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Resumo 

A importância da computação paralela e distribuida tem crescido nos 

ultimos anos e a quantidade de tráfego em redes peer-to-peer tem 

aumentado continuamente. Os métodos que estas aplicações usam 

para manter a escalabilidade e atingir os seus objectivos podem ser 

usados para melhorar a performance dos actuais sistemas baseados 

em grids  de forma a facilitar a criação e manutenção de clusters 

virtuais dinâmicos, permitindo que estes possam atingir tamanhos 

superiores ou funcionar de forma mais eficiente. Pretendemos 

basear-nos nos pontos fortes dos sistemas peer-to-peer de forma a 

criar um sistema capaz de dinâmicamente criar ou ajustar clusters 

virtuais para a execução de aplicações distribuidas, permitindo dessa 

forma uma maior disponibilidade destes mesmos clusters e ao 

mesmo tempo diminuir os recursos computacionais desperdiçados. 

Palavras-chave: Peer-to-peer, Grid computing, Virtual clusters, 

Cycle-sharing
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Abstract 

The importance of cycle-sharing and distributed computing has 

grown in the past years and the amount of internet traffic over peer-

to-peer networks is increasing. The methods that peer-to-peer 

applications use to maintain scalability and perform their goals can 

be used to improve upon current grid systems to facilitate the 

creation and maintenance of dynamic virtual clusters allowing them 

to grow further or perform better. We intend to draw upon the 

strengths of peer-to and grid systems to create a system capable of 

dynamically creating or adjusting virtual clusters for the execution of 

distributed applications, thus allowing for higher cluster availability as 

well as lessen the wasted computational resources.

Keywords: Peer-to-peer, Grid computing, Virtual clusters, 

Cycle-sharing
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 1 Introduction

In  the  ever-evolving  modern  world,  one  of  the  few  constant  facts  of  the 

computer industry has been growth. This growth manifests itself both in terms of 

computationally more demanding applications as well as a higher availability of 

computational resources. 

One would think these patterns of growth would neatly overlap, yet that is not 

so. A high amount of computer cycles are being wasted at all times all over the 

world, and yet, at the same time there are applications that have a strict demand 

for computational power that requires more than a simple computer's effort to 

satisfy.

Over  the past  20  or  so  years,  several  approaches to  this  problem have been 

created.  Initially  most  heavy  computational  processes  were  handled  by 

supercomputers  and  mainframes,  but  this  solution  was  both  expensive  and 

inherently generated inefficiency.

With the passing of  time the concept of  a computational  cluster became the 

norm. A group of machines, similar both in hardware and software specifications, 

but  also  connected  by  high-throughput  and  high-availability  networks,  solely 

dedicated to the solving of a common problem through the usage of distributed 

and shared computing mechanisms.
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 1.1 Current Shortcomings 

However, while locally capable of providing for the needs of any entity requiring 

such form of computational power, the several existing approaches still failed to 

provide a solution except for the most wealthy and stable of companies[9]. The 

common user was still without a solution, the vast resources of the internet were 

still not being used, and above all, there was still a high amount of computational 

power that was wasted, not only during idle times in computer clusters, but also 

in  the  raw  untapped  power  of  millions  of  personal  computers  and  other 

computational devices (such as the ever popular portable cellphones, hand-held 

devices, etc.) all over the world connected to the internet[26].

Several partial solutions appeared with the passing of time, each focusing on a 

certain approach and method to solve the challenges required to implement a 

platform that  would both maximize computational  power  available  as well  as 

minimize resource waste. 

The concept of distributed and parallel computing itself is one of the interesting 

points  that  evolved alongside the clustering paradigm. Cycle-sharing and Grid 

computing are different approaches to this concept, each with their own goals 

and constraints. These constraints that still prevent the public from having access 

to proper clustering tools. In a way, public computing and computer clusters are 

still like two islands in a sea, totally separate, due to the lack of tools to overcome 

such constraints. Should a tool arise that could allow for the dynamic creation 

and alteration of clusters based on a peer-to-peer network, we could finally reach 

the goal of allowing the computational power of clusters to the general public. 
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 1.2 Objectives

Our goal is to design a system based on a public, peer-to-peer overlay network of 

nodes representing computers offering or needing resources that can on a per-

request  basis  locate a list  of  the best  candidates  for  the creation of  a virtual 

cluster from the nodes present in  the network.  With this  list  we will  make a 

choice of the exact machines that will be part of the cluster and finally create the 

cluster itself, always maintaining the capability of adjusting its size or members. 

This system must be able to:

• Allow  the  soft  and  controlled  entrance  and  exit  of  nodes  from  the 

network.

• Locate resources in useful time, ensuring that if a resource exists, it can 

be found

• Take into consideration each machine's specifications including CPU type, 

clock speed, core availability as well as available bandwidth

• Allow each request to specify QoS1-level metrics to refine the search and 

provide the best candidates for a cluster.

• Be capable of finding a cluster of the appropriate size and specifications 

to meet the needs of the request

• Maintain  a  high  level  of  scalability  and  reduced  bottlenecks/points  of 

failure.

• Create and maintain a cluster from heterogeneous machines if necessary

• Initiate a cluster dynamically, at request execution time

1 Quality-of-service
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In order to do this, we will create an approach that involves both a P2P2-based 

protocol  for  resource  discovery,  a  P2P-based  node  handling  system  and  an 

application  for  the  deployment  of  the  code  to  be  executed  on  the  recently 

created virtual cluster.

This will solve the major issues highlighted in the previous section, our approach 

will perform such tasks in an efficient way, making use of resources located not 

only in fixed, easy to access networks but mainly via perishable networks like the 

internet. We will present a system that allows a user to share local resources, set 

up  QOS  levels  in  several  aspects  in  order  to  locate  a  machine  or  group  of 

machines currently available that best fits the execution of an application as well 

as actually relaying the execution of the application in that machine or virtual 

cluster.

To achieve this, there are three main problems to solve. The first of those lies 

with  the  nature  of  the  network  wherein  we  will  locate  our  resources.  The 

internet  is  not  without  fails  and  faults,  and  even  though  its  reliability  (and 

availability) has greatly increased in the past years, we cannot assume a node 

present at a time to be available at another time. 

Our system must be able to allow a node to make itself known and announce its 

available  resources  without  generating  an  exponential  amount of  control 

messages in order to ensure a capacity for scaling.

The second issue is directly linked with the first one. Our protocol must be able to 

locate resources that have been announced that fit the criteria defined in the 

QoS specifications. The same care must be shown in order to avoid flooding the 

network, but also we have to pay attention to the amount of time spent locating 

the  “perfect”  resources  (that  match the  request's  specifications  exactly),  and 

whether locating them is feasible.

2 Peer-to-peer
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The third and final issue appears once we have obtained a list of candidates for 

execution of the required application. From that list, we will have to choose a 

machine or group of machines that can better satisfy the QoS requirements and 

start a virtual cluster for the execution of the code. Those resources will have to 

be reserved, execute the code, the results of the execution must be gathered and 

assembled and then the resources should be freed, to be reused. This can be 

achieved by using an appropriate tool (like a small applet or virtual appliance) 

that is dynamically deployed onto the machines of the selected nodes.

In further detail, our resource-discovery protocol will be based on a structured 

peer-to-peer approach and will be oriented towards locating machines that can, 

either partially or fully, satisfy the QoS-level metrics presented by the request. 

These metrics can include characteristics such as the machines' number of CPUs, 

their  CPU  availability,  available  RAM,  storage  space,  network  latency  and/or 

bandwidth available, among others.

The system we will design for handling the entrance, exit and maintenance of 

nodes in the network will be based in a peer-to-peer approach to ensure a low 

amount of overhead generated by control messages. It will have to maintain the 

data on resources, node availability and characteristics in order to sustain the 

node network's health as well as feed the resource discovery protocol.

Finally,  the  prototype  application  will  both  serve  to  deploy  the  code  to  be 

executed onto the target dynamically created cluster and provide an interface for 

the use of our proposed system.

This work was carried out within the scope and partially supported by national 

funds  through  FCT  –  Fundação  para  a  Ciência  e  a  Tecnologia,  under  projects 

PTDC/EIA-EIA/102250/2008 and PEst-OE/EEI/LA0021/2011.
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 1.3 Document Structure 

We have discussed the objectives of our own approach in Section  1.1 A global 

analysis of previous approaches will be presented in Chapter 2. Such analysis will 

be  accompanied  by  a  brief evaluation  and  analysis  of  a  few  strengths  and 

weaknesses of such approaches, what they are lacking and where they succeed. 

Chapter 3 contains the description of our implementation and how we overcome 

the difficulties of our approach while capitalizing on the strengths of our program 

to solve the two major issues ahead of us. We evaluate the system implemented 

in  Chapter  4 through several  methods,  analyzing its  practical  results  and both 

comparing it against our own expectations as well as some other already existing 

systems.  This  document  wraps  up  with  Chapter  5 where  we  present  a  short 

reflection of the results of our labor and the impact the solution could have in the 

current computing environments. 
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 2 Related Work

Isaac  Newton once said  “If  I  have seen further  it  is  only  by standing  on the 

shoulders of  giants.“  and we are in  the same position.  Our work is  based on 

gradual evolution in the field, both in the academic world and in the computer 

industry. In this chapter we will describe the evolution in two main fields within 

which our work is based. The first one is regarding resource discovery in peer-to-

peer/grid  networks  while  the  second one relates  to  the  creation  of  dynamic 

clusters itself.

The following subsections contain an analysis of the origin and evolution of those 

technologies, as well a analyze why they succeeded and failed.

 2.1 Peer-to-Peer

Peer to peer (or more commonly P2P) is a concept where resources are shared 

among several  nodes  in  a  network,  be  those  resources  tasks,  information  or 

storage.  The  networks  based  on  this  concept  can  be  both  structured  and 

unstructured. We will first give an example of unstructured ones.

These systems share responsibilities amongst the nodes and allow for far greater 

resource  availability  than  existed  in  previous  single-point  or  centralized 

approaches.

A peer to peer system is characterized by its level of decentralization, which is 

how distant from the ideal that all nodes in the network are equal. This affects 

not only the homogeneity of the nodes in the network but also the degree of 

scalability and performance issues that might arise.
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Another important point in these systems is resource discovery, or the method 

for  which  a  node  discovers  other  nodes/resources  in  nodes.  This  can  greatly 

affect the performance of a system, to the point of actually making it unusable in 

practice.

One issue concerning these systems is the joining and leaving of nodes from the 

network. This is directly tied to its level of decentralization, but is independent 

enough  that  merits  mentioning.  Although  it  has  only  a  partial  impact  on 

scalability,  it  can  greatly  hinder  the  performance  of  a  system if  not  handled 

correctly.

 2.1.1 Unstructured P2P

This  concept  was  first  made  famous  by  the  application  Napster  that  quickly 

accrued upwards of 80 million files shared between 1999 and 2001[27]. Napster, 

however, is unlike more modern P2P implementations in the fact that it was a not 

a  fully  decentralized  technology,  using  superservers  to  direct  and  control 

entrance  into  the  network,  resource  discovery  and  node  publication,  among 

other tasks. 

Napster

Napster  uses  in  fact  a  Hybrid  Decentralized  Architecture[5] which  uses  the 

aforementioned superserver in addition to normal peer nodes in a network. This 

particular feature is one of the weaknesses of this type of approach offering an 

individual point where failure or fault greatly compromises the P2P network, as 

well as offering a bottleneck that can greatly affect scalability of the system.
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This approach in fact limits one of the strong points of P2P systems: scalability. 

More modern approaches use one of two different P2P types, which vary exactly 

in the equality of peers within the network. A Partially Centralized Architecture[5]

[12], such as the one used by the FastTrack protocol (as used in KaZaa or ED2K 

based systems[15])  is  based on the existence of  some peers  that  accumulate 

more responsibility than that  of  the usual  client,  and thus also have tasks  of 

control and organization of the network.

FastTrack

 Unlike  Napster's  approach,  the  lack  of  a  central  server  means  there  is  no 

bottleneck,  and the tolerance for fails  and faults  is  much higher.  The sudden 

absence of one of these superpeers does not compromise the network. If it is 

necessary, a new superpeer can be elected to take the place of the previous one, 

or in some cases another already existing superpeer can take over for the absent 

one. In any case, these peers are required to present certain characteristics in 

order to be promoted to a superpeer, both in terms of computational power as 

well as bandwidth available to them. 

The final type of P2P system is the Purely Decentralized Architecture[12][1]. This 

system presents true equality among peers, not using superpeers or centralized 

servers. For a new node to join a network of this type, he simply needs to know 

the  address  of  a  node  already  in  the  network,  and  the  system  itself 

accommodates for the new node and spreads the information of its existence. 

While this may seem to offer less bottlenecks than the previous two types, there 

is an issue with resource discovery. 
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Due to the lack of nodes with the responsibility of containing information on the 

resources present in the network, a much higher amount of control messages 

might be required in the system. 

Traditionally the spreading and discovery of resources was handled by flooding 

the network. The evolution of these systems started using other methods such as 

random  walks  [20] and  Distributed  Hash  Tables[17][11] (as  seen  in  the 

Bittorrent[23] protocol  and several  of  the  structured networks  present  in  the 

following subsection 2.3. )

 2.1.2 Structured P2P

Unlike  the peer  to  peer  based systems described in  the previous  subsection, 

structured peer to peer architectures use a rigid organization to govern the nodes 

within the network. This well-defined structure allows some knowledge over the 

nodes to be passed onto their  itself as well as both ensure that resource locating 

algorithms do not flood the network and that if a resource exists, it is found in a 

well-known and predictable number of steps[14]. 

Examples  of  systems  that  use  a  structured  peer  to  peer  approach  are  for 

example,  Chord [8] and CAN [4]. There are some systems such as Pastry [19] and 

Kademlia [16] that use portions of both unstructured and structured systems, but 

in their essence function as structured approaches. The great advantage these 

approaches have over an unstructured approach is the control over node joining 

and content  that lies within the node structure, ensuring both a lower amount of 

control messages as well as faster (or at least more certain) searches.

11



Chord

Chord was one of the first structured peer to peer systems, developed at MIT, 

and uses a Distributed Hash Table to store pairs of keys and values. Each node 

stores all values for any keys he is responsible for, and the system enforces how 

each key is given to each node. 

Resource discovery in Chord takes two steps: first you locate the node that is 

responsible for the key, then you locate the key (and appropriate value) in such a 

node.  Like  many  structured approaches of  this  type,  the  nodes  in  Chord  are 

structured  in  a  figurative  directed  circle.  Each  node  has  another  node  as  a 

successor and one as a predecessor in the circle. 

In order for chord to function, the system uses a consistent-hashing system to 

generate a unique identifier with a length of N bits. The maximum number of 

nodes in a Chord circle is 2n nodes, and each of these is responsible for a number 

of keys equal to the total number of keys divided by the number of nodes. 

To ensure safe departure from the network, each node has not only information 

of its successor, but also information on a few of the following nodes, ensuring 

that the circle is not broken upon network or node failure. Whenever a new node 

joins the network, the responsibility of each node is recalculated to ensure an 

even distribution of keys.
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CAN

CAN (short for Content Addressable Network) is another DHT-based structured 

P2P system. Unlike chord, the nodes are not sorted in a circular fashion. CAN 

interprets the node space as a N-Dimensional axial system. 

Nodes are assigned coordinates as if they were a point in the axial system and 

each node is assigned a partition of the total dimension that the node becomes 

responsible for. 

Each node contains a list of its neighbor nodes as well as their IP addresses and 

maintains this information in a routing table of sorts. Also unlike Chord, a node's 

entrance into the network causes not a calibration of the whole weight, but only 

a split in one of the spaces assigned to a node. The new node contacts a node 

already present in the network and discovers a node (either by picking random 

coordinates in the system) that is responsible for a certain amount of space. That 

node splits his space into two between itself and the new node, and informs the 

neighboring  nodes  of  the  new  responsibilities.  The  information  is  then 

propagated across the network. 

This small change causes a much smaller amount of overhead (when compared 

to Chord) in networks with high amounts of nodes and keys, but conversely does 

not guarantee that the keys are evenly distributed as Chord does. 

The process for a node's departure from the network is more complex. There has 

to  be a  control  mechanism that  periodically  probes  the nodes  for  livelihood. 

Once a  node leaves the network, its space is merged with one of its neighbor 

nodes  and  that  information  is  once  again  propagated  to  the  merged  node's 

neighbors and the network. 
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To  ensure  that  the  routing  protocol  in  CAN  is  obeyed,  the  choice  of  which 

neighbor gets the responsibility over the space previously assigned to the node 

that left follows strict rules regarding the shape of the final space. If no merge is 

possible,  then  the  neighbor  node  with  the  smallest  space  is  assigned 

responsibility over the departed node's space as well. 

The actual  of a resource is handled based on the resource's coordinates in the 

axial system. From any node, you simply move the request onto the neighboring 

node that is in the direction of the resource's , and the request moves forward in 

this fashion until the  is finally reached.

Pastry

Pastry is in many ways similar to Chord. Nodes are also arranged in a circle, and 

the system also uses a Dynamic Hash Table to store key-value pairs. The main 

difference between the two are the Ids that each system handles. 

Pastry uses a 128-bit ID setup that represents a position in the circle. Node IDs 

are assigned at random and on top of the circular node setting pastry uses an 

external  routing overlay network.  This  overlay maintains  information on node 

“proximity” (be it through the existence of a low amount of hops between them, 

low latency, etc) in a list of neighbor nodes. 
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Each node also maintains a list of leaf nodes which are the closest nodes to itself 

in terms of node ID, totally disregarding the metric. The routing list basically looks 

at each 128 bit key as a length of digits or characters as if it were a string, and 

sets farther nodes (in terms of the metric) to strings that have only 1 of the digits 

or characters in common to it, while nodes “closer” might share more characters 

in common. For example, given a node with key ABCD, the node FGHD is farther 

away than the node CBCD. 

The actual routing of a message takes multiple steps. If a node wants to send a 

message to a certain key, that node sends it directly to that space. The node with 

the ID closest to it on the circle then scans its leaf nodes to check for the key 

being present there. Should it be there, the message is delivered. Should the key 

be absent, the node's routing table is consulted to attempt to find a node with 

the a longer string in common with the target key. 

This structure allows real life constraints such as bandwidth and round trip times 

to determine proximity in nodes, which can greatly increase the performance of 

such a system.

Kademlia

Kademlia[16], like Chord and Pastry before it, also uses a Dynamic Hash Table, 

but in this case the hashing is directly tied to the IDs of the nodes. In a Kademlia 

network,  resource location is an iterative, gradual approach. Every step of this 

process  attempts  to  find  “closer”  nodes  to  the  target  key,  and  proximity  is 

determined by a simple hashing of node IDs. 
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Each of these steps ensures that either a better match is found, or that either the 

node  is  absent  or  that  we've  found  the  key  being  procured.  Another  large 

differentiating feature in Kademlia is that the distance of nodes is kept in lists by 

each node. There is one list for each bit in the node ID, so if there were 32 bits in 

such an id, there would be 32 lists kept in each node. The first one contains the 

nodes farthest  away  from this  one,  and  each  subsequent  list  contains  nodes 

closer.  These lists are updated as nodes are encountered, which generates a very 

low overhead and keeps the routing list fresh.

For ease of reference, we will provide a comparison table between the systems 

described above, containing a few of the main characteristics of each. 

We define overhead in this table as the amount of control and system messages 

necessary  to  maintain  the  correct  state  of  the  system,  its  nodes  and  the 

resources  available.  Ideally  in  a  single-machine  system,  these  are  nearly 

nonexistent.  The  lower   the  overhead  resulting  from  these  messages,  the 

smoother the system scales with a growing number of nodes. 

This is a defining point of any system, as it can determine the capability of our 

system  to  accompany  a  large  growth  in  the  number  of  nodes.  The  control 

messages usually stem from resource  requests and finds, file transfers, among 

others.

Also, when referring to “servers”, these are specialized machines, not selected 

from normal nodes, and multiple in number, as opposite to super-peers which 

can sometimes be drawn from the normal node pool. These specialized machines 

are  centralized  in  fashion and predetermined  by  the  system itself  before  the 

network overlay is established.
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Name P2P type Level of 

Decentralizat

ion

Resource Types of 

nodes

Overhead

Napster[27] Unstructured 

Hybrid 

decentralized

Central 

Server

Server-

side

Peers, 

server

Small

Direct 

Connect

Unstructured 

Hybrid 

decentralized

Servers Server-

side

Peers, 

servers

Medium

Kazaa Unstructured 

Partially 

Decentralized

Super-peers Super-

peer 

controlled 

flood

Peers, 

super-

peers

Large

Edonkey[15] Unstructured 

Partially 

Decentralized

Super-peers Super-

peer 

controlled 

flood

Peers, 

super-

peers

Large

Freenet Unstructured 

partially 

decentralized

Super-peers Super-

peer 

controlled 

flood

Peers, 

super-

peers

Large

Gnutella Unstructured 

partially 

decentralized

Super-peers Super-

peer 

controlled 

flood

Peers, 

super-

peers

Large

Ares Unstructured 

partially 

decentralized

Super-peers Super-

peer 

controlled 

flood

Peers, 

super-

peers

Large

Chord[8] Structured Fully 

Decentralized

2-step 

search by 

nodeID 

and key

Peers Medium
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CAN[4] Structured Fully 

Decentralized

Routing by 

neighbor 

peers

Peers Small

Pastry[19] Structured Fully 

Decentralized

Peer 

overlay 

and 

nodeID 

Peers Small

Kademlia[16] Structured Fully 

Decentralized

Iterative 

list search

Peers Small

 2.2 Grid systems

Grid  computing  is  the  process  of  using  computer  resources  from  disparate 

locations and architectures to join together in order to overcome a non-trivial 

computational  challenge[33].  It  is  somewhat  related  to  traditional  computer 

clusters  in  the  sense  that  it  uses  several  machines  to  solve  a  computational 

problem, but the similarities end there. 

Grid computing utilizes resources spread throughout several organizations and/or 

individuals instead of all belonging to the same organization. In addition to this, 

machines in a grid system are not required to have similar specifications, which is 

common in cluster systems[3].

In fact, the most common tools at the disposal of a Grid System are physically and 

geographically distant computers joining together in a loosely coupled way over 

networks that span from LANs, to WANs, to the internet itself. By harnessing the 

collective  power  of  these  machines,  one  can  create  virtual  supercomputers 

capable of handling much more complex tasks.
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The immediate comparison to traditional cluster systems shows pros and cons on 

both  sides.  The  typical  cluster  system  can  take  a  greater  advantage  of  the 

machines  at  its  disposal,  but  requires  a  large  investment  in  planning  and 

hardware.  Cluster  systems  by  definition  may  are  only  limited  the  machines 

available and the network connecting them, but can join together a much larger 

amount of machines and thus derive more computational power from them.

One  of  the  more  modern  details  regarding  Grid  systems  is  the  usage  of 

established middleware to deploy (and possibly partition) or integrate with the 

code  to  be  executed  among  the  machines  that  will  perform  that  task,  thus 

reducing the system's need to focus on that point.

In its essence, a Grid System is a type of distributed computing, or more precisely 

a type of parallel computing that uses whole machines it has low direct physical 

control over, connected through networks that the system also has low control 

over.  The following table will show a small comparison over the three types of 

systems mentioned above.

Supercomputer Computer cluster Grid system

Number of 

machines

1 Many Many

Machine specs
Several similar 

processors

Several similar 

machines

Many different 

machines

Connection type High speed bus Reliable LAN/WAN LAN/WAN/Internet

Machine owner
Single organization Single organization Single organization 

or Multiple owners

Owner investment High investment High investment Low to high 

19



investment

Performance 

potential

High High Average to very 

high

Duration of service Long term Long term Task oriented

Overhead Nearly nonexistent Small Medium

Resource wasting Idle periods Idle periods Very small

Grid systems as a whole have been used in the solving of several computationally 

intensive problems in several ares of science and academics, from the discovery 

of  new  medicine  and  drugs  to  the  execution  of  complex  mathematical 

calculations. 

One of the advantages of this approach is that the individual machines that form 

the grid can be purchased independently of each other, on a per-need basis, and 

later  be  used in  the  virtual  supercomputer  created by the  grid.  The  obvious 

advantage here lies with the low initial cost and investment if the requirements 

are not too extreme. [25]

Many small companies requiring higher computational power were for several 

years barred from attaining it due to the steep initial investment costs inherent to 

the acquisition of  a  supercomputer or  the creation of  a cluster.  Grid  systems 

present themselves as the cost-effective solution as well as having the potential 

for very high computational performance.

However, not all is advantageous when it comes to Grids. Due to the very nature 

of the machines involved, individual nodes cannot be relied upon as machines in 

a  cluster can.  Not only  can the nodes themselves  be unreliable,  the network 

connecting them may present failures as well. To prevent compromising the job 

being done, the system must apply strict measures to prevent a single machine's 
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failure or absence from critically affecting a job that is underway.

A certain type of distributed computing that is a particular form of grid systems is 

what  is  called  Cycle-scavenging[7] (sometimes  called  cycle-stealing  or  public 

computing). This  is what is behind the many well-known volunteer computing 

programs like  Folding@home and Seti@home.  The latter  one has  in  the past 

years  changed  its  system  to  use  BOINC,  one  of  the  several  grid-oriented 

middleware applications available.

The  applications  using  cycle-scavenging  are  typically  installed  in  a  voluntary 

fashion by the machine's owner and run when the computer itself is idle. There is 

little  cost  to  the  machine's  owner,  and  these  applications  serve  purposes  of 

general interest. The main goal of reducing idle times in computers is achieved by 

these applications, but still the goal of allowing supercomputing to be accessible 

to the general public is still unsatisfied.

However, grid  computing is  becoming  more  mainstream  than  simple  cycle-

scavenging programs. CERN has become a great proponent of Grid systems and 

there  are  several  initiatives  throughout  Europe  that  aim  to  further  the  Grid 

system's evolution.

We will now present a more closer look at some examples of systems using grid 

technologies as well as cycle-scavenging/public computing.

MPI

Message Parsing Interface is a protocol specification designed to allow computer 

processes to communicate with each other. It was first announced in draft form 

in 1994 and aimed at being used in distributed and parallel computing in systems 

where the costs for accessing remote memory are too high[29] due to the way 

they are connected.
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It  is  easy  to  see  the  importance  such  a  protocol  can  have  in  distributed 

computing systems like clusters and grids, and the impact MPI had can quickly be 

seen in the fact that even though it is not considered a standard, it has all but 

become a de facto one in today's parallel and distributed computing world, being 

used in large amount of the appropriate systems.

Being only a specification, MPI allows several implementations to exist, in several 

programming languages as well as having two different versions, with different 

scopes. MPI-1.2 (commonly shortened to MPI-1) is more focused on the actual 

message  passing  while  MPI-2  also  includes  parallel  I/O,  dynamic  process 

management and remote memory operations[28]. 

MPI-1 focuses mostly on topology, communication and synchronization between 

processes. It  achieves this by using unique objects and concepts (e.g.  process 

barriers)  for  each specialized situation,  from using “communicator” objects to 

handle multiple processes to mechanisms aimed at passing a message from a 

particular  process  to  another  (or  broadcasting it  to  all  other).  It  also  defines 

specific data types for usage with the specification. 

Globus

The Globus toolkit[13] is a set of open source tools for the creation of computing 

grids. It was developed from 1995 onwards by an international association that 

eventually came to form the Globus Alliance in 2003.
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It  has  a  specialized  tool  for  resource  management  called  GRAM[2] (Globus 

Resource   Al  and  Management  protocol).  GRAM  can  handle  most  basic  job-

related  functions  as  well  as  more  advanced  functions  such  as  managing 

credentials and monitoring the status of resources.  GRAM receives a job as a 

single submission directed at a single computational resource and can provide 

not only input files but also output files for the result.

For the management of credentials and security, Globus uses a tool called GSI 

(Grid  Security  Interface).  GSI  ensures  that  data  is  not  tampered with,  can  be 

authenticated and is read only by those that have a responsibility with it. Within 

the Globus toolkit a legacy tool called MDS-2 (Monitoring and Discovery Services) 

for the monitoring of computer resources in the grid, but support for this tool is 

scheduled to be stopped and the tool removed from the kit.

Condor

Condor[10] is  a  software  framework  for  distributed  computing  aimed  at 

distributing the workload over a dedicated cluster of computers, but may also be 

used to draw unused computer cycles from idle machines. It was developed in 

the  University  of  Wisconsin  in  Madison  as  a  means  to  tackle  the  problems 

inherent to distributed computing. 

One of Condor's advantages is the seamless integration of heterogeneous and 

disparate  resources,  from clusters  to  regular  desktop  computers.  This  in  part 

derives from the developer's  strong focus in  the philosophy of  flexibility as a 

requirement for a system of this type.

The  Condor  system  uses  a  component  called  Condor-G  as  an  interface  to 

communicate with Grid resources (and also Cloud resources). Its name derives 

from that of  Globus (mentioned further in this document) which was the Grid 

creation method Condor used at first.
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Condor supports the MPI specification but also has a proprietary library called 

Master Worker. MW is aimed at tasks that require a substantially higher degree 

of parallelism. 

Boinc

Boinc is a Grid middleware application developed in the Berkeley University of 

California in 20022. its original goal was as a platform to support Seti@home but 

it quickly outgrew that goal and started being used in a more widespread fashion 

around the world.  According to statistics publicized monthly, the Boinc-powered 

virtual  supercomputer  has  risen  above  4  000  Tera  flops  (average)  of 

computational power3, spread out over more than 20 different projects. 

This is more than twice the fastest supercomputer available at the time of writing 

this document (the Jaguar-Cray XT5 HE, at approximately 1750 Tera flops4), which 

is a number that not only proves the efficiency and potential of Grids, it  also 

shows their rapid exponential growth, reaching this peak in only 6 years. 

If  we  consider  peaks  of  performance  instead  of  averages,  the  Boinc  virtual 

supercomputer has achieved over 5 400 Tera flops.

Boinc  itself  is  a  free  mechanism for  anyone that  wishes  to  start  a  volunteer 

computing system, and is mostly used for scientific purposes and is currently the 

largest open Grid system in existence.

2:BOINC website,  http://boinc.berkeley.edu/ 

3: BOINC statistics http://boincstats.com/stats/project_graph.php?pr=bo

4: Top 500 Supercomputer List http://www.top500.org/lists/2010/06
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Folding@home

Folding@home is a cycle-scavenging system designed in the Stanford University 

in California in 2000 to model protein folding in order to gain insight over several 

diseases and medicine5.

Much like any cycle-scavenging system, it relies on a user installing its client in a 

machine so that it can access the machine. It has achieved a peak of 5 600 Tera 

flops  but  averages  out  at  approximately  5  000  Tera  flops  divided over  seven 

different “cores” of research, each with their own peculiarities.

Seti@home

Seti@home is a cycle-scavenging system released in 1999 destined to scan data 

obtained in the Arecibo astronomical  observatory in  order to attempt to find 

hints at the existence of extra-terrestrial life6. 

From 2005 onwards, Seti@home started using the Boinc platform instead of its 

own proprietary system. It is currently averaging approximately 730 teraflops, or 

approximately 17% of the Boinc virtual supercomputer.

LHC Computing Grid

As mentioned above, CERN has embraced Grid systems as an answer to the large 

computational power required to interpret the immense amount of data being 

gathered from the LHC experiments[6]. 

5: Folding@home  http://folding.stanford.edu/English/License

6: Seti@home http://seticlassic.ssl.berkeley.edu/about_seti/about_seti_at_home_4.html
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It was started at the end of 2008 and currently has participating nodes spread 

over three continents and contains machines of over 140 different institutions.

 2.3 Analysis of the field

Having looked at  several  examples of related work,  we need to look into our 

system's direct relationships to those examples, as well as their future heading 

given the current technological conjecture.

 2.3.1 The grid and p2p convergence

At the current point of time, peer to peer systems and grid systems are largely 

independent. They were, after all, developed independently and aimed to solve 

different  goals.  Yet,  the  evolution  of  both  systems  may  show  a  confluence 

between them in the near future[18]. 

As  grid  systems grow,  scalability  issues  will  require  them to  start  using  tools 

commonly used in peer-to-peer systems to avoid bottlenecks and slowdowns as 

well  as possible points of failure. On the other hand, as peer to peer systems 

become larger in size and attempt to claim more possible uses, they too start 

using structured models commonly seen in Grid systems.

One could say that eventually there will cease to be any distinction between the 

two types of systems, and that a single, common architecture will be present to 

fulfill the goals of both systems: resource sharing (be it in terms of computational 

power, data storage, or data itself) and the avoidance of resource wasting. How 

soon it happens is still unknown, but it is a near certainty of modern advances.
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 2.3.2 Cloud Computing

One unavoidable concept in today's distributed computing world is that of cloud 

computing. The company Amazon is one of the entities most responsible for the 

appearance of the concept of cloud computing. 

It  came to be during the company's internal  hardware system restructure,  an 

action whose goal was to minimize the wasted computational resources inherent 

to the company's everyday work.

A  company  study  showed  that  sometimes  only  10%  of  the  machine's  total 

capacity was being used. During attempts to solve that, the idea of a pool of 

computational resources evolved into the modern notion of the cloud. Of course, 

had it  remained simply a tool for  the internal use of the company,  the cloud 

would not be a topic as well known as it is today. In 2006, Amazon started to 

provide cloud computing to the outside public8.

A more careful look at the cloud shows it using concepts already present both in 

grid  systems,  cluster  systems  and  public  computing,  but  with  a  different 

implementation and a more restricted set of premisses.

From the point of view of a regular user, cloud computing seems to solve all the 

tasks we set forth to achieve with this work, but after careful analysis, it is not so. 

Cloud computing as it is currently pictured ends the client user's control after the 

request is made and any decision on the cluster is done without the client user's 

interference. While it does add to general agility for typical use, it denies the user 

the capacity of adjusting the clusters to his own needs.

8: The Amazon elastic cloud, http://aws.amazon.com/ec2/
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Furthermore, the cloud is still closed in the sense that the machines providing the 

computational capabilities will not request more capacity themselves, and that a 

typical user cannot provide his own unused computer cycles to someone else. 

These points are strong enough that a niche for our work exists, and this niche is 

substantial enough that it warrants a solution, a proper answer to the issue at 

hand.

 2.3.3 Virtual Clusters

The  concept  of  a  virtual  cluster[24] is  tied  directly  to  that  of  the  traditional 

computer cluster. Originally, clusters were groups of similar computers belonging 

to a single organization in  order to  either improve performance by spreading 

computational load, diminish network load impact by spreading traffic around or 

ensuring  a  higher  availability  of  data.  These  computers  were  traditionally 

connected  by  high-bandwidth  networks,  had  similar  specifications  and  were 

closely monitored and under strict organization.

Virtual  clusters deviate from tradition by being more loosely coupled and not 

necessarily physically close to each other. In addition, the biggest diverging point 

is that while clusters are permanently assigned to their particular job, machines 

participating in  a  virtual  cluster  might  be  performing  that  job  only  a  shorter 

period of time, being released afterward.

In addition to the constraints and concerns already present in the creation of a 

normal cluster, some additional  issues arise when we observe the creation of 

dynamic  virtual  clusters.  Some  of  those  issues  stem  from  the  difference  in 

networks present between the nodes of the cluster while others arise from the 

lack of homogeneity between nodes.
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The  network  connecting  the  machines  itself  adds  additional  focus  points.  In 

applications that require a hefty amount of data transfer between them, high 

bandwidth  may  be  required,  and  that  can  influence  the  performance  of  the 

virtual  cluster,  while  on  the  other  hand  if  a  small  amount  of  data  is  passed 

amongst nodes, but it is done fairly often, a globally low latency becomes the 

priority. 

Additionally, the necessity for the cluster to be dynamic or elastic, that is, being 

able  to  alter  its  size  or  nodes  at  will,  requires  control  mechanisms  aimed  at 

allowing departure and entrance into the cluster as well as job management and 

handling throughout the changing node network. This management must be able 

to provide strict control of the resources within the cluster.

A bottom-up approach to virtual clusters would lead us first to the actual creation 

of the cluster. Krsul [32] described a way to create virtual clusters by using virtual 

machines.  A  single  virtual  machine  image  would  be  cloned  throughout  the 

machines  belonging to  the cluster.  This  virtual  machine would  then receive a 

directed acyclical graph containing configuration instructions and with them the 

machine would be set up. Foster [31] provided a solution to the same problem by 

introducing the concept of a virtual workspace. This virtual workspace is nothing 

but another virtual machine which instead receives its configuration instructions 

as  an argument  and then is  deployed to the actual  physical  resources in  the 

cluster.

While both above solutions are fine for a low number of machines, they would 

not scale well with a sufficiently high number of machines, and alternatives for 

larger clusters were created  [30]. Here, the deployment itself is accelerated by 

means of virtual disk caches (and other techniques) which contain any and all 

required software, thus greatly hastening the initial deployment.
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Past  the  initial  deployment  step,  the  existence  of  a  virtual  cluster  requires 

managing of jobs and resources. To do so, a virtual cluster requires the existence 

of a Resource Managing System (RMS) that can assign jobs, extract job results, 

control node absence and presence, maintain the integrity of the computational 

exercise being done and ensure the general stability of the virtual cluster[21].

To do so, the RMS must, upon reception of a request, estimate the impact the 

request  would  have  on  each  machine,  and  then  generate  a  plan  for  job 

distribution and handling amongst the machines in the cluster. In addition, the 

RMS  must  also  provide  the  security  aspect  of  a  request,  by  authenticating 

credentials and ensuring data confidentiality within the cluster.

Summary

In this chapter we presented several existing systems and briefly explained the 

essential points in how they function. For both grid and peer-to-peer systems, we 

emphasized their strengths and weaknesses, drawing lessons from the way they 

capitalize on the former and mitigate on the later, in order to inspire, properly 

define and fine tune our system. We shall now proceed to describe our solution 

and how it was influenced by preexisting work in the next chapter.
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 3 Solution

The  design  presented  in  this  paper  focuses  on  three  individual  parts  as 

mentioned in Chapter 2. In this chapter we will provide a more detailed look into 

both our system and the inherent protocol it uses to achieve its goals. In general 

our system will provide means for a new node to join a network in order to be 

able to utilize resources on remote computers as well as allow his own resources 

to be used by remote requests.

 3.1 Network System

Figure 1: System overview

The figure above shows the overview of our system and a general outline of the 

several actions in a typical request. To be able to perform these actions, the three 

individual parts (the peer-to-peer network system, the resource  protocol and the 

clustering  virtual  application)  of  our  work  must  interact  and  communicate 

amongst themselves in well-defined ways. 

A  more  detailed  description  of  these  parts  and  their  interfaces  will  now  be 

depicted.
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Our system is based on a structured peer-to-peer network of nodes. We choose 

this type of network to allow quick and efficient  of resources and swift routing to 

specific nodes, thus promoting scalability and still maintaining the decentralized 

architecture.  We  will  model  our  system  in  PeerSim,  providing  the  added 

functionality for node joining and leaving as well as resource availability control 

and job request specification.

The system will allow a machine to join a network by simply knowing the IP or 

address  of  a  node already  in  the network  (as  depicted in  Figure  2),  and will 

accommodate the new node in its overlay. Both the departure of a node (loss of 

available resources) and the joining of one (increase in available resources) will 

be propagated throughout the network in a controlled way in order to not flood 

the system. 

Figure 2: The entering of a node into the network.
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 3.2 Resource Discovery Protocol

The actual submission of a job request can be accompanied by several quality of 

service metrics.  A request  can be made for  a cluster of  a specific  number  of 

computers  and  values  to  each of  the QoS  metrics  can  be provided  with  the 

request  to  later  allow  our  resource  discovery  protocol  to  refine  the  list  of 

candidates and correctly estimate the machines that best fit the requirements of 

the request. For instance, we could request a cluster composed of 6 machines 

where  we  would  give  a  very  high  weight  to  a  low  latency  in  the  network 

connections between them as well  as  the individual  machines'  CPU type and 

number of cores, in order to accommodate an application with low size messages 

being swapped among the machines in the cluster.

After a request is submitted, our resource  protocol sets in, working on the node 

network  maintained by our  system and will  attempt  to  locate  resources  that 

either fit the request's QoS metrics completely, or at least locate machines that 

partially fit  the request, all  the while maximizing their adaptation to the task. 

Considering the heterogeneous nature of the nodes in the network, it is most 

likely  that  only  partial  matches  can  be  found[22],  but  the  capacity  for  this 

protocol to maximize the cluster's capacities to fit the request are a crucial point. 

Thus,  we  allow  each  node  to,  upon  request  submission,  specify  minimum 

thresholds for both partial and global resource satisfaction.

The protocol itself will be modeled in the form of Java classes tailored to fit our 

system  using  PeerSim  for  simulation  purposes.  The  protocol's  work  has  two 

steps. In the first step, the protocol must locate a list of potential candidates from 

within the nodes present in the network and grade them considering the metrics 

provided in the request. It must then select the best candidates from that list.
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The  candidate  gathering  is  carried  out  by examining  every  node in  a  certain 

neighborhood  of  the  “ideal”  node  in  each  of  its  axis  (which  represent  node 

characteristics) in three steps. The depth at which each of these four nodes tries 

to find viable candidates is specified in the request. 

In the first step, the requesting node sends a message to each of the ideal nodes 

in each of the four axial characteristics.  These traverse the overlay via the usual 

CAN method, being relayed to the neighbor node that  is  in the direction the 

message needs to take.

After  this  message is  delivered to  the nodes in  whose neighborhood we will 

check for candidates,  the second step begins.  Each of  these nodes will  begin 

gathering  candidates  in  a  vicinity  around  it  that  is  limited  by  the  request's 

specifications. This is handled by the node looking at a number of candidates in 

both directions of each axis of the N-dimensional space. After getting the number 

of candidates requested by the originating node in each of these directions, the 

final step begins.

 This  third  and  lest  step  starts  by  compiling  the  list  of  the  nodes  chosen  as 

candidates.  After this list  is compiled, the proper message is  sent back to the 

originating node with the information of each potential candidate.

We could implement the system driven by reducing the number of messages, in 

which case there would be less messages exchanged, but a much lower chance 

of satisfying a request's QoS specifications, or instead opt to always try and fill up 

the list of candidates, which in turn increases the number of messages required 

per request. Had we chosen the first option, we would have a lower number of 

candidates as node occupation increased, meaning we could be presenting only 

half (or even less) of the expected candidates. With a much lower number of 

candidates, we might be forced to select sub-optimal nodes for the cluster.
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We opted to use the second approach which will have an impact that can be seen 

in section 4, where we examine request satisfaction. In addition, we could have 

“busy” nodes remove themselves from the network, which would allow much 

faster gathering of candidates, but this would significantly increase the number 

of  messages  in  the  network,  which  would  compromise  scalability.  The  exact 

increase would depend on the number of clusters and the number of members in 

a  cluster,  but  for  a  4-node cluster,  it  would  require  8  more  messages in  the 

network. If we had 50% occupation in a 100 000 node overlay, all with 4-node 

clusters, we would indeed have seen tens of thousands of additional messages.

It  is  easy  to  see  that  such  an  increase  in  the  number  of  messages  would 

compromise our system's scalability and our performance under load as well.

 3.3 Cluster setup

After the machines that will  be a part  of  the cluster are selected,  our virtual 

appliance will then be deployed onto each of those machines. This application 

will be a small virtual machine capable of receiving configuration instructions as 

an argument, and will be also responsible for the execution of the code. 

For each machine, the configuration instructions will  either be responsible for 

setting up the execution of the clustered application code (either via library, e.g., 

MPI or  deploying a full  system virtual  machine with OS and application,  e.g., 

using Xen or QEMU) or contain instructions to connect to a third machine that 

will act as the cluster's coordinator. After the cluster is fully deployed and set up, 

the  execution  of  the  job  begins.  Upon  its  completion,  the  node  chosen  as 

controller or RMS must collect the results and deliver them to the machine that 

initiated the request.
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Figure 3: Virtual appliance deployment

The system itself evolves over time, and as such the machines present in the 
overlay  network  can  change,  as  well  as  the  clusters  in  it  and  even  the  machines 
belonging to each cluster. Figure 4 represents the same sample of the overlay in two 
different moments in time.

Figure 4: Changes in the overlay and its clusters.
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 3.4 Further detail and Implementation Issues

To  implement  our  resource  discovery  protocol  we  will  address  a  number  of 

options  that  can  be  later  compared  regarding  completeness,  efficiency  and 

scalability. We can opt for a decentralized method with flooding via neighboring 

nodes and random walks (Variant A), which is a method used in several existing 

systems  that  use  unstructured  peer-to-peer  overlays.  This  approach  is  both 

simple and effective, but might not be the most efficient one.

Additionally we can use an approach similar to that of CAN (Variant B), where 

resources are located by obtaining from the resource key its respective set of 

coordinates  in  the  N-Dimensional  space.  After  obtaining  the  resource's 

coordinates, getting to the resource is a question of forwarding the request to 

the neighboring node that is in the direction of the set of coordinates. 

This second approach will require a more strict placement of resources. In order 

for  the  location  to  help  us,  we  must  have  to  set  similar  machines  in  similar 

spaces, thus ensuring that should we require, for example, several machines with 

3000 MHz of CPU, 2 GB of available RAM and low latency between them, we can 

know where in the space to look. 

In  order to avoid two machines falling into the same space,  there must  be a 

certain degree of leeway in the exact coordinates. Two machines with the exact 

same components might end up at coordinates X,Y,Z and X+-α,Y+-β,Z+-γ. We will 

now provide a simple depiction of the progress of the resource location protocol 

in this approach.
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Main steps in resource discovery

-Locate the coordinates of a resource from its characteristics and key;

-From the local node's coordinates, locate the neighboring node that lies in the 

direction of the coordinates of the resource we obtained in the previous step;

- If the resource is located in that node's space, stop, if not, we locate the next 

neighboring node that is in the direction of the coordinates;

- We then repeat the previous two steps

In Figure 5 we can see an example of the representation of a few nodes in a 

coordinate system such as this one. For the sake of simplicity, we will only use 

two dimensions, one for the number of cores and the other for each core's clock 

speed, but any amount of characteristics can be presented in a N-dimensional 

space.

The table below shows the characteristics of the nodes that will be present in 

Figure 5.
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Node Clock Speed 

(MHz)

Number of 

cores

Available 

Bandwidth (Mb)

RAM 

(MB)

Latency (ms)

1 2000 2 12 2000 55

2 2500 2 30 2000 43

3 3000 2 8 4000 118

4 3500 8 100 8000 45

5 3000 4 30 4000 61

Figure 5: Node representation in variant B

Each circle  represents  a  node in  this  section  of  the overlay,  and each node's 

location in the 2-dimensional space tells us of the node's characteristics. By using 

this information we can easily locate resources with specific characteristics. 

A more advanced approach (Variant C) can extend the latter one, by using not 

the exact position but the relative size of a resource in  several 2-dimensional 

planes.  The more CPU a machine might  have available,  the larger the area it 

occupies on that dimension in the coordinate space, and thus the higher chance 

a random coordinate might fit it.
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With this approach, the crucial point is not the node's location in the space, but 

rather its size relative to the others. We will show the same nodes used in the 

example above,  this is  a possible representation of  these nodes in regards to 

clock speed.

Figure 6: Possible node representation on variant C regarding clock speed

The relative size would ensure that  any resource location request  aimed at  a 

random point in the N-dimensional space would have a higher chance to locate 

resources with a higher or better characteristic. In this case,  the biggest issue 

would be the empty space, which although CAN already partially deals with the 

matter, is something we must deal with. 
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In this approach, the location of a resource is, for each plane (we represent each 

characteristic  as  a  2-dimensional  axis),  we  create  a  random  2-dimension 

coordinate. The machines with more processing power, or more bandwidth, or 

more RAM, or less latency (size can in this case be inversely related to the latency 

shown in the network) are more likely to be chosen than the others. This can 

greatly  accelerate  resource location  and maximize resource occupation in  the 

network.

Cluster Deployment

To facilitate cluster setup we will adhere to the Open Virtualization Format (OVF) 

standard. This  will  allow us to utilize .OVA files  that  can  be customized from 

preexisting  templates  in  order  to  allow  us  to  refer  our  virtual  appliance  to 

resources  located  on  virtual  disks  containing  the  application  to  be  executed. 

These packages can be extended with configuration data to be accessed by the 

virtual machine post-deployment.

Simulation

We will structure our system on top of PeerSim using classes developed to handle 

node entrance and exit, as well as common resource discovery requests and job 

execution requests (as depicted in Figure 7). 
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To properly test the system's performance, we will also include a small scripting 

engine capable of receiving scripts containing basic tasks performed by simulated 

nodes as well as its periodicity (in seconds or ticks). For example, we might have 

a script that makes 2 random machines leave the overlay every 20 seconds and 

have 3 random machines join every 30 seconds, plus one cluster request with a 

random number (with limits) of machines with random characteristics.

Our scripting engine will  be fed with  scripts containing the actions  described 

above. This same engine will then forward the action to the appropriate handler, 

the  node entrance  and  exit  module  in  case  of  node  presence  chance  in  the 

overlay or the resource discovery protocol in the case of a job request.

Both  the  resource  discovery  protocol  and  the  scripting  engine  itself  will  be 

capable of outputting information on the simulated outcome. This output can 

already be in a format that our virtual appliance can interpret and execute or it 

might simply be a description of the change in the overlay. Such a change can be 

the creation, disbanding or altering of a cluster, for example.

Figure 7: Our class model
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Messages used

In our system there are several types of messages, each with their own structure. 

The first one encompasses the Join and Leave messages. They both share the 

structure shown in Figure 8 below. Within this message we find the identifiers of 

both origin and target node, as well as the type definition and, for simulation 

purposes, the counter for the number of hops, which would not be present in the 

final system.

Figure 8: Join message

The second type of message is the one used in the candidate gathering process. It 

has the structure one can see in Figure 9. It contains the same fields as the above 

message, with the additional information for the maximum depth at which we 

will look for candidates around each of the four “optimal” nodes.

Figure 9: Candidate collection message

43

Origin node ID Target node ID Message Counter Type

Origin node ID Target node ID Message Counter Type Candidate depth



The next type of message is the one seen when the candidate gathering process 

is over and we have the list, to be sent back towards the origin node. It has the 

structure one can see in Figure 10 below. Its fields are those present in a join 

message, with the addition of the list of nodes selected as candidates.

Figure 10: Candidate list message

The fourth message type is the one used in the cluster forming process. 

As seen below in Figure 11, it contains the basic 4 fields of the Join message, with 

the additional fields of the list of nodes selected as members of the cluster, plus 

the payload of the OVF file that will initiate the cluster's virtual machines. You can 

see an example of this file in the annexes section.

Figure 11: Cluster formation message.

44

Origin node ID Target node ID Message Counter Type

List of candidates

Origin node ID Target node ID Message Counter Type

List of member nodes

OVF file



The final message type is employed after, and as a reply for a successful 

join request. As seen below in Figure 12, it contains much more information than 

the previous messages. As one can see, it contains the identifiers of each of the 

immediate neighbor nodes, plus the boundaries of space assigned to this node. 

The message counter is also present for simulation and evaluation purposes.

Figure 12: Join successful message

Summary

During the course of this chapter, we described our solution by present its overall 

rational  and  then  addressing  each  of  its  components.  We  detailed  how  we 

approach  each  of  the  challenges  before  us  and  how  we  overcome  those 

challenges  by  using  a  structured  peer-to-peer  overlay  to  allow  for  greater 

scalability  while  achieving  our  goals.  We  will  now  proceed  to  evaluate  the 

solution  we  implemented  through  several  tests  and  simulations  intended  to 

examine the key parts of  our solution in  situations similar  to those of  a  real 

system in the following chapter. We aim to demonstrate that the system is not 

only capable of meeting its functional goals, but that it does so in a efficient and 

scalable way.
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 4 Evaluation

To evaluate our application, we need to demonstrate that it correctly satisfies its 

requirements, and in an efficient manner, both in terms of achieving its goals and 

in doing it as effectively as possible.

We  will  begin  by  analyzing  the  system's  behavior  in  simulated  scenarios  (as 

realistically as possible in a large population) , and show that the results match 

the expected outcome for the proposed architecture as a whole, as well as for 

each of its components and message protocols. 

 4.1 Join and leave

First  and foremost,  we need to  differentiate  between  behavior  obtained in  a 

perfect  network  with  stable  machine  presence  and  the  behavior  seen  in  a 

network closer to the internet, where there is a large churn of machines both 

leaving and joining the overlay. 

In the first test, we measured the number of messages taken for any node to join 

the network overlay when the number of nodes is maintained, for several sizes of 

the overlay. As we can see in Figure 8, the distribution of message counts fits very 

similar to a logarithmic expansion, which is coherent with the expected outcome 

of  Ω (n  1/d) where  n is the number of nodes present in the overlay and  d the 

number of characteristic axis used, which in our case is 4. The leave process is 

analogous to the join process. The node in question sends a message to a known 

node, which then relays it to the neighbor nodes until it reaches the nodes that 

will then be involved in the partition (or merge) action. 
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Each dot in Figure 13 below represents the result  of  a join request,  with the 

number  of  messages  being  displayed in  the  Y  axis  and  the  growing  network 

overlay size in the Y axis.

Figure 13: Number of messages taken for a Join message

X axis: Size of the network overlay, Y axis: Number of messages taken

For ease of comprehension, a line chart of the average number of messages sent 

is also provided, wherein one can more easily notice the shape of the curve
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Figure 14: Average number of messages taken for join message

X axis: Size of the network overlay, Y axis: Number of messages taken

The figures above both demonstrate the fundamental and expected advantage 

that structured peer-to-peer systems  have over other alternatives: The extensive 

capacity to increase the size of the overlay without losing too much performance.

However,  in  reality  networks  are  not  as  stable,  specially  in  the  case  of  the 

internet,  which  is  the  main  network  we  aim  our  architecture  for.  To  more 

correctly estimate the system's behavior in a network where nodes can (and will) 

join and leave in a way we cannot predict, a test was prepared in a network with 

nearly constant joins and leaves. For the vast majority of of cases, the behavior 

will be exactly equal to the previous cases. However, in the rare case that one of 

the  nodes  in  the  path  the  message  should  travel  is  disconnected  from  the 

network after the message is emitted and before it reaches that point in the path 

(or the destination node), the message will have to be resent. The message first 

takes the path back to the origin node, starting from the node that detected the 

leaving node, and the origin node will again transmit the message.
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For larger overlays, the chance for this to happen becomes very low, but as you 

can  see  in  Figure  10,  it  can  happen.  An  even  rarer  even  would  be  a  resent 

message  also  detecting  a  node  departing  the  network.  We  were  unable  to 

replicate this event often enough, although it is certainly possible.

Below, in Figure 15, you can see the occasional messages that take much longer 

than the regular time as seen in Figure 8. For example, instead of approximately 

23 messages, we saw values of approximately 58 messages.

Figure 15: Number of messages taken for a Join message with churn

X axis: Size of the network overlay, Y axis: Number of messages taken

This figure displays our system's resilience to nodes leaving the network in an 

unpredictable  way,  and  how  its  negative  impact  is  no  greater  than  slightly 

delaying the message delivery.
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 4.2 Candidate gathering

The  process  for  finding  candidates  that  fit  the  specifications  of  the  request 

requires the exchange of more messages. In general, it can be divided into three 

independent phases. 

First, the node generating the request will send messages to the ideal node in 

each of the axis representing the four characteristics present in the system. This 

increases the number of messages by a factor of four, but also ensures a larger 

diversity among nodes selected as candidates.

After each of these nodes receives the message, the second phase consists in 

starting  a  small  controlled  flooding  routine  to  each  of  its  neighbor  nodes, 

repeating  the  process  until  each   node  has  obtained  a  certain  number  of 

candidates  (which  is  determined  in  the  configuration  file,  for  example,  32 

candidates). 

In the final phase, each of the four nodes then sends a message to the requesting 

node  containing  the  candidate  lists  found  independently.  The  first  and  last 

process  are  quite  similar  to  the  handling  of  a  join  or  leave  message.  The 

collection of nodes requires a fixed number of messages, so it can be considered 

a constant value. This would lead us to conclude that the sum of these processes 

is O (n 1/d) + C or to simplify: O (n 1/d), where d is the number of axis, which in our 

case  is  four,  which  once  again  is  the  expected  result,  in  line  with  common 

scalability criteria. 

In addition, we should emphasize that unlike the join and leave messages, the 

second  part  of  the  candidate  gathering  is  not  affected  if  a  node  leaves  the 

network and causes no messages to be retransmitted.
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In Figure 16 we can see the distribution of messages in the candidate gathering 

process for a candidate list depth of 4.

Figure 16: Number of messages taken for a candidate gathering message

X axis: Size of the network overlay, Y axis: Number of messages taken

It  can  be  noted  in  the  figure  above  that  even  in  an  unstable  network  and 

attempting  to  obtain  a  candidate  list  of  128  different  nodes,  the  number  of 

exchanged messages does not show explosive growth as it would in flood-based 

methods.
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 4.3 Dynamic cluster forming

The final  type of message interaction implemented by our architecture  is  the 

cluster creation message which occurs after the nodes which will be part of the 

virtual cluster (either as controller or regular cluster members). This message is 

similar  to  a  join  or  leave,  but  only  slightly  bigger  in  size.  Since  we  are  only 

concerned with the number of messages exchanged for now, we will focus on 

that aspect and examine each message's size in the following subsections.

Figure 17 displays the average number of messages required in the final phase to 

establish a cluster. In this case, we used candidate depth = 4 and cluster size = 4 

(3 slave + 1 controller).

Figure 17: Number of messages taken for a cluster forming message

X axis: Size of the network overlay, Y axis: Number of messages taken
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From  this  figure  we  can  conclude  that  the  distribution  of  the  number  of 

messages  in  the  “startup”  phase  of  a  cluster  being  set  up  shows  the  same 

logarithmic curve as a join or leave message and that this number does not grow 

with the final  cluster size.  This  is  due to the message being sent  only  to the 

controller which will then guarantee the initiation of the cluster.

Another important aspect is exactly how much the number of messages required 

grows with the number of candidates requested. In Figure 18 below we compare 

the  average  number  of  messages  taken  in  this  process  for  64,  128  and  256 

candidates (depth 2,4 and 8, respectively).

Figure 18: Comparison of messages required for growing candidate numbers

X axis: Size of the network overlay, Y axis: Number of messages taken
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We can see in this figure that the number of messages required for the gathering 

of candidates grows with both the total size of the overlay as well as the number 

of candidates we wish to gather for the final decision of which nodes will  be 

members of the cluster. Note that even at substantially high values such as 256 

different candidates, the number of messages keeps its logarithmic properties, 

hence supporting our claims of scalability.

 4.4 Message size

However, there are more factors that can influence the viability of an application 

in the real world. We have dealt with the number of messages, but we must also 

focus on the size of each message, as well as the size of the information required 

to store in, and about, each node, as well as to be exchanged, in order for the 

system to work. 

We will  begin by examining the size each message occupies. The first type of 

message is the one associated with the Join event. This message contains two 

“int” type variables corresponding to the type of join and the counter of  the 

number of messages, as well as two 128-bit fields representing the identifier of 

the  target  node  and  the  origin  node  in  addition  to  their  axial  coordinates. 

Considering in the Java language an “int” occupies 32 bits, this means that a join 

message will have 320 bits or 40 bytes of size. However, due to limitations on the 

simulation tool we used (Peersim) the tests were performed with a variable of 

type CANNode for target node and origin node.
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This increases the size of a message in our tests to 672 bits  or 84 bytes. We 

should note that the counter for the number of messages is only necessary for 

testing purposes, and could be omitted in the real system.

The leave message is  the exact  same as this one, and is  subject  to the same 

limitations when it comes to Peersim.

The  second  type  of  message  is  the  one  related  to  the  candidate  gathering 

process. This message contains all the fields in the join message and in addition 

there is the presence of another “int” variable representing the intended depth 

of the search. This increases the size to 352 bits or 44 bytes in the system/704 

bits or 8 bytes in Peersim.

After the candidates are gathered, the message containing the found candidates 

is  sent  back  towards the origin  node.  This  message  contains  the basic  “join” 

message and in addition it has an array of node identifiers wherein all candidates 

are gathered. For a depth of 4, this would mean up to 128 additional positions in 

the array with size equal to the identifiers for a total of 16704 bits or 2008 bytes. 

We had the option of instead allowing each candidate to send a message back to 

the  originating  node  of  the  request,  but  the  additional  weight  of  the  larger 

amount of messages would imply more network occupation as well  as higher 

total size of  messages.  In  taking this  option over the alternative we took,  we 

would increase the chance to overload the network when multiple concurrent 

requests are present.

The next message type is the one related to the process of actually establishing 

the final  virtual  cluster.  This  message contains the same elements  as  a “join” 

message  and  an  array  with  the  identifiers  of  each  of  the  nodes  selected  to 

become members of the virtual cluster as “slave” machines. 
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The message is sent to the node chosen as controller which will then relay the 

message  to  the  individual  slaves.  This  message  also  contains  the  markup 

language code relative to the startup of the virtual machine that will execute the 

cluster code. This can be of variable size. An example can be found in the annexes 

section. 

The final message type is the one sent as acknowledgment to a join message. 

This is much simpler and contains the neighboring nodes identifier, the “space” 

that the origin node is assigned after joining and the message counter, for testing 

purposes. This brings the total size of this message up to 352 bits or 44 bytes.

 4.5 Size of the local data

We must also determine how much space is required of each node in order to 

maintain  the  overlay's  integrity  and  the  system's  functionality.  With  our 

architecture,  we  require  only  that  each  node  knows  the  location  of  each 

neighboring node in each axis, plus the space the current node is assigned to 

(possibly  an  extra  neighbor  in  each direction  to speed-up recovery  when the 

neighbor fails). This means a node needs a total of 8 ints (2 for each axis) and 8 

CANNodes  (again,  2  for  each  axis).  This  brings  the  total  space  assigned  to 

information about the overlay to 800 bits or 100 bytes. 

Of  course,  in  addition  to  this  space,  each  node  also  needs  to  store  its  own 

attributes in memory, which can be done with 4 more “int” variables, or 132 bits, 

for a total of 932 bits or 117 bytes.
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 4.6 Comparison to other P2P-Based systems

We have examined how our system performs in isolation, but an important part 

of a system's viability is how it compares to other similar systems in existence. 

We will perform this comparison focusing on analysis of each system's properties 

with the aid of some quantitative data.

Message routing

In this comparison, one of the most important aspects is message routing. In the 

table below we will give out a few example of systems and their message routing 

methods.

System Type of network Number of 

hops

How many nodes 

receive the message

Gnutella Unstructured Variable All  connected  to  the 

super-peer

Chord[8] Ring-like topology O (log N) Message target only

Pastry[19] Self-correcting 

proximity network

O (log N) Message target only

CAN[4] N-dimension space O (N 1/d) Message target only

Being a system based on a modified CAN, our message routing follows mostly 

the same rules, as noticeable above. A direct comparison shows that systems 

based on chord and pastry architectures scale slightly better with the size of the 

network  overlay.  Unstructured  peer-to-peer  based  systems  will  scale  much 

worse.
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In practical terms, one could expect numbers in the millions of nodes without 

noticeable performance issues. A network overlay of 1 million would cause our 

system  to  take  in  average  a  number  of  messages  in  the  mid-thirties,  which 

comparable to a number of around 23 for a 10000 node network means that 

with an increase in network size of 100 times would only lead to an increase of 

52% in the average number of hops taken to deliver a message.

Figure  19  below[34] shows  a  comparison  between  few  of  the  systems 

mentioned in relation to message passing.

Figure 19: Comparison of message routing in different systems

This figure shows the relative growth of the different types of message-routing 

methods for  some common peer-to-peer  systems.  While  all  three structured 

systems  display  a  logarithmic  curve,  their  expansion  is  different  due  to 

particularities of each system.
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Size of Local State

Another aspect  worth comparing is  the local  space occupied by each node in 

order for the system to maintain functionality. 

In  the  case  of  Chord-based  systems,  a  node  must  maintain  a  finger  table 

containing  m entries  as  node  descriptors.  Considering  that  Chord's  network 

overlay supports a number of nodes of 2m.[8]

From  this  information  we  realize  that,  unlike  our  system,  chord  requires 

increasing local  space  of  each node as  the network size  increases,  while  our 

system is static. 

Our  system  needs  to  store  exactly  two  neighboring  nodes  for  each  axis. 

Considering we use four different characteristic axes, we could consider that for 

any network with more than 256 nodes, our system occupies less space. For a 

network of  1 million  nodes,  Chord will  require  20 node identifiers,  while our 

system will continue using only 8.

Request satisfaction

Another aspect we need to take into consideration is the system's capacity to 

satisfy  requests  according  to  the specifications  the user  requires.  One of  the 

goals of our system is to allow a request to specify the weight that each of the 

four characteristics of a machine has in the choice of which candidates to select 

for the final cluster. In addition to the weight of each attribute, a request can also 

set eliminating characteristics, for example, one might choose to not want any 

machine with less than 2 GHz of CPU clock speed to join the cluster (or more 

than 4, for that matter). 
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Our system sorts the list of candidates according to each node's overall score, 

eliminating any that do not fulfill the specific requirements. It then proceeds to 

select as many nodes as required by the request in order from the sorted list. 

This process of sorting is done using an algorithm with degree of complexity of Ω 

n (log n).  For a typical candidate depth of 4 (as used in our tests), this would 

generate a candidate list of 128 different nodes (if this many nodes are available 

in  the  overlay  in  the  vicinity  of  the  nodes  controlling  the  space  where  the 

request's ideal candidate exists).

In order to quantify the system's actual performance, it is important to determine 

the percentage of requests that was satisfied either fully, partially or not satisfied 

at all. To do so, we first created a standard distribution of nodes in our overlay 

using commonly found machines. The table below explains  the chance of each 

node being created, for a grand total of 100 000 nodes.

Description Probability

4-core 3GHz 8 GB RAM 100 MBps 30,00%

2-core 2.5GHz 6 GB RAM 50 MBps 30,00%

2-core 2GHz 4 GB RAM 30 MBps 20,00%

Single-core 2GHz 2 GB RAM 6MBps 20,00%

We then proceeded to test the system above with a request for 4 2-core CPUs 

with 2.5 GHz and 8 GB RAM (leaving network speed unchecked), and for all tests 

wherein node occupation was below 60% we noticed that  the requests were 

satisfying 100% of the QoS metrics and only then did request satisfaction rate 

started slowly dropping.  You can see this in Figure 20 below.
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Figure 20: Average request satisfaction per overlay occupation, 100 000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis: 

Percentage of satisfied requests

Although this-close-to maximum load on the global capacity of the overlay will 

not  be  frequent  in  real  world  applications,  we  decided  to  further  test  such 

boundary situations under a smaller and more controlled overlay, for simulation 

overhead reasons. Thus, we repeated the experiments with successively reduced 

numbers of nodes (10000, 1000, and even 100), for simplicity, always with 25% of 

nodes in each category,  and issued the series of requests. This, with the goal of 

verifying  whether  the  overall  results  and  findings  mostly  hold,  regardless  of 

overlay size.
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Figure 21: Average request satisfaction per overlay occupation, 10 000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis: 

Percentage of satisfied requests

Figure 22: Average request satisfaction per overlay occupation, 1000 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other clusters), Y axis: 

Percentage of satisfied requests
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Figure 23: Average request satisfaction per overlay occupation, 100 nodes

X axis: Occupation of the overlay (percentage of nodes already engaged in other 

clusters), Y axis: Percentage of satisfied requests

In the case of the test with only 100 nodes, the system proceeded to  select for 

cluster  members  either  machines  of  the  first  or  second  type  until  all  were 

exhausted  (thus  always  meeting  the  request's  specifications).  When  we  hit 

exactly 47% of occupation, we started seeing some requests coming up with a 

less than ideal choice, but this only happened when all of the occupied nodes 

were localized around the exact specifications of the request and all other nodes 

were not occupied. The first performance drop seen was when all 25 machines of 

type 1 were busy and 22 machines  of  type 2 were busy,  thus  leaving only  3 

machines  meeting  the  request's  QoS  metrics  and  having  to  use  a  below-

specifications machine as the fourth and last member of the cluster.
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It is easy to see that the larger the scale of the overlay, the higher the occupation 

has to be in order for a request to fail to be satisfied and, conversely, the better 

the system performs.  At  lower  overlay  sizes,  we begin  to  see requests  being 

fulfilled only partially at lower occupation percentages.

Performance under load

Another important aspect is the performance of the system when under not only 

heavy  churn,  but  also  heavy  occupation of  resources.  The behavior  of  a  join 

message is not affected by node occupation in clusters, as they are still part of 

the overlay and can still  relay a message. We could have opted to have nodes 

leave the overlay when selected to join a cluster, but  the extra message cost 

makes this a worse approach. 

In Figure 24a and 24b below you can see the behavior of a join in an overlay with 

0% occupation and 50% occupation (respectively).
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Figure 24a: Join message comparison. X axis represents the size of the overlay while Y axis 

represents the number of messages taken.

Figure 24b: Join message comparison. X axis represents the size of the overlay while Y axis 

represents the number of messages taken.
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The same is seen in leave messages and cluster-forming messages. These behave 

the  same  way.  The  biggest  impact,  however,  is  seen  on  messages  of  the 

candidate gathering type. Each node that is occupied forces the system to expend 

another message, so the number of messages required grows with occupation. 

Below you can see a comparison between a request for candidates with queue 

depth 4 with 0% occupation and 50% occupation. In Figures 25a and 25b below 

you can see this exact behavior.

Figure 25a: Candidate gathering message comparison X axis represents the size of the overlay 

while Y axis represents the number of messages taken.
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Figure 25b: Candidate gathering message comparison X axis represents the size of the 

overlay while Y axis represents the number of messages taken.

The Figures show the growth in messages required and the impact that node 

occupation  can  have  on  this  process.  As  node  occupation  reaches  very  high 

percentages, the number of messages required grows substantially.

Summary

In this chapter we measured the system's performance not only in relation to what 

we expected,  before  the  implementation,  but  also  in  relation  to  other  existing 

systems that  can be comparable  to ours.  We attempted to place the system in 

situations  we were likely to  encounter  in  real  systems  so that  we could draw 

conclusions from the expected performance of the system. Such conclusions will 

be presented in the next chapter, along with an overall evaluation of the viability 

of our solution in today's computational paradigm.
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 5 Conclusion

The  amount  of  computational  resources  worldwide  that  sit  idle  for  lengthy 

periods  of  time while  connected to  a network  is  immense.  By  utilizing  these 

untapped resources we could harness a massive amount of computational power. 

The  increasing  complexity  of  applications  and  computations  required  by  the 

typical  home-user is  growing and by providing such users with  the means to 

access  computational  power  that  typically  was  only  accessible  to  large-scale 

companies  allows  him  to  better  and  faster  perform  everyday  computational 

tasks, which is particularly useful for the most time-consuming ones.

The great obstacles to such an outcome are the lack of systems and architectures 

capable of not only allowing local resources to be available to others, but also to 

properly utilize remote resources and shape them into organized clusters capable 

of adapting to the characteristics of the application to be executed.

We present in this  thesis a system that can overcome such obstacles, a system 

capable of efficiently locating remote resources, setup specialized clusters and 

allow  a  high  degree  of  control  to  the  user,  in  the  form of  quality-of-service 

metrics that specify in fine-grain exactly the characteristics that such a cluster 

needs to best fit the application being ran. This system performs this in over a 

peer-to-peer  overlay  of  nodes in  order  to  allow for  greater  scalability  with  a 

growing number of nodes, as well as faster resource discovery.

Our evaluation methods,  to which we subjected the system and architecture, 

measured its performance both in isolation as well as when compared to other 

systems.
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We began by testing the number of messages taken by the system and how it 

was affected by the size of the network overlay. As expected, even though the 

number of messages required for each of the phases of request handling grew 

with  the  overlay  size,  its  growth  was  much  slower  than  the  growth  of  the 

network itself. In fact, at 250 000 nodes in the network, we were seeing around 

25 messages for a typical message routing from one node to another, meaning 

0.01% of the size. As the number of nodes in the overlay increases, we will notice 

even higher efficiency by our system. This indeed demonstrates that our system 

can  scale  very  efficiently  with  the  overlay  size,  which  is  one  of  the  main 

requirements and expectations we had about the system.

We proceeded to examine the size of each message used in our system. Most of 

the messages have a very small  size, below 100 bytes, which implies that the 

overall traffic in the overlay will not be significantly increased by the functioning 

of the system. The exception, the message sent when the list of candidates is 

completed,  is substantially bigger, but still acceptable, and of course, the smaller 

the number of candidates obtained, the smaller the message. We could  have 

opted  for  using  multiple  messages  (one  per  candidate),  which  would  greatly 

reduce the size of the message, but it would multiply the number of required 

messages by a large number and aggravate latency.  

Having chosen one larger message, we ensure that we maintain a small number 

of  messages  required  for  each  request,  also  increasing  our  scalability  by 

diminishing the chance we will flood the bandwidth of the nodes in the overlay. 

In addition, by choosing to obtain candidates around 4 different nodes instead of 

only the ideal node, we increase the chance that different nodes will be chosen 

as candidates for each request, as well as allow a small degree of parallelism that 

speeds up the process slightly.
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We then focused on the local storage size each node requires to maintain the 

system's  effectiveness.  The  local  size,  while  for  a  smaller  number  of  nodes 

present in the overlay is slightly bigger than the space required for systems like 

Chord or Pastry, does not grow significantly at all with the number of nodes in 

the overlay, which is a substantial advantage over other systems. For very large 

number  of  nodes in  the overlay,  our  system occupies  significantly  less  space. 

While in fact local storage space has lowered in cost, it is still an advantage that 

should not be ignored.

We also examined how our system would perform under higher overlay node 

occupation numbers, to certify that our solution performs as expected even in 

extreme situations that we could encounter in a real scenario. Even with very 

high  overlay  occupation,   our  system  scales  very  well,  and  only  the  node 

gathering is substantially impacted. 

All  four  points  above  could  be  considered  essential  for  any  system  to  be 

considered viable and worthy of deploying after implementation. We ensured 

that our system is up to the task with several evaluation measures that proved 

how well the protocol performs, both in scalability, speed and effectiveness in 

handling resources.   We believe the architecture  shown in this  paper  is  thus 

capable  of  providing  a  much  needed  tool  to  a  substantial  niche  in  today's 

computer  user  world,  furthering  the  state  of  the  art  in  public  distributed 

computing and contributing to fulfill the basic two goals we set forth to reach: i) 

providing  common  users  with  computational  power  far  beyond  what  was 

available in the past, and ii) efficiently managing resources in such a way as to 

diminish resource wasting in today's interconnected world.
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Future Work

However,  the  work  in  this  larger  scope  project  is  far  from  finished.  Several 

aspects are worth additional research into optimization and some aspects require 

an extra investment of time into design refinements:

• The messages exchanged are currently sent unencrypted and without any 

form of security, be it authentication or certification of origin or validity. 

• Peersim, while a handy tool for simulating a peer-to-peer overlay, cannot 

effectively represent a real scenario, and lacks the robustness to handle 

numbers of nodes into the high millions.  Therefore a real deployment on 

testbeds or even with voluntary users could result in more relevant data 

concerning user's habits.

• Variation C of the overlay setup described in chapter 3 also merits further 

investigation, but it would imply a more hierarchical overlay structure. It 

would require certain nodes to behave as super-peers, which could only 

apply in the case of either network service providers or maybe academic 

labs or other large installations of PCs delivering the machines that would 

perform this role.

In addition, for production purposes, a substantial  degree of optimization and 

testing should be undertaken in order to ensure the perfect performance of the 

system.

71



Annexes

Example .OVF file

<?xml version="1.0" encoding="UTF-8"?> 

<ovf:Envelope xmlns:ovf="http://schemas.dmtf.org/ovf/1/envelope" ovf:version="0.9">  

    <References> 

        <File ovf:id="file1" ovf:href="vmdisk1.vmdk" ovf:size="12345"/> 

    </References> 

    <Section xsi:type="ovf:DiskSection_Type"> 

        <Info>Virtual disks</Info> 

        <Disk ovf:diskId="vmdisk1" ovf:fileRef="file1" ovf:capacity="1234567" 

              ovf:format="http://www.vmware.com/specifications/vmdk.html#sparse"/> 

    </Section>  

    <Section xsi:type="ovf:NetworkSection_Type"> 

        <Info>List of logical networks used in the package</Info> 

        <Network ovf:name="CAN Network"> 

            <Description>The network that the service will be available on</Description> 

        </Network> 

    </Section> 

    <Content xsi:type="ovf:VirtualSystem_Type" ovf:id="Virtual App"> 

        <Info>Virtual App</Info> 

        <Section xsi:type="ovf:ProductSection_Type"> 

            <Info>Application information and description</Info> 

            <Product>Virtual App</Product> 

            <AppUrl>http://${controller_node.ip}/</AppUrl> 

        </Section> 

        <Section xsi:type="ovf:VirtualHardwareSection_Type"> 

            <Info>512Mb, 1 CPU, 1 disk, 1 nic virtual machine</Info> 

            <Item> 

                <rasd:Caption>1 virtual CPU</rasd:Caption> 

                <rasd:Description>Number of virtual CPUs</rasd:Description> 

                <rasd:InstanceId>1</rasd:InstanceId> 

                <rasd:ResourceType>3</rasd:ResourceType> 

                <rasd:VirtualQuantity>1</rasd:VirtualQuantity> 

            </Item> 

            <Item> 

                <rasd:Caption>512 MB of memory</rasd:Caption> 

                <rasd:Description>Memory Size</rasd:Description> 

                <rasd:InstanceId>2</rasd:InstanceId> 

                <rasd:ResourceType>4</rasd:ResourceType> 

                <rasd:AllocationUnits>MegaBytes</rasd:AllocationUnits> 
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                <rasd:VirtualQuantity>512</rasd:VirtualQuantity> 

            </Item> 

            <Item> 

                <rasd:Caption>Harddisk 1</rasd:Caption> 

                <rasd:InstanceId>22001</rasd:InstanceId> 

                <rasd:ResourceType>17</rasd:ResourceType> 

                <rasd:HostResource>disk/vmdisk1</rasd:HostResource> 

            </Item> 

        </Section> 

        <Section xsi:type="ovf:OperatingSystemSection_Type" ovf:id="73" ovf:required="false"> 

          <Info>Guest Operating System</Info> 

          <Description> Windows 2000 Advanced Server</Description> 

        </Section> 

    </Content> 

</ovf:Envelope> 
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