
Resource discovery over P2P networks for the creation of

dynamic virtual clusters

Carlos Paulo Ferreira Santos
P2P-Clusters: criação dinâmica de clusters em cycle-sharing

Instituto Superior Técnico
CPFSantos@netcabo.pt

Abstract. The importance of cycle-sharing and distributed computing has grown
in the past years and the amount of internet traffic over peer-to-peer networks is
increasing. The methods that peer-to-peer applications use to maintain scalability
and perform their goals can be used to improve upon current grid systems to
facilitate the creation and maintenance of dynamic virtual clusters allowing them to
grow further or perform better. We intend to draw upon the strengths of P2P and
grid systems to create a system capable of dynamically creating or adjusting
virtual clusters for the execution of distributed applications, thus allowing for
higher cluster availability as well as lessen the wasted computational resources in
the form of idle machines.

Keywords: Peer-to-peer, Grid computing, Virtual clusters, Cycle-sharing

1. Introduction

In the ever-evolving modern world, one of the few constants in the computer industry has
been growth. This growth manifests itself both in terms of computationally more demanding
applications as well as a higher availability of computational resources.

One would think these patterns of growth would neatly overlap, yet that is not so. A high
amount of computer cycles are being wasted at all times all over the world, and yet, at the same
time there are applications that have a strict demand for computational power that requires more
than a simple computer's effort to satisfy.

Over the length of the past 20 or so years, several approaches to this problem have been
created. Initially the only solution to most heavy computational processes were to have them
handled by supercomputers and mainframes, but this solution was both expensive and inherently
generated inefficiency.

With the passing of time the concept of a computational cluster became the norm. A group
of machines, similar both in hardware and software specifications, but also connected by high-
throughput and high-availability networks, dedicated to the solving of a common problem through
the uses of distributed and shared computing mechanisms as one of its roles.

However, while locally capable of providing for the needs of any entity requiring such form
of computational power, it still failed to provide a solution except for the most wealthy and stable of
companies[3]. The common user was still without a solution, the vast resources of the internet were
still not being used, and above all, there was still a high amount of computational power that was
wasted, not only during idle times in computer clusters, but also in the raw untapped power of
millions of personal computers and other computational devices (such as the ever popular portable
cellphones, hand-held devices, etc.) all over the world connected to the internet[6].

Several partial solutions appeared with the passing of time, each focusing on a certain
approach and method to solve the challenges required to implement a platform that would both
maximize computational power available as well as minimize resource waste.

The concept of distributed and parallel computing itself is one of the interesting points that
evolved alongside the clustering paradigm. Cycle-sharing and Grid computing are different
approaches to this concept, each with their own goals and constraints. These constraints that still
prevent the general public from having access to higher computational tools via the use of clusters.
In a way, public computing and computer clusters are still like two islands in a sea, totally separate,
due to the lack of tools to overcome such constraints. Should a tool arise that could allow for the
dynamic creation and alteration of clusters based on a peer-to-peer network, we could finally reach
the goal of allowing the general public to use the computational power of clusters, due to the
advantage of P2P architectures.

2. Architecture

The solution presented in this paper focuses on three individual parts. WE intend to
provide a more detailed look into both our system and the inherent protocol it uses to achieve its
goals. In general our system will provide means for a new node to join a network in order to be able
to utilize resources on remote computers as well as allow his own resources to be used by remote
requests.

Network System

Figure 1: System overview

The figure above shows the overview of our system and a general outline of the several
actions in a typical request. Our system is based on a structured peer-to-peer network of nodes. We
chose this type of network to allow quick and efficient management of resources and swift routing to
specific nodes, thus promoting scalability and still maintaining the decentralized architecture.

The system will allow a machine to join a network by simply knowing the IP or address of
a node already in the network (as depicted in Figure 2 below), and accommodates the new node in
its overlay. Both the departure of a node (loss of available resources) and the joining of one
(increase in available resources) will be propagated throughout the network in a controlled way in
order to not flood the system.

Figure 2: The entering of a node into the network.

Resource Discovery Protocol

The actual submission of a job request can be accompanied by several quality of service
metrics. A request can be made for a cluster of a specific number of computers and values to each
of the QoS metrics can be provided with the request to later allow our resource discovery protocol
to refine the list of candidates and correctly estimate the machines that best fit the requirements of
the request.

After a request is submitted, our resource protocol sets in, working on the node network
maintained by our system and will attempt to locate resources that either fit the request's QoS
metrics completely, or at least locate machines that fit the request (either fully or only partially), all
the while maximizing their adaptation to the request's specifications. Considering the
heterogeneous nature of the nodes in the network, it is most likely that only partial matches can be
found[5], but the capacity for this protocol to maximize the cluster's capacities to fit the request are
a crucial point. Thus, we allow each node to, upon request submission, specify minimum thresholds
for both partial and global resource satisfaction.

The protocol itself is modeled in the form of PeerSim classes and its work has two steps.
In the first step, the protocol must locate a list of potential candidates from within the nodes present
in the network and grade them considering the metrics provided in the request. It must then select
the best candidates from among that list in the second step.

The candidate gathering is carried out by examining every node in a certain neighborhood
of the node in each of its axis (which represent node characteristics) that has the ideal value in
three steps. The depth at which each of these four nodes tries to find viable candidates is specified
in the request.

In the first step, the requesting node sends a message to each of the ideal nodes in each
of the four axial characteristics. These traverse the overlay via the usual CAN method, being
relayed to the neighbor node that is in the direction the message needs to take.

After this message is delivered to the nodes in whose neighborhood we will check for
candidates, the second step begins. Each of these nodes will begin gathering candidates in a
vicinity around it that is limited by the request's specifications. This is handled by the node looking
at a number of candidates in both directions of each axis of the CAN N-dimensional space. After
getting the number of candidates requested by the originating node in each of these directions, the
final step begins.

 This third and last step starts by compiling the list of the nodes chosen as candidates.
After this list is compiled, the proper message is sent back to the originating node with the
information of each potential candidate.

Cluster setup

After the machines that will be a part of the cluster are selected, our virtual appliance will
then be deployed onto each of those machines. This application will be in the form of a small virtual
machine capable of receiving configuration instructions as an argument, and will be also
responsible for the execution of the code.

In each request, the configuration instructions will be responsible for setting up the
execution of the clustered application code and contain instructions to connect to a set of machines
that will be part of the cluster. After the cluster is fully deployed and set up, the execution of the job
begins. Upon its completion, the node chosen as controller must collect the results and deliver them
to the machine that initiated the request.

Figure 3: Virtual appliance deployment

3. Implementation

To implement our resource discovery protocol we used an approach similar to that of CAN
where resources are located by obtaining from the resource key its respective set of coordinates in
the N-Dimensional space. After obtaining the resource's coordinates, getting to the resource is a
question of forwarding the request to the neighboring node that is in the direction of the set of
coordinates.

This approach will require a strict placement of resources. In order for the location to help
us, we must have to set similar machines in similar spaces, thus ensuring that should we require,
for example, several machines with 3000 MHz of CPU, 2 GB of available RAM and low latency
between them, we can know where in the space to look. We ensure this by making sure each node
is set to handle a section of the CAN-space related to its characteristics upon joining.

In order to avoid two machines falling into the same space, there must be a certain
degree of leeway in the exact coordinates. Two machines with the exact same components might
end up at coordinates X,Y,Z and X+-α,Y+-β,Z+-γ. We will now provide a simple depiction of the
progress of the resource location protocol in this approach.

Resource discovery

-Locate the coordinates of a resource from its characteristics and key;
-From the local node's coordinates, locate the neighboring node that lies in the direction of the
coordinates of the resource we obtained in the previous step;
- If the resource is located in that node's space, stop, if not, we locate the next neighboring node
that is in the direction of the coordinates;
- We then repeat the previous two steps

Cluster Deployment

To facilitate cluster setup we will adhere to the Open Virtualization Format (OVF)
standard. This will allow us to utilize .OVA files that can be customized from preexisting templates in
order to allow us to refer our virtual appliance to resources located on virtual disks containing the
application to be executed. These packages can be extended with configuration data to be
accessed by the virtual machine post-deployment.

Messages used

In our system there are several types of messages, each with their own structure. The first
one encompasses the Join and Leave messages. Within this message we find the identifiers of
both origin and target node, as well as the type definition and, for simulation purposes, the counter
for the number of hops, which would not be present in the final system.

The second type of message is the one used in the candidate gathering process. It
contains the same fields as the above message, with the additional information for the maximum
depth at which we will look for candidates around each of the four “optimal” nodes.

The next type of message is the one seen when the candidate gathering process is over
and we have the list, to be sent back towards the origin node. Its fields are those present in a join
message, with the addition of the list of nodes selected as candidates.

The fourth message type is the one used in the cluster forming process. It contains the
basic four fields of the Join message, with the additional fields of the list of nodes selected as
members of the cluster, plus the payload of the OVF file that will initiate the cluster's virtual
machines.

The final message type is employed after, and as a reply for a successful join request. It
contains much more information than the previous messages. It contains the identifiers of each of
the immediate neighbor nodes, plus the boundaries of space assigned to this node. The message
counter is also present for simulation and evaluation purposes.

4. Evaluation

To evaluate our application, we need to demonstrate that it correctly satisfies its
requirements, and in an efficient manner, both in terms of achieving its goals and in doing it as
effectively as possible. We begin by analyzing the system's behavior in simulated scenarios (as
realistically as possible in a large population) , and show that the results match the expected
outcome for the proposed architecture as a whole, as well as for each of its components and
message protocols.

Join and leave

In the first test, we measured the number of messages taken for any node to join the
network overlay when the number of nodes is maintained, for several sizes of the overlay. As we
can see in Figure 4, the distribution of message counts fits very similar to a logarithmic expansion,
which is coherent with the expected outcome of Ω (n 1/d) where n is the number of nodes present in
the overlay and d the number of characteristic axis used, which in our case is 4. The leave process
is analogous to the join process. The node in question sends a message to a known node, which
then relays it to the neighbor nodes until it reaches the nodes that will then be involved in the
partition (or merge) action.

Figure 4: Number of messages taken for a Join message

X axis: Size of the network overlay, Y axis: Number of messages taken

However, in reality networks are not as stable, specially in the case of the internet, which
is the main network we aim our architecture for. To more correctly estimate the system's behavior in
a network where nodes can (and will) join and leave in a way we cannot predict, a test was

prepared in a network with nearly constant joins and leaves. For the vast majority of of cases, the

behavior will be exactly equal to the previous cases. However, in the rare case that one of the
nodes in the path the message should travel is disconnected from the network after the message is
emitted and before it reaches that point in the path (or the destination node), the message will have
to be resent. The message first takes the path back to the origin node, starting from the node that
detected the leaving node, and the origin node will again transmit the message.

Candidate gathering

The process for finding candidates that fit the specifications of the request requires the
exchange of more messages. In general, it can be divided into three independent phases.

First, the node generating the request will send messages to the ideal node in each of the
axis representing the four characteristics present in the system. This increases the number of
messages by a factor of four, but also ensures a larger diversity among nodes selected as
candidates.

After each of these nodes receives the message, the second phase consists in starting a
small controlled flooding routine to each of its neighbor nodes, repeating the process until each
node has obtained a certain number of candidates (which is determined in the configuration file, for
example, 32 candidates).

In the final phase, each of the four nodes then sends a message to the requesting node
containing the candidate lists found independently. The first and last process are quite similar to the
handling of a join or leave message. The collection of nodes requires a fixed number of messages,
so it can be considered a constant value. This would lead us to conclude that the sum of these
processes is O (n 1/d), where d is the number of axis, which in our case is four, which once again is
the expected result, in line with common scalability criteria.

In Figure 5 we can see the distribution of messages in the candidate gathering process for
a candidate list depth of 4.

Figure 5: Number of messages taken for a candidate gathering message

X axis: Size of the network overlay, Y axis: Number of messages taken

Dynamic cluster forming

The final type of message interaction implemented by our architecture is the cluster
creation message which occurs after the nodes which will be part of the virtual cluster (either as
controller or regular cluster members) are selected. This message is similar to a join or leave, but
only slightly larger in size. Since we are only concerned with the number of messages exchanged
for now, we will focus on that aspect and examine each message's size in the following
subsections.

Figure 6 displays the average number of messages required in the final phase to establish
a cluster. In this case, we used candidate depth = 4 and cluster size = 4 (3 slave + 1 controller).

Figure 6: Number of messages taken for a cluster forming message

X axis: Size of the network overlay, Y axis: Number of messages taken

Size of the local data

We must also determine how much space is required of each node in order to maintain
the overlay's integrity and the system's functionality. With our architecture, we require only that each
node knows the location of each neighboring node in each axis, plus the space the current node is
assigned to (possibly an extra neighbor in each direction to speed-up recovery when the neighbor
fails). This means a node needs a total of 8 variables of type INT (2 for each axis) and 8 variables
of type CANNode (again, 2 for each axis). This brings the total space assigned to information about
the overlay to 100 bytes.

Of course, in addition to this space, each node also needs to store its own attributes in
memory, which can be done with 4 more “int” variables, or 132 bits, for a total of 932 bits or 117
bytes.

5. Related work

We have examined how our system performs in isolation, but an important part of a
system's viability is how it compares to other similar systems in existence. We will perform this
comparison focusing on analysis of each system's properties with the aid of some quantitative data.

Message routing

System Type of network Number of

hops

How many nodes

receive the message

Gnutella[4] Unstructured Variable All connected to the

super-peer

Chord[2] Ring-like topology O (log N) Message target only

Pastry[5] Self-correcting

proximity network

O (log N) Message target only

CAN[1] N-dimension space O (N 1/d) Message target only

Being a system based on a modified CAN, our message routing follows mostly the same
rules. A direct comparison shows that systems based on chord and pastry architectures scale
slightly better with the size of the network overlay. Unstructured peer-to-peer based systems will
scale much worse.

In practical terms, one could expect numbers in the millions of nodes without noticeable
performance issues. A network overlay of 1 million would cause our system to take in average a
number of messages in the mid-thirties, which when compared to a number of around 23 for a
10000 node network means that with an increase in network size of 100 times would only lead to an
increase of 52% in the average number of hops taken to deliver a message.

Figure 19: Comparison of message routing in different systems

Size of Local State

In the case of Chord-based systems, a node must maintain a finger table containing m
entries as node descriptors. Considering that Chord's network overlay supports a number of nodes
of 2m.[2]

From this information we realize that, unlike our system, Chord requires increasing local
space of each node as the network size increases, while our system maintains its required size.

Our system needs to store exactly two neighboring nodes for each axis. Considering we
use four different characteristic axes, we could consider that for any network with more than 256
nodes, our system occupies less space. For a network of 1 million nodes, Chord will require 20
node identifiers, while our system will continue using only 8.

6. Conclusion

We present in this paper a system that can overcome the obstacles preventing the
common user from fully using clustering tools, a system capable of efficiently locating remote
resources, setup specialized clusters and allow a high degree of control to the user, in the form of
quality-of-service metrics that specify in fine-grain exactly the characteristics that such a cluster
needs to best fit the application being ran. This system performs this in over a peer-to-peer overlay
of nodes in order to allow for greater scalability with a growing number of nodes, as well as faster
resource discovery.

Our evaluation methods, to which we subjected the system and architecture, measured
its performance both in isolation as well as when compared to other systems. As expected, even
though the number of messages required for each of the phases of request handling grew with the
overlay size, its growth was much slower than the growth of the network itself. In fact, at 250 000
nodes in the network, we were seeing around 25 messages for a typical message routing from one
node to another, meaning 0.01% of the size. As the number of nodes in the overlay increases, we
will notice even higher efficiency by our system. This indeed demonstrates that our system can
scale very efficiently with the overlay size, which is one of the main requirements and expectations
we had about the system.

The local size, while for a smaller number of nodes present in the overlay is slightly bigger
than the space required for systems like Chord or Pastry, does not grow significantly at all with the
number of nodes in the overlay, which is a substantial advantage over other systems.

All points above could be considered essential for any system to be considered viable and
worthy of deploying after implementation. We ensured that our system is up to the task with several
evaluation measures that proved how well the protocol performs, both in scalability, speed and
effectiveness in handling resources.

Acknowledgements: This work was partially supported by national funds through FCT –
Fundação para a Ciência e a Tecnologia, under projects PTDC/EIA-EIA/102250/2008 and PEst-
OE/EEI/LA0021/2011.

Bibliography
1: S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A scalable content-

addressable network, 2001, Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications, ACM

2: I Stoica, R Morris, D Karger, and M Kaashoek, Chord: A scalable peer-to-peer lookup

service for internet applications, 2001, Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer communications,

ACM

3: STIMI, K.O., CLUSTER COMPUTING, 2008, COCHIN UNIVERSITY OF SCIENCE

AND TECHNOLOGY

4: Gnutella , http://rakjar.de/gnufu/index.php/Main_Page

5: Rowstron, A; Druschel, P, Pastry: Scalable, decentralized object location and routing for

large-scale peer-to-peer systems., 2001, Microsoft Research LTD

6: Silva, JN; Ferreira, P; Veiga, L, Service and resource discovery in cycle-sharing

environments with a utility algebra, 2010, 2010 IEEE International Symposium on Parallel

& Distributed Processing (IPDPS), IEEE

7: Nisan, N, The POPCORN Market – an Online Market for ComputationalResources,

1998,

