
Optimistic Concurrency Control in a Distributed
NameNode Architecture for Hadoop Distributed File

System

Qi Qi

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Luı́s Manuel Antunes Veiga

Examination Committee

Chairperson: Prof. José Carlos Alves Pereira Monteiro
Supervisor: Prof. Luı́s Manuel Antunes Veiga
Member of the Committee: Prof. Nuno Manuel Ribeiro Preguiça

September 2014

Acknowledgments

The work presented is delivered as the final thesis report at Instituto Superior Técnico - IST

(Lisbon, Portugal). It is in partial fulfillment of the European Master in Distributed Computing

- EMDC program 2012-2014. Royal Institute of Technology - KTH (Stockholm, Sweden) is the

coordinator for this Erasmus Mundus master program. The study track has been composed

of a first two semesters at IST, 3rd semester at KTH, and for this work and 4th semester, a

degree project in Computer Systems Laboratory at Swedish Institute of Computer Science -

SICS (Stockholm, Sweden).

Special thanks to my advisor Dr. Jim Dowling for his support throughout the project. With

more than ten years’ professional industry experience, Jim is always there patient to help. He’s

the cool guy who gives answers faster than Google and StackOverFlow.

Thanks to Salman Niazi and Mahmoud Ismail for all the practical help. Without them I might

have to spend quite a long time studying the code base of the precedent work.

I’m also grateful to my supervisor Prof. Luı́s Antunes Veiga for his continuous support and

encouragement. When I was in IST, I liked staying in the classroom after his class and chatted

with him for a while. Veiga was like a big brother there taking care of us.

I would like to thank the good friends I met in Portugal and Sweden, who leveled me up during

these two years. Without you guys, this journey wouldn’t have been such a legendary in my

life.

I am truly thankful to my family for nursing me with all their affections and love.

Last, special appreciation to this young man, Qi Qi, who always has the guts to take any ad-

venture in his life.

15 September 2014, Stockholm

Qi Qi

European Master in Distributed

Computing (EMDC)

The thesis is a part of the curricula of the European Master in Distributed Computing, a co-

operation between KTH Royal Institute of Technology in Sweden, Instituto Superior Técnico

(IST) in Portugal and Universitat Politècnica de Catalunya (UPC) in Spain. This double degree

master program is supported by the Education, Audiovisual and Culture Executive Agency

(EACEA) of the European Union.

My study track during the master studies of the two years is as follows:

• First Year (Portugal): Instituto Superior Técnico, Universidade de Lisboa

• Third Semester (Sweden): KTH Royal Institute of Technology

• Fourth Semester (Sweden): Computer Systems Laboratory at Swedish Institute of Com-

puter Science (SICS) / Instituto Superior Técnico, Universidade de Lisboa

Dedication

To my father, a man of integrity, who

supports all my adventurous decisions so

that I can live outside of the b·.

Resumo

O Hadoop Distributed File System (HDFS) é a camada de armazenamento para o ecossistema

Apache Hadoop, armazenando grandes conjuntos de dados em várias máquinas. No entanto,

a capacidade de armazenamento total é limitada uma vez que os metadados são armazenados

na memória de um único servidor, chamado NameNode. O tamanho de heap do NameNode

restringe o volume de dados, ficheiros e blocos endereçáveis no sistema.

A plataforma Hadoop Open (Hop) é uma plataforma-como-serviço (PaaS) para o ecossistema

Hadoop em plataformasde nuvem existentes, incluindo Amazon Web Service e OpenStack. A

camada de armazenamento Hop, Hop-HDFS, é uma implementação de alta disponibilidade

do HDFS, armazenando os metadados numa base de dados replicada em memória distribuı́da,

MySQL Cluster. O objetivo é superar as limitações do NameNode, mantendo a semântica de

consistência forte do HDFS para que as aplicações escritas para HDFS podem ser executados

em Hop-HDFS sem modificações.

Trabalhos anteriores têm contribuı́do para a adopção de um modelo transaccional para o Hop-

HDFS. De granularidade lata de nı́vel sistema até a mais fina, com trincos sobre registos, as

semânticas de consistência forte foram mantidas no Hop-HDFS, mas com desempenho muito

restrito comparado com o HDFS orginal.

Nesta tese, analisamos primeiro as limitações na implementação actual do HDFS e fornece-

mos uma visão geral do Hop-HDFS ilustrando como superámos essas limitações. Em seguida,

fazemos uma avaliação sistemática dos trabalhos anteriores para o Hop-HDFS comparando

com o HDFS, e também analisamos as restrições ao utilizar mecanismos de sincronização pes-

simista para garantir consistência forte. Finalmente, a partir da investigação de deficiências

atuais, demonstramos como melhorar o desempenho através da concepção de um novo mo-

delo baseado no controle de concorrência optimista com snapshot isolation como prova de con-

ceito. A avaliação mostra melhoria significativa do desempenho com novo modelo. A nossa

implementação foi validada por mais de 300 testes de unidade ao Apache HDFS.

Abstract

The Hadoop Distributed File System (HDFS) is the storage layer for Apache Hadoop ecosystem,

persisting large data sets across multiple machines. However, the overall storage capacity is

limited since the metadata is stored in-memory on a single server, called the NameNode. The

heap size of the NameNode restricts the number of data files and addressable blocks persisted

in the file system.

The Hadoop Open Platform-as-a-service (Hop) is an open platform-as-a-Service (PaaS) support of

the Hadoop ecosystem on existing cloud platforms including Amazon Web Service and OpenS-

tack. The storage layer of Hop, called the Hop-HDFS, is a highly available implementation of

HDFS, based on storing the metadata in a distributed, in-memory, replicated database, called

the MySQL Cluster. It aims to overcome the NameNode’s limitation while maintaining the

strong consistency semantics of HDFS so that applications written for HDFS can run on Hop-

HDFS without modifications.

Precedent thesis works have contributed for a transaction model for Hop-HDFS. From system-

level coarse grained locking to row-level fine grained locking, the strong consistency semantics

have been ensured in Hop-HDFS, but the overall performance is restricted compared to the

original HDFS.

In this thesis, we first analyze the limitation in HDFS NameNode implementation and provide

an overview of Hop-HDFS illustrating how we overcome those problems. Then we give a sys-

tematic assessment on precedent works for Hop-HDFS comparing to HDFS, and also analyze

the restriction when using pessimistic locking mechanisms to ensure the strong consistency

semantics. Finally, based on the investigation of current shortcomings, we provide a solution

for Hop-HDFS based on optimistic concurrency control with snapshot isolation on semantic

related group to improve the operation throughput while maintaining the strong consistency

semantics in HDFS. The evaluation shows the significant improvement of this new model. The

correctness of our implementation has been validated by 300+ Apache HDFS unit tests passing.

Palavras Chave

Keywords

Palavras Chave

HDFS

Cluster MySQL

Controlo de Concorrência

Snapshot Isolation

Débito

Keywords

HDFS

MySQL Cluster

Concurrency Control

Snapshot Isolation

Throughput

Index

I Introduction and Background 1

1 Introduction 3

1.1 Motivation . 3

1.1.1 The De Facto Industrial Standard in Big Data Era 3

1.1.2 Limits to growth in HDFS . 3

1.1.3 Hop-HDFS and Its Limitation . 4

1.2 Problem Statement . 5

1.3 Contribution . 6

1.4 Document Structure . 6

2 Background and Related Work 7

2.1 Distributed File Systems . 7

2.1.1 The Google File System . 7

2.1.1.1 Design Principle . 7

2.1.1.2 The Architecture of GFS . 8

2.1.2 The Hadoop Distributed File System . 8

2.1.2.1 Design Principle . 8

2.1.2.2 The Architecture of HDFS . 9

2.1.2.3 Single-Writer, Multiple-reader Model 10

i

2.2 Concurrency Control and Isolation Level . 10

2.2.1 Concurrency Control in Database Management System 10

2.2.2 Isolation Level for Concurrent Transactions 11

2.3 MySQL Cluster . 11

2.3.1 Design Principle . 11

2.3.2 The Architecture of MySQL Cluster . 12

2.3.3 Fault Tolerance in MySQL Cluster . 12

2.3.4 The Benchmark of MySQL Cluster . 14

2.4 Hadoop Open Platform-as-a-service and Hop-HDFS 15

2.4.1 Hadoop Open Platform-as-a-service Design Purpose 15

2.4.2 Overcoming Limitations in HDFS NameNode Architecture 15

2.4.3 The Architecture of Hop-HDFS . 15

II Namespace Concurrency Control and Assessment 19

3 Namespace Concurrency Control 21

3.1 Namespace Concurrency Control in GFS . 21

3.1.1 Namespace Structure . 21

3.1.2 Namespace Concurrency Control . 21

3.1.3 Limitations . 22

3.2 Namespace Concurrency Control in HDFS . 23

3.2.1 Namespace Structure . 23

3.2.2 Namespace Concurrency Control . 23

3.2.3 Limitations . 24

3.3 Namespace Concurrency Control in Hop-HDFS 27

ii

3.3.1 Namespace Structure . 27

3.3.2 Namespace Concurrency Control . 28

3.3.3 Limitations . 29

4 Namespace Operation Performance Assessment 31

4.1 NameNode Throughput Benchmark . 31

4.2 Parent Directory Contention Assessment . 32

III Algorithmic Solution 35

5 Solution 37

5.1 Resolving the Semantic Related Group . 37

5.2 Per-Transaction Snapshot Isolation . 39

5.2.1 Fuzzy Read and Phantom Read are Precluded 39

5.3 ClusterJ and Lock Mode in MySQL Cluster . 40

5.4 Optimistic Concurrency Control . 41

5.4.1 Write Skew is Precluded . 42

5.5 Total Order Update, Abort and Version Increase in Update Phase 42

5.6 Pseudocode of the Complete Algorithm . 43

IV Evaluation and Conclusion 45

6 Evaluation 47

6.1 Experimental Testbed . 47

6.2 Parent Directory Contention Assessment . 47

6.3 Read-Write Mixed Workload Assessment . 48

iii

6.4 The Size of Semantic Related Group . 49

6.5 OCC Performance with Different Size of Conflicts 50

6.6 Correctness Assessment . 52

7 Conclusion and Future Work 55

7.1 Conclusion . 55

7.2 Future Work . 56

V Appendices 61

A Apache HDFS Unit Tests Passing List 63

iv

Lista de Figuras

2.1 The Architecture of GFS (Ghemawat et al. 2003) 8

2.2 The Architecture of HDFS (Borthakur 2008) . 9

2.3 The Architecture of MySQL Cluster (MySQL a) . 12

2.4 Node Groups in MySQL Cluster and Fault Tolerance (MySQL e) 13

2.5 MySQL Cluster Scaling-out Writes Operations . 14

2.6 The Architecture of Hop-HDFS . 16

3.1 A Graphical Tree Representation for the Namespace in GFS 22

3.2 The Namespace INode Structure in HDFS . 24

3.3 Violation in Quota Semantic . 25

3.4 RPC between Clients and NameNode for Namespace Operations 26

3.5 Filesystem Hierarchy with ID for INodes in Hop-HDFS 27

3.6 Acyclic DAG. Operations start from root, locks taken in order from leftmost child

(Hakimzadeh et al. 2014) I: INode, B: BlockInfo, L: Lease, LP: LeasePath, CR: Corrup-

tedReplica, URB: UnderReplicatedBlock, R: Replica, UCR: UnderConstructionReplica,

PB: PendingBlock, IB: InvalidBlock, ER: ExcessReplica 29

4.1 Operation Performance Comparison between HDFS and PCC 32

4.2 Parent Directory Contention Assessment between HDFS and PCC 33

5.1 Snapshot Isolation Precludes Fuzzy Read . 40

5.2 Snapshot Isolation with Semantic Related Group Precludes Phantom Read 40

v

5.3 Optimistic Concurrency Control with Snapshot Isolation on Semantic Related

Group Precludes Write Skew . 43

6.1 Workload of Parent Directory Contention Assessment 48

6.2 OCC Performance Improvement on Parent Directory Contention 49

6.3 Read-Write Mixed Workload . 50

6.4 OCC Performance Improvement on Read-Write Mixed Workload 51

6.5 The Size of Semantic Related Group and Related Execution Time 52

6.6 OCC Performance with Different Size of Conflicts 53

6.7 OCC Performance Decrease Rate . 53

A.1 Apache HDFS 2.0.4 Alpha Unit Tests Passing List 1 64

A.2 Apache HDFS 2.0.4 Alpha Unit Tests Passing List 2 65

vi

Lista de Tabelas

1.1 Memory Requirement for Related Storage Capacity in HDFS 4

2.1 Isolation Types Characterized by Possible Anomalies Allowed (Berenson et al.

1995) . 11

3.1 Concurrent Mutations within for different files/directories and Related Read-

Write Lock Sets . 22

3.2 Serialized Concurrent Mutations and Conflict Locks 23

3.3 INode Table for Hop-HDFS . 28

3.4 Implicit Lock Table in Hop-HDFS . 30

4.1 Operation Performance Comparison between HDFS and PCC 32

4.2 Parent Directory Contention Assessment between HDFS and PCC 33

5.1 Table Representation for the Semantic Related Group 38

5.2 Locks Blocking Table in MySQL Cluster . 41

6.1 OCC Performance Improvement on Parent Directory Contention 48

6.2 OCC Performance Improvement on Read-Write Mixed Workload 49

6.3 OCC Performance with Different Size of Conflicts 51

vii

viii

IIntroduction and
Background

1Introduction
1.1 Motivation

1.1.1 The De Facto Industrial Standard in Big Data Era

The Apache Hadoop (Hadoop) ecosystem has become the de facto industrial standard to store,

process and analyze large data sets in the big data era (Cloudera). It is widely used as a com-

putational platform for a variety of areas including search engines, data warehousing, behavi-

oral analysis, natural language processing, genomic analysis, image processing, etc (Shvachko

2011).

The Hadoop Distributed File System (HDFS) is the storage layer for Apache Hadoop, which ena-

bles petabytes of data to be persisted on clusters of commodity hardware at relatively low

cost (Borthakur 2008). Inspired by the Google File System (GFS) (Ghemawat et al. 2003), the na-

mespace, metadata, is decoupled from data and stored in-memory on a single server, called the

NameNode. The file datasets are stored as sequences of blocks and replicated across potentially

thousands of machines for fault tolerance.

1.1.2 Limits to growth in HDFS

Built upon the single namespace server (the NameNode) architecture, one well-known short-

coming of HDFS is the limitation to growth (Shvachko 2010). Since the metadata is kept in-

memory for fast operation in NameNode, the number of file objects in the filesystem is limited

by the amount of memory of a single machine.

Approximately, the size of the metadata for a single file object having two blocks (replicated

three times by default) is 600 bytes. As a rule of thumb, for one petabyte physical storage, it

requires one gigabyte metadata in memory (Shvachko 2010). Table 1.1 gives an estimation of

the memory requirement and its related physical storage capacity for different number of files.

4 CAPÍTULO 1. INTRODUCTION

Number of Files Memory Requirement Physical Storage
1 million 0.6 GB 0.6 PB

100 million 60 GB 60 PB
1 billion 600 GB 600 PB
2 billion 1200 GB 1200 PB

Tabela 1.1: Memory Requirement for Related Storage Capacity in HDFS

As HDFS runs in the Java Virtual Machine (JVM), due to interactive workloads, heap sizes larger

than 60 GB is not considered practical (Shvachko 2010). Therefore, 100 million files will be the

maximum storage capacity of HDFS.

1.1.3 Hop-HDFS and Its Limitation

The Hadoop Open Platform-as-a-service (Hop) (Dowling 2013) is an open platform-as-a-Service

(PaaS) support of the Hadoop ecosystem on existing cloud platforms including Amazon Web

Service and OpenStack. The storage layer of Hop, called the Hop-HDFS, is a highly available

implementation of HDFS, based on storing the metadata in a distributed, in-memory, replicated

database, called the MySQL Cluster. It aims to overcome the NameNode’s limitation while

maintaining the strong consistency semantics of HDFS so that applications written for HDFS

can run on Hop-HDFS without modifications.

Precedent thesis works have contributed for a transaction model (Wasif 2012) (Peiro Saj-

jad & Hakimzadeh Harirbaf 2013) as well as a high availability multi-NameNode architec-

ture (D’Souza 2013) for Hop-HDFS. Hop-HDFS can store up to 4.1 billion files with 3TB MySQL

Cluster support for metadata (Hakimzadeh et al. 2014), a factor of 40 increase over Shvachko’s

estimate (Shvachko 2010) for HDFS from 2010.

However, in HDFS, the correctness and consistency of the namespace is ensured by atomic

metadata mutation (Shvachko et al. 2010). In order to maintain the same level of strong con-

sistency semantics, system-level coarse grained locking and row-level fine grained locking are

adopted in precedent projects of Hop-HDFS, but the overall performance is heavily restric-

ted compared to the original HDFS. Therefore, investigation for better concurrency control

methods to improve the performance of Hop-HDFS is the main motivation of this thesis.

1.2. PROBLEM STATEMENT 5

1.2 Problem Statement

In HDFS, the NameNode’s operations are categorized into read or write operations. To protect

the metadata among parallel running threads, a global read/write lock (fsLock in FSNamesystem

- ReentrantReadWriteLock in java language) is used to maintain the atomicity of the namespace.

We call it system-level lock. Although ReentrantReadWriteLock (Oracle b) adopts a similar idea

from two-phase locking (Berenson et al. 1995), it has other locking semantics including fair mode,

lock interruptions, condition support, etc, which means that it is not totally equal to two-phase

locking.

The NameNode in HDFS allows concurrent threads to access shared object for read operations,

but it restricts a single thread to access object for write operations. Therefore, all concurrent

readers get the same view of the mutated data reflected by completed writes. We call it Strong

Consistency Semantics in HDFS. The concurrency limitation of this single-writer-multiple-readers

model is compensated by fast in-memory metadata operations.

The first version of Hop-HDFS, called the KTHFS (Wasif 2012), adopts the system-level locking

mechanism to serialize transactions. The strong consistency semantics is maintained, but due

to the network latency from the external database, each operation takes a long time lock on the

filesystem. The performance is heavily degraded.

The second version of Hop-HDFS adopts a fine-grained row-level locking mechanism aiming

to improve the throughput (Hakimzadeh et al. 2014) (Peiro Sajjad & Hakimzadeh Harirbaf

2013) while maintaining the strong consistency semantics. Based on a hierarchical concurrency

model, it builds a directed acyclic graph (DAG) for the namespace. Metadata operation that

mutates the DAG either commit or abort (for partial failures) in a single transaction. Implicit

locking (Gray et al. 1976) is used to lock on the root of a subtree in a transaction, which implicitly

acquires locks on all the descendants. However, this approach lowers the concurrency when

multiple transactions try to mutate different descendants within the same subtree.

Besides the concurrency issue, there are challenges implementing each HDFS operation as a

single transaction. Because the storage engine, NDB, of MySQL Cluster supports only the

READ COMMITTED transaction isolation level (MySQL d), the write results in transactions

will be exposed to reads in different concurrent transactions. Without proper implementation,

anomalies like Fuzzy Read, Phantom, and Write Skew (Berenson et al. 1995) will produce incorrect

6 CAPÍTULO 1. INTRODUCTION

results.

1.3 Contribution

In this thesis, we contribute to the following three ways:

• First, we discuss the architectures of related distributed file systems, including Google

File System, HDFS and Hop-HDFS. With focus on their namespace concurrency control

schemes, we analyzes the limitation of HDFS’s NameNode implementation.

• Second, we provide an overview of Hop-HDFS illustrating how it overcomes limitations

in HDFS. With a systematic performance assessment between Hop-HDFS and HDFS, we

discuss the current shortcomings in Hop-HDFS, which motivates this thesis for a better

concurrency control scheme.

• Third, we provide a solution for Hop-HDFS based on optimistic concurrency control with

snapshot isolation on semantic related group to improve the operation throughput while

maintaining the strong consistency semantics in HDFS. As a proof of concept, the eva-

luation shows the significant improvement of this new model. The correctness of our

implementation has been validated by 300+ Apache HDFS unit tests passing.

1.4 Document Structure

The thesis is organized as follows. Chapter 2 gives the architecture overview of Google File

System (GFS), Hadoop Distributed File System (HDFS), MySQL Cluster, Hop-HDFS and kno-

wledge on concurrency control in database management systems. In Chapter 3, we further

discuss the namespace concurrency control scheme on GFS, HDFS and Hop-HDFS, and related

limitations, following by a systematic performance assessment between HDFS and Hop-HDFS.

In Chapter 5, we provide a solution based on Optimistic Concurrency Control with Snapshot Iso-

lation on Semantic Related Group and demonstrate how we overcome the shortcomings in Hop-

HDFS and improve the operation throughput, while maintaining the strong consistency se-

mantics in HDFS. In Chapter 6, we give a detailed evaluation of our solution and shows the

significant performance improvement. Finally, Chapter 7 gives the conclusion and future work

of this thesis.

2Background and Related

Work

2.1 Distributed File Systems

Distributed File system is the fundamental storage layer in big data era. They provide a high

available storage service with fault tolerance for data corruption, which enable petabytes of

data to be persisted across multiple low cost commodity machines reliably.

2.1.1 The Google File System

2.1.1.1 Design Principle

The Google File System (GFS) is a scalable distributed file system developed and widely used

in Google Incorporation for large distributed data-intensive applications. With fault tolerance,

it runs on clusters of inexpensive commodity hardware, which provides a storage layer for a

large number of applications with high aggregate performance (Ghemawat et al. 2003). There

are some design assumptions for the implementation of GFS:

• The system runs on top on inexpensive commodity hardware so component may often

fails.

• Files stored on the system are fairly huge than the transitional standards, which means

that Gigabyte files are common.

• There are three kinds of workloads in the system: large streaming reads, small random

reads and large sequential writes which append data to files.

• Well-defined semantics for concurrent appends to the same file is needed.

• Data processing in bulk with high sustained bandwidth is more important than indivi-

dual low latency read or write.

8 CAPÍTULO 2. BACKGROUND AND RELATED WORK

2.1.1.2 The Architecture of GFS

The architecture of a GFS cluster consists of a single master, multiple chunkservers, and is acces-

sed by multiple clients as shown in Figure 2.1.

Legend:

Data messages
Control messages

Application
(file name, chunk index)

(chunk handle,
chunk locations)

GFS master

File namespace

/foo/bar

Instructions to chunkserver

Chunkserver state

GFS chunkserverGFS chunkserver
(chunk handle, byte range)

chunk data

chunk 2ef0

Linux file system Linux file system

GFS client

Figure 1: GFS Architecture

and replication decisions using global knowledge. However,
we must minimize its involvement in reads and writes so
that it does not become a bottleneck. Clients never read
and write file data through the master. Instead, a client asks
the master which chunkservers it should contact. It caches
this information for a limited time and interacts with the
chunkservers directly for many subsequent operations.
Let us explain the interactions for a simple read with refer-

ence to Figure 1. First, using the fixed chunk size, the client
translates the file name and byte offset specified by the ap-
plication into a chunk index within the file. Then, it sends
the master a request containing the file name and chunk
index. The master replies with the corresponding chunk
handle and locations of the replicas. The client caches this
information using the file name and chunk index as the key.
The client then sends a request to one of the replicas,

most likely the closest one. The request specifies the chunk
handle and a byte range within that chunk. Further reads
of the same chunk require no more client-master interaction
until the cached information expires or the file is reopened.
In fact, the client typically asks for multiple chunks in the
same request and the master can also include the informa-
tion for chunks immediately following those requested. This
extra information sidesteps several future client-master in-
teractions at practically no extra cost.

2.5 Chunk Size
Chunk size is one of the key design parameters. We have

chosen 64 MB, which is much larger than typical file sys-
tem block sizes. Each chunk replica is stored as a plain
Linux file on a chunkserver and is extended only as needed.
Lazy space allocation avoids wasting space due to internal
fragmentation, perhaps the greatest objection against such
a large chunk size.
A large chunk size offers several important advantages.

First, it reduces clients’ need to interact with the master
because reads and writes on the same chunk require only
one initial request to the master for chunk location informa-
tion. The reduction is especially significant for our work-
loads because applications mostly read and write large files
sequentially. Even for small random reads, the client can
comfortably cache all the chunk location information for a
multi-TB working set. Second, since on a large chunk, a
client is more likely to perform many operations on a given
chunk, it can reduce network overhead by keeping a persis-

tent TCP connection to the chunkserver over an extended
period of time. Third, it reduces the size of the metadata
stored on the master. This allows us to keep the metadata
in memory, which in turn brings other advantages that we
will discuss in Section 2.6.1.
On the other hand, a large chunk size, even with lazy space

allocation, has its disadvantages. A small file consists of a
small number of chunks, perhaps just one. The chunkservers
storing those chunks may become hot spots if many clients
are accessing the same file. In practice, hot spots have not
been a major issue because our applications mostly read
large multi-chunk files sequentially.
However, hot spots did develop when GFS was first used

by a batch-queue system: an executable was written to GFS
as a single-chunk file and then started on hundreds of ma-
chines at the same time. The few chunkservers storing this
executable were overloaded by hundreds of simultaneous re-
quests. We fixed this problem by storing such executables
with a higher replication factor and by making the batch-
queue system stagger application start times. A potential
long-term solution is to allow clients to read data from other
clients in such situations.

2.6 Metadata
The master stores three major types of metadata: the file

and chunk namespaces, the mapping from files to chunks,
and the locations of each chunk’s replicas. All metadata is
kept in the master’s memory. The first two types (names-
paces and file-to-chunk mapping) are also kept persistent by
logging mutations to an operation log stored on the mas-
ter’s local disk and replicated on remote machines. Using
a log allows us to update the master state simply, reliably,
and without risking inconsistencies in the event of a master
crash. The master does not store chunk location informa-
tion persistently. Instead, it asks each chunkserver about its
chunks at master startup and whenever a chunkserver joins
the cluster.

2.6.1 In-Memory Data Structures
Since metadata is stored in memory, master operations are

fast. Furthermore, it is easy and efficient for the master to
periodically scan through its entire state in the background.
This periodic scanning is used to implement chunk garbage
collection, re-replication in the presence of chunkserver fail-
ures, and chunk migration to balance load and disk space

Figura 2.1: The Architecture of GFS (Ghemawat et al. 2003)

Files are divided into fixed size chunks stored in chunkservers. For fault tolerance, each chunk is

replicated across multiple chunkservers and the default replication factor is three.

The master is a metadata server maintaining namespace, access control information, the file-

chunk mappings and chunks’ current locations. Besides, it is also responsible for system-wide

activities including garbage collection, chunk lease management and chunk migrations.

Although this single master server architecture simplifies the design of GFS, especially on com-

plexed tasks like chunk placement and replication decisions using global knowledge, yet the

master’s involvement in reads and writes needs to be minimized otherwise it will become a

bottleneck in the system.

2.1.2 The Hadoop Distributed File System

2.1.2.1 Design Principle

The Hadoop Distributed File System (HDFS) is inspired by the Google File System. Initially, HDFS

is built for Hadoop Map-Reduce computational framework. With the development of Hadoop

ecosystem including HBase (HBase), Pig (Pig), Mahout (Mahout), Spark (Spark), etc, HDFS

becomes the storage layer for all these big data applications. While enabling petabytes of data

2.1. DISTRIBUTED FILE SYSTEMS 9

to be persisted on clusters of commodity hardware at relatively low cost, HDFS aims to stream

these large data sets at high bandwidth to user applications. Therefore, like GFS, HDFS is

optimized for delivering a high throughput of data at the expense of latency (White 2012).

2.1.2.2 The Architecture of HDFS

Similar to GFS, HDFS stores metadata and file data separately. The architecture of a HDFS

cluster consists of a single NameNode, multiple DataNodes, and is accessed by multiple clients as

shown in Figure 2.2.

Figura 2.2: The Architecture of HDFS (Borthakur 2008)

Files in HDFS are split into smaller blocks stored in DataNodes. For fault tolerance, each block

is replicated across multiple DataNodes.

The NameNode is a single dedicated metadata server maintaining the namespace, access control

information, and file blocks mappings to DataNodes. The entire namespace is kept in-memory,

called the image, of the NameNode. The persistent record of image, called the checkpoint, is stored

in the local physical file system. The modification of the namespace (image), called the journal,

is also persisted in the local physical file system. Copies of the checkpoints and the journals can

be stored at other servers for durability. Therefore, the NameNode restores the namespace by

loading the checkpoint and replaying the journal during its restart.

10 CAPÍTULO 2. BACKGROUND AND RELATED WORK

2.1.2.3 Single-Writer, Multiple-reader Model

Once a file is created, written with data and closed by a client application, the written bytes can

not be modified. The file can only be reopened for append.

HDFS implements a single-Writer, multiple-reader model by using lease management. A HDFS

client opens a file for writing is granted a lease of the file and no other clients can write to

that file at the same time. The writing client needs to renew the lease periodically with the

NameNode so that it can keep writing to the file. Otherwise, once the soft limit expires, other

clients can preempt the lease. If the hard limit (one hour) expires and the client didn’t renew the

lease, HDFS will close the file on behalf of the writer and recover the lease.

HDFS allows a client to read a file that is open for writing, which means that the lease does not

prevent other clients’ reading. A file can have multiple concurrent readers.

2.2 Concurrency Control and Isolation Level

2.2.1 Concurrency Control in Database Management System

In a multiuser database management system, Concurrency Control permits concurrent users to

access a database while preserving the illusion that each user is executing along on a dedicated

system (Bernstein & Goodman 1981). The main idea is to ensure individual users see consistent

states of the database even though users’ operations may be interleaved in the shared data.

In general, there are three concurrency control methods (Franklin 1997):

1. Pessimistic Concurrency Control (PCC): depends on Two-Phase Locking (2PL) to block

transactions so that interference does not occur when transactions run on to the shared

data.

2. Optimistic Concurrency Control (OCC): depends on validation to ensure serializability.

Before transactions commit, the reads and writes should not conflict with other concur-

rent transactions. If not, the validatation phase will abort and retry the current transac-

tion.

3. Multi Version Concurrency Control (MVCC): when data items are updating by transac-

tions, their previous versions will retain so that other read-only transactions can be provi-

2.3. MYSQL CLUSTER 11

ded with these older versions instead of blocking to read new data. It allows a consistent

snapshot of the database to be presented.

2.2.2 Isolation Level for Concurrent Transactions

Complete isolation of concurrent running transactions might make one transaction not possi-

ble to perform an update into a database table being queried by another transaction. Therefore,

real-world databases will provide different levels of transaction isolation so that data consis-

tency will be compromised for performance.

Therefore, there are four isolation levels are defined in ANSI/ISO SQL-92 specifications (Ansi

1992): (1) Read Uncommitted (2) Read Committed (3) Repeatable Read (4) Serializable. But a new

isolation level, Snapshot Isolation and the anomalies characterized by isolation types is re-defined

in the paper A Critique of ANSI SQL Isolation Levels (Berenson et al. 1995).

Isolation Level Dirty
Write

Dirty
Read

Cursor
Lost
Update

Lost
Up-
date

Fuzzy
Read

Phantom Read
Skew

Write
Skew

Read Uncommitted X X X X X X X X
Read Committed X X X X X X X X
Cursor Stability X X X some-

times
some-
times

X X some-
times

Repeatable Read X X X X X X X X
Snapshot X X X X X sometimes X X

Serializable X X X X X X X X

Tabela 2.1: Isolation Types Characterized by Possible Anomalies Allowed (Berenson et al. 1995)

Full definitions of all the anomalies mentioned in Table 2.1 can be found in the paper A Critique

of ANSI SQL Isolation Levels. We will discuss how we preclude fuzzy read, phantom and write skew

in our solution, which is based on Snapshot Isolation level in Chapter 5.

2.3 MySQL Cluster

2.3.1 Design Principle

MySQL Cluster is a highly available version of MySQL, an open source database management

system, with high-redundancy adapted for the distributed computing environment. It integra-

tes the standard MySQL server with an in-memory clustered storage engine called NDB (which

12 CAPÍTULO 2. BACKGROUND AND RELATED WORK

stands for “Network DataBase”). MySQL Cluster is designed not to have any single point of

failure as a shared-nothing system running on inexpensive hardware (MySQL a).

2.3.2 The Architecture of MySQL Cluster

A MySQL Cluster consists of different processes, called the nodes. The communication between

the nodes can be seen from Figure 2.3. MySQL Servers (mysqld, for query processing and NDB

data accessing) are the main nodes. Data Nodes (ndbd) serve as storage nodes. Besides, there

will be one or more NDB Management Servers (ndb mgmd).

Figura 2.3: The Architecture of MySQL Cluster (MySQL a)

2.3.3 Fault Tolerance in MySQL Cluster

For fault tolerance, data in MySQL Cluster is replicated across multiple ndbds. Ndbds are

divided into node groups. Each unit of data is called a partition stored by ndbd. The partitions

of data are replicated within the same node group. The number of node groups is calculated as:

NumberofNodeGroups = NumberofDataNodes
NumberofReplicas

For example, suppose that we have a cluster consisted with 4 data nodes with replication factor

of 2, so there are 2 node groups as shown in Figure 2.4.

2.3. MYSQL CLUSTER 13

(a) Node Groups in MySQL Cluster

(b) Fault Tolerance in Node Groups

Figura 2.4: Node Groups in MySQL Cluster and Fault Tolerance (MySQL e)

14 CAPÍTULO 2. BACKGROUND AND RELATED WORK

As we can see from Figure 2.4(a), the data stored in the cluster is divided into four partitions:

0, 1, 2, 3. Each partition is stored within the same group with multiple replicas. So as long as

each participating node group has at least one operating node, the cluster will have a complete

copy of the data as shown in Figure 2.4(b). For example, suppose that Node 2 and Node 3 are

operating, then partitions 0, 1, 2, 3 remain viable.

2.3.4 The Benchmark of MySQL Cluster

According to the white paper published by Oracle (MySQL 2012), MySQL Cluster can handle:

• 4.3 Billion fully consistent reads per minute

• 1.2 Billion fully transactional writes per minute

They used an open source benchmarking tool, FlexAsynch, to test the performance and scala-

bility of a MySQL Cluster running across 30 commodity Intel Xeon E5-equipped servers, com-

prised 15 node groups. The result for the write operation performance is shown in Figure 2.5.

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
ill

io
n
s

o
f

W
ri

te
s

p
e
r

S
e
co

n
d

MySQL Cluster Data Nodes

19.5 Million Writes per Second

Figura 2.5: MySQL Cluster Scaling-out Writes Operations

Therefore, the high operation throughput, 72 million reads and 19.5 million writes operations per

second, of MySQL Cluster makes it the choice to be the distributed in-memory storage layer for

2.4. HADOOP OPEN PLATFORM-AS-A-SERVICE AND HOP-HDFS 15

the metadata in Hop-HDFS. But the trade off is that the NDB cluster storage engine supports

only the READ COMMITTED transaction isolation level (MySQL d), which means that we

need to put extra effort on the application layer to preclude anomalies in our implementation.

See Chapter 5.

2.4 Hadoop Open Platform-as-a-service and Hop-HDFS

2.4.1 Hadoop Open Platform-as-a-service Design Purpose

The Hadoop Open Platform-as-a-service (Hop) (Dowling 2013) is an open platform-as-a-Service

(PaaS) support of the Hadoop ecosystem on existing cloud platforms including Amazon Web

Service and OpenStack. The goal is to automate the installation of both HDFS and Apache

YARN so that unsophisticated users can deploy the stack on the cloud easily by a few clicks

from our portal website.

2.4.2 Overcoming Limitations in HDFS NameNode Architecture

The storage layer of Hop, called the Hop-HDFS, is a new high available model for HDFS’s

metadata, aiming to overcome the major limitations of HDFS NameNode architecture:

• The scalability of the namespace: the memory size restricts the storage capacity in the

system.

• The throughput problem: the throughput of the metadata operations is bounded by the

ability of the single machine (NameNode)

• The failure recovery: it takes a long time for the NameNode to restart since it needs to

load the checkpoint and replay the edit logs from the journal into the memory

2.4.3 The Architecture of Hop-HDFS

The architecture of Hop-HDFS consists of multiple NameNodes, multiple DataNodes, a MySQL

cluster and is accessed by multiple clients as shown in Figure 2.6.

The design purpose for Hop-HDFS is to migrate the metadata from NameNode to an external

distributed, in-memory, replicated database MySQL Cluster. Therefore, the size of the metadata

16 CAPÍTULO 2. BACKGROUND AND RELATED WORK

...NN3 (Leader)NN2 NN4NN1

...DN2 DN4DN1 DN3

Client

Client

Client

Client

Load
Balancer

...

metadata metadata metadata

Figura 2.6: The Architecture of Hop-HDFS

is not limited by a single NameNode’s heap size so that the scalability problem can be solved.

In Hop-HDFS, we have this multiple stateless NameNodes architecture so that multiple-writers

and multiple-readers are allowed to operate on the namespace to improve the throughput.

Moreover, the fault tolerance of the metadata is handled by MySQL Cluster, which grantees

high availability of 99.999%. The checkpoint and the journal for namespace is removed as a

result, which reduces the time on writing edit logs as well as restarting new NameNodes on

namespace recovery. Note that we have a leader election process in this distributed NameNode

architecture. The leader, master, will be responsible for tasks like block reporting and statistic

functions.

As we discuss earlier, the size of the metadata for a single file object having two blocks (repli-

cated three times by default) is 600 bytes. It requires 60 GB of RAM to store 100 million files in

HDFS, 100 million files is also the maximum storage capacity for HDFS in practice. For MySQL

Cluster, it supports up to 48 datanodes (MySQL b), which means that it can scale up to 12 TB

in size with 256 GB RAM for each node in size. But conservatively, we assume that MySQL

Cluster can support up to 3.072 TB for metadata with a data replication of 2, which means

that Hop-HDFS can store up to 4.1 billion files. A factor of 40 times increase over Shvachko’s

estimate (Shvachko 2010) for HDFS from 2010.

2.4. HADOOP OPEN PLATFORM-AS-A-SERVICE AND HOP-HDFS 17

Summary

In this chapter, we discussed the architectures of relevant distributed file systems GFS and

HDFS as well as an in-memory, replicated, distributed database management system MySQL

Cluster. We presented the related knowledge on concurrency control and Isolation level in

multi-user database management system so that we know the risks when we use MySQL Clus-

ter to be the storage layer. Finally, we introduce Hadoop Open Platform-as-a-service and Hop-

HDFS. We illustrated how we overcome the shortcomings in HDFS with a distributed Name-

Node architecture developed in Hop-HDFS.

18 CAPÍTULO 2. BACKGROUND AND RELATED WORK

IINamespace Concurrency
Control and Assessment

3Namespace Concurrency

Control

3.1 Namespace Concurrency Control in GFS

3.1.1 Namespace Structure

Unlike traditional file systems, GFS doesn’t have a per-directory data structure, which means

that it doesn’t support operations like listing all files in a directory (i.e, ls in POSIX), nor aliasing

for the same file or directory (i.e, hard or symbolic links). Instead, with prefix compression,

GFS represents the namespace as a lookup table mapping full pathnames to metadata logically,

which means that the full pathnames are similar to the hash keys in a hash table.

3.1.2 Namespace Concurrency Control

Each node (either an absolute directory name or an absolute file name) in the namespace tree

will be associated a read-write lock. To prevent deadlock, locks are acquired in a consistent total

order: first ordered by level, then ordered lexicographically within the same level (Ghemawat

et al. 2003).

One benefit for the locking scheme in GFS is that it allows concurrent mutations for different

files/directories within the same directory.

For example, suppose that we have a graphical tree representation for the namespace in GFS

as shown in Figure 3.1. Concurrently, we have five operations involving files f1, f2, f3, f4 and

directory d9. As we can see from Table 3.1, there are no conflicting locks (Read-Write and Write-

Write), all these five operations are all allowed to happen concurrently.

Besides, since operations will be serialized properly when trying to obtain conflict locks (Read-

Write and Write-Write), concurrent mutations on the same file/directory will be prevented.

For example, if there are another two concurrent operations. Operation 1 wants to snapshot

directory d8 to be under directory d3, but Operation 2 wants to create a new file Qi.txt under

22 CAPÍTULO 3. NAMESPACE CONCURRENCY CONTROL

/

d1 d2 d3

d4

d6

d5

d7

f1 f2 f4

f6

d8

f3

f5

d9

Figura 3.1: A Graphical Tree Representation for the Namespace in GFS

directory d8. Table 3.2 shows how conflict locks prevent the new file Qi.txt being created when

directory d8 is being snapshotting.

3.1.3 Limitations

The concurrency for the namespace is maximized in GFS, but it trades off common file system

functions for those nice concurrency control properties.

Total Order Locks Operation1 Operation2 Operation3 Operation4 Operation5
/ Read1 Read2 Read3 Read4 Read5
/d1 Read1 Read2 Read3 Read4 Read5
/d1/d4 Read1 Read2 Read3 Read4 Read5
/d1/d4/d6 Read1 Read2 Read3
/d1/d4/d7 Read4 Read5
/d1/d4/d6/f1 Write1
/d1/d4/d6/f2 Write2
/d1/d4/d6/f3 Write3
/d1/d4/d7/d9 Write4
/d1/d4/d7/f4 Write5

Tabela 3.1: Concurrent Mutations within for different files/directories and Related Read-Write
Lock Sets

3.2. NAMESPACE CONCURRENCY CONTROL IN HDFS 23

Total Order Locks Operation1 Operation2
/ Read1 Read2
/d1 Read1 Read2
/d3 Read1
/d1/d8 Write1 Read2 (Conflicts with Write1)
/d3/d8 Write1
/d1/d8/Qi.txt Write2

Tabela 3.2: Serialized Concurrent Mutations and Conflict Locks

3.2 Namespace Concurrency Control in HDFS

3.2.1 Namespace Structure

Unlike GFS, the interface to HDFS is patterned after UNIX, so it supports operations like ls,

mkdir, rm, cp, chown in POSIX standards. The namespace of HDFS is structured as a hierar-

chy of files and directories. Files and directories are represented on the NameNode by INo-

des with attributes like permissions, modification and access times, namespace and disk space

quotas (Borthakur 2008). Each file is represented by an INodeFile object, each directory is repre-

sented by an INodeDirectory, and each symbolic link is represented by an INodeSymlink object.

Figure 3.2 shows the Namespace INode Structure in UML diagram with major attributes.

3.2.2 Namespace Concurrency Control

The hierarchical INode structure with semantic related INodes makes HDFS not possible to

adopt the namespace locking scheme from GFS. In order to support POSIX like operations

(list files, set quotas, create symbolic links), INodeFiles, INodeDirectories and INodeSymlink

objects are semantically related to each other, rather than just being logical representation.

For example, suppose that HDFS adopts the namespace locking scheme in GFS. An INodeDi-

rectory D3 with quota 1 which only allows 1 more INode to be created inside it. Concurrently,

there are four operations try to create an INodeFile inside D3. All of them put a read lock on

D3 first. Finding that the quota is 1, they then put a write lock on the file and create it under

the directory. Finally four files are created under D3 but it violates the quota. See Figure 3.3.

One way to solve this consistency problem is to synchronize all semantic related attributes

with proper order. However, it is not realistic because it complicates the namespace design.

24 CAPÍTULO 3. NAMESPACE CONCURRENCY CONTROL

INodeDirectory

-children: List<INode>

+methods(): TYPE

INode

#name: byte[]
#parent: INodeDirectory
#modificationTime: long
#accessTime: long
-permission: long

+methods(): TYPE

INodeFile

-blocks: BlockInfo[]

+methods(): TYPE

INodeSymlink

-symlink: byte[]

+methods(): TYPE

INodeFileUnderConstruction

-clientName: String
-clientMachine: String
-clientNode: DatanodeDescriptor

+methods(): TYPE

INodeDirectoryWithQuota

-nsQuota: long
-nsCount: long
-dsQuota: long
-diskspace: long

+methods(): TYPE

ExtendsExtends Extends

Extends Extends

Figura 3.2: The Namespace INode Structure in HDFS

Therefore, to protect the namespace among parallel running threads, a global read/write lock

(fsLock in FSNamesystem - ReentrantReadWriteLock in java language) is used to maintain the

atomicity. We call it system-level lock.

HDFS categorizes the metadata operations into read operations and write operations. The Na-

meNode allows concurrent threads to access shared object for read operations, but it restricts

a single thread to access object for write operations. Therefore, all concurrent readers get the

same view of the mutated data reflected by completed writes. We call it Strong Consistency

Semantics in HDFS. (But it is still weaker than the standard POSIX consistency model since it

trades some POSIX requirements for performance in terms of data coherency (White 2012))

3.2.3 Limitations

Although the namespace is kept in-memory for fast operations, the system-level lock is still

the bottleneck in NameNode under high workload pressure. Here we analyze the Remote

Procedure Call (RPC) for namespace operations between clients and NameNode. See Figure 3.4

for the process:

3.2. NAMESPACE CONCURRENCY CONTROL IN HDFS 25

D3
Quota: 1

Quota: 1

f1

Quota Allows

Quota: 1

f2

Quota Allows

Quota: 1

f3

Quota Allows

Quota: 1

f4

Quota Allows

Read Lock: D3
Read Lock: D3 Read Lock: D3

Read Lock: D3

D3
Quota: 1
(Violate)

Write Lock: f1
Write Lock: f2 Write Lock: f3

Write Lock: f4

f1 f2 f3 f4

Figura 3.3: Violation in Quota Semantic

1. Client makes an RPC request to NameNode RPC server, like mkdir.

2. The listener thread in NameNode RPC server accepts this request.

3. The Reader, child thread of Listener, processes the request and makes it as a Call object

stored in the Call Queue, waiting for the handling.

4. One of the handlers gets a Call object (mkdir) from the queue. As mkdir belongs to write

operation, the handler takes a write lock on the namespace.

5. After taking the write lock, a new directory will be created in the namespace within Na-

meNode.

6. The modification record needs to be synchronized to the editlogs.

7. Release the write lock.

8. The callback is returned to the Responder thread.

26 CAPÍTULO 3. NAMESPACE CONCURRENCY CONTROL

9. The client get the result for this operation (either success or fail).

As we can see, any of the steps above may become the communication bottle. But in step

6, while the entire namespace is protected by the system-level lock, the modification record

needs to be saved into the editlogs. Since the editlogs are written into the physical hard drives

sequentially, the more syn edit to be handled, the slower it will be for the responder to return

the callback. The system-level lock won’t be released during this process, so the throughput

will be decreased greatly during heavy workload.

Client

Listener

...Reader3Reader2 Reader4Reader1

Call
Queue

Handler1 Handler2 Handler3 Handler4 ...

Write Lock / Read Lock Namespace

Write UnLock / Read UnLock
editlog1

editlog2

editlog3

Responder

2

1

3

4

5 6

7

8

9

Figura 3.4: RPC between Clients and NameNode for Namespace Operations

3.3. NAMESPACE CONCURRENCY CONTROL IN HOP-HDFS 27

3.3 Namespace Concurrency Control in Hop-HDFS

3.3.1 Namespace Structure

In HDFS, the namespace is kept in-memory as arrays and optimized data structure (like Lin-

kedList) of objects with references for semantic constraints. Therefore, it has a directed tree

structure, similar to Figure 3.1.

In Hop-HDFS, the namespace is stored into tables of MySQL Cluster database, so all INode

objects are represented as individual row records in a single inodes table. In order to preserve

the directed tree structure, we add an id column and a parent id column to each row of in

inodes table. Therefore, the graphical representation of the filesystem hierarchy for INodes is

like Figure 3.5. The table representation in the database is like Table 3.3.

/
id: 1

a
id: 2

b
id: 3

c
id: 4

e
id: 6

d
id: 5

h
id: 9

f
id: 7

i
id: 10

g
id: 8

Figura 3.5: Filesystem Hierarchy with ID for INodes in Hop-HDFS

Since the id is unique and atomically generated for INodes in each new transaction, the Primary

Key for the table is <name, parent id> pair. Because the INode id is not known beforehand on

the application side, but the <name, parent id> pair is known since it can be resolved from the

path string. Therefore, data rows can be looked up by the <name, parent id> pair Primary Key

28 CAPÍTULO 3. NAMESPACE CONCURRENCY CONTROL

id parent id name other parameters...
1 0 / ...
2 1 a ...
3 1 b ...
4 1 c ...
5 2 d ...
6 3 e ...
7 5 f ...
8 6 g ...
9 7 h ...
10 7 i ...

Tabela 3.3: INode Table for Hop-HDFS

directly from database on the application side.

With the id and parent id relationship, the hierarchy will be constructed correctly from the data

rows to in-memory objects used by the name system.

3.3.2 Namespace Concurrency Control

In the first version of Hop-HDFS (Wasif 2012) (also named as KTHFS), the main task is to mi-

grate the metadata from memory to MySQL Cluster. Therefore, it still depends on the system-

level lock in HDFS NameNode (fsLock in FSNamesystem - ReentrantReadWriteLock to serialize

the operations and maintain the semantics. This becomes a big problem since the network

latency between NameNode and database is far more larger than it was when operated in-

memory in original HDFS. Hence, each operation will take a long time lock on the name sys-

tem. The throughput heavily decreases. A fine grained locking scheme is needed to improve

the concurrency.

In the second version of Hop-HDFS (Peiro Sajjad & Hakimzadeh Harirbaf 2013) (also named

as KTHFS), it adopts a fine-grained row-level locking mechanism to improve the throughput

while maintaining the strong consistency semantics. It uses transactions with Pessimistic Con-

currency Control (PCC) to ensure the safety and progress of metadata operations.

Based on a hierarchical concurrency model, it builds a directed acyclic graph (DAG) for the na-

mespace. Metadata operation that mutates the DAG either commit or abort (for partial failures)

in a single transaction. See Figure 3.6.

Besides, implicit locking (Gray et al. 1976) is used to lock on the root of a subtree in a transaction,

3.3. NAMESPACE CONCURRENCY CONTROL IN HOP-HDFS 29

I
0

(a) HDFS' Directed Graph has cycles.

I
0

(b) Acyclic DAG. Ops start from root,
locks taken in order from leftmost child.

I : INode, B: BlockInfo, L: Lease, LP: LeasePath, CR: CorruptedReplica, URB: UnderRepliatedBlock, R: Replica,

UCR: UnderConstructionReplica, PB: PendingBlock, IB: InvalidatedBlock, ER: ExcessReplica

Fig. 1: Access graph of HDFS metadata

typical operations, such as getting blocks for a �le and writing to a �le do not
require implicit locks at the directory level. However, we do take implicit locks
at the �le inode level, so when a node is writing to a �le, by locking the inode,
we implicitly lock all block and replica objects within that �le.

4.2 Preventing Lock Upgrades

A naive implementation of our relational model would translate read and write
operations on metadata in the existing NameNode to read and write operations
directly on the database. However, assuming each metadata operation is en-
capsulated inside a single transaction, such an approach results in locks being
upgraded, potentially causing deadlock. Our solution is to only acquire a lock
once on each data item within a metadata operation, and we take the lock with
the highest strength lock that will be required for the duration of that transac-
tion.

4.3 Snapshotting

As we only want to acquire locks once for each data item, and we are assuming an
architecture where the NameNode accesses a distributed database, it makes no
sense for the NameNode to read or write the same data item more than once from
the database within the context of a single transaction. For any given transac-
tion, data items can be cached and mutated at a NameNode and only updated
in the database when the transaction commits. We introduce a snapshotting
mechanism for transactions that, at the beginning of each transaction, reads all
the resources a transaction will need, taking locks at the highest strength that
will be required. On transaction commit or abort, the resources are freed. This
solution enables NameNodes to perform operations on the per-transaction cache
(or snapshot) of the database state during the transaction, thus reducing the
number of roundtrips required to the database. Note, this technique is not im-
plementing snapshot isolation [1], we actually support serializable transactions.

Figura 3.6: Acyclic DAG. Operations start from root, locks taken in order from leftmost child
(Hakimzadeh et al. 2014)
I: INode, B: BlockInfo, L: Lease, LP: LeasePath, CR: CorruptedReplica, URB: UnderReplicatedBlock, R:
Replica, UCR: UnderConstructionReplica, PB: PendingBlock, IB: InvalidBlock, ER: ExcessReplica

which implicitly acquires locks on all the descendants, so that the strong consistent semantics

from original HDFS can be maintained.

3.3.3 Limitations

There are two major limitations in this locking scheme:

1. It lowers the concurrency when multiple transactions try to mutate different descendants

within the same subtree. Only one writer is allowed to work on INodes under one direc-

tory due to the implicit lock (Write Lock) for the parent directory.

For example, if transaction Tx1 wants to mutate INode h, and another transaction Tx2

wants to mutate INode i concurrently in Figure 3.5, Tx1 will take a parent lock on INode

f first and then perform operations. No more transactions can work under INode f at the

moment. Tx2 will be blocked by the implicit lock until Tx1 commits. See Table 3.4.

2. There is un-avoided duplicated database round trips overhead. It takes two transactions

to finish the implicit locking. The first transaction is used to resolve the path in the da-

tabase so that we know which rows existed in the database so that the INode’s parent

30 CAPÍTULO 3. NAMESPACE CONCURRENCY CONTROL

directory can be taken the implicit write lock in the second transaction, or last existing

INode directory can be taken the implicit write lock if the path is not full resolved(HDFS

will build up the missing intermediate INodeDirectories).

For example, if transaction Tx1 wants to mutate INode h in Figure 3.5, in the first database

round trip, it needs to resolve the path to see if the related rows of INode /, a, d, f, h are all

in the database. If yes, in the second database round trip, INode /, a, d will be taken Read

Locks 1 and the INode f will be taken a Write Lock; if no, the last existing INode will be

taken a Write Lock while others will be taken Read Locks.

id parent id name Locks by Tx1 Locks by Tx2
1 0 / Read Lock Read Lock
2 1 a Read Lock Read Lock
3 1 b
4 1 c
5 2 d Read Lock Read Lock
6 3 e
7 5 f Write Lock Write Lock (Blocked!)
8 6 g
9 7 h (Mutated by Tx1) Write Lock (Implicit) Write Lock (Implicit) (Blocked!)
10 7 i (Mutated by Tx2) Write Lock (Implicit) Write Lock (Implicit) (Blocked!)

Tabela 3.4: Implicit Lock Table in Hop-HDFS

Summary

In this chapter, we discussed the namespace architecture in GFS, HDFS and Hop-HDFS. We

analyzed their namespace concurrency control scheme and concluded with related limitations

separately.

1The third version of Hop-HDFS is trying to Replace Read Lock to Read Committed for this PCC scheme

4Namespace Operation

Performance Assessment

In this chapter, we will give the namespace operation performance assessment between the

second version (we called it PCC version) of Hop-HDFS and original HDFS under single Na-

meNode. All the tests in this chapter are performed under same the experimental testbed

described in Chapter 6 Section 6.1.

4.1 NameNode Throughput Benchmark

A NNThroughtBenchmark (Shvachko 2010) tool has been developed to measure the NameNode

performance. It is included in the Apache HDFS test package. The tool used in this assessment

is based on the code from Apache Hadoop HDFS 2.0.4 Aplha (We integrate the part which tests

mkdirs operation from HDFS 2.3.0 NNThroughtBenchmark into this one).

NNThroughtBenchmark starts a single NameNode and runs multiple client threads on the same

node. The same NameNode operation is performed by each client repetitively via directly

calling the implemented method. The number of operations performed by the NameNode per

second is measured.

In this section, we aims to give a performance comparison between HDFS and PCC. Since the

workload is generated from a single machine by the NNThroughtBenchmark, we set the num-

ber of operations to be 100 and the number of threads to be 3. For operations create, delete and

rename, the total number of files involved is 100. They are placed under 4 different directo-

ries equally. For operation mkdirs, the total number of directories created is 100 and they are

also placed under 4 different directories equally. See Figure 4.1 for the operation performance

comparison between HDFS and PCC.

From Table 4.1, we find that the throughput of mkdirs in PCC is 64.9 % of HDFS, while others

are all less than 30%. The reason why the performance of create, delete and rename is worse

is because they involve multiple NameNode primitive operations. For example, to finish the

32 CAPÍTULO 4. NAMESPACE OPERATION PERFORMANCE ASSESSMENT

 0

 200

 400

 600

 800

 1000

create mkdirs delete rename

O
p

e
ra

ti
o
n
s

p
e
r

S
e
co

n
d

Operations

Operation Performance Comparison between HDFS and PCC

HDFS
PCC

Figura 4.1: Operation Performance Comparison between HDFS and PCC

create operations, it takes two NameNode primitive operations (two transactions): startFile and

completeFile. Since each NameNode primitive operation is implemented as a single transaction,

the more primitive operations involved, the more parent write locks will be, which means that

more transactions will be blocked.

Operations per Second create mkdirs delete rename
HDFS 609 636 833 869
PCC 188 413 242 132

PCC / HDFS 30.9% 64.9% 29.1% 15.2%

Tabela 4.1: Operation Performance Comparison between HDFS and PCC

4.2 Parent Directory Contention Assessment

The worst case in PCC happens when all concurrent operations try to work under the same

directory. Even though they mutate different INodes, all handling transactions will put a parent

directory write lock to block each other. Therefore, the parent directory becomes a contention

point.

Here we design a test for the parent directory contention assessment. We build a thread pool

4.2. PARENT DIRECTORY CONTENTION ASSESSMENT 33

with size 1024 for clients. We have three tests with 1000, 10000 and 100000 concurrent clients se-

parately. Each client creates (mkdirs()) one sub-directory. All these sub-directories are different,

but they are all created under the same parent directory. The parent directory is the contention

point in each task. We measure the elapsed time to finish all the concurrent creation tasks in

each test.

As we can see from Figure 4.2 and Table 4.2, it takes 4 - 5 more times in PCC to finish all

these tasks compared to HDFS. However, when the size of concurrent tasks increases, this ratio

decreases. Because as mentioned in Section 3.2.3, under heavy workload, the edit logs in HDFS

degrade the NameNode performance. Since there is no edit logging and check pointing part in

Hop-HDFS, it works more efficiently than HDFS.

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 10000 100000

E
la

p
se

d
 T

im
e
 (

S
e
co

n
d

)

Number of Concurrent Creations Under the Same Parent Directory

Parent Directory Contention Assessment between HDFS and PCC

HDFS
PCC

Figura 4.2: Parent Directory Contention Assessment between HDFS and PCC

Num. of Concurrent Creation 1000 10000 100000
HDFS 0.82s 7.83s 77.13s
PCC 4.35s 36.74s 332.36s

PCC / HDFS 530.5% 469.2% 430.9%

Tabela 4.2: Parent Directory Contention Assessment between HDFS and PCC

Note that the tests performed in this chapter is based on single NameNode. The multi-

NameNode architecture in Hop-HDFS will help to improve the overall throughput.

34 CAPÍTULO 4. NAMESPACE OPERATION PERFORMANCE ASSESSMENT

Summary

In this chapter we provided a systematic namespace operation performance assessment

between the second version of Hop-HDFS (PCC version) and original HDFS. We found that

with single NameNode, the performance on PCC was worse than HDFS, especially on write-

write intense workload with parent directory contention point. However, when the size of con-

current tasks increases, this gap became smaller because check pointing and journaling were

not needed in Hop-HDFS. But those part degraded the NameNode performance in HDFS.

IIIAlgorithmic Solution

5Solution
The solution we propose to improve the throughput can be summarized as Optimistic Concur-

rency Control with Snapshot Isolation on Semantic Related Group. The solution algorithm consists

of the following four phases:

1. Read Phase: resolving the semantic related group and cache the snapshot copy within

the handling transaction.

2. Execution Phase: transaction read/write operations are performed on its own snapshot

and never fetch data from database.

3. Validation Phase: snapshot’s related data rows are fetched from the database. If their

versions all match with the snapshot copy, go to update phase; else, abort and retry cur-

rent transaction.

4. Update Phase: update related data in the database table. Abort and retry transactions

if the instance already exists in the database for ”new”data. For successful updates, the

versions of the modified rows will be increased by 1.

The phases mentioned above will be illustrated in the following sections with more details. The

complete algorithm pseudocode can be found in Algorithm 1.

5.1 Resolving the Semantic Related Group

Resolving the semantic related group for each transaction is the fundamental step to preclude

anomalies in our implementation. The constraint violation (Berenson et al. 1995) between indivi-

dual data is formed within a semantic related group. In Hop-HDFS, each metadata operation is

implemented as a single transaction running by a worker thread. Any metadata operation rela-

ted to the namespace will have one or two input parameters, called Path. Here’s two examples

for operation methods in the Filesystem API:

38 CAPÍTULO 5. SOLUTION

• boolean mkdirs (Path f): f is the path of the INodeDirectory to be created

• boolean rename (Path src, Path dst): src is the path to be renamed, dst is the new path after

rename

Each Path object is related to a string representation of the ”/”based absolute path name. For

example, in Figure 3.5, the path for INode h is:

/a/d/f/h

Therefore, with the preservation of the directed tree structure, we can resolve a semantic related

group for each INode along the edge of ancestors into a LinkedList. The semantic related group

representation for INode h is:

h: {/->a->d->f}

In other words, when mutating INode h, all the semantic constraint can be found within INodes

/, a, d, f. With this knowledge, we can maintain the strong consistency semantics in original

HDFS.

For each row in inodes table, the <name, parent id> pair is the Primary Key. With the full path

string, we can iteratively resolve its semantic related rows by primary key lookups directly

from database as shown in Table 5.1.

id parent id name other parameters...
Related * 1 0 / ...
Related * 2 1 a ...

3 1 b ...
4 1 c ...

Related * 5 2 d ...
6 3 e ...

Related * 7 5 f ...
8 6 g ...

Selected X 9 7 h ...
10 7 i ...

Tabela 5.1: Table Representation for the Semantic Related Group

5.2. PER-TRANSACTION SNAPSHOT ISOLATION 39

5.2 Per-Transaction Snapshot Isolation

As we mentioned before, MySQL Cluster supports only the READ COMMITTED transaction

isolation level, which means that the committed results of write operations in transactions will

be exposed by reads in other transactions. Within a long running transaction, it could read two

different versions of data, known as fuzzy read, and it could also get two different sets of results

if the same query is issued twice, known as phantom read.

Snapshot isolation guarantees that all reads made within a transaction see a consistent view of

at the database. At the beginning of the transaction, it reads data from a snapshot of the latest

committed value. During transaction execution, reads and writes are performed on the this

snapshot.

In commercial database management systems, like Microsoft SQL Server, Oracle, etc, snapshot

isolation is implemented within multi version concurrency control (MVCC) (Berenson et al.

1995) on database server side. However, we need to implement snapshot isolation on the ap-

plication side since MySQL Cluster supports only the READ COMMITTED isolation level.

After resolving the semantic related group, we take a snapshot on selected rows as well as all

related rows of the committed values from database. This snapshot will be cached in-memory

within its transaction. Each transaction will have its own copy of snapshot during the life-

time. If a transaction reads the same data twice, it will return the same data, that was gather

from a snapshot earlier. So all transaction operations will be performed on its own snapshot.

Therefore, we called it Per-Transaction Snapshot Isolation.

5.2.1 Fuzzy Read and Phantom Read are Precluded

Before validation phase, the transaction will never fetch any data from database since it has all

the semantic related rows in the cached snapshot. Therefore, the snapshot provides a consistent

view of data for each transaction from read phase until validation phase. Hence:

• Fuzzy Read is precluded by snapshot isolation: As we can see from Figure 5.1, the second

read of Transaction 1 read from snapshot instead of database, not affected by the value

committed by Transaction 2.

40 CAPÍTULO 5. SOLUTION

• Phantom Read is also precluded by snapshot isolation on Semantic Related Group: As we can

see from Figure 5.2, Transaction 1 snapshot the semantic related group of x after the first

count operation. So its second count operation is not affected by the value inserted by

Transaction 2 since it counts from the snapshot.

T1

T2

DataBase
Read(x)

x0

T1 Snapshot
x: x0

Read(x)

x0

Commit(x, x1)

x: x1x: x0

Cache x:x0

Figura 5.1: Snapshot Isolation Precludes Fuzzy Read

T1

T2

DataBase
Count(x)

N=2
x[x0, x1]

T1 Snapshot
x[x0, x1]

Count(x)

N=2

Insert(x, x2)

x[x0, x1]

Cache: x[x0, x1]

x[x0, x1, x2]

Figura 5.2: Snapshot Isolation with Semantic Related Group Precludes Phantom Read

5.3 ClusterJ and Lock Mode in MySQL Cluster

ClusterJ (MySQL c) is a Java connector based on object-relational mapping persistence fra-

meworks to access data in MySQL Cluster. Since it uses a JNI bridge to the NDB API for

direct access to NDB Cluster, it doesn’t depend on the MySQL Server to access data in MySQL

Cluster, which means that ClusterJ can perform some operations much more quickly since it

communicates to the data nodes directly.

5.4. OPTIMISTIC CONCURRENCY CONTROL 41

Therefore, with the mapping from java classes to database tables, we use ClusterJ to fetch and

persist data in MySQL Cluster using primary key and unique key operations for single-table

queries (not supporting multi-table operations though). If we recall the architecture of MySQL

Cluster from Figure 2.3, ClusterJ will be the Java Persistence API between Hop-HDFS and the

Data Nodes (ndbd) , without going through MySQL Servers (mysqld).

Unlike Two-Phase Locking (2PL), there are three lock modes in MySQL Cluster:

1. SHARED (Read Lock, RL): Set a shared lock on rows

2. EXCLUSIVE (Write Lock, WL): Set an exclusive lock on rows

3. READ COMMITTED (Read Committed, RC): Set no locks but read the most recent com-

mitted values

Shared and Exclusive locks have the same definition of those in Two-phase Locking. For

Read Committed, it is implemented for consistent nonlocking reads, which means that a fresh

committed snapshot of data row is always presented to a query of database, regardless of

whether Shared Lock or Exclusive Lock are taken on the current row or not. It is based on

Multiversion Concurrency Control described by Oracle (Oracle a) for read consistency from a sin-

gle point in time (statement-level read consistency). See Table 5.2 for the reference of the blocking

effect.

We use Read Committed for the read phase in our algorithm.

Lock Type SHARED EXCLUSIVE READ COMMITTED
SHARED X Block X

EXCLUSIVE Block Block X
READ COMMITTED X X X

Tabela 5.2: Locks Blocking Table in MySQL Cluster

5.4 Optimistic Concurrency Control

Our algorithm is based on Optimistic Concurrency Control (OCC) method to improve the overall

read/write performance. Transactions are allowed to perform operations without blocking

each other with optimistic methods. Concurrent transactions need to pass through a validation

phase before committing, so that the serializability is not violated. Transactions will abort and

42 CAPÍTULO 5. SOLUTION

restart if they fail in the validation phase. OCC is the key approach so that the parent directory

lock is not needed in Hop-HDFS. Hence, transactions can operate under the same directory

concurrently.

In read phase, transactions use Read Committed Lock Mode to fetch semantic related group as

snapshots and cache them in-memory for their own use without being blocked.

In validation phase, transactions will fetch the modified rows using Exclusive Lock and fetch

the semantic related rows using Shared Lock. Then they compare the fetched values and the

snapshot copy in the cache for their versions. If versions are all the same, go to update phase.

If not, abort current transaction, wait for a random milliseconds, and retry a new transaction

from read phase.

Note that using Shared Lock to fetch semantic related rows can guarantee a consistent view in

database until the transaction commits while allowing other Shared Locks taken on the same

rows for their validation phase.

In order to avoid multiple database round trips, we will do the fetching in batch processing

using ClusterJ.

5.4.1 Write Skew is Precluded

The Write Skew anomaly is precluded by the validation phase on the snapshot of semantic rela-

ted group in OCC, because constraint violation on all related data rows will be checked before

transaction committed. See Figure 5.3 for how optimistic concurrency control with snapshot

isolation on semantic related group precludes Write Skew.

Therefore, we use optimistic concurrency control with snapshot isolation on semantic related

group to improve the throughput while the strong consistency semantics in original HDFS is

maintained.

5.5 Total Order Update, Abort and Version Increase in
Update Phase

We have a total order update rule in update phase so that dead lock will not occur by lock cycle.

If multiple INodes needed to be updated during update phase, they will be sorted first by the

5.6. PSEUDOCODE OF THE COMPLETE ALGORITHM 43

T1

T2

DataBase

Read(x) -> Read(y)

T1 Snapshot
x=1 (x=2)

y=1

Write(x=2)

Commit(y=2)

x=1
y=1

Cache: x=1, y=1

x=1
y=1

x=1
y=2

Read(x) -> Read(y)

Validation:
x=1, y=1

(x+y=3 < 4)
Before Commit

Read x, y in DB
y≠1 in DB

Abort and Retry T1
x=1
y=2

Semantic Related Group: x {y}
Semantic Constraint: x+y < 4

X

Figura 5.3: Optimistic Concurrency Control with Snapshot Isolation on Semantic Related
Group Precludes Write Skew

id values. Then they will be updated in ascending order according by ids.

Since we can not take an Exclusive lock on the ”new”row which not yet exists in the database,

multiple transactions may try to persist ”new”rows with the same Primary Key, and one might

be overwritten by the other. Using makePersistent() function in ClusterJ can throw exception if

the instance already exists in the database.

Finally, for successful updates, the versions of the modified rows will be increased by 1.

5.6 Pseudocode of the Complete Algorithm

The complete algorithm pseudocode can be found in Algorithm 1.

Summary

In this chapter, we proposed a solution to improve the throughput in Hop-HDFS based op-

timistic concurrency control with snapshot isolation on semantic related Group. We gave all

the details on related phases of the algorithm and discuss how anomalies are precluded in our

solution. Finally, we provided the complete algorithm pseudocode for our solution.

44 CAPÍTULO 5. SOLUTION

Algorithm 1 Pseudocode of the Complete Algorithm
Optimistic Concurrency Control with Snapshot Isolation on Semantic Related Group

1: init: restart = true, try = 0, path = operation.src, TotalRetry = 10
2: while restart and try < TotalRetry do
3: restart = false
4: try += 1
5: tx.snapshot.clear()
6: tx.begin()
7: /* 1. Read Phase */
8: tx.lockMode(Read Committed)
9: tx.snapshot = resolve semantic related group(path)

10: /* 2. Execution Phase */
11: operation performTask(tx.snapshot) // HDFS operation performs on its snapshot
12: /* 3. Validation Phase */
13: tx.lockMode(Shared)
14: relatedRows DataBase = batchRead Database(tx.snapshot)
15: tx.lockMode(Exclusive)
16: modifiedRows DataBase = batchRead Database(tx.snapshot)
17: if versionCompare(relatedRows DataBase, tx.snapshot) == true and versionCom-

pare(modifiedRows DataBase, tx.snapshot) == true then
18: /* 4. Update Phase */
19: operation.modifiedRows.version+=1
20: total order sort(operation.modifiedRows)
21: if batchPersist Database(operation.modifiedRows) success then
22: tx.commit()
23: return SUCCESS // Return HDFS Operation Success
24: else
25: tx.abort()
26: waitForRandomMilliseconds()
27: retry = true
28: end if
29: else
30: tx.abort()
31: waitForRandomMilliseconds()
32: retry = true
33: end if
34: end while
35: return FAIL // Return HDFS Operation

IVEvaluation and Conclusion

6Evaluation
The solution Optimistic Concurrency Control with Snapshot Isolation on Semantic Related Group

(OCC) is built on top of the transactional framework (Peiro Sajjad & Hakimzadeh Harirbaf

2013) in the second version of Hop-HDFS (PCC). The goal of this chapter is to prove that our

OCC model performs better than PCC. As a proof of concept, we implemented the OCC ver-

sion for the operation mkdirs and also give a detailed evaluation on it compared with the PCC

version. For this purpose, we concern about the execution time (elapsed time) needed to finish

all the concurrent tasks.

6.1 Experimental Testbed

The MySQL Cluster consists of six data nodes connected by 1 Gigabit LAN. Each data node

has an Intel Xeon X5660 CPU at 2.80GHz, and contributes 6 GB RAM (5 GB Data Memory + 1

GB Index Memory) separately. Therefore, the total available memory for the cluster is 36 GB.

The number of data replicas is 2. The maximum concurrent transactions is 10000 for each data

node, and the inactive timeout for each transaction is 5 seconds.

To avoid any communication overhead caused by RPC connections and serialization, we run

the NameNode and Clients on the same machine with Intel i7-4770T CPU at 2.50GHz and 16

GB RAM. This machine is connected with the MySQL Cluster data nodes by 100 Megabits

LAN.

6.2 Parent Directory Contention Assessment

This experiment is the same as described in Section 4.2, but we expand it to include the results

with OCC. See Figure 6.1 for the workload visual diagram. Here we have a full performance

comparison here among HDFS, PCC and OCC.

48 CAPÍTULO 6. EVALUATION

Parent
Directory

1 2 3 4 5 ... n

mkdirs()

mkdirs()

mkdirs()
mkdirs()

mkdirs()

mkdirs()

mkdirs()

Tx1 Tx2 Tx3 Tx4 Tx5 Tx.. Txn

Figura 6.1: Workload of Parent Directory Contention Assessment

From Figure 6.2 and Table 6.1, we can see that OCC significantly outperforms PCC by almost

70 % on this concurrent write-write parent directory contention workload. Under heavy wor-

kload, the execution time is just 1.3 times of HDFS. Remember that this is just a single Name-

Node performance test. We believe that OCC can greatly outperform HDFS in our multiple

NameNodes architecture.

Num. of Concurrent Creation 1000 10000 100000
HDFS 0.82s 7.83s 77.13s
PCC 4.35s 36.74s 332.36s
OCC 1.36s 12.01s 103.23s

PCC / HDFS 530.5% 469.2% 430.9%
OCC / HDFS 165.9% 153.4% 133.8%

OCC Improvement:
(PCC-OCC) / PCC

68.7% 67.3% 68.9%

Tabela 6.1: OCC Performance Improvement on Parent Directory Contention

6.3 Read-Write Mixed Workload Assessment

In this experiment, we did a test for a read-write mixed workload assessment while the parent

directory is still the contention point for PCC. So we assume that OCC will still outperform

PCC in this kind of workload.

Similar to the experiment in Section 6.2, we have 1000, 10000 and 100000 concurrent clients’

operations running under the same parent directory. But in each task, half of them will do

the metadata read operation getFileStatus(), while the other half will do the write operation

6.4. THE SIZE OF SEMANTIC RELATED GROUP 49

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 10000 100000

E
la

p
se

d
 T

im
e
 (

S
e
co

n
d

)

Number of Concurrent Creations Under the Same Parent Directory

OCC Performance Improvement on Parent Directory Contention

HDFS
PCC
OCC

Figura 6.2: OCC Performance Improvement on Parent Directory Contention

mkdirs(). See Figure 6.3 for a visual reference.

From Figure 6.4 and Table 6.2, we can see that OCC still significantly outperforms PCC by 65

% on this concurrent read-write mixed workload.

Num. of Concurrent Creation 1000 10000 100000
PCC 4.92s 50.69s 352.25s
OCC 1.78s 15.31s 120.64s

OCC Improvement:
(PCC-OCC) / PCC

63.8% 69.8% 65.8%

Tabela 6.2: OCC Performance Improvement on Read-Write Mixed Workload

6.4 The Size of Semantic Related Group

In the read phase and validation phase, we need to fetch the semantic related group. The

more levels of directories involved, the more related data rows needs to be fetch. The depth

of the path equals to the size of the semantic related group. But since the namespace is a tree

structure, the depth of the namespace won’t be too much due to the logarithmic order. Also,

HDFS limits the maximum number of levels to be 1000, and maximum number of characters

50 CAPÍTULO 6. EVALUATION

Parent
Directory

1
2

...

n

mkdirs()
mkdirs()

mkdirs()

mkdirs()

TxW1 TxW2 TxW..

TxWn
A.txt

1

2
.. n

getFileStatus()

getFileStatus()

getFileStatus()

getFileStatus()

TxR1

TxR2
TxR.. TxRn

Figura 6.3: Read-Write Mixed Workload

for the full path name to be 3000 1.

In addition, batch reading is also used to minimize the network round-trips so that multiple

data can fetched in one round-trip. Therefore, the size of semantic related group will not be a

limitation in practice.

Here we did a test to see how performance affected by different size of semantic related group.

Similar to the experiment in Section 6.2, we have 100 concurrent operations (mkdirs()) running

under the same parent directory. See Figure 6.5 for the linear relationship between the size and

the elapsed time.

6.5 OCC Performance with Different Size of Conflicts

When OCC conflicts happen, transactions will abort, wait for random milliseconds and retry.

Eventually one transaction will success, and others will get updated values after retry and

return RPC callbacks.

Here we have 10000 concurrent operations running under the same parent directory. Each

operation creates only one sub-directory. Some of them will success and some others will fail

1If we assume that 10 characters for one directory name, the maximum level will be 300.

6.5. OCC PERFORMANCE WITH DIFFERENT SIZE OF CONFLICTS 51

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000 10000 100000

E
la

p
se

d
 T

im
e
 (

S
e
co

n
d

)

Total Number of Concurrent Operations Under the Same Parent Directory

OCC Performance Improvement on Read-Write Mixed Workload

PCC
OCC

Figura 6.4: OCC Performance Improvement on Read-Write Mixed Workload

due to conflicts. These operations will try to create same sub-directories in different numbers

from 1 (100 % conflicts), to 10000 (0 % conflicts). Therefore, we have different size of conflicts.

Total Num. of Sub-Directories
Created for 10000 Operations

Conflict
Size

Elapsed Time
(Second)

Performance Decrease
Compared to Zero Conflict

1 100% 14.53 23.7%
10 10% 14.11 20.1%
100 1% 13.51 15.0%
1000 0.1% 12.72 8.23%

10000 0% 11.75 0%

Tabela 6.3: OCC Performance with Different Size of Conflicts

From Figure 6.6 and Table 6.3, we can find that the maximum OCC performance decrease is

only 23.7% when 100 % of the operations conflict:

(14.53− 11.75)÷ 11.75 = 23.7%

Besides, with Figure 6.7, we find that the OCC performance decrease rate grows very slowly

after conflict size 10%. From conflict size 10% to conflict size 100 %, the performance decrease

rate only grows from 20.1 % to 23.7 %.

52 CAPÍTULO 6. EVALUATION

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100 110

E
la

p
se

d
 T

im
e
 (

S
e
co

n
d

)

Levels of Directories

The Size of Semantic Related Group and Related Execution Time

0.68
1.14

1.64
2.17

2.88
3.33

3.70

4.44

5.45
5.76

Figura 6.5: The Size of Semantic Related Group and Related Execution Time

6.6 Correctness Assessment

The correctness of our OCC implementation for mkdirs() 2 has been validated by 300+ Apache

HDFS 2.0.4 Alpha unit tests passing. The full passing tests list can be found in Appendix A.

Summary

In this chapter, we gave a detailed evaluation on our OCC solution compared to the previous

work on Hop-HDFS (PCC version). We proved that our OCC model performs better than

PCC up to 70 % on write-write intense concurrent workload and 65 % on read-write mixed

intense concurrent workload. We also evaluated OCC performance decrease on different size

of conflict. We found that the maximum OCC performance decrease was only 23.7% when 100

% of the operations conflict, and the decrease rate grew very slowly from conflict size 10% to

conflict size 100 %.

2other operations are PCC

6.6. CORRECTNESS ASSESSMENT 53

 0

 5

 10

 15

 20

1(100%
_conflicts)

10(10%
_conflicts)

100(1%
_conflicts)

1000(0.1%
_conflicts)

10000(0%
_conflicts)

E
la

p
se

d
 T

im
e
 (

S
e
co

n
d

)

Total Number of Sub-Directories Created for 10000 Operations

OCC Performance with Different Size of Conflicts

OCC

Figura 6.6: OCC Performance with Different Size of Conflicts

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

P
e
rf

o
rm

a
n
ce

 D
e
cr

e
a
se

 %

Conflict Size %

OCC Performance Decrease Rate

Figura 6.7: OCC Performance Decrease Rate

54 CAPÍTULO 6. EVALUATION

7Conclusion and Future

Work

7.1 Conclusion

In this thesis, we provide a solution for Hop-HDFS based on optimistic concurrency control

with snapshot isolation on semantic related group to improve the operation throughput while

maintaining the strong consistency semantics in HDFS.

First, we discuss the architectures of related distributed file systems, including Google File

System, HDFS and Hop-HDFS. With focus on their namespace concurrency control schemes,

we analyzes the limitation of HDFS’s NameNode implementation and provide an overview

of Hop-HDFS illustrating how we overcome those problems in the distributed NameNode

architecture.

MySQL Cluster is selected to be the distributed in-memory storage layer for the metadata in

Hop-HDFS due to its the high operation throughput and high reliability. However, the trade off

is that the NDB cluster storage engine of MySQL cluster supports only the READ COMMITTED

transaction isolation level. Anomalies like fuzzy read, phantom, write skew will appear because

the write results in transactions will be exposed to reads in different concurrent transactions

without proper implementation.

Then, based on optimistic concurrency control with snapshot isolation on semantic related

group, we demonstrate how concurrency is improved and anomalies - fuzzy read, phantom,

write skew are precluded, so that the strong consistency semantics in HDFS is maintained.

Finally, as a proof of concept, we implemented the OCC version for the operation mkdirs and

also give a detailed evaluation on it compared with the PCC version. Our solution outperforms

previous work of Hop-HDFS up to 70 %. Under heavy workload, the single NameNode perfor-

mance of HDFS is just a slightly better than OCC. We believe that OCC can greatly outperform

HDFS in Hop-HDFS multiple NameNodes architecture. The correctness of our implementation

has been validated by 300+ Apache HDFS unit tests passing.

56 CAPÍTULO 7. CONCLUSION AND FUTURE WORK

7.2 Future Work

The result of our OCC solution is promising. Other operations in Hop-HDFS can also adopt

the same algorithm to achieve better performance.

Future evaluation on Hop-HDFS in multiple NameNodes architecture with OCC solution is

needed to prove that it can achieve better performance than HDFS in single NameNode archi-

tecture.

Bibliography

Ansi, A. (1992). x3. 135-1992, american national standard for information systems-

database language-sql.

Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O’Neil, & P. O’Neil (1995). A critique

of ansi sql isolation levels. In ACM SIGMOD Record, Volume 24, pp. 1–10. ACM.

Bernstein, P. A. & N. Goodman (1981). Concurrency control in distributed database

systems. ACM Computing Surveys (CSUR) 13(2), 185–221.

Borthakur, D. (2008). Hdfs architecture guide. HADOOP APACHE PROJECT

http://hadoop. apache. org/common/docs/current/hdfs design. pdf .

Cloudera. Hadoop and big data. http://www.cloudera.com/content/

cloudera/en/about/hadoop-and-big-data.html.

Dowling, J. (2013). Hop: Hadoop open platform-as-a-service.

D’Souza, J. C. (2013). Kthfs–a highly available andscalable file system.

Franklin, M. J. (1997). Concurrency control and recovery.

Ghemawat, S., H. Gobioff, & S.-T. Leung (2003). The google file system. In ACM

SIGOPS Operating Systems Review, Volume 37, pp. 29–43. ACM.

Gray, J. N., R. A. Lorie, G. R. Putzolu, & I. L. Traiger (1976). Granularity of locks and

degrees of consistency in a shared data base. In IFIP Working Conference on Modelling in

Data Base Management Systems, pp. 365–394.

Hadoop, A. What is apache hadoop? http://hadoop.apache.org.

Hakimzadeh, K., H. P. Sajjad, & J. Dowling (2014). Scaling hdfs with a strongly con-

sistent relational model for metadata. In Distributed Applications and Interoperable Systems,

pp. 38–51. Springer.

57

http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
http://www.cloudera.com/content/cloudera/en/about/hadoop-and-big-data.html
http://hadoop.apache.org

58 BIBLIOGRAPHY

HBase, A. Welcome to apache hbase. http://hbase.apache.org/.

Mahout, A. What is apache mahout? http://mahout.apache.org/.

MySQL. Chapter 18 mysql cluster ndb 7.3. http://dev.mysql.com/doc/

refman/5.6/en/mysql-cluster.html.

MySQL. Defining mysql cluster data nodes. http://dev.mysql.com/doc/

refman/5.6/en/mysql-cluster-ndbd-definition.html.

MySQL. Java and mysql cluster. http://dev.mysql.com/doc/ndbapi/en/

mccj-overview-java.html.

MySQL. Limits relating to transaction handling in mysql clus-

ter. http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/

mysql-cluster-limitations-transactions.html.

MySQL. Mysql cluster nodes, node groups, replicas, and partitions. http://dev.

mysql.com/doc/refman/5.6/en/mysql-cluster-nodes-groups.html.

MySQL (2012, July). Mysql cluster benchmarks: Oracle and intel achieve 1 billion

writes per minute.

Oracle. Data concurrency and consistency. http://docs.oracle.com/cd/

B28359_01/server.111/b28318/consist.htm.

Oracle. Java api documentation: Class reentrantreadwritelock. http:

//docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/

ReentrantReadWriteLock.html.

Peiro Sajjad, H. & M. Hakimzadeh Harirbaf (2013). Maintaining strong consistency

semantics in a horizontally scalable and highly available implementation of hdfs.

Pig, A. Welcome to apache pig. http://pig.apache.org/.

Shvachko, K., H. Kuang, S. Radia, & R. Chansler (2010). The hadoop distributed file

system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on,

pp. 1–10. IEEE.

Shvachko, K. V. (2010). Hdfs scalability: The limits to growth. login 35(2), 6–16.

http://hbase.apache.org/
http://mahout.apache.org/
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
http://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-limitations-transactions.html
http://dev.mysql.com/doc/mysql-cluster-excerpt/5.1/en/mysql-cluster-limitations-transactions.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-nodes-groups.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-nodes-groups.html
http://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28318/consist.htm
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://pig.apache.org/

BIBLIOGRAPHY 59

Shvachko, K. V. (2011). Apache hadoop: The scalability update. login: The Magazine

of USENIX 36, 7–13.

Spark, A. Apache spark welcome page. http://spark.apache.org/.

Wasif, M. (2012). A distributed namespace for a distributed file system.

White, T. (2012). Hadoop: The definitive guide. ”O’Reilly Media, Inc.”.

http://spark.apache.org/

60 BIBLIOGRAPHY

VAppendices

AApache HDFS Unit Tests

Passing List

64 APPENDIX A. APACHE HDFS UNIT TESTS PASSING LIST

TestAbandonBlock

TestAllowFormat

TestAppendDifferentChecksum

TestAtomicFileOutputStream

TestAuditLogger

TestAuditLogs

TestAuthFilter

TestBalancerBandwidth

TestBalancer

TestBalancerWithEncryptedTr

ansfer

TestBalancerWithHANameNodes

TestBaseService

TestBestEffortLongFile

TestBlockInfo

TestBlockMissingException

TestBlockPoolManager

TestBlockReaderLocal

TestBlockReplacement

TestBlockReport

TestBlocksScheduledCounter

TestBlocksWithNotEnoughRack

s

TestBlockToken

TestBlockTokenWithDFS

TestBlockUnderConstruction

TestBookKeeperAsHASharedDir

TestBookKeeperConfiguration

TestBookKeeperEditLogStream

s

TestBookKeeperHACheckpoints

TestBookKeeperJournalManage

r

TestByteRangeInputStream

TestCase

TestCase

TestCheck

TestCheckpoint

TestCheckUploadContentTypeF

ilter

TestClientBlockVerification

TestClientProtocolForPipeli

neRecovery

TestClientProtocolWithDeleg

ationToken

TestClientReportBadBlock

TestClusterId

TestConfigurationUtils

TestConnCache

TestCorruptFilesJsp

TestCorruptReplicaInfo

TestCrcCorruption

TestCurrentInprogress

TestCyclicIteration

TestDataDirs

TestDatanodeBlockScanner

TestDatanodeConfig

TestDatanodeDeath

TestDatanodeDescriptor

TestDataNodeExit

TestDatanodeJsp

TestDataNodeMetrics

TestDataNodeMultipleRegistr

ations

TestDataNodeMXBean

TestDatanodeRegister

TestDatanodeRegistration

TestDatanodeReport

TestDatanodeRestart

TestDataNodeVolumeFailure

TestDataNodeVolumeFailureRe

porting

TestDataNodeVolumeFailureTo

leration

TestDataTransferKeepalive

TestDataTransferProtocol

TestDeadDatanode

TestDecommissioningStatus

TestDefaultNameNodePort

TestDelegationTokenFetcher

TestDelegationTokenForProxy

User

TestDelegationToken

TestDelegationTokenManagerS

ervice

TestDelegationTokensWithHA

TestDelimitedImageVisitor

TestDeprecatedKeys

TestDFSAddressConfig

TestDFSClientExcludedNodes

TestDFSClientFailover

TestDFSClientRetries

TestDFSHAAdmin

TestDFSMkdirs

TestDFSPermission

TestDFSRemove

TestDFSRename

TestDFSRollback

TestDFSShellGenericOptions

TestDFSStorageStateRecovery

TestDFSUpgradeFromImage

TestDFSUtil

TestDirectBufferPool

TestDirectoryScanner

TestDirHelper

TestDir

TestDiskError

TestDistributedFileSystem

TestEditLogFileInputStream

TestEditLogFileOutputStream

TestEditsDoubleBuffer

TestEncryptedTransfer

TestEpochsAreUnique

TestExactSizeInputStream

TestExceptionHelper

TestException

TestExtendedBlock

TestFcHdfsCreateMkdir

TestFcHdfsPermission

TestFcHdfsSetUMask

TestFiDataTransferProtocol2

TestFiDataTransferProtocol

TestFiHFlush

TestFiHftp

TestFileAppend2

TestFileAppend3

TestFileAppend4

TestFileAppend

TestFileAppendRestart

TestFileConcurrentReader

TestFileCorruption

TestFileCreationClient

TestFileCreationDelete

TestFileCreationEmpty

TestFileCreation

TestFileJournalManager

TestFileLengthOnClusterRest

art

TestFileLimit

TestFileStatus

TestFileSystemAccessService

TestFiListPath

TestFiPipelineClose

TestFiPipelines

TestFiRename

TestFsck

TestFSImageStorageInspector

TestFSInputChecker

TestFsLimits

TestFSMainOperationsWebHdfs

TestFSNamesystem

TestFSOutputSummer

TestFuseDFS

TestGetBlocks

TestGetConf

TestGetGroups

TestGetImageServlet

TestGetUriFromString

TestGlobPaths

TestGroupsService

TestGSet

TestHABasicFailover

TestHABasicFileCreation

TestHAConfiguration

TestHAFailoverUnderLoad

TestHARead

TestHDFSCLI

TestHDFSConcat

TestHDFSFileSystemContract

TestHdfsHelper

TestHdfs

TestHdfsNativeCodeLoader

TestHDFSServerPorts

TestHDFSTrash

TestHeartbeatHandling

TestHFlush

TestHftpDelegationToken

TestHftpFileSystem

TestHftpURLTimeouts

TestHost2NodesMap

TestHostnameFilter

TestHostsFiles

TestHSync

TestHttpFSFileSystemLocalFi

leSystem

TestHttpFSKerberosAuthentic

ationHandler

TestHttpFSServer

Figura A.1: Apache HDFS 2.0.4 Alpha Unit Tests Passing List 1

65

TestInjectionForSimulatedSt

orage

TestINodeFile

TestInputStreamEntity

TestInstrumentationService

TestInterDatanodeProtocol

TestIPCLoggerChannel

TestIsMethodSupported

TestJettyHelper

TestJetty

TestJMXGet

TestJournal

TestJournalNode

TestJSONMapProvider

TestJSONProvider

TestJsonUtil

TestJspHelper

TestLargeBlock

TestLargeDirectoryDelete

TestLayoutVersion

TestLease

TestLeaseRecovery2

TestLeaseRecovery

TestLeaseRenewer

TestLightWeightHashSet

TestLightWeightLinkedSet

TestListCorruptFileBlocks

TestListFilesInDFS

TestListFilesInFileContext

TestListPathServlet

TestLoadGenerator

TestLocalDFS

TestMD5FileUtils

TestMDCFilter

TestMetaSave

TestMiniJournalCluster

TestMissingBlocksAlert

TestModTime

TestMultiThreadedHflush

TestNameCache

TestNamenodeCapacityReport

TestNameNodeJspHelper

TestNameNodeMetrics

TestNameNodeMXBean

TestNameNodeResourcePolicy

TestNetworkTopology

TestNNMetricFilesInGetListi

ngOps

TestNNStorageRetentionManag

er

TestNNThroughputBenchmark

TestNNWithQJM

TestNodeCount

TestOfflineEditsViewer

TestOfflineImageViewer

TestOffsetUrlInputStream

TestOIVCanReadOldVersions

TestOverReplicatedBlocks

TestPacketReceiver

TestParallelLocalRead

TestParallelRead

TestParallelReadUtil

TestParam

TestParam

TestPathComponents

TestPBHelper

TestPendingDataNodeMessages

TestPendingReplication

TestPermission

TestPersistBlocks

TestPipelines

TestPread

TestProcessCorruptBlocks

TestProxyUserService

TestQJMWithFaults

TestQuorumCall

TestQuorumJournalManager

TestQuorumJournalManagerUni

t

TestRBWBlockInvalidation

TestReadWhileWriting

TestRefreshNamenodes

TestRefreshUserMappings

TestRenameWhileOpen

TestReplaceDatanodeOnFailur

e

TestReplicaMap

TestReplication

TestReplicationPolicy

TestResolveHdfsSymlink

TestRestartDFS

TestRoundRobinVolumeChoosin

gPolicy

TestRunnableCallable

TestSafeMode

TestSchedulerService

TestSecureNameNodeWithExter

nalKdc

TestSecurityTokenEditLog

TestSeekBug

TestSegmentRecoveryComparat

or

TestServerConstructor

TestServer

TestServerWebApp

TestSetrepDecreasing

TestSetrepIncreasing

TestSetTimes

TestShortCircuitLocalRead

TestSimulatedFSDataset

TestSmallBlock

TestSocketCache

TestStartSecureDataNode

TestStartupOptionUpgrade

TestStickyBit

TestStreamFile

TestTransferRbw

TestUnderReplicatedBlockQue

ues

TestUnderReplicatedBlocks

TestUrlStreamHandler

TestUserProvider

TestValidateConfigurationSe

ttings

TestViewFileSystemAtHdfsRoo

t

TestViewFileSystemHdfs

TestViewFsAtHdfsRoot

TestViewFsFileStatusHdfs

TestViewFsHdfs

TestVolumeId

TestWebHdfsDataLocality

TestWebHdfsFileSystemContra

ct

TestWebHDFS

TestWebHdfsUrl

TestWebHdfsWithMultipleName

Nodes

TestWriteConfigurationToDFS

TestWriteRead

TestWriteToReplica

TestXException

TestXMLUtils

Figura A.2: Apache HDFS 2.0.4 Alpha Unit Tests Passing List 2

66 APPENDIX A. APACHE HDFS UNIT TESTS PASSING LIST

	I Introduction and Background
	Introduction
	Motivation
	The De Facto Industrial Standard in Big Data Era
	Limits to growth in HDFS
	Hop-HDFS and Its Limitation

	Problem Statement
	Contribution
	Document Structure

	Background and Related Work
	Distributed File Systems
	The Google File System
	Design Principle
	The Architecture of GFS

	The Hadoop Distributed File System
	Design Principle
	The Architecture of HDFS
	Single-Writer, Multiple-reader Model

	Concurrency Control and Isolation Level
	Concurrency Control in Database Management System
	Isolation Level for Concurrent Transactions

	MySQL Cluster
	Design Principle
	The Architecture of MySQL Cluster
	Fault Tolerance in MySQL Cluster
	The Benchmark of MySQL Cluster

	Hadoop Open Platform-as-a-service and Hop-HDFS
	Hadoop Open Platform-as-a-service Design Purpose
	Overcoming Limitations in HDFS NameNode Architecture
	The Architecture of Hop-HDFS

	II Namespace Concurrency Control and Assessment
	Namespace Concurrency Control
	Namespace Concurrency Control in GFS
	Namespace Structure
	Namespace Concurrency Control
	Limitations

	Namespace Concurrency Control in HDFS
	Namespace Structure
	Namespace Concurrency Control
	Limitations

	Namespace Concurrency Control in Hop-HDFS
	Namespace Structure
	Namespace Concurrency Control
	Limitations

	Namespace Operation Performance Assessment
	NameNode Throughput Benchmark
	Parent Directory Contention Assessment

	III Algorithmic Solution
	Solution
	Resolving the Semantic Related Group
	Per-Transaction Snapshot Isolation
	Fuzzy Read and Phantom Read are Precluded

	ClusterJ and Lock Mode in MySQL Cluster
	Optimistic Concurrency Control
	Write Skew is Precluded

	Total Order Update, Abort and Version Increase in Update Phase
	Pseudocode of the Complete Algorithm

	IV Evaluation and Conclusion
	Evaluation
	Experimental Testbed
	Parent Directory Contention Assessment
	Read-Write Mixed Workload Assessment
	The Size of Semantic Related Group
	OCC Performance with Different Size of Conflicts
	Correctness Assessment

	Conclusion and Future Work
	Conclusion
	Future Work

	V Appendices
	Apache HDFS Unit Tests Passing List

