instances. This is
implemented using the distributed flags, leveraging Hazelcast
IAtomicLong data structure.

B. MapReduce Simulator

MapReduce Simulator has two different implementations,
based on Hazelcast and Infinispan. A basic MapReduce word
count application was implemented using Hazelcast and Infin-
ispan and incorporated into Cloud2Sim. Complex MapReduce
scenarios were simulated using this small application.

Infinispan is integrated using the compatibility layer in
CloudSim, to facilitate later migration of Cloud2Sim to Infinis-
pan. This also enables the same design and architecture for both
Hazelcast and Infinispan based distributions. A transactional
cache is created from the cache manager. An instance of
cache in Infinispan is similar to an instance in Hazelcast.
Multiple instances of Cache form a cluster and execute the
jobs. Simulator and Initiator instances are created using the
same configurations. The cache instance initialized by the
master node acts as the supervisor of the MapReduce jobs, and
distributes the tasks across the Initiator instances.

V. EVALUATION

A computer cluster with 6 identical physical nodes (Intel(R)
Core(TM) i7-2600K CPU @ 3.40GHz and 12 GB memory) was
used for the evaluation. Multiple simulations were experimented
on the system using 1 to 6 nodes. Each node executed one
Hazelcast or Infinispan instance, except during the experiments
involving multiple instances in a single node.

TABLE II. EXECUTION TIME (SEC) FOR CLOUDSIM VS. Cloud2Sim

Simple Simulation with
Deployment Simulation a cloudlet workload
CloudSim 3.678 1247.400

Cloud2Sim (1 node) 20.914 1259.743
Cloud2Sim (2 nodes) 16.726 120.009
Cloud2Sim (3 nodes) 14.432 96.053
Cloud2Sim (6 nodes) 20.307 104.440

A. Initial Tests

The master node always completes the last, as the final
outcome is printed by the master node in the simulations
considered. Time taken by the master node is noted down, as
the other nodes finished the execution before the master.

Table II shows the time taken to simulate a round robin ap-
plication scheduling simulation with 200 users, 15 data centers,
with and without a cloudlet workload for a varying number
of VMs and cloudlets. CloudSim outperformed Cloud2Sim
in the base execution without a workload, due to the domi-
nant inherent coordination overhead involved in Cloud2Sim.
Cloud2Sim with multiple nodes showed a considerable 10-
fold improvement in the execution time when the cloudlets
contained a relevant workload to be simulated once scheduled.
Time taken (in seconds) for an experiment in Cloud2Sim with
1, 2, 3, and 6 nodes as well as in CloudSim is depicted by
Table II for 200 VMs and 400 cloudlets.

In a simulation where each cloudlet does a complex job,
the time taken for the simulation increases with the number of
cloudlets. With the number of VMs fixed at 200, simulation
time taken on 1 - 6 nodes was measured. Figure 4 depicts
how the application scales with varying number of cloudlets.
As the size of the simulation is increased, performance is seen
increasing with the number of nodes, depicting the suitability
of the distributed execution model for larger simulations.

Fig. 4. Simulation Time for Application Scheduling Scenarios

B. Distributed CloudSim Simulations

The experiment was repeated with different combinations
of VMs (from 100 - 200) and Cloudlets (from 100 - 400),
with and without a complex mathematical operation to be
performed for each cloudlet as a load. Distributed objects and
distributed execution were monitored by Hazelcast Management
Center. Objects were uniformly distributed among the available
Hazelcast instances, consuming almost the same amount of
entry memory from each instance. Partitions of different in-
stances were equally hit or accessed. This shows an effective



partitioning of the distributed objects by Hazelcast. Parameter
‘isLoaded’ is set to true, for a cloudlet workload. Four distinct
cases of scalability were noticed, as described below.

1) Success Case (Positive Scalability): Figure 5 depicts the
scenarios of (noOfVMs = 200, noOfCloudlets = 400, isLoaded
= true) and (noOfVMs = 100, noOfCloudlets = 200, isLoaded
= true), where the time taken for simulation is decreasing with
the number of nodes. This is a desired scenario of scaling where
the task is so much CPU intensive for each cloudlet to handle
in a single node, such that introducing more nodes distribute
the tasks, reducing the simulation time.

Dynamic Scaling: With the dynamic scaling enabled,
this case introduced more instances into the execution, as the
load goes high. Memory used by the application as a percentage
of the total memory used was used as the health monitoring
measure. With the adaptive scaling, the environment of 200
VMs and 400 cloudlets with load scaled up to 3 instances, for a
CPU utilization of 0.20, even when more than 3 instances were
included in the sub-cluster. Reducing the maximum threshold
made the main-cluster to scale out earlier and faster, involving
all the available instances to the simulation. Figure 5 shows
the time taken for the simulations with and without adaptive
scaling. As shown by Figure 5, the execution time is converging
as more nodes are added. Hence, introducing further nodes
beyond a certain maximum number of nodes may not be
economically feasible, and at a point this may become the case
3, which is explained below as the common case.

Fig. 5. Distributed Execution - Positive Scalability

Adaptive scaling was not observed in the other cases, except
when the maximum process CPU load is reduced below 0.15
from the configurations. This shows that a single instance was
sufficient to run the sample simulations of the other 3 cases
discussed below. For the scenario of scale ins, synchronous
backups should be enabled to prevent the data loss, which
eliminates the possibility of a fair comparison, as the simu-
lations with the fixed number of instances are run with no
backups. Hence, the low threshold was kept low enough during
the experiment, such that there were no scale ins. Scale in was
observed, when the minimum process CPU load was increased
beyond 0.02.

Load Average: With adaptive scaling configured, load
average was logged during the execution. Table III shows
the load averages observed during and after the scaling
events, for the simulation environment with 6 nodes avail-
able. Up to 3 nodes were involved in the simulation by the

TABLE III. LOAD AVERAGES WITH ADAPTIVE SCALING ON 6 NODES

No. of Instances Master I0 I1 I2 Event
1 0.30 - - Spawning - I1
2 0.30 0.24 - Waiting Time
2 0.25 0.24 - Spawning - I2
3 0.23 0.23 0.13 Waiting Time
3 0.21 0.19 0.13 Health Monitoring
3 0.09 0.18 0.09 Health Monitoring
3 0.06 0.18 0.08 Health Monitoring

IntelligentAdaptiveScaler. Waiting time acts as a buffer to
prevent cascaded scaling events. Health is monitored period-
ically, except during the buffer time introduced immediately
following the scaling events. These intervals are configured to
fit the requirements and the nature of the simulation.

2) Other Cases of Scalability: Figure 6 depicts 3 distinct
cases of scalability, where the execution time changes in
different patterns with the increasing number of nodes. The
scenarios are analyzed below.

Fig. 6. Distributed Execution - Different Patterns of Scaling

Coordination-Heavy Case (Negative Scalability): Sim-
ulation time is increasing with the number of nodes, for the
case of (noOfVMs = 200, noOfCloudlets = 400, isLoaded =
false). This is because the cloudlets are not doing any task or
no load attached to each cloudlet to perform. Hence, Hazelcast
integration imposes an overhead consisting of coordination and
other fixed costs, for an application for which a sequential and
centralized execution is good enough. As in the success case,
the time is converging here as well. Introducing further nodes
will not increase the time any more, after some number of
nodes.

Common Case: Simulation time is decreasing with the
number of nodes steadily till a number of nodes, and then it
starts to increase steadily, for the case of (noOfVMs = 100,
noOfCloudlets = 175, isLoaded = true). This is one of the
commonest cases, where a memory-hungry application that
can hang (infinitely long time) in a single node, runs faster
(10x speedup) in 2 nodes and also in 3 nodes, where further
nodes may decrease the performance, due to the coordination
and communication costs. In this particular example, 5 nodes
was the ideal scenario and introducing the 6th node created a
negative scalability. Here the communication and serialization
costs start to dominate the benefits of the scalability at latter
stages.

Complex Case (Weird Patterns and borderline cases):
Scenario (noOfVMs = 100, noOfCloudlets = 150, isLoaded



= true) initially shows a negative scalability, followed by a
positive scalability and then by a negative scalability again.
Through repeating different experiments, a pattern was noticed
in this rarely occurring scenario. Initially, introducing Hazel-
cast causes an overhead over the performance enhancements
it provides, hence increasing the execution time. Then, the
application starts to have the advantages of distribution and
enhanced scalability, when the speedup due to distribution
dominates over the initial overheads of distribution, specially
the serialization and initialization costs of Hazelcast. Later,
communication costs tend to overtake the advantages of the
distribution, causing negative scalability again.

Among all the cases, there was a pattern, and it was possible
to predict the changing scalability pattern, based on the curves
for the other number of cloudlets and VMs combinations, given
that the application remained unchanged.

C. MapReduce Implementations

Hazelcast-based and Infinispan-based MapReduce simulator
word count implementations were benchmarked against multi-
ple big files of 6 - 8 MB, each consisting of more than 125,000
lines, having the full size up to 9.4 GB. Both implementations
were observed to distribute the job uniformly across all the
instances in the execution cluster. Figure 7 represents the time
taken for both implementations on a single server with 3
map() invocations, along with the increasing number of reduce
invocations with the size. Here the size is measured by the
number of lines taken into consideration for the MapReduce
task.

Fig. 7. Reduce invocations and time taken for different sizes of MapReduce
tasks

The results showed Infinispan outperforming Hazelcast by
10 to 100 folds. Infinispan based simulator was still fast,
even when operating verbose, where each of the execution
step is monitored and logged. Infinispan MapReduce imple-
mentation is matured. Hazelcast MapReduce implementation
is young, and still could be inefficient. Infinispan performs
well in a single-node mode, as it operates better as a local
cache. Hazelcast is optimized for larger set ups with very high
number of real server nodes, and probably Hazelcast could
outperform Infinispan, when larger number of nodes (such as
50) are involved. MapReduce executions are easily parallel
and distributed by nature, even in a single node. This is not
the case for general applications like CloudSim simulations.
Infinispan model is perfect for a single node (or even a few
node) MapReduce tasks.

1) Infinispan MapReduce Implementation: Infinispan im-
plementation was tested for its scalability, with the same
MapReduce job distributed to different number of nodes. Fig-
ure 8 shows the scaling of Infinispan MapReduce implementa-
tion to multiple nodes, with the time taken to execute different
number of map() invocations. Number of reduce() invocations
was kept constant at 159,069. Number of map() invocations is
equal to the number of files present in the word count execution
used. Hence, the number of files were increased for different
scenarios. As the number of instances were increased, the jobs
were distributed to the available instances.

Fig. 8. Distributing the Infinispan MapReduce execution to multiple nodes

When the number of map() invocations was increased, jobs
started to fail in single instance, due to the out of memory
(java.lang.OutOfMemoryError: Java heap space) issue. Further,
garbage collection (GC) overhead limit was exceeded in some
scenarios. These issues prevented larger invocations to execute
in smaller number of instances. When the number of instances
was increased, the jobs that failed started to execute successfully
and a positive scalability was observed. These evaluations
prove that memory and processing requirements increase as
the number of map() and reduce() invocations are increased.
Further, distributing the execution enables larger executions,
and makes the executions faster.

2) Hazelcast MapReduce Implementation: As Hazelcast
based MapReduce simulator was slow when run in a single
mode, it is tested on 1 - 6 nodes in verbose mode to check
the improvements in execution time. One node starts the
MapReduce simulator, where other nodes start the Initiator
class, which just connects to the cluster and executes the logic
fractions sent by the master.

Time taken for different sizes of the task to run on different
number of instances is shown by Figure 9. Number of map()
invocations was kept constant at 3, while increasing the number
of reduce() invocations. Infinispan with single node was noticed
to be still faster than all 6 nodes running MapReduce in
Hazelcast.

Fig. 9. Distributing the Hazelcast MapReduce execution to multiple nodes



TABLE IV. TIME (SEC) TAKEN FOR MULTIPLE HAZELCAST INSTANCES
TO EXECUTE THE SAME TASK

No. of Hazelcast Instances 1 2 3 4
Time taken (sec) 416.687 2580.087 1600.655 1275.664

6 8 10 12
553.296 432.926 320.055 312.414

For the size of 10,000 (68,162 reduce() invocations), Hazel-
cast running on a single instance was fast enough, and distribut-
ing the execution to multiple nodes started with a considerable
negative scalability. This is because the communication and
coordination costs were higher than the improvements from the
distributions. However, positive scalability, though not signif-
icant, was achieved when more than 8 instances were used,
as shown by Table IV. Up to 2 Hazelcast instances were
executed from each of the nodes during this. This shows that
even for smaller applications, distribution may be advantageous
overtaking the communication and other costs introduced by
distributing the execution.

The sample application failed to run on single node for the
size of 50,000 (192,370 reduce() invocations), due to the heap
space limitations. It ran smoothly on 2 instances, and showed
a perfect positive scalability, when the nodes were joined to
the cluster up to 6. The application failed to run on a single
node for the size of 100,000 (318,138 reduce() invocations), due
to the out of memory issue in heap space. The issue persists
even when the cluster size was increased up to 5 nodes. The
application ran successfully only when 6 nodes were involved.
The last two cases clearly show the requirement of distributed
MapReduce simulations for larger tasks, as a single or a fewer
nodes in the cluster were proven to be insufficient for the higher
memory requirements of the MapReduce tasks.

VI. CONCLUSION AND FUTURE WORK

Typically, cloud and MapReduce simulators are sequential,
and thus run on a single computer, where computer clusters
and in-memory data grids can be leveraged to execute larger
simulations that cannot be executed on a single computer. Even
the simulations that can run on a single node can take advantage
of more resources from the cluster, that it can run faster and
more effectively. The cycle sharing model can be utilized to
provide means of sharing the resources across the simulation
instances, allowing multiple independent simulations to execute
in parallel, in a multi-tenanted manner.

Cloud2Sim presents an architecture that enables the ex-
ecution of larger simulations in a cluster, that cannot be run
on single nodes due to the requirement of huge heap space,
and long execution times. Cloud2Sim has the advantages
of CloudSim while being efficient, faster, customizable, and
scalable. MapReduce implementations stand as an extension
and proof that the same distributed execution model can be
extended beyond cloud simulations. By virtue of being elastic
and adaptive, it is cloud-ready and can be the basis of a truly
concurrent and distributed Simulation-as-a-Service for Cloud
and MapReduce simulations.

REFERENCES

[1] Mat Johns. Getting Started with Hazelcast. Packt Publishing Ltd, 2013.
[2] Francesco Marchioni. Infinispan Data Grid Platform. Packt Publishing Ltd, 2012.
[3] Seovic, A., Falco, M., & Peralta, P. (2010). Oracle Coherence 3.5. Packt Publishing

Ltd.

[4] Marco Ferrante. A java framework for high-level distributed scientific program-
ming. 2003.

[5] Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar Buyya.
Cloudsim: A novel framework for modeling and simulation of cloud computing
infrastructures and services. arXiv preprint arXiv:0903.2525, 2009.

[6] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50, 2011.

[7] Rodrigo N Calheiros, Marco AS Netto, César AF De Rose, and Rajkumar Buyya.
Emusim: an integrated emulation and simulation environment for modeling, eval-
uation, and validation of performance of cloud computing applications. Software:
Practice and Experience, 43(5):595–612, 2013.

[8] Henri Casanova. Simgrid: A toolkit for the simulation of application scheduling. In
Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on, pages 430–437. IEEE, 2001.

[9] Henri Casanova, Arnaud Legrand, and Martin Quinson. Simgrid: A generic
framework for large-scale distributed experiments. In Computer Modeling and
Simulation, 2008. UKSIM 2008. Tenth International Conference on, pages 126–
131. IEEE, 2008.

[10] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. Oversim: A flexible
overlay network simulation framework. In IEEE Global Internet Symposium, 2007,
pages 79–84. IEEE, 2007.

[11] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator. In Peer-
to-Peer Computing, 2009. P2P’09. IEEE Ninth International Conference on, pages
99–100. IEEE, 2009.

[12] Bhathiya Wickremasinghe, Rodrigo N Calheiros, and Rajkumar Buyya. Cloud-
analyst: A cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications. In Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on, pages 446–452. IEEE, 2010.

[13] Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating scientific
workflows in distributed environments. In E-Science (e-Science), 2012 IEEE 8th
International Conference on, pages 1–8. IEEE, 2012.

[14] Saurabh Kumar Garg and Rajkumar Buyya. Networkcloudsim: Modelling parallel
applications in cloud simulations. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages 105–113. IEEE, 2011.

[15] Pedro Velho and Arnaud Legrand. Accuracy study and improvement of network
simulation in the simgrid framework. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, page 13. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering),
2009.

[16] Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware resource allocation
heuristics for efficient management of data centers for cloud computing. Future
Generation Computer Systems, 28(5), 755-768.

[17] Siddhartha Kumar Khaitan and Anshul Gupta. High Performance Computing in
Power and Energy Systems. Springer, 2012.

[18] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. Play it again, simmr!
In Cluster Computing (CLUSTER), 2011 IEEE International Conference on, pages
253–261. IEEE, 2011.

[19] Guanying Wang, Ali R Butt, Prashant Pandey, and Karan Gupta. Using realistic
simulation for performance analysis of mapreduce setups. In Proceedings of the 1st
ACM workshop on Large-Scale system and application performance, pages 19–26.
ACM, 2009.

[20] Guanying Wang, Ali Raza Butt, Prashant Pandey, and Karan Gupta. A simulation
approach to evaluating design decisions in mapreduce setups. In Modeling, Analysis
& Simulation of Computer and Telecommunication Systems, 2009. MASCOTS’09.
IEEE International Symposium on, pages 1–11. IEEE, 2009.

[21] Yang Liu, Maozhen Li, Nasullah Khalid Alham, and Suhel Hammoud. Hsim: a
mapreduce simulator in enabling cloud computing. Future Generation Computer
Systems, 29(1):300–308, 2013.

[22] Wagner Kolberg, Pedro De B Marcos, Julio Anjos, Alexandre KS Miyazaki,
Claudio R Geyer, and Luciana B Arantes. Mrsg–a mapreduce simulator over
simgrid. Parallel Computing, 39(4):233–244, 2013.

[23] Yanpei Chen, Sara Alspaugh, Dhruba Borthakur, and Randy Katz. Energy efficiency
for large-scale mapreduce workloads with significant interactive analysis. In
Proceedings of the 7th ACM european conference on Computer Systems, pages
43–56. ACM, 2012.

[24] Vishal Pachori, Gunjan Ansari, and Neha Chaudhary. Improved performance of
advance encryption standard using parallel computing. International Journal of
Engineering Research and Applications (IJERA), 2(1):967–971, 2012.

[25] Roberto Palmieri, Pierangelo di Sanzo, Francesco Quaglia, Paolo Romano, Se-
bastiano Peluso, and Diego Didona. Integrated monitoring of infrastructures
and applications in cloud environments. In Euro-Par 2011: Parallel Processing
Workshops, pages 45–53. Springer, 2012.

[26] Liliana Rosa, Luı́s Rodrigues, and Antónia Lopes. Goal-oriented self-management
of in-memory distributed data grid platforms. In Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Conference on, pages
587–591. IEEE, 2011.


