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‘‘acabar o curso é o que mais importa’’,

aos meus pais, António e Ana, pelo pouco que me

viram durante este trabalho e por me terem trazido

aqui,
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falar em tese, até ser a vez dela de estar aqui.





Resumo

A detecção e identificação de caras humanas tem sido uma àrea de estudo intenso ao longo das

últimas décadas, com diversas estratégias propostas com alguns bons resultados. No entanto, é uma

tarefa computacionalmente intensiva, especialmente em v́ıdeos que podem atingir um tamanho con-

siderável. Assim, é importante desenvolver novas soluções que melhorem o desempenho de métodos

de identificação de caras. Actualmente, um dos paradigmas de tecnologia mais promissores que

pode ser utilizado para atingir este fim é a Computação na Nuvem, permitindo o desenvolvimento

de sistemas escaláveis e flex́ıveis com um acesso on-demand a recursos virtuais num modelo utilitário

em que se paga apenas o que realmente se utiliza. O objectivo deste trabalho é estudar a melhor

forma de integrar um método de identificação de caras com uma infraestrutura de nuvem, e propor

um sistema que tire partido destes recursos para aumentar consideravelmente o desempenho do

reconhecimento facial em grandes bases de dados de v́ıdeos.





Abstract

Detection and identification of human faces has been an intense area of study in the past

decades, with many strategies being proposed with some good results. Yet, it is a computationally

intensive task, especially in videos that can reach a considerable size. Hence, it is important to

develop new solutions to improve the performance of face identification methods. At the moment,

one of the most promising technology paradigms that can be used to achieve this result is Cloud

Computing, allowing for scalable and flexible systems to be built with an easy on-demand access

to virtual resources in a pay-as-you-go utility model. The purpose of this work is to study the best

way to integrate a face identification method with a cloud infrastructure, and propose a system

that leverages cloud resources to greatly improve facial identification performance in large video

databases.
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1Introduction
Over the last couple of decades the world has been witnessing the evolution and expansion of

the Information Technology (IT) area at a very fast rate, especially since the appearance of the

Internet and the World Wide Web. This led to the appearance of several new paradigms that

revolutionized the way information is processed, among which there is Cloud Computing. Even

though a newcomer, making its debut only during the last few years, all the major IT companies

like Google, Amazon and Microsoft are now fully aware of its power and usefulness for IT businesses

and, indirectly, to the end-user. A great number of services typically used by today’s average user

are now cloud-based (e.g. Amazon online store) and the tendency is for this type of services to

grow in number as companies start to acknowledge benefits of cloud computing such as on-demand

allocation of resources and utility pay-as-you-go payment models. Given this facilitated access to

computing and storage resources provided by emerging cloud platforms, it makes sense to design

new cloud-based systems capable of presenting end-users with out-of-the-box solutions that can be

used from almost any Internet-capable device.

In this context, the recognition of human faces in videos is a good example of a research area

that could greatly benefit from exploiting the cloud potential, especially when dealing with huge

databases of videos that can easily reach the terabytes mark. The nature of this problem implies

a massive computational effort from the start, since video processing is a computationally heavy

task and a face identification algorithm executing on top of it only aggravates this problem. Yet,

video processing can be seen as belonging to the class of the generically dubbed ‘‘embarrassingly

parallel’’ problems, meaning that it is easily divided into sub-problems that should not, considering

a sequentially-framed raw video footage, have data dependencies between them. However, video

technology has been evolving to a point where very different and complex codification algorithms,

containers and formats are used, imposing an additional computational/developing effort to either

decode and transform videos to a sequentially-framed raw format before analyzing them, or interpret

these complex formats on-the-go when possible.

Although the interpretation of video formats plays a big role on the performance of video

processing, it is not the object of research of this work, and so we should assume a black-box

behavior from a third-party application to interpret the several different video formats available

and perform a translation to a known format. Knowing this, the main focus of this research is on



how to bring the two sides of the original problem together, or, in other words, how to design and

implement a parallelized version of an existing algorithm for face identification in videos on top of

the distributed environment of Cloud Computing, and it is with this goal in mind that we propose

a solution to the problem in the form of the system FaceID-Cloud.

1.1 Objectives and Contribution

The contribution of this work is to study an efficient way to solve the problem of integrating

an existing facial recognition method with the technologies which are part of the Cloud Computing

paradigm, the main goal being to greatly increase the performance of one such technique when

compared with a sequential approach. The resulting system should be able to process video material

using the resources provided by a cloud infrastructure, and identify the people that appear in it

given a database of known individuals. Unknown faces should be analyzed and grouped by their

similarity, so that an end-user can tag the group with a name and add another person to the

system. From that moment on, that person will be identified and no more user input should be

needed. All processed information should be adequately stored and indexed so that useful queries

can be made, namely to know which people appear in a video and which videos does a person

take part in. The system should be able to scale horizontally (computation- and storage-wise) and

increase its performance in proportion to the on-demand addition of new nodes. Also, it should

strive for efficiency in terms of communication steps and message size so as to reduce the load on

the network which, from a high-level pre-analysis of the system’s most probable bottlenecks, should

be the most scarce resource available. Summarily, the main contributions of this work are:

• Horizontally scalable system that leverages cloud computing resources

• Dynamically sized infrastructure based on system load, suitable for pay-as-you-go-models

• Distributed system to accelerate human facial recognition on videos

• Ranged search efficient storage strategy of vectors in a key/value database

It is not in the scope of this work to develop a new face identification method or improving the

core techniques of an existing one. Any modifications or improvements should only facilitate the

implementation of the system and should not be made on the core of the method, as it is not the

focus of this work. Thus, one of the most basic face identification methods was chosen to be used,

eigenfaces by Turk and Pentland (Turk & Pentland 1991), so that the focus is on the middleware

design and the integration of the method with cloud technologies. While not in the main objectives

list, as a secondary goal it is important to design the system in such a way that it can, in the future,

accept different face identification methods.

1.2 Document Structure

This document will start with a survey on previous works and state-of-the-art technologies

related with this project in the Related Work (see Chapter 2), where three main subjects will

2



be analyzed: cloud computing, data-driven systems and face recognition. Each of these areas is

closely related with this work’s system, and should provide a foundation to start with. Next, the

design process of the solution’s architecture is presented in the Solution Design (see Chapter 3),

by specifying the main architectural drivers behind it and several views of the system at different

levels of detail. The text continues with a description of the implementation process, covering

themes such as the technologies chosen and how the design description was materialized in the

Implementation (see Chapter 4). Finally, we conclude with a description of the deployment process

and an evaluation of the developed system’s prototype performance on the Evaluation (see Chapter

5). The final chapter contains a wrap-up of the work, along with a discussion of what could be

improved in the current solution and some final remarks in the Conclusions (see Chapter 6).

1.3 Other Publications

Part of this work can be seen in the INForum 2012 paper (Caldeira & Veiga 2012), published

during the development of the system.
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2Related Work

In this section a survey on the background subjects of this work is made, providing the theoret-

ical and technological foundations necessary to develop a solution for the problem. Since this work

depends on knowledge from very different areas, a division was made into three distinct subjects

that will be studied: Cloud Computing, Data-Driven Scheduling and Face Identification.

2.1 Cloud Computing

During the past few years, the IT world witnessed the birth and growth of a new paradigm,

commonly called Cloud Computing, although it has also been named as Dynamic Computing

(Rajan & Jairath 2011). It is difficult to assign a precise date for its genesis, since the term “cloud”

has already been used in several contexts, describing large ATM networks in the 1990s for instance

(Zhang, Cheng, & Boutaba 2010), and is also based upon some already existing technologies like

distributed computing, virtualization or utility computing which have been around for several years

(Vaquero, Rodero-Merino, Caceres, & Lindner 2008). However, some (Gong, Liu, Zhang, Chen, &

Gong 2010; Vouk 2008) claim that the true birth of Cloud Computing happened when IBM and

Google announced a partnership in this domain (IBM & Google 2007), leading to a hype around

the subject and lots of popularity.

In the following subsections, a possible definition for Cloud Computing will be presented after its

evolution and main characteristics (Section 2.1.1), followed by a description of some concepts related

to the cloud paradigm (Sections 2.1.2.1 and 2.1.2.2) and the most significant enabling technologies

(Section 2.1.2.3). Finally, some running research challenges (Section 2.1.3) are presented. For

completeness, a survey and classification of some existent cloud systems is also given on Tables B.3a

and B.3b in Appendix B.

2.1.1 Overview of Cloud Computing

Cloud Computing is a much younger paradigm when compared with its older ‘‘siblings’’ who

have been around for years, like Grid Computing or Cluster Computing, meaning that it still needs

a standardized and generally accepted definition. In an online article (Geelan 2009), twenty-one

IT experts define Cloud Computing according to their vision and experience in the area, but the

answers are somewhat disjoint and seem to focus on just certain aspects of the technology, lacking

a global analysis of the proposals (Vaquero, Rodero-Merino, Caceres, & Lindner 2008). Some



of the experts and other authors focus on immediate scalability, elasticity and dynamic resource

provisioning as the key characteristics for the Cloud (Markus Klemns in (Geelan 2009) and others

in (Tsai, Sun, & Balasooriya 2010; Rajan & Jairath 2011)), while others disagree with this vision

focusing on the type of service as the main concept (Brian de Haaf in (Geelan 2009) and others

in (Tsai, Sun, & Balasooriya 2010)). Some other existing perspectives are based on the business

model, characterizing Cloud Computing as a pay-as-you-go based service and with the potential

to reduce costs by the realization of utility computing (Jeff Kaplan in (Geelan 2009) and others in

(Bojanova & Samba 2011; Buyya, Yeo, & Venugopal 2008; Wang, Laszewski, Younge, He, Kunze,

Tao, & Fu 2010)).

2.1.1.1 From Mainframes to Cloud Computing

Even though Cloud Computing is considered a new paradigm, its roots come from far back

in the past. In the 1960s, large mainframes could be accessed by several thin clients to process

bulk data, very much like today’s users can use personal computers, tablets, smartphones and other

computing devices to request a service from a cloud provider. Thus, one could say that the hype

around the cloud does not have a great reason to exist, as it seems to have just brought back

an old and well known concept. Steve Mills, Senior Vice-President and Group Executive at IBM,

illustrated this point in a 2008 interview1 stating that “We [IBM] have been running multitenancy

for decades and decades” and that “Everything goes back to the beginning, the mainframe”, when

asked about his company’s view on Cloud Computing. Although it is true that mainframes and

the present cloud systems share some basic characteristics, there are some clear distinctions to be

made in respect to computing power, storage capacity and scalability. According to (Voas & Zhang

2009), a mainframe offers finite computing power, being a physical machine, while cloud systems

offer’s a very high degree of scalability regarding power and capacity. Also, as opposed to the

simple terminals used to access mainframes, today’s computers have significant computing power

and storage capacity on their own, allowing for a certain degree of local computing and caching

support.

In this perspective, some authors describe the technology evolution steps from the mainframe

paradigm to the cloud one (Voas & Zhang 2009; Rajan & Jairath 2011), although the descriptions

do not match exactly. It started, of course, with mainframes shared by several users and accessed

through terminals. However, this strategy is not financially feasible for a single person, leading to

the birth of the personal computer era, defined as the second stage in the evolution by the authors.

Nonetheless, there were still considerable costs for companies, since each computer needed its own

application interfaces and databases. With the appearance of local networks, the third stage, the

client-server model helped organizations to reduce costs by featuring a centralized database access

1http://news.cnet.com/8301-13953 3-9933108-80.html (accessed April 2013)
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in the servers and the application interfaces in the clients. Yet, this model still has limited resources

and cannot be applied globally in an efficient and effective way. The fourth stage saw the advent of

local networks that could connect to other local networks, giving birth to the World Wide Web and

the Internet, providing no single point of failure, no single point of information, no single owner and

no single user or service provider. All these stages laid the foundation for the appearance of several

paradigms based on distributed information systems, including, of course, Cloud Computing.

2.1.1.2 Economy of Scale

An important concept that helps define Cloud Computing is that of Economy of Scale (Vouk

2008; Zhang, Cheng, & Boutaba 2010). The rationale behind large data-centers is based on the

notion of reductions to the unitary cost as the size of the facility increases, allowing companies to fo-

cus on specializing and optimizing their products. In the context of Cloud Computing, an economy

of scale is usually achieved by building a data-center with a very high number of commodity-class

systems, leveraging the lower price and also the lower maintenance costs of this type of hardware.

In this way, network equipment, cooling systems, physical space, and other resources can be effi-

ciently exploited, where otherwise, with fewer high-end systems, resource utilization efficiency would

severely drop. Since the cost and computing power of a single system is so insignificant when com-

pared to the whole data-center, providers can even cope with several failures without bothering to

replace individual nodes. Also, to expand the data-center it suffices to acquire more commodity

computers and add them to the existing bundle. By reducing their costs with data-centers, cloud

providers can lower the prices for their clients, turning Cloud Computing into a competitive and

feasible business.

2.1.1.3 Utility Computing

During the past century, society has become accustomed to utility services such as electric power,

water, natural gas, telephone access, and many others, including Internet access more recently.

The infrastructure supporting these services has evolved to an utility-based business model, where

customers pay solely for what they use and do not have to own the whole necessary equipment,

what would be financially infeasible. This way of thinking is now embedded in our mentality, where

it does not make sense to possess an expensive power generator at home, for instance, when there

are companies who can supply the same service at a lower cost based on economies of scale. All

these services are shaped by a combination of several requirements like ease of use, pay-as-you-go

charges, high reliability among others (Rappa 2004).

Given the concept of an utility service described above, the Utility Computing paradigm can

be described as the on-demand delivery of infrastructure, applications and business processes in a

security-rich, shared, scalable and standards-based computer environment over the Internet. Cus-

tomers can access IT resources as easily as they get their electricity or water, and are charged in a
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pay-as-you-go basis (Rappa 2004).

2.1.1.4 Service-Oriented Architecture

In the IT business world, Service-Oriented Architecture (SOA)s are gaining ever more impor-

tance as universal models to which automation and business logic conforms. Service-orientation aims

to cleanly partition and consistently represent available resources, simplifying technical disparities

by applying abstraction layers and providing them as services, which in turn lay the foundation for

standards for representing logic and information. The main principle is that one should leverage the

potential of individual services existing autonomously yet not completely isolated from each other,

seeing that they must conform to a set of principles that allow them to evolve independently, while

assuring some commonality and standardization. Thus, SOAs have the potential to support and

promote these principles throughout the business process and automation domains of an enterprise

when realized through a web-services platform (Erl 2005). Cloud Computing is closely related to

SOA in that it aims to supply several different services, providing the necessary technologies and

flexible platform for companies to build their SOA solutions in a cost-effective way.

2.1.2 Defining Cloud Computing

Before presenting a possible definition for the cloud paradigm, it is important to describe the

distinctive technical characteristics which differentiate it from earlier related paradigms. Note that

there can be dependencies between the listed characteristics, in the sense that one is achieved

by relying on the existence of the other, but it is relevant to make the distinction as they are

significant in the classification of cloud systems.

On-demand service provisioning. One of the key features of Cloud Computing is the

possibility to obtain and release computing resources on the fly, following the real necessities of an

application. This avoids both having to pay for unused resources and the exact opposite, missing

resources during periods of peak demand.

Service orientation. As mentioned before in Section 2.1.1.4, Cloud Computing aims to provide

different services and act as a foundation for SOA solutions. The business models around the

cloud are service-driven, hence a strong emphasis is placed on service management. A description

of the most significant cloud service models is given in Section 2.1.2.1. In order to protect both

cloud providers and customers, a Service Level Agreement (SLA) is negotiated, where the provided

services and conditions are defined. SLAs oblige providers to live up to the Quality of Service

(QoS) terms they committed to in the SLA and assure customers that the services they paid for

will be fully provided. On the other hand, SLAs can also protect providers from having to cope

with unreasonable requests. Yet, SLAs still constitute one of the hardest challenges to overcome,
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as cloud providers cannot usually guarantee an agreed QoS, forcing some companies to refrain from

migrating their services to the cloud. This problem will be discussed in the Challenges Section (see

2.1.3).

Scalability and Flexibility. A scalable and flexible infrastructure is central to cope with

different geographical locations of the resources, disparate hardware performance and software

configurations. Also, to support a dynamic service provisioning, the computing platforms should

be flexible to adapt to the requirements of a potentially large number of users without violating

the QoS conditions of the SLAs (Wang, Laszewski, Younge, He, Kunze, Tao, & Fu 2010).

Pay-per-use utility model. Some of the experts in (Geelan 2009) referred a strong connection

between Cloud and Utility Computing, in the sense that the former is the realization of the earlier

ideals of the latter. An utility service model is usually applied to Cloud Computing featuring a

pay-per-use billing, where customers only pay for what they really use or for small predefined

quanta (e.g. 1 hour of CPU, 1GB of storage, etc).

Ease of access. A utility-model requires a ubiquitously accessible service (following traditional

public utilities like electricity or water supplies) which can be used from any connected devices

over the Internet, with simple to use and well defined interfaces and with very few requirements

from the client system (Wang, Laszewski, Younge, He, Kunze, Tao, & Fu 2010).

Virtualization. Virtualization techniques provide the means to achieve most of the above

mentioned features, namely by partitioning hardware and thus acting as the base for flexible

and scalable computing platforms (Wang, Laszewski, Younge, He, Kunze, Tao, & Fu 2010).

Virtualization is, thus, one of the major underlying and enabling aspects of the Cloud Paradigm.

This subject will be described in more detail in Section 2.1.2.3.

Multi-tenancy. Cloud infrastructures must be capable of serving multiple clients, or tenants,

under the same hardware or software infrastructure to achieve the goal of cost effectiveness. There

are always some issues in need to be addressed in order to achieve the full potential of multi-tenancy,

like security isolation, customizing tenant-specific features or efficient resource sharing, which are

usually handled by leveraging the virtualization support of the cloud infrastructure.

Given the set of concepts described, a possible definition for the cloud paradigm can now be

given, based on the work of (Vaquero, Rodero-Merino, Caceres, & Lindner 2008): Clouds are

a large pool of easily usable and accessible virtualized resources (such as hardware,

development tools and/or services). These resources can be dynamically reconfigured

to adjust to a variable load (scale) and can be accessed by several users simultane-

ously (multi-tenant), allowing thus for an optimum resource utilization. This pool of

resources is typically exploited by a pay-per-use model in which guarantees are offered
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by cloud providers by means of customized SLAs. Note that the Cloud concept is still

changing and this definition shows how it is conceived today.

2.1.2.1 Cloud Service Models

Cloud Computing has been widely described has a service-oriented paradigm by several authors

(Vaquero, Rodero-Merino, Caceres, & Lindner 2008; Tsai, Sun, & Balasooriya 2010; Rajan & Jairath

2011; Bojanova & Samba 2011; Prodan & Ostermann 2009; Gong, Liu, Zhang, Chen, & Gong 2010)

and the IT community in general. It is clearly one of the major characteristics that distinguish it

from similar paradigms, like Grid Computing. Although the SOA (Software Oriented Architecture)

concept is common to both Cloud Computing and Grid Computing, it reaches a more practical

state in the former (Gong, Liu, Zhang, Chen, & Gong 2010).

There are two key properties that enable Cloud Computing to be service-oriented in agreement

with the utility philosophy, abstraction (Vaquero, Rodero-Merino, Caceres, & Lindner 2008; Gong,

Liu, Zhang, Chen, & Gong 2010; Vouk 2008) and accessibility (Vouk 2008). In order to achieve the

type of interaction described earlier with utility computing, it is necessary to hide all the complexity

of the cloud architecture from the end-user and to present an user-friendly interface for requesting

services. In respect to the first requirement, the abstraction property is best described through a

layered diagram which identifies the several parts of the cloud architecture and the relations between

them. Each layer is, of course, built in a hierarchical way on top of one another and represents a

specific type of service to be provided based on the service provided by the subjacent layer.

Note that each layer can in fact offer a service for end-users even if it is not the top layer,

distinct from the common software engineering notion of a system build from several modular

layers, where often the top one alone provides some service. Virtualization, described in Section

2.1.2.3, is a key requisite to attain abstraction without exposing the underlying architecture details

to the users. As for the accessibility requirement, the common practice is to provide a standardized

API which respects a given protocol (e.g. SOAP, REST) and enables an easy access to the service

from anywhere in the world. This easy access to cloud services is likely to be one of the main

boosters of its ongoing acceptance in the non-academic community in a relatively short period of

time (Weinhardt, Anandasivam, Blau, & Stöß er 2009).

A description of the several cloud service models is now presented, starting with an hierarchical

view for Cloud Computing on Fig. 2.1 followed by the description of the service model associated

with each layer in the hierarchy.
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Figure 2.1: Cloud Hierarchical

Layer View

Data Centers. The Data Centers layer is the foun-

dation for Cloud Computing technologies, providing

raw computation, storage and network hardware re-

sources. Usually, they are built in less populated

ares with cheaper energy rates and low probability

of natural disasters, being constituted by thousands

of inter-connected servers (Tsai, Sun, & Balasooriya

2010).

Infrastructure-as-a-Service (IaaS). The Infrastructure layer focuses on leveraging the

subjacent data-center’s resources and provisioning them as services to consumers by virtualizing

storage capacity, computational power, communications and other fundamental computational

resources necessary to run software. Companies offering this kind of services are commonly called

Infrastructure Providers (IPs) (Vaquero, Rodero-Merino, Caceres, & Lindner 2008). Even though

users do not directly control the physical infrastructure, they are able to scale their virtualized

resources up and down dynamically according to their needs. This is in line with the utility

perspective, where consumers use and pay only for what they do consume. Also, the virtualization

of resources is of great value for IPs, since they can focus on maximizing the efficiency of their

infrastructure and therefore make it more profitable. An example of a commercial solution in this

domain is Amazon’s Elastic Compute Cloud (EC2).

Inside the IaaS domain it is still possible to define some sub-categories, although there is less

agreement from the IT community in these and the naming is primarily performed by business

marketing people trying to differentiate their product’s characteristics. First, note that the term

storage above does not clearly identify the type of service. Is the data organized in some way

as in database or is it just stored in bulk as a backup? From this perspective Database-as-a-

service (DBaaS) and Storage-as-a-Service (StaaS) emerge. The former is centered on providing

a fine-grained access to data by delivering database functionality as a service, supporting multi-

tenancy, automated resource management and other features of traditional database service systems

(Oracle 2011). The latter refers simply to cloud storage leveraging virtualized storage resources,

with no complex data querying functionalities provided as in DBaaS. Another sub-category of IaaS

derives from the virtualization of communication services, being called Communications-as-a-Service

(CaaS). In this field, communications platforms like VoIP are offered as a service, freeing companies

from the financial burden of building a platform from scratch.

Platform-as-a-Service (PaaS). The second layer, Platform layer, adds an additional abstraction

level to the services supplied by the Infrastructure Layer, effectively aggregating them and offering
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a complete software platform to assist in application design, development, testing, deployment,

monitoring. Namely, it provides programming models and APIs for cloud applications, MapReduce

(Dean & Ghemawat 2008) for example. Also, problems like the sizing of the resources demanded by

the execution of the services are made transparent to developers (Vaquero, Rodero-Merino, Caceres,

& Lindner 2008).

Software-as-a-Service (SaaS). Finally, the Application layer presents software to end-users as an

on-demand service, usually in a browser, being a model already embraced by nearly all e-business

companies (Prodan & Ostermann 2009). It is an alternative to locally running applications with

some clear advantages over them. First, applications hosted in the cloud do not require users to

install and continuously update applications on their own computers, saving time and disk space,

and enhancing accessibility and user-friendliness. This also helps software providers, since updates

are automatically distributed to users, needing only to alter the few instances running in the cloud

infrastructure. Also, the software developers can target their applications to work in a known and

controlled environment, raising the quality and security of the products.

2.1.2.2 Cloud Deployment Models

Another way of classifying a Cloud infrastructure is according to its type of deployment. Cur-

rently, there are three main deployment models acknowledged by the IT community, public, private

and hybrid clouds (Zhang, Cheng, & Boutaba 2010; Rajan & Jairath 2011; Bojanova & Samba

2011; Sakr, Liu, Batista, & Alomari 2011), although some other models are also considered such

as community (Bojanova & Samba 2011; Sakr, Liu, Batista, & Alomari 2011) and virtual private

(Wood, Shenoy, Gerber, & Ramakrishnan 2009; Zhang, Cheng, & Boutaba 2010) clouds.

Public or Hosted Clouds. In this deployment model, the cloud infrastructure is owned by or-

ganizations selling cloud services who offer their resources to the general public or large industry

groups (e.g. Amazon, Google, Microsoft). Public clouds offer several benefits to service consumers

since there is no initial investment on infrastructure and the related inherent risks are shifted to

infrastructure providers. However, there are some drawbacks, like the lack of fine-grained control

over data, network and security settings, hindering the effectiveness in some business scenarios.

Private Clouds. Although the cloud ecosystem has evolved around public clouds, organizations

are showing interest in open source cloud computing tools which let them build private clouds

using their own or leased infrastructures. Thus, private cloud deployments’ primary goal is not

to provide services over the Internet, but to give users from the organization a flexible and agile

private infrastructure to run service workloads within their administrative domains. This model

offers the highest degree of control over the performance, reliability and security of the resources,

and improves resource reuse and efficiency, but the advantages of a public cloud are lost, since the

organization itself has to perform maintenance and entails up-front costs in case of not owning the
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infrastructure. It embodies, to some extent, the late adoption of Grid Computing principles by

corporate IT.

Hybrid Clouds. Both public and private cloud approaches still have some limitations, namely

the lack of control and security in the former and the difficulty of expanding or contracting the re-

sources on-demand in the latter. A common solution is an hybrid deployment model, where unique

clouds are merged, bound by technology that enables interoperability amongst them, taking the

best features of each deployment model. In an hybrid cloud, an organization builds a private cloud

over its own infrastructure, maintaining the advantage of controlling aspects related to performance

and security, but with the possibility of exploiting the additional resources from public clouds on

an as-needed basis (e.g. when there is a demand peak on the infrastructure of an online retailer

in holiday season). On the downside, designing a hybrid cloud requires a careful decision on the

best split between public and private cloud components and the cost of enabling interoperability

between the two models.

Community Clouds. Community clouds are somewhat of a middle way between public and pri-

vate clouds. They are not owned by a single organization as in a private cloud, but are also not

completely open to the general public as commercial services. The cloud infrastructure is usually

provisioned for exclusive use by a specific and limited community of organizations with shared con-

cerns or interests.

Virtual Private Clouds. Another way of dealing with public and private clouds limitations is

called Virtual Private Cloud (VPC). In this deployment model, a platform is built on top of a public

cloud infrastructure in order to emulate a private cloud, leveraging Virtual Private Network (VPN)

technology. In this way, users are allowed to design their own topology and security settings, having

a higher level of control than allowed by simple public clouds, while retaining easy resource scalabil-

ity. VPC is essentially a more holistic design since it not only virtualizes servers and applications,

but also the underlying communication network as well, facilitating the task of migrating services

from proprietary infrastructures to the cloud.

2.1.2.3 Enabling Technologies

There is a set of well-understood technologies which constitute the foundation for cloud in-

frastructures. Without enabling technologies like virtualization, web services, distributed storage

systems, programming models, just to mention a few, most of the cloud paradigm features would

not be attainable. A brief description of these subjects will now be presented.

Virtualization Technology. Virtualization is one of the key components that render cloud com-

puting service models possible. Each layer in the architecture can be provided on-demand as a

service through virtualized resources, which not only provide users with access to controlled en-
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vironment and performance isolation, but allow infrastructure providers to achieve flexibility and

scalability of their hardware resources. Also, virtual machines act as a sandbox environment, en-

forcing a high security level and isolation between instances. In the context of Cloud Computing,

virtualization is achieved through special purpose applications called Virtual Machine Monitors

(VMM), or hypervisors, which simulate an hardware environment for deploying guest operating sys-

tems, while controlling every aspect regarding resources and interactions. Among the most widely

used VMMs are the Xen Hypervisor2, KVM3 and VMware ESX4.

Web Services. A Web service is a software system designed to support interoperable machine-to-

machine interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed by its

description using SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. The generalized acceptance of Web services in the e-

commerce business, namely in the service providing industry, has greatly contributed for the growth

and recognition of the Cloud Computing paradigm. Cloud services are usually exposed as Web ser-

vices, being easily accessible from anywhere in the world and leveraging the standard mechanisms

provided to interact with different types of clients. An example of this technology is Amazon Web

Services5.

Distributed Storage System. The underlying distributed storage system where the various cloud

layers are built upon is, of course, another important technology necessary for Cloud Computing.

Built on top of large distributed data centers, it provides scalability and flexibility to cloud plat-

forms, allowing data to be migrated, merged and managed transparently to end-users for whatever

data formats (Wang, Tao, Kunze, Castellanos, Kramer, & Karl 2008). An example of this tech-

nology is the Google File System (Ghemawat, Gobioff, & Leung 2003) and Amazon S36. A cloud

storage model should not only focus on how to store and manipulate large amounts of data, but

also on how to access it in a semantic way. Since the goal of a distributed storage system is to

abstract the actual physical location of data, this access should be performed by logical name and

not by the physical name. For example, in Amazon S3 each object is assigned a key and is accessed

through a pure Identifier (ID), which does not identify a physical location.

Programming Model. In order to comply with the ease of use requirement from the utility com-

puting vision, some Cloud programming models should be proposed for users to adapt more easily

to the paradigm, as long as they are not too complex or too innovative. One of the most known

2http://xen.org/
3http://www.linux-kvm.org/
4http://www.vmware.com/
5http://aws.amazon.com/
6http://aws.amazon.com/s3/
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programming models is MapReduce (Dean & Ghemawat 2008), which allows the processing and

generation of massive data sets across large data centers.

2.1.3 Challenges

Despite the growing popularity around Cloud Computing, there are still several challenges that

need to be overcome. These problems do not prevent the application of cloud technologies – they are

being used today – but introduce difficulties when trying to take full advantage of its characteristics.

Cloud Provider Interoperability. Most cloud providers spend time and money developing an

API for their cloud infrastructure, giving users a simplified and documented way to access cloud

services. However, there is no consensus on a standardized API between providers, as each has

already invested many resources in their solution. This situation forces companies to invest on and

develop new applications for one specific cloud platform, as it is not financially feasible to cover

the whole spectrum of existing platforms. Customer lock-in may be attractive to cloud providers,

but users are vulnerable to price increases, to reliability problems or even to providers going out of

business (Armbrust, Joseph, Katz, & Patterson 2009).

Coupling Between Components. It is common practice for cloud providers to possess the whole

suite of platforms necessary for clients to build full applications. Yet, this usually means that there

are dependencies between these modules, where if one is to be used, it needs another one on which

it depends to function correctly. Thus, one is stuck with a full suite of computing services from the

same provider with a high cost to change, exactly as with the APIs.

SLA Support. Service Level Agreements are the major obstacle for the wide adoption of cloud

computing today. Cloud providers are still struggling to achieve the level of guarantees needed for

companies to use cloud infrastructures for serious business deployment. Until providers are capable

of signing the SLAs and comply with their requirements, most large organizations will not rely on

the cloud for mission-critical computing needs since it cannot provide the necessary customization

and service guarantees. Also, the business is very dynamic, while SLAs are quite static, meaning

that they are not able to adapt to changes in business needs (Tsai, Sun, & Balasooriya 2010).

Security. Most organizations will not have their sensitive corporate data on the cloud, whether

because a public cloud system is more exposed to attacks, or internal laws preventing customer

and copyrighted data outside national boundaries, or even the concern that a country’s government

can get access to their data via the court system. These are all well justified reasons, but there

are no fundamental obstacles on making a cloud environment as secure as a private data center.

Technologies such as encrypted storage, VPC and firewalls are capable of providing the necessary

security protections needed by the customer organizations, although in some countries the usage of

some kinds of encryption can be highly regulated and even illegal (e.g. China).
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2.1.4 Cloud Computing in the Proposed System Context

This area has, of course, a major influence in the system to be designed, as it should be imple-

mented on top of a cloud platform and leverage its resources. This means that all the advantages

of the cloud paradigm will be made available, such as elastic resource provisioning and scalability

for example, but also some of the problems. The system is envisioned to be built on top of an IaaS-

oriented private cloud infrastructure, but nonetheless able to expand into a hybrid infrastructure if

needed or even a full public cloud approach.

2.2 Data-Driven Scheduling

Nowadays, web and scientific applications need to deal with massive amounts of data. Social

networks, video-sharing websites, search engines, physics simulators, they all have to handle an ever

increasing volume of data per day. Given this scenario, data placements decisions are gaining more

and more importance when designing a robust workflow planner, where computational jobs have

usually been the most used methodology. Workflow planners need to become data-aware in order to

tackle this emergent growth of data-intensive applications, taking into account problems like data

placement, storage constraints or efficient resource utilization (Kosar, Livny, Street, & Wi 2004;

Kosar & Balman 2009).

2.2.1 The Problem

CPU-centric schedulers have been the preferred method of running applications, namely in

clusters/grids, as the focus of tasks is usually to leverage all the existing computing power to

achieve some result in the shortest time possible, the CPU-time and network access being the

dominant bottlenecks. However, the growth and spread of data-intensive applications is outpacing

the corresponding increase in the ability of computational systems to transport and process data.

Also, techniques which once worked well for CPU-intensive workloads in a local environment can

suffer orders of magnitude losses in throughput when applied to data-intensive workloads in remote

environments. This situation has been forcing a new perspective, where data access is viewed as the

main bottleneck, turning the scheduling of data placement activities in a crucial problem to be solved

and carefully coordinated with CPU allocation activities (Bent, Denehy, Livny, Arpaci-Dusseau, &

Arpaci-Dusseau 2009; Sakr, Liu, Batista, & Alomari 2011).

2.2.2 Early Work on Data-Driven Systems

Even though the size of today’ datasets were not a reality outside scientific projects until

recently, there were already some concerns about the role of data in computational tasks a few

decades ago. In (Treleaven, Brownbridge, & Hopkins 1982), data-flow (data-driven) was perceived as

a possible fifth-generation architecture for computer systems, opposing the von Neumann principles
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which are based on control-flow (CPU driven). This work was focused on the availability and flow

of data inside a single machine, where operands would trigger the operation to be performed on

them when all the required inputs are available for that operation. In a data-flow architecture each

instruction can be seen as having a computing element allocated to it continuously waiting for the

arguments to arrive, lying dormant whilst they do not.

Thus, data-driven is defined as the term to denote computation organizations where instructions

passively wait for some combination of their arguments to become available. This strategy has the

advantage that an instruction is executed as soon as its operands are available, leveraging a high

degree of implicit paralelism. On the other hand, it can be a restrictive and time wasting model,

as an instruction will not execute until it has all its arguments. The introduction of some non-

data-driven instructions is possible to overcome this problem and provide some degree of explicit

control.

2.2.3 Computational Jobs vs. Data Placement Jobs

There is no efficient solution based exclusively on computational job scheduling or data place-

ment job scheduling when developing a data-intensive application, so it is necessary to bring them

together in order to take full advantage of their best features. According to (Kosar, Livny, Street, &

Wi 2004), in the world of distributed and parallel computing data placement activities are regarded

as second class citizens, meaning that they cannot be queued, scheduled, monitored, managed and

check-pointed, just as a computational activity. However, there has to be a different treatment for

data placement jobs, as they have very different semantics and characteristics compared to com-

putational jobs. For example, if a large file transfer fails, a full retransmission is not desirable. It

should be possible to restart the transfer from the point where it failed or to try again using another

protocol, for example, and a traditional computational job scheduler may not be able to deal with

such cases. Thus, there should be different schedulers for each type of job, leveraging the different

semantics of each one.

2.2.4 Definition

It is possible to establish a definition using the notion of data-driven architecture stated in

Section 2.2.2 and the properties described in Section 2.2.3, adapted to the problems of today’s

data-intensive distributed applications. The principles are essentially the same, only the computing

environment and the data dimension are different. In this perspective, a data-driven distributed

system is an application where the availability of data drives the execution of the

individual tasks, so that data placement activities are considered first-class citizens

and thus can be scheduled, queued, monitored, managed and check-pointed as if they

were computational jobs. This means that instead of having computational jobs triggering data
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requests from a remote location across a throughput-limited network, it is possible to schedule data

placement activities which will trigger the tasks needed to be performed on that data.

2.2.5 Data Aware Batch Scheduling

In data-intensive distributed systems, it is often necessary to start a high number of similar

tasks, usually called a workload, which will process high volumes of data autonomously. By similar

it should be understood as capable of running in the same system without manual intervention (e.g.

same input/output formats). This process is commonly denoted by batch scheduling, being, for

example, extensively used in scientific applications where problems are usually highly parallelizable,

although a good scheduling must be performed in order to efficiently make use of the available

resources, namely computing units, main memory, storage and network. As stated in previous

sections, scheduling is widely performed with computation jobs as the main driver, but the constant

growth of data is becoming a relevant problem, which means that batch schedulers should take data

into consideration when planning. In this section, some relevant topics concerning the properties a

data-aware batch scheduler should possess will be presented.

2.2.5.1 Efficient Resource Utilization

One of the main concerns of a data aware batch scheduler is to optimize the utilization of the

available computing, storage and network resources, making sure that neither the storage space

nor the network connections get overloaded, and the load is evenly distributed between computing

units. In practice, this is strongly connected with the way parallelism and concurrency are used to

maximize the overall throughput of the system, as showed by (Kosar & Balman 2009) (parallelism

refers to the transfer of a single file using multiple streams while concurrency refers to the transfer

of multiple files concurrently). The empirical results of this work showed that the effect of both

methods in the efficiency of the system is different if it is tested on a wide area network (WAN) or on

a local area network (LAN). In a WAN, the transfer rate of the system increases as expected, but in a

LAN it comes to a threshold and additional streams and transfers causes it to decrease. Also, it was

observed that CPU utilization at the clients increases with both parallelism and concurrency, while

on the server only the concurrency level increases the CPU utilization. With an increased parallelism

level, the server CPU utilization starts dropping and keeps this behaviour as long as the parallelism

level is increased. It is interesting to note that concurrency and parallelism have completely different

effects on the CPU utilization at the server side, probably due to the amortization of the select()

system call overhead when monitoring several streams for the same file. Thus, it is important for

a scheduler to conciliate both parallelism and concurrency, as the usage of each strategy by itself

is not very effective, and is also important to adjust them dynamically, as it helps maximizing the

transfer rates and lowers the CPU utilization on the servers.
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2.2.5.2 Dedicated Storage Space Management

When scheduling data transfers to a host, it is important that the necessary space is available at

the destination. In an ideal scenario, the destination storage system is capable of space allocations

prior to the transfer itself, therefore assuring the scheduler that it can proceed with the transfer.

However, this feature is not supported by some storage systems, so the scheduler has to keep track

of the size of the data entering or exiting each host. Also, in a storage constrained environment it

should apply some strategy that maximizes the most desirable quality of the data (e.g. size, age or

some user or system wide utility measure) and takes into account all the jobs executing in the same

host and their input and output sizes.

Assuming multiple uniform pipelined jobs to be executed in one host, four possible strategies are

described in (Bent, Denehy, Livny, Arpaci-Dusseau, & Arpaci-Dusseau 2009) in order to maximize

the throughput of the workload (i.e. to minimize the total time to completion). In these strategies,

a set of pipelined jobs is called a batch, whereas the read-shared data between jobs is called batch

data. Also, each pipeline has access to its private data that is not shared with other pipelines.

Finally, each storage unit allocated to hold a particular data is called a volume. A description of

the four strategies is now presented, starting with the one with less storage limitations to the one

with the most constrained environment:

All Strategy. In this strategy, there are no storage constraints so all the space needed by the

workload fits in the available storage. Thus, the planning is straightforward as no possible schedule

can result in adverse effects. Also, since the storage space for all jobs executing in a given host can

be readily allocated, there are no limits on the concurrency level between the jobs and no refetching

of data is needed.

AllBatch Strategy. In the case where all batch data fits in the host storage, but not all private

volumes can be allocated, an AllBatch Strategy can be applied, as long as there is at least one

pipeline that can simultaneously allocate two volumes for its input and output. This strategy

limits the system concurrency and may cause computing capacity underutilization if the number of

pipelines that can allocate their private volumes is fewer than the number of available CPUs at the

host.

Slice Strategy. When the system is even more storage-constrained compared to the previous two

strategies, a Slice Strategy can be used whenever an horizontal slice of the workload can be allocated

simultaneously. A slice requires storage space for at least one batch volume (which is used at the

same level by all pipelines in the host) and one private volume for each pipeline plus an additional

private volume so that at least one of the jobs can access both its input and output storage and

allow the workload to make some progress. This strategy ensures that no batch refetch is necessary,

since the entire horizontal slice will execute before the workload continues to the next level.
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Minimal Strategy. The most constrained approach is the Minimal Strategy, where at least

one job needs to have have access to its batch volume and its two private volumes (input and

output). This strategy suffers from several problems, like the need to refetch batch volumes and the

underutilization of CPU since only one job is executing. It is a similar approach to the AllBatch

Strategy, with the difference that only one batch volume can be allocated and refetching needs to

be performed.

2.2.5.3 Data Placement

In a data-intensive distributed system, a workflow planner must either take into consideration

where data is located and send jobs to a site “close” to it, or it should include stage-in and stage-

out steps in the workflow, in order to make sure that data arrives at the execution site before the

computation starts. Both strategies are not mutually exclusive, of course.

There are some similarities between data-aware workflow planning and the way microproces-

sors plan the execution of instructions, where pipelining strategies are employed. In the latter, data

retrieval from memory is usually the bottleneck due to slow memory access speed and the latency

in the bus and CPU. When applying a pipeline strategy at the instruction level, memory access

instructions are buffered and ordered in order to improve the overall throughput. The same strategy

can be applied to a distributed workflow planner, where workloads can be viewed as a large pipeline

and the bottleneck is the access to remote data due to network latency, bandwidth and communica-

tion overhead. Pipelining techniques are used to overlap different types of jobs and to execute them

concurrently, yet maintaining the task sequence dependencies, which is what a workflow planner

needs to achieve. By following the pipeline strategy, it can order and schedule data placement tasks

in a distributed system independently of the computation tasks in order to exploit a greater level of

parallelism and reduce CPU underutilization when waiting for data to arrive, while enforcing data

dependencies.

2.2.6 Data-Driven Scheduling in the Proposed System Context

The target system of this work will have to deal with large amounts of data, potentially having

to process gigabytes of video material. This large amount of data cannot be pushed aside to the

background, it must be given priority as it will condition the execution of the system. This must lead

the system’s architecture to be data-oriented and not computational-oriented. Data tasks should be

seen as the basic work unit and guide the computation according to the placement and availability

of the data.

2.3 Face Identification

The ability to recognize and distinguish one face from thousands of other different faces has

been imprinted on the human brain visual cortex for millennia, so that now people usually perform
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this task subconsciously without realizing the difficult process around it, and what it takes for

their brain to accomplish an identification with a very high precision. Nonetheless, however easy it

seems for a human to recognize a face quite independently of the context, computers still struggle

for high confidence intervals when presented with the same face in several different environments.

During the last 40 years, the problem of face identification by computers has been the subject of

extensive research, with several techniques being suggested which, sometimes, can match or exceed

humans (O’Toole, Phillips, Jiang, Ayyad, Penard, & Abdi 2005). During this last decade, the great

improvements in computing power have brought new possibilities, enabling techniques that 20 or

30 years ago were simply not feasible, CPU- and memory-wise.

In this section, the problem of face identification by computers will be described, starting with

an overview and definition of the problem and goals (Section 2.3.1), followed by a description of how

humans identify faces (Section 2.3.2). Next, the description of some existing methods to perform

recognition (Section 2.3.3). Finally, some issues and approaches specifically related to identifying

faces in videos are described (Section 2.3.4).

2.3.1 Defining Human Face Identification

Human face identification is a natural activity to the majority of humans, being an essential

capability that has evolved and reached a high accuracy percentage. Despite being natural to

humans, it is necessary to define clearly what facial identification means for a computer. It is

part of a broader subject, which is known as human face perception in (Hongxun, Wen, Mingbao,

& Lizhuang 2000). A general notion of this area is given, stating that it is a kind of intelligent

behavior for computer to catch and deal with the information on human faces, including human

face detection, human face tracking, human face pose detection, human face recognition, facial

expression recognition, lipreading and others. Although face identification is a specific sub-area of

human face perception, it partially encompasses several of the others areas presented.

Simply put, it tries to solve the problem of, given a still or video image, detect and classify

an unknown number (if any) of faces using a database of known faces. It is worth noting that

although it is relatively simple to clearly identify the problem and what has to be done to solve it,

in (Turk & Pentland 1991) it is shown that developing a computational model for face recognition

that efficiently and completely solves the problem is immensely difficult, as faces are a complex,

multidimensional, and meaningful visual stimuli. Also, faces are a natural class of objects which

are not easily mappable with the usual models utilized in other computer vision research areas.

2.3.2 Face Identification by Humans

One of the goals of automatic face identification systems is to reach and eventually surpass

human performance on that same task, although they are not required to follow the same strategies
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humans have developed over time. As a starting point, this section describes the strategies the

human visual system uses to perform face identification, which might be useful when developing

automatic systems.

Humans make use of a lot of sensory information to perform recognition (visual, auditory,

olfactory, tactile, etc) and in some cases can even rely on the context to identify a person. Yet,

most of this information is not easily available to computers, which are frequently only presented

with 2D-images. However, computers have a clear advantage on the amount of information that

can be stored and processed, even if they cannot use it so effectively. A person is typically able to

store, or “remember”, a limited set of faces in the order of thousands, while a computer system can

potentially store an infinite number.

Some relevant topics regarding the way humans recognize faces are now presented, based on the

works of (Chellappa, Wilson, & Sirohey 1995; Zhao, Chellappa, Phillips, & Rosenfeld 2003; Sinha,

Balas, Ostrovsky, & Russell 2006).

2.3.2.1 Feature-based vs. Holistic Analysis

Humans are believed to rely heavily on two crucial methods when analyzing a face, feature-based

and holistic-based analysis. These approaches are by no means mutually exclusive, so they are used

together when identifying a face. Nevertheless, the question remains as to which of this approaches

most influences a recognition.

A feature based approach is performed in a bottom-up fashion, where individual features (e.g.

eyes, eyebrows, mouth, etc) are extracted from a face and assigned to a known person which has

similar features. On the other hand, an holistic, or configural, approach implies the apprehension

and classification of the face as a whole, using elements such as the shape or the global geometric

relation between individual features to help in the recognition. Studies suggest the possibility that

a global description like this can serve as a front end for a feature-based analysis, being at least as

important as the latter. Yet, in the case that dominant features are present, such as big ears or a

crooked nose, holistic descriptions may be skipped (Chellappa, Wilson, & Sirohey 1995).

A simple example of the importance of holistic analysis is when features on the top half of a face

are combined with the bottom half of another face. What happens is that the two distinct identities

are very difficult to recognize as whole. However, when the two halves are separated, presumably

disrupting the holistic process, the individual identities of each half are easily recognizable. This

also suggests that some features alone are sometimes sufficient for facial recognition (Sinha, Balas,

Ostrovsky, & Russell 2006).

Another strong evidence of the importance of a holistic analysis is that an inverted face is much

harder to recognize than an normal face. In (Bartlett & Searcy 1993) this is exemplified using the
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“Thatcher Illusion”, where the eyes and mouth of an expressing face are inverted. The result in

the face with the normal orientation looks grotesque, but on the inverted version it appears quite

normal and it takes some close inspection to notice the change.

Although feature processing is important for facial recognition, given these results it is suggested

that facial recognition by the human visual system is dependent on holistic processes involving an

interdependency between features and configural information (Sinha, Balas, Ostrovsky, & Russell

2006).

2.3.2.2 Importance of Facial Features

Even though all features of a human face can be used for identification, there are some who

appear to be more significant to this task, without which it seems to be harder to identify someone.

Among these most important features are included the face outline, eyes and mouth. The nose is

usually not considered with much significance in frontal images, but it has a greater impact in a

profile view of a face.

Another feature whose importance is typically undervalued is the eyebrow. It is typically a

mean to convey emotions and other nonverbal signals, which the human visual system may be

already biased to detect and interpret, and so it may be that this bias is extended to the task of

facial identification. It is also a very “stable” feature, as they are hardly occluded as the eyes,

tend to contrast with the surrounding skin and are a relatively large facial feature, surviving image

degradations. Some interesting results on this subject show that the upper part of the face is more

easily recognized than the lower part, presumably by the presence of the eyes and eyebrows (Sinha,

Balas, Ostrovsky, & Russell 2006).

2.3.2.3 Face Identification as a Dedicated Brain Process

Humans are capable of identifying all kinds of objects from the world, but faces are believed to

possess a dedicated process in the brain just to deal with them. Some arguments on that there is

indeed a dedicated process are:

• Faces are more easily remembered in an upright orientation when compared to other objects.

As stated before, an inverted face is harder to identify than a normal one, presumably by

disrupting the holistic analysis process.

• People who suffer from prosopagnosia find it very difficult to recognize faces, even those

they were familiar with, but typically they are able to recognize other objects without much

difficulty. They can perceive the individual features, but are unable to see them together in

order to identify the subject.
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• Newborns are believed to be more attracted by faces and face-like patterns than other objects

with no patterns or mixed features, suggesting a genetically predisposition to process faces in

order to detect and identify parents or caregivers.

2.3.3 Automatic Face Recognition Methods

There has been extensive investigation on how to best recognize a face given a learning database.

Researchers from the most different areas have shown interest on the face recognition problem,

leading to a vast and differentiated literature and to the creation of several methods, each having

some advantage over the others while loosing in some aspect. In order to achieve a high-level

classification of these kind of methods, and since the investigation on this area tends to follow the

way the human visual system works, the already described categorization on how humans recognize

a face will be “borrowed”, namely feature-based matching methods and holistic-based matching

methods. Also, as some methods employ strategies from both approaches, a third category will be

used to classify these hybrid systems, named hybrid-based methods. This classification is based on

the work of (Zhao, Chellappa, Phillips, & Rosenfeld 2003).

2.3.3.1 Facial Feature-based Matching Methods

One of the proposed ways to distinguish between two faces is through the geometric relations

among the several existing facial features, relying on a feature set which is very small when compared

to the number of image pixels. The general idea is that by extracting and storing a set of known

features from a face image in some useful representation, it is possible to compare this set with

that of another image to see if they are sufficiently similar to belong to the same person. Thus, it

is necessary that the chosen set of features to extract be sufficient for discrimination even at low-

resolution images, so a careful study on the importance of each feature for discrimination must be

done. This is typically applied in a supervised learning fashion, so that a learning database has its

features extracted and any new face is considered against those extracted features. Only a general

description of purely feature-based matching methods is given, whereas further sub-categorization

can be found in Table B.1 of Appendix B.

A big advantage that feature-based methods have over holistic-based is their ability to adapt

to variations in illumination, scale and rotation up to a certain degree, which was the central

argument in favor of feature-based methods in (Cox & Yianilos 1996). An example of this is the

normalization step in (Brunelli & Poggio 1993), which achieves scale and rotation invariance by

setting the interocular distance and the direction of the eye-to-eye axis, and achieves robustness

against illumination gradients by dividing each pixel by the average intensity. Yet, this type of

methods are more likely to have a bad performance when some features are occluded or facial hair
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and facial expressions are present (Etemad & Chellappa 1997).

An important step in these types of methods is the extraction of the features. Derived from

the configuration properties of a face, constraints such as bilateral symmetry or the fact that every

face has two eyes can be exploited in order to facilitate feature extraction. An early work on

this subject was performed by Kanade (Kanade 1973), where an algorithm for automatic feature

extraction is suggested. It starts by calculating a binary representation of the image and then runs

a pipelined analysis program which will try to extract the position of individual features from the

binary representation, like the top of the head or the eyes. From this analysis, a feature vector

is obtained containing ratios of distances between features, which can then be used to compare

between two faces.

The next step after the feature extraction is the recognition of the face, which is performed

by building a selection model from the training data. It is important that the model does not

adapt specifically to selecting on the training data, but that it generalizes to unseen patterns (Cox

& Yianilos 1996). The classification of a face is performed by evaluating the distance between

the feature vector from the face to be classified to all the vectors in the learning database, using

a nearest neighbour approach or other classification rule (Bayes for example (Brunelli & Poggio

1993)). Different similarity matching methods can be used, but the most common is the Euclidean

distance. Some examples of other methods are the mixture-distance (Cox & Yianilos 1996), cosine-

distance, Mahalanobis-distance (Navarrete & Ruiz-del solar 2002) or weighted-mean absolute square

distance (Etemad & Chellappa 1997).

2.3.3.2 Holistic-based Matching Methods

Another common approach to perform facial identification is to use the whole face region as

an input to the analysis process and apply a classifier to the image information and not to facial

features information. Unlike feature-based methods, which extract predefined features from the

face resulting in small sized vectors, in a holistic-based approach the high-dimensionality of the

data is one of the major problems, as every pixel in the image is considered as a separate dimension,

bearing implications in computation efficiency when processing the data. Also, low-dimensional

representations are highly desirable for large databases as they are usually smaller to store and

transfer through the network (Etemad & Chellappa 1997). Thus, several methods for dimensionality

reduction and data representation were proposed and applied in holistic-based systems. Some

examples can be seen in Table B.1 in Appendix B.

Given that the system to be implemented for the dissertation project is intended to implement

an holistic-based method using the eigenfaces approach of Turk and Pentland (Turk & Pentland

1991), more emphasis will be given to the description of this work, namely its utilization of Principal
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Component Analysis (PCA) to achieve dimensionality reduction and the classification strategies

used to perform identification.

Eigenfaces Method. This method categorizes facial recognition as a two-dimensional problem,

partially ignoring the 3-D nature of the human face that would typically require a more detailed

model for its analysis. Some constraints can be applied by taking advantage of the fact that faces are

usually in its normal upright position and can be described with a small set of of 2-D characteristic

views. As this is an holistic-based method, it is susceptible to variations in illumination, rotation and

scale, as described above, so the goal is to develop a computational model which is fast, reasonably

simple and accurate in constrained environments such as an office or a household. The foundation

of the eigenfaces method lies in an information theory approach of coding and decoding face images,

emphasizing the significant local and global “features” of the face. Although they share the same

name, these “features”, or characteristics, may not be directly related with the intuitive notion

of facial features existing in feature-based methods. Similarly, yet distinctly, they represent the

characteristics of the image itself which enable a better discrimination of the given face. Hence its

susceptibility to variations on the background or the light. The general idea is that the relevant

characteristics should be extracted from the image, encoded in some efficient format and compared

to the encoded information of other faces in the database. To achieve this result, the authors

proposed the use of an encoded representation technique developed by Sirovich and Kirby (Sirovich

& Kirby 1987) based on PCA, which can economically represent an image set using a best coordinate

system. In the image set, each pixel is considered a dimension by itself, so an image corresponds

to one point in a high-dimensional coordinate system, which implies a large computation effort

to process. By utilizing PCA, the number of dimensions in an image set can be reduced to a

representation they called eigenpictures, while Turk and Pentland called them eigenfaces, and thus

the name of the method.

A brief description of the mathematical reasoning behind an eigenface is provided for the sake

of completeness, while referring to the work of Sirovich and Kirby (Sirovich & Kirby 1987) for a full

explanation. In order to efficiently encode and process a distribution of faces, the most important

characteristics in terms of data variation must be calculated. These are the components which will

better represent the data and allow for the most accurate reconstruction. In practice, this resumes

to finding the eigenvectors, or eigenfaces, of the covariance matrix of the set of images. Note that

each image in the database can be reconstructed from a linear combination of the eigenvectors,

thus an encoded representation of an image corresponds to the vector containing the coefficients of

that linear combination, or, in the nomenclature of Turk and Pentland, the weights of each image.

There can be as much eigenvectors as images in a data set of size M , but the goal of PCA is to

choose a subset containing only the “best” M ′ eigenfaces, those with the higher eigenvalues and that
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best represent the data variation. The number of eigenvectors to store is typically much smaller

than the total number of images (M ′ << M) and can be set with an heuristic. Each eigenface

represents a coordinate in the new much smaller coordinate system, spanning a subspace of the

original coordinate system which the authors named face space.

After calculating the eigenfaces for an image set, the process of recognizing a new face can be

resumed as: project the image onto each of the eigenfaces to calculate its weights; determine if

there is indeed a face in the image by checking if the weights are sufficiently close to the face space;

classify the weight pattern as a known or unknown person by comparing with the weights stored in

the database according to some distance measure (Euclidean distance in this case); and optionally,

include the new face in the database and retrain the system.

Apart from the task of identifying a face, the eigenfaces strategy can also be used to detect

faces in images. Faces present much more inter-class than intra-class difference, meaning that it is

easier to tell whether an object is a face than to differentiate between two faces. Knowing this, one

can identify faces as the regions of the given images that, when projected, bear most similarity to

the face space.

2.3.3.3 Hybrid Matching Methods

In a hybrid approach, the best of the two methods described above (holistic and feature-based)

is conciliated to create a system that not only processes faces as a whole, but also takes facial

features into consideration to create a more robust system. An example of a system in this category

will be presented.

In an extension to the original eigenfaces system (Turk & Pentland 1991), Pentland et al.

(Pentland, Moghaddam, & Starner 1994) developed a system that incorporates both holistic and

feature-based methods. In this work it was pointed that the basic eigenfaces method is not prepared

for real-world applications, as it was only tested on a database of a few hundred images under

constrained conditions. The scalability of the system using just the normal eigenfaces strategy was

tested on a large database with 3000 people, with more than one image for each individual and

several different views. Nonetheless, the system still depends on the problems that affect holistic

approaches (i.e. illumination, glasses, etc). The authors then extended the eigenface technique to

the description and coding of facial features, yielding eigeneyes, eigennoses and eigenmouths. The

evaluation showed that an hybrid stategy can outperform both holistic and feature-based strategies

used exclusively.

In order to detect facial features, a similar approach to the whole face detection previously used

(Turk & Pentland 1991) was applied, making use of a metric similar to the distance-from-face-space
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to extract them. Refer to (Pentland, Moghaddam, & Starner 1994) for the complete description of

the feature extraction.

Possessing both eigenfaces and eigenfeatures, a modular approach can be employed that makes

use of both information. Several strategies were studied on the best way of merging the information,

such as cumulative scores taking equal contributions by each facial feature; weighting schemes based

on psychophysical data; and a sequential classifier, where eigenfaces are used to narrow the scope

of database search to a region of the face space, followed by the use of eigenfeatures to perform the

final classification (Pentland, Moghaddam, & Starner 1994).

2.3.4 Video Face Identification

So far, all the identified methods for facial recognition were developed with still images in mind.

The next step in the evolution of face identification systems is to detect and identify faces in videos,

which provide not only a whole new set of challenges, but also properties that still images do not

possess and that can be useful if exploited (e.g. motion). Among the most relevant challenges

there are the low-quality of the videos, either by outdoor captures or other bad conditions for video

capture, and the small size of face regions when compared with still-images. Video face identification

can be seen as an extension of still-image face identification, as the earliest attempts were focused

on first detecting and segmenting faces from a video and then applying still-image techniques. Yet,

in (Zhao, Chellappa, Phillips, & Rosenfeld 2003) it is claimed that true video-based face recognition

uses both spatial and temporal information.

An improvement over the previous strategy is to add tracking capabilities to the system (Zhao,

Chellappa, Phillips, & Rosenfeld 2003). A tracking-enabled system can analyze and estimate the

motion of a face and recover some 3-D spacial information about it, such as rotations and transla-

tions. This enables the synthesization of a virtual frontal view from the various frames by estimating

pose and depth, which can then be processed by a regular still-image based technique. Also, since

there can be a high number of frames in a video, the recognition rate can be improved by applying

a voting strategy, where the recognition results from each frame will vote for the most likely virtual

face representation.

According to (Zhao, Chellappa, Phillips, & Rosenfeld 2003), the next step in this area is the

implementation of multimodal systems, which make use of several information sources to reach an

identification. The reasoning behind this concept is that humans make use of more information

than the face, like voice or body motion, and the usage of multimodal cues can offer a solution

which would not be achieved by using face images alone.

Finally, recent approaches in video-based face identification try to make use of one of the most

important characteristics of video over still-images, the temporal semantics hidden in the video face
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sequence. By exploiting this property and its relation with the spatial information considered in

face tracking, a system can effectively capture the dynamics of pose changes and reduce occlusion

effects. The research tendency is for the appearance of more systems based on this strategy. Some

examples of systems in the three described categories can be found in Table B.2 in Appendix B.

Despite sharing some characteristics with still-images, videos usually add some other challenges

to the problem. For example, scenes with fast movements or simply a night capture are prone to

result in blurry videos, which are not ideal for to recognize as the edge outline is not clear. Also, the

progress on video compression algorithms can difficult the processing of videos, effectively pushing

the performance down and turning some algorithms unfeasible.

Summary

The three topics surveyed in this chapter are closely related to the type of system that will result

from this work, and the description of the advantages and disadvantages of each can be of help in the

design of the system. The first area of study is the Cloud Computing paradigm, a relatively young

set of technologies that were merged and have been growing in popularity during the last decade

to create cost and resource effective solutions that can adapt rapidly to the needs of its users. The

development of new cloud based solutions that leverage this dynamic and large pool of resources

is important, enabling new systems that were not possible before, such as human face recognition

in large video databases. In the second area of study, a vision of systems from a data-oriented

perspective is analyzed, opposing the more common computation-oriented perspective. In a system

like the one being designed in this work, which is greatly dependent on the data flow and location, it

is important to know where are the main constraints and the possible bottlenecks derived from the

manipulation of big data. Finally, the last section surveys the face recognition area. Even though

this work is focused on raw speedup of a face identification algorithm, it is important to know more

about the subject, which are the key techniques used, how they can be modified to fit the new

system and the most probable problems that can be met.

The next chapter will describe the system design process and the solution’s architecture, lever-

aging the knowledge gathered in this chapter.
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3Solution Design

In this chapter, the system’s design process and its architecture are described in detail, starting

by analyzing the system’s architectural drivers and what pre-existing conditions influenced the

decisions made which affected the final architecture and the way the system operates. Next, the

system’s architecture is presented in the form of several diagrams, each representing a different view

of the system and focusing on different aspects. Finally, integration process of the face recognition

algorithm in the system is described, followed by the definition of the data model utilized.

3.1 Architectural Drivers

The main goal of this system was already mentioned in Chapter 1 - to speed up automatic face

recognition in videos leveraging cloud computing resources. The proposed solution to this problem

comes in the form of a software architecture, where it is important to clearly define what drives

its design, what other factors must weigh the most when taking decisions to reach the goal, the

constraints and the scope of the problem to be solved. These are the commonly called architectural

drivers, which encompass the most important design principles, constraints and functional and

non-functional requirements.

3.1.1 Main Principles

These principles constitute the main factors in the system design, acting as general goals of the

system and limiting the number of choices if a decision must be made:

1. Performance - raw performance in terms of time vs. request size is critical in this system, so

it should answer requests as fast as possible given the problem size and available resources.

2. Scalability - the system should scale gracefully without major performance loss in terms of

number of resources utilized and number of videos to process.

3. Flexibility - the system should allow for different types of requests, with different quantities

of resources in a seamless way to the end user.

3.1.2 Functional Requirements

These type of requirements state what the system should be able to do for an end-user, in terms

of the features available:



1. The system should allow a user to submit a new video to be processed.

2. The system should allow for more than one user to submit a new video simultaneously.

3. The system should allow users to request information about processed videos or people.

4. The system should allow a user to provide an identification to an unknown person.

3.1.3 Non-functional Requirements

Finally, the non-functional requirements (or technical requirements) which impose some tech-

nical characteristics the system must have:

1. The system should support variations on the video input, such as size, resolution, aspect ratio,

codecs, containers and framerate.

2. The system should be efficient in terms of exchanged messages since the network is a limited

resource and videos take most of the available bandwidth. The components should not send

message bursts with intervals of less than one second and should try to perform operations in

batch if possible.

3. The system should allow for several videos to be processed simultaneously, and, if possible,

without deterioration on the overall performance.

4. The system should allow the introduction of a new face recognition algorithm without modi-

fying the remaining of the code.

5. The system should allow the usage of a different database and/or distributed file system with

reduced need to modify the existing code.

6. The system should allow the usage of a different cloud computing provider without modifying

the existing code.

3.2 Software Architecture

In the previous section, a description of the main architectural drivers was provided, which will

reflect on the content of this section, where the whole system architecture will be described. This is

one of the most important steps on the development of the system and should be clearly specified

before implementing, as it will direct the rest of the work. Yet, during the development of the

system the whole architecture evolved continually, on several situations, as more problems arose.

The diagrams described here are the final result of this evolution and some of them are deeply linked

with the implementation, due to critical issues regarding performance and scalability.

The section starts with a description of all the system’s components, followed by a modular

view of each one, enabling a high-level definition of the different code modules and their role in each

component. After the modular view diagrams, a component view description of the whole system is

given in order to identify communication channels and dependencies between components. Next, the
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deployment scheme of the system in the cloud platform is defined, as well as the types of messages

traded between components. Finally, it continues with a description of how the face recognition

algorithm and its subcomponents are integrated in the rest of the system, and a high-level definition

of the data model.

3.2.1 System Components Description

Figure 3.1: Runtime Components Diagram

Although the goal is in fact very simple, the system is still prone to some complexity, namely

with the amount of components and interactions between them. To simplify the design and devel-

opment, a logical division was made between the components in 4 major areas, each with assigned

responsibilities: Management, Computation, Storage and Web Interaction. These areas can be seen
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clearly in Fig. 3.1, containing the system components and their interactions which are explained in

the following subsections.

3.2.1.1 Management

The Management area is primarily responsible for accepting and dispatching new requests and

managing the system’s resources by allocating and deallocating new nodes when needed. Besides

this primary aspect, components in this area can also execute system-level tasks, such as cleaning

database entries, or training the system according to the face recognition algorithm requirements.

There are two main components in this area, FaceID-Monitor and FaceID-MSlave. The for-

mer, dubbed simply as monitor for the rest of this document, is the brain behind the system and

can be seen as the system scheduler. Its main functions include: accepting new requests and dis-

patching them as jobs to the components that will effectively process them; knowing the current

state of all components; interacting directly with the cloud platform front-end to manage resource

allocation/deallocation; and launching the training of the face recognition classifier.

The second component, dubbed as mslave for the rest of the document, is a special workforce

to be used by the monitor as a worker node when it needs to perform tasks that require more

computation. The rationale behind this separation is related to the general availability of the

system, so that the monitor is mostly available to respond to new requests and is not occupied with

heavy computation tasks. The main task performed by these components is essentially the training

of the face recognition classifier, but can occasionally be used for other matters.

3.2.1.2 Storage

One of the most important areas in the system is data storage. As a data-oriented system,

where it is the flow of data that most influences the computation and overall evolution, the way the

system data is stored is crucial to achieve both a well-performing and scalable system. Due to the

large average size of videos, even reaching the gigabytes mark, there will eventually exist network

congestions, with all the bandwidth being occupied with large video transfers, so the system should

try to minimize large transfers as much as possible.

There are two important types of data flowing through the system, which will be referred as

structured and unstructured data, and each of them will have its own specific requirements.

Unstructured Data. With the main object of processing in the system being potentially large

videos, it is important to define how the system will handle these entities and how to overcome the

challenges they pose. Throughout the document, unstructured data will refer to videos and their

direct products, such as smaller video chunks. In a distributed environment such as the cloud, access

and management of fresh data is typically handled with strategies such as replication, concurrency

control, caching and others, which usually offer a compromise between consistency, availability and

34



partition tolerance as stated by the CAP theorem (Brewer 2000), although performance may also

be seen as an omnipresent part of the ”game” being affected by all the others. The goal of this

work is not to solve this specific type of problems, but all the properties are indeed necessary.

Hence, an available solution that deals with the above mentioned problem will be used, in this case

the Hadoop Distributed File System (HDFS)1, which is part of the Hadoop framework and puts

emphasis on high throughput of data rather than low latency. It supports very large data sets and

has a simple coherence model of write-once-read-many which fits the needs of our system to store

videos. Besides being able to store a large amount of data, the distribution of data among several

nodes will increase the performance of the system as several clients can be connected concurrently

to different HDFS nodes. To simplify the nomenclature, HDFS will be referred as datastore for the

rest of this document.

Structured Data. Although the datastore can perfectly store all the needed files for the system

to work, some kind of structured data store is needed (for management, coordination, and directory

metadata), where typically a database system is used, either relational or not, and is capable of

storing processed data and answer queries over that data. The choice for the database to use in

this system is based on the type of access and the properties that matter the most, namely random

real-time read/write access to the data and scalability to millions of rows/columns across a data

centre. Relational databases have shown signs of not being able to handle horizontal scalability

very well due to the inherent complexity needed for coherence and query capabilites, leading to the

use of key/value databases for cloud based systems that support lookups by key and dispense the

complex select operations from relational databases. For this system, we chose HBase, a column-

oriented key/value database that runs on top of HDFS and sits upon its scalability and replication

properties. One of the problems of using HBase is the lack of query and join functionalities, passing

that responsibility to the client application.

3.2.1.3 Computation

This area comprises the real workforce of the system, the components that will do most of

the heavy duty processing. It is also the most dynamic, since resources will be allocated and de-

allocated as needed, leveraging the cloud platform’s flexibility and dynamic nature. There are two

main components in this area, FaceID-Master and FaceID-Slave (master and slave for the rest of

the document), which can be instantiated by the monitor when more resources are needed to handle

a new job. Their responsibility is to process incoming videos and extract information about the

people which take part in them by applying the face recognition algorithm.

1http://hadoop.apache.org/docs/r1.0.4/hdfs design.html
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A master component is instantiated whenever there is no other free master that can handle a

new job that arrived. All the responsibility of the job is transferred to the master by the monitor,

so that it becomes free to answer other requests. The master is prepared to retrieve the video to be

processed from an accessible online repository and stores it in the datastore already in the form of

chunks. This process of fetching and splitting the videos might be one of the biggest time consumers

in the system, but it is considered out of the scope of this work as it is affected by many different

areas such as telecommunications or video codec technologies.

The problem with the fetching process is, of course, the network bandwidth available to down-

load videos from remote locations. If it is anything less than a few megabits per second (Mbps), the

download time of a regular video (considering 100MB) can delay the whole computation by a very

large value. Also, if several masters are trying to download videos concurrently through the same

connection, the network bandwidth to the exterior will be even more limited to each one (although

the cloud platform may have several different physical lines that reduce this concurrency effect).

These are conditions that must be considered in part of the design of the system, but which are

not supposed to be dealt with directly. To simplify this problem, it is assumed that every remote

video repository and the cloud platform offer a 1 gigabit per second connection (Gbps), so that the

bandwidth is sufficient to transfer videos in reasonable times even if several masters are download-

ing videos concurrently. Also, to further decrease the overall transfer time, some kind of parallel

download could be applied, where a master could possess several streams downloading a part of the

video. Again, this idea is not explored in this work.

The splitting of videos is another problem that is very hard to solve and constitutes a big threat

to the system’s overall performance, if not the biggest. Today, most videos are stored and transferred

under different powerful compression codecs and containers, which greatly reduce their sizes and

save network bandwidth. Yet, the usage of these compression techniques complicates the process of

splitting the videos, as they cannot be simply split in half like a text file. The process of splitting

a video needs, at least, to decode the video, analyse every frame, divide into chunks, write new

information for every chunk, and re-encode everything again. It is, of course, a hard computational

task, not to mention the multitude of different codecs and containers existing. Some efforts have

already been made to develop solutions to accelerate this process such as the system proposed in

(Morais, Silva, Ferreira, & Veiga 2011), but to simplify the design an existing third-party solution

will be used, since there are systems available that are optimized to perform this kind of tasks and

can be of use in this system, such as the ffmpeg tool2.

After the fetching and splitting processes, the master can ask the monitor for slaves to perform

the job according to the size of the video, but the number of actual allocated slaves will be determined

2http://ffmpeg.org/
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by the monitor according to the system load. In a normal state the master will get all the slaves it

requests, but the number may be lower if the monitor cannot dispense more.

Finally, the master is also responsible for distributing the load evenly among the slaves it controls

and build a final list of people from the individual results of each slave. The load distribution process

is simple, as the master just needs to indicate to each slave the location of their assigned chunks in

the datastore.

The other type of component in the computation area is the slave, which is the one responsible

for processing the videos and applying the face recognition algorithm. Slaves are instantiated on-

demand when a master requests them from the monitor for a new job to which they become assigned,

although they can be directly transferred from a job that just ended to a new one and avoid a de-

allocation, reducing turnaround time and avoid slowdown due to constant virtual machine booting.

3.2.1.4 Web Interaction

This is mainly a support area to the system, enabling users to access the face recognition service

provided through a web interface. The main component in this area is, of course, the Web Server,

which acts like a middle-man between users and the system, simply contacting the system monitor

when submitting new jobs and displaying the results to the user.

3.2.2 Jobs and Workflow

Throughout the previous section, the term ”job” has been used freely without a formal defini-

tion, in the sense that it was some kind of workload activity related to a new request to analyze

a video, but a more strict definition must be made. In this system, it is considered as a job the

process initiated by the monitor with the goal of finding the identity of the people featured in a

video indicated by a user. To process a new job, the monitor attributes it to a single master, so it

is not a dividable work unit at master-level and cannot be split among several masters. A master

can, nonetheless, subdivide its assigned job into smaller work units at slave-level, which are called

tasks, in order to be able to distribute the load among the slaves under its command. Tasks are

the smallest work units and cannot be subdivided, and each one corresponds to the processing of

a video chunk in the datastore. Although a master can only have one assigned job, a slave can

have several tasks attributed to it, a factor that depends on the number of slaves the monitor could

dispense for the job and the size of the video.

To illustrate the evolution of a job in the system, a description of a typical workflow is provided,

where a user requests a video to be analyzed through the web interface. Each step is related to one

or more interactions displayed in Fig. 3.1, with the indication of the interaction number at each

step (interactions within dash-lined groups are not shown in the figure).

37



1. The user contacts the web server component providing a URL for the video he/she wants to

be analyzed by the system in search for human faces (1);

2. The web server contacts the system monitor and submits the information the user has pro-

vided, waiting for an asynchronous response (2);

3. The monitor starts by checking if the video requested was already processed. If so, the response

is sent immediately to the web server, a job is not officially created and the interaction with

the client terminates (6, 2, 1).

4. If the video is not known by the system, the monitor starts by checking its state for masters

waiting to be de-allocated which have finished their previous jobs. If such a master exists, the

new job will be assigned to it. If not, a new master is allocated through the cloud front-end

(3);

5. The job information is sent to the chosen master, that will download the video from the URL

provided by the user (4);

6. The master pre-processes the downloaded video by performing a conversion to a common

format and splits it in several smaller chunks, which are uploaded to the datastore (7);

7. The master estimates how many slaves it needs to process the chunks and requests them to

the monitor (4);

8. The monitor analyzes the system load and the resources available and sends the slaves it can

dispense to the master, allocating more slaves if needed (3, 4);

9. Upon receiving the slaves’ information, the master distributes the tasks among them and waits

for termination by polling the database (6);

10. Each slave will execute their assigned tasks by applying the face recognition algorithm in the

chunks. When each task is finished, the results are written to the database (7, 6);

11. When all tasks complete, the master officially finishes the job and sends a response to the

monitor. All information is stored in the database for future requests on that video or the

people contained in it (6, 4);

12. The results are propagated to the web server that presents them to the user (2, 1);

13. Finally, the monitor orders an m-slave to learn about the new faces found and integrate that

knowledge into the database (6).

3.2.3 System Modules Diagram

The next step in the design of the system’s architecture, and one of the most important for the

rest of the work, is the decomposition of the system in modules, blocks of software that provide a

specific functionality to the rest of the system. Modules are hierarchical structures, so that each
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Figure 3.2: Modules Diagram

module can have sub-modules that constitute it, and so on. Also, modules can have relationships

among them, where one module needs to use another one to correctly fulfil its duties. A 2-level

decomposition diagram is presented in Fig.3.2, illustrating the global modular structure of the

system. Each module will now be described in detail.

3.2.3.1 System Behaviour Module

This module is responsible for defining how the four main system components (monitor, master,

slave and web app) behave and interact with their peers to perform their jobs:

1. Web App Behaviour: knows what information is presented to the user and the features the

system provides, such as a new request to process a video or a search for a specific person;

2. Monitor Behavior: knows how the monitor holds and manipulates the system state and in-

memory structures, and the management of the available resources;
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3. Master Behavior: knows how a master handles videos and the coordination of the slaves it

controls;

4. Slave Behavior: knows how a slave handles video chunks and applies a face recognition algo-

rithm to them;

3.2.3.2 Face Recognition Module

This module provides an implementation of a face recognition algorithm by defining a common

interface that can be called by other modules without knowing which algorithm they are indeed

using. Under this common interface other sub-modules implementing different face recognition

algorithms can be added:

1. Eigenfaces: knows how to apply the eigenfaces algorithm to a video chunk;

2. Clustering: knows how to perform clustering in a set of weight patterns;

3. Database Management: knows how to store and retrieve face recognition data from the

database.

3.2.3.3 I/O Module

This module contains all the necessary mechanisms for components to communicate with each

other and the outside world, encapsulating and abstracting the protocols and methods used with

common interfaces:

1. Web Communication: knows how to handle communications with the end user through the

web server;

2. Database Access: knows how to operate the database;

3. Datastore Access: knows how operate to the datastore;

4. Cloud Access: knows how to access the cloud platform to obtain info and allocate and de-

allocate resources;

5. Inter-component Communication: knows how to contact other components inside the FaceID-

Cloud scope (monitor, master, slave and web app).

3.2.3.4 Utilities Module

Some functionalities are used by most modules and provide some operations that are not specif-

ically related to any of the existing modules. This led to the creation of a separate support module

for these utilities, acting like a store for generic operations like calculating some math result or

byte-level manipulations:

1. Video Utils: collection of functions that perform video manipulation;

2. Support Types: collection of generic types that facilitate some of the other modules operations;

3. Utility Functions: collection of generic functions that facilitate some of the other modules

operations.
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3.2.3.5 Information Structures

This module defines a common format for keeping and transferring the system’s information by

the runtime components:

1. Messages: Definition of the format of messages to be exchanged between the system compo-

nents;

2. System State: Definition of structures to hold system state, mainly by the system monitor.

3.2.3.6 User Interface Module

The interaction with humans, both administrators and end-users, is handled by this module:

1. CLI (Command-Line Interface): module that enables an administrator to control different

aspects of the system through a textual interface;

2. Web UI: module that provides a graphical web interface for end-users to interact with the

system.

3.2.4 Runtime Components Diagram

After having presented some views of the system’s architecture that demonstrate its organization

in terms of modules of software and their relationship among themselves, a logical description in

terms of the runtime logical components will now be provided, illustrated by Fig. 3.1. It is now

possible to identify the role of most of the concepts discussed in the previous sections in the whole

system, namely the four areas of division of the system, the components responsible for handling

jobs and the direction of information flow, in which it is defined that the direction of the arrows

implicates a client-server request (server is always in the pointy end).

In Fig. 3.1 the four main components are presented as single identities, which is not necessarily

true at a lower abstraction level. For example, the master component makes use of several threads to

split a video and upload the chunks, which compete for some of the shared resources. The definition

of the threads running on each component is important to analyze the impact of concurrency when

accessing shared resources in the component scope (e.g. network). Across this description of the

threads, the term ”main components” is used to designate monitor, master and slave.

Server Thread. The three main components have a specialized thread to receive requests or

instructions, the server/reception thread, where the communication channel is based on message

passing. This thread does not contain any domain logic, acting as a proxy that receives and

distributes the messages to the appropriate recipients of the component.
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Message Processor Thread. To complement the server thread that receives the messages, a

separate thread is responsible for routing those incoming messages. Each of the main components

has a specialized version of this thread tuned to their necessities, defining the actions to take when

specific messages enter the system. The separation between the message reception and routing is

due to this individualized tuning on the latter, so that the server thread can be the same for all

main components. Reception and routing could be merged together, but this design guarantees

that when a component needs to change its routing strategy (the reception thread is not likely to

change), the others will not be affected.

Resource Allocation Thread - Monitor specific. There is a specialized thread type to handle

resource requests from masters that mediates the access to the resource manager in the monitor

and answers their requests. Each request of this type will have its own resource allocation thread

which will work at a lower abstraction layer level than the Server and Message Processor threads,

which only care for directing messages.

Task Handler Thread - Slave specific. Slave components are responsible for processing video

chunks, which are regarded in the system as tasks. To handle the tasks that flow from the job

master, slaves will have a specialized thread to handle them, with each task being processed in a

separate thread. This will enable slaves to process multiple chunks at the same time, something

that is useful if the virtual machine instance configuration provides more than one virtual processor

to each slave. The level of parallel work that can be done is, nonetheless, limited by the shared

access to the database and network.

Classification Thread - Eigenfaces specific. During the recognition process performed on the

slaves, there is a division between the detection of faces in all video frames and the classification

of these faces. As videos can be very large and contain several thousand faces, it is not feasible to

first detect all faces and only afterwards start the main recognition process, especially if the process

is to be done only in the (limited) main memory - storing detected faces on disk is not an option

as it would endorse severe performance losses when classifying. It is important to adopt a kind

of pipeline strategy that enables detection and recognition to co-exist at the same time. To reach

this effect, a separate thread must exist, in this case the Classification Thread. While detection is

performed in the Task Handler thread that initiated the process, recognition will be in this separate

thread, catching the faces as they are detected and processing them. One problem that must be

taken into account is the different speeds at which both threads operate, with detection being much

faster than classification due mainly to the extra database accesses. The strategy chosen is to limit

the number of faces that can be generated by the detection thread so that the classification thread

has sufficient time to process the faces in its queue. This will certainly limit the performance of the

detection thread, which could continue doing its work and generating more faces, but as the process
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is to be done in main memory such a limit must be imposed, or else the unclassified faces might get

the component out of memory.

Database Request Handler Thread. Database accesses are costly, which means they must

be well defined and strategies to reduce its costs must be applied. Among other strategies, one

possibility is to perform several operations in the same database access where possible, as a batch.

This effectively reduces the number of trips to the database and the overall time. Of course, this

will implicate larger messages being transmitted, so a limit must be imposed on the amount of

requests that may be aggregated on a single message so that there is less probability for errors on

the transmission. Also, only non-urgent database updates will be performed in batch, typically

to store new information such as faces or results, which are operations that do not need to be

performed in any order and under time constraints. Other update operations that need immediate

confirmation will still be performed as soon as possible, along with read requests, which are never

performed in batch. To apply this strategy, the Database Request Handler thread will collect all

database accesses and will try to optimize database accesses according to it.

Job Handler Thread - Master specific. A master’s main function is to coordinate a job

created by the monitor and return the results, hence the need for a thread specialized in handling

jobs. This thread will do most of the job processing, like downloading the videos or controlling

slaves, so it can be seen as the main thread of a master component.

Chunk Upload Thread - Master specific. To help the Job Handler thread storing video

chunks into the datastore, there is the Chunk Upload thread, whose only function is to upload the

chunk and register its addition in the database. Much like the Classification thread, this thread will

consume the chunks coming from the main thread, Job Handler, and upload them, pipelining the

process and accelerating it.

3.3 Face Recognition Integration

One of the crucial aspects of the system architecture is the integration of the face recognition

algorithm, where there are two main points of focus. The first is to define the operations to be

performed and their division over the workflow steps of a task. For example, on the eigenfaces

approach to be used there is a clear distinction between detection and recognition of faces, so there

should be at least one different operation for each one that could be called at different times during

a task. The second point of focus is on trying to reduce dependencies between the rest of the system

and the face recognition module, so that it can be used simply by invoking a known interface and

enabling other different face recognition approaches to be plugged in with seamless integration.

In the next subsections, a description of the face identification module and its points of contact

with the main system will be given, starting with the algorithm definition and its points of division,
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and some strategies used to improve its performance in this particular system architecture, namely

over database accesses.

3.3.1 Algorithm Definition and Integration

To perform face recognition in the system, the original eigenfaces algorithm by Turk and Pent-

land (Turk & Pentland 1991) was chosen, as it is a simple solution to implement with relatively

good accuracy rate in controlled conditions (max at 96% correct classification averaged over lighting

variation). Please refer to Section 2.3.3.2 on Chapter 2 for more details on the algorithm. According

to the authors, the algorithm can be summarized in five steps:

1. Initialization: Acquire the training set of face images and calculate the eigenfaces, which define

the face space;

2. When a new face image is encountered, calculate a set of weights based on the input image

and the M eigenfaces, where M is a chosen value, by projecting the input image onto each of

the eigenfaces;

3. Determine if the image is a face at all (whether known or unknown) by checking to see if the

image is sufficiently close to the face space;

4. If it is a face, classify the weight pattern as either a known person or as unknown;

5. If the same unknown face is seen several times, calculate its characteristic weight pattern and

incorporate into the known faces.

These steps describe and separate the original algorithm in its logical workflow. Yet, in this

specific implementation, the capability to process videos and integrate with the rest of the system is

needed, along with a more prominent definition and division between the training and the recognition

phases, which could be performed by different components. This results in the following list of

simplified steps:

Training - generate face space

1. Choose and obtain a subsample of all the faces to participate in the training;

2. Calculate the eigenfaces and eigenvalues which generate the face space to be used by the

system;

3. Update the system to use the new face space.

Recognition

1. Acquire the video to process and obtain every frame;

2. For each frame from 1., detect all the faces that appear and store them;

3. Calculate a set of weights from the faces found in the frames, by projecting the images onto

the face space, and store them in the database;

4. Classify the weight pattern as either a known person or as unknown by comparing with

previously stored weights in the database.
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Training - learn about new people

1. Group ‘‘close’’ weights from a new video to represent new individuals;

2. Cross the groups created in the previous step with the groups already in the database and

search for similarities;

3. Merge similar/close groups into one single group, as they should belong to the same individual;

This division between training and recognition is essential, along with the division between

the two training steps. The system should generate a new face space sporadically (in a normal

scenario), while the recognition and learning of new faces will be performed much more often. Also,

the recognition steps were simplified, namely by removing references to specific strategies to improve

performance that will be discussed at the end of this section, such as the grid strategy (see Section

3.3.3), client caching (see Section 3.3.4) and clustering (see Section 3.3.5). A detailed description

of the training and recognition processes is now given, leaving some implementation details to be

explained in the Implementation (see Chapter 4).

3.3.2 Training I - face space

Training the system is the starting point for the eigenfaces algorithm to work, since it belongs

to the supervised learning systems class, meaning that it needs a base set of faces for comparing

and classifying new faces against. To start the training process, the system needs a representative

set of faces to calculate the eigenfaces and eigenvalues that generate the face space to be used when

classifying. The main purpose of building a face space out of the sampled faces is to reduce the

dimensionality of face objects (and hence the computational effort) by focusing on the features that

best describe the face set, which are not necessarily the regular features of a human face (i.e eyes or

eyebrows) but, as an holistic algorithm, features that describe the greatest directions of variation

of the whole face image.

To achieve a good representation of the features of the entire face set (including faces which

are not used for training), the faces used must not belong to a small set of individuals, or, in the

case of our system, should not belong to the same video or videos containing the same people. This

would lead to a system specialized in recognizing a particular subset of human faces, as the training

would focus on very similar and undifferentiated faces, while it would find it much more difficult

to recognize a very different set of faces found in another video. For example, the mean type of

face of an asian person is observably different from an african or a caucasian in terms of eyes, nose,

eyebrows and even hair style, even if not at the same degree of difference between a human and

another species (e.g. chimpanzees). Training with solely one of these types of faces would result in

a face space that would not acknowledge the importance of the particular facial features of other

45



types of faces, and hence it would either not be able to differentiate between two different faces or

would not assume two faces belong to the same person.

The main problem in achieving a well trained system is, then, how to gather sufficient and

differentiated information from the face dataset so that the system is capable of differentiating and

acknowledging the principal features of most face types existing in the world, or at least the types

that are set to be recognized more often by the system. This problem can be summarized as finding

the objects, in this particular case the faces, which best represent a dataset, almost like performing

some kind of meta-Principal Component Analysis on the entire dataset before applying it to the

face objects themselves. It is not a trivial problem and involves researching in areas which are out

of the scope of this work, and so a simplified solution is provided where the faces which are used for

training are gathered with a simple sub-sampling function. This function picks faces by their IDs

in the system at regular intervals, allowing for different videos to be sampled since new face IDs are

added sequentially as new videos enter the system. The results of this type of training are shown

and analyzed on the Evaluation (see Chapter 5).

3.3.3 Grid Strategy

The face space is a very sparse multi-dimensional space resulting from the dimensionality re-

duction strategy applied in the eigenfaces algorithm using PCA. Nonetheless, even though the

number of dimensions is greatly reduced, a low number of eigenfaces can still generate a very large

number of vector combinations in this space. Also, although the faces of one individual might be

very similar, in this new coordinate system they can still be very far apart on some dimensions,

hence the sparseness of the face space. This brings some new problems that must be discussed, the

first being: in a database with millions of faces, which ones should the algorithm use to compare

the new face to (assuming an Euclidean-distance based classification)? It is very hard to compare

the new face (its weight pattern in reality) with every single face available on the database, either

in terms of time, memory or network bandwidth. Hence, a strategy must be applied in order to

reduce the search scope for the classifier.

In this specific system, the database choice plays a great role on the choice of the strategy to use

to reduce the search scope, namely its query capabilities. Despite being directed towards building

scalable data centers with simple data models, HBase does not offer many of the said capabilities,

meaning that some query logic must go into the application design. The solution found to address

the search scope problem in this particular database type is to use a grid strategy, which is integrated

both on the way the system performs searches and the way the data is stored in the database.

The grid strategy applied involves partitioning sets of weights into cells according to their vector

coordinates, by aligning each coordinate to their next hundred, either towards +∞ for positive num-

bers or −∞ for negative numbers (zero is considered positive). In a sense, a new ‘‘grid coordinate
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system’’ is being built, where each weight can be described by its corresponding grid coordinates.

For example, take the weight vector

W = [−142.65, 1053.93, 0.00, 300.00]

To translate it to grid coordinates, each number is ”rounded” to the next hundred

W ′ = [−142.65→ −200, 1053.93→ 1100, 0.00→ 100, 300.00→ 300]

Resulting on the point vector W ′ on the new multi-dimensional grid

W ′ = [−200, 1100, 100, 300]

With all the weight vectors described in this format, the application can ask for the specific coor-

dinate intervals that most resemble the actual unknown face’s weight vector to be classified. For

example, if W was a new unclassified face, W’ would be used to generate a search range to be

requested from the database. If we consider a margin of 200, the search parameters would be

Wtop = [(−200 + 200), (1100 + 200), (100 + 200), (300 + 200)] = [100, 1300, 300, 500]

Wbase = [(100− 200), (1300− 200, (300− 200), (500− 200)] = [−400, 900,−100, 100]

meaning that all vector in the database whose coordinates are between those ranges will be retrieved.

Please do notice that zero is considered positive, so any time a coordinate in a range calculation

results in zero, it is rounded to the next hundred just like a positive number. In the example, from

W’ to Wtop the first coordinate goes from -200 to 100 for this reason. One thing that is worth

considering is the case where the database would be relational and not key/value based. In this

situation it would be much easier to design a grid strategy due to the query join capabilities of this

systems, since it would only be necessary to store each vector coordinate in a different table field

and state a query such as

SELECT vector

FROM vectorsTable

WHERE (C1<X1) AND (C1>Y1) AND (C2<X2)

AND (C2>Y2) ... (Cn<Xn) AND (Cn>Yn)

and all the neighbour faces would be retrieved. Yet, a key/value database is essential to the scal-

ability of the system, so the strategy should be adapted to it. This grid strategy enables a more

efficient search, since the focus is on the area with supposedly more probability of finding a similar

face. However, there is still some chance of losing a valid neighbor face that is outside this limited

search scope. There is no trivial solution to this problem if this grid strategy is to be applied, so

the best option should be to choose a margin for the search range that includes most, but probably

not all, of the faces that are closer to the test face than the minimum distance chosen to classify as

a match. This strategy will be further discussed in the Implementation (see Chapter 4 Section 4.5).
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3.3.4 Caching

Even though the grid strategy applied greatly reduces the search scope and the number of data

to be transferred from the database, there is still the problem of having to fetch the same rows

several times. For example, the faces of the same individual in two consequent frames will most

certainly be close to one another in the grid, meaning that they will share the same neighbors. Yet,

when the classifier is analyzing both faces in sequence, the neighbors of each of them, which will be

very similar, will be fetched from the database. This highly suggests the usage of client caching,

i.e. storing the results from previous searches in the database client’s memory for future re-use so

that a new database queries can find what they are looking for faster.

3.3.5 Training II - Clustering

In the original eigenfaces algorithm, there was a property of the training data that was assumed

for it to work, which is not always true with the data to be processed by this system. That property

is the given identity of a set of faces, the fact that the algorithm is trained to recognize a set of faces

as a single person. For example, the training input to an implementation of the eigenfaces algorithm

could be a collection of folders which are named according to the person they represent, containing

inside a set of images with faces from the person in different orientations and expressions. On the

other hand, the input to this work’s system is a constant flow of unknown faces with nothing in

common from the start. It is a major drawback, as it is necessary to partition the faces into different

persons so that they can be given a common identifier, even if it is not the person’s real identity.

Given the nature of the data and the expected result, one approach could be to turn the eigenfaces

algorithm’s supervised learning nature into a semi-unsupervised one, where faces from an unknown

person would be joined together, even if they do not belong to a known person. The usage of the

prefix ‘‘semi’’ comes from the fact that the core of the eigenfaces algorithm cannot be changed, as

the database still has to be trained in order to recognize faces, but an unsupervised approach is

necessary to pre-process the data and separate the faces from different persons.

One of the most successful unsupervised learning approaches is clustering, with several strategies

proposed over the years such as the k-means or the expectation-maximization algorithms, to cite

just a few. Yet, a common trait of most clustering algorithms is the necessity to provide an initial

number of clusters to be returned, or at least the dimension of the clusters (Han, Kamber, & Pei

2006). This constitutes a limitation on the usage of clustering in the system, as it is very hard, if

not impossible, to determine beforehand the number of persons in a video (assuming a cluster of

faces represents a person). Nonetheless, there are some clustering algorithms that do not need an

initial seed, and can discover by themselves an acceptable number of different clusters, the DBSCAN

algorithm being one of them (Ester, Kriegel, Sander, & Xu 1996).
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The rationale behind the DBSCAN algorithm, short for Density-Based Spatial Clustering of

Applications with Noise, is that there are different areas in a dataset with different densities of

points. Taking the face recognition problem as an example, the faces from the same individual

would constitute a high-density area, as most of the faces will be very similar and close to one

another in space, whereas the faces that are doubtful and can be either one person or the other

are in low-density areas. DBSCAN considers that there are two types of points in a dataset, core

points and noise points. Core points are the ones responsible for keeping a cluster together, the

ones that have sufficient neighbors to constitute a cluster. Noise points are the ones that are not

near any core points, and so are not considered as part of any cluster. A short description of the

algorithm’s steps is provided, but please refer to the original paper for more detailed information

(Ester, Kriegel, Sander, & Xu 1996).

In short terms, the algorithm commences by analyzing the first starting point in the dataset

and checking how many neighbors it has according to an epsilon distance measure. If the point has

more than a preset minimum number of neighbor points, it is called a core point and a new cluster is

born. From here, all of the first point’s neighbors are checked for their own neighbors to determine if

some of them are also core points. This process continues recursively until the ”edge” of the cluster

is reached, i.e. the points being checked do not possess a sufficient number of neighbors. All of the

points analyzed are classified as belonging to the same cluster and then the algorithm restarts with

another unvisited starting point, until all points in the database are visited. In the case one of the

starting points does not have enough neighbors, it is considered as noise and is not assigned to any

cluster.

To set a value for the minimum number of neighbors that a point must have to be considered a

core point, a notion related to the specific case of tracking faces in videos is used. A face in a video

is usually in-between two other faces, the ones in the previous and next frames, with the exception

of the first and last faces in a sequence. With this idea in mind, it is safe to assume that a value of

2 should be sufficient to provide good clustering results. Of course a face may have more than two

neighbors if, for example, a person does not move for a while and all its faces will be very similar.

A reasonable value for epsilon, the minimum distance between faces for them to be considered

as in the same cluster, is not so easily reached. It depends a lot on the video characteristics (e.g

framerate) or the conditions of the environment where the people in the video were filmed, suffering

from the same problems as the eigenfaces algorithm which also has to consider a minimum distance

for a face to be recognized. To simplify, this distance threshold will be considered the same for

both the clustering and eigenfaces algorithms. The specific value to be used cannot be calculated

or defined without experimenting, so it should be discussed in the Implementation and Evaluation

Chapters.
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3.4 High-level Data Model

A system’s detailed data model is closely related with the choice of database type, its specific

properties and must evolve around the system’s implementation and its needs. In this section, a

high-level view of the data model is presented, which takes into account the entities needed after

knowing the system’s components, their interactions and the integration with the face recognition

algorithm, and the necessary relations between each of them. Each entity will now be described

succinctly, reserving a detailed discussion for the Implementation (see Chapter 4).

1. Jobs - Holds information about current and past jobs, namely the unique ID of each job, the

resources allocated, job state and the results.

2. Videos - Holds information about the videos the system has processed, such as their names,

URLs from where they were downloaded, the unique video ID attributed to each and video

chunks location in the datastore.

3. People - Holds information about individuals that were added to the system, specifically their

name, a unique person ID and the clusters to which the person is related.

4. Faces - Holds every distinct face found by the system, being one of the largest entities.

5. Eigenfaces Data - Holds information about the face recognition algorithm, namely the

training information and results for each training session.

6. Grid - Holds the grid structure data, with information about each cell and their containing

faces.

7. Clusters - Holds information about all clusters found, namely the mapping a cluster and the

grid cells that belong to it.

Summary

In this chapter, a thorough description of the solution’s design process is given, which will

condition the rest of the work and the results obtained. It starts with the enumeration of the

architectural driver’s of the system - performance, scalability and flexibility, the functional and

non-functional requirements which it must respect and the properties it must display. Next, the

main part of the solution is presented - the software architecture - under the form of several diagrams

that focus on different areas of the system at both code modules and runtime components levels; and

the description of the components which are part of it divided into four major areas: Management,

Computation, Storage and Web Interaction. It continues with the integration of the face recognition

algorithm with the rest of the system and some specific strategies developed to deal with some of

the problems encountered, namely a grid strategy for efficient querying, client caching to accelerate

some searches and face clustering to integrate unknown people in the database. Finally, a high-level

view of the system’s data model is provided with the description of all established tables, leaving

some details to the Implementation Chapter.
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4Implementation Details

The second part of this work derives directly from the design of the system, which is to build

a tangible version of the concepts defined that can be tested and evaluated to assert the proper

functioning of the system. This chapter presents a concretization of the design concepts defined in

Chapter 3, by describing the technologies used and a more detailed software view addressing the

problem of generating IDs and a detailed description of the data model based on the general view

previously designed.

4.1 Technologies

A system is very much dependent on the available technologies at the moment of creation, with

some system designs being put away while technology cannot yet handle it. For example, distributed

computing technologies brought a massive amount of computation power to investigators which

could not be achieved with single machines. Technology takes a large part on the definition of the

system capabilities, of what it can and cannot do. It is important to define the technologies the

system will use and what is the added value to be expected from this utilization.

4.1.1 Programming Environment

The main system components and all needed functionality is developed in the Java programming

language, as both the chosen cloud platform, the datastore and database have native an Application

Programming Interface (API) in this language. Java code is usually not compiled for native machine

code, so it needs a virtual machine to be executed which can arguably add some performance losses.

In practice, the Java virtual machines have evolved to a point where the optimizations they perform

do provide a good performance comparable to C and other native-compiled. languages.

4.1.2 Cloud Computing platform

One of the goals of this work is to integrate a face recognition algorithm with cloud computing,

an emerging paradigm over the last decade and that is now experiencing an explosion of platform

solutions, both commercial and open-source. With so many options available, an informed choice

is essential. Through the analysis performed on Chapter 2, a global view of the most widely known

solutions was considered, so that the choice of platform to use in the system was based essentially on

following items: low cost, easily modifiable/tunable, offering an Infrastructure-as-a-Service model

and private-cloud deployment with possibility to expand to public. With this set of characteristics



the offers were naturally narrowed to open-source solutions, with at least three platforms fulfilling

the requirements: Eucalyptus, OpenNebula and OpenStack. Either one of these solutions would

perfectly fit the system, but the choice was made to use OpenNebula as the cloud platform, for

several reasons:

• Mature technology, with 7 years of active development;

• Highly customizable;

• Can use any distributed file system;

• Compatible with Amazon’s EC2 Query API;

• Large support community, good documentation and strong research partners.

OpenNebula is oriented to private-cloud deployment, enabling organizations to make the best

use of their available resources by virtualizing their infrastructure. It relies on a rather centralized

management architecture, with a single node monitoring the others. Also, it is highly customizable in

that a large part of the system components can be tuned to adapt the platform to an organization”s

needs. It provides several types of interfaces (XML-RPC, OCCI, EC2), but in FaceID-Cloud the

XML-RPC API is used by the monitor to interact with the cloud frontend. There are three main

parts of OpenNebula that affect our system and must be recognized: VM scheduler (onevm), image

repository (oneimage) and virtual network manager (onevnet):

• Virtual Machine (VM) scheduler: the main daemon that controls the deployment of virtual

machine instances in the infrastructure. The monitor interacts solely with this component to

request resources.

• Image repository: although no system component interacts directly with it, it has pre-

configured images of every component, ready to be instantiated.

• Virtual network manager: a limitation on the number of virtual instances, specifically in-

stances running slave components, is the size of the pool of available IP addresses, which are

parameterized manually in this component.

The main goal of this work is focused on the performance of the system in terms of execution

time and resources utilization, and the underlying cloud platform plays an important role in it

along with the system architecture itself. Performance-wise, one of the most problematic areas is

the deployment of new virtual machine instances. The OpenNebula VM scheduler is limited to

deploy one instance per node at a time by the used hypervisor, so anything that can speed up the

process around this area is essential. OpenNebula offers two different transfer drivers for deploying

VMs, by using a shared file system or using SSH to transfer images. The former approach provides

lower VM deployment times, hence it was chosen to be used in FaceID-Cloud. The shared file system

utilized is NFS (Pawlowski, Noveck, Robinson, & Thurlow 2000), offering the basic functionality

needed and maintaining the image repository shared across all nodes.
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4.1.3 Datastore

The chosen distributed file system used as the datastore for the system was already mentioned

in Chapter 3, the Hadoop Distributed File System which is part of the Hadoop platform. In this

subsection a more detailed description is provided to analyse its impact in the system. According

to the documentation of HDFS1, it ‘‘is a distributed file system designed to run on commodity

hardware’’, meaning that, in the context of this work, it will assumedly run relatively well on the

modest (and cheaper) VM images available in the cloud. Also, it is built around high-throughput

and large datasets, which fits very well with the type of data and manipulation needed. The internal

structure of HDFS is based on a master/slave architecture, with a single NameNode controlling a

large set of DataNodes that serve read and write requests to the file system’s clients, illustrated on

Fig. 3.1. To deploy HDFS in the cloud platform, special VM instances different from the others in

the system will be used. These instances will feature two custom images at a time from the image

repository, a smaller one with the operating system and main file system, and the other with a

dedicated large disk image to accommodate HDFS files. Also, the former will be non-persistent, as

it does not need to account for changes and so it can be shared by all HDFS nodes, while the later

will be persistent and cannot be shared, with one image per node.

4.1.4 Database

Just like the datastore, the database system used was also already discussed. HBase is a column-

based, or key/value based, database which scales horizontally by adding more nodes. It is optimized

for random realtime read/write access on very large datasets spawning millions of rows, while lacking

some of the relational databases features like table indexes or advanced query capabilities. HBase

is composed by several complex components, but the most important for the system are the Master

Server and the Region Servers. Much like HDFS, HBase also relies on a centralized management,

although high availability is assured by a ZooKeeper quorum. Region Servers are responsible for

serving read and write requests to the database clients and will be the main agents the system

components will interact. Access to HBase is performed through its Java API.

4.1.5 OpenCV

In order to ease the implementation of the eigenfaces algorithm a third-party tool is used -

OpenCV, an open-source computer vision framework that provides built-in functionality to process

videos and images and perform some operations, namely the application of PCA to a set of images

for training the database and projection of images into the new space. OpenCV is originally coded

in C++, but the language chosen for the system is Java, hence a wrapper is also used called JavaCV.
1http://hadoop.apache.org/docs/r0.18.3/hdfs design.html (accessed April 2013)
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4.1.6 H2 Database

For the caching strategy chosen in Chapter 3, the H2 Java SQL database was added to the

system, which provides in-memory databases compatible out of the box with the Java programming

environment, and enabling a full relational database to be used in the small replica of the HBase

database. Of course, some performance is lost by translating results from a non-relational database

to a relational one, but in the long-run the caching effect will be much more evident.

4.2 ID Generation

For the system to be able to keep track of all its components and job workflow, and monitor what

is happening at some particular point in time, several unique identifiers are needed. In FaceID-Cloud

a mixture of local and distributed identifiers are used to address this need. While some identifiers

are local to their parent components, such as the ID of a chunk in the scope of one job which is local

to the master and can be modified without any special treatment, other identifiers are shared by

several components inside a job and must be made concurrently accessible and, at the same time, in

a time and resource efficient manner. A description of the solution developed to address the latter

is now given.

There are six counters in the system that can be globally accessed by more than one component

in the system - namely those which are used to generate unique IDs for new faces, jobs, people,

videos, clusters and eigenfaces data. These are all stored in table ‘‘faceid-data’’ in HBase and hence

the access is ruled by HBase’s read/write properties and the limited set of ACID properties (Gray

et al. 1981) guaranteed. As a key/value database made for massively scalable systems, HBase

developers had to let go of some properties to achieve a highly performant system, namely by

not guaranteeing all properties of the ACID standard. Simply put, HBase guarantees atomicity,

consistency, isolation and durability on a row basis, and not on full transaction basis. This means

that, respectively, a transaction will either modify all columns of a row or none of them; a read

will always return a complete row that existed at some point of the table’s history; transactions are

always committed serially so that they do not see each other’s inner events; and a row is always

made durable in disk before it is read. Despite this limited, but sufficient, set of properties being

guaranteed, when generating unique IDs from the counters stored in the database another crucial

property is needed - sequential consistency (Lamport 1979). The counters must be incremented by

several clients at the same time, but one cannot have two different clients generate the same ID,

meaning that increment operations must be sequentially performed in some arbitrary order which

can be different from the order at which the operations were issued - strict consistency - but must

nonetheless be seen equally ordered by all participants.

Achieving sequential consistency in a distributed system in an efficient manner is not trivial,

with the presence of conditions like de-synchronized clocks, latency, and a large number of concurrent
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accesses. Among the different counters necessary for the system, the most likely to be heavily

accessed and incremented is the face ID generator. Faces are the most numerous objects in the

system, followed by grid cells (which do not need a counter), and must be uniquely identified within

the system for the recognition process to work. On the other hand, leaps between identifiers are

allowed, e.g. from ID 4 to 10, as long as they are unique. This softens the requirements and allows

for an easier implementation of a sequential distributed counter.

When processing a video, the rate of new faces entering the system is sufficiently high to

invalidate a one-at-a-time generation of IDs, as the continuous database accesses would both slow

the process and flood the network due to all nodes having to access the same database table and

row, which is implicitly locked by HBase when writing. To remove some pressure on the network

and the database, we take advantage of not being forced to provide a fully-sequential generation of

IDs (leaps can exist) and make each component ‘‘grab’’ a pack of IDs that it can use until it finishes

a task or the pack ends, until a new pack will have to be requested again. The size of these packs of

IDs is set to 100 so that the face counter does not grow too much with few IDs really representing

a face, while also allowing for a considerable amount of faces to be tagged before the component

needs another pack and a larger interval between counter accesses by all components.

To request a new set of IDs, a test-and-set strategy is applied, meaning that at least two database

roundtrips are needed to definitely increment the counter - one to check the value currently in the

database, and the second to write the new value. This second trip to the database will only be

successful if the value of the counter is still the same as it was in the first trip. This means, of

course, that this second trip must be an atomic operation by itself for it to be able to check the

current value and put a new one.

To accomplish an atomic test-and-set operation a method on HBase’s API is used which handily

provides just that - checkAndPut. This operation atomically checks if the current value on a row on

the database is equal to a given input parameter, and sets a new value if it did not change (meaning

that no other component has written on that same row between trips). If the counter value in

the database did change, meaning that some other component was able to write a new value, the

operation must be fully restarted, with the current value being read and a new trip to test the value

and try to set it being made. This type of strategy can generate some contention on the counter

row, especially when the number of accessing components increases. To lower the contention impact

on the system, an optimistic random back-off strategy is used, where each component will sleep for

a random amount of time (up to 5 seconds) before trying to obtain a new ID. As an optimistic

strategy, the evolution of the system state is guaranteed since there will always be one component

that can definitely write its value.
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4.3 Detailed Data Model

Following the preliminary definition of the data model on Chapter 3, a more detailed description

of the system’s data model is now given, enumerating the several tables and their constituents, with

some table additions to the base ones defined in section 3.4 which are necessary for the various

operational activities in the system not strictly related with the base domain logic. This data

model is presented on the HBase table format, where each table is defined with a limited set of

column families that cannot be altered at runtime and are represented by their name followed by

”:” (ex: ”info:”). Each table is composed by unlimited rows ordered alphanumerically by their row

key, which are in turn composed by an unlimited number of columns. Each column is associated

to a column family and has its own qualifier, being accessed with their corresponding row key,

family name and column qualifier (ex: ”row1”, ”family:qualifier”). As columns can be dynamically

generated at runtime, sometimes their qualifier can contain some information and change according

to the applications needs, so the special notation ”<type of information>” is used to denote these

special cases.

HBase tries to physically store column families and their columns in the same low-level storage

files, so a semantic relation between all columns in a family is desired both for a better understand-

ing of the data model division and to increase the probability of reading from the same physical

file/region when performing database operations.

To detail the data model, it is first given a description of the table and its primary use, followed

by all the column families and the type of columns they contain. At the end of this section, two

subsections are included to describe in more detail some de-normalization that was applied to the

data model (Section 4.4) and the strategy used for the representation of a grid cell in the database

(Section 4.5).

faceid-data. This is a purely operational table that holds several counters needed for the system

to work and accessed concurrently by all components. This is a special table, with solely a default

row with several columns holding some system state information:

• info:clustering - this holds the current clustering ID for generating new clusters. It is

concurrently accessed by all slaves when performing clustering

• info:databaseid - holds the current eigenfaces database version, synchronized with the train-

ing sessions performed by the monitor/mslaves

• info:faceid - counter for generating unique face Ids, accessed concurrently by all slaves

• info:jobid - holds the next job ID to be assigned by the monitor to new jobs

• info:personid - counter for generating unique people IDs for when registering a new person

in the system
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• info:videoid - counter for generating unique video Ids for when registering videos unknown

to the system

faces. This table stores all the faces found by the system, making it the largest table as it will

have to store several thousand images. The row key is given by the absolute ID of a face in the

system, so that faces from the same video are more likely to be physically stored together, and

should benefit from HBase storage strategies and the client cache of the system:

• info:jobid - identifies the job/video in which this face was found.

• images:<relativefaceid> - the column qualifier states the relative face ID in the scope of

the job that created the face. It stores the face image itself in a binary format.

jobs. All job information is available on this table, where monitor, master and slaves can check

and update the progress of specific jobs. The row key is a unique job ID assigned by the monitor

and maintained centrally:

• info:faceid - the counter for the job-relative ID attributed to new faces found in the video

• info:state - the current job state, assuming one of the following:

– BOOT: job initialization by the monitor, will stay in this state until master is allocated;

– PREPROCESSING: when on this state, the master will be downloading the video from

the remote repository and splitting it in chunks;

– UPLOADING CHUNKS: after finishing splitting the video, the master will finish up-

loading the remaining chunks and will wait for the monitor to allocate slaves requested

for the job;

– PROCESSING: in this state, all slaves are processing their assigned chunks and uploading

the information generated to the database;

– FINISHED: after the master acknowledges that all slaves have finished their work, it

declares the job as finished, and the web server is free to retrieve the results to present

to the client;

– FAILED: this state represents a known reason of failure, such as an exception thrown by

the code or one of the components being unable to contact another component.

• info:master - the ID of the master responsible for the job.

• info:video id - the ID attributed to the video being processed, can be considered as a foreign

key to the videos table in a relational database.

• info:nchunks - the number of chunks that were created from the video.

• info:nslaves - the number of slaves allocated to the job.
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• info:nFaces - the total number of faces found on the video, after aggregating the results from

all slaves.

• faces:<faceid> - the column qualifier is the relative ID of each face in this job, while the

stored value is the absolute ID of the face which acts as a foreign key to the faces table.

• state:<chunkid> - tells if a chunk represented by its generation-order ID in the column

qualifier was already processed by some slave.

eigenfacesdata. Contains the eigenfaces’ training information and related data. Each row rep-

resents one training session, with the last row available being the more recent:

• info:nEigens - the number of eigenfaces that were considered to train the system.

• info:nFaces - the number of faces that were used to train the system.

• info:eigenvalues - the eigenvalues that resulted from the training of the system, in binary

format

• eigenfaces:<eigenid> - holds an eigenface image, the column qualifier being the index of

the eigenface.

grid. This table contains information about all grid cells, with each row representing a cell. On

each row there is a reference for every face which weight pattern falls in the corresponding cell. The

rowkey structure is explained in more detail in Section 4.5.

• faces:<faceid>,<relativeid> - holds the weight pattern of the face identified by the face

ID in the column qualifier, in binary format. The used relative ID of the face in the job where

it was found is also in the qualifier.

• faces:<job grid key> - this column indicates that the grid key in the qualifier (which was

generated by a job), is part of a general grid key composed of the consolidation of all equal

grid keys from all jobs.

• info:cluster - holds the cluster to which the grid cell was attributed, acting as a foreign key

to the clusters table.

clusters. All clustered face data generated by the system is stored in this table, with the rowkey

corresponding to the cluster ID attributed by the slave that created the cluster:

• grid:<gridkey> - the column qualifiers in a row hold the gridkeys that were marked as

belonging to the cluster of that row, acting as a foreign key to the grid table
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4.4 Denormalization

The normalization of a relational data model, assuming the third and last normal form (3NF)

defined by Codd (Codd 1972), was proposed as a mean to achieve good relational designs without

unnecessary redundancy, while at the same time allowing for easy information retrieval. The focus

of normalizing to 3NF is, on a very simplistic view, assuring that all domain elements are atomic,

i.e. are indivisible units, and that every non-key element solely depends on the relation (table) key

and nothing else.

The effects of normalizing the data-model of an application is usually beneficial, as it reduces

redundancy and unnecessary dependencies between data, and accounts for a reduced probability

of ending with an incoherent database state upon insert or delete operations, for example, or fa-

cilitating the maintenance and upgrade of the data-mode. Yet, a fully normalized database can

be affected by scalability and performance problems as the dataset grows and the data-model be-

comes more complex, so that a simple read can result on several different tables (logically and

physically apart) being accessed due to the join query capabilities. There is a trade-off between

performance/scalability and consistency/ease of maintenance of the database, being hard to attain

both at the same time.

Relational databases, arguably the most common type today and those for which Codd proposed

the normalization concept, are greatly affected by scalability problems when the sheer quantity of

data to manipulate only fits on several hundred nodes and a join operation incurs on heavy costs

due to complicated data-models spread across data-centers (possibly on different continents). Some

strategies to reduce the effect of these limitations have been proposed and implemented by relational

databases vendors (e.g. sharding (Perl & Seltzer 2006)), but for some cases the problem could be

solved by relaxing the normalization standards and de-normalizing part of the data model, especially

on simple models which do not need strong consistency properties or join queries.

In the FaceID-Cloud system, the data-model can be made simple enough so that it does not

need strict consistency and transaction control, as the great majority of data is uncertain by nature

(faces, images, etc) and the main focus is on storing and being capable of accessing large amounts

of data, and not on the relations across the dataset. Also, HBase’s column-based paradigm strongly

implies a de-normalized model, as the concept of primary key is distorted into a ‘‘row key/column

family’’ approach and foreign keys are discarded all-together. Given these properties of the data to

be processed by the system, and the nature of HBase’s storage model, the data model was partially

de-normalized and some redundancy was purposely added to increase read performance.

The downside of this decision is primarily the added responsibility of the application to handle

table relations and accesses to more than one table while maintaining consistency on the cases
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where it is indeed needed. Nonetheless, the de-normalization will not carry a large performance

effort on the system due to the simple model and the de-normalization-oriented HBase programming

paradigm, which does not offer much query capabilities and assigns the responsibility of relating

data to the application.

The de-normalization is more evident on the tables grid and clusters, which are closely related

as 1-clusters to n-grid. All clusters and grid keys could be placed on a single table, but the issue

that arises is related with the querying needs of the system. Imagining this scenario where only one

table exists, if one needed to know which grid keys are classified as belonging to a particular cluster,

the table should have, in theory, a cluster ID as the row key, and would retrieve all information

associated with that ID with a simple read operation. However, if one needed to know which

clusters are assigned to a particular grid key this operation would necessarily take a whole table

scan searching all cluster IDs for that grid key, since the row key is the cluster ID. The problem

would also present itself if the grid key was taken as the table row key. Hence, the de-normalization

of these two entities, where one table will have all grid keys and their corresponding clusters - the

grid table - and the other will have all clusters with their corresponding grid keys - the clusters

table. In a relational and normalized database this problem would not happen at all, as a third

intermediate table would be added between both tables which would represent this relation and link

the two entities.

4.5 Grid Strategy Implementation

One of the problems of the grid strategy is how to store the necessary information in the

database. In Chapter 3, the strategy was defined and the method to find each cell was described.

Now on the implementation stage it is necessary to come up with a technical solution to represent

cells in the database and uniquely identify them in a search-efficient manner.

HBase is a key/value database, with few query capabilities provided unlike relational databases.

One of the major aspects that can influence the performance when querying this type of databases,

and specifically HBase, is the row key design. With a clever engineered key, it is possible to

extract the needed information efficiently. In HBase, there are three properties of keys that should

influence the design. The first is that every row key has a textual representation in ASCII, unlike

the columns which are byte arrays that might not have such representation; the second is that

row keys are alphabetically sorted, both physically and logically; finally, it is much more efficient

to obtain a range of keys than individually requesting them. From these three factors, a row key

design for the grid table is proposed.

From Chapter 3, each cell is represented by a point in a grid coordinate system that is obtained

by rounding each coordinate of a face’s weight pattern vector to its next hundred. The example
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given before with point W and its transformation W’ into the grid system is now recovered to

exemplify the construction of the key:

W = [ −142.65, 1053.93, 0.00, 300.00 ]

W ′ = [ −200, 1100, 100, 300 ]

First, all coordinates will always have two trailing zeros (they are rounded to the next hundred),

so they will be divided by 100 from here on, resulting in a shorter key. Each coordinate will be

attributed either an n or a p according to its signal, negative or positive respectively, so that the

resulting key K in textual format will appear like:

K = ”n” 2 ”p” 11 ”p” 1 ”p” 3

The next problem is to translate the numbers to ASCII characters, but guaranteeing that the

resulting key can still maintain the natural order of integers - from negative infinity to positive

infinity. To achieve this, numbers cannot be directly translated to their ASCII representations,

as they will not be correctly ordered. For example, the result of ascendingly sorting the numbers

N = {100, 2, 10} is N ′ = {2, 10, 100}. However, if they are considered as ASCII characters C =

{”100”, ”2”, ”10”} they will be sorted in a different order C ′ = {”10”, ”100”, ”2”}. The problem

is that number sorting considers the positions of digits in the numbers, so that, for example, a

digit in the hundreds position will only be compared with a digit in the same category. String

comparison does not make this distinction, and compares characters from left to right regardless of

their category in the number.

To account for this problem and still leverage HBase’s implicit sort, padding is added to smaller

numbers so that the sort algorithm correctly compares digits from the same category. There is still

one thing to consider: to add padding characters, the size of the ASCII representation of each num-

ber must be predefined. From observation of the eigenfaces algorithm, weight pattern coordinates

are almost always under the 3 digits mark (considering all elements divided by 100), and it is very

unlikely for a 4 digit coordinate to appear with the kind of entities that are being dealt with. This

lead to the definition of a maximum of 2 padding characters per number to reach a 3-digit repre-

sentation. For example, the smallest number in absolute value that can appear is 1, which needs 2

padding characters in its 3-digit ASCII representation - ‘‘xx1’’; a large number with 3 digits does

not need padding and should appear as-is. The choice of characters to use when padding is also

important, as they will be considered during sort. Characters ’a’, ’b’ are reserved for this task,

where ’a’ is always in the leftmost position. With padding, the representation K of vector W is now:

K = ”nab” 2 ”pa” 11 ”pab” 1 ”pab” 3

The final step is converting the remaining digits to their ASCII representation, where there is still
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an aspect to consider. There is no notion of negative and positive in ASCII sorting, so negative

numbers must be encoded differently from positive numbers. On the negative side, numbers with

the largest absolute value are actually the smallest and closer to negative infinity, whereas positive

numbers are coherent in this aspect. To solve this problem, negative numbers are encoded differ-

ently by using upper-case letters and inverting their natural order in the alphabet, while positive

numbers use lower-case letters in alphabetical order (see Table 4.1). Finally, the grid key for cell

W ′ becomes:

K = ”nabTpafdpabepabg”

This encoding ensures a natural ordering between grid cells that enables efficient range-based

searches on HBase in the alphanumerically ordered row list.

0 1 2 3 4 5 6 7 8 9
d e f g h i j k l m

(a) Positive numbers

0 1 2 3 4 5 6 7 8 9
V U T S R Q P O N M

(b) Negative numbers

Table 4.1: Grid key number to letter mapping

4.5.1 Clustering Implementation

In the Chapter 3 a description of the clustering strategy to be applied in the system was given,

namely about the chosen method to implement called DBSCAN. This algorithm will try to identify

individuals in an unknown set of faces by grouping similar faces and tagging them with a cluster ID

(a real identification can later be added by an user). By defining the minimum distance ε between

cluster members as the same minimum distance of similarity in the eigenfaces algorithm, DBSCAN

can be seen as variant of this method that compares unknown faces and recognizes individuals

in the same dataset by comparing faces within themselves and not with faces on the known face

database. Nonetheless, there are some different requirements that should be taken into account

when implementing clustering in the system, namely that it will be performed in the last step of

the workflow after the results of recognition are sent to the end-user, while the eigenfaces method

is under a much more restrictive time limit. For that reason, the version of DBSCAN implemented

is very similar to the original, without any other strategies to speed up the process except for the

utilization of the weight vector cache used by slaves to speed up recognition, since it was already in

place when fetching weight vectors from the database and could be seamlessly leveraged.

It is possible to apply the same grid strategy used in the main recognition process to speed

up DBSCAN, meaning that when trying to find a neighbor for a given point during the DBSCAN

run, only those neighbors which possess a similar grid key are fetched from the database, avoiding

a longer table scan and fetch that can lead to a higher load on the database and the network.

Arguably, this solution would be a faster approach, but it can lead, nonetheless, to much more

faces being ‘‘left out’’ and unclassified due to the sparse nature of the grid. In the main eigenfaces
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recognition process, the goal is only to identify at least one of the many faces of a person detected in

a video, allowing the algorithm to afford losing some accuracy by not scanning all table rows when

searching for a match. Due to the human physiology and natural movements of the head when

speaking or looking around, there is a high chance that a frontal view of the head (the optimal

face angle to perform identification) will eventually appear in a video, leading to a higher chance of

recognizing a person using a limited search scope. However, during this final process of clustering a

job’s faces the goal is to try to classify every face in the video, so that further recognition sessions

can use all the information available to more easily identify new faces. Given that there are less

restrictive time constraints on this final process, i.e. a user is not waiting for a result, the system can

run clustering processes in the background after the job finishes, but not necessarily the moment

after it does.

Summary

Following the architecture proposed in the previous Chapter, the process of developing a working

prototype of the system is exposed, starting with the description of the technologies used for all

parts of the system. Next, a technical problem that was not thought at first in Chapter 3, the

generation of unique IDs for the whole system, where a back-off strategy is used. Finally, the data

model presented in Chapter 3 is detailed, along with the discussion of some problems affecting the

choice of database, namely de-normalization and the implementation of the grid strategy.
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5Evaluation
In this chapter the implemented prototype of the FaceID-Cloud system is evaluated through a

series of scenarios that try to stretch it to its computational limits and stress the relation with the

cloud platform. It is also necessary to assert that the implemented eigenfaces algorithm is indeed

doing its part by setting some specific scenarios to evaluate the system accuracy under controlled

conditions, and its behavior on a more ”real-world” and uncontrolled scenarios.

The first part of the chapter will focus evaluating the raw performance of the system, making

use of different scenarios and discussing the obtained results and how they could be improved. Next,

a validation of the clustering algorithm and the usage of the grid strategy is performed, followed by

a discussion over the results and their meaning. Finally, a wrap-up on the system’s evaluation as a

whole is presented and a summary on its strengths and weaknesses. All tests were run under the

test environment specified in Appendix A.

5.1 Performance Evaluation

Achieving a much better performance than a sequential version of the eigenfaces method applied

to video streams is, as stated in Chapter 1, the main goal of this work. To assert that the goal

is reached with the proposed design and the implemented prototype, a series of scenarios were

proposed and the system was tested against them, with execution times being measured during the

jobs’ lifetime through their interaction with the database.

By analyzing the systems’s workflow and its most likely bottlenecks before executing the test

scenarios, the most probable areas that affect a job execution time are: ‘‘cloud state’’, number of

slaves available per job, number of simultaneous jobs and the size of the videos. Each of this should

not only effectively increase or decrease the performance of the system when altered, but can also

affect the others. Hence, three different scenarios are presented that test the cloud state, number

of slaves per job, and number of simultaneous jobs, presenting results for small and large videos in

each subsection.

5.1.1 Cloud State

In this context, the state of the cloud is the amount of VM instances which are already running

in the system. It affects a job’s execution time when there is a shortage of VMs available, leading

the monitor to allocate more instances. This allocation of new nodes is costly and is negatively



limited by the hypervisor capacity of deploying new VMs simultaneously (only 1 for each node for

KVM, a total of 6 in the testing infrastructure), so that recycling of instances is imperative. By

making an analogy with common cache systems which are said to be ‘‘hot’’ if they are full and

‘‘cold’’ otherwise, the terms hot cloud and cold cloud are respectively coined for states where either

all instances needed for a job are already running and available, or some or all instances need to be

allocated. The two scenarios illustrated in figures 5.1a and 5.1b assert this difference between hot

and cold clouds and its impact on the system.

(a) Small Video (b) Large Video

Figure 5.1: Hot and cold cloud scenarios

As expected, it is observed that, as the size of the video grows, the impact of the cloud state in

the overall performance is attenuated. In a small video the time that is spent to allocate new VM

instances can reach half of the execution time and does make a difference when several small jobs are

to be executed leading to a waste of 50% of the cloud resources. On the other end, with large videos

the time to allocate VM instances is mostly insignificant when compared with the total execution

time. Nonetheless, the allocation time is related with the amount of instances being deployed, and

that is the reason for the two curves to slowly start deviating from one another as the number of

slaves per job increases. Assuming the database would not become a bottleneck, there would be a

moment where the amount of slaves to be allocated would neutralize or even regress the effect of

using more parallelism and making the overall execution time go up (that can be noticed in the 32

slave scenario).

5.1.2 Number of slaves

The main performance driver of the system is the parallelism degree that can be ‘‘squeezed’’ out

of a job without touching sensible bottlenecks such as the cloud state or the database. In theory,

the addition of more slaves to a job should decrease the processing time or, following Amdahl’s Law

(Amdahl 1967), increase the theoretical speedup as a function of the problem size and the number

of processing units available.

Amdahl states that, given a problem of size n constituted by an inherently sequential part σ(n)

and a completely parallelizable part ϕ(n), the maximum speedup ψ(n, p) that can be achieved by

a system with p processing units can be calculated through the following equations:
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(a) Cold Cloud (b) Hot Cloud

Figure 5.2: Small video time distribution

(a) Cold Cloud (b) Hot Cloud

Figure 5.3: Large video time distribution

f(n) =
σ(n)

σ(n) + ϕ(n)
(5.1)

ψ(n, p) ≤ 1

f(n) + 1−f(n)
p

(5.2)

MAX(ψ(n, p)) = lim
p→+∞

1

f(n) + 1−f(n)
p

=
1

f(n)
(5.3)

fe(n, p) =
1/ψe(n,p) −

1
p

1− 1
p

(5.4)

where f(n) in 5.1 represents the fraction of the sequential computation in the original sequential

program, which in turn is used to calculate the maximum speedup ψ(n, p) in 5.2. Equation 5.3

calculates the theoretical maximum speedup that can be achieved when p → +∞. Figures 5.4a

and 5.4b show the potential speedup of the system when processing the small and large videos with

the same number of slaves as the hot cloud scenarios depicted in figures 5.2b and 5.3b. Both the

sequential and parallel fractions were estimated based on the execution times with solely one slave.
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(a) Small video (b) Large video

Figure 5.4: Theoretical speedup

(a) Small video (b) Large video

Figure 5.5: Execution time

From the speedup curve for the small video scenario, it is clear that the job would benefit with

the addition of more slaves so that it could get closer to the potential maximum speedup of 8.37

calculated with equation 5.3, with only 4 slaves. However, it is important to notice that given

that this is a small video scenario, the problem size, n, is by itself very small. Taking chunks as

indivisible units with a standard size across jobs, even if the number of slaves allocated to the job

were to be increased, there would not be enough chunks to process. On the other hand, if the chunk

size decreases to allow for more chunks to be generated and more slaves used, large videos would

suffer from an explosion of little chunks which would lead to more contention in the database. One

could argue that the number of chunks could be dynamically related with video size, but due to the

several video sizes and formats available, it is hard to know the nature of a video and how it will

‘‘behave’’ when decomposed into chunks before the process.
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For the large video scenario, equation 5.2 sets a theoretical speedup ceiling of 5.53, which seems

to be a low number for the amount of slaves provided. The reason for this small speedup is mainly

due to the big role that the sequential part of a job plays in the overall execution time, given that

after 5 slaves the system spends more time on fetching and splitting a video than on processing

it to recognize faces. Nonetheless, by comparing the theoretical minimum execution time with the

real time of the hot cloud scenario in Fig. 5.5b, at 32 slaves the system executes at 87.3% of the

ideal time (a 3 minutes difference), which account for database and datastore concurrent accesses

and oscillations on the fetch and splitting times.

There are two other metrics which allows a more thorough analysis of the system performance

that can be obtained using the empirical results from the test scenarios - the efficiency e(n, p), and

the Experimentally Determined Serial Fraction (EDSF) fe(n, p) proposed by A. Karp and P.Flatt in

(Karp & Flatt 1990). The efficiency of the system is simply the usage percentage of each processing

unit available to the system to reach the resulting speedup, i.e. the measured speedup divided by

the number of processing units, meaning that systems should strive to an efficiency closer to 1.0.

The EDSF, which is calculated with equation 5.4, reveals aspects of the system performance which

are not taken into account into Amdahl’s equations, namely overheads inherent to the system (e.g.

communication times, different load distribution between processing units). Tables 5.1a and 5.1b

present the evolution of the efficiency and EDSF calculated from the measured speedup as p grows

for the small and large video scenarios. The results from both tests show a steady speedup grow,

# Slaves 1 2 3 4
ψe(n, p) - 1.62 1.91 2.43
e(n, p) - 0.81 0.64 0.61
fe(n, p) - 0.24 0.29 0.22

(a) Small video

# Slaves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 32
ψe(n, p) - 1.68 2.15 2.49 2.83 2.86 3.24 3.28 3.26 3.4 3.56 3.6 3.59 3.69 3.85 3.86 3.82 3.96 4.23
e(n, p) - 0.84 0.72 0.62 0.57 0.48 0.46 0.41 0.36 0.34 0.32 0.3 0.28 0.26 0.26 0.24 0.19 0.16 0.13
fe(n, p) - 0.19 0.2 0.2 0.19 0.22 0.19 0.21 0.22 0.22 0.21 0.21 0.22 0.22 0.21 0.21 0.22 0.22 0.21

(b) Large video

Table 5.1: Performance metrics

but the efficiency suffers deeply, especially on the large video scenario. Nonetheless, this behavior

can be partially explained by the Karp-Flatt metric fe(n, p). According to the authors, there are

two known patterns that this metric usually presents - a nearly constant value translates into a very

large serial fraction (limited parallelism), while a steady growing value translates into overhead

effects.

On the small video, even though there are very few values, fe expresses a constant behavior

with a sudden jump at the 3 slaves mark, indicating an overhead. In fact, this is most probably

related with the uneven load distribution of the video chunks. This particular small video is split

into 4 chunks by the system, so that when there are only 3 processing units available, one of them

will have to do the ‘‘extra work’’, and hence this behavior.
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The large video scenario’s results are also somewhat expected. Since it is a large video, the

load balancing is adequate as there are much more chunks than processing units, so the problem of

the small video does not apply here. The key is the constant behavior of fe which, together with a

high decrease of the system’s efficiency, translates into a very large sequential fraction that is not

parallelizable. This part corresponds to the downloading and splitting of videos (green and red in

Fig 5.3), which are not easily split into smaller tasks due to the complexity of video codecs.

5.1.3 Number of simultaneous jobs

(a) Small video (b) Large video

Figure 5.6: Average execution and processing times with 4 slaves when several jobs execute simul-
taneously

The last subject of analysis is the behavior of the system when two or more jobs execute at

the same time. In both scenarios each job was given 4 slaves to execute, varying from 1 to 8 jobs

executing simultaneously for a maximum of 32 slaves processing at the same time. Before the test,

a performance drop was expected on the fetching and splitting of videos, as the network should

become a bottleneck due to the increased amount of masters trying to do their tasks. Yet, after the

test ran the results were very different than expected. As can be seen in Figs. 5.6a and 5.6b, the

total executing time (blue) is indeed rising as the number of simultaneous jobs increases, but the

main culprit is, surprisingly, the parallel fraction when the slaves are working (red). The relation

between the parallel fraction and the total is obvious from analyzing the chart, as they both follow

the same type of oscillation, but the reason behind this behavior is much less clear, suggesting some

kind of overhead is present. Although it was not expected to be the main reason of performance

drop in this specific scenario, communication or database contention were always expected from

the system. To perceive the overhead impact in the system, the Karp-Flatt metric is revisited

(see equation 5.4 in Section 5.1.2), but this time taking into account solely the parallel fraction, i.e.

σ(n) = 0, meaning that the resulting fe(n, p) will represent the time lost with overheads. The results

from table 5.2 show a small, but slowly increasing overhead effect transmitted by the behavior of

fe. This overhead is not observed in the scenario of Fig. 5.3 due to the greater performance gain
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# Slaves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 32
ψe(n, p) - 1.99 2.95 3.84 4.55 5.27 6.33 7.04 7.64 8.43 9.33 9.4 10 10.44 11.13 11.78 12.44 15.12 15.99
e(n, p) - 0.99 0.98 0.96 0.91 0.88 0.9 0.88 0.85 0.84 0.85 0.78 0.77 0.75 0.74 0.74 0.62 0.63 0.5
fe(n, p) - 0.01 0.01 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.03 0.03

Table 5.2: Analysis of the parallel part of the large video processing

as more slaves are added to the job, but it is still there nonetheless. The efficiency is affected, but

at 32 slaves it still performs at around 50% of the total apparent processing power. This number

makes some sense given the type of processors featured in the test machines. Despite displaying 8

cores each, due to hyper-threading there are only 4 real cores that try to perform two tasks at the

same time using shared resources. While capable of accelerating performance on some cases, it is

not assured to do that in all applications as stated by Intel1, and especially on a system with high

memory bandwidth needs as FaceID-Cloud. Of course, this is not the sole reason of the apparent

efficiency drop, but it does play a big part in it. Regarding other overheads, they can be reduced,

but never fully eliminated, by avoiding database trips, namely when generating new face IDs and

when storing job results and by-products.

5.2 Training and Grid Strategy Evaluation

The eigenfaces method is a known approach to face recognition and its performance was already

evaluated by its authors (Turk & Pentland 1991), so this section will focus on the specific strategies

used by FaceID-Cloud to recognize new people and incorporate them in the database.

There are three main values discussed in the following secionts that should be parameterized as

they have an impact in the amount of faces recognized and the quality of the recognition:

• minimum neighbors - this value indicates to the DBSCAN algorithm the minimum neighbor

faces that a face must possess to belong to a cluster, i.e. faces under distance ε;

• minimum distance ε - this value is used both by the eigenfaces method and DBSCAN, indi-

cating the minimum distance under which two faces are said to belong to the same individual.

A higher value will group more faces with possibly less accuracy, while a lower value groups

less faces but more accurately;

• grid margin - this value indicates the accepted margins to retrieve grid cells from the database,

centered on a given cell. A higher value will bring more faces from the database to compare

to, raising the probability of recognizing a face, while bearing a higher overall executing time

due to the increased amount of network communication and more faces to process. A lower

value has, of course, the opposite effect, decreasing the probability of recognition by fetching

less faces from the database, lowering network usage and processing time

1http://software.intel.com/en-us/articles/performanceinsights-to-intel-hyper-threading-technology (accessed May
2013)
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5.2.1 Minimum neighbors

Starting with the minimum neighbors parameter, this value should be set considering the nature

of the data to be clustered. In the case of face clusters found in videos, a pre-existing known property

is the natural flow of a moving face, i.e. in a video a face is usually in-between two other similar faces,

which enables the tracking of the head for example. Then, the system should perform clustering

considering a minimum of two neighbor faces.

5.2.2 Minimum Distance ε

To ensure the quality of the system information, the value of ε should be set so that the system

can build a minimum set of clusters that contain all the recognized faces with low noise. As ε is

greatly dependent on the type of data to be clustered, some tests were performed to find a suitable

value. Three test scenarios were devised, based on the amount of individuals featured in each video

and the environment conditions (a known cause of underperformance of eigenfaces). The first video

contains the perfect scenario, with a single individual frontally facing the camera on a well lit room

with some horizontal head rotation. The second video contains two individuals side by side under

poorly/difficult light conditions to evaluate the cluster division on noisy videos. Finally, the third

video represents a more challenging real world scenario, where 26 individuals are interviewed on the

street under different lighting conditions, with rapid movements and more noise-prone situations

(e.g. cartoon faces). The results of the three scenarios are shown below on table 5.3, where

each scenario was run with different values for ε, ranging from 500 to 3000. Information shown

corresponds to, respectively, the scenario the data refers to; the ε used; the number of people in

the video; the number of faces detected (i.e. only detected, not recognized); the number of clusters

generated; the number of faces belonging to a cluster; the number of images inside a cluster which

do not contain a human face (cluster noise); and the number of clusters which were wrongly merged,

belonging in fact to two or more people.

For the first scenario, i.e. the one with the best conditions, the algorithm reaches ε = 2000 with

every face assigned to a cluster, and only two clusters generated. This division even in the best

conditions can be explained as a missing link between the clusters caused by a blurry image when

an horizontal rotation is being executed. Due to this mild blurriness combined with a movement,

i.e. new faces are probably only ‘‘close’’ to the previous face, there is a gap where there are not a

minimum number of neighbors for either of the ”edge”, hence the division of clusters. An example of

a cluster resulting from the algorithm with ε = 1000 is shown in Fig.5.7, where it can be observed a

great similarity between the faces, but always a slight difference due to the head and eye movements.

The purpose of the second scenario is to validate that clusters from different people are not

merged under controlled conditions. As can be seen in Table 5.3, at ε = 3000 still only 178 out of
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Scenario ε People Faces Clusters Clustered faces Noise Mixed clusters
1 500 1 97 6 24 0 0
1 1000 1 97 7 75 0 0
1 1500 1 97 6 95 0 0
1 2000 1 97 2 97 0 0
1 2500 1 97 1 97 0 0
1 3000 1 97 1 97 0 0

2 500 2 183 5 43 0 0
2 1000 2 183 9 123 0 0
2 1500 2 183 5 145 0 0
2 2000 2 183 6 169 0 0
2 2500 2 183 5 174 0 0
2 3000 2 183 4 178 0 0

3 500 27 1033 15 105 0 0
3 1000 27 1033 43 505 0 0
3 1500 27 1033 47 704 0 0
3 2000 27 1033 42 821 0 1
3 2500 27 1033 31 906 2 1
3 3000 27 1033 1 683 * *

Table 5.3: Impact of ε on the clustering results

183 faces are recognized. This value of ε is very large when comparing the overall results with other

ε values, so it is unlikely that the faces which are missing do belong to a person or at least to a

reasonable quality face image. Indeed, some of the faces left out can be seen in Fig. 5.8, displaying

a high level of distortion and blurriness which hardly resembles a human face.

Figure 5.7: Example of a cluster

(a) Noisy face due to poor
lighting and blurriness

(b) Noise image wrongly de-
tected by the face detector

Figure 5.8: Example of noise images

Finally, the third scenario is meant to validate the quality of the clusters from an uncontrolled

environment video. The large amount of clusters was expected, as well as an increase of the noise

both in the detection phase and later on the clustering phase with higher ε values. At ε = 3000, the

algorithm found enough ”links” to merge all the clusters, indicating that a value above 2000 can

start to display bad results on uncontrolled environments. When manually analyzing the clusters,

it is also noted that noise images, i.e. with no faces at all, also constitute clusters on their own.

These noise clusters are difficult to eliminate, as their images already passed the face detector and

hence present some degree of ‘‘faceness’’. Nonetheless, no person will ever be recognized in the

future based on these clusters as they are clearly not human, and will not match a human face
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weight vector in the trained face space. From the results of the three scenarios, the value for ε that

seems to display the most coherent and noise free results, while still capable of clustering a high

percentage of the total faces is ε = 2000, and so it is set as the default value for the system.

5.2.3 Maximum Grid Margin

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (5.5)

d(m) =
√
nm2 ↔ d(m) = m

√
n↔ m =

d(m)√
n

(5.6)

After settling with an ε, the goal is to find a margin valuem that, given the number of dimensions

n of the face space, results in a maximum distance slightly above ε when the two points are at

distance m from each other in every dimension. Given that the Euclidean distance between two

points p and q is calculated with equation 5.5, it is possible to set every (px − qx) = m and use

equation 5.6 to find the theoretical exact value for m which has the highest probability of fetching

all the faces within range of the test face. Using the actual values of the system with n = 20

dimensions and a distance d(m) = ε = 2000, the best m would be 447.21. However, to increase the

likelihood of a successful classification m is set to 500, leading to a maximum distance of 2236.07.

Finally, please do note that it is possible for two faces from the same person to present a large

distance in one dimension which is balanced by a small value in another dimension, leading to a

distance smaller than ε. Arguably, this is not a desirable condition for the system, as it means that

it is dealing with a distant edge face which has a higher possibility of being noise or from a different

person, on top of the inconsistent variance between two or more dimensions that can cause this

scenario.

Summary

The purpose of this Chapter is to validate the proposed architecture, testing it under different

scenarios and observe its behavior. It starts by a description of the test environment and the pre-

existing conditions that affect the different scenarios analyzed. It continues with an evaluation of the

raw performance of the system by testing with small and large videos under different perspectives:

cloud state, number of slaves per job and number of concurrent job, followed by a simple evaluation

of the face recognition module and the usage of clustering and grid strategy.
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6Conclusions
This chapter aims to wrap-up this work by discussing the obtained results and the strengths

and weaknesses of the presented solution identified during the development and their importance

on the usage of this system in the real-world. Also, this document presented a working solution

for the problem stated in Chapter 1, but it can, nonetheless, be further improved and extended to

include more features.

6.1 Discussion

On Chapter 5 the system was evaluated in a variety of scenarios which have shown its overall

good response to heavy load and the advantages of using such a solution. Given the system design

and the obtained results, the following two lists summarize the main strengths and weaknesses of

using FaceID-Cloud:

Strengths

• Automatic sizing of the system based

on load, which is important in a pay-

as-you-go model aimed for the cloud

• Horizontally scalable, leveraging the

Cloud Computing inherent scalability

together with an independence between

tasks

• Database search scope limitation based

on a grid strategy together with the us-

age of client caching that accelerate the

identification of faces

• Capability of adding new unknown

people to the database without human

intervention with reduced noise levels

due to the usage of DBSCAN (always

depending on the quality of the videos)

Weaknesses

• Network bandwidth is an important

bottleneck in the system due to the

high throughput needed to transfer

video material

• On large and/or complex videos, the

steps to transfer, split and upload the

videos start to take more time than the

processing of the videos as the num-

ber of slaves increase, leading to an

efficiency drop due to the large non-

parallelizable portion

• As an automatic tool, it can wrongly

acknowledge noise or very bad quality

face images as real faces and add them

to a real person cluster in the database



The list of weaknesses presented is mostly composed of inherent problems to video processing,

namely the heavy load on the network and the time needed to transfer videos and prepare them to

be processed. The last item is more questionable, and is a result of the specific strategy applied in

the system. Noise is already a problem in clustering algorithms, even though DBSCAN deals well

with it and actively removes noise points from the dataset. However, the noise that might affect

FaceID-Cloud is on a different domain from that which DBSCAN operates, in the sense that noise

in FaceID-Cloud is an image that is not a human face, and not a point which is far apart from the

rest of the dataset. An example of this distinction is that DBSCAN might group a set of faceless

images and consider it a cluster (even though it is noise in the FaceID-Cloud domain), while a real

face image can be considered noise if it is located very far from other faces (a person appearing in

a single frame, though unlikely).

While a full ‘‘noise-cluster’’ is not a problem given that it will probably not match a person face

in the future, a noise image in the middle a real person cluster might get a noise image recognized

as humans. Of course, one could reduce the minimum distance of similarity ε and accept only sets

of faces which are deoitely very similar, but this would lead to less faces being recognized. In this

trade-off, the decision was made, as stated in Chapter 5, to pick the largest value for ε which did

not present intra-cluster noise. Another strategy to reduce the impact of this problem could be to

clean the clusters after they are formed. DBSCAN has no notion of a cluster centroid (the average

point), and it could prove interesting to mix this concept with this density-based cluster algorithm,

enabling the removal of faces which are the farthest from the centroid and possibly eliminating

intra-cluster noise.

Overall, it is the author’s opinion that the strengths greatly overcome the weaknesses and

that the system can perform solidly given a good network connection and a large installation of

HBase+HDFS dedicated virtual machines - the two main bottlenecks.

Future Work Despite being a sound design which can handle large workloads, the system monitor

can still become a bottleneck when acting as a middleman between web servers and the rest of the

system. This design simplifies load balancing and avoids keeping all system state in the database.

However, given the high scalability of the cloud and the total independence between jobs, it should

be possible to take this system to the next level and deploy more than one monitor instance at the

same time, each controlling part of the deployed virtual machines. This design could increase the

availability of the system and reduce the response times when deploying geographically near the

end-users.

Another area of improvement is on the client side and the access to the system. Currently,

only a basic web interface is provided with the implemented prototype, but given the on-going
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transition of computation to the cloud, the goal should be to provide access to the system through

smartphones and tablets which can upload videos for processing and search the videos a person is

part of.

Finally, the best improvement that could (probably) be made is to add a newer, more accurate

face recognition algorithm. Eigenfaces was chosen as an easy solution to provide a basic recognition

functionality, but it is surely not the best method today, so an effort should be made to integrate

a new method, which is facilitated by the modular decomposition of the system.

Final Thoughts on the System Application This system could be leveraged in some ways,

exploring essentially niche markets as a tool for companies with large video databases to build a

catalog of people appearing in both old and new videos, enriching their knowledge database and

allowing new features to be made available for end-users which were not possible 20 years ago. From

another perspective, FaceID-Cloud could be used by individuals to search for videos where a person

appears by providing a photo from their mobile device, leveraging the Cloud Computing paradigm.
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ATest Environment

The behavior of the system is, naturally, greatly dependent on the environment onto which it is

being deployed. At a high abstraction level, the system will always see the same predefined virtual

environment, with the same type of resources available to each type of virtual machine instance

which imposes limits on the application usage of memory or the number of virtual processors

available. Yet, it is the hardware and software beneath the cloud middleware that do make the

difference and set limits such as processor speed or network bandwidth. For this reason, three

layers of abstraction are specified: physical, middleware and application.

A.1 Physical Layer

All the test scenarios executed in this chapter were performed under the same physical hard-

ware conditions, with no other computation/network heavy resource other than the cloud platform

running at the same time. The cloud middleware was deployed into a 6 node cluster featuring Intel

Core i7-2600K @ 3.40GHz processors (quad-core with hyper-threading and two memory channels),

12GB of DDR3 RAM @ 1333MHz, 7200 RPM hard-disk drive, Gigabit ethernet network connecting

all nodes and Ubuntu Server 12.04.1 LTS 64bit installed.

Along with the hardware and operating system, other software was installed as well. The first

one is the hypervisor, needed for the cloud platform to run VM instances on the machine. Among

the ones supported by default by OpenNebula, KVM proved to be of easy installation on the system,

and was chosen for that reason. While functional, it does impose a limit of 1 VM deployment per

node at a time and contributes to the overall system performance. The second component which is

needed by the cloud platform is a distributed file system for virtual machine images to be shared

across nodes and accelerate the deployment process. As stated in Chapter 4, the Network File

System (NFS) was chosen to provide this functionality. It was setup in all nodes with root on

the image repository of OpenNebula for a seamless integration. It should not, however, make a

noticeable difference in the system performance, as most images used are predefined and do not

change overtime, so that NFS is not forced to constantly update an image in a node which is to

receive a new VM instance.



A.2 Middleware Layer

OpenNebula, the cloud platform chosen to use in the system, is deployed directly into the

hardware specified in the previous subsection with no modifications and/or tuning. As described

in section 4.1.2 of chapter 4, there are three services that must be configured to have a functional

cloud: VM scheduler, image repository and virtual network manager. Each of this components is

configured through the use of templates which contain information to instantiate the type of object

handled by the service, i.e. VM instances, images in the repository and virtual networks. Each

template specifies the virtual hardware that will be perceived by the FaceID-Cloud components,

such as the number of processors or the IP addresses available in the network. A list of the key

points of each template is now given:

• CPU: All VM instances use at most 1 virtual processing unit with the exception of masters,

who are allowed to use up to 2 virtual processing units to try to perform video splitting and

upload simultaneously

• Main memory: Database specific VM instances can use up to 2GB of RAM, while the rest

can only use 1GB. HBase is very dependent on RAM, and it is essential that nodes with region

servers do not start swaping, hence the extra memory allocated. On a real production system,

this number should be higher to account for the extra load, but on the test scenarios 2GB is

enough to cover all the system needs

• Disk image: There are three types of VM instances which use different pre-configured images

running a minimal version of Ubuntu Server 10.04.3 LTS 32bit:

– Web Application instances use an image (1.3 GB) with a tomcat server pre-installed and

loaded with the FaceID-Cloud front-end application

– Database instances use two types of images. One is shared by all database nodes and

is pre-configured with HDFS and HBase executables (1.1 GB), while the other is much

larger (maximum 10GB in the test enviroment) and specific to each node. This latter

type can be altered during the lifetime of the owner VM instance, serving as the main

storage site for HDFS data. There has to be a different image of this type for each

database node added

– All other components use the same base image (1.3 GB) loaded with all FaceID-Cloud

executables

Image sizes are specified, as they affect deployment times, but they do not represent the real

disk space available within, as the format QCOW2 is used which incrementally adds space as

needed and keeps the images small
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A.3 Application Layer

The majority of the test scenarios were run under the same system state, with some exceptions

existing when stated. The base scenario starts with all system areas except the Computation area

with their components instantiated. Both Web Interaction and Management areas have each a

single VM instance running the web app and the monitor respectively, with memory and cache

completely free from system data of previous jobs. The Storage area has 3 VM instances running

with HDFS and HBase deployed on them, but unlike the other areas the state is kept between tests.

This should affect region caching on main memory which could influence the results, so before a

round of tests the database is ”warmed” with a dummy job so that every test is run under the same

conditions.
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BAdditional Tables

Approach Sub-class Example systems

Holistic-based

Principal Component Analysis
Turk and Pentland(Turk & Pentland
1991)

Fisher’s Linear Discriminant
Belhumeur et al.(Belhumeur, Hes-
panha, & Kriegman 1997)

Linear Discriminant Analysis
Etemad and Chellappa(Etemad &
Chellappa 1997)

Independent Component Analy-
sis

Stewart et al.(Stewart, Lades, & Se-
jnowski 1998)

Evolutionary Pursuit
Liu and Wechsler(Liu & Wechsler
2000)

Feature-based

Purely Geometric Methods
Kanade(Kanade 1973); Cox et al.(Cox
& Yianilos 1996)

Dynamic Link Architecture
Wiskott et al.(Wiskott, Fellous,
Kuiger, & von der Malsburg 1997)

Hidden Markov Model
Nefian and Hayes(Nefian & Hayes III
1998)

Convolution Neural Network
Lawrence et al.(Lawrence, Giles, Tsoi,
& Back 1997)

Hybrid-based
Modular Eigenfaces

Pentland et al.(Pentland, Moghaddam,
& Starner 1994)

Probabilistic Decision Based
Neural Networks

Lin et al.(Lin, Kung, & Lin 1997)

Table B.1: Classification of Face Identification systems

Approach Example systems

Still-image methods
Turk and Pentland(Turk & Pentland 1991); Pentland et
al.(Pentland, Moghaddam, & Starner 1994); Lin et al.(Lin,
Kung, & Lin 1997)

Multimodal methods
Choudhury et al.(Choudhury, Clarkson, Jebara, & Pentland
1999)

Spatio-temporal methods Liu and Chen(Liu & Chen 2003)

Table B.2: Classification of Video Face Identification systems



Feature
Amazon Web
Services

Microsoft
Windows Azure

Google App
Engine

Eucalyptus OpenNebula

Computing Ar-
chitecture

Elastic re-
sources (EC2),
multiple in-
stance types op-
erating systems
and software
packages; elastic
IPs; availability
zones; auto-
matic load
balancing

Automatic man-
agement of VM
instances and
load balancing

Automatic scal-
ing and load
balancing; task
queues

Cloud requests
serviced asyn-
chronously;
elastic IPs;
automatic scal-
ing and load
balancing

Dynamic re-
sizing and
partitioning;
centralized
management;
utilizes existing
heterogeneous
resources

Service Model IaaS; PaaS PaaS PaaS IaaS IaaS

Deployment Model
Public; Virtual
Private Cloud

Public; Hybrid Public; Virtual
Private Cloud

Public; Private;
Hybrid; Com-
munity

Public; Private;
Hybrid

Virtualization
Technology

Xen
Windows Azure
Hypervisor
(Hyper-V)

No hypervisor

Hypervisor-
agnostic archi-
tecture (Xen,
KVM com-
patibe at the
moment)

Hypervisor-
agnostic archi-
tecture (Xen,
KVM and
VMare com-
patible at the
moment)

Storage System

”Bulk”
storage (S3);
query-capable
non-relational
database
(SimpleDB)

Blobs, Tables,
SQL Azure

BigTable
Walrus (S3 com-
patible)

SQLite; sup-
ports most
file systems
through textual
configuration
files

API SOAP; REST
Windows Azure
Service Manage-
ment API

APIs provided
for main ser-
vices (e.g.
datastore)

AWS-
compatible

XML-RPC;
EC2 Query
subset; OGF
OCCI

Programming
Model

Amazon Ma-
chine Images;
Amazon Elastic
MapReduce

Windows Azure
Hosted Services
Application
Model

Google App En-
gine SDK

Unknown Unknown

Service Level
Agreement

99.95% uptime,
client elegible to
Service Credit
otherwise

99.95% uptime
for two or more
instances in dif-
ferent domains,
99.9% for all
other services

Up to 99.95%
uptime with
different client
Financial Credit
compensations

Best-effort basis
only on commu-
nity deployment

Not applicable
(open-source)

Pricing

Per hour (com-
putation); per
GB (network,
storage)

Per instance
(computation);
per GB (net-
work, storage);
6-month plans

Per hour (com-
putation); Per
GB (network,
storage); per
operation count
(datastore)

Not applicable Not applicable

Security

Firewall be-
tween instance
groups; VPC;
identity and
access manage-
ment; security
groups

Confidentiality,
integrity, avail-
ability, account-
ability

Multi-layered
security strat-
egy; multiple
levels of data
storage, access,
and transfer

Similar to EC2,
except VPC

Auth subsystem
for users and
groups

Component Cou-
pling

High coupling
(e.g. EC2 / S3)

High coupling

Access to some
services is code-
based (APIs),
so allows other
substitute com-
ponents in prin-
ciple (medium
coupling)

Substitute com-
ponents need to
implement Web
Services inter-
face (medium
coupling)

Low coupling;
in general,
substitute com-
ponents can be
attached with
minor effort

Table B.3a: Cloud Computing systems classification
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Feature Nimbus Flexiscale IBM Smart-
Cloud Services

Force.com OpenStack

Computing
Architecture

Fast-
propagation;
non-invasive
site-scheduler;
auto-
configurable
clusters

Highly auto-
mated and
rapid provision-
ing of resources;
allows multi-tier
architecture; de-
signed to deliver
a guaranteed
QoS level

Fast deployment
and dynamic
provisioning
of resources
accross het-
erogeneous
environments;
Integrated into
the IBM soft-
ware and hard-
ware ecosystem

Metadata-
driven software
architecture
enabling multi-
tenant sofware
applications

Shared-nothing
design; Multiple
network models;
Floating IPs;
Distributed
scheduler;
Asynchronous
architecture

Service Model
IaaS; some PaaS
features (Nim-
bus Platform)

IaaS
IaaS; PaaS;
SaaS

PaaS; SaaS IaaS

Deployment
Model

Private; Hybrid Public
Public; Private;
Hybrid; Virtual
Private Cloud

Public Public; Private

Virtualization
Technology

Xen; KVM Xen

Heterogenous
hypervisor sup-
port; POWER
Hypervisor

Unknown

Hypervisor-
agnostic
(Hyper-V, Cit-
rix XenServer,
Xen, KVM,
VMWare ESX,
LXC, QEMU,
UML

Storage Sys-
tem

Posix filesystem
backend storage
system

Virtual disks on
highly redun-
dant SAN disk
array

IBM Storwize;
IBM XIV; IBM
SONAS

Virtual rela-
tional database
structures

AoE over LVM;
S3 compatible;
Several supple-
mentary block
storage options
provided

API

WSRF; EC2
SOAP and
Query subset;
Cumulus

Extility (SOAP)
RESTful API;
Java API

SOAP
Openstack API;
EC2 and S3 sup-
port

Programming
Model

Nimbus Plat-
form

Unknown
IBM Smart-
Cloud Applica-
tion Services

Force.com Plat-
form

Unknown

Service Level
Agreement

Not applicable
(open-source)

100% uptime,
client credit if
not achieved

Up to 99.9% up-
time

99.9% uptime
Not applicable
(open-source)

Pricing Not applicable
Unit pricing sys-
tem for all ser-
vices

Per hour (com-
putation); per
GB (network,
storage)

Applications
per user per
month

Not Applicable

Security
X509 Creden-
tials; group
policies

Port based
firewall; VLANs
and private
virtual disks

Firewall; IP-
filtering; VPN;
patched and
scanned images;
hypervisor iso-
lation; access
control

Access control
(digital and
physical); fire-
wall and edge
routers; intru-
sion detection
sensors; third
party scan of
the network

Rate limiting
and autentica-
tion; Security
Groups; Role
Based Access
Control; Feder-
ated Auth with
Zones

Component
Coupling

Low coupling;
new compo-
nents easily
integrated

High coupling High coupling High coupling

Low coupling;
Modular design
can integrate
with legacy
or third-party
technologies

Table B.3b: Cloud Computing systems classification
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