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Abstract.  The importance of cycle-sharing and distributed computing has grown 
in the past years and the amount of internet traffic over peer-to-peer networks is 
increasing. The methods that peer-to-peer applications use to maintain scalability 
and perform their goals can be used to improve upon current grid systems to 
facilitate the creation and maintenance of dynamic virtual clusters allowing them to 
grow further or perform better. We intend to draw upon the strengths of P2P and 
grid  systems to  create  a  system capable  of  dynamically  creating  or  adjusting 
virtual  clusters  for  the  execution  of  distributed  applications,  thus  allowing  for 
higher cluster availability as well as lessen the wasted computational resources in 
the form of idle machines.
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1. Introduction

In the ever-evolving modern world, one of the few constants in the computer industry has 
been  growth.  This  growth  manifests  itself  both  in  terms  of  computationally  more  demanding 
applications as well as a higher availability of computational resources. 

One would think these patterns of growth would neatly overlap, yet that is not so. A high 
amount of computer cycles are being wasted at all times all over the world, and yet, at the same 
time there are applications that have a strict demand for computational power that requires more 
than a simple computer's effort to satisfy.

Over the length of the past 20 or so years, several approaches to this problem have been 
created.  Initially  the  only  solution  to  most  heavy computational  processes  were  to  have  them 
handled by supercomputers and mainframes, but this solution was both expensive and inherently 
generated inefficiency.

With the passing of time the concept of a computational cluster became the norm. A group 
of  machines,  similar  both in hardware and software specifications, but also connected by high-
throughput and high-availability networks, dedicated to the solving of a common problem through 
the uses of distributed and shared computing mechanisms as one of its roles.

However, while locally capable of providing for the needs of any entity requiring such form 
of computational power, it still failed to provide a solution except for the most wealthy and stable of 
companies[3]. The common user was still without a solution, the vast resources of the internet were 
still not being used, and above all, there was still a high amount of computational power that was 
wasted, not only during idle times in computer clusters, but also in the raw untapped power of 
millions of personal computers and other computational devices (such as the ever popular portable 
cellphones, hand-held devices, etc.) all over the world connected to the internet[6].



Several partial solutions appeared with the passing of time, each focusing on a certain 
approach and method to solve the challenges required to implement a platform that would both 
maximize computational power available as well as minimize resource waste. 

The concept of distributed and parallel computing itself is one of the interesting points that 
evolved  alongside  the  clustering  paradigm.  Cycle-sharing  and  Grid  computing  are  different 
approaches to this concept, each with their own goals and constraints. These constraints that still 
prevent the general public from having access to higher computational tools via the use of clusters. 
In a way, public computing and computer clusters are still like two islands in a sea, totally separate, 
due to the lack of tools to overcome such constraints. Should a tool arise that could allow for the 
dynamic creation and alteration of clusters based on a peer-to-peer network, we could finally reach 
the goal  of  allowing  the general  public  to  use the computational  power  of  clusters,  due to the 
advantage of P2P architectures.

2. Architecture

The solution  presented  in  this  paper  focuses  on  three  individual  parts.  WE intend to 
provide a more detailed look into both our system and the inherent protocol it uses to achieve its 
goals. In general our system will provide means for a new node to join a network in order to be able 
to utilize resources on remote computers as well as allow his own resources to be used by remote 
requests.

Network System

Figure 1: System overview

The figure above shows the overview of our system and a general outline of the  several 
actions in a typical request. Our system is based on a structured peer-to-peer network of nodes. We 
chose this type of network to allow quick and efficient management of resources and swift routing to 
specific nodes, thus promoting scalability and still maintaining the decentralized architecture. 

The system will allow a machine to join a network by simply knowing the IP or address of 
a node already in the network (as depicted in Figure 2 below), and accommodates the new node in 
its  overlay.  Both  the  departure  of  a  node  (loss  of  available  resources)  and the  joining  of  one 
(increase in available resources) will be propagated throughout the network in a controlled way in 
order to not flood the system. 



Figure 2: The entering of a node into the network.

Resource Discovery Protocol

The actual submission of a job request can be accompanied by several quality of service 
metrics. A request can be made for a cluster of a specific number of computers and values to each 
of the QoS metrics can be provided with the request to later allow our resource discovery protocol 
to refine the list of candidates and correctly estimate the machines that best fit the requirements of 
the request. 

After a request is submitted, our resource  protocol sets in, working on the node network 
maintained by our system and will  attempt to locate resources that either fit  the request's QoS 
metrics completely, or at least locate machines that fit the request (either fully or only partially), all 
the  while  maximizing  their  adaptation  to  the  request's  specifications.  Considering  the 
heterogeneous nature of the nodes in the network, it is most likely that only partial matches can be 
found[5], but the capacity for this protocol to maximize the cluster's capacities to fit the request are 
a crucial point. Thus, we allow each node to, upon request submission, specify minimum thresholds 
for both partial and global resource satisfaction.

The protocol itself is modeled in the form of PeerSim classes and its work has two steps. 
In the first step, the protocol must locate a list of potential candidates from within the nodes present 
in the network and grade them considering the metrics provided in the request. It must then select 
the best candidates from among that list in the second step.

The candidate gathering is carried out by examining every node in a certain neighborhood 
of the node in each of its axis (which represent node characteristics) that has the ideal value in 
three steps. The depth at which each of these four nodes tries to find viable candidates is specified 
in the request. 

In the first step, the requesting node sends a message to each of the ideal nodes in each 
of  the four axial  characteristics.   These traverse the overlay via the usual  CAN method, being 
relayed to the neighbor node that is in the direction the message needs to take.

After this message is delivered to the nodes in whose neighborhood we will check for 
candidates,  the second step begins.  Each of  these nodes will  begin gathering candidates in  a 
vicinity around it that is limited by the request's specifications. This is handled by the node looking 
at a number of candidates in both directions of each axis of the CAN N-dimensional space. After 
getting the number of candidates requested by the originating node in each of these directions, the 
final step begins.



 This third and last step starts by compiling the list of the nodes chosen as candidates. 
After  this  list  is  compiled,  the  proper  message  is  sent  back  to  the  originating  node  with  the 
information of each potential candidate.

Cluster setup

After the machines that will be a part of the cluster are selected, our virtual appliance will 
then be deployed onto each of those machines. This application will be in the form of a small virtual 
machine  capable  of  receiving  configuration  instructions  as  an  argument,  and  will  be  also 
responsible for the execution of the code. 

In  each  request,  the  configuration  instructions  will  be  responsible  for  setting  up  the 
execution of the clustered application code and contain instructions to connect to a set of machines 
that will be part of the cluster. After the cluster is fully deployed and set up, the execution of the job 
begins. Upon its completion, the node chosen as controller must collect the results and deliver them 
to the machine that initiated the request.

Figure 3: Virtual appliance deployment

3. Implementation

To implement our resource discovery protocol we used an approach similar to that of CAN 
where resources are located by obtaining from the resource key its respective set of coordinates in 
the N-Dimensional space. After obtaining the resource's coordinates, getting to the resource is a 
question of forwarding the request to the neighboring node that is  in the direction of the set of 
coordinates. 

This approach will require a strict placement of resources. In order for the location to help 
us, we must have to set similar machines in similar spaces, thus ensuring that should we require, 
for example, several machines with 3000 MHz of CPU, 2 GB of available RAM and low latency 
between them, we can know where in the space to look. We ensure this by making sure each node 
is set to handle a section of the CAN-space related to its characteristics upon joining.



In  order  to  avoid  two machines falling  into  the  same space,  there must  be  a certain 
degree of leeway in the exact coordinates. Two machines with the exact same components might 
end up at coordinates X,Y,Z and X+-α,Y+-β,Z+-γ. We will now provide a simple depiction of the 
progress of the resource location protocol in this approach.

Resource discovery

-Locate the coordinates of a resource from its characteristics and key;
-From the local node's coordinates, locate the neighboring node that lies in the direction of the 
coordinates of the resource we obtained in the previous step;
- If the resource is located in that node's space, stop, if not, we locate the next neighboring node 
that is in the direction of the coordinates;
- We then repeat the previous two steps

Cluster Deployment

To  facilitate  cluster  setup  we  will  adhere  to  the  Open  Virtualization  Format  (OVF) 
standard. This will allow us to utilize .OVA files that can be customized from preexisting templates in 
order to allow us to refer our virtual appliance to resources located on virtual disks containing the 
application  to  be  executed.  These  packages  can  be  extended  with  configuration  data  to  be 
accessed by the virtual machine post-deployment.

Messages used

In our system there are several types of messages, each with their own structure. The first 
one encompasses the Join and Leave messages. Within this message we find the identifiers of 
both origin and target node, as well as the type definition and, for simulation purposes, the counter 
for the number of hops, which would not be present in the final system.

The second type  of  message is  the  one used in  the  candidate  gathering  process.  It 
contains the same fields as the above message, with the additional information for the maximum 
depth at which we will look for candidates around each of the four “optimal” nodes.

The next type of message is the one seen when the candidate gathering process is over 
and we have the list, to be sent back towards the origin node. Its fields are those present in a join 
message, with the addition of the list of nodes selected as candidates.

The fourth message type is the one used in the cluster forming process. It contains the 
basic four fields of the Join message, with the additional fields of  the list  of  nodes selected as 
members  of  the  cluster,  plus  the  payload  of  the  OVF  file  that  will  initiate  the  cluster's  virtual 
machines. 

The final message type is employed after, and as a reply for a successful join request. It 
contains much more information than the previous messages. It contains the identifiers of each of 
the immediate neighbor nodes, plus the boundaries of space assigned to this node. The message 
counter is also present for simulation and evaluation purposes.



4. Evaluation

To  evaluate  our  application,  we  need  to  demonstrate  that  it  correctly  satisfies  its 
requirements, and in an efficient manner, both in terms of achieving its goals and in doing it as 
effectively as possible. We begin by analyzing the system's behavior in simulated scenarios (as 
realistically  as  possible in  a large  population)  ,  and show that  the  results  match the  expected 
outcome for the proposed architecture as a whole, as well  as  for  each of  its  components  and 
message protocols. 

Join and leave

In the first test, we measured the number of messages taken for any node to join the 
network overlay when the number of nodes is maintained, for several sizes of the overlay. As we 
can see in Figure 4, the distribution of message counts fits very similar to a logarithmic expansion, 
which is coherent with the expected outcome of Ω (n 1/d) where n is the number of nodes present in 
the overlay and d the number of characteristic axis used, which in our case is 4. The leave process 
is analogous to the join process. The node in question sends a message to a known node, which 
then relays it to the neighbor nodes until  it  reaches the nodes that will  then be involved in the 
partition (or merge) action. 

Figure 4: Number of messages taken for a Join message

X axis: Size of the network overlay, Y axis: Number of messages taken

However, in reality networks are not as stable, specially in the case of the internet, which 
is the main network we aim our architecture for. To more correctly estimate the system's behavior in 
a  network  where nodes  can (and will)  join  and leave in  a way we cannot  predict,  a  test  was 

prepared in a network with nearly constant joins and leaves. For the vast majority of of cases, the 

behavior will be exactly equal to the previous cases. However, in the rare case that one of the 
nodes in the path the message should travel is disconnected from the network after the message is 
emitted and before it reaches that point in the path (or the destination node), the message will have 
to be resent. The message first takes the path back to the origin node, starting from the node that 
detected the leaving node, and the origin node will again transmit the message.



Candidate gathering

The process for finding candidates that fit the specifications of the request requires the 
exchange of more messages. In general, it can be divided into three independent phases. 

First, the node generating the request will send messages to the ideal node in each of the 
axis  representing  the four  characteristics  present  in  the  system. This  increases the number  of 
messages  by  a  factor  of  four,  but  also  ensures  a  larger  diversity  among  nodes  selected  as 
candidates.

After each of these nodes receives the message, the second phase consists in starting a 
small controlled flooding routine to each of its neighbor nodes, repeating the process until each 
node has obtained a certain number of candidates (which is determined in the configuration file, for 
example, 32 candidates). 

In the final phase, each of the four nodes then sends a message to the requesting node 
containing the candidate lists found independently. The first and last process are quite similar to the 
handling of a join or leave message. The collection of nodes requires a fixed number of messages, 
so it can be considered a constant value. This would lead us to conclude that the sum of these 
processes is O (n 1/d), where d is the number of axis, which in our case is four, which once again is 
the expected result, in line with common scalability criteria. 

In Figure 5 we can see the distribution of messages in the candidate gathering process for 
a candidate list depth of 4.

Figure 5: Number of messages taken for a candidate gathering message

X axis: Size of the network overlay, Y axis: Number of messages taken

Dynamic cluster forming

The  final  type  of  message  interaction  implemented  by our  architecture  is  the  cluster 
creation message which occurs after the nodes which will be part of the virtual cluster (either as 
controller or regular cluster members) are selected. This message is similar to a join or leave, but 
only slightly larger in size. Since we are only concerned with the number of messages exchanged 
for  now,  we  will  focus  on  that  aspect  and  examine  each  message's  size  in  the  following 
subsections.



Figure 6 displays the average number of messages required in the final phase to establish 
a cluster. In this case, we used candidate depth = 4 and cluster size = 4 (3 slave + 1 controller).

Figure 6: Number of messages taken for a cluster forming message

X axis: Size of the network overlay, Y axis: Number of messages taken

Size of the local data

We must also determine how much space is required of each node in order to maintain 
the overlay's integrity and the system's functionality. With our architecture, we require only that each 
node knows the location of each neighboring node in each axis, plus the space the current node is 
assigned to (possibly an extra neighbor in each direction to speed-up recovery when the neighbor 
fails). This means a node needs a total of 8 variables of type INT (2 for each axis) and 8 variables 
of type CANNode (again, 2 for each axis). This brings the total space assigned to information about 
the overlay to 100 bytes. 

Of course, in addition to this space, each node also needs to store its own attributes in 
memory, which can be done with 4 more “int” variables, or 132 bits, for a total of 932 bits or 117 
bytes.

5. Related work

We have examined how our  system performs in  isolation,  but  an  important  part  of  a 
system's viability is how it compares to other similar systems in existence. We will  perform this 
comparison focusing on analysis of each system's properties with the aid of some quantitative data.

Message routing

System Type of network Number of 

hops

How many nodes 

receive the message

Gnutella[4] Unstructured Variable All  connected  to  the 

super-peer



Chord[2] Ring-like topology O (log N) Message target only

Pastry[5] Self-correcting 

proximity network

O (log N) Message target only

CAN[1] N-dimension space O (N 1/d) Message target only

Being a system based on a modified CAN, our message routing follows mostly the same 
rules.  A direct  comparison shows  that  systems based on chord and pastry architectures scale 
slightly better with the size of the network overlay. Unstructured peer-to-peer based systems will 
scale much worse.

In practical terms, one could expect numbers in the millions of nodes without noticeable 
performance issues. A network overlay of 1 million would cause our system to take in average a 
number of messages in the mid-thirties, which when compared to a number of around 23 for a 
10000 node network means that with an increase in network size of 100 times would only lead to an 
increase of 52% in the average number of hops taken to deliver a message.

Figure 19: Comparison of message routing in different systems

Size of Local State

In the case of Chord-based systems, a node must maintain a finger table containing m 
entries as node descriptors. Considering that Chord's network overlay supports a number of nodes 
of 2m.[2]

From this information we realize that, unlike our system, Chord requires increasing local 
space of each node as the network size increases, while our system maintains its required size. 

Our system needs to store exactly two neighboring nodes for each axis. Considering we 
use four different characteristic axes, we could consider that for any network with more than 256 
nodes, our system occupies less space. For a network of 1 million nodes, Chord will require 20 
node identifiers, while our system will continue using only 8.



6. Conclusion

We present  in  this  paper  a  system  that  can  overcome the  obstacles  preventing  the 
common user  from fully  using  clustering  tools,  a  system capable  of  efficiently  locating  remote 
resources, setup specialized clusters and allow a high degree of control to the user, in the form of 
quality-of-service metrics that specify in fine-grain exactly the characteristics that such a cluster 
needs to best fit the application being ran. This system performs this in over a peer-to-peer overlay 
of nodes in order to allow for greater scalability with a growing number of nodes, as well as faster 
resource discovery.

Our evaluation methods, to which we subjected the system and architecture,  measured 
its performance both in isolation as well as when compared to other systems. As expected, even 
though the number of messages required for each of the phases of request handling grew with the 
overlay size, its growth was much slower than the growth of the network itself. In fact, at 250 000 
nodes in the network, we were seeing around 25 messages for a typical message routing from one 
node to another, meaning 0.01% of the size. As the number of nodes in the overlay increases, we 
will  notice even higher efficiency by our system. This indeed demonstrates that our system can 
scale very efficiently with the overlay size, which is one of the main requirements and expectations 
we had about the system.

The local size, while for a smaller number of nodes present in the overlay is slightly bigger 
than the space required for systems like Chord or Pastry, does not grow significantly at all with the 
number of nodes in the overlay, which is a substantial advantage over other systems. 

All points above could be considered essential for any system to be considered viable and 
worthy of deploying after implementation. We ensured that our system is up to the task with several 
evaluation measures that proved how well  the protocol performs, both in scalability,  speed and 
effectiveness in handling resources.  
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