!ﬁ INSTITUTO SUPERIOR TECNICO

Gridlet Economics: Modelo e Politicas de Gestao de
Recursos num Sistema para Partilha de Ciclos

Gridlet Economics: Resource Management Models
and Policies for Cycle-Sharing Systems

Pedro Filipe Goldschmidt Oliveira

Dissertacao para a obtencdo do Grau de Mestre em

Engenharia Informatica e de Computadores

Juri
Presidente: Professor Doutor José Carlos Alves Pereira Monteiro
Orientador: Professor Doutor Luis Manuel Antunes Veiga
Co-Orientador: Professor Doutor Paulo Jorge Pires Ferreira

Vogal: Professor Doutor Pedro Miguel Adao

Novembro 2011

Resumo

O cada vez maior poder computacional e precos mais baixos dos computadores domésticos
tornou-os muito populares. Os sistemas P2P de partilha de ciclos de processador permitem aos
utilizadores domésticos combinarem estes computadores numa fonte de recursos que todos podem
utilizar. No entanto, como o acesso aos recursos pode ser feito em simultineo por mdltiplos

utilizadores ao mesmo tempo, é necessario definir quais os recursos que cada um pode utilizar.

Neste trabalho propomos um modelo econdmico descentralizado para a gestdo dos recursos nestes
sistemas. O modelo faz 0 mapeamento das tarefas para os recursos onde serdo executados de
acordo com um conjunto flexivel de requisitos, tais como a velocidade de CPU ou memodria

disponivel, e as preferéncias ou utilidade do utilizador.

Para utilizar os recursos do sistema, o utilizador faz uma transacgéo onde troca créditos pelo direito
de utilizar os recursos, créditos esses que sé podem ser adquiridos se o utilizador contribuir
previamente para o sistema. Assim o modelo incentiva os utilizadores a contribuir, um aspecto
essencial nos sistemas P2P. Além disso, o preco cobrado varia de acordo com relagdo entre a oferta

e a procura, valorizando a contribuicado em periodos de maior procura.

De modo a reduzir os riscos inerentes a qualquer transac¢do, o modelo utiliza um sistema de
reputagao que identifica e isola os utilizadores incumpridores, impedindo-os assim de prejudicar o
sistema. Utilizando o sistema de reputacdo o modelo também é capaz de oferecer diferentes

qualidades de servico dependendo da classe do utilizador.

Palavras-chave: partilha de ciclos de processador, P2P, gestao de recursos, modelo econémico.

Abstract

The increasingly larger computation power and cheaper prices of the commodity computers made
them very popular. The cycle-sharing peer-to-peer systems allow home users to combine these
computers into a pool of computational resources that they can all use. However, since the access to
the resources can be made simultaneously by many users, there is the need to define which

resources each one will use.

In this work we propose a decentralized economic model for the management of resources in those
systems. The model matches the jobs to the resources where they will be executed according to a

flexible set of requirements, such as CPU speed or memory size, and to the user preferences or utility.

In order to use the resources of the system, the user makes a transaction where he exchanges credits
for the right to use the resources, those credits can only be received by previously contributing to the
system. Thus the model encourages users to contribute, which is essential in a peer-to-peer system.
Also, the price charged changes according to ratio between the demand and supply, making

contribution in times of greater demand more valuable.

To reduce the risks inherent to any transaction, the model uses a reputation system that identifies and
isolates the misbehaving users, hence preventing them from harming the system. Using the reputation

system the model is also able to provide different quality of service depending on the user class.

Keywords: cycle-sharing system, peer-to-peer, resource management, economic model.

Table of contents

LI [0 To 0oz 1T o ST PR TSP PSP 1
1.1 MOTIVALION .t e e r e 1
1.2 L@ o =T o 11T SRR 2
1.3 L@ g0 F=TaTV4= 11 o] E USROS 3

P =T P2 (= o IR0 GRS PPRT 5
2.1 ECONOMIC MOTEIS ...t e s e s 5

P2 I B 1[4 =1 oo TR 5
2.1.2 Price defiNitION ..ot 7
2.1.3 PrICE SEIECHON et 10
2.2 U= oW1 c= i o] o EO PSP TOTPPPRTP 11
2.2.1 Reputation FUNCHONSuiiiie e e e 12
2.2.2 Reputation storage and CalCUIAtioNcooiiiiiiiiiiiie e 13
2.3 RESOUICE TISCOVEIY ..ottt et e s e e e e e e e s e e e e anneee s 13
2.3.1 UNSITUCIUIEA ...ttt enn e sne e e s e e e snn e e sne e e nnneenn 14
2.3.2 SHUCIUIEA ...t e e ne e sr e e n e e e s e e s ene e e nnneena 15
2.3.3 HYDFIA et nne e 16
2.3.4 CoOmMPIEX rESOUICE TISCOVETYueiiiiiiiieeiiiiiie e eiieee e e sttee e e sttt ee e st e e e s aateee s sasbeeeesanteeeesanneeeenans 16

R T =oTo] o To] 0 41 To0 1Y o T I PSS 19
3.1 MOAEI OVEIVIEW ...ttt e e e e e e e ettt e e e e e e e e ansee e e e e e e e e e annnneeeaaaaeas 19
3.2 Y T S o [N U IR RPRUURRRTRI 21

3.2.1 Specifications and evalUationcoociiiiiiiiii e 22
3.2.2 Selection Of the EXECULONcoiiiiiee e 23

RO T2 T O Tt o1 1 o 1= 1 [PSRRI 25
3.3 L0 (Yo 11 =YY (=] 0 o PP 25
B30T PAYMENES .. e e e e e e e e e e e e an 26
3.3.2 Variable PriCe PONCY ..eeeiiiuiieeeiiiiie ettt e e e e e e 27
3.3.83 MaArKel @NalYSIS...ccoiiuiiiiiiiiiie e e e e e e e e e e an 29
3.3.4 Shortage Of Creditsoooeiiiiiiiie et sne e 30
3.4 REPULALION SYSTEM ...eiiiiiiiie e et e s s e e e st e e s snsa e e e e anneeeens 31
3.4.1 MiSDENAVING NOGAEScoiiiiiiiie ettt e e st e e s rab e e e senreeeeeans 31
B.4.2 ClasSES Of USEIS ...eiiiieiiiii ittt ettt esn e e nn e e ennn e naneena 33
3.5 [\ oTe [0 1Y F= 10 1 o= 3PP 34
3.5.1 ENtering and l@aVINGc.ueeii it e e 34
R = = 10 1) 8 (o] 1= = U o SRR 35
3.5.3 BroKer SEIECHON ...t a e e 36
3.6 SUITIMIAIY <.ttt ettt ettt ettt a bt e e be e e s abe e et et e be e e eabe e e be e e aabeeebeeesmbeeanbeeeanseaenbeeesnnaas 37
4 Software Architecture and Implementationcoooeiii i 39
4.1 (070101100 0T SR P RS PRRPPROT 40

4.2 g (070 [[T T 41

4.3 T 0] (T ¢TSRS 43
4.4 L0101 oo PSR 46
4.5 L€ =N L2117 N PSP 47
4.6 SPECIHICALION ... e et e e e e et e e e e e e e e nee e e e nes 49

5 Simulation and EVAlUGLION.........coiiiiiiiieie e 51
5.1 010 F= Yo g e 1= = 11 RSP SR 51
5.2 ReSOUICE MaNAGEMENToi e e e e e s e e e anneee s 52
V2 N [o I =] (] 01U [o PP 52
5.2.2 FaUTOIEraANCEoeiieiie ettt 53
B.2.3 USEI ULIITY coee ettt nes 54

5.3 L0 (Yo 11 =YY (=] 0 o PP 55
5.3.1 ECONOMIC VIADIIILY ...veeeiieiiie ettt 55
5.3.2 Variable PriCe POLICYcuueeiiiieiee ittt 56

5.4 RepULation SYSTEMo sttt 58
5.4.1 MiISDENAVING NOTES ...ttt s e e e ebe e e e sne e e e eanes 58
I 2 U Y= T o =TT PR 60

5.5 1V ToTe L= IEToz=1E= o] 11 Y PR 61

LI O] o o711 -1 o PRSP PRSP 65
LRToY (=TT o PP R R PPRRPRIN 67

vi

List of figures

Figure 1 - Steps taken during a tranSACHIONoiuii it s see e 20
Figure 2 - DIStrIDULEA INAEXeeiiiiiieie ettt e e e e e e e e e e e e e anreee s 21
Figure 3 — Example of the XML representation of the producer characteristics and the consumer utility

using the partial utility @lgebra...........coo i 23
Figure 4 - Pseudo-code for the search in the iNAEXeoiiiiiii e 24
Figure 5 — Gridlets Economics software arChiteCture ... 39
Figure 6 — Diagram of the consumer module implementationcccceviiiiin e, 41
Figure 7 - Diagram of the producer module implementation............ccooviiiiin e 43
Figure 8 - Diagram of the broker module implementation ... 44
Figure 9 - Diagram of the routing module implementation ... 47
Figure 10 - Diagram of the gateway module implementation............ccoocveiiiiiiin e 48
Figure 11 - Diagram of the specification module implementationcccociiiie, 50
Figure 12 — System occupation with different weights for the occupation requirement...................... 53
Figure 13 — Percentage of successful executions with different levels of churn rate...........ccccceeeeee. 54

Figure 14 — Average cost and duration of a job (20 Gridlets) execution with different user
[=To 0T =10 g T=T o€ PP P PP OTPPPR 55

Figure 15 — Average value paid and received for a Gridlet execution for each user type with / without

1T 110011 U PRRT 56
Figure 16 — Variation of the fee with the variable price policy depending on the occupation 57
Figure 17 — Number of gridlets executed on average by different types of users........cccccevveeerineenn. 59
Figure 18 — Average duration of a job (20 Gridlets) for each user Class.........cccovcveeiiiiiiiiiiiiee e, 60
Figure 19 — System occupation with 1.000.000 NOUESceiueiiiiiiiiiieiiiieee e 61
Figure 20 — Percentage of successful executions with 1.000.000 NOAEScceeviviririiiiieriiiiieeenieeennn 62
Figure 21 — Average cost and duration of a job with 1.000.000 NOAES........ccuvveeriiririrriiieie e 63

vii

viii

List of tables

Table 1 — Example of the credits paid by the consumer for a gridlet execution that cost 500 credits

and which the result was stored in the keeper for 10 hOUrs.........cooiiiiiiiiiiii e 27
Table 2 — General characteristics of the simulation environmentccocoi i 51
Table 3 — Characteristics of the Unit Of COST.......ooiiii e e 52
Table 4 — System effectiveness with and without variable price poliCy........cccoovvieiiiiiiiiiies 58
Table 5 — Number of misbehave cases deteCted..........ooui i 59
Table 6 — Average cost and duration of a Job for each user Class.......cccocoeeeiiiiiiiiii i, 60

1 Introduction

The increasingly larger computational power and cheaper prices of commodity computers made them
more and more popular. When connected through a high speed network, these computers have the
potential of providing more computational capability than a supercomputer, and at a lower price. So,
Grids appeared to take advantage of that potential. Institutions with tens or hundreds of computers
brought them together to solve computationally intensive problems. However this type of systems only
uses the computers of institutions, leaving a huge pool of computational resources unused, the home

computers that nowadays are connected to the Internet.

The BOINC system, with projects like SETI@home and Folding@home [3; 33], takes advantage of
those resources by using them to perform the CPU-intensive calculations necessary for scientific
investigation. However, these systems traditionally follow a rigid client-server model, with a centralized
server that is the only one that can create the jobs that are executed. This means that the home users

cannot take advantage of the resources of the system for which they contribute to.

The P2P paradigm is based on the principle that every component of the system has the same
responsibilities, acting simultaneously as a client and as a server. This means that a user that
contributes to the system can also take advantage of it. There has been done considerable research
on peer-to-peer systems and several successful applications were developed. However the main
focus of these systems has been on file-sharing [5] and less attention has been given to the sharing of
other resources, such as idle processor cycles. Some aspects from the peer-to-peer file-sharing
systems, like the resource discovery, are common to the cycle-sharing peer-to-peer system and can
be reused. However, other, such as the resource management, cannot be reused due to the specifics
needs of the cycle-sharing systems. Therefore, in this dissertation we propose a new mechanism for
the management of resources in a peer-to-peer cycle-sharing environment based on an economic

model.

This work is part of a larger project called GINGER [39], an acronym for Grid In a Non-Grid
EnviRonment, a peer-to-peer infrastructure intended to ease the sharing of computer resources
between home users. Also, as part of this work the paper “Gridlet Economics: Resource Management
Models and Policies for Cycle-Sharing Systems" was presented at the International Conference on
Grid and Pervasive Computing (GPC 2011) in Oulu, Finland, and published on the Lecture Notes in
Computer Science (LNCS), Volume 6646/2011, Springer, May 2011.

1.1 Motivation

We felt that there was the need to develop a new resource management mechanism for peer-to-peer
cycle-sharing because the models of resource management used in file-sharing peer-to-peer systems,
Grids or BOINC, the system that are more similar to a P2P cycle-sharing system, cannot be directly

applied to the cycle-sharing scenario.

Bit torrent [4], the most popular peer-to-peer content distribution system (represented 35% of
Internet’s traffic in 2005) uses for resource management a tit-for-tat mechanism where a user
exchange uploads for downloads. But this mechanism is based on the fact that a user can contribute
to the system by uploading the chunks that he already possesses while downloading those that he is
missing, thus exploiting the demand to increase the supply. This model is not applicable to cycle-
sharing, because in this type of systems the moments of contribution and usage are usually far apart
in time. Since during the usage time the users normally are also executing work in their local machine.
Also file-sharing systems only deal with binary requirements, either has the file or not. In cycle-sharing
environments, there is the need to deal with multiple and varied requirements, such as CPU speed,

number of cores or OS installed.

The model of resource management used in BOINC also cannot be employed, because in that type of
systems there is no concurrency in the access to the resources, since the only one that can use them
is the central server. This is a major flaw, since one of the great benefits of the peer-to-peer systems is

that all users can use the resources of the system.

The resource management model that is more similar to resource management in a peer-to-peer
cycle-sharing system, is the one used in the Grids. However, in those systems it is assumed that all
computers are trustworthy, that the components are relatively static and that there is no need to
encourage contributions. Assumptions that cannot be made in a peer-to-peer system and therefore
prevent the usage of the models used in Grids to manage the resources of peer-to-peer system. There
are some systems [37] that use a peer-to-peer approach to the resource discovery in Grids, which is
makes them more suitable for cycle-sharing. However, despite being able to deal with complex
resource discovery, these systems have a very simplified resource management model and that does

not take into consideration the laws of supply and demand.

1.2 Objectives

The objective of this work is to create an economic model capable of dealing with the specifics needs
of the resource management in a peer-to-peer cycle-sharing system. Therefore our work we will focus
on creating a mechanism that is able to automatically map the jobs received to pools of
heterogeneous resources while taking into account multiple requirements (such as CPU speed,

network bandwidth, etc.).

In our model the jobs are received in form of gridlets, small independent work units, and the selection
of where they will be executed takes into consideration the preferences specified by the users that
submitted them. The preferences can specify the priorities given to the characteristics of the resource,
e.g. CPU speed is more important than the memory size, or requirements that must be complied with,
e.g. has to have a Java VM installed. Because this is a cycle-sharing system, the representation of

preferences must be flexible enough to deal with very distinct characteristics.

Another objective of the model is to regulate the consumption of the resources of the system and
encourage the contribution with the use of a virtual currency. The currency is exchanged for the
possibility to use the resources of the system, which will belong to another user. This mechanism will
have the ability to differentiate between the different types of contribution, e.g. contributions of more
powerful resources or in times of greater demand are more valuable than contribution of less powerful
resources or in times of lesser demand. Thus, encouraging the contribution of better resources and in
times of greater demand, which is when they are more needed. Consequently, it will also be able to

differentiate different types of consumption.

The last objective of our work is to provide the model with the methods to deal with two types of risks
inherent to economic transactions that can also appear in a peer-to-peer cycle-sharing system. The
first one is overpricing, that happens when someone asks for more money then what he should
receive by claiming that he did more work than what was actually done, this can also appear in cycle-
sharing systems because it is hard to know exactly how much processing time a task is going to take
to be executed beforehand. The other problem is fraud, which happens when a user instead of
executing a job and returning the result, it does not execute the job and simply sends an answer that
simulates the result in order to get paid. The model should be able to identify the nodes that commit

these actions and isolate them, in order to prevent them from harming the system.

1.3 Organization

The rest of this document is organized in the following chapters:

Chapter 2 (Related Work) - In this chapter we present the three main aspects that influenced our
model: the economic models that exist in the real world and their main characteristics; the reputation
and how it is already used in other systems in the internet; and the peer-to-peer resource discovery

systems presented by other works.

Chapter 3 (Economic Model) — here we present the model proposed in this work. The model
description is divided into 4 parts: the model overview, which describes the main aspects and
functionality of the model; the credit system, which presents the mechanism used to regulate the use
of the resources of the system; the reputation system, where are described the methods used to resist
misbehaving users and provide different types of service; and the node dynamics, which explains the

fault tolerance mechanism and how the nodes can enter and leave the system.

Chapter 4 (Software Architecture and Implementation) — this chapter describes the module
architecture of the Gridlets Economics prototype software implementation. It describes the modules

and sub-modules into which the model is divided and the functionality that each one implements.

Chapter 5 (Simulation and Evaluation) — In this chapter we tested and analyzed the ability of the

proposed model to manage the resources of a peer-to-peer cycle-sharing system. We also evaluate

the behaviour of the credit system and how it provides incentives to contribution. The last aspects

presented are the tests made to the effectiveness of the reputation system and the model scalability.

2 Related work

2.1 Economic models

When there is demand and supply of resources there has to be some management of who uses what
and when. Economic models are a good way of doing that since in its basis they are supposed to do
that in real life scenarios. Also, they have already been used for many centuries and proved to be a

successful and sustainable way of regulating the exchange of resources, goods and services.

The use of an economic model provides a scalable option for the management of resources,
especially when they are not all in the possession of the same entity, because each user regulates the
use of its own resources. This means that there is no need for a central coordination, which would
create a bottleneck, and speeds up the decision process, because the problem is distributed across all
resource owners. Also, it offers incentives for resource owners to contribute their resources for others
to use, since they profit from it, contributing to the growth of the system. Moreover, it provides a simple
method for defining the priority order of the jobs, by establishing that the ones for which the users are
willing to pay more have the highest priority. Likewise, it encourages the users that have jobs with a
lower priority to back off and let the more time critical ones be executed first, since that means they

will pay less.

Other advantage of the use of an economic model is flexibility since it allows a uniform treatment of all
kinds of resources, from CPU time to application version. Also, both resource owners and consumers
want to maximize their profit, i.e. the owners wish to earn more money and the users wish to solve
their problems with the minimum cost possible. Economic models have the flexibility to allow the users
to express their own requirements and objectives, enabling the development of scheduling policies

that are focuses on the users instead of the system, placing the power on the user’s hands.

Therefore it is considered that an economic model is suitable for the management of resources in a
decentralized environment where resources can vary and are owned by different entities. There
already exist some systems that implement economic models for resource management [8; 9; 18].
However, none addresses the particular aspects of resource management in a peer-to-peer cycle-
sharing system. Next, we will present three fundamental aspects of economic models: currency, price

definition and price selection.
211 Currency

When using an economic model there has to be of some type of currency which is exchanged in the
transactions. In a peer-to-peer system there are many options that can be used as currency. The
types of currencies can be divided into two categories: non-monetary and monetary. The non-
monetary systems are simpler and easier to build but, have some limitations. Next, are presented

some non-monetary currencies.

Resources: the use of the resources that we have in exchange for what we need in a direct
exchange, as used in [2; 10]. For example, exchange disk space for processor time. The direct
exchange of resources is also called bartering. It is used mainly to start economies because of the
simplicity associated with the fact that it is a non-monetary system. Monetary systems need to give
value to something that by itself does not have any value, the money, independently of what is used
as money, and that fact makes it much more complex. Also, bartering is safer, because it is harder to
deceive someone if the good has to be delivered on the moment of the trade. But it has some
disadvantages: one can only trade if one has possession of the resource at the time of the trade. This
means that if it is a resource that is consumed but never leaves the possession of the owner, it is
impossible to purchase it for later use. It is also difficult to make the conversion of value between
different types of resources. Besides, some resources cannot be traded only half, so the thing that it is

traded for it as to have the same value.

Although traditionally bartering is an operation solely between two actors, there is the possibility of
making a barter transaction with more than two actors [2]. In that type of transactions a ring of direct
exchanges is formed where someone sends a resource to someone that passes a resource of the
same value to other; the other sends to someone else that eventually gives some resource to the

original sender.

Multiple virtual currencies: multiple virtual currencies is an approach where any user can issue a
currency that can be traded, is used in [13; 14]. This type of economy is the next step after bartering.
Instead of trading goods directly there are traded tickets that have the value of the good. This type of
economy solves some of the bartering problems since there is no longer the need to have possession
of the resource at the time of the trade; it allows the possibility of buying a resource to use later. Also,
it is more flexible, because if one has a ticket or coupon that gives him the right to use the resource x,
he can trade it instead of using it. Still, this type of currency has some disadvantages, the ticket it is
only valid for a specific type of resource, so the problem of conversion between different types of
goods remains. Also, the value of the ticket is based on the trust that one have that the entity that
issued the ticket is going to fulfil the right that it grants. So one can only trade the ticket with users that
also have trust in the person that issue the ticket. Besides, this makes it easier to deceive someone,

since it is simpler to trade tickets that do not correspond to real resources, then it is to fake resources.

Monetary systems solve most of the problems that exist in non-monetary systems. The conversion
between different goods is now simple because they are priced based on the value of the money.
Also, they have the advantage of being more practical. But there is still the need to decide what is

going to be used as money:

Real Money: the use of real money has many advantages. The problem of giving value to this type of
currency does not exist, since it is already valuable outside of the system. Another advantage is that
there exist already many payment systems [12] that store the money of the user and make the
transactions. But there are some legal issues [25] and implications that raise many problems. The

security issues are much more important because if someone is able to subvert the system the

repercussions are much greater. Moreover, in a peer-to-peer system the paradigm is that there is no
overseeing entity, so it raises the problem of who is responsible for preventing frauds from happening.
Also, the use of real money makes the system vulnerable to users that have a huge wealth, because

puts them in position in which they can monopolize the system.

Virtual money (micro-payments systems): virtual money is a simplification of the use of real money.
This type of money has no value outside of the system, so if someone subverts the system there are
not very big repercussions. That also implies that the security issues of how to store the virtual money
are less important. Moreover, with virtual money users are more likely to allow the usage of that
money to be automated. But it has some problems, since initially this type of currency has no value;
there is the need to make it have value. People only value money because they believe that, later on,
they will be able to trade it for something that they want. So, in order to make the virtual money
valuable, one has to make its users trust that the system will have things that they want in the future
and that they will be able to trade the virtual money for them. Another problem is that all the virtual
money that a user manages to save in that system can only be used in that system. If it was real
money that was being used, it could be cashed-out and inserted into another system. In [23; 40] is

presented some work that has already been done in peer-to-peer systems using this type of currency.

Renewable money: renewable money is a special type of virtual money that self re-charges over
time, depending on the system policy. The type of mechanism is mostly used when a single entity has
control of all of the resources and the users have no way of contributing to the system [14; 20]. It can
also be used as a simplification of the virtual money, because it has fewer problems. In a system that
uses virtual money if there is more offer than demand, the new users will have difficulty in selling their
resources to win credits to use the system; in a self charging system that problem does not exist. To
have flexibility, the users can be divided into classes, based on the resources they have, and use that

to condition the rate at which their money re-charges.

The choice of the currency should be a careful one, because the type of currency used, due to the

implication that it has on the economy, can determine the success or failure of the economic system.

2.1.2 Price definition

The price definition is an important factor of economic models, as it happens with the currency the set
of rules used to define prices has a great influence on the success or the failure of the system. The
alternative selected defines how the resource owners can make their choices and maximize their
objectives. There are many different mechanisms for defining the price in a normal economy. Next we
will present the models for price definition presented in the GRACE framework [8] along with some

critics:

Commodity Market: commodity market is the traditional type of market. In this type of market the
resource owners specify the price and the consumers only have the choice of buying or not. That
happens because, unlike other mechanism such as auction or bargaining, the consumers have no

direct influence on the price definition. The price definition policy can be flat, where the price does not

change for a certain amount of time, or variable, where price changes very often based on the amount
of supply and demand. The flat policy is often used in markets where the supply and demand have
very small variation over time. Whereas the variable policy is used when there are large discrepancies
between the low and high peak of demand or the supply varies widely with some regularity. For
example in a cycle-sharing environment probably the supply will increase highly during the night in a

given set of time zones.

This type of market is relatively simple to implement, the most complex part is to define how the prices
are calculated, and it is mostly used when the market is at equilibrium, because it is very stable. But it
has the disadvantage of not achieving an optimal solution, since it does not take into consideration the
value that the consumers give to the resource (i.e. their utility). The systems in [9; 18] consider this

type of market.

Posted Price: posted price is not exactly a type market, but more of a mechanism that is used by the
resource owners to advertise special offers. This mechanism can be used to attract new customers,
which normally would not buy or use that service, in order to establish or increase the market share.
Also, it can be used to encourage users to use the service in a time of less demand, because the
posted prices are cheaper but can have usage conditions associated to them. Although the tactic of
reducing the prices can seem to go against the objective of maximizing the supplier profit, because it
reduces the profit margin, in some cases it might be better to have a smaller profit than having no

profit because nobody is buying or using the service.

Bargaining: bargaining is a mechanism used to set prices that works in the following way: the
resource owner establishes a price and consumer makes a bid with a value that is lower than the price
asked. If the resource owner does not accept the bid, adjust the price in order to make it closer to the
value of the bid. If the consumer does not accept the new price, raises slightly the value offered. They
both continue negotiation until they reach a mutually agreeable price or one of them is not willing to
negotiate any further. Like the posted price this mechanism can be used to increase the market share
or encourage the use of the service in times of less demand. The bargaining method is better for
selling objects or services whose value is difficult to define beforehand. Also, it is better in maximizing
the profit margin of the resource owner, but the negotiation makes it more expensive (particularly in
terms of communication) than the posted price method, so if the value sold is very low it might not

justify the use of bargaining [41].

Tender/Contract-Net: tender/contract-net is one of the most widely used models for price negotiation
of contracts of great value in the real economy. Most of Portuguese government contracts have to be
done by this model in order to ensure transparency. In this model the first step is not done by the
resource owner, but instead is the consumer that publishes the requirements and sends a request for
proposals. Then the interested resource owners answer by stating what they have to offer and how
much it would cost. When all proposals are gathered or the established deadline for receiving
proposals is reached, the consumer evaluates the proposals and awards the contract to the most

appropriate resource owner.

This model is the one that best maximizes the consumer utility, i.e. solving the problem with the
minimum cost possible. However, due to the high cost and time consumption required for the
negotiation, its usage is only justified if the value of the contract that is being negotiated is very large.

The system proposed in [9] also considers this type of market.

Auctions: as the tender/contract-net model, auctions support many-to-one negotiations. The
difference is that, instead of being many sellers and one buyer, in auctions there is only one seller and

many buyers.

The three key players involved in an auction are: resource owners, auctioneers (mediators) and
buyers. Many e-commerce portals such as Amazon and eBay serve as mediators and act as a trusted
third party that regulates the auction process. But in a peer-to-peer environment it is considered that
trusted third party does not exist and if the auctioneer is malicious it can subvert the result of the
auction. In [30] is presented a protocol for decentralized ascending auctions where the auctioneers are
groups of peers. This protocol is able to ensure that the auctioneer is not capable subverting the result

of the auction as long as one of the peers in each group is not malicious.

The auction process can have different rules, depending on this rules the auction can be classified into
four types: English auction (first-price open cry), First-price sealed-bid auction, Vickrey auction

(second-price sealed bid) and Dutch auction.

The English auction is the traditional type of auction. It opens with a minimum bid and after, each
buyer successively increases their offer in order to exceed the other bids. When none of the other
bidders is willing to raise the price anymore, the auction ends and the highest offer wins the item at the
price of its last bid. In principle this type of model is the one that optimizes the resource owner
objective, since the iterative raise of the bids forces the buyers to give the real value to the resource.
But in [28] they noticed that the users followed the following strategy: when there was little demand the
buyers instead of bidding the real value of the resource offered a much smaller value, reducing the
seller profit. Other strategy was to bid just before the deadline of the auction, not giving the other

buyers the possibility to make a counter-bid.

In the First-price sealed-bid auction the buyers submit their bids without knowing the other’s bid. That
means that each user only submits one bid, since there is no way of knowing if there is the need to
make counter-bid. The highest bidder wins the item at the price of its bid. In [28] is said that in this
type of auction the strategies used in the English auction cannot be used since the buyers do not

know if the demand is low and there are not counter-bids.

The Vickrey auction is very similar to the First-price sealed bid auction. The only difference is that the
highest bidder wins the item at the price of the second highest bidder. This type of auction is used to
encourage the buyers to offer a value slightly larger than the real value since they will not have to pay

that price but always a smaller amount.

In the Dutch auction the auctioneer starts with a high bid and continuously lowers the price until one of
the bidders takes the item at the current price. It is similar to the First-price sealed bid because in both

the buyers have no relevant information about each other. This type of auction has the advantage that

it allows the auctioneer to control the speed of the reduction and therefore the time that the auction
takes.

Auctions are very popular because they require little information about the item real value or demand.
Also, it optimizes the resource owner objective of making the most profit possible. However, this type

of model has the costs associated with the auctioneer and it is time consuming.

Bid-based Proportional Resource Sharing/Share Holders: the bid-based proportional resource
sharing/share holders’ model is mostly used in cooperative concurrency to resources. In this model
the resources allocated to each user can either be a percentage of the total resources proportional to
the bid made in comparisons to the other bids. Or each user can get a share of the system and then
the time that he can use the resources is proportional to his share. One advantage of this type of
model is that ensures that there is not starvation of any user and that all users, independently of their
importance, are given is fair share of access to the resources. However, this model is made to work in
a cooperative environment and in a peer-to-peer system is considered that the users are rational and

work in a competitive way [7].

Collective/Cooperative: a collective/cooperative is a business which is run, and often owned, by a
group of people who take an equal share of any profits. This model is used by smaller business to
meet their economic objectives and be able to compete in an environment where there competitors
are very large, for example the competition in a tender/contract-net. An example of this model is the
small vine farmers which form a cooperative and sell the wine under the same brand to compete with
the big companies.

Monopoly: a monopoly is the case where a single entity is in possession of all of the resources or is
the single provider of a determine type of service and dominates the market. In this model the
resource owner determines the terms on which the consumers shall have access to the resources.

The BOINC system [3; 33] is an example of this type of model.

The model chosen to define the prices influences the ability of the resource owners and consumers to

maximize their objectives. Also it can be a factor to attract new consumers or cause them to leave.
2.1.3 Price selection

In an economic model normally the resource consumer has many options of services from which he
can choose. The alternatives can offer exactly the same service for the same cost, in that case the
selection of the resource owner that is going to provide the service is pretty straightforward. But
usually that is not the case; normally each alternative offers a different type of quality of service, which
can fully or partially satisfy the requirements of the resource consumer, and a different price. In this

case the selection of the right service provider is crucial to achieve the user objective.

In economics, utility is a measure of the relative satisfaction of the consumer with the consumption or
purchase of a determined good. Usually the utility is represented through a function, called the utility

function. That function can take into consideration many different parameters and it is very important

10

to the price selection, because the right selection can be made by choosing the option that maximizes

the value of the function that corresponds to the consumer perceived utility.

However the work that a user submits is normally not executed as single job, but as set of smaller
units. So, the selection of where each job is going to be executed must not only take into consideration
the factors or utility that makes that single choice the best. But also the factor that globally reach the
objectives of the user for that work, as for example the ability to meet a deadline. In [1] it is presented
a broker that selects the service provider based on one of two user policies: budget or time. With the
budget restriction the broker tries to spend as little money as possible. The time restriction has two
modes of functioning: either the user sets a deadline and the broker tries to meet that deadline
spending as little as possible or the broker tries to execute the job as fast as possible without taking
into consideration the costs.

In an economic environment the risk is another important aspect to take into consideration in the price
selection. More important in a peer-to-peer system where there is no regulating authority, which
means that both the resource owners and consumer can try to take advantage of one other without
punishment [21]. So, the reputation (section 2.2) can be used as factor for price selection, since it is a
measure of the risk of the transaction. In economics the riskier an investment is, the bigger the pay-off
as to be in order to justify the possibility of losing money. That means that if the reputation of a peer is
low it cannot ask for a high price, because it will not make up for the risk.

While the price definition is the most important factor to achieve the objective of the resource owner,
since it defines the price and the buyers have little control over it. The price selection is the most

important factor to achieve the objectives of the resource consumer.

2.2 Reputation

Trading in an economic model always involves a certain amount of asymmetric risk (that one of the
parts will not fulfil its obligations once the other has committed the resources or currencies) and the
reputation is important because it is used to reduce that risk. There is the assumption that the
behaviour of someone in the past is a relatively good predictor of their future behaviour. However, in
order to use that assumption it is necessary to have some knowledge of the past behaviour of that
person, which one might not have. The reputation is considered to be the overall opinion of the system

about someone or something and can used as an indicator of the past behaviour.

One way of using the reputation that is used in the real world are the references, which means that
someone already has some knowledge about the past behaviour of a certain person and passes that

information along in the form of a reference. In [43] it is proposed a system that uses this mechanism.

Besides reducing the risk, reputation can also be used as a mechanism to induce good behaviour in
markets with asymmetric information. That concept is not new, in fact several economist have already
published work analyzing its proprieties. One of the major auction sites in the world, eBay [15], relies
almost exclusive on a system like this to reduce the risk and induce good behaviour on the part of its

members.

11

The system works by encouraging the buyers and sellers to rate each other after each transaction. It
is a binary reputation mechanism which means that the rating can be one of two values, “praise” (i.e.
positive) or “complaint” (i.e. negative, problematic), together with a short text. These classifications are
then made publicly available to all users. For a system like this to work it is important that two

properties hold:

1. It is optimal to sellers to settle down to a steady-state pair of real and advertised qualities,
rather than oscillate, successively building up and milking their reputation.
2. The quality of sellers as estimated by buyers before the transaction is equal to their true

quality.

The first property is important because if the seller is allowed and chooses to oscillate, because that
would result in additional profits, that profit would be made at the expenses of the buyers, which in the
presence of competitive markets, would eventually leave. That would lead to the collapse of the

system.

The second property is needed to do expectation management, because the classification given by a
peer to a transaction is not based on the real quality of the item. Instead, it is given based on the
relation between the quality expected and the real quality item. This means that if a buyer receives an
item that is in good condition, but for some reason is expecting it to be even better; he would rate the

transaction as a complaint, regardless of the fact that he/she received an item in good condition.

Over the years the reputation system of eBay has proven itself capable of providing a remarkable

stability. Still it is requires human interaction to give and evaluate the classifications.
2.2.1 Reputation functions

The reputation system collects the classification that the users gave to the transaction. But that
information is only useful if it can be used to compare the reputation of one peer with another. So,
there is the need to convert it into a value that can be quantified and compared. In the next paragraph
there will be a description of the function used to convert the classifications given into a comparable

value.

First we have to choose which factors we are going to consider in the function. In [42] the authors

identify three major factors to consider when evaluating the reputation:

1. The classification that a peer obtains through transactions.
The number of interactions the peer had with other peers.
A balance factor of trust, which reflects the trust that there is in the classification given by

that peer.

Then the reputation value of a peer u can be calculated by the sum of all the classification given by
other peers to u multiplied by the balance factor of the peer that gives the classification, divided by the

total number of interactions of u.

12

The balance factor makes the given function asymmetric. Asymmetric functions consider that some
peers are not trusted and that trust is transient. That is important because in [11], it is said that
symmetric function are vulnerable to Sybil attacks and badmouthing since they treat every
classification as the same. Also the fact that trust is considered transient makes it easier to develop

trust in peers to which there has been no prior interaction.
2.2.2 Reputation storage and calculation

The calculation of the reputation value of one peer depends on where that information is stored. In
centralized systems, like eBay, the reputation is stored in the server, so it is only logical that it is the
server that calculates the reputation value of each peer. This is a simple and effective solution, also

since the server is a trusted third party there is no risk of adulteration of the value stored.

However in a decentralized peer-to-peer systems there is no central server or any other trusted third
party that can store and calculate the reputation. One option is to store in the neighbours, like in
KARMA [40]. The feedback is stored by the adjacent nodes in the DHT?, this solution is considered
relatively safe because the distribution of nodes over the DHT is random, and so it is very difficult to
know who is going to be one peer’s neighbour in order to have it change the peer’s reputation.
Nevertheless, the nodes storing the reputation are not trustworthy so the values are replicated into the
more than one neighbour, when a peer wants to know someone’s reputation it asks all of the

neighbours, and in case of receiving different values, uses the majority to reach a decision.

In the EigenTrust Algorithm [22] the reputation is stored locally. Then the algorithm computes a global
reputation value for every peer based on the local reputation values assigned to each peer by other
peers. This method of calculating the reputation takes into consideration the entire system’s history of

a peer.

Calculating the global reputation value makes the algorithm more accurate, yet it also makes it more
complicated, requiring long periods of time to compute that value. In [26] the authors propose a
system that instead of considering the entire history uses only limited information about the peer. The
authors show that it is possible still to achieve good results, while reducing the overhead of calculating

the reputation.

2.3 Resource discovery

The basis of an economic model is the possibility of selecting the option that maximizes the utility
of the resource consumer. In order to make the selection there is the need to know what options are
available, for that there is the need to discover the resources available at a certain time. The resource
discovery in peer-to-peer systems is divided into three main categories, depending on how the nodes

are organized: unstructured, structured and hybrid.

I DHT (Distributed Hash Table) is an infrastructure used in structured peer-to-peer systems to organize the peers.
A more detailed description is made in section 2.3.2.

13

2.3.1 Unstructured

In an unstructured peer-to-peer system the nodes are randomly distributed, these types of systems
are generally more appropriate for accommodating a highly-transient population due to the low cost of
entering and leaving the system. But because there is no information about the organization of the

peers, these systems need to use uninformed search techniques that are very inefficient.

Gnutella [5] was one of the biggest file-sharing peer-to-peer systems, it was decentralized and
unstructured. In this system each peer was connected to a small number of other peers, the
neighbours. The search method was basic flooding, which works by sending the query to all the
neighbours and when the neighbours receive it, they forward the same query to all of their neighbours.
This search mechanism is not scalable because each query generates a huge amount of traffic that
increases exponentially with the number of nodes, so as the number of peer increases the amount of
traffic generated by the queries saturates the system. In result, many queries are dropped making the
search unreliable. Additionally, due to the high disconnection rate of the peers the network never

stabilizes.

In order to prevent the search mechanism blocking the system there are several techniques, such as
the use of a Time-To-Live (TTL). The TTL indicates the number of hops away from its source that a
query should be propagated to. This limits the amount of traffic generated by each query. However it
has some drawbacks, it limits the search to only a part of the system, so the item searched may not be
found although it exists in the system. Also, the value of the TTL must be carefully chosen, if too small
most queries will return incorrect or not optimal results, if too large the amount of traffic generated by
each query continues to be too much. lterative deepening [24] solves this problem by starting with a

small TTL and increasing it in each attempt.

Another technique is performing random walks [19; 24]. In this technique instead of sending the query
to all of the neighbours, the peer sends the query only to some randomly chosen neighbours. If the
query does not return successfully is then sent to some of the other neighbours; this continues until
the query was sent to all neighbours or returns a positive result. The method reduces in many cases
the traffic overhead imposed on the network with the trade-off of a highly variable performance and, in

contrary to flooding, the number of query replicas does not increase with the hop distance.

Kazaa [5] uses a hierarchic approach with two classes of nodes, super peers and ordinary nodes. The
super peers connect between themselves and form an unstructured overlay network while the ordinary
nodes are each on connected to one of the super peers. Each super peer maintains an index of the
files present in the ordinary node that are connected to it and the searched is made only among the
super peers. This technique allows the use of flooding while maintaining scalability, since the number
of nodes search is much smaller. Also, it has been demonstrated that nodes with low bandwidth and
less computational power were the ones being saturated and slowing down the search process; this
approach take that fact into consideration and therefore it isolates the slower nodes from the search

process.

14

2.3.2 Structured

In a structured peer-to-peer system the peers’ distribution follows a rigid organization over an indexing
service based on hashing, known as Distributed Hash Table (DHT). Peers and keys are mapped
through a hash function which allows the finding of the peer corresponding to a key in a very efficient
manner. The number of messages grows smoothly with the number of peers. In this way they solve
the scalability problem of unstructured systems, but have the disadvantage of being less suitable for
highly transient populations due to their strict organization of the nodes which implies high costs for

entering and leaving the system.

In Chord [36] the keys and nodes are mapped over m-bit key space and the key is assigned to the first
node whose ID is equal or greater than the value of the key. Chord distributes its nodes over a one-
dimensional ring according to their ID, so in order for it to work a node needs to know his successor.
To locate the node corresponding to a certain key the queries travel through the ring always in the
same direction (clockwise or counter-clockwise) until it reaches the desired node. However this
mechanism requires O (N) messages to locate the node, which is highly inefficient. To speed up the
lookup process, each node maintains a table with m entries. In the first entry of the table the node
stores a pointer to the node that is responsible for the key half-ring away from it, in the second entry to
the node responsible for the key one-quarter away and on the third entry the one one-eighth away and
so on. So before sending the query to its successor, a node checks its finger table and if one of the
entries points to a key that is lower than the one it is searching, it sends the query directly to that node
further away as possible, skipping the nodes between. This emulates a binary search, thus requiring O
(log N) messages to locate a node corresponding to a certain key. In order to maintain its rigid
structure, Chord periodically runs a stabilization protocol, where if one node fail its successor becomes
responsible for its keys. In order for it to work each node needs to maintain a pointer to its
predecessor. The update of the systems in case of a node join, leave or fail requires O (log® N)

messages.

The CAN (Content Addressable Network) [29] uses a virtual d-dimensional Cartesian coordinate
space to map the keys onto to nodes. The coordinate space is divided into zones, which are segments
of the space, and each node is responsible for a certain zone. The keys consist of d nhumbers and
correspond to a point in the coordinate space and the node responsible for that zone is the one
responsible for that key. Each peer is connected to its next and previous peer in each dimension. In
order to do the lookup for a certain key the CAN uses a greedy strategy where it sends the message
to the neighbour that is closer to the key until it reaches the desired location. This way, the lookup will
follow a straight line through the Cartesian space from source to destination. The lookup requires
O (d- N’/d) messages and a routing table with 2d entries. However, in order for the lookup mechanism
to function it requires a continuous coordinate space without any unassigned zones. So when a node
leaves the system, the zone of one or more neighbours is enlarged in order to contain the zone that
was left unassigned. The creation of a new zone to allow the join of a new node is made by splitting
one the existing ones. Nodes joining or leaving have a localized effect and require only O (d)

messages to update the system.

15

2.3.3 Hybrid

Unstructured systems allow a random distribution of nodes, which have the advantage of being
suitable to highly transient populations, but make the search very inefficient. Structured systems
organize the distribution of the peers in a strict way, which enables a very efficient search, but does
makes joining and leaving of peers very costly. Hybrid systems try to maintain the efficiency of the
search of the structured systems, while employing a less strict organization, thus making them more

suitable for transient populations.

In Pastry [31] each peer has a unique 128-bit node identifier (nodeld) that is used to indicate the node
position in circular space. The nodeld is assigned randomly when a node joins the system, so with
high probability the nodes with adjacent nodelds are diverse in geography or jurisdiction. However
Pastry takes into account network locality and seeks to minimize the distance messages travel,
according to a scalar proximity metric like the number of IP routing hops. Each node in Pastry
maintains the following state: a routing table, a neighbour set and a leaf set. The routing table has
log? (N) rows with 2b —1 entries each. The entries at row n of the routing table refer to nodes whose
nodeld shares the present node’s nodeld in the first n digits. This means that each entry has many
possible nodes, the choice of the node is made based on the proximity metric. The neighbour set
contains the M nodes which are closest to the node according to the proximity metric. The leaf set is
the set of nodes with the |L|/2 numerically closest larger nodelds, and the |L|/2 nodes with numerically
closest smaller nodelds, relative to the present node’s nodeld. The routing in Pastry is made by first
checking if the key falls into the range of the nodes in the leaf set. If so, the message is sent directly. If
not, then the routing table is used to do the routing in a tree-like manner. The routing process is done
in less than log? (N) steps and will succeed unless either half of the leaf set nodes fail simultaneously.
The neighbour set is used to aid new nodes join the system. The nodes that are closest to the new
node are likelier to have a similar state, thus providing a good starting to point for the initialization of

the entering peer.
2.3.4 Complex resource discovery

So far the resource discovery described only considered exact match queries of a single value, the
key, that are mostly used in file-sharing systems. But in a cycle-sharing environment the search has to
take into consideration multiple parameters that might have a range of values which are acceptable,
more like in Grid environment. For example, one peer may want to discover the nodes with a

processor speed between 2 and 3GHz and from 1 up to 2 GB of RAM memory.

In [19] lamnitchi et al. propose a fully decentralized architecture for resource discovery that deals with
requests for a set of desirable attributes rather than a global unique identifier. In this architecture,
participants are called Virtual Organizations (VO) and can be home users or institutions. Each VO
publishes information about one or multiple of its resources on one or more local servers, called nodes
or peers. To discover a resource the user sends a query to a known node. If the query request

matches locally, the node responds with a matching description. Otherwise it forwards the request to

16

another node, the other node does the same until the query matches or the TTL expire. The
forwarding of requests is made based on one of the following strategies: random walk, learning-based,
best-neighbour, learning-based + best-neighbour. In the random walk the request is sent to a
randomly chosen node. In the learning-based the node remembers the past answers and sends the
request to a node that had already answered to similar query, if there is no relevant experience a node
is chosen randomly. In the best-neighbour strategy the node registers how many answers each
neighbour has provided and sends the request to the neighbour with the highest number. The
learning-based + best-neighbour is identical to the learning based, but when no relevant experience
exists the query is forwarded to the best neighbour. Nevertheless, this architecture is based on

unstructured peer-to-peer systems, so it has the same disadvantages.

In [6] Andrzejak et al. propose an extension to CAN that allows ranged queries. In the extended CAN
the “objects” are pairs (attribute values, resource id), where the attribute value is a real number. Only a
subset of nodes participates, called the interval keeper (IK), and is responsible for storing the pairs of
a certain interval. Each server in the Grid reports its current attribute value to an IK with the
appropriate interval. To support multiple attribute queries the system must have one DHT for each
attribute, depending on the characteristics of the attribute it will be used the standard or extended
version of CAN. The query is split into multiple smaller queries, one for each attribute, that are solved

separately and in the end the results are concatenated in a join-like operation.

In XenoSearch [35] it is proposed an extension to the Pastry system. As in the extended CAN, each
attribute is mapped into a different DHT and the query for each attribute is resolved separately.
Ranged queries are possible due to the fact that the information is conceptually stored in a tree, where
the leaves are the XenoServers and the intermediate nodes are aggregation points (AP). Each AP
summarizes the values of the nodes below it in the tree, the key of the AP is a prefix of the child nodes

IDs, so it possible to determine the range of values of the child nodes.

The system presented above needs multiple DHT to support multiple attribute queries and has the
associated overhead that maintaining all of them requires. In [32] Schmidt et al. propose a system that
supports multiple attribute queries using a single one-dimensional DHT. The system uses a space
filing curve which maps all possible d-dimensional attribute values to a single dimension. Attributes are
mapped onto nodes by interleaving their binary representation. For example, a resource containing
three attributes with values (3, 2, 1) is represented in binary as (11, 10, 01), so it will store in the node
with the ID 110101. Notice that as the number of attribute increases so does the size of the ID.
Ranged queries are possible by leaving some undefined bits that can have any value. For example
the query of resources with attribute values (1, 2, 0-3) is represented as 01*00*. However the range

query sizes can only be powers of two and can only start from values that are also powers of two.

17

3 Economic Model

The economic model proposed, called Gridlet Economics, is designed to be applied on top of a peer-
to-peer cycle-sharing system. In this type of systems the users make their computers, and respective
computational resources, available to be used by the other participants. Then, when a user wants, he
can submit jobs that are executed on the resources of the other users of the system, making its
execution much faster. In order to make it possible for the job to be distributed over the resources
available in the system, it is split into smaller work units. These units, called gridlets, are the main
input of the model and it is assumed that an existing layer is responsible for their creation and the
aggregation of the result of their execution, such as that described in GINGER [27; 39].

In practice, the objective of the model is to offer a decentralized mechanism that maps the gridlets
submitted to the computers where they will be executed. The selection is done according to a set of
requirements that correspond to the user utility. Since this is an economic model the users will buy the
right to use the resources of the system. For that, a system of credits is used, which also serves as a
control mechanism of the relation between how much a user contributes and consumes system
resources. A reputation system is used as well to ensure that malicious nodes are not able to take

advantage of the system.

This chapter is organized in the following sections: Model overview, in this section we present the
basic characteristics of the model operation, how the information about the available resources is
structured and stored, the algorithm that determines which node will execute a given gridlet and the
mechanism used to represent the user utility; Credit System, this section describes the economic
aspects of model, such as the currency used, how the payments are made or the price charged is
defined; Reputation system, in this section we present the mechanisms that allow the system to
operate in the presence of misbehaving nodes and give it the ability to offer different quality of service
depending on the user class; and Node Dynamics, this section describes the steps required for a

node to enter or leave the system and the procedures that make the model tolerant to faults.

3.1 Model overview

In this model the computers present in the system, called the nodes, can be classified as producers, if
they are contributing with resources to the system where gridlets can be executed, or consumers, if
they have gridlets being executed in the system and therefore are consuming the resources of the
system. Although a node can have both classifications at the same time, normally it will alternate
between them, since when it is a consumer it will most probably not contribute with its resources to the

system, but instead use them to also execute some of its gridlets.

The model also uses a hierarchical approach with two classes of nodes, brokers (similar to super
peers) and ordinary nodes. The brokers maintain a global distributed index where all the nodes that

are contributing to the system are registered, and use it to select the executor of a gridlet, i.e. the

19

producer that will execute it. Although the classification of the nodes is independent of the division in
classes, it is considered that the brokers will not be producers and therefore will not execute gridlets. It
is done in this way because if a broker had to simultaneously execute a gridlet and make the selection
of an executor, both activities would be slower, therefore, since the selection of executor is a crucial
element of the model precedence is given to that task. Besides, when the brokers are selecting a
producer to execute a gridlet, they are already contributing with resources to the system. So, a
possible conflict of interest could arise, similar to inside trading, because that node would be at the
same time, the selector and the selected for the gridlet execution. Nevertheless, in a smaller system

brokers may also act as producers, but the two roles should be implemented in separate processes.

All the nodes in the system will be distributed over a Chord [36] ring. The use of this look up service
provides an efficient mechanism for basic communication and a unique ID to address univocally each
node that can be maintained between sessions. Also, the brokers are defined as the nodes that are
responsible for a predefined set of keys (e.g. 1000, 2000, etc.) in the ring. This way when a node
wants to communicate with a broker, only has to calculate the closest predefined key and send the
message to it. This allows a transparent change of the node that is acting as the broker and an even
distribution of the load across all them. Nevertheless, all brokers can be easily found, which means
that if the user wants, he can choose to use another one. In addition, with this mechanism the number

of the brokers in the system can be controlled by changing the set of keys and the bits in the chord ID.

The basis of this economic model is the transaction, where the consumer pays to have its gridlets
executed on the resources available in the system. The payments are made using credits, a currency
of a virtual money system. The execution of each gridlet is considered a different transaction and it
starts when the gridlet is generated by the consumer. First, it attaches to the gridlet the requirements
specified by the user, and that represent the user utility, and then sends it to a broker (Fig 1 - step 1).
Next, the broker that receives the gridlet, cooperating with other brokers, uses the distributed index to
select the node that, according to the requirements of the gridlet, is better suited to execute it (Fig 1 -

step 2) and passes the gridlet to that node (Fig 1 - step 3). If the node selected is idle it will

O Consumer @ Executor [Broker

Fianire 1 - Stens taken diirina a transaction

20

immediately execute the gridlet, otherwise it will put it in a local queue to be executed later. During the
execution, the producer monitors the resource consumption and, after the execution terminates, sends
the result to the consumer along with an invoice (Fig 1 - step 4). However, if the consumer is not
online to receive the result, it is stored in another node of the system, the keeper, and the consumer
can retrieve it when it re-enters the system. After receiving the result, the consumer pays the invoice,
which might include the nodes that stored the result, and classifies the producer. Subsequently to
collecting the payment the producer classifies the consumer, thus ending the transaction (Fig 1 - step
5).

3.2 Market Square

The market square is the distributed index maintained by the brokers where the producers advertise
their resources, so that they can be selected to execute the gridlets of the consumers. In essence, it is
a distributed table that contains an entry for each of the nodes that are contributing with their
resources to the system. Each entry has the Chord ID of the node and its characteristics (price, CPU

speed, memory size, OS installed, etc.).

Though, if the market square was a simple table, as the number of entries grows it would become
impossible to search through it. So, the table is indexed by a set of predefined characteristics, called
the unit of cost. These characteristics will be arranged in a way that makes it possible to travel
through the index in ascending / descending order or go directly to a given point. This implies that the
values of the unit of cost will be compared, so they have to be scalars with an ordering relation among
them. The characteristics selected to belong to the unit of cost should be characteristics in which most
of the users have an interest in, since the search is primarily done on them. This decision is very
important and should be done carefully, because it will affect the result of the selection of the executor.
An example of a unit of cost might be CPU speed or number of cores, memory size and network

bandwidth, as they are characteristics that will probably affect the execution of mostly every gridlet.

K100~
P CPU Memory Chord ID

D 3000 MHz | 4000MB | 543

o} - 3200 MHz | 6000MB | 269

3 o 4000 MHz | 6000 MB | 718

2

o B CPU Memory Chord ID

Ov ; 1600 MHz | 4000 MB 137

2000 MHz | 4000 MB | 984

‘Memor size' 2200 MHz | 6000 MB 634
K500

Figure 2 - Distributed index

21

However, in a peer-to-peer system it is not possible for one node to store information about all the
other nodes in the network, so that is why the index is distributed among all the brokers. In order to
distribute the index among them without losing the ability to efficiently search through it, the brokers
will organize themselves in a d-dimensional CAN [29], where each dimension corresponds to a
characteristic of the unit of cost. Then, each broker has the part of the index which corresponds to the
characteristics that match the zone for which it is responsible. This means that the node responsible
for the zone between 1950 and 2050 in the dimension of the CPU speed will have the index of the
ordinary nodes that have the CPU speed in that range (Fig. 2). In this way, it is still possible to travel
efficiently through the index using the CAN routing mechanism. Though, normally the range of values
and scale will differ from characteristic to characteristic and, if those exact values are used to define
the CAN dimensions, this would hinder its routing system. So, instead of using the actual values of the
dimensions, a canonical representation is used. For example, from 0 to 100 and the conversion is

made by calculating a percentage against the difference between the bottom and top value.
3.2.1 Specifications and evaluation

Specifications are the representation that is used to express the characteristics of the resources
made available by the producers and the utility function of the consumers for the gridlet execution. In
order to be able to fulfil the requirements of a cycle-sharing environment, that representation has to be
expressive and flexible. In this model it is used an adaptation of the Utility Algebra describe in [34].
Next we describe how it can be used to represent the producer characteristics or the consumer utility,

though we refer to the article for a more detailed description.

The Utility Algebra uses XML to represent the information, so it is simple to use to represent the
characteristics of the producer. Each characteristic is translated into a “resource” tag with a particular
name. Inside the “resource” tag, more tags are inserted to represent the specific characteristics of that
attribute and its values. In Figure 3 we give an example of the XML file that represents a producer with

a CPU with four cores, each with 2.2 GHz, and 4 GB of memory.

The representation of the consumer utility follows the same concept used to represent the
characteristics of the producer. However, since the utility function is more complex, it has to be more
expressive. Specifying only a single value for a requirement limits the consumer to specifying the
maximum or minimum value that it will accept, which implicates a binary satisfaction classification
where the node is either accepted or rejected. This is rather inflexible and the fact that a node does
not meet that value does not necessarily means that his utility is 0.0. So, in the utility specification the
requirement can also be specified by a range of values and an indication of how well they satisfy the
requirement. Additionally, the user might also specify the priority of requirement, i.e. if a choice has to
be made between trying to maximize two different resources that are exclusive, which one would he
preferred to be maximize first. This can be done by giving a weight to each