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Resumo

Actualmente, existem vários projectos que tentam tirar partido dos ciclos de CPU excedentários existentes

em máquinas ligadas à Internet. No entanto, estes projectos destinam-se principalmente à execução de

código pertencente a projectos de investigação em larga escala, não dando a possibilidade dos utilizadores

normais, que contribuem ciclos para esses projectos, poderem utilizar essa mesma infraestrutura para a

execução de aplicações desktop comuns para benef́ıcio próprio.

No contexto da resolução deste problema, esta dissertação estuda e propõe mecanismos de descoberta de

recursos, assim como topologias de redes Peer-to-Peer que permitam elaborar um sistema distribúıdo de

partilha de recursos. Esta solução encontra-se contextualizada no projecto GINGER, que almeja oferecer

uma rede de partilha de recursos capaz de interagir com as diversas aplicações desktop existentes sem ser

necessária a sua modificação, recorrendo a técnicas encontradas em redes Grid institucionais, aplicações

de partilha de recursos como as mencionadas anteriormente e as populares redes Peer-to-Peer de partilha

de ficheiros.

Assim, a solução integra-se no desenvolvimento de uma infra-estrutura de middleware Peer-to-Peer cen-

trada no conceito de Gridlet, a unidade de trabalho fundamental do sistema GINGER. Esta solução

baseia-se principalmente no uso de uma hierarquia de pares na rede semelhante à encontrada em sis-

temas Peer-to-Peer populares, como a rede Gnutella, para possibilitar a descoberta de recursos de forma

eficiente num ambiente Peer-to-Peer.



Abstract

Today, there is a number of projects that attempt to take advantage of the excess CPU cycles existing in

machines connected to the Internet. However, these projects are mainly focused in providing distributed

code execution for large scale research projects and do not make it possible for normal users, which

contribute their cycles for those projects, to use the same infrastructure to execute common desktop

applications for their own benefit.

In the context of this problem, this dissertation studies and proposes resource discovery mechanisms,

as well as Peer-to-Peer network topologies that allow the creation of a distributed resource sharing sys-

tem. This solution is part of the GINGER project, which aims to offer a resource sharing network capable

of interacting with the many existing desktop applications without the need to modify them, using tech-

niques found in institutional Grid networks, resource sharing systems as the ones mentioned above and

the popular Peer-to-Peer file sharing networks.

As such, this solution is integrated in the development of a Peer-to-Peer middleware infrastructure cen-

tered around the concept of a Gridlet, the fundamental work unit in the GINGER system. This solution

is mainly based on the use of a peer hierarchy similar to the one found in popular Peer-to-Peer systems,

such as the Gnutella network, to enable efficient resource discovery in a Peer-to-Peer environment.
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Chapter 1

Introduction

1.1 Motivation

Over the last two decades and following Moore’s Law, the available computing power throughout the

world shifted from large mainframes and supercomputers to the ever increasing number of personal com-

puters connected to the Internet, as these became more powerful at a very fast rate. However, most of

the computing power offered by these machines is wasted on idle processes, and as personal computers

grow more powerful this trend tends to increase.

To use this untapped resource, several projects like BOINC[6] and SETI@Home[7] emerged, giving re-

search institutes the ability to perform massive computations without having to acquire or maintain an

expensive grid environment. Through these projects ordinary computers could contribute their unused

CPU cycles to scientific research by downloading work units from each project’s servers, perform the

necessary calculations and uploading the obtained results.

Although these projects approach their desired goals, they fail to meaningfully give back to their contrib-

utors, as people who contribute with CPU cycles for these projects are unable to use those same resources

for their own benefit.

1.2 Current limitations

The approach followed by BOINC and SETI@Home has some disadvantages, however, including the fact

it requires users (in this case, researchers) to be able to compile custom versions of the applications whose

work they wish to distribute and as such is not an option for most end-users. Additionally, as previously

mentioned, the computing power supplied by the contributors is still in the hands of a very small number

of institutions, and users cannot tap those same resources to accomplish tasks that matter to them, as

ordinary PC users.

On GINGER[60], the authors propose a peer-to-peer based infrastructure for CPU cycle sharing based on

the concept of Gridlets, which allow for the use of unmodified applications on the data to be processed,

and as such enables every user not only to contribute by helping other users on their computations but

also allows them to submit their own work to the environment, in a mutualistic manner. Such an ap-

proach requires each node in the network to be able to locate the required resources for the work it needs

to do in an efficient and scalable manner, but empowers each user with the ability to use the available

cycles to perform everyday tasks which would usually require very large amounts of computing power or

1



time.

The resource discovery problem in institutional Grid infrastructures and distributed cycle sharing projects

such as the ones mentioned above is relatively well known and several centralized solutions have been

proposed. On a fully decentralized peer-to-peer architecture, however, this problem is further amplified

by the lack of global knowledge of the nodes composing the network, and a scalable solution for the

general case is difficult to achieve.

Beyond the issue of discovering resources like CPU and disk storage, it is also necessary to tackle the

problem of discovering services, which may be provided by a software application present in a system, or

physically through the machine itself (e.g. a network printer).

To solve this problem, a number of service discovery frameworks such as JXTA[26], Jini[62], SLP[27]

and UPnP[47] have been proposed in the context of small-scale networks, most of the time resorting to

central servers (e.g. UDDI), but some also resorting to existing network infrastructure (e.g. DNS Service

Discovery[2]) or avoiding them altogether while applying the same techniques found in proven Internet

technologies (e.g. Multicast DNS[3], Zeroconf[4] and Avahi[1]).

Additionally, there is a scheduling problem to be solved. Ideally, all jobs should be executed on a

reasonable amount of time, and they should be executed in the most appropriate locations, according to

some set of criteria.

For instance, it may neither be desirable nor fair or even resource- efficient to keep loading a single

machine or group of machines just because they are available and fit or exceed all the requirements.

1.3 Contributions

This work introduces a resource discovery mechanism for P2P networks based on the Pastry overlay, more

specifically in the context of the GINGER platform. It aims to evaluate and implement several resource

discovery mechanisms to be used on the GINGER platform.

A resource in this system can be any of the following: CPU power and availability, memory capac-

ity, disk capacity, network bandwidth, installed applications, services, peripherals, users and others that

may apply.

The chosen mechanism should ideally be:

1. Scalable: The overall efficiency should not decrease significantly with a larger network;

2. Complete: If the resource to be discovered exists, it shall be discovered;

3. Efficient: The overhead caused by the discovery protocol should not disrupt the normal functioning

of the network;

4. Flexible: We aim to support multi-attribute ranged queries, as it is necessary on such a heteroge-

neous environment.
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1.4 Document Organization

This paper is divided into six chapters. The first and current chapter introduces the problem at hand,

why it is important, and what contributions should be expected as a result of this work.

The second chapter details previously developed work related to the problem, important conclusions

taken from that work and how they may be relevant for the problem at hand.

The third chapter will detail a high-level architecture chosen for this project, the design decisions that

were taken as well as the rationale behind those decisions.

The fourth chapter describes the implementation of the proposed system, as well as specifying the tech-

nologies used in the elaboration of this work and the differences between the proposed architecture and

the actual implementation.

A fifth chapter deals with the evaluation of the implemented work, such as the tests that were de-

veloped for this work and metrics that were obtained.

Finally, in the sixth chapter, we draw our conclusions on the results obtained in this work and pro-

pose future work to improve on our own.

1.4.1 Terminology

Throughout this paper, and although some of the cited authors interchange these terms, the following

definitions will be used:

• Resource - a physical, generally constrained attribute of a given system (e.g. CPU power, available

RAM, disk capacity, etc.)

• Service - a functionality provided by a given system (e.g. a printing service, provided by a printer)

or, as is most commonly the case, a tool or application (e.g. a software application installed in a

given system)

3



Chapter 2

Related Work

2.1 Introduction

Several articles and projects have been produced on the topic of resource and service discovery on insti-

tutional grids, cycle-sharing desktop grids and peer-to-peer networks. In this section, some of this work

is presented and discussed.

We will focus on a few aspects of each system that are relevant for their study in general and worthy of

note in the scope of this project. The most important aspects pertain to overall system architecture and

resource discovery.

2.1.1 Institutional Grids

Overview

Grid computing is used to describe a technique that utilizes the resources of several computers simulta-

neously in order to solve complex problems which typically require very large amounts of computation

power due to either the nature of the problem or the sheer volume of data that needs to be analyzed.

Institutional grid networks have been the main form of distributed computing platforms available world-

wide, mainly to large research or academic centers.

Grid network environments are usually centrally controlled by a single entity, which makes these en-

vironments implicitly trusted, and as such, less vulnerable to malicious use. This allows for a simpler or

non-existent result validation procedure.

Applications

Grid networks are commonly found in the domain of high performance computing and manipulation of

very large datasets replacing traditional, monolithic supercomputers.

This is partially due to the fact that supercomputers, while taking advantage of faster interconnects

between their components, are often custom-made and thus more expensive and of difficult maintenance.

Grid networks, on the other hand, while incurring in some potential performance penalties, are often

built out of commodity parts, which are easily upgradeable at an affordable price.

4



The usage of grid networks is not limited to the execution of computation over data and can be used for

distributed data storage as well (e.g. Amazon’s S3 “cloud” storage infrastructure).

2.1.2 Cycle-sharing Desktop Grids

Overview

Cycle-sharing desktop grid networks are built using regular desktop computers, whose idle CPU cycles are

often voluntarily donated by regular computer users. These cycles are often used to perform distributed

computations on very large data sets for research purposes.

BOINC, with over half a million active computers providing an average of over 1400 TeraFLOPS of

computing as of the time of this writing, is a clear proof that users are willing to provide their idle cycles

and that there is an enormous amount of processing yet to be exploited worldwide. The emergence of

the use of GPUs for massively parallel processing is expected to greatly increase the total throughput of

this kind of grid.

Applications

Desktop grids include well known systems such as BOINC, SETI@Home and Distributed.net. The type

of projects run in these grids can vary greatly. BOINC hosts a very large number of projects spanning

several areas of interest, including protein folding simulations, cryptography and game playing.

SETI@Home specializes in the analysis of data obtained through radio telescopes for the purpose of

detecting extra-terrestrial intelligence by searching the data for patterns indicating intentional emissions.

Distributed.net was one of the first desktop grid networks to appear and focuses on projects regard-

ing cryptography, mainly attempting to brute force well known ciphers in order to assess their resilience

against such attacks. These projects are usually sponsored by companies who develop the ciphers.

2.1.3 Peer-to-Peer Networks

Peer-to-peer (P2P) networks have become one of the driving forces of widespread online content pro-

duction and consumption worldwide. Unlike traditional client-server networks, P2P networks enable

cooperation between users without the existence of centralized, third-party authorities and effectively

removing the need for costly infrastructure as well as eliminating the single point of failure present in

traditional systems.

In a P2P network, as its name implies, every client can also act as a server without requiring any

additional configuration or special setup. Peer coordination in a P2P network is essentially free and can

be achieved in an autonomous manner, without the need for special peers in the network, although in

some cases it is desirable to have a number of peers empowered with extra capabilities for the purposes

of coordination, commonly known as super-peers or ultra-peers. Thus, P2P networks can be accurately

described as a self-organizing set of nodes.

The decentralized and distributed nature of P2P networks makes them highly resilient to the common

issues affecting traditional centralized systems. In particular, P2P nodes are highly resilient to Denial-of-

Service attacks, distributed or otherwise, and typically enjoy increased efficiency with a greater number

of peers present in the system at any given time.
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Nodes participating in a peer-to-peer network are not necessarily actively contributing to the overall

network at every point in time and as such it is possible to aggregate unused capacity existing through-

out the network and apply load balancing techniques to prevent overloading only a subset of the nodes.

Some peer-to-peer networks organize their nodes according to a given topology, usually distinct from

the underlying physical topology, in order to better achieve their goals in terms of robustness, perfor-

mance and scalability.

Some of these Peer-to-Peer networks, such as Napster[31] and BitTorrent[16] are not fully decentral-

ized, however, as they rely on one or multiple servers to locate the files they wish to share, and to

advertise their own files. This makes those networks more vulnerable to Denial-of-Service attacks as

there is a central location with which peers must communicate in order to find the required resources.

Nonetheless, for all intents and purposes, these networks retain most of the characteristics of a pure P2P

network and are considered one of them.

A type of peer-to-peer network designed to solve this problem can be a Distributed Hash Table or

DHT, where nodes are responsible for a subset of all the keys in the network’s key space and cooperate

to provide scalable and efficient key location.

Large scale implementations of DHTs are rarer than other types of P2P networks, although some BitTor-

rent clients already implement a DHT protocol (referred to as the “Mainline” protocol) to decentralize

the network in a way that no server (known as a “tracker”) is required to locate other users with the

same file.

Well known DHTs include Pastry[52] and Chord[57], which organize the nodes in a logical ring and route

requests through other nodes in the ring.

P2P networks on the whole comprise a large part of all Internet traffic and as such have proved to

be scalable, with room for future growth.

Applications

Several P2P networks already exist deployed on a wide scale for various purposes. The following are a

few of the most relevant applications of P2P networks today.

File-sharing P2P networks are commonly used for the purpose of file-sharing. The most widely used

protocols for this purpose include Gnutella, Kazaa[30], Napster[31] and BitTorrent[16].

Over these networks users can search and download files to their computers through other users that

possess the same files (totally or partially), while sharing their own files. BitTorrent in particular is also

known to be used in order to alleviate server and bandwidth costs associated with the distribution of

extremely popular files, such as Linux distributions or video game updates which often weigh in the order

of the hundreds of megabytes.

P2P traffic through file-sharing was, as of February 2009, the largest type of traffic seen on the In-

ternet across all regions and BitTorrent in particular has enormously boosted the use of P2P networks

and continues to be one of the top protocols in use for the purpose of file-sharing worldwide[54].
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Streaming audio and video In recent years, with the rise in popularity of video streaming services

such as YouTube, a number of attempts to exploit P2P networks for the purpose of real-time streaming

of video and audio have come into place.

The main issue that needs to be solved is the fact that this kind of usage poses a number of prob-

lems which do not exist in the file- sharing scenario. File-sharing is inherently a problem of distribution

of time insensitive content, whereas streaming is the exact opposite. Distribution of time sensitive con-

tent presents a specific set of constraints that are not usually taken into account when developing a P2P

network, such as the timeliness for the arrival of a given packet at a receiving peer.

A number of approaches have been proposed to deal with these issues. Vlavianos et al propose BiToS[61],

which seeks to adapt the BitTorrent protocol for use in streaming video and audio content. The authors

concede the point that BitTorrent in particular is ill-suited for the purposes of live data streaming (such

as VoIP calls or live video broadcast) since the pieces are not known a priori and the piece selection

mechanism used by BitTorrent cannot be used as-is, as well as a number of other issues regarding piece

advertisement.

However, for the purpose of streaming pre-existent content, the authors propose a number of small

changes to the BitTorrent protocol which enable it to accommodate this kind of use. These changes

include replacing BitTorrent’s default “rarest first” piece selection algorithm by a “highest priority first”

algorithm as well as adding mechanisms to determine whether a given piece would be downloaded in a

timely manner.

Live streaming of data can still be achieved using P2P networks and a number of systems have been

developed for this purpose, such as PULSE[49], CoolStreaming[65] and AnySee[37].

Multiplayer online video games Another rising use for P2P networks is the organization of players

in multiplayer online video games.

Traditionally, multiplayer online gaming requires one machine to act as a host where player machines

connect in a typical client-server manner. Hosts are normally split into two types: dedicated and unded-

icated hosts. Dedicated hosts only serve the game to other players and act as a hub to synchronize and

exchange the game state between those players. On the other hand, undedicated hosts are typically

a local server running on the same machine as one of the clients. Both of these approaches have key

advantages and disadvantages.

Dedicated hosts usually offer better performance due to being run in dedicated machines connected

to a high bandwidth connection, but often incur costs to either the game developer, which now has to

maintain these servers, or to the players who opt to rent such a server. Additionally, this kind of server

can be considered to be always available, so clients only disconnect when they so desire.

Undedicated hosts are subject to lower performance due to the nature of traditional desktop computing

environments which have to perform a number of different tasks on a traditionally lower performance

machine, usually connected to a typical broadband home connection. Since hosts are created by other

players, there is also no guarantee the gaming experience will be smooth, since it is subject to the capa-

bilities of the hosting machine. This causes client players to experience greater amounts of network delay

and to be subject to the game host’s will to maintain the game running. When the host player leaves the
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game, the hosting server is usually shut down as well (we’ll refer to this issue throughout this section as

orphaning). The main advantage of this method is the basically zero cost of hosting the game.

P2P networks used in the context of online gaming can solve most of these problems at once, while

incurring in only insignificant penalties. By connecting users in a P2P environment, game developers are

not required to host the game servers themselves and through a smart selection algorithm it is possible

to select the best host among the peers currently connected to a given gaming session.

This technique has been used in a number of high profile gaming titles such as Stardock’s “Demigod”

and more recently Activision’s “Call of Duty: Modern Warfare 2”.

In both cases, a P2P connection is established among all players in a given session, and one of the

peers is chosen as a host, with which all other peers exchange game state information. Whenever the

currently hosting peer leaves the game, any other peer can be selected as the next host, as all peers would

know the same game state. The new host is selected through the use of metrics such as CPU power,

latency and possibly others (the actual metrics used in commercial games are not disclosed in detail by

the developers) in order to minimize latency for all players in the current session. The actual game needs

only to be interrupted for a few moments as the next best peer is selected.

In this manner, the gaming session can remain active as long as at least a single peer remains connected,

eliminating the orphaning problem completely. Through the use of a selection algorithm as described

above, the issue of low performing hosts can be greatly alleviated, although not completely eliminated.

All these types of infrastructure have their own merits and demerits and have been subject to exten-

sive study in order to provide clues on how they can be combined to take advantage of the best features

each system has to offer[58].

In the next sections, we will detail all three platform types mentioned above.

2.2 Institutional Grids

Several systems have been designed for use in institutional grid infrastructures to serve various purposes.

One of the earliest was Condor[38], which provided the ability to harvest idle cycles on a workstation

network to perform various tasks. Several other systems later appeared with the same purpose, such as

the Globus Toolkit[25] and OurGrid[8], enabling the construction of complex grid environments.

These projects focused mostly on resource discovery, scheduling, interoperability and transparency, how-

ever, and several other systems were developed to enable service discovery[46] or knowledge discovery

through the joint use of data-mining algorithms and very large data sets[17].

2.2.1 Architecture

Condor[38] was one of the first systems designed to harvest idle workstations and introduces the concept

of local schedulers and coordinators.

Workstations possess a local scheduler, responsible for ordering jobs according to their relative prior-

ity, while a central coordinator is responsible for actively seeking workstations with available computing
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capacity and informing the other workstations whenever a workstation is “offering” its idle cycles. Condor

has characteristics strongly reminiscent of desktop grids (the entire system runs on workstations where

users can locally connect to perform their own work) and of peer-to-peer networks (any workstation can

be both a client and a server, although there is only one server at a time), but since Condor depends on

the server to push new work loads to the clients (see Section 2.2.2) and because of the context in which

it was originally introduced in, it can be classified as an institutional grid system.

The typical grid network, as provided by the Globus Toolkit[25] and others, have a centralized net-

work topology where a small number of machines act as directory services and resource schedulers.

On Globus, work requests are submitted to a resource scheduling service (Global Resource Allocation

and Management) by client workstations, which then allocates the work units to the required machines.

These are located through a directory service called the Metacomputing Directory Service, which aggre-

gates and manages information on all available resources throughout the grid.

OurGrid[8], on the other hand, tries to alleviate the need for a user to setup his own grid environ-

ment, which is a requirement for systems like the ones provided by Globus, while maintaining the main

characteristics of a regular grid infrastructure.

Users run clients which schedule applications and connect to “OurGrid peers”, which provide access

to other resources made available in the grid (possibly a Globus infrastructure, for instance). OurGrid

peers are comprised of two modules: a consumer module, which accepts requests from clients and is

responsible for locating the necessary resources on the grid and later execute the requested jobs; and a

producer module, which manages and makes the resources available for the consumers.

2.2.2 Resource discovery in Institutional Grids

Resource discovery in grid environments is usually achieved by the existence of centralized Directory

Services, which contain and manage information on all the available resources on the grid. Clients who

wish to locate workstations in the grid refer to this directory service.

Some of the most relevant projects in this area follow:

Condor

Condor, as previously mentioned, uses a coordinator to schedule tasks to idling workstations automati-

cally, so users don’t have to actively search for workstations that meet a search of requirements. Since the

workstations are assumed to be fairly similar among themselves, resource discovery in Condor is based

mostly on determining CPU power and availability.

Every workstation possesses a local job scheduler and a background job queue, and one of the workstations

also maintains a coordinator service, which is responsible for allocating capacity from idle workstations

to local schedulers on workstations that have waiting background jobs.

In the original Condor implementation, the central coordinator actively polls the existing workstations to

see if they are available to serve remote cycles and which stations have background jobs waiting. Between

each poll, each local job scheduler also monitors its station to see if it is available as a source of remote

cycles.
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This approach is semi-centralized, as it requires a special node to act as a coordinator, but such is

only required for locating workstations available to perform work. In the case the coordinator is taken

offline, all existing work units are handled normally by the local job schedulers, adding to the overall

system robustness.

Figure 2.1: Condor architecture

Globus

In the case of the Globus Toolkit, resource discovery is provided by the previously mentioned Metacom-

puting Directory Service, or MDS. The MDS can store various types of information such as configuration

details (CPU speed, network interfaces) and instantaneous performance information such as network

latency, among others. This information can be stored as key- value pairs for each known node in the

system, and is usually maintained within conventional LDAP (Lightweight Directory Access Protocol)

servers.

The Globus Toolkit allows for the entire resource discovery and selection process to be exposed to, and

guided by, higher-level tools and applications. The toolkit exposes three mechanisms for such purposes:

• Rule-based selection - Through this mechanism, Globus modules can specify a set of rules that allows

them to choose a particular resource from many alternatives. Additionally, a rule replacement

mechanism allows for a module developer to specify alternative selection strategies for the case

where the default rules do not provide the required resources.

• Resource property inquiry - This mechanism allows a user to provide rules that perform resource

selection while taking into account specific variables. For instance, a user can provide a rule in the

form of “use ATM interface is load is low, otherwise Internet” in order to guide resource selection

by taking into account network load.

• Notification - The notification mechanism allows for the specification of constraints on the quality

of service provided by a given Globus service and a callback function that should be invoked if such

constraints are violated.

The use of these mechanisms ultimately allows computations to be configured efficiently for the available

resources and to adapt those computations or other behaviors dynamically when the availability or quality

of such resources change, providing greater flexibility.
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OurGrid

On OurGrid, clients (applications that manage access to the grid’s resources) contact OurGrid peers to

locate resources on the grid.

Upon receiving a client request, the consumer module of a peer will proceed to locate the required re-

sources by broadcasting a message containing the desired resources through the other peers to their

producer modules, including its own peer. All producers with the available resources that fit these re-

quirements reply to the sending consumer, effectively defining the available grid environment for that

job.

The consumer then passes this information to the client application which is responsible for scheduling

tasks onto the providers using an arbitrarily chosen algorithm and communicates with the consumer that

originally requested the resources to send the tasks.

This allows the consumer to account all the resources it consumes on behalf of other clients and permits

for the construction of a favor-based system.

2.2.3 Service discovery in Institutional Grids

Service discovery is usually done in the same way as resource discovery, through the use of a centralized

directory server which provides information about the location and properties of a given service.

Services publish themselves on the directory service periodically for as long as they are available

Several different systems have been developed for the purpose of service discovery, independently of

its application on grid networks, as is the case with JXTA, Jini, UPnP and UDDI, but can be used in

this context.

This kind of systems, however, is generally not scalable to an very large number of nodes, and their

application is restricted to institutional grids and smaller networks.

In [46], the authors introduce UDDI-MT, an extension to the UDDI infrastructure that allows the associ-

ation of metadata to regular UDDI records in order to describe service-specific attributes such as quality

of service, reliability of that service, among others.

UDDI-MT works transparently with existing UDDI infrastructures, acting as a gateway that filters incom-

ing messages to store relevant information on its own back-end while sending all the necessary information

to the UDDI back-end. This system enables the extension of client queries in order to find services that

match the stored metadata, and further extends the UDDI infrastructure by adding leases to force services

to republish themselves regularly.

2.3 Desktop Grids

Desktop grid systems enable the use of ordinary desktop computers to perform distributed computing.

One of the most popular desktop grid systems is SETI@Home[7], which later evolved into the BOINC[6]

desktop grid system, which allows multiple, heterogeneous projects to take advantage of the same desktop

grid environment comprised of thousands of ordinary desktop computers around the globe.

The SZTAKI Desktop Grid[34, 10, 40] builds on BOINC to enable the scheduling of BOINC tasks on

cluster infrastructures by manipulating incoming tasks and converting them to regular cluster jobs.
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Cluster Computing On the Fly(CCOF)[66] builds an overlay network for the purpose of CPU cycle

sharing in non institutional environments. Although it is a desktop grid system, it shares many prop-

erties with Peer-to-Peer systems, namely the fact that nodes communicate directly with each other to

share resources, only using the overlay for resource location and discovery.

Lastly, the commercial Entropia[15] system distinguishes itself by leveraging existing, unmodified ap-

plications to perform work in a desktop grid environment. This last system will not be discussed in depth

due to much of its functionality uses proprietary techniques and is not described in detail.

2.3.1 Architecture

Desktop grids, as described above, are usually built with regular, off-the-shelf PCs. These computers

regularly connect to a centralized server to get new jobs to work on, freeing that server from the task of

periodically querying clients for availability.

Since every client is outside of the grid’s administration control in terms of availability, it’s often prefer-

able to use this type of pull approach as opposed to the push approach used by traditional grid systems

such as Condor.

The architecture for some of the most prominent desktop grid systems is described in the next sections.

BOINC

BOINC uses a client-server architecture, where the server side possesses a relational database in which

are stored diverse pieces of information regarding each project hosted by the platform, such as registered

users, available work-units, as well as sent and received work-units.

Each project has a number of different components. A back-end, which is responsible for distribut-

ing work-units and process the results sent by the clients; a data server, responsible for distributing each

work-unit’s data files and gather their respective result files; the scheduler, which controls the work-unit

delivery to each client according to their productivity, and finally a Web server which allows for each

project to serve its own pages for participant interaction.

On the client side, there is only a core BOINC component and a project specific “science application”,

which processes incoming work-units.

A schematic of this architecture can be seen in Figure 2.2. In BOINC, new jobs are requested by

the clients to the scheduling server, which determines the best work-unit for a given client, taking into

account which projects the user has selected to contribute for. Additionally, each client makes its own lo-

cal scheduling to try to meet performance metrics and deadlines for each individual project it is registered

on.
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Figure 2.2: BOINC’s client-server architecture
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Cluster Computing On the Fly

In CCOF, nodes organize themselves in communities through the use of overlay networks. Nodes asso-

ciate themselves to each of these overlay networks depending on how they’d like their idle cycles to be used.

The architecture in this system, as shown in Figure 2.3, is comprised of the following components:

• Community manager

• Application scheduler

• Local scheduler

Figure 2.3: Cluster Computing On the Fly

SZTAKI Desktop Grid

The SZTAKI grid, being derived from BOINC, employs the same base topological arrangement as that

system, but since its goal is to leverage existing cluster infrastructures for desktop grid computing, a few

changes are required on the client side.

In a desktop grid, as previously discussed, client machines connect to the server and request work

units that they may process. Typically, each client only requests a limited number of work units at

a time, as it usually cannot process many at any given time. In SZTAKI, a cluster may request a much

larger number of work units as if it were a single powerful machine, from the server’s point of view, and

then redistribute those same work units as cluster jobs among all the machines using a local Job Manager.

This architecture is displayed in Figure 2.4.

2.3.2 Resource discovery in Desktop Grids

Different desktop grid systems typically employ different strategies for resource discovery. Let us explore

the strategies employed in two of the most well known systems, BOINC and CCOF:

BOINC

BOINC uses the concept of work-unit, which is defined on a per project basis and consists on a set of

actions to be performed on the data as well as some requirements regarding CPU capacity or network

bandwidth, for instance.
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Figure 2.4: The SZTAKI Desktop Grid

Work-units are managed by the server’s scheduling component, which the client machines query for

pending work on a given project. If there are work-units available for that project, the scheduling server

will send a number of those work-units to the client and await for the results until they are sent by the

client or a specified deadline is reached.

As the work-units in a given project all have the same cost, or weight, there is no particular criteria

that the scheduling server applies before handing work-units to a client. It is up to the client’s lo-

cal scheduling service to determine which projects it will fetch work-units from and to schedule which

work-units should be executed next in order to achieve a number of goals:

• Maximize resource usage;

• Meet result delivery deadlines;

• Maintain a certain degree of variety among projects;

• Respect the resource share allocation determined by the participant.

Cluster Computing On the Fly

Cluster Computing On the Fly uses a decentralized approach to resource discovery by using profiles to

generate resource information on the machines. A profile is predetermined according to some assumptions

(like for instance the fact that most users tend to use their machines in the morning and having it idle

during most of the remainder of the day) and is applied equally on every node. Nodes in the network

are then searched for the required resources and jobs are given to some or all of these nodes after being

picked by the job submitter.

CCOF also served as a simulation platform to test four different search methods for resource location:

expanding ring search, advertisement based search, random walk and rendezvous point.

Ultimately, the rendezvous point method was determined as the one with the best overall performance
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both in low and high computational load situations. This method uses a dynamically created group of

nodes, called rendezvous points, to which regular nodes announce their profiles to. Client nodes contact

these rendezvous points to obtain nodes with available resources according to the required profile.

When a node is selected as a rendezvous point it announces its new function to all nodes it is connected

to within a given number of hops.

2.3.3 Service discovery in Desktop Grids

Services in desktop grids can be seen as the applications a client runs on his desktop. For instance, in

BOINC, a client offers his cycles to specific projects, providing a service to those project in detriment of

others.

From this perspective, service discovery in BOINC is done in a centralized manner, by scheduling work-

units from a given project to client who have registered their machines to that particular project. CCOF

offers no distinction between resources and services, which means available applications can be simply as

another attribute included in the description of the system.

2.3.4 Security in Desktop Grids

Desktop grids, due to the fact that they run on regular, out of the box desktop computers usually owned

by regular computer users and as such interact with a far more complex and unpredictable software and

hardware ecosystem than on a traditional grid system, must employ additional measures to protect both

the host system and the desktop grid infrastructure as a whole.

In order for a desktop grid to work, the system must be resilient to tampering by malicious desktop

providers to prevent result falsification and cheating, as well as prevent malicious code from running in

the desktop computers through the desktop grid applications. Failure to do accomplish either of these

aspects would break the existing level of trust between all participants and render such a system unusable.

Let us analyze how the previous systems deal with some of these issues.

BOINC

In BOINC, result falsification is a great issue, since as the authors discovered during their work on

SETI@Home, participants can be highly motivated by the use of “credit”, a scoring unit defined by

a combination of computation, storage and network transfer. There is a number of leaderboards that

display ranking among participants by taking into account their amount of credits, and as such there is

enough incentive for participants to attempt to cheat by awarding themselves extra credits by forging

results.

In order to deal with result falsification, BOINC employs a redundant computing mechanism that iden-

tifies and rejects erroneous results. Each BOINC project can specify that a number of results should

be created for each BOINC work-unit. Once a number of these results have been obtained, they are

compared and a canonical result is obtained through consensus. If no consensus is found, BOINC would

create new results for the work-unit and repeat this process until the result or time limit is reached.

In this manner, malicious participants can still game the system by obtaining large numbers of results
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and attempt to form a consensus using a number of them, but since each user can only send at most one

result of a given work-unit, gaming the results this way is exceedingly difficult.

As for securing the client machines against malicious code, the only safeguard presented by BOINC

is the fact that all code is made specifically for each project by the respective research teams and cannot

run outside the BOINC environment, and as such offers no real security from malicious code, whether it

is intentionally malicious or not.

Entropia

Entropia offers an interesting approach to security, by applying sandboxing, encryption and binary mod-

ification to achieve the aforementioned security goals.

In order to have some degree of control over the interaction between the grid application and the desktop

computer, Entropia employs binary modification in order to intercept Windows API calls. The applica-

tion is run on a sandboxed environment provided by virtualization techniques, thus disallowing the grid

application from directly modifying the contents of the desktop computer’s disk, Windows Registry and

other system resources. An application that attempts to write to a physical disk location will in fact

to a sandbox directory controlled by Entropia, and calls to Windows API functions that should not be

necessary for the normal functioning of the sandbox application (e.g. API calls that allow for shutting

down the desktop computer) are not allowed.

In order to protect the grid environment from result falsification, the Entropia sandbox environment

applies encryption to all managed applications, as well as their data and result files. This prevents third-

party applications from inspecting or tampering with the application directly.

The sandbox also automatically checks data integrity for the application and its files to detect tampering

and will reschedule the tampered work unit on another client, to prevent further tampering attempts.

2.4 Peer-to-peer networks

In a peer-to-peer network, all connected entities, referred to as “nodes”, act both as a client and server,

distinctly from the traditional client-server architecture present in many networks, where there are many

clients for a single server.

A number of systems have been developed using this kind of networking for several purposes, like file-

sharing (e.g. Napster, Kazaa, BitTorrent) and resource discovery (e.g. INS/Twine[11], XenoSearch[56]).

In the following sections, several aspects of peer-to-peer networks will be detailed.

2.4.1 Topology

In many of these peer-to-peer networks, all nodes are considered equal, having equal shares of responsibil-

ity throughout the system, although in some cases it may be desirable to have a relatively small number

of promoted nodes, commonly known as super-peers or ultra-peers.

These super-peers can act as brokers or gate keepers for the remaining nodes, and generally possess

a more accurate knowledge of the system. In networks such as Gnutella2, for instance, super-peers act

as indexing servers which other nodes can consult to locate files.
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Super-peers can in this way provide some of the efficiency of traditional centralized networks while main-

taining the robustness and flexibility inherent to peer-to-peer networks nearly intact. In [63], the authors

describe several techniques that can be used in the design of super-peer networks in order to maximize

the efficiency of the network.

P2P networks can be generally split into two categories: unstructured and structured networks.

Structure in a P2P network can be seen as a logical arrangement of the participating nodes and their

connection to each other, which is often completely unrelated to the underlying physical network and

geographical distribution of nodes. This logical arrangement is often referred to as the overlay network.

Unstructured networks, like the name implies, have no predefined structure and links between nodes are

Figure 2.5: Sample overlay network, and its underlying physical network

generally formed in an arbitrary manner.

There are cases, however, where structure naturally emerges as a consequence of high popularity among

certain nodes which contain frequently accessed resources (in the case of file-sharing networks, nodes

containing very popular files obtain this status, for instance).

Examples of well studied unstructured P2P networks include Gnutella[35], Napster[31] and most recently,

BitTorrent[16].

Structured P2P networks, on the other hand, tend to have a given structured, predetermined by de-

sign constraints. The typical use of a structured P2P network is to construct a distributed hash table,

or DHT.

DHTs use key-value pairs to map resources to nodes. Keys can be generated in many ways, and usually

consist of an m-bit identifier generated by a hash function applied to files or node IP addresses.

There are several possible topologies in this kind of networks.

In Chord[57], nodes are organized in a logical ring and possess a m-bit unique identifier. Each node

has a finger table which contains routing information of up to m other nodes in order to increase the

lookup efficiency. Each node is responsible for every item which key is between that node’s key and its

predecessors.

Lookups are performed by calculating the key of the desired resource and then routing the message as if

trying to locate a node with that key. The result of that lookup will be the node which currently holds

the resource with that key.

An example of this topology is shown in Figure 2.6.

CAN[50], short for Content Addressable Network, organizes its nodes in a k -dimensional Cartesian space.

Nodes are responsible for a region of the space (in a 2-D plane, nodes are responsible for areas of that
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Figure 2.6: a) Chord network with finger table for node 8. b) Lookup path for key 54.

plane, for instance, as depicted in Figure 2.7) , and as nodes join and leave the network, existing nodes

split their areas at any given moment.

Upon joining, nodes randomly pick a point in space and send a request for that node to a previously

known node. This request is then routed to the node owning the zone in which that point lies. That

zone is then split equally between that node and the new one.

Figure 2.7: An example 2-dimensional CAN overlay.

Routing in CAN is performed by a simple greedy algorithm that routes messages to the current node’s

neighbor which is closer to the destination point. Two nodes are considered neighbors if they overlap

along d − 1 dimensions and are adjacent along only one dimension. In Figure 2.7 , nodes 1 and 5 are

neighbors, but 1 and 6 are not. There are several possible paths along the overlay, as a node may have

several neighbors, and this property is useful if the best possible neighbor is found to be dead, as the

message can be routed through another neighbor.

Kademlia[44], on the other hand, uses a tree-shaped configuration by arranging nodes into i k-buckets,

which consist of lists of tuples containing the IP address, UDP port and ID for nodes with a distance be-

tween 2i and 2i+1 from itself, where i is an integer between 0 and m, with m being the number of key bits.
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These k-buckets are kept sorted by the last time each node was “seen” by the current node. The k-buckets

will generally be empty for small values of i (as no nodes with the appropriate ID will be present), but

for larger values they can grow up to size k, which is a value chosen such that any given k nodes are

unlikely to fail within an hour of each other.[44]

The k-buckets are updated whenever a node receives a message from another node, thus updating the

bucket corresponding to the sender’s ID, and a node is only removed from its k-bucket if it fails to re-

spond. If a k-bucket is full and the least recently seen node is still alive when a new sender’s message is

received, then the new node’s information is discarded.

Node distance in Kademlia is based on the XOR metric, which defines the distance d between two

nodes with IDs x and y as d(x, y) = x ⊕ y. Node IDs are similar to the ones used in Chord and can be

calculated using the same methods.

Lookups are performed by selecting a small number of the closest known nodes to a given key and

recursively looking for the k closest nodes to that key. When looking up for a key-value pair, the proce-

dure stops as soon as a value is returned (as nodes can return the value if they possess it, rather than

returning a triple as mentioned above).

To provide redundancy, values are stored in up to k nodes, and values are periodically replicated from

nodes that already store those values by locating the k closest nodes to that value’s key.

It is also possible to mix topologies, as in Pastry[52], where a tree-like topology is used for general

routing, whereas a ring-like topology is assumed to route when we are close to the destination or the

tree-like approach fails to find an appropriate node.[45]

Figure 2.8: Possible state of a Pastry node.

Pastry possesses a rather complex set of routing entries (seen on Figure 2.8) . Its state contains a leaf

set, a routing table and a neighborhood set.

The leaf set contains the set of nodes with the |L|/2 numerically closest larger and smaller nodes to the

current node ID, where |L| typically is 2b or 2b+1 and b is a configurable number chosen such that it

provides a good trade-off between the size of the populated portion of the routing table and the maximum

number of hops required to route between any two nodes. It is used during message routing when the

current node is close to the message’s destination.

The routing table has dlog2b ne rows with 2b − 1 entries each. Entries at row n of the routing table

refer to a node whose ID shares at most the first n digits with the current node. Multiple nodes may
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share this common prefix, and to maintain good locality properties, the closest one according to the

proximity metric is the one chosen for the entry.

The neighborhood set points to a set of nodes that are the closest to the current node according to

the proximity metric. Unlike the routing table and the leaf set, this set is not used in routing messages

most of the time, but it is useful in maintaining locality properties.

Routing in Pastry is done by first trying to route through the neighborhood set, and if the destina-

tion node is not encompassed by it, then route through the routing table. In the rare case the message

cannot be routed through the routing table, it will be routed through any known node such that its ID

shares a prefix with the key at least as long as the current node and it is numerically closer to the key

than the current node’s ID.

Pastry is also extremely robust and resilient to concurrent node failures, as eventual delivery is guaran-

teed unless b|L/2|c with adjacent IDs fail simultaneously. This makes it very hard to significantly disturb

the network through node failure. Also, at worst, the required routing steps will be at most N , while the

nodes are updating their state, where N is the number of nodes currently present and alive on the overlay.

A comparison of these DHT topologies is located on Table 2.1.[45, 59] The main advantage of structured

Chord CAN Kademlia Pastry
Topology structure Ring Cartesian spaces XOR-tree Hybrid
Lookup cost O(log n) O(d · n1/d) O(log n) O(log n)
Join/leave cost log n 2d 2b · log2b n + 2b 2b+1 · log2b n
Number of entries/node log n2 2d log2b n log2b N + c

Table 2.1: Comparison of different DHT topologies. Legend: n - number of nodes, d - number of
dimensions, b - number of key bits

networks over unstructured ones is the ability to perform simple and efficient lookups in the network,

since the structural constraints allow for deterministic placement of nodes. The usage of keys to identify

both nodes and content allow to efficiently determine which node contains a given resource (or service).

From the previous table, we can see that in most cases, querying takes only O(log n) messages for struc-

tured networks.

To perform a lookup on an unstructured network, the typical approach consists of a constrained flood,

where the query is spread to all known nodes with a given Time-To-Live to prevent saturating link band-

width, or through the use of random walks, where neighbor nodes are picked at random as the next node

to query. These approaches do not guarantee a resource will be found, even if it exists (it may be beyond

the TTL boundary, for instance). The use of flooding techniques greatly increase the number of messages

on the network, as querying requires n × avg.degree messages, where the average degree is the average

number of outbound links per node.

This also limits the efficiency of range queries, as the lack of a structure denies the inherent efficiency of

determining nodes belonging to a given range through their relation with other nodes in the network.

Structured networks, however, are much less stable than unstructured networks under churn (the ef-

fect caused by nodes constantly entering or exiting the system), since the structural requirements of the

network add to the complexity of the network and additional steps must be taken to ensure this structure
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is maintained to preserve the desirable properties of structured networks.

The following table summarizes these points:

Scalability No. of messages Robustness Range queries
Unstructured O(log n) n× avg.degree High No
Structured O(log n) O(log n) Low Yes

Table 2.2: Comparison of structured and unstructured networks

2.4.2 Resource discovery in P2P networks

As said above, unstructured P2P networks such as Gnutella generally use flooding to perform lookups.

This introduces an enormous overhead on the network, and is unscalable since the bandwidth cost of

a query increases exponentially with the number of searched nodes, as each node propagates the query to

all its neighbors[45]. Additionally, the fact that many clients are connected only for very short amounts

of time causes many searches to deliver unsatisfactory results since only a small amount of the total users

are effectively searched due to query drops.

To solve these issues, the Gnutella protocol has been heavily improved through the addition of search

algorithms based on random walks, super-peer clustering (known as ultra-peers in Gnutella terminology)

and other improvements. This gave birth to the Gnutella2 protocol, which is far more scalable, at the

cost of additional vulnerability to DoS attacks and network maintenance protocols (due to the existence

of super-peers).

Other protocols, such as BitTorrent, rely on the existence of a central resource information repository,

known as a tracker, to discover which nodes possess different files or chunks of files. BitTorrent is, in

its essence, an unstructured network, but the use of a tracker overcomes the usual problem associated

with this type of networks, at the cost of fragmenting the nodes using this protocol into several smaller

networks where not every file is available.

In structured networks resource discovery usually amount to performing a hash over the required re-

source description and performing a lookup on the network. This, however, has a few shortcomings.

Lookups in DHTs are often exact queries as the use of hash functions makes a slight change in a re-

source description (for instance, a file or its metadata) yield a completely different key and a the same

time makes it difficult to perform “range queries” which provide multiple results that fit a specified range.

This kind of lookup also makes it difficult to handle highly dynamic resources (for instance, in a grid, the

available RAM or CPU power in a given machine), as the frequent changes in values would cause nodes

to frequently “move” in the overlay. A few proposals have been made to overcome this problem, such

using specialized encoding functions instead of hash functions to encode static and dynamic attributes of

a node into a key[14].

To solve these issues and allow for range queries a number of systems have been developed as well.

Marzolla et al propose, in [41], a system that organizes nodes in a tree-structured overlay network based

on Routing Indexes[19], where nodes maintain information about the resources they manage as well as a
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description of the resources present in the sub-trees whose roots are that node’s neighbors. The range (or

domain) of each attribute is split into k sub-intervals, where k may differ between different attribute types.

For each resource, the index of a given attribute of that resource is then represented as a k -bit vec-

tor with all its entries set to 0, with the exception of the one corresponding to the sub-interval where

the actual value of that attribute is contained. The index that represents that attribute for all the local

resources of a given peer is then obtained by preforming a logical OR operation on all the attribute bit

vectors of the local items.

Multi-attribute range queries are split into multiple sub-queries, one per attribute, which are then mapped

into binary vectors of length k (with k naturally being the value associated with each attribute type)

whose entries are set to 1 if they correspond to sub-intervals contained in the range specified in each

sub-query.

Sub-queries are initially matched against local indexes to determine if local resources satisfy the query,

and then against routing indexes to determine which neighbors contain indexes that satisfy all sub-

queries, to where they will be routed. Updates are dealt with by only sending messages if the new bitmap

representation of the resources differs from the old one. This avoids unnecessary communication and

adds to the scalability of the system.

The authors later expand on this work, where they propose using a two- level overlay network[42, 43]

by splitting the nodes into a set of smaller trees to solve maintenance issues in the above architecture

(since the tree is required to be balanced and that is hard to obtain on a peer-to-peer environment due to

churn) and also to further increase the system’s scalability by preventing overloading in a single root node.

In another work, Crainiceanu et al.[18] propose the use of P-trees, which form a distributed B+ tree,

where each node maintains a semi-independent sub-tree and views the key space as a ring where its own

root value is the smallest. The semi-independence stems from the fact that each node only maintains its

own root to leaf path, while maintaining pointers to the nodes necessary to complete the tree.

Sub-trees can have overlapping ranges to allow for nodes to independently grow or shrink their own

trees, eliminating any coordination steps that would otherwise be necessary. Thus, local inconsistency is

allowed but periodically corrected to guarantee global consistency.

Range queries are performed as queries in a B+ tree, using the stored information and contacting other

nodes as necessary.

Andrzejak et Xu[9], on the other hand, propose extending an existing CAN-based DHT to deal with

range queries through the use of specific servers in the network known as interval keepers.

These servers are responsible for a sub-interval of a given attribute’s possible value range, and other nodes

report their attribute value to the responsible keeper. Servers are mapped to regions in the k -dimensional

space through Space Filling Curves, and maintain locality properties such that close values of a given

attribute are also “close” in the Cartesian space.

Multiple attributes in a resource’s description are mapped individually to the corresponding DHT.

Range queries in the system are routed to the interval keeper that owns the middle point in the range

and that node will then recursively propagate (through flooding) the request to all its neighbors until all

the keepers that maintain points inside the specified range are visited.

XenoSearch[56] is the resource discovery system employed in the XenoServer Open Platform[28]. It
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uses the Pastry DHT to perform indexing and querying. Every attribute on a given resource is mapped

into a different Pastry ring to allow for multiple attribute queries. Queries are simply decomposed into

sub-queries, one per attribute, and then a range query is made for each of these sub-queries.

Range queries are enabled due to the fact the information is stored in a tree-like structure where leaves

correspond to independent peers in the network and the tree’s internal nodes (or Aggregation Points)

are parents of all nodes that fit a given range for a requirement. These points are mapped into Pastry

keys and the closest peer to a given Aggregation Point key according to the ring’s distance metric is

responsible for maintaining all the information corresponding to that Aggregation Point.

SWORD[48, 5] provides a mechanism for the location of nodes based on both static and dynamic char-

acteristics, as well as inter-node characteristics. It provides multi-attribute ranged queries and several

other notable features such as allowing to filter out nodes when there are more nodes available than the

user actually requires. There are two types of nodes in this system: reporting nodes, which periodically

measure and report available resources, and server nodes, which receive the reports and handle user

queries.

SWORD uses the Bamboo[51] DHT, similar to Pastry, to organize server nodes. For each of the ex-

isting attributes, reporting nodes map the attribute to a key and send a tuple containing all attributes

to the server node in the DHT corresponding to that key, where that tuple is stored for each reporting

node. Range queries are supported by mapping the range of possible values to a contiguous region of the

DHT space using a given function.

In Mercury[13], the authors propose a system that allows for scalable, multi-attribute queries in which

nodes are split into attribute hubs and queries are made to the hubs responsible for the necessary at-

tributes. This system makes a “small world” assumption that guarantees inter-hub routing is efficient,

as it is assumed any given node is reachable in a small number of hops.

Routing and indexing in Mercury is provided by the Symphony[39] DHT, a one-dimensional DHT de-

signed with the aforementioned small-world assumptions in mind. Symphony allows for range queries by

locating the node corresponding to the smallest value in the range and then proceeding through the next

values until the largest value is reached. The query then returns a list of all resources in the range whose

other attributes also match the corresponding ranges specified in the query.

INS/Twine[11] presents a scalable resource discovery architecture for peer-to-peer networks through the

use of DHTs. It splits a resource’s description into a subsequence of attributes and values, called a strand.

These strands are then hashed, and these hashes form the numeric keys to use in the DHT.

From the resource description, the system also builds an AVTree (attribute-value tree), which describes

the resource. This allows for the existence of partial matching of queries, i.e. queries whose corresponding

AVTree only partially matches the published resources’ AVTrees. Queries must then have an hierarchi-

cal structure similar to the resource descriptions that allow them to be transformed into the same data

structures for comparison.

In INS/Twine, queries are resolved by a set of resolvers organized in an overlay network which route

resource descriptions among themselves for storage and collaborate to resolve client queries.

Clients submit queries to a resolver that transforms that query’s AVTree into strands and computes the
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key for each strand. Then the message is routed to the correct resolver for each strand through the DHT

using the previously calculated keys. Resolvers receiving these messages respond to the original resolver

which in turn sends the query results to the client application.

Finally, Camargo et al. present OppStore[21, 20], based on the Pastry DHT, which like the work pre-

sented by Cheema et al. attempts to address the problem of dynamic attributes in a node. This is done

by calculating the node’s capacity, based on characteristics such as the node’s general availability, free

disk space, processing power and others. This capacity value is then used to assign to each node a virtual

ID using the same range of valid Pastry IDs as used in the regular Pastry keys, through the virtual space

partition protocol.

This protocol is executed whenever a node joins or leaves the network, or when a node’s capacity changes.

After joining the network through the usual Pastry joining protocol, new nodes obtain the virtual ID

and capacity of each node in their Pastry leafset and partitions the virtual ID range covered by these

nodes, assigning to each node a virtual ID range proportional to their capacity so that queries will be

assigned to nodes with more capacity automatically. Nodes are only required to store an additional identi-

fier, as well as virtual leafset and as such incur only a small penalty on the complexity of the entire system.

Routing is also mostly unchanged, despite the addition of virtual IDs. The only change occurs in the last

hop of routing a message, where the virtual leafset is used instead of the regular Pastry leafset in order

to determine the node to which the message will be delivered. In fact, the Pastry leafset is still used,

but it only provides the real ID that maps to the virtual ID in the virtual leafset. As such, routing using

OppStore virtual IDs takes the same number of hops as through the regular Pastry overlay.

By using this protocol, and because virtual IDs increase the system’s flexibility while adding little over-

head to the base Pastry protocol, the system can adapt easily to highly dynamic environments with

changing node capacities and churn.

Note that other systems exist, such as SkipNet[29], which support range queries but do not support

multiple attribute queries. This is caused by the DHT structure which sacrifices this ability for the

ability to perform range queries in logarithmic time and guarantee path locality (by arranging nodes in

a ring where nodes are sorted by lexicographical order), a characteristic that most DHTs disregard.

The main characteristics for the systems presented above are summarized in the following table:

Architecture Multi-attribute queries Range queries
Marzolla et al. Tree-based Yes Yes
Crainiceanu et al. Distributed B+ tree No Yes
Andrzejak et al. CAN Yes Yes
XenoSearch Pastry Yes Yes
SWORD Bamboo Yes Yes
Mercury Symphony Yes Yes
INS/Twine Any Yes Yes
SkipNet Skip List Yes No
OppStore Pastry Yes Yes

Table 2.3: Summary of resource discovery systems
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Service discovery in P2P networks

Service discovery in P2P networks is a fairly unexplored subject, as most of the use given to this type of

networks revolves around file-sharing and data replication, which amounts to resource discovery rather

than service discovery.

Banerjee et al.[12] propose building a distributed UDDI registry over a DHT, which acts as a rendezvous

network between several separate UDDI registries. The use of a DHT allows to overcome the lack of

scalability of the UDDI registry system, thus avoiding relying on public UDDI systems.

In this system, the various UDDI registries are kept as separate entities, which coordinate through

the DHT to determine which registry holds a given record. When a new record is to be inserted, the

client contacts a Proxy UDDI server, which in turn uses the DHT to map it to a key that will be used to

determine the UDDI registry where that record will be placed. When the registry is located, the service

is published there.

If the service has multiple words, each word is mapped to a key separately, which can result in multiple

UDDI registries being used to store the service record. Querying the system to locate a service follows

the same steps to locate the necessary registries, and queries are sent to all UDDI registries that match

the queried word.

2.4.3 Representing resources and services

Representing resources and services in a way that allows for easy indexing and querying is a problem

tackled by many of the systems mentioned in the previous sections.

Most solutions, such as the ones proposed by Balazinska[11], Bharambe[13], Oppenheimer[48] and Albrecht[5],

rely on the use of XML due to its simplicity and structure, which allows to establish hierarchical relations

between attributes, as well as specify characteristics particular to a given attribute type.

This XML representation is later mapped into an internal representation for compression and efficient

replication. Queries can be introduced in XML form (or translated to this form from an easier to write

form, such as flat text) to provide an equivalent representation for both the desired resources and those

that are known in the system.

2.5 Analysis

Recently, the two major development areas in distributed computing systems have been Desktop Grid and

Peer-to-Peer systems, due to the increasing pervasiveness of computers in our everyday lives. Increasing

amounts of available bandwidth, coupled with a very strong need for content consumption have turned

Peer-to-Peer systems almost ubiquitous and part of mainstream computing lingo. On the other hand,

there has been growing awareness about Desktop Grid systems and their use to advance scientific research

in areas people feel empathic about due to various factors. One example is the Folding@Home project[36],

which has had enormous success, counting with over 350,000 CPUs contributing for the project as of 2010

for the purpose of advancing medical and pharmaceutical sciences.

Both technologies have similar goals, as they attempt to exploit existing resources and infrastructures in

a distributed manner although for very different purposes and with differing priorities.
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Nevertheless, traditional Grid infrastructures continue to have great importance in academia and scien-

tific projects due to their reliability and are one of the enabling technologies for very large scale research

projects such as the Large Hadron Collider.

Let us offer a comparison of the most important points for these technologies, with focus on Peer-to-

Peer networks due to their particular relevance for this work.

2.5.1 P2P vs Institutional Grids

Traditionally, institutional grid systems have been developed with the intention of providing computa-

tional power for very specific and sophisticated applications, on a tightly controlled environment. As the

applications’ complexity increases, so does the required computational power and the difficulty to install

and maintain such systems in a scalable manner.

Peer-to-Peer networks, on the other hand, have focused mostly on providing services with little so-

phistication, such as file-sharing but are now starting to appear in more complex scenarios, such as

video streaming, online gaming and cycle-sharing applications due to their scalability and robustness. As

research in P2P systems advances, better, more sophisticated ways to manage the various peers partici-

pating in a P2P environment emerge.

Although both systems approach each other in some areas, they diverge in a few major points, as follows.

Scalability Scalability in distributed systems can be measured in two ways: the total amount of par-

ticipants the system supports, or the overall throughput of the system, where “throughput” is specific to

the type of distributed application at hand. For instance, in a file-sharing distributed system, throughput

can be defined as the amount of data that can be shared in a period of time, while in a cycle-sharing

application it can be seen as the amount of work that was performed in a given period.

Institutional Grids traditionally have a modest number of participants, as each institution only has a

relatively small number of nodes available for computation, in the thousands. Despite this, a grid’s

throughput is generally very high, with very specialized nodes running very sophisticated, optimized al-

gorithms. One limiting factor of traditional grid systems’ scalability is their reliance on centralized data

repositories to feed the various nodes available. This type of approach does not scale well with a growing

number of nodes. This is not obvious from the designs presented in the Globus toolkit, for instance, but

actual implementations usually suffer from this type of flaw.

Peer-to-Peer systems, in contrast, usually scale very well in terms of the number of participating nodes,

up to the hundreds of thousands of nodes at any given time and although the overall throughput is not

as high as in a grid environment due to a number of factors including the general heterogeneity of the

nodes involved, it is generally significant. For instance, it has been demonstrated that BitTorrent can

saturate a peer’s bandwidth during file transfer with the right conditions[64] and that this can be used

to perform Distributed Denial of Service attacks by simply overwhelming the target’s TCP stack[22].

Resources Grid networks are typically homogeneous and as such benefit from having standardized,

well defined characteristics both in terms of hardware and software, facilitating resource and service dis-

covery. Additionally, since these systems are typically deployed in the context of large scientific projects

they are comprised of more powerful, better integrated components. They possess better centralized ad-
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ministration and are easier to manage, with fine-grained control as well as having predictable availability,

faults not withstanding.

Peer-to-peer systems possess little to no centralized management mechanisms due to their very nature,

which makes them extremely resilient against denial of service attacks, but at the same time this precludes

almost any type of control over the system. This lack of control also brings along a serious downside,

because nodes can leave and join the network as they please, so the overall availability of system is not

predictable in every situation.

Resources in a peer-to-peer environment are very heterogeneous, with machines running different combi-

nations of hardware and software, with varying degrees of availability even among machines sharing the

same characteristics. Since many of these systems run on machines that are also manipulated for a local

user, availability can vary significantly outside of the context of the distributed computing applications.

These problems thus require more sophisticated resource and service discovery mechanisms than those

found on grid systems.

2.5.2 P2P vs Desktop Grids

A desktop grid environment shares many characteristics with both traditional Grid systems and Peer-to-

Peer systems and form a somewhat intermediate step between those two systems.

We shall compare a number of key points where these systems approach and differ.

Scalability Like a Grid, desktop grids are usually centrally managed, with a single point responsible

for the global scheduling of the required work units and as such incur in some of the scalability penalties

associated with traditional grids. However, since nodes are voluntarily donated without centralized inter-

vention and work units tend to be similar regardless of the amount of computing power offered by each

node (as seen in BOINC, for instance), managing a desktop grid in order to scale with growing numbers of

nodes can be a much easier task, as it only involves making sure the central services also scale accordingly.

In practice, scaling those central resources is not an easy or inexpensive task and desktop grids can

suffer from bottlenecks in the client-server communication. Peer-to-peer systems can perform much bet-

ter in this respect by decentralizing the global scheduling services, distributing that task among a number

of nodes who are themselves clients. A single point of failure cannot exist and even if a number of nodes

fails, other nodes can take their place and maintain the entire system running at a comparatively low

performance penalty.

Availability Unlike a grid and much like a peer-to-peer network, desktop grids are volatile, as their

participating nodes can join and leave the network at will, often without completing their respective tasks

in the system. In both cases, it is often required to use incentive mechanisms to keep nodes connected and

participating. We’ve already seen that BOINC implements a “credit” system to provide incentives for

participants (as seen in Section 2.3.4), and a number of peer-to-peer systems employ other mechanisms

to ensure user participation. An example is the “tit-for-tat” mechanism employed by BitTorrent[16]

which allows peers to choose to upload only to peers from which they downloaded as well, in order to

avoid freeloaders. Desktop grids are also deployed in some contexts (academia, for instance) where such

incentive mechanisms are not strictly required.
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Both desktop grids and peer-to-peer systems have very heterogeneous environments and possess very

different nodes present at any given time in the system. This contrasts with traditional grids which

typically have very well defined and controlled combinations of hardware and software, dedicated to the

task at hand. This brings issues in terms of availability management, since not all nodes are as capable

as the others and mechanisms for finding the “right” participant for a given job must exist.

Resource and service location in desktop grids can be much simpler however, as the information regarding

participant nodes is centrally located. In order to provide similar performance regarding resource loca-

tion, peer-to-peer networks must often adopt more structured overlays, usually in the form of structured

topologies and the use of more specialized peers specifically for the purpose of resource location.

Security Desktop grids and peer-to-peer networks present similar security challenges. In both systems,

since they cannot be controlled in any significant manner, a number of attacks are possible to perform

in ways which attempt to exploit the existing incentive systems or to simply deliver erroneous final results.

In both systems, result verification mechanisms must exist such that, with a given certainty, a “cor-

rect” result can be found even in the presence of a number of incorrect results.

2.6 Conclusion

In this chapter, the state of the art regarding Institutional Grids, Desktop Grids and Peer-to-Peer net-

works was presented, providing the theoretical basis for the currently developed work. A number of

systems were presented and analyzed for the purpose of determining the strengths and weaknesses of

each so the best combination of characteristics could be taken from previous experience for the construc-

tion of this work.

From this analysis we can conclude that there are significant benefits to be drawn from bringing the

traditional Grid infrastructures and the new Peer-to-Peer systems together as they share some of the

same concerns, such as efficiently locating requested resources; use some of the same techniques, like

building an overlay topology on top of the existing physical network and have different, complementary

issues and solutions for them, like the scalability issue previously described, which has serious implica-

tions on traditional grid networks but is almost inherently solved in peer-to-peer networks.

Desktop Grid solutions provide some of the benefits of Peer-to-Peer networks and Institutional Grid

systems, but also some of the biggest drawbacks. For instance, while the remote scheduling services seen

in BOINC work in heterogeneous environments, they fail to optimize task distribution according to the

actual performance of each peer and are a central point of failure since those services alone can distribute

tasks among nodes. They also fail to exploit routing mechanisms between nodes, thus potentially over-

loading the remote scheduling services, aggravating the previous problem.

The greatest drawback of both Desktop Grids and Institutional Grid systems however, is the fact that

they both effectively limit the generation of new distributable tasks to the small fraction of the participant

universe that could possibly already afford large computational resources, while giving little to no benefits

to the common cycle donor. Peer-to-Peer systems have the unique property of enabling any participant to

not only contribute to perform computationally heavy tasks in lieu of others, but also to take advantage of

the immense distributed computational power available for themselves, and as such are the best approach
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to fulfill the ultimate goal proposed in GINGER, i.e. to deliver high performance computing to the masses.

For these reasons, GINGER should use a P2P overlay as its network substrate, as it can provide a

fully decentralized, failure tolerant network. The use of super-peers can grant the network the necessary

resource discovery mechanisms by providing a distributed index at a relatively low cost both in terms of

added complexity and overhead imposed globally on the network. In particular, by using a P2P overlay

we expect to be able to reach most of our goals:

• Scalability: Peer-to-Peer networks offer the greatest scalability potential due to their self-organizing

nature;

• Efficiency: Peer-to-Peer networks (in particular, structured Peer-to-Peer networks) are efficient in

the amount of messages and the average number of hops needed to perform their tasks. In particular,

Pastry, the overlay protocol selected for this project routes messages on average in O(log n) steps;

• Flexibility: The use of super-peers allows us to go beyond what the P2P overlay routing mecha-

nisms offer in terms of resource discovery, namely enabling us to map more complex information

about each node and route accordingly.

Pastry was chosen as the P2P overlay for this work because it has shown to be efficient, presenting a

relatively simple topology and also for the fact that routing can be optimized for different criteria, other

than node identifier proximity, if the need arises. This last point in particular is much harder to achieve

in other ring-like topologies like Chord, which although simple, has a larger dependency on identifier

similarity for routing.
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Chapter 3

Architecture

In this chapter, we present the architecture used in this work and the rationale for the options taken in

its structuring. Both the general architecture for the GINGER[60] project and the specific architecture

related to the overlay network used will be presented in the following sections.

One of the goals of GINGER as a platform is to obtain the benefits of Grid-like computing infras-

tructures with the flexibility of P2P networks in order to enable its use by the masses. For this, it is

important to determine a good P2P overlay topology, as the resource discovery mechanisms depend on

this topology, as opposed to the underlying physical networks.

The main goal should be a system that obtains the best nodes available for a given work unit based

on a number of criteria such as available bandwidth, processing power and so on.

This chapter is structured into four different sections:

• System architecture, where the overall system design will be discussed;

• Overlay network topology, where the rationale and conclusion for the chosen topology is pre-

sented;

• Resource Discovery, in which the resource discovery protocol is described;

• Data Structures, where both pre-existing and new data structures are presented, as well as the

rationale for their existence.

3.1 System Architecture

GINGER is a middleware platform running on top of a semi-structured P2P overlay network whose basic

work unit is a Gridlet. A Gridlet contains information regarding the data workload as well as the trans-

formations required to be applied on it. Each Gridlet also contains the cost associated with performing

those transformations to the data and optionally the actual code that performs them.

The Gridlet application model is divided into three stages: Gridlet creation, Gridlet processing and

Gridlet-result aggregation. In gPastry, no Gridlet processing is done at this level, as it is irrelevant for

the problem at hand. Also, Gridlets are simplified and only contain information regarding the required

resources (application and other requirements) for the Gridlet to be processed.

31



Figure 3.1: Ginger architecture

Whenever a node needs to submit work to the network, the input data is chunked into one or more

Gridlets that will then be routed throughout the P2P overlay for processing. When the necessary trans-

formations are computed, the results are packaged in special result Gridlets, which can either be sent

directly to the origin or become stored throughout the overlay for later retrieval using a distributed

storage system such as PAST[53] or, alternatively, a distributed caching system as the one described in

Squirrel[32].

3.1.1 GINGER layers

As shown in the above figure, GINGER is composed of four layers (summarily described here from top

to bottom):

• Application Adaptation layer - handles interaction between GINGER and the actual applications;

• Gridlet Management layer - handles all necessary Gridlet operations;

• Overlay Management layer - handles overlay maintenance, node discovery, message routing and

resource management;

• Communication Services layer - handles communication and data transfers through the network;

This work focuses on the Overlay Management layer, as all other layers play little to no role in regards

to resource and service discovery. Let us define these layers more thoroughly:

Application Adaptation layer

The Application Adaptation layer is responsible for the interaction with the unmodified desktop applica-

tions, in order to launch them and feed the data received from gridlets, as well as collecting the resulting

data from the transformations performed on the original data by the application.

Gridlet Management layer

On the Gridlet Management layer, files and data are partitioned into the corresponding Gridlets and

received Gridlet results are reassembled into result files as those that the application would produce if

ran locally on a single machine.
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Overlay Management layer

The Overlay Management layer is, as its name implies, responsible for maintaining the overlay network in

order to exchange gridlets with other nodes. This layer only maintains the logical structure that forms a

node’s information about that overlay however, and all actual network data transfer and communication

is handled by the Communication Services layer.

This layer holds all the information regarding the overlay and transparently performs resource discovery

in order to locate the resources required by the upper layers. Both super-peers and regular peers maintain

a common subset of information, including known super- peers and their own capacity, with super-peers

maintaining extra information regarding the availability of all applications its child peers have registered

with it, as well as the aggregate capacities announced by other super-peers regarding the applications

which fall under the application family that super-peer is responsible for.

It is through this information that each node is capable of performing resource discovery by sending

and receiving Gridlets. The information maintained by each super-peer is illustrated in Figure 3.2.

Super-peers must maintain the aggregate availability for individual applications under their responsible

Figure 3.2: Information maintained by a super-peer.

family for other super-peers in order to only choose super-peers which actually possess the necessary

applications. Otherwise, it would be possible for a super-peer to forward a Gridlet to another super-peer

which possessed large capacity (in its group) for a number of applications that fell under the same family,

but no capacity for the actual required application.
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Communication Services layer

As previously mentioned, the Communication Services layer’s function is simply one of performing data

transfer throughout the network. It performs no routing or other type of computation in order to deter-

mine an incoming or outgoing message’s destination and leaves that function to the Overlay Management

layer.

The major focus of this work is on the Overlay Management layer, as it is the layer responsible for

maintaining the overlay and performing discovery, as explained above.

3.2 Overlay network topology

The overlay network used in gPastry is based upon the Pastry[52] overlay, described in Section 2.4.1, as

it presents a robust P2P overlay with efficient and flexible routing, while using a number of modifications

to accommodate our resource discovery protocol, which will be detailed across the next sections.

The immediate concerns when designing the architecture for this work were to both minimize the number

of messages that need to be exchanged between nodes in the network, to avoid flooding, as well as attempt

to provide enough coverage such that the required resources will be found when they are needed, if they

are present in the network.

In order to accomplish this, nodes in the network are divided into two sets: regular nodes and super-

peer nodes. This closely follows Gnutella’s approach using “ultrapeers” for data file indexing, as well

as CCOF’s rendezvous points as mentioned in Section 2.3.2. Super-peer nodes perform every function

a regular node does and, additionally, they maintain and share high-level information regarding other

nodes in the network. As such, super-peers are not distinct from regular nodes but perform additional

tasks with regards to overlay management when compared with the remaining nodes in the overlay.

The overall layout of the nodes is displayed in Figure 3.3. For reference, note that the overlay net-

work does not need to connect nodes in any particular order for super-peers to exist. Repeated links

between nodes are omitted in this figure. Let us explore super-peers in more detail in the following

section.

3.2.1 Super-peers

Super-peers form a ring amongst themselves to allow faster communication and avoid hopping messages

through the overlay network. They share information about the availability of applications among their

child nodes and act as resource brokers, sharing their child nodes’ resources with each other when such is

needed (for instance, when a super-peer’s children cannot perform the work required for a given gridlet, it

requests work from another super-peer which whose children have enough availability to perform the task).

Regular nodes, in turn, are “clustered” around these super-peers and use them to perform service dis-

covery and gridlet requests to other nodes in the network. Every node is assigned to a single super-peer,

determined from all known super-peers through the Pastry proximity metric it is then referred to as that

node’s primary super- peer. The use of the proximity metric was chosen because it explicitly represents

the degree of proximity between two given nodes in the overlay, as defined by the basic Pastry protocol.

Despite being assigned to a single super-peer, every node possesses a list of existing super-peers in

order to choose a new super-peer in case of failure of the existing one.
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Figure 3.3: Node organization in the network. “SP” indicates a super- peer, while “P” indicates a regular
peer.

Super-peers election is performed in a way that attempts to balance the ratio of super-peers to regu-

lar nodes and make sure no nodes are orphaned, i.e. left without knowing any super-peers. Nodes will

periodically check the number of super-peers they know; if this number is below a certain threshold, those

nodes can select themselves to become super-peers with a given probability. This probability has to be

kept low enough so that the number of super-peers cannot grow too large at any given point in time, but

such that allows a fairly rapid expansion of the number of super-peers in case of shortage.

3.3 Resource Discovery

Applications are the main resource taken into consideration in gPastry and the resource discovery mech-

anism focuses mostly on finding nodes which have the given application installed.

In order to structure information regarding applications throughout the overlay, using the topology

described in the previous section, two pieces of information are kept about each application: the family

hash and the application hash.

The family hash is used to describe the family or class of applications any given application belongs

to. In the context of gPastry, the family hash is a hash of the canonical name of an application, which

in this case is, for instance, the URL of the application’s main web page online (e.g. for the Python

application, the canonical name would be “www.python.org”). This family hash is used to aggregate

information regarding all nodes with an application belonging to that family in the same super- peer, in

a way that will be described further in this section.

The application hash, on the other hand, describes a specific combination of application name and version
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and is used to determine, in a given super-peer containing information about a given application family,

which nodes possess a specific application installed in the system. For instance, considering the Python

application family example, there could be a number of distinct application versions described uniquely

by this hash such as Python 2.6 and Python 3.0.

This distinction using the application’s version is important for dealing with cases where different versions

of a given application are incompatible with each other and thus cannot be used to perform work on the

same set of data, or the user requires functionality present only in a specific (or more recent) version.

Note that although only the version number is used in the given examples, different “versions” can be

easily created for applications running in different operating systems as well.

As described previously, there are a number of super-peer nodes whose purpose is to aggregate informa-

tion regarding the installed applications. These super-peers are “responsible” for one or more application

families, which means they aggregate the high-level information on all current super-peers regarding those

application families.

In particular, each of these super-peers maintains a table containing other super-peers’ aggregate avail-

ability for a given application inside the family they are responsible for as well as the availability of every

child node (including themselves) for each application those nodes register when joining the network, even

if that application falls outside the family it owns. However, regarding the capacity available under other

super- peers for those families, each super-peer only maintains the aggregate available capacity, with no

information about what specific nodes under that super-peer possess the application or their individual

capacity. Furthermore, super-peers do not store such information about applications whose family is not

of their responsibility when this information does not belong to one of its direct child nodes.

Responsibility is determined according to the application’s family hash, which is mapped into the super-

peers’ set of keys. If a super-peer’s node ID is larger (according to the Pastry proximity metric) than the

key given by the family hash, which belongs to the same key space, then the super-peer is responsible

for that family. This is done in order to evenly distribute the application family’s key space among

all super-peers and avoid overloading any given one. Whenever a new super-peer joins the ring, every

super-peer adds it to its super-peer lists and if the new super-peer should become the one responsible for

an already existing application family, the super-peer containing that information sends it to the joining

super-peer. Super-peers can be responsible for multiple families, as long as the family hash is lower than

their own node ID but not lower than any other super-peers’ node ID.

When submitting a Gridlet, nodes send it to their super-peer who, according to the information ag-

gregated from his child nodes and other super-peers, distributes the workload of that given Gridlet in the

following manner:

• The super-peer forwards the Gridlet to all its child nodes which have the required application and

capacity;

• If more nodes are needed, the super-peer contacts the super-peer deemed responsible for that

application family by forwarding the Gridlet. Otherwise the Gridlet is dispatched and the super-

peer does nothing else;

• Upon receiving the request from another super-peer, the super- peer responsible for that application

family checks the capacity table for another super-peer possessing enough child nodes to fulfill the

request and forwards the Gridlet to it.
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• If no other super-peers exist that can fulfill the request, the responsible super-peer simply replies

immediately with a message.

A sample of the described discovery mechanism is illustrated in Figure 3.4 and Figure 3.5. Please note

that in regards to information about the capacity of other super-peers, the representation presented in

Figure 3.5 was simplified as to represent only the capacity for the application requested in the current

Gridlet.

Node capacity is determined by a number of different factors, such as CPU power, total memory and

bandwidth. When a node’s capacity changes (due to work in progress or external factors, such as a local

user interacting with the system), its new capacity is sent to its corresponding super-peer.

Figure 3.4: Resource discovery protocol
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Figure 3.5: Table progression on each node during discovery
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Upon receiving this information, the super-peer updates its internal aggregated capacity for the ap-

plications which this particular node provides and, if the new aggregate capacity is different enough

(configurable for increments of, for instance, 10, 100, etc.) from the previous value it had transmitted to

the super-peer responsible for that application, it sends an update message to that super-peer in order

to update the value that super-peer is keeping.

The use of this type of asynchronous, on-demand communication instead of either having synchronous

updates or sending updates every time a node updates its availability, is done in order to prevent flooding

the network with messages regarding relatively insignificant changes to the overall availability of a given

application.

Additionally, upon joining the network a node sends all the information regarding its installed applica-

tions to its newly determined super-peer, which then updates its aggregate capacity for each application

registered by the new node and if the change in capacity for a given application is significant enough it

then updates the super-peer responsible for that application, as in the previous situation.

3.4 Data Structures

gPastry builds on top of Pastry overlay and as such, a number of data structures used in Pastry are found

unmodified in this work. These data structures include the basic node state information in the form of

three separate structures: routing table, leaf set and neighborhood set. Additionally, a number

of new data structures were developed to support super-peer information as well as available resource

information.

We shall begin by recalling the already existing Pastry data structures, in order to support this pro-

tocol’s routing mechanisms, which are used throughout this project, and then we introduce the new data

structures developed specifically for this work.

3.4.1 Pastry specific data structures

Routing Table

The Pastry routing table is a dlog2b ne × 2b − 1 table, containing Pastry node identifiers organized by

similarity with the current Pastry node such that entries at row n of the routing table refer to a node

whose identifier shares at most the first n digits with the current node. In a given row r, the entry

r[i] contains an identifier whose nth digit matches the index i. For every digit d of the current node’s

identifier, the table entry r[d] contains the current node’s identifier and this value should not be used for

routing, since it would always route to the current node.

There may be many nodes sharing this common prefix so the identifier that is closest to the current

node’s identifier, according to the proximity metric is the one chosen to fill the position in the routing

table. The routing table is primarily used to route messages to nodes that are distant from the current

node from the overlay’s point of view. Note that this distance is independent of both actual geographic

distance and the distance in the underlying network topology.

The routing table organizes the known nodes in such a way that routing is performed in a tree-like

manner, as a message navigates through the nodes approaching its destination by gradually approaching

nodes whose identifier is closest to (i.e. shares a larger common prefix with) the destination node. This
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kind of routing allows the message to traverse the overlay close to its destination in a relatively small

number of hops, needing only O(log n) hops.

Entries in the routing table are added as new nodes enter the network and are replaced if a node is

found such that its identifier is closer to the current node’s identifier according to the proximity metric.

Leaf Set

The Pastry leaf set contains a small number of known nodes whose identifiers are numerically closest to

the current node’s identifier. Half of this set contains such identifiers which are smaller than the current

nodes’ and the other half contains identifiers which are larger than the current one.

This leaf set is then used to route messages whose destination is already considered close to the cur-

rent node or in the case the tree- like routing strategy provided by the routing table fails to determine

a node to which to route the message. In this situation, the message is routed in a ring-like manner, as

the nodes selected to route the message tend to be successors or predecessors to the destination node due

to their proximity to it. Taking this into account, the leaf set is usually the structure where lookups are

performed first so the number of hops required for routing is as small as possible.

Neighborhood set

The neighborhood set is a simple, unordered list containing a small number of nodes whose identifiers

are the closest to the current node’s identifiers according to the proximity metric. This set is typically

not used for routing, but in rare cases where neither the leaf set or routing table produce a suitable node

for routing the neighborhood set can be used. In those cases, the nodes contained in the neighborhood

set, leaf set and routing table are gathered, and a node is picked such that its identifier shares at least as

many digits with the current node but that is also numerically closer to the destination.

The neighborhood set is more useful to maintain locality properties in Pastry however. It can be initial-

ized by obtaining the neighborhood set from the node to which the current node bootstraps while joining,

assuming that node is close to the current node according to the proximity metric.

3.4.2 New data structures

To complement and enhance Pastry in order to support the desirable new features for gPastry, a number

of data structures were developed to hold and organize new information.

The most relevant data structures pertain to storing information about existing super-peers, as well

as resources and their availability. These structures are described in the following sections.

Super-peer information

Nodes must maintain some information about existing super-peers in order to advertise their resources

and become available for remote computation. To do so, nodes store a sorted circular list of known,

live super-peers. This list is centered on the closest super-peer according to the Pastry proximity metric

and is sorted by proximity to the current node. This particular super-peer is designed as the primary

super-peer for that node and is used as the main point of communication between the node and the

remaining overlay for purposes of resource discovery.
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Whenever a new super-peer is discovered, or one joins or leaves the network, this list is updated ac-

cordingly. The closest super-peer is designated as the primary super-peer and is used as the primary

choice for resource advertisement and lookup functionality. This allows to minimize the number of hops

necessary to communicate with a super-peer to obtain information, thus preserving Pastry’s performance

characteristics. A super-peer’s primary super-peer is always itself per the proximity metric. This intro-

duces no inconsistencies, and does not preclude super-peers from submitting Gridlets themselves; they

will follow the exact same protocol as other peers.

Resource availability information

Resource availability information is maintained only by super-peers and functions as a distributed index

where super-peers can lookup resources both inside and outside their node group with different levels of

detail. Super-peers maintain resource availability for each node under their respective groups, namely

which applications are available among the many nodes, the actual nodes that possess them and their

current availability. This allows the super-peers to pick the most available nodes for a given Gridlet.

In order to locate resources outside of their group, however, super- peers maintain only the aggregate

availability of other super-peers’ groups for the applications they advertise amongst themselves. This

allows not only to locate more resources for a known application outside a super-peer’s group in case of

saturation, but also allows to discover nodes which can provide different resources which are do not exist

in the current group. In order to minimize the amount of information each super-peer has to maintain,

super-peers only exchange this information with the super-peers responsible for the relevant application

families.

For instance, if a super-peer A gains or loses capacity related to an application X in a given family

F, only the super-peer responsible for family F is informed of those changes and records the appropriate

information. Other super- peers are not informed as the information is not relevant for the application

families they are responsible for.

For this work, node capacity is represented by a value that corresponds to a weighted average of three

metrics: available CPU, memory and bandwidth. This offers the benefit of having a simple, balanced way

of comparing different nodes, but has the disadvantage of making it impossible to choose nodes according

to any given characteristic.

The way this information is structured is presented in Figure 3.2.
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Chapter 4

Implementation

For the implementation of gPastry, the chosen tools were Java 6 SE and the PeerSim[33] P2P network

simulation platform version 1.0.3. Since PeerSim only provides a protocol-independent simulation plat-

form, the entire code base that implements the base Pastry protocol was written from the ground up for

the purposes of this project.

Using this platform as opposed to use others such as FreePastry[23], which already implements Pas-

try, allows greater flexibility if the need to change the underlying protocol would arise, at the cost of

extra development effort. PeerSim is developed for the Java platform, and all development for it is done

in Java as well.

4.1 The PeerSim platform

PeerSim has two basic types of simulator: an event-driven simulator, where progress is done by acting on

events triggered by reception of messages sent from one node to the next, and a cycle-driven simulator,

which allows to act on the simulation at intervals.

Both of these simulators can be integrated seamlessly to take advantage of the benefits inherent to

each type of simulator. For the purpose of this work, this was the followed approach, using the event-

driven simulator for most of the simulation as well as attempting to increase the realism of the simu-

lation, and using the cycle-driven simulator to allow for easier execution of periodic functions on the nodes.

Here are a few definitions as used throughout the PeerSim documentation:

• Node - The basic building block in PeerSim, a low-level, protocol-agnostic representation of a node

in a P2P overlay;

• Network - A set of interconnected nodes;

• Protocol - The protocol implemented by the nodes (in our case, gPastry).

In order to implement a given protocol, we must create a class implementing the interfaces related to

the type of simulator we wish to use. There are two available interfaces: EDProtocol, for an event-driven

protocol and CDProtocol, for a cycle-driven protocol.

In our case, we implement both interfaces, to perform actions on a regular basis, as well as when cer-

tain events are triggered. The protocol is implemented in the ginger.overlay.pastry.PastryProtocol
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class.

PeerSim also introduces the concept of controls, which comprise the main form of direct interaction

with the simulation. Controls can be used to gather information on the network, inject messages into

the network and simulate churn conditions, among other uses. For this work, a few controls have been

developed. They are present in the ginger.overlay.pastry.control package and will be detailed in

Section 4.6.

PeerSim allows for the control of communications on the simulated overlay at the transport level through

classes in the peersim.transport package. For the purpose of this work, the UniformRandomTransport

was the one selected, which implements a transport layer which reliably delivers messages with a random

delay, drawn from the interval defined in the configuration file using a uniform distribution. This simu-

lates an environment where packet losses do not occur and/or can be corrected by retransmitting packets

with delay (typical in real world applications where TCP is usually favored in detriment of UDP as the

underlying transport protocol).

Additionally, we can select a wiring structure for the overlay. This defines a low-level topology which

emulates the way nodes would be physically connected to each other in a real-world situation. PeerSim

allows for the selection of several wiring methods (implemented through PeerSim controls that are ex-

ecuted upon initialization). The Internet is, at its core, a semi-structured network where most nodes

are interconnected indirectly through other nodes, with a variable number of hops between them. As

such, the control selected to wire the nodes in the network was the peersim.dynamics.WireKOut control,

which randomly connects nodes among each other. The out degree k of the nodes can be passed as a

parameter to this control through the PeerSim configuration file.

4.2 Project structure

The code is split into several Java packages. The top-level package is ginger, and it contains all the

other packages that further organize the code:

• ginger.overlay and its sub packages contain all the code relevant to the implementation of the

lower level protocol. It is in this package where the resource discovery protocol is implemented;

• ginger.message contains all the messages used throughout the protocol;

• ginger.past contains all classes implementing a basic distributed replication protocol;

• ginger.layer and its sub packages contain all code implementing the several GINGER layers.

Additionally, the ginger.overlay.superpeer sub package is of particular relevance as it is where all

the code regarding super-peer specific features are implemented.

4.3 GINGER implementation

The GINGER platform was partially implemented as part of gPastry, with some of the layers, like the

Application Adaptation layer, being implemented only as stubs, for they were not relevant for the purpose

of this work. The implemented layers will be described in a bottom-up approach.
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4.3.1 Communication Service

The Communication Service layer, as mentioned in Section 3.1.1, abstracts the actual communication

with other nodes in the overlay. Most of the implementation details are further abstracted into the

PastryProtocol class, for ease of implementation within the PeerSim platform.

This class provides the following methods: route, which routes the message through the overlay; routeMyMsgDirect,

which sends a message directly to a given node, bypassing the routing mechanism; deliver, which pro-

cesses an incoming message at a higher level than the one provided by the PastryProtocol class.

The routing methods wrap the corresponding methods present in the PastryProtocol class, which

provide the required functionality. This is because of implementation details imposed by the PeerSim

platform which are not relevant for the work at hand.

4.3.2 Overlay Management

The Overlay Management layer is implemented in the OverlayManager class and performs the essential

functions for maintaining overlay information, as well as performing resource discovery through the pro-

tocols developed for gPastry.

This layer contains, per node, the relevant information required to route messages to other nodes, as

well as information regarding existing super-peers. Message routing is performed using the Pastry rout-

ing mechanism and as such this layer must maintain the relevant data structures, namely the routing

table, leaf set and neighborhood set inherited from Pastry and described in Section 3.4.1.

In order to locate resources according to the protocol we developed, the Overlay Management layer

must maintain additional data structures, defined in Section 3.4.2.

4.3.3 Gridlet Management

The Gridlet Management layer manages all operations to be performed on Gridlets. Gridlet creation hap-

pens at this level, with the data received from the Application Adaptation layer, described previously.

Upon Gridlet reception on the Overlay Management layer, it is forwarded through to the Gridlet Man-

agement layer, where it is processed. If the node currently has enough capacity to process the Gridlet, it

is passed on to the Application Adaptation layer. If not, it can be forwarded to a different node.

This layer is realized in the GridletManager class. Gridlets arriving for processing are forwarded to

the Application Adaptation layer which will later return the data required for the creation of a Gridlet

Result containing the result of transforming the Gridlet data on through the required application, which

is cached for later forwarding to the initiating node.

4.3.4 Application Adaptation

The Application Adaptation layer was implemented only as a stub, playing no role in this work, as its

purpose is to seamlessly integrate with the applications needed for Gridlet data processing.

This layer passes the Gridlet’s data to the application after performing whatever transformations are

needed on that data in order for the application to work correctly and receives the resulting output data.

This output data should then be passed on to the Gridlet Management layer, where a new result Gridlet
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is created. For the purposes of this project, we can assume the Gridlet result is a simple transposition of

the input data, such as an arithmetic operation or hash code.

4.4 gPastry implementation

The gPastry protocol is implemented in the ginger.overlay.pastry.PastryProtocol class. In or-

der to run in both the event-driven simulator and the cycle-driven emulator, this class implements the

EDProtocol and CDProtocol interfaces, respectively.

Pastry was implemented according to the original Pastry paper[52] and as mentioned previously is real-

ized in the PastryProtocol class. Messages arriving on a node are processed through the processEvent

method, which dispatches messages to the route method for the message to be actually routed (or de-

livered in this node, according to the Pastry routing algorithm) if the node has already joined the network.

If the message is to be delivered to the current node, it is then dispatched to the deliver method,

which will forward it to the CommunicationService class, implementing GINGER’s Communication

Service layer and perform additional processing as needed.

A node joins the network through the join method. An overloaded method is provided for the first

node to join the network in order to simplify the process. Whenever a node sends a message to another,

the route message dispatches that message using the Pastry routing protocol. The underlying mecha-

nism for message transmission is provided by PeerSim through the send method, which in this case is

wrapped in another method with the same name to simplify development.

4.4.1 Messages

Messages used in this implementation of Pastry are located in the ginger.overlay.pastry.message

package and form the basis of all messages exchanged in the network, from gPastry’s point of view.

The base class is RawMessage, which defines the base methods and fields all messages should share. The

remaining messages have functions as follows:

• PastryJoinRequest - This message is sent by nodes joining the network: its purpose is to announce

the new node and request Pastry state information to fill the new node’s state;

• PastryJoinReply - This message is sent to a joining node by every other node receiving a PastryJoinRequest

message and contains the relevant information as described by Rowstron and Druschel[52];

• PastryState - This message is sent as part of the join procedure, containing the state of the current

node as a response to the joining node so its tables can be initialized with current information;

• PastrySuperAnnounce - This message is sent by nodes who turn into super-peers in order to

announce their new status;

• PastrySuperQuery - This message is sent by joining nodes and periodically by every other node in

order to keep their super-peer lists up-to-date;

• PastrySuperReply - Reply message to the PastrySuperQuery messages sent by peers. It contains

the super-peers known by the replying node.

Additionally, messages belonging specifically to the GINGER platform also extend RawMessage and

are implemented in the ginger.message package. They are as follow:
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• Gridlet - The basic Gridlet as described in the GINGER paper. It also implicitly performs resource

discovery functions, as super-peers will act on Gridlets to search for nodes that can perform the

required transformations on these according to the information included in the message’s payload;

• GridletResponse - This message contains the Gridlet response generated by applying the required

transformations on an origin Gridlet. It is returned directly to the peer which originated the message

and contains in its payload the relevant output data. The origin peer’s ID is contained within the

original Gridlet message for this purpose;

• GingerRegisterApplication - This message is used by peers to register applications they possess

to their parent super- peer. It allows peers to announce their availability initially and is only sent

when these peers join the network, as we assume nodes cannot change the range of applications

they can use when they are connected to the network;

• GingerUpdateAvailability - Messages used by peers to announce their new availability to their

super-peers availability when sufficient availability changes occur. It is also used by super-peers to

announce their new availability to other super-peers, as relevant.

Due to PeerSim constraints, messages are sent as Java objects. Nonetheless, these objects could easily

be transposed into a generic, language-independent format for real-world use. The base RawMessage class

contains the basic fields shared by every message:

• sender - The original node ID from whence the message came;

• destination - The node ID to which the message should be routed;

• msgtype - Identifier field used to distinguish between different messages;

• payload - Generic payload containing information relevant for the indicated message type.

In this implementation, new message types are introduced by simply adding the appropriate type and

filling the payload field as appropriate. For instance, the message that sends the current state of a node

for the purposes of updating other nodes as per the Pastry protocol, implemented in the PastryState

class is no different from the RawMessage type except for the fact that it contains a specific msgtype and

the appropriate information in the payload field.

Upon joining the network, a node A sends a PastryJoinRequest message whose destination node is

also A to its bootstrap node B. B then routes the message through the network using the original Pastry

protocol. Every node through which the message passes through will reply to A with a PastryJoinReply

message containing the corresponding routing table node, as per the original Pastry initialization protocol

so that A can build its initial state.

Gridlet messages add a number of extra fields to accommodate for the additional information they must

carry. These fields contain the application hash, the application family hash as derived from the provided

canonical name, its required availability and any input data that should be processed by the application

at the destination node. As with other messages, the Gridlet message is implemented as a Java object for

the purposes of this specific implementation, but can easily be translated into more appropriate formats

for real-world use.

The basic format for a Gridlet is shown in Figure 4.1.
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Figure 4.1: Structure of a Gridlet.

4.5 Super-peer implementation

Pastry does not contemplate different types of nodes and as such is not completely adequate for the

proposed architecture. On top of the base Pastry overlay, a super-class of nodes was added to perform

the work of super-peers.

Super-peers are, as previously mentioned, a subset of all nodes in the network. As such, they share

a common code base in the form of the ginger.overlay.PastryProtocol class.

In order to implement super-peers, nodes already possess fields for handling the additional informa-

tion. This approach was chosen instead of simply using the Java language inheritance mechanism due to

issues found with the PeerSim platform, which, at the time this work was being implemented, did not

properly support subclasses as PeerSim protocol implementations.

With this approach, what distinguishes regular nodes from super-peer nodes is the isSuperPeer boolean

flag and the presence of an instance of the ginger.overlay.pastry.superpeer.SuperPeerInfo class in

the spInfo field inside a node, which encapsulates all information the super-peer possesses.

This class contains the following mappings, from which a super-peer can obtain the information nec-

essary to determine where sufficient nodes exist to process the currently received Gridlet:

• A mapping from application hashes to a map containing all known nodes with that application

installed and their current capacity;

• A mapping of all currently known super-peers to their respective aggregate capacities.

When a Gridlet G is received by a super-peer X from one of its child-nodes and reaches the overlay

management layer, it is processed through the gridletReceived method in the following manner: The

super-peer determines which super-peer is responsible for the application family to which the Gridlet
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refers to.

In the case X is the super-peer responsible for that given application family, it attempts to obtain

child-nodes which can perform work on G and forwards it to at most three of those children.

Replicating work on multiple children decreases the chance for a Gridlet never to be worked upon due

to the node processing it leaving the network at any time and can also yield better performance than

the simpler case of assigning the Gridlet to a single node in the case the chosen node would suddenly

have reduced capacity due to external intervention (e.g. a user begins locally using the node for intensive

applications). This follows the work of Silva et al on Workqueues with Replication (WQR)[55]. Note that

if a given super-peer has an application whose family hash is the one that super-peer is responsible for,

the super-peer is a child node of itself.

There can be the case where there are no children nodes fit to perform work on the Gridlet X received.

In that case, X looks up the other super-peers it is aware of and their respective aggregate capacity for

the required application.

If X is not responsible for G, then it determines the super-peer Y by looking up in the remaining

known super- peer lists and forwards the Gridlet to Y, which repeats this process until the Gridlet is

forwarded to the correct child nodes and processed.

4.6 PeerSim controls

PeerSim controls, as referred above, are implemented in the ginger.overlay.pastry.control package.

They consist of five different controls:

• Initializer - initializes every node on starting the simulation, so every node joins the network;

• PastryObserver - gathers statistics regarding the network, such as message count per message

type, average hops per message, etc;

• TrafficGenerator - generates traffic between nodes by creating new messages at random using

randomly picked parameters and applications, in a process explained below;

• Turbulence - generates churn on the network by disconnecting and reconnecting nodes;

• UserControl - allows for user interaction with the simulation.

The initializer control only runs once at the start of the simulation by randomly generating a list of

applications for each node based on a configuration file and having the nodes join the network through

the Pastry join protocol. The first node joins on its own, and the following nodes bootstrap on that node

to join the network. This is done in order to simplify node joining as additional checks would have to be

performed if a random node was chosen as the bootstrap node, such as checking if the node had already

fully joined the network, adding a layer of complexity which would bring no benefit to the implementation.

The PastryObserver control gathers information on the network such as a count of all delivered message

types and the average number of hops each message went through before reaching their destination. The

hops are counted individually for each message in the hops field inherited from the RawMessage class by

incrementing this field each time the message is routed through the route method in the PastryProtocol
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class. Upon delivery, this count is added to the hopStore field in the PastryObserver class.

The traffic generator control randomly generates messages on each node. It can either generate Gri-

dlets for a given application, or generate simple “ping” messages that serve no other purpose other than

to generate traffic on the network. When generating Gridlets, the requirement parameters are randomly

generated and the target application is chosen from the set of applications available for the simulation.

From the chosen parameters the desired availability is calculated through the use of a weighted average

and inserted into the Gridlet.

The message is generated and then routed to another random node like any other message. The destina-

tion node is determined by the key generated for that message and a node possessing that exact key is

not required to exist, as the message is transmitted through the underlying Pastry protocol.

The Turbulence control generates churn by randomly disconnecting and reconnecting nodes in the net-

work. This allows testing of the network’s resilience on quasi-real life situations.

4.7 Resource representation

Existing applications are described through simple XML files. These contain information describing the

application, such as its name, canonical name, version and executable location (unused in this work).

A sample XML description is shown in the following snippet:

1 <?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>

2 <a p p l i c a t i o n>

3 <short−name>Example</ short−name>

4 <v e r s i on>1 .0</ ve r s i o n>

5 <canon ica l−name>www. example . com</ canon ica l−name>

6 < l o c a t i o n>/ usr / bin /example</ l o c a t i o n>

7 </ a p p l i c a t i o n>

Listing 4.1: Example XML application description

These descriptions are read and parsed into a specific data structure represented in the ginger.layer.applicationlayer.application.Application

class. For the purpose of this work, the location field is not considered, but could be used by GINGER’s

Application Adaptation layer to launch the required application. This information is local to each node

and super-peers are not required to store all this information, and instead only store the hashes obtained

from this description, which are generated by the peers who wish to register this application.

The short-name and version fields are kept separate but are combined in order to determine the appli-

cation hash for each application. Hashes are calculated using a simple MD5 hash to produce identifiers

in the Pastry ID space.

The use of XML for the application description allows for a greater flexibility on the level of detail

by which each application is described. If an application’s minimum runtime requirements are known

beforehand, these could also be included in specific elements. Alternatively, if the requirements for an

application are known not to be deterministic for any given input or workload, reference values could be

included as well to make sure no under-performing nodes could ever be selected to perform work on all the
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Gridlets generated for that given application. This level of node filtering, however, was not implemented

in the current version of gPastry and is left as future work.

An example of such a complex description is shown in the below code listing:

1 <?xml ve r s i o n=” 1 .0 ” encoding=”UTF−8”?>

2 <a p p l i c a t i o n>

3 <short−name>HeavyApp</ short−name>

4 <v e r s i on>1 .0</ ve r s i o n>

5 <canon ica l−name>www. heavyapp . com</ canon ica l−name>

6 < l o c a t i o n>/ usr / bin /heavy</ l o c a t i o n>

7 <requ i rements>

8 <min−cpu>2000</min−cpu>

9 <min−mem>1024</min−mem>

10 </ requi rements>

11 </ a p p l i c a t i o n>

Listing 4.2: Example XML application description with requirement specification
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Chapter 5

Evaluation

In order to evaluate gPastry, a number of objective metrics were defined that will allow to determine the

performance of the system under different conditions.

As the nature of this work relies on gathering data on a sufficiently large peer-to-peer environment

which is not possible to achieve in real-world conditions without an already existing, widespread imple-

mentation of the system, all metrics were measured through the use of the PeerSim simulator and its

network observation capabilities.

5.1 Metrics

In a peer-to-peer environment, there are a number of important metrics that allow us to evaluate its

overall performance and establish comparisons between different systems.

First and foremost, one must evaluate the load the protocol has on the network. This can be done

by measuring the amount of messages traded between nodes as part of the protocol. This allows us

to have an idea of the impact the gPastry protocol has in the overall network performance, as well as

determine which parts can be improved to avoid congestion and flooding.

Secondly, it is useful to measure the amount of messages that actually reach their destination within

a certain number of hops. This allows to measure the overall efficiency of the overlay. Measuring this,

as well as the ratio of requests that do not find an appropriate node, is of interest in determining the

resource discovery protocol’s efficiency in various scenarios, such as one with resource scarcity or excess.

Additionally, we measured the average number of hops required to discover a resource through the

sending of a Gridlet, as well as the average number of hops spent in super-peer redirections in order for

the Gridlet to reach an appropriate node.

It would be of interest to compare the results with other algorithms and protocols such as random-

walk, but this could not be done in time for this dissertation due to the need of implementing those

protocols.

51



5.2 Procedure

The work done on gPastry was evaluated by using the PeerSim P2P network simulator. PeerSim allows

for the creation of “controls”, which can act as entities external to the entire network, thus providing

them with global knowledge about the network and it’s constituent parts.

In order to evaluate gPastry, an Observer control was implemented for the PeerSim platform that is

able to gather statistical data generated by running the simulation. Additionally, the TrafficGenerator

control was used to generate traffic in the network in order to obtain more realistic measurements.

The simulation was run with gPastry in increasing numbers of 1000, 5000 and 10000 peers. The av-

erage number of applications possessed by each node was also taken into account. Unfortunately, due to

time constraints, it was impossible to obtain measurements that show how protocol performance changed

by altering the statistical distribution of applications and application families. For the purposes of this

evaluation, we assume a uniform distribution of applications amongst all nodes. In total, there were 3

application families, with one, two and three applications each, respectively.

The TrafficGenerator control generates Gridlets of the different applications described for the sim-

ulation through XML files according to the definitions presented in the previous chapter and assigns

them a random source and destination node. Capacity metrics for those gridlets are also generated ran-

domly in order to simulate different sets of data for each application.

All nodes join the network during an initial phase and Gridlets can be forwarded during that period

through the nodes that already joined the network successfully. Nodes that have connected but have not

completed the join process completely are not taken into account.

Since the tests are being processed in a simulated environment, all time units refer to the number of

simulation cycles processed. For this work, we use a number of 500000 cycles. In each cycle, nodes can

send or messages with low probability. However, the total number of messages will still be extremely

large due to the duration of the simulation.

In effect, in each case, the key points to test were:

• Effectiveness - Whether the desired resources were located in a limited number of hops;

• Efficiency - Number of messages necessary to locate the desired resources, as well as number of hops

required for a Gridlet to reach the appropriate destination;

5.3 Results

We now present the results from the evaluation of gPastry on PeerSim, as described in the previous

sections. We begin by evaluating the effectiveness of the solution i.e. if the proposed resource discovery

mechanism is able to locate resources when they exist. Later, we evaluate its efficiency by analyzing the

number of hops Gridlets must go through in order to reach an available node.

5.3.1 Effectiveness

In order to evaluate the effectiveness of the protocol we analyze the ratio between the total number of

Gridlets that were sent by the peers and the number of those Gridlets that actually reached a node where

52



they were processed at various points in the simulation.

In this simulation through Figure 5.1 we see that initially, when nodes are still joining the network,

a large number of Gridlets do not find any appropriate node in the allotted number of hops. However,

as more nodes join the network and register their availability in super-peers, the amount of Gridlets that

successfully locate the required resources increases, stabilizing at different points in the various cases.

Efficiency stabilizes more rapidly with larger numbers of nodes, as expected since there is a greater

number of super-peers and a larger number of peers from which resources can be tapped. The number

Figure 5.1: Resource discovery effectiveness

of super-peers existing in the network grow slowly, in the end accounting for less than 1% of the total

number of peers. For smaller numbers of nodes, efficiency is lower during most of the simulation as it

N Number of super-peers Total Gridlets Successful Gridlets
1000 27 125498 111693
5000 63 637298 598677
10000 109 1374089 1277902

Table 5.1: Effectiveness statistics

requires nodes to be both joined to the network and free to perform tasks. As nodes become busy, they

become unavailable to work on new requests so the overall effectiveness of the system through time grows

more slowly as at each instant there is always a number of nodes that are performing work and cannot

be used for new Gridlets.

We were also unable to test the effectiveness of gPastry under churn conditions. With nodes continuously

joining and leaving the network, the information stored by super-peers regarding their availability, as

well as the availability of other super-peers could become inaccurate, as leaving nodes would reduce the

effective capacity of a cluster and joining nodes could increase it.

This issue, however, would probably be somewhat mitigated by the currently implemented threshold

system, that prevents super-peers from communicating changes in their cluster’s availability immediately

for any changes. If the changes caused by churn were not significant enough, super-peers could be able to

perform work as requested, as long and the total requested capacity did not exceed the actual capacity
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present in that cluster.

Under heavy load for a given family of applications, the super-peer responsible for that family could

receive Gridlets that were sent by other super-peers in the assumption that they had capacity to perform

work on those same Gridlets, but in case of shortage, it would be unable to cope, as the advertised

capacity did not correspond to the actual values. Unfortunately this aspect could not be evaluated and

the actual results are as of now unknown.

5.3.2 Efficiency

In order to evaluate gPastry with regards to efficiency, we have to look at the number of messages required

to locate resources, as well as the number of hops Gridlets must take throughout the overlay in order

to locate them. The results presented next show that, even with the introduction of super-peers, the

number of hops necessary for a Gridlet to reach its destination is not significantly impacted.

There is a number of hops spent in super-peer redirection, but it levels rapidly as the number of super-

peers stabilizes and they become known amongst themselves as to become nearly insignificant. This is

due to the fact that in all cases, the number of super-peers is small enough that they tend to be known

among each other fairly rapidly through the use of PastrySuperQuery messages. The average amount

of hops for each test can be seen in Figure 5.2. The number of messages exchanged throughout the

Figure 5.2: Number of hops for Gridlets

simulation is shown to be fairly high and there is much space for improvement, especially in regards to

the amount of messages spent in querying for super-peers and the subsequent replies. The results are

illustrated in Figure 5.3 and Table 5.2.

These messages alone account for more than 10% of all traffic in the network, which is overwhelm-

ingly high for messages whose only function is to keep nodes informed of the current super-peers. The

basic messages inherited from the Pastry overlay do not significantly impact the protocol, as they account

for about 5% of the entire amount in the current tests, a number that should be lesser in a real world

environment where the overlay does not come up entirely at the same time. Unfortunately, we were

unable to test the protocol’s performance in an environment that caused messages to fail to reach their

destination, as well as introducing various degrees of churn to simulate more realistic environments. We
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Figure 5.3: Number of messages exchanged, by type

expect such environmental characteristics to lower the overall efficiency of the system, as more messages

would have to be exchanged to maintain the structured nature of gPastry.

Churn in particular would greatly increase the number of messages exchanged for node initialization

and state exchange, as well as the amount of messages that query the network for super-peers and update

availability. As nodes joined and left the network, the available capacity on each cluster under each

super-peer would fluctuate enough so that updates would become more frequent in order for super-peers

to maintain updated information over the availability of their nodes. With greater degrees of churn,

more of these messages would have to be exchanged, and a great deal of traffic would be spent in overlay

management as opposed to perform any useful work.
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Chapter 6

Conclusion

In this work, a resource discovery model for Peer-to-Peer networks in the context of CPU cycle sharing was

presented. As the available computational capacity available online grows as a consequence of Moore’s

Law and the expansion of broadband access, new protocols that allow users to exploit these resources in

their everyday tasks grow ever more important. Through the use of systems such as GINGER, popular

applications can transparently increase their perceived performance by leveraging the massively parallel

computing power available throughout the world.

The obtained results show that the approach followed in the development of this system works and

that resource discovery in P2P environments can be achieved efficiently through the use of a hierarchical

topology with super-peers, an approach that is already well known from existing file-sharing Peer-to-Peer

applications such as Gnutella. The amount of messages exchanged using the protocol in this work were

clearly sub-optimal, but we believe this is more due to the current implementation, which tends to send

far more messages than those required for the purposes of maintenance, than to the actual protocol.

The amount of information to be stored in each peer can become significant after large periods of time

but intelligent management of such information, added to the fact that many peers only remain con-

nected for relatively small amounts of time minimize this problem. Overall, the overhead imposed by

maintaining the additional information is compensated by the improvements this protocol brings in the

area of resource discovery.

Unfortunately, the lack of comparison with other protocols does not allow a comparative analysis of

gPastry, and as such we cannot assert that gPastry is significantly better than any of the current solu-

tions for this same problem.

6.1 Future Work

In the future, running this simulation in a PlanetLab environment would allow to evaluate this protocol

in a more realistic environment, although at a lesser scale than the one provided by this simulation. It

would also be interesting to attempt to use different topologies, as some of the current limitations may

not exist using different topologies.

Exploring the possibility of adding constraints and filtering to the resource discovery protocol in order

to locate better suited resources, as opposed to the current model, could greatly improve the efficiency

with which resources are used in the network. The use of different representations for node capacity that
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allow to distinguish between different characteristics such as CPU power, available memory and others

would also be a requirement in order for this system to work as expected.

Although unimplemented in the current version of gPastry, using Gridlet replication through the use

of distributed storage systems such as PAST would allow to add greater security benefits to the solution,

namely achieving greater robustness in churn conditions as well as prevent the forging of results, either

maliciously or due to failures in the processing peers.

It would also be of interest to test gPastry in situations of churn, where structured P2P networks tend

to become more unstable and prone to failure, but this could not be accomplished for this project.

The protocol used for determining the best nodes for a given Gridlet can be improved through the

use of reputation and trust mechanisms. Using a reputation metric can improve node selection by select-

ing more often nodes that perform their work quicker while avoiding nodes which disconnect frequently,

thus compensating for high churn scenarios. Trust metrics would also allow to isolate malicious nodes

attempting to corrupt the results on the network.

In a P2P environment, it is impossible to have a centralized reputation or trust manager, and as such,

that information could likely be incorporated in the super-peers developed for the purposes of this work.

Additionally, other techniques would be of interest to improve the proposed protocol, such as finding

a better balance between all relevant metrics regarding node performance will allow for a better overall

selection of nodes, or allowing, when possible, for nodes to include information about the expected du-

ration of the current load. Other nodes could cache this information for the specified amount of time

and refer directly to it, which could be useful to lessen the amount of messages sent through the network

(such as described in the work of Filali et al[24]).

In a real-world scenario, security is of great concern, and work looking towards securing Gridlets through

the use of mechanisms like digital signatures as well as better ways to prevent malicious falsification of

results would be of great interest, but are beyond the scope of this work.
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