
Snapshotting in Hadoop Distributed File System for Hadoop
Open Platform as Service

Pushparaj Motamari

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Luís Manuel Antunes Veiga

Examination Committee

Chairperson: Prof. José Carlos Alves Pereira Monteiro
Supervisor: Prof. Luís Manuel Antunes Veiga
Member of the Committee: Prof. João Manuel dos Santos Lourenço

September 2014

European Master in Distributed

Computing (EMDC)

This thesis is a part of the curricula of the European Master in Distributed Computing, a

cooperation between KTH Royal Institute of Technology in Sweden,Instituto Superior Tecnico

(IST) in Portugal and Universitat Politecnica de Catalunya (UPC) in Spain. This double

degree master program is supported by Education,Audiovisual and Culture Executive Agency

(EACEA) of the European Union.

My Study track during the master studies of the two years is as follows:

First Year: Instituto Superiot Tecnico,Universidade de Lisboa

Third Semester:KTH Royal Institute of Technology

Fourth Semester: SICS (Swedish Institute of Computer Science) and Instituto Superior Tecnico,

Universidade de Lisboa

3

Acknowledgements

I would like to express my deepest gratitude to my supervisors Dr. Luis Veiga and Dr. Jim

Dowling, who were a great source of inspiration and motivation. Also, I would like to thank

my advisers Mahmoud Ismail and Salman Niazi for countless hours of support.

I would like to thank Instituto Superior Technico for providing me opportunity to learn and

excel in distributed computing. Finally, I would like to thank Swedish Institute of Computer

Science (SICS) for providing me with a nice working environment, all necessary compute re-

sources, and great colleagues who always willing to exchange ideas.

Lisboa, October 7, 2014

Pushparaj Motamari

Abstract

The amount of data stored in modern data centres is growing rapidly nowadays. Large-scale

distributed file systems, that maintain the massive data sets in data centres, are designed to

work with commodity hardware. Due to the quality and quantity of the hardware components

in such systems, failures are considered normal events and, as such, distributed file systems

are designed to be highly fault-tolerant.

A concrete implementation of such a file system is the Hadoop Distributed File System

(HDFS) . Snapshot means capturing the state of the storage system at an exact point in time

and is used to provide full recovery of data when lost. Operational as well as analytical

applications manipulate the data in the distributed file system on behalf of the user or the

administrator. Application-level errors or even inadvertent user errors can mistakenly delete

data or modify data in an unexpected way. In this case, snapshots can be used to recover to

a known, well-defined state. Snapshots can be used in Model Training, Managing Real-time

Data Analysis and also to produce backups on the fly (Hot Backups) . We designed and

implemented nested snapshots which enables multiple snapshots on any directory. We

designed and implemented root level single snapshot by which roll-back during software

upgrade can be made. We evaluate our designs and algorithms, and we show that time to take

snapshot is constant and roll-back time is proportional to the changes since the snapshot was

taken.

Resumo

A quantidade de dados armazenados em centros de dados modernos cresce rapidamente hoje

em dia. Sistemas distribuı́dos de larga escala, que mantêm grandes conjuntos de dados em

centros de dados, são projetados para trabalhar com hardware comum. Devido à qualidade e

quantidade dos componentes de hardware nesses sistemas, as faltas são consideradas eventos

normais e, como tal, os sistemas distribuı́dos de ficheiros são projetados para ser altamente

tolerante a faltas.

Uma realização concreta de um tal sistema é o Hadoop Distributed File System (HDFS) .

Um snapshot consiste em capturar o estado do sistema de armazenamento num ponto exacto

no tempo e pode ser utilizado para permitir a recuperação total dos dados quando ocorre uma

falha. As aplicações manipulam os dados no sistema de ficheiros distribuı́do em nome de

utilizadores ou administradores. Erros ao nı́vel aplicacional ou até memso dos utilizadores

podem remover informação por engano ou modificar dados de uma forma inesperada. Neste

caso, os snapshots podem ser utilizados posteriormente para recuperar o sistema com o estado

de um ponto anterior. Estes podem ser usados no treino de modelos, em anaálise de dados em

tempo real, e também para backups rápidos (Hot Backups) .

Desenhámos e realizámos um mecanismso de snaphsots aninhados que permite vários

snapshots em qualquer pasta. O snapshot de nı́vel raiz permite o roll-back durante a

actualização de software. Avaliámos os nossos mecanismos e algoritmos, demonstrando tempo

para tirar um snapshot é constante e o tempo de roll-back é proporcional à quantidade de

modifcações desde o snapshot.

Keywords

Hadoop

HDFS

Distributed FileSystem

Snapshots

HOPS

Palavras Chave

Hadoop

HDFS

sistema de ficheiros distribuı́do

Snapshots

HOPS

Index

1 Introduction 1

1.1 Overview . 1

1.2 Problem Definition . 2

1.3 Challenges . 3

1.4 Goals . 3

1.5 Contributions . 3

1.6 Structure of the thesis . 4

2 Background and Related Work 5

2.1 Hadoop File System (HDFS) . 5

2.1.1 HDFS Architecture . 6

2.1.2 HDFS NameNode . 7

2.1.3 HDFS consistency model . 7

2.1.4 POSIX compliant filesystem . 8

2.2 Hadoop Open Platform as Service(HOP)-HDFS 9

2.2.1 HOP-HDFS Architecture . 9

2.2.2 NameNode Operations . 11

2.2.3 HOP-HDFS Implementation . 11

2.3 MySQL Cluster . 14

2.3.1 Concurrency Control in NDBCluster . 16

i

2.3.2 ClusterJ . 16

2.4 Related Work . 17

2.4.1 Snapshots in Apache Hadoop Version2 . 17

2.4.2 Snapshots in Hadoop at Facebook . 18

3 Solution 21

3.1 Operations to Support . 21

3.2 Read-Only Nested Snapshots . 22

3.2.1 Snapshottable Directories . 22

3.2.2 Modifications to the Schema . 22

3.2.3 Rules for Operations . 24

3.2.4 Listing children under a directory in a given Snapshot 27

3.2.5 Listing current children under a directory 28

3.2.6 Logging, Removing logs and Deleting inodes which are not referred by

any snapshot . 29

3.2.6.1 Approach 1: . 29

3.2.6.2 Approach :2 . 30

3.2.7 Length of file being Written . 32

3.3 Read-Only Root Level Single Snapshot . 34

3.3.1 Modifications to the Schema . 34

3.3.2 Rules for Modifying the fileSystem meta-data 35

3.3.3 Roll Back . 38

3.4 Implementation Details . 38

3.4.1 RollBack Algorithm Implementation . 38

ii

4 Evaluation 43

4.1 Read-Only Nested Snapshots Implementation Evaluation 43

4.1.1 Evaluation Goals . 43

4.1.2 Benchmark for measuring query execution time 43

4.2 Read-Only Root Level Single Snapshot Implementation Evaluation 45

4.2.1 Evaluation of RollBack . 45

5 Conclusions 51

5.1 Conclusions . 51

5.2 Future Work . 51

iii

iv

List of Figures

2.1 HDFS Architecture. 6

2.2 HOP-HDFS Table relations. 11

2.3 HOP-HDFS Schema . 12

2.4 MySQL cluster . 16

2.5 Node groups of MySQL cluster . 17

3.1 Sample File System Tree . 25

3.2 Deletion of Snapshot . 32

4.1 Benchmark on Single Directory . 44

4.2 Benchmark on Single Directory Graph . 45

4.3 Time Overheads in HDFS@Facebook . 46

4.4 Benchmark on MySqlServer . 47

4.5 Benchmark-Graph on MySqlServer . 48

4.6 Benchmark with ClusterJ . 48

4.7 Benchmark-Graph with ClusterJ . 49

v

vi

List of Tables

2.1 NameNode’s Operations . 13

3.1 Operations . 25

3.2 List of Snpashots taken . 26

3.3 C-List . 26

3.4 Dlist . 26

3.5 MV List . 27

3.6 InodeSnapshotMap table . 29

vii

viii

1Introduction
1.1 Overview

The need to maintain and analyse a rapidly growing amount of data, which is often referred

to as big data, is increasing vastly. Nowadays, not only the big internet companies such as

Google, Facebook and Yahoo! are applying methods to analyse such data, but more and more

enterprises at all. This trend was already underlined by a study from The Data Warehousing

Institute (TDWI) conducted across multiple sectors in 2011. The study (Russom 2011) revealed

that 34% of the surveyed companies were applying methods of big data analytics, whereas

70% thought of big data as an opportunity.

A common approach to handle massive data sets is executing a distributed file system

such as the Google File System (GFS) or the Hadoop Distributed File System (HDFS) on data

centres with hundreds to thousands of nodes storing petabytes of data. Popular examples of

such data centres are the ones from Google, Facebook and Yahoo! with respectively 1000 to

7000 , 3000 and 3500 nodes providing storage capacities from 9. 8 (Yahoo!) to hundreds of

petabytes (Facebook).

Many a times users using those big data sets would like to run experiments or analysis

which may overwrite or delete the existing data. One option is to save the data before running

analytics, since the data size is very large it is not a feasible option. The underlying file system

has to support features to snapshot the data which enables users to run experiments and roll

back to previous state of data, if something does not work.

2 CHAPTER 1. INTRODUCTION

1.2 Problem Definition

During software upgrades the possibility of corrupting the filesystem due to software bugs or

human mistakes increases. This invites a solution to minimize potential damage to the data

stored in the system during upgrades. We need to take a snapshot at the root of the file system

before proceeding with the upgrade. If the upgrade didn’t work then the administrator can roll

back the system to the snapshot. The snapshot can be taken at any time and can be rolled-back

to at any time. The following scenarios also demand the need of a utility to take snapshots on

file system.

1. Protection against user errors: Admin sets up a process to take RO (Read-Only) snap-

shots periodically in a rolling manner so that there are always x number of RO snapshots

on HDFS. If a user accidentally deletes a file, the file can be restored from the latest RO

snapshot.

2. Backup: Admin wants to do a backup of a dataset. Depending on the requirements, ad-

min takes a read-only (henceforth referred to as RO) snapshot in HDFS. This RO snapshot

is then read and data is sent across to the remote backup location.

3. Experimental/Test setups: A user wants to test an application against the main dataset.

Normally, without doing a full copy of the dataset, this is a very risky proposition

since the test setups can corrupt/overwrite production data. Admin creates a read-write

(henceforth referred to as RW) snapshot of the production dataset and assigns the RW

snapshot to the user to be used for experiment. Changes done to the RW snapshot will

not be reflected on the production dataset.

4. Model Training Machine-learning frameworks such as Mahout can use snapshots to en-

able a reproducible and audit-able model training process. Snapshots allow the training

process to work against a preserved image of the training data from a precise moment in

time.

5. Managing Real-time Data Analysis By using snapshots, query engines like Apache Drill

can produce precise synchronic summaries of data sources subject to constant updates

such as sensor data or social media streams. Using a snapshot for such analyses allows

1.3. CHALLENGES 3

very precise comparisons to be done across multiple ever-changing data sources without

having to stop real-time data ingestion.

1.3 Challenges

1. File system operations are executed as transactions since file system meta data is stored

in MySql Cluster database.

2. Handling failure of the Namenode executing the operation.

3. Storing the changes in filesystem meta-data after taking snapshot considering the huge

number of operations and size of meta data.

1.4 Goals

Following goals are desired from the solution

1. Able to take multiple snapshots and nested snapshots on directories and files.

2. Able to support quick rollback in case of software upgradation failure.

3. Time to take snapshot should be constant, should not dependant on the size of the fileSys-

tem.

1.5 Contributions

The contributions of thesis work are

1. Design and algorithms for implementing Read-Only Nested Snapshots in HDFS of HOP.

The design enables the users to take snapshot in constant amount of time since all oper-

ations on snapshotted directories are logged in an efficient manner to retrieve the meta-

data of the filesystem to the state before snapshot.

2. Design and implementation of Single Snapshot which facilitates roll-back in case of

software upgradataion failures. The rollback algorithm is implemented and evaluated

against MySql server and clusterJ to find the efficient mechanism to perform it.

4 CHAPTER 1. INTRODUCTION

1.6 Structure of the thesis

The remaining of this thesis is organized in a number of chapters. In Chapter 2, following, we

study and analyze the relevant related work in the literature on the thesis’ topics. In Chap-

ter 3, we describe the main insights of our proposed solution, highlighting relevant aspects

regarding the architecture, and the algorithms. In Chapter 4, we evaluate the performance of

our solution. Chapter 5 closes this document with some conclusions and future work.

2Background and Related

Work

2.1 Hadoop File System (HDFS)

Apache Hadoop (White 2009) is an open-source software framework for large-scale data pro-

cessing. It includes a distributed file system called the Hadoop Distributed File System (HDFS)

and a framework for MapReduce. Many data analysis, data warehousing and machine learn-

ing solutions have been built on top of it. The most commonly known extensions of Hadoop

are Apache Pig (Foundation c), Apache Hive (A.Thusoo et al. 2009), Apache HBase (Foun-

dation a), Apache Zookeeper (Foundation d) and Apache Mahout (Foundation b). Recent

version of Hadoop also include a resource negotiator called Yet-Another- Resource-Negotiator

(YARN), often also referred to as NextGen MapReduce or short MRv2. YARN is, inter alia,

used to execute MapReduce jobs. The design and concepts used by Hadoop are inspired by

the Google papers about GFS and MapReduce (White 2009, p. 9). Similar to MapReduce on

GFS, Hadoop is exploiting data locality for MapReduce jobs by trying to execute map jobs on a

DataNode which hosts the data. If not possible, the framework will attempt to execute the job

on a node close to the location of data, for instance on the same rack. This can greatly improve

the overall performance and reduces the network bandwidth requirements.

HDFS is Hadoop’s distributed file system which has been designed after Google File System.

It was initially created to be used in a Map-Reduce computational framework of Hadoop by

Apache though later on it started to be used for other big data applications as a storage which

can support massive amount of data on commodity machines. Hadoop File System were in-

tended to be distributed for being accessed and used inside by distributed processing machines

of Hadoop with a short response time and maximum parallel streaming factor. On the other

hand, in order for HDFS to be used as a storage of immutable data for applications like Face-

book, the high availability is a key requirement besides the throughput and response time.

Moreover, as a file system to be compliant to the common file system standard, it provides

posix like interface in terms of operations, however it has a weaker consistency model than

6 CHAPTER 2. BACKGROUND AND RELATED WORK

posix which is being discussed later on in this section.

2.1.1 HDFS Architecture

HDFS splits up each file into smaller blocks and replicates each block on a different random

machine. Machines storing replicas of the blocks called DataNode. On the other hand since it

needs to have namespace metadata accessible altogether, there is a dedicated metadata machine

called NameNode. For having fast access to metadata, NameNode stores metadata in memory.

Accessing to HDFS happens through its clients, each client asks NameNode about namespace

information, or location of blocks to be read or written, then it connects to DataNodes for

reading or writing file data. Figure2.1 from (Sajjad 2013) shows the deployment of different

nodes in HDFS.

Figure 2.1: HDFS Architecture.

2.1. HADOOP FILE SYSTEM (HDFS) 7

2.1.2 HDFS NameNode

NameNode is known as metadata server of HDFS. It is a multithreaded server in which the

size of the thread pool is configurable. It keeps all metadata information in memory which is

described in the next section. The way NameNode protects from race condition in metadata

modification is based on read/write locks. It splits all operations into read or write operations.

Its procedure is shown in alogithm 1. In this way multiple read operations could be run in

parallel though they are serialized with each single write operation. Other than serving client’s

requests, NameNode has been serving part for DataNodes, via this service. DataNodes notify

NameNode about receiving or deletion of blocks or they send over list of their replicas pe-

riodically. Moreover, NameNode has one still running thread namely ReplicationMonitor to

get under-replication and over-replication under its radar and plans for deletion/replication

accordingly. Moreover, LeaseMonitor controls the time limit that each client holds the write

operation of files. So it walks through all leases and inspect their soft-limit/hard-limit and

decides to recover or revoke an expired lease.

Algorithm 1 System-Level locking schema in HDFS

Operation lock
if op. type = write then

ns. acquireWriteLock()
else

ns. acquireReadLock()
end if

Operation perform Task
//Operation body

Operation unlock
if op. type = write then

ns. releaseWriteLock()
else

ns. releaseReadLock()
end if

2.1.3 HDFS consistency model

1. FileSystem Operations

In general most of the distributed file systems like GFS and HDFS have a relaxed version

of consistency because of the impossibility result of CAP theorem (Gilbert & Lynch 2002)

8 CHAPTER 2. BACKGROUND AND RELATED WORK

which limits scalability of file system. Even though some works refer to HDFS as sequen-

tial consistent file system for data and from filesystem operations point of view, it does

not certainly have sequential consistency due to nonatomic write operation. HDFS seri-

alizes read/write operations just at the primitive operations’ level not the files blockdata.

As each write operations consists of multiple micro addBlock operations which makes it

unsortable when multiple parallel reads are being performed with one write. Though it

protects multiple writes by means of a persistable mechanism called lease.

2. Primitive NameNode Operations

From primitive operations point of view, HDFS is strongly consistent in both data and

metadata level. From data level it is strongly consistent because each file’s block is not

available for read unless it gets completely replicated. It means write operation should be

completely finished first, then readers will all get the same version of that block and there

is not case of version mismatch in the replicas read by two different readers. From meta-

data level, as already been mentioned, system level lock serializes all the write operations

which results in mutated state of all writes being available for all readers.

2.1.4 POSIX compliant filesystem

POSIXfs is the file system part of POSIX operating system. It has been a standard for designing

filesystems. It is about naming, hardlinks, access control, time stamping and standard folder

hierarchy. Under POSIX standards, almost all file operations shall be linearized. Specifically

all read operations should have effects of all previous write operations. HDFS is not fully

POSIX compliant, because the requirements for a POSIX file system differ from the target goals

for a Hadoop application. The tradeoff of not having a fully POSIXcompliant file system is

increased performance for data throughput and support for nonPOSIX operations such as Ap-

pend. Moreover, HDFS consistency model is weaker than POSIX. HDFS is strongly consistent

from primitive HDFS operations while from filesystem operations it has a relaxed version of

consistency, on the other hand, POSIX filesystem operations are linearizable which is the high-

est level of consistency.

2.2. HADOOP OPEN PLATFORM AS SERVICE(HOP)-HDFS 9

2.2 Hadoop Open Platform as Service(HOP)-HDFS

Hadoop Open Platform as a service (HOP) (HopStart) is a Hadoop distribution based on

Apache Hadoop. It provides namespace scalability through the support of multiple NameN-

odes, platform as a service support for creating and managing clusters, and a dashboard for

simplified administration. HOP is developed in cooperation of KTH and SICS (SICS)

HOP-HDFS(Malik 2012) (Sajjad 2013) is a fork of HDFS and part of HOP. It aims at providing

high availability and scalability for HDFS. This is achieved by making the NameNode stateless

and thereby adding support for the use of multiple NameNodes at the same time. Instead of

storing any state in the NameNode, the state is stored in a distributed database offering high-

availability and high-redundancy. Therefore, the current implementation uses MySQL Cluster

(Oracle-MySql), which utilizes NDB Cluster as an underlying storage engine. HOP-HDFS is a

promising approach that could make HDFS similar to Colossus, while overcoming the scalabil-

ity and availability limitations of the current Hadoop implementation. Through its support for

larger amounts of metadata, it could also make the use of block sizes smaller than 64 megabytes

efficient, what might be useful for many applications.

2.2.1 HOP-HDFS Architecture

The persistent data structures of HOP-HDFS (here-after referred as HDFS) are defined as 11

database tables. These tables contain all the information about namespace, metadata, block

locations and many other information that name-node in HDFS stores in FSImage and keeps

in memory.

1. inodes: The table representing inode data structure in HDFS which contains the names-

pace and metadata of the files and directories. inodes are related together by their par-

ent id and resembles a hierarchical namespace as in the HDFS. Each row has a unique id

which is the primary key.

2. block inofs: Block is a primitive data storage of HDFS storing a chunk of a file, block-

info is its metadata keeping a reference to its file-inode, the list of block’s replica which

are scattered among multiple data-nodes.

3. leases: Basically each file in HDFS is either underconstruction or completed. All un-

10 CHAPTER 2. BACKGROUND AND RELATED WORK

derconstruction files are assigned a sort of write lock to them, this lock is persisted in

database. Each lease corresponds to just one client machine, each client could be writing

multiple files at a time.

4. lease path: Each lease path represents an underconstruction file, it holds full path of that

file and points to the lease as its holder.

5. replicas: A copy of a Block which is persisted in one datanode, sometime we refer to

replicas as blocks. All the replicas of the same block points to the same blockinfo.

6. corrupted replicas: A replica become corrupted in the copy operations or due to the

storage damages. Namenode realizes this by comparing checksum in the report of the

replica’s datanode with the checksum of the original block.

7. excess replicas: A block could become over replicated because of an already dead datan-

ode coming alive again and contain some replicas which has been removed meanwhile

from namenode. So distinguishing that, namenode marks marks some replicas to be re-

moved later on.

8. invalidated blocks: For every datanode keeps a list of blocks that are going to be invali-

dated(removed) on that datanode due to some reason.

9. replicas under construction: Replications of a block which are being streamed by client

into datanodes.

10. under replicated blocks: Keeps track of the blocks which are under replicated, it real-

izes the priority of under replications as follow. Priority 0 is the highest priority. Blocks

having only one replica or having only decommissioned replicas are assigned priority 0.

Blocks having expected number of replicas but not enough racks are assigned with prior-

ity 3. If the number of replicas of a block are 3 times less than expected number of replicas

then the priority is assigned to 1. The rest of low replication cases are assigned priority 2.

Blocks having zero number of replicas but also zero number of decommissioned replicas

are assigned priority 4 as corrupted blocks.

11. pending blocks: Represents a blocks that are being replicated.

The figure 2.2 from (Sajjad 2013) illustrates the relation between tables. The figure 2.3 gives the

columns stored in each table.

2.2. HADOOP OPEN PLATFORM AS SERVICE(HOP)-HDFS 11

Figure 2.2: HOP-HDFS Table relations.

2.2.2 NameNode Operations

Every operation defined in the HDFS client API (such as createFile, open, etc) maps onto one

or more of the following primitive HDFS operations. Each operation defined in the primitive

HDFS API maps onto a protocol message (where each protocol message contains request, reply,

and exception parts) sent between the NameNode, client, and DataNodes. Some common

primitive operations are shown in the table 2.1. The full list of the primitive operations can be

found in Thesis report (Sajjad 2013) Appendix section.

2.2.3 HOP-HDFS Implementation

In HOP-HDFS each HDFS opeartion is implemented as a single transaction,where after trans-

action began, read and write the necessary meta-data from NDB , and then either commit the

transaction, or in case of failure, the transaction was aborted and then possibly retried. How-

ever, the default isolation level of NDB is read committed, which allows the results of write

operations in transactions to be exposed to read operations in different concurrent transactions.

This means that a relatively long running read transaction could read two different versions of

data within the same transaction, known as a fuzzy read, or it could get different sets of results

if the same query is issued twice within the same transaction this is known as a phantom read.

In report(Sajjad 2013) and paper (Hakimzadeh et al. 2014) they proposed and implemented

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: HOP-HDFS Schema

2.2. HADOOP OPEN PLATFORM AS SERVICE(HOP)-HDFS 13

OPERATION SUMMARY
MKDIR Creates a directory recursively, it requires a no lock on all the existing

components of the path but write lock on the last existing.
START FILE

1. If file does not exist, It creates inodes for all the nonexistent di-
rectories and new file, writes owner of the lease and creates new
leasepath.

2. If file already exists first removes the file, its blocks and depen-
dencies, lease and lease path, then it does the first scenario.

GET ADDITIONAL BLOCK In the middle of writing a file, this is the client’s mean of noticing na-
menode that the already being written block is finished while it is ask-
ing for the locations of next block. NameNode removes all the repli-
caunderconstructions of last block, it also changes type of blockinfo
from underconstruction to completed one.

COMPLETE Like get additional block, it happens for last block of the file, Na-
meNode just removes the replicaunderconstructions and changes type
of blockinfo from underconstruction to completed.

GET BLOCK LOCATIONS Given path of the file, it returns location if its blocks and updates ac-
cesstime of the fileinode.

DELETE Delete the given file or directory from the file system.
RENAME Renames gives SRC to DST. Without OVERWRITE option, rename fails

if the dst already exists. With OVERWRITE option, rename overwrites
the dst, if it is a file or an empty directory. Rename fails if dst is a non-
empty directory. The rename opeartion is atomic.

APPEND Append to the end of the file. It retuns the partially completed last
block if any.

Table 2.1: NameNode’s Operations

the snapshot-isolation method 2 which pessimistically locks the rows of data preventing other

transactions from accessing. Transactions that contain both a read and a modify filesystem op-

eration for the same shared metadata object should be serialized based on the serialization rule:

−∀(wi, wj) if Xwi ∩ Xwj 6= φ then transactions of (wi, wj) must be serialized;

−∀(ri, wj) if Xri ∩Xwj 6= φ then transactions of (ri, wj) must be serialized.

First, the hierarchy of the file system to define a partial ordering over inodes. Transac-

tions follow this partial ordering when taking locks, ensuring that the circular wait condition

for deadlock never holds. Similarly, the partial ordering ensures that if a transaction takes an

exclusive lock on a directory inode, subsequent transactions will be prevented from accessing

14 CHAPTER 2. BACKGROUND AND RELATED WORK

the directory’s subtree until the lock on the directory’s lock is released. Implicit locks are

required for operations such as creating files, where concurrent metadata operations could

return success even though only one of actually succeeded. For operations such as deleting a

directory, explicit locks on all child nodes are required.

Algorithm 2 Snapshotting taking locks in a total order

snapshot. clear

Operation doOperation

tx. begin
create-snapshot()
performTask()
tx. commit

Operation create-snapshot

S = total order sort(op. X)
for all x in S do

if x is a parent then
level = x. parent level lock

else
level = x. strongest lock type
tx. lockLevel(level)
snapshot <- tx. find(x. query)

end if
end for

Operation performTask
//Operation Body,referring to transaction cache for data

2.3 MySQL Cluster

Mysql Cluster is a Database Management System (DBMS) that integrates the standard Mysql

Server with an inmemory clustered storage engine called NDB Cluster (which stands for “Net-

work DataBase”) . It provides a sharednothing system with no single point of failure.

Mysql Cluster is a compound of different processes called nodes. The main nodes are

Mysql Servers (mysqld, for accessing NDB data), data nodes (ndbd, as the data storage), one

or more management servers (ndb mgmd). The relationship between these nodes are shown

in figure 2.4 from (MySql). The data in Mysql Cluster is replicated over multiple ndbds so

2.3. MYSQL CLUSTER 15

this makes the database to be available in case of node failures. Ndbds are divided into node

groups. Each unit of data stored by ndbd is called a partition. The partitions of data are

replicated into ndbds of the same node group while node groups are calculated indirectly as

following:

NumberofNodegroups =
numberofdatanodes

numberofreplicas

A simple cluster of 4 datanodes with replication factor of 2 and consequently 2 node groups

are shown in figure 2.5. As it can be seen, the data stored in the database are divided into 4

partitions. There are two replicas of each partition into ndbds of the same node group. So even

if one of the ndbds in each of the node groups are failed, the whole data in the cluster will be

available. However, if both ndbs in a node group become unavailable then those partitions

stored by the failed ndbs also will become unavailable. According to a white paper published

by Oracle , Mysql Cluster can handle 4. 3 billion fully consistent reads and 1. 2 fully transac-

tional writes per minute. They used an open source benchmark called flexAsynch and a Mysql

Cluster of 30 data nodes, comprised 15 node groups. The detail of their system configuration is

available in the referenced white paper. The 72 million reads and 19. 5 million write operations

per second of Mysql Cluster shows that it has a high throughput for simple read and write

operations.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: MySQL cluster

2.3.1 Concurrency Control in NDBCluster

NDB supports pessimistic concurrency control based on locking. It supports row level lock-

ing. NDB throws a timeout error if a requested lock cannot be acquired within a specified time

(MySql). Concurrent transactions, requested by parallel threads or applications, reaching the

same row could end up with deadlock. So, it is up to applications to handle deadlocks grace-

fully. This means that the timed out transaction should be rolled back and restarted. Trans-

actions in NDB are expected to complete within a short period of time, by default 2 seconds.

This enables NDB to support realtime services, that are, operations expected to complete in

bounded time. As such, NDB enables the construction of services that can failover, on node

failures, within a few seconds ongoing transactions on the node that dies timeout within a

couple of seconds, and its transactions can be restarted on another node in the system.

2.3.2 ClusterJ

Clusterj is Java connector implementation of NDB Cluster, Mysql Cluster’s storage engine,

(Oracle-MySql). Clusterj uses a JNI bridge to the NDB API to have a direct access to NDB Clus-

ter. The NDB API is an application programming interface for Mysql Cluster that implements

indexes, scans, transactions and event handling. Clusterj connects directly to NDB Clusters

2.4. RELATED WORK 17

Figure 2.5: Node groups of MySQL cluster

instead of connecting to mysqld. It is a persistence framework in the style of Java Persistence

API. It provides a data mapper mapping java classes to database tables which separates the

data from business logic.

2.4 Related Work

2.4.1 Snapshots in Apache Hadoop Version2

Apache Hadoop implemented snapshots in their latest version (Apache-Hadoop) , which sup-

ports nested snapshots and constant time for the creation of snapshots. Since metadata and

data are separated it supports strong consistency for metadata snapshot but not for data. In

case of file being written, unless the datanode notifies the namenode or client notifies namen-

ode of latest length of last block via hsync, namenode is unaware of current length of the file

when snapshot was being taken. The solution also couldn’t address the case of replication

change of half-filled last block after taking snapshot, where it is appended after taking snap-

shot.

Apache Hadoop distribution provides single snapshot mechanism to protected file system

meta-data and storage-data from software upgrades. The snapshot mechanism lets adminis-

trators persistently save the current state of the filesystem, so that if the upgrade results in data

loss or corruption it is possible to rollback the upgrade and return HDFS to the namespace and

18 CHAPTER 2. BACKGROUND AND RELATED WORK

storage state as they were at the time of the snapshot.

The snapshot (only one can exist) is created at the cluster administrator’s option whenever

the system is started. If a snapshot is requested, the NameNode first reads the checkpoint and

journal files and merges them in memory. Then it writes the new checkpoint and the empty

journal to a new location, so that the old checkpoint and journal remain unchanged.

During handshake the NameNode instructs DataNodes whether to create a local snapshot.

The local snapshot on the DataNode cannot be created by replicating the directories containing

the data files as this would require doubling the storage capacity of every DataNode on the

cluster. Instead each DataNode creates a copy of the storage directory and hard links existing

block files into it. When the DataNode removes a block it removes only the hard link, and

block modifications during appends use the copy-on-write technique. Thus old block replicas

remain untouched in their old directories.

The cluster administrator can choose to roll back HDFS to the snapshot state when restart-

ing the system. The NameNode recovers the checkpoint saved when the snapshot was created.

DataNodes restore the previously renamed directories and initiate a background process to

delete block replicas created after the snapshot was made. Having chosen to roll back, there is

no provision to roll forward. The cluster administrator can recover the storage occupied by the

snapshot by commanding the system to abandon the snapshot; for snapshots created during

upgrade, this finalizes the software upgrade.

System evolution may lead to a change in the format of the NameNode’s checkpoint and

journal files, or in the data representation of block replica files on DataNodes. The layout ver-

sion identifies the data representation formats, and is persistently stored in the NameNode’s

and the DataNodes’ storage directories. During startup each node compares the layout ver-

sion of the current software with the version stored in its storage directories and automatically

converts data from older formats to the newer ones. The conversion requires the mandatory

creation of a snapshot when the system restarts with the new software layout version.

2.4.2 Snapshots in Hadoop at Facebook

Facebook has implemented a solution to Snapshots (Facebook-Hadoop). The solution scales

linearly with the number of inodes(file or directories) in the filesystem. It uses a selective copy-

2.4. RELATED WORK 19

on-append scheme that minimizes the number of copy-on-write operations. This optimization

is made possible by taking advantage of the restricted interface exposed by HDFS, which limits

the write operations to appends and truncates only. The solution has space overhead since

whenever a snap- shot is taken, a node is created in the snapshot tree that keeps track of all the

files in the namespace by maintaining a list of its blocks IDs along with their unique generation

timestamps. If a snapshot was taken while file is being written, after the write is finished and

data node notifies namenode, it saves the location of the file from where it started writing not

exactly saving the location in file when snapshot was taken.

Summary

This chapter explained the architecture of Hadoop Distributed File System. It explained the

design, transactional operations of HOP-HDFS. It explained the related work done by Apache

Hadoop to support snapshots which allow constant time snapshot creation. It explained the

design of snapshots implemented by Facebook on their Hadoop version which has overhead

of snapshot creation that is proportional to number of files/directories in filesystem.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

3Solution
In this chapter we explain solutions to enable taking Nested Snapshots and Root-Level Single

Snapshot for roll-backs in case of software upgrades. Since the filesystem metadata is now

stored in in-memory database, MySQl Cluster (NDB) we need to design solutions and algo-

rithms which take fewer network round-trips for communication between client and database

when operations modify the metadata of the filesystem. We discuss various approaches for

problems we came across and evaluate them theoretically.

3.1 Operations to Support

1. All file system operations are allowed on the snapshotted file/directories including:

Rename is allowed both within and across snapshottable directory boundaries.

2. Any modification to the current files or directories are not reflected in the snapshots. The

snapshot is read-only.

The modification include length change, renaming of the file name, permission changes

or any other attribute changes such as replication factor etc.

3. The snapshot files and directories can be only be read, not modified in any way (except

that the entire snapshot can be deleted). This means the replication factor, permission

or any other attributes of file or directory cannot be changed. The snapshots are truly

read-only.

4. Nested snapshots are allowed.

5. Access time is not tracked for snapshots.

6. Snapshots should be created very fast.

7. Block data is not copied for snapshots

22 CHAPTER 3. SOLUTION

3.2 Read-Only Nested Snapshots

3.2.1 Snapshottable Directories

These are directories that are configured by the system administrator to allow snapshots. A

snapshot can be created only at these snapshot roots instead of at arbitrary directories. Di-

rectories that are marked snapshottable cannot be deleted until all the snapshots under that

directory are deleted. Similarly, another directory cannot be renamed to an existing a snap-

shottable directory that has snapshots (since rename involves deletion of the rename target).

The above restrictions simplify the design by not having to deal with how to mange a snapshot

when the snapshottable directory is deleted and no longer exists or worst still a new directory

with the same name is created in its place.

3.2.2 Modifications to the Schema

Following columns need to be added to the Inodes table described in the schema 2.3 of HOP

File System.

1. isDeleted

Value Summary

0 Indicates that this Inode is not deleted.

1 Indicates that this Inode deleted after snapshot was taken[on its ancestors].

2. isSnapshottableDirectory

Value Summary

0 Indicates that snapshots can’t be taken on this directory.

1 Indicates that snapshots can be taken on this directory.

Following tables need to be added to the schema 2.3.

1. SNAPS

3.2. READ-ONLY NESTED SNAPSHOTS 23

Inode Id User SnapShot Id Time

Stores the Indode Id and corresponding snapshots taken on that directory. Time

can be a physical clock or logical clock(Global) whose value always increase.

2. C-List

Inode Id Time Created Inode Id

Stores the id’s of children(files or directories) of directory on which snapshot was

taken.

3. D-List

Inode Id Time Deleted Inode Id

Stores the files or directories deleted in a directory on which snapshot was taken.

But the rows are not deleted from Inode table, it is an indication to say that these rows

were deleted after taking snapshots.

4. M-List

Inode Id Time Modified Inode Id Original Row

After taking a Snapshot if the columns of a particular row are modified then be-

fore modifying the row , we copy the original row and store it in this table. When we

want to get back to the snapshot, just replace the existing inode row with this original

row.

5. MV-List

Inode Id Time Moved Inode Id Original Row

When an inode[either file or directory] is moved, its parentId changes to moved-

24 CHAPTER 3. SOLUTION

into directory. In order to get the moved directory when ls command issued at the

snapshot after which this inode was moved, we put that row here.

6. MV-IN-List

Inode Id Time Moved In Inode Id

When a directory or file is moved into this directory(with inode id) from other

directory.

7. Block-Info-C-List

Inode Id Block Id Time

Stores the blocks that are created in a file after the snapshot was taken on the di-

rectory in which this file exist.

8. Block-Info-M-List

Inode Id Block Id Time Original Row

Stores the blocks that are modified in a file after the snapshot was taken on the di-

rectory in which this file exist. This is typically for last blocks which are not complete at

the time of snapshot.

3.2.3 Rules for Operations

1. When we create a new file or directory put an entry in c-list.

2. When an inode is modified [rename, touch] it is just put in the M-List. It is not put in the

D-List.

3. When you delete a file , put it in the dlist. And set isInodeDeleted to true.

4. Deleting a directory When an directory is deleted, first we will check whether it is in

a snapshot[explained later], if yes then we will set isDeleted=1 and also for all of its

3.2. READ-ONLY NESTED SNAPSHOTS 25

children[recursive]. We only put the directory in D-List of its parent and we do not put

children in D-List.

5. When an inode is moved to some other directory we put it in MV-List of parent directory.

We place it in MV-IN-list of destination directory. [the parent id is set to the destination

directory]

Example

Consider the a small file-system tree.A,B,C,D,E are directories.

Figure 3.1: Sample File System Tree

ACTIONS

Directory Opeartion Time Comments
A Take Snapshot on A 1
E Create file F4 2 Insert row in Inodes table for F4 with parent E
E Create file F5 3 Insert row in Inodes table for F5 with parent E.
D Delete File F2 4 1)Insert row in d-list. 2)set isDeleted=1 on In-

odes table.
A Take Snapshot on A 5
D Create File F6 6 Insert row in Inodes table for F6 with parent D
D Move File F1 to C 7 1)Insert row in MV-LIST. 2)Insert row in MV-

IN-LIST Table. 3)Change the parent id to 3 for
F4 in inodes table.

Table 3.1: Operations

26 CHAPTER 3. SOLUTION

SNAPS

Inode Id User Snapshot id Time
A Admin SA1 1
A Admin SA2 5

Table 3.2: List of Snpashots taken

C-List

Inode Id Time Created Node Id
E 2 F4
E 3 F5
D 6 F6

Table 3.3: C-List

D-List

Inode Id Time Deleted Node Id
D 4 F2

Table 3.4: Dlist

MV-IN-List

Inode Id Time MovedIn Node Id

C 7 F1

3.2. READ-ONLY NESTED SNAPSHOTS 27

MV-List

Inode Id Time Moved Node Id Original Row
A 7 F1 Orignal Row before moving

Table 3.5: MV List

3.2.4 Listing children under a directory in a given Snapshot

To get the subtree under a directory at a particular snapshot, we use the following pseduo

algorithm called with directory id and the time at which snapshot was taken. The algorithm

presented here gives a general idea, the implementation in sql(Snapshot-ls) addresses/solves

the fine grained issues, for example, inode created after snapshot, moved, then moved-in, like

those cases.

void ls_at_snapshot(int id, int stime){

children={Get children whose parentId=id};

children = childen - { children deleted before stime} -{ children created after stime}

- {children moved_in after stime};

children = children + {children moved-out after stime};

modifiedChildren = { children modified after stime};

for(child chd : children){

child inode;

if(modifiedChildren. contains(chd)){

modChd = modifiedChildren. get(chd. getId());

if(chd. movedTime>modChd. modifiedTime){

#This child modified first then moved. So return the row stored M-List with modChd. modifiedTime

inode = modChd;

}

else{

inode = chd;.

}

}

28 CHAPTER 3. SOLUTION

else{

inode = chd;

}

if(inode is directory){

ls+at_snapshot(inode. getId(),stime);

}

else{

print(inode);

}

}

}

3.2.5 Listing current children under a directory

For listing current subtree under a directory, we select children which are not deleted.

void ls_current(int id){

children={Get children whose parentId=id};

children = childen - { children isDeleted=1};

for(child chd : children){

if(inode is directory){

ls_current(inode. getId());

}

else{

print(inode);

}

}

}

3.2. READ-ONLY NESTED SNAPSHOTS 29

3.2.6 Logging, Removing logs and Deleting inodes which are not referred by any

snapshot

Here two approaches two solve the issues are presented.

3.2.6.1 Approach 1:

Columns to be added to Inodes Table

1. Moved In/Created Time(Join Time): When an Inode is created we put that time in that

column. When we move an Inode from one directory to another we note that time in that. We

refer it as join time meaning the time this inode joined in its present directory.

InodeSnapshotMap

Inode Id BelongedTo inode id BeginTime EndTime

Table 3.6: InodeSnapshotMap table

When to Log

When we add/ deleted/modify directories or files in a directory then we log changes under

that directory. We log only when this directory is in any snapshot[which is taken on this

directory or one-of its ancestors]. So before performing any operation in this directory we

check whether this directory is in any snapshot or not. Consider directory path /A/B/C/, we

want to add a file to directory C. We can log this in C-List if C is in a snapshot.

1. First Check any snapshots taken on C. If yes then log.

2. If there are any snapshots on B after JoinTime(C) or if any Snapshots on A after JT(B) and

JT(C) then log.

3. If there is any entry for C in InodeSnapshotMap then log.

Moving an Inode

Consider directory paths /A/B/ and /U/V/W/, move directory W to B.

1. Get the list of snapshots taken on U, after JoinTime(V), snapshots taken on V after Join-

Time(W). In the form like {U,Time of First Snapshot after Join Time, Time of Last Snapshot

30 CHAPTER 3. SOLUTION

after Join Time}.

2. Since some inodes under W may have join times greater than W’s join time, we need to

check for each inode in sub-tree on which snapshots of U,V is present. After determining

which snapshots it is in then insert row in InodeSnapshotMap table. In this way we

capture in which snapshots a particular inode is in when it is being moved.

Logging modifications of files and blocks:

When we change any columns corresponding to the file in Inode table those were handled as

mentioned above. If we append new blocks to or modify existing blocks then we should check

whether to log them or not. This depends on whether this file is in any snapshot or not. So we

follow the similar procedure as mentioned above.

Deletion of a file/or directory

When the issuer issues command to delete a file, first , we check whether it is in any snapshot,

if not then we permanently delete it. When deleting a directory, if it is in snapshot,we mark

all the children with isDeleted=1 and the background delete thread will do check on inodes ,

deleting those not present in any snapshot permanently. Consider /A/B/C/ suppose want to

delete C. First get the list of snapshots on A,B as explained above then for each child in sub-tree

rooted at C set isDeleted=1, also inserting rows in inodesMap table based on the join time of

child with the list of snapshots on A,B.

Deleting entries in MovedPaths Table

When we delete a snapshot on an inode, we check for entries in InodeSnapshotMap with that

can be deleted.

3.2.6.2 Approach :2

When snapshot is taken we place the inodes under the snapshot in below table.

Inode Id Snapshot time

if an inode with isDeleted=true and there is no entry in the above table , then we can

remove that file from HDFS permanently.

The tables M-List, D-List, C-list , MV-list and MV-IN-List are populated for a directory when it

3.2. READ-ONLY NESTED SNAPSHOTS 31

is in a snapshot means an entry can be found in the above table.

Cleaning the logs when a Snapshot is Deleted

When a snapshot is deleted, all inodes under that snapshot can delete their logs on a criteria

explained shortly. 1,2. .numbers represent files in a directory P. S1,S2,S3 represent snapshots

taken in increasing chronological manner. As per the query to list files at a certain snapshot,

say S2 , we get all inodes from inodes table whose parent is P then remove all the files created

after taking snapshot and adjust those which are moved out , modified. Then remove files

deleted before taking snapshot

to get files at S2 for directory P ==> {1,2,3,4,5,6,7,8} - {3,4}-{7,8} ={1,2,5,6} It means, a

snapshot at time T1requires logs in C-List, M-List, MV-List, Mv-In-List after time T1 and logs

in D-List before T1.

When we delete a snapshot S , then for each inode under it we execute following algorithm.

ALGORITHM

if(S is first snapshot in which this inode is present when all snapshots in which it is present are

arranged in chronological manner) then;

delete D-List Logs before S. delete logs in C-List, M-List, MV-List, Mv-In-List until next

snapshot.

For example: If we delete S1, then delete logs in D-List before S1, and logs in C-List,

M-List, MV-List, MV-IN-List in between S1 and S2.

Deleting an file/Inode

If the file is with isDeleted=1 and there is no entry for it in above table then it can be deleted

permanently. After deleting file, we will check in D-List, to see if there are any logs with this

Inode, if there then we will delete them. The same applies for directory. When user issues a

command to delete a directory then mark isDeleted=1 for all of its children. Each children is

an Inode, so we If the Inode is with isDeleted=1 and there is no entry for it in above table then

it can be deleted permanently. After deleting Inode, we will check in D-List, to see if there are

any logs with this Inode, if there then we will delete them

Handling the replication factor change of a file

32 CHAPTER 3. SOLUTION

Figure 3.2: Deletion of Snapshot

Since we keep latest information about an Inode in Inodes’ table, we need to a mechanism to

handle the case of replication factor changes. For example, in S1 the replication factor is 3 ,

then changed to 6 and S2 was taken , then changed to 9 , then S3 was taken, then changed to

2. We find value 2 in Inodes’ table. The replication factor= Max(Current value, Max(values in

M-List for this Inode)). In this case we will find it as 9 and we expect block report mentioning

replication factor of 9 for each block. Suppose S3 was deleted , then the row with value 9 is

deleted and we find maximum value 6.

Disadvantages:

1. Time for taking snapshot is O(n) where n is the number of descendants in directory

2. The space overhead on taking snapshot is o(n) where n is the number of descendants in

directory.

3.2.7 Length of file being Written

This section explains the case when snapshot was taken while writing to file is in progress. In

HDFS file System metadata and actual data are separated and store at different places. Various

options to know the length of the file are:

1. Length of all completed/finalized blocks and zero length considered from block under

construction.

3.2. READ-ONLY NESTED SNAPSHOTS 33

2. Length when block is closed after snapshot creation occurred.

3. Length as seen at or around the time of snapshot creation in NameNode.

• Either, DataNode reports the length in heartbeat or other commands

• Or, NameNode queries the length

4. Namenode and Datanodes could have communication to establish the snapshot length

after snapshot command is received by the namenode. But this is very complicated to

implement because of the distributed nature and the failure modes.

5. Client that care about the length of a file being written, could update length to the na-

menode as part of hflush/hsync. This is the length that gets recorded in the snapshot.

6. “Precise length” of the file at the time of snapshot creation.

Clearly (6) is not possible given namespace and data block storage separation. Any guar-

antees in this regard will not be useful for the application, given that an application will need

this consistency across many files that are part of the snapshot.

(1) Does not capture any changes that has occurred in the file from the time of new block cre-

ation to the time of snapshot command. This is a good choice only if an application is willing

to close the files before creating snapshots. That means application must have control over the

data being written to the files and also snapshot creation. This may not be useful for HBase.

(2) will not be acceptable for many applications. Some reasons being - a file could be slowly

written to and may not close for a long time. What is the length of such files in snapshot? Sec-

ondly, length of the file changes post snapshot - what guarantee is HDFS providing in terms of

snapshot creation time?

(5)has the advantage that only applications that care about the correct length to be recorded in

a snapshot use the hflush/hsync operation to report the length to the NN.

In both Read only Root Level Snapshot and Read only Nested Snapshots, (5) is chosen to

implement.

34 CHAPTER 3. SOLUTION

3.3 Read-Only Root Level Single Snapshot

Since Read-Only Nested snapshots have a cost incur at each operation to check whether which

snapshots the inode under operation is present it is not effective for single snapshot solution for

the case of rollback.In this chapter we present solution to Read-Only Root level single snapshot.

Following conditions are applied to the solution

1. Creation of directories with Quota, either name-space quota or disk-space quota is not

allowed.

2. Each file consists of blocks. Each blocks-size is typically 64 MB but can be set to any value.

Blocks should be written completely.

3.3.1 Modifications to the Schema

Following columns need to be added to the Inodes table described in the schema 2.3 of HOP

File System.

1. isDeleted

Value Summary

0 Indicates that this Inode is not deleted.

1 Indicates that this Inode deleted after Root Level snapshot was taken.

2. status

Value Summary

0 Indicates that this Inode was created before taking Root Level Snapshot.

2 Indicates that this Inode created before taking Root Level snapshot but modified after

that.

3 Indicates that this Inode was created after taking Root Level snapshot.

3.3. READ-ONLY ROOT LEVEL SINGLE SNAPSHOT 35

Following Columns should be added to BlockInfos table described in the schema 2.3.

1. status

Value Summary

0 Indicates that this Block was created before taking Root Level Snapshot.

2 Indicates that this Block created before taking Root Level snapshot but modified after

that.

3 Indicates that this Block was created after taking Root Level snapshot.

3.3.2 Rules for Modifying the fileSystem meta-data

Following rules apply when client issues operations described on 2.1 after root level snapshot

had been taken.

HOP-HDFS as well as Apache HDFS allow only appends at the end of file. Both allow over-

writing of an existing file.

1. If an inode(file or directory) is created after taking root level snapshot, its status is set to

3.

2. If an inode row is modified and its status is 0, then, a back-up of current row is saved

with id = -(current id), parent id=-(current parent id)[To prevent sql query retrieving

the back-up rows while ’ls’ command issued, parent id is set to negative of original]. The

status of current row is changed to 2.

3. If a block is created after taking root level snapshot,its status is set to 3.

4. If a block is modified by appending data to it and its status is 0, then, a back-up of current

row is saved with block id = -(current block id) and inode id = -(current inode id)[since

two block info rows can’t have same block index id when retrieved with a parent id]. The

status of current row is changed to 2.

5. Deletion of a directory or file after root level snapshot was taken. Children of the INode

to be deleted are examined in depth-first manner. All the files which are created after

snapshot was taken are permanently deleted. The directory’s isDeleted flag is set to true.

36 CHAPTER 3. SOLUTION

void deleteWithSnapshotAtRootTaken(INode targetNode){

Stack<INode> stck = new Stack<INode>();

//parentStck is used to track completion of processing of a directory.

Stack<INode> parentStck = new Stack<INode>();

INode tempNode;

List<INode> children;

INode[] inodesTemp;

INode removedInode;

stck. add(targetNode);

atomic{

targetNode. setIsDeleted=1;

}

while (!stck. empty()) {

tempNode = stck. pop();

tempSts = tempNode. getStatus();

tempStr = tempNode. getFullPathName();

/*

* This Inode can be a directory or file also it can be new or

modified or original.

*/

if (tempNode instanceof INodeDirectory) {

if(parentStack. top(). equals(tempNode)){

//Processing children is completed

parentStack. pop();

if(tempNode. getStatus()==SnapShotConstants. New){

//delete completely this directory Inode

EntityManager. remove(tempNode);

}

3.3. READ-ONLY ROOT LEVEL SINGLE SNAPSHOT 37

}

else{

parentStack. push(tempNode);

children = ((INodeDirectory) tempNode). getChildren();

if (children != null && !children. isEmpty()) {

stck. push(tempNode);

for (INode n : children) {

stck. push(n);

}

}

}

} else if (tempNode instanceof INodeFile ||

tempNode instanceof INodeSymlink) {

if (tempSts == SnapShotConstants. New) {

atomic(In Single-Transaction){

//We can delete this file permanently and

//update the ancestors about changes in the quota.

//Remove the blocks associated with this file

// permanently.

}

}

}

}// End of while loop

}//End of method

38 CHAPTER 3. SOLUTION

6. Renaming/Moving an INode(File or Directory)

void renameINode(INode src, INode dst){

1. Update the modification time of parent of src.

2. Update the modification time of parent of dst.

3. deletWithSnapshotAtRootTaken(dst).

4. Change the parent_ id of src to dst. parent_ id.

}

3.3.3 Roll Back

Following algorithm is used to roll back the file-system to the state at the time when Root

Level Snapshot was taken.

For INodes:

1. Delete from INodes where status=2 or status=3

2. Update INodes set isDeleted=0 where id>0 and isDeleted=1

3. Update INodes set id = -id, parent id = -parent id where id<0

For Blocks:

1. Delete from Block Info where status=2 or status=3

2. Update Block Info set block id = -block id, inode id = -inode id where id<0

3. Delete from Block Info where block id<0

3.4 Implementation Details

3.4.1 RollBack Algorithm Implementation

With ClusterJ it is implemented as below.

1. Take the write lock on root so that no subtree operations under root can be allowed after

3.4. IMPLEMENTATION DETAILS 39

rollBack command issued.

1. 1 Take read lock on all the inodes of the fileSystem, to make sure that there are no operations

going on them while roll-back command issued.

DeleteRunnable(int start, int end) {

void run(){

//delete from inodes where status=2 or status=3 and id>=start

and id<=end;

}

}

UpdateRunnableForCoulmnIsDeletd(int start, int end){

void run(){

//update inodes set isDeleted=0 where id>=start and

id<=end and isDeleted=1;

}

}

UpdateRunnableForColumnId(int start, int end,Lock lock){

void run(){

List<INode> oldRows = select * from inodes where id<=end and id>=start;

List<INode> newRows = new ArrayList<INode>(oldRows. size());

for(INode row: oldRows){

INode updatedRow = session. instanceOf(INode. dto);

updateRow. setId(-row. getId());

updateRow. setParentId(-row. getParentId());

//similarly other columns.

}

Synchronized(lock){

session. savePersistentAll(newRows);

}

//delete from inodes where id>=start and id<=end;

40 CHAPTER 3. SOLUTION

}//end of run method

}

ThreadPool pool = new ThreadPool();

BatchSize=100,000;

Task1:

int maxId = select max(id) from inodes where status=2 or status=3;

int minId = select min(id) from inodes where status =2 or status=3;

int count=minId;

while(count<=maxId){

pool. add(new DeleteRunnable(count,count+BlockSize);

count = count+BlockSize;

}

//wait for completion of task.

Task2:

maxId = select max(id) from inodes where isDeleted=1 and id>0;

minId = select min(id) from inodes where isDeleted=1 and id>0;

count=minId;

while(count<=maxId){

pool. add(new UpdateRunnableForCoulmnIsDeletd(count,count+BlockSize);

count = count+BlockSize;

}

//wait for completion of task.

Task3:

maxId = select max(id) from inodes where id<0;

3.4. IMPLEMENTATION DETAILS 41

minId = select min(id) from inodes where id<0;

count=minId;

Lock lock = new Lock();

while(count<=maxId){

pool. add(new UpdateRunnableForColumnId(count,count+BlockSize,lock);

count = count+BlockSize;

}

//wait for completion of task.

Failure Handling. For Task1, Task2 and Task3 , when a NameNode starts executing it

will insert a row in Transaction with Task Id , NameNode Id,status. If status is InProgress and

NameNode is dead, then the leader will direct other namnode to execute that task. There is a

progress after each failure followed taking over by another namenode.

Summary

This chapter explained the design, algorithms to support Read-Only Root Level Single Snap-

shot which can be used for software-upgrades and Read-Only Nested Snapshots with which

multiple snapshots on elements of sub-tree can be taken. It explained the implementation de-

tails of the roll-back algorithm and deletion of directories after snapshot on root was taken.

42 CHAPTER 3. SOLUTION

4Evaluation
In this chapter we evaluate the algorithms and solutions discussed in above section. We com-

pare and analyse the results with snapshot solutions provided by Apache Version developed

by Facebook. We evaluate the correctness of solutions discussed in previous section by writing

and executing unit tests for basic filesystem operations. We measure and analyse the scalability

of queries and algorithms against MySQL server and ClusterJ.

4.1 Read-Only Nested Snapshots Implementation Evalu-
ation

4.1.1 Evaluation Goals

1. To evaluate the correctness of solution.

2. To evaluate the time to take snapshot.

3. To evaluate roll back time in case of single snapshot at root.

4. To evaluate the query execution time to retrieve sub-tree at a directory on a particular

snapshot.

The algorithm to list subtree of directory at a given snapshot was implemented in SQL and

executed against MySql NDB cluster.

4.1.2 Benchmark for measuring query execution time

In this benchmark, a single directory with 1,000,000 files is used as test directory. Snapshot is

taken when vector clock is 5000 i. e after completion 5000 operation. Following operations are

executed on the test directory.

44 CHAPTER 4. EVALUATION

Figure 4.1: Benchmark on Single Directory

1. ADD : Adding new files to the directory

2. DEL: Deleting exisiting files in the directory

3. RENAME: Renaming exisiting files in the directory

4. MOV: Moving file from this directory to another directory.

5. MOV IN: Moving back the files that were moved out in MOV operation.

6. Time: Time taken for executing listing files in the directory at snapshot taken at time 5000.

These measurements are taken on ndb cluster while the query executed at MySql server

instead of clusterj.

The benchmark4.2 4.1 shows that the execution time for the query scales linearly with the

number of operations.

The time to take snapshot is constant which just requires inserting a row into the SNAPS

table (20 ms), where as overhead to take snapshot with the design implemented by Facebook

4.2. READ-ONLY ROOT LEVEL SINGLE SNAPSHOT IMPLEMENTATION EVALUATION45

Figure 4.2: Benchmark on Single Directory Graph

(Facebook-Hadoop) grows linearly 4.3 with the number of files/inodes in the fileSysetm.

The correctness of solution is evaluated by unit tests for each operation under different

scenarios.

4.2 Read-Only Root Level Single Snapshot Implementa-
tion Evaluation

4.2.1 Evaluation of RollBack

Cluster Configuration

MySql Cluster with 6 data nodes and 1 management server is used for evaluation. The man-

agement server which also host mysql server deamon.

Management Server& Data Nodes: 40GB RAM, 24 Intel(R) Xeon(R) CPU X5660 @ 2. 80GHz

each with 6 Cores.

The roll back algorithm mentioned in 3.3.3 is implemented using a thread pool, where

each thread processes a given number of table records [100,000]. The implementation is ex-

46 CHAPTER 4. EVALUATION

Figure 4.3: Time Overheads in HDFS@Facebook

ecuted at MySql server as well as via directly connecting NDB-Cluster(Oracle-MySql) with

ClusterJ(Oracle-ClusterJ).

The results with evaluation at MySql Server are shown below.

4.2. READ-ONLY ROOT LEVEL SINGLE SNAPSHOT IMPLEMENTATION EVALUATION47

Figure 4.4: Benchmark on MySqlServer

The high execution time with MySql server is because of update of column which is a

primary key, in this case id,which we are changing from its negative value to positive value.

In evaluations with clusterJ, batch size of rows were read, for each row a new row with id

negative of the former row’s id is inserted.

Evalaution with ClusterJ

The rollback algorithm explained in section 3.4.1 is evalauted with clusteJ and follwing results

were obtained.

As we can infer from above graphs4.7 and 4.5 that roll-back with clusterJ is efficient and

fast.

48 CHAPTER 4. EVALUATION

Figure 4.5: Benchmark-Graph on MySqlServer

Figure 4.6: Benchmark with ClusterJ

4.2. READ-ONLY ROOT LEVEL SINGLE SNAPSHOT IMPLEMENTATION EVALUATION49

Figure 4.7: Benchmark-Graph with ClusterJ

50 CHAPTER 4. EVALUATION

Summary

This chapter evaluated the performance of algorithm to list the children of directory at a given

snapshot. The run-time of the algorithm is directly proportional to the number of changes from

the time of snapshot. The algorithm scales linearly with number of changes since snapshot. We

evaluated the roll-back algorithm after single root level snapshot was taken. The evaluation

was carried out on MySql-Server as well as with direct access to NDB-Cluster with ClusterJ

API. The evaluation shows that the execution with clusterJ is more efficient than MySQL Server.

The execution on MySQLServer is inefficient because it has to update the primary-key column

for each inode that was modified.

5Conclusions
5.1 Conclusions

We presented design and benchmark of algorithms for Read-Only Nested snapshots. Time

to take snapshot is constant. Time to retrieve subtree in one of the snapshots at a directory

is directly proportional to the number of operations executed in that directory after taking

snapshot. We presented and implemented algorithms for Read-Only root level snapshot which

is used in case of software upgrades.

5.2 Future Work

Following tasks are to be implemented and executed.

1. Implementing Nested Snapshots: Present work completely implemented Read only sin-

gle snapshot and roll-back of it. More details analysis of code and algorithms presented

for Read only nested snapshots has to be done to implement them.

2. Evaluating the two approaches of logging: In section 3.2.6 we discussed two approaches

to log the operations and deleting the file that are not referred by any snapshot. Those

two approaches need to evaluated by benchmarking.

3. Integrating Read-Only Root Level SingleSnapshot and Read-Only Netsted Snpashot

solutions: We presented independent solutions for Read-Only Nested Snapshots and

Read-Only Root Level Snapshots. It is effective to integrate both solutions by analysing

and designing new algorithms.

4. Roll-Backing to a particular snapshot: We discussed how to retrieve subtree at a partic-

ular snpashot but didn’t propose method to roll back to particular snapshot. At present

we have some ideas to explore upon. We need to evaluate them by benchmarking.

52 CHAPTER 5. CONCLUSIONS

5. Length of file being written The solution to Read only root level snapshot need to be

enhanced to support snapshotting of files that are being written while snapshotting and

writing to file takes place at the same time.

Bibliography

Apache-Hadoop. ”apche hadoop version 2”. Accessed August 11, 2014.http:

//hadoop.apache.org/docs/r2.0.6-alpha/hadoop-project-dist/

hadoop-common/releasenotes.html.

A.Thusoo, J.Sarma, N.Jain, Z.Shao, P.Chakka, S.Anthony, H.Liu, P.Wyckoff, &

R.Murthy (2009). Hive: a warehousing solution over a map reduce framework. In Pro-

ceedings of the VLDB Endowment, Volume 2, pp. 1626–1629.

Facebook-Hadoop. ”snapshots in hadoop distributed file system”. Accessed

August 11, 2014.http://www.cs.berkeley.edu/˜sameerag/hdfs_snapshots_

ucb_tr.pdf.

Foundation, A. S. ”apache hbase”. Accessed August 2, 2014.http://hbase.

apache.org.

Foundation, A. S. ”apache mahout”. Accessed August 2, 2014.http://mahout.

apache.org.

Foundation, A. S. ”apache pig”. Accessed August 2, 2014.http://pig.apache.

org.

Foundation, A. S. ”apache zookeeper”. Accessed August 2, 2014.http://

zookeeper.apache.org.

Gilbert, S. & N. Lynch (2002, June). Brewer’s conjecture and the feasibility of consis-

tent, available, partition-tolerant web services. SIGACT News 33(2), 51–59.

Hakimzadeh, K., H. Peiro Sajjad, & J. Dowling (2014). Scaling hdfs with a strongly

consistent relational model for metadata. In K. Magoutis & P. Pietzuch (Eds.), ”Distributed

Applications and Interoperable Systems”, Lecture Notes in Computer Science, pp. 38–51.

Springer Berlin Heidelberg.

53

http://hadoop.apache.org/docs/r2.0.6-alpha/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.0.6-alpha/hadoop-project-dist/hadoop-common/releasenotes.html
http://hadoop.apache.org/docs/r2.0.6-alpha/hadoop-project-dist/hadoop-common/releasenotes.html
http://www.cs.berkeley.edu/~sameerag/hdfs_snapshots_ucb_tr.pdf
http://www.cs.berkeley.edu/~sameerag/hdfs_snapshots_ucb_tr.pdf
http://hbase.apache.org
http://hbase.apache.org
http://mahout.apache.org
http://mahout.apache.org
http://pig.apache.org
http://pig.apache.org
http://zookeeper.apache.org
http://zookeeper.apache.org

54 BIBLIOGRAPHY

HopStart. ”hadoop open paas”. Accessed August 2, 2014.http://www.hopstart.

org.

Malik, W. R. (2012). ”a distributed namespace for a distributed file system”. Master’s

thesis, KTH.

MySql, D. Z. ”mysql :: Mysql cluster api developer guide :: 1.3.3.2 ndb record

structure”. Accessed August 2, 2014.http://http://dev.mysql.com/doc/

mysqlclusterexcerpt/5.1/en/mysqlclusterlimitationstransactions.

html.

Oracle-ClusterJ. ”mysql clusterj overview”. Accessed August 11, 2014.http://

dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html.

Oracle-MySql. ”mysql cluster overview”. Accessed August 2, 2014.http://dev.

mysql.com/doc/refman/5.5/en/mysql-cluster-overview.html.

Russom, P. (2011). Big data analytics. Technical report, TDWI Best Practices Report.

Sajjad, M. H. H. H. P. (2013). ”maintaining strong consistency semantics in a hori-

zontally scalable and highly available implementation of hdfs ”. Master’s thesis, KTH.

SICS. ”swedish ict sics”. Accessed August 2, 2014.http://www.sics.se.

Snapshot-ls. ”list subtree in a snapshot”. Accessed August 2, 2014.https://

github.com/pushparajxa/Snapshots/blob/master/Final_Short.sql.

White, T. (2009). Hadoop: The Definitive Guide. OReily Media.

http://www.hopstart.org
http://www.hopstart.org
http://http://dev.mysql.com/doc/mysqlclusterexcerpt/5.1/en/mysqlclusterlimitationstrans actions.html
http://http://dev.mysql.com/doc/mysqlclusterexcerpt/5.1/en/mysqlclusterlimitationstrans actions.html
http://http://dev.mysql.com/doc/mysqlclusterexcerpt/5.1/en/mysqlclusterlimitationstrans actions.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-overview.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-cluster-overview.html
http://www.sics.se
https://github.com/pushparajxa/Snapshots/blob/master/Final_Short.sql
https://github.com/pushparajxa/Snapshots/blob/master/Final_Short.sql

	Introduction
	Overview
	Problem Definition
	Challenges
	Goals
	Contributions
	Structure of the thesis

	Background and Related Work
	Hadoop File System (HDFS)
	HDFS Architecture
	HDFS NameNode
	HDFS consistency model
	POSIX compliant filesystem

	Hadoop Open Platform as Service(HOP)-HDFS
	HOP-HDFS Architecture
	NameNode Operations
	HOP-HDFS Implementation

	MySQL Cluster
	Concurrency Control in NDBCluster
	ClusterJ

	Related Work
	Snapshots in Apache Hadoop Version2
	Snapshots in Hadoop at Facebook

	Solution
	Operations to Support
	Read-Only Nested Snapshots
	Snapshottable Directories
	Modifications to the Schema
	Rules for Operations
	Listing children under a directory in a given Snapshot
	Listing current children under a directory
	Logging, Removing logs and Deleting inodes which are not referred by any snapshot
	Approach 1:
	Approach :2

	Length of file being Written

	Read-Only Root Level Single Snapshot
	Modifications to the Schema
	Rules for Modifying the fileSystem meta-data
	Roll Back

	Implementation Details
	RollBack Algorithm Implementation

	Evaluation
	Read-Only Nested Snapshots Implementation Evaluation
	Evaluation Goals
	Benchmark for measuring query execution time

	Read-Only Root Level Single Snapshot Implementation Evaluation
	Evaluation of RollBack

	Conclusions
	Conclusions
	Future Work

