
Presença: Aplicações Conscientes de

Contexto

João Manuel Pinto Peixoto

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática e de

Computadores

Júri

Presidente: Professor José Delgado
Orientador: Professor Lúıs Veiga
Vogal: Professor Pável Calado
Acompanhante: Engenheiro Paulo Chainho

Outubro 2009

2

i

Abstract

Social interaction through information technology is become prevalent, namely in working
and project environments where team work is decisive.

The objective of this project is to create a context-aware framework capable of gathering
context and address information regarding a multiplicity of contact/context sources, to
reason based on such information and provide the user with the best action available for the
desired interaction.

During the project we analysed state of the art techniques for context representation and
reasoning, social groups interaction and transformation methodologies (ETL).

An architectural design is presented based on which the project was developed, taking
into consideration the information architecture as well. Specific implementation-related
considerations had to be addressed, mainly due to company constraints, along which some
technology-related issues had to be solved.

The evaluation of the project proved the importance and relevancy of the developed
system, as well as its compliance and performance. There is still room for future work,
regarding duplicate detection among other subjects, but the achieved results are already
very encouraging.

Resumo

Interacção social através das tecnologias de informação é cada vez mais dominante, nomeada-
mente em ambientes colaborativos em que o trabalho em equipa é fundamental.

O objectivo deste projecto consiste no desenvolvimento de uma framework capaz de
obter informação de contexto e endereços provenientes de uma multiplicidade de fontes,
interpretar e processar essa informação sugerindo ao utilizador a melhor acção dispońıvel no
contexto da interacção presente.

No desenvolvimento do projecto foram estudadas diversas técnicas actuais referentes
à representação e interpretação de contexto, interacção com grupos sociais assim como
metodologias de transformação de informação (ETL).

A arquitectura na qual se baseia o projecto é também apresentada, não negligenciando a
arquitectura de informação. São apresentadas considerações espećıficas da implementação,
principalmente devido a normas empresarias impostas, assim como alguns problemas e al-
ternativas relacionadas com limitações tecnológicas.

A avaliação do projecto demonstrou a sua importância a relevância, confirmando o seu
desempenho e utilidade. Ainda existe espaço para trabalho futuro, nomeadamente na área
de detecção de duplicados entre outros, contudo, os resultados obtidos só por si muito
encorajadores.

ii

Contents

1 Introduction 1

2 Related Work 5

2.1 Context-Awareness . 5

2.1.1 What is context? . 7

2.1.1.1 Common understanding of context 7

2.1.1.2 Human perspective of context 7

2.1.1.3 Computer perspective of context 8

2.1.2 Context representation . 11

2.1.2.1 Key-Value models . 11

2.1.2.2 Mark-up scheme models . 11

2.1.2.3 Graphical models . 12

2.1.2.4 Object-oriented models . 13

2.1.2.5 Logic-based models . 13

2.1.2.6 Ontology-based models . 13

2.1.2.7 Analysis . 13

2.1.2.8 Proposed representation . 14

2.1.3 Context sensing . 15

2.1.4 Context reasoning . 16

2.1.4.1 Passive context-awareness . 17

2.1.4.2 Active context-awareness . 17

2.1.4.3 User-defined context-awareness 18

2.1.4.4 Infrastructures . 18

2.1.5 Discussion . 19

2.2 Social Groups . 20

2.2.1 Architecture . 21

2.2.2 Protocols . 22

2.2.3 Information Acquisition . 22

2.2.4 Real world examples . 23

2.2.4.1 GTalk . 23

2.2.4.2 Sapo Messenger . 23

2.2.4.3 MSN . 23

2.2.5 Discussion . 24

iii

iv CONTENTS

2.3 Extract, Transform, and Load (ETL) Information 24

2.3.1 Object Identification . 25

2.3.2 Conflict Resolution . 28

2.3.3 Rule-Based Systems . 29

2.4 Analysis . 29

3 Funambol Background 31

3.1 Contact Format . 32

3.2 System Internals . 33

3.3 Discussion . 34

4 Architecture 35

4.1 Interfaces . 36

4.1.1 Social Group Connector Interface . 37

4.1.2 Contact Source Interface . 37

4.1.3 Context Source Interface . 38

4.1.4 Context-Aware Group Enabler . 39

4.2 Components . 40

4.2.1 GTalk, Sapo Messenger and MSN Connectors 40

4.2.2 Social Group Aggregator . 41

4.2.3 Funambol Connector and Funambol Connector Sync Source 41

4.2.4 Upcase Connector . 41

4.2.5 Context Aware Group Enabler System 42

4.3 System Entities . 42

4.3.1 Contact Types . 42

4.3.2 Addresses . 42

4.3.3 Context . 43

4.3.4 Entity . 44

4.3.4.1 Customer . 44

4.3.4.2 External Entity . 44

4.3.5 Group Element . 44

4.3.6 Group . 45

4.3.7 Internal and Aggregated Context . 45

4.3.7.1 Group Element Perspective 46

4.3.7.2 Group Perspective . 46

4.4 Generic Interfaces . 46

4.4.1 Integration with JNDI . 48

4.4.2 Social Group Interface . 49

4.4.3 Contact Source Interface . 50

4.4.4 Context Source Interface . 50

CONTENTS v

5 Implementation 51

5.1 Social groups . 51
5.1.1 Obtain Information . 51
5.1.2 Use Information . 52

5.2 Technology-related Aspects . 52
5.3 Persistence . 56

5.3.1 Object-Relational Mapping . 56
5.3.2 Persistence Framework . 57
5.3.3 Database Management Systems . 58

5.4 Rule-based Inference and Rule Management 58

6 Evaluation 61

6.1 Test Environment . 62
6.2 Loading . 62
6.3 Contact Sources Processing . 64
6.4 Context Gathering . 64
6.5 Connectors Persistence . 64
6.6 Group Persistence . 64
6.7 Duplicate Detection . 65
6.8 Global Analysis . 65

7 Conclusions 67

vi CONTENTS

Chapter 1

Introduction

It’s undeniable the wide spread of mobile devices, from cellphones to laptops, PDAs or hand-
helds. This devices have the capability of easing everyday’s life tasks, organize schedules,
share information, allow anywhere-anytime communication and so on. This detachment
from fixed locations has however major implications in software design. How can we un-
derstand the global behaviour of multiple, concurrent, independent and self-capable devices?

We do understand the behaviour of each component in isolation, however we do not

understand the global interaction of components[2, 9], which places new challenges upon us
[45]:

• Scalability

• Adaptability

• Context-Awareness

Pervasive (or ubiquitous) computing emerged from these new challenges[56]. Perva-
sive computing consists of countless ”pervasive” devices equipped with limited resources
and computing power that in conjunction support end-to-end applications which far exceed
their own capabilities.

The complexity of an application is directly proportional to the difficulty to manage
it, therefore, the growth of pervasive computing is pushing software engineers towards the
threshold of incapability to manage such systems.

Context-aware software aims to simplify the management of simple systems (which re-
quire user-intensive interactions) or complex systems that require intensive management.
But what exactly is a context-aware system? Context-aware systems are no more than
applications, either in a network or in a device, that are aware of their surrounding envi-
ronment and through which they are capable of adapting their operations dynamically and
automatically in order to ease our interaction [20, 30, 5, 6].

1

2 CHAPTER 1. INTRODUCTION

A main issue arises: how to define context. The easiest resource of definitions (dictionary)
states that context is

”The situation within which something exists or happens, and that can help
explain it.”1

In computer science such a definition is rather generic, and several tries have been made
in order to achieve a common, acceptable definition which addresses context-aware problems.

Many definitions are, in opposition, problem-specific and therefore unusable in a generic
context-aware system problem.

To better understand what context is (and through this method attain a consensual
definition) we will address the human behaviour.

As sentient beings, humans are context aware. We perceive our surrounding environment
and we use such information to decide the best action/reaction to take in a given interaction.
The capability of using information from different sources, produce knowledge about the
environment and use previously acquired information (through experience or education) in
order to take the best action, is a major advantage towards the usage of context. We will
analyse in more detail de human-computer context usage.

No doubt humans are much more complex than machines, but still machines are very
complex and as stated before, computer systems are drastically increasing in complexity. If
these systems were able to perceive, process and use context, their inner capabilities would
be greatly expanded and the need for human intervention either reduced or simplified. An
automatic pilot being able to adapt its flight pattern given a malfunctioning engine, a med-
ical monitoring device capable of anticipating a heart attack. The options are endless.

The environment where this project was developed is similar in the basic characteris-
tics. Communications can take place in a wide range of manners, using several different
technologies, means of communication and communication end-points. The problem is to
understand the best way to communicate. This process, although simple to do for a human
when it comes to a small number of contacts, is rather complex when dealing with a large
number of them.

However, as Alexander Pope said, ”To err is human”. Information perceived and/or
inferred is not always trustworthy. Sometimes we are not able to obtain all the information
required to make a proper decision. Decisions solely based on guessing and minor observation
can lead to a major crisis. Other mistakes have far less impact on a global scale, and are
purely language ambiguity related, for instance: ”I saw a man in the hill with a telescope”
mean that I used the telescope to see the man? Or the other man had the telescope and I
saw him with it?

The same happens in computer science. Computers perceive context in several different
ways (see 2.1.3) but, as well as humans, perceived information has a level of confidence.

1Cambridge Advanced Learner’s Dictionary

3

Does a context-aware system have the authority or the legitimacy to take actions on our
behalf?

Context can be distinguished in two different source types. User-defined context and
perceived context. As for the first one, user is responsible for defining and updating its own
context, but do users perform such actions? Maintaining a coherent information database?
The answer is ”mostly no”, not in all devices/systems at least. An autonomous system
capable of updating the user’s context information would keep it up-to-date, on the other
hand it would take away control from the user. Most users however, though feeling a control
decrease, still prefer such approach [7], but normal users are not conscious enough to com-
prehend the extension of delegating personal decisions to a context-aware system, privacy
and security also add to this problem. Bellotti et al. strongly argue that human ultimate
control should be always assured [9].

Despite the problems of user-defined context, merging different perceived contexts and
infer a ”general context”, or be capability to dynamically conclude the user’s context can
provide a system with powerful intelligent communication tools.

The aim of this project is to provide a framework capable of gathering context from
different sources, understand that levels of confidence are associated with such context and
infer, based on dynamically defined rules, the best way to communicate with an user.

Through this dissertation we will approach several aspects related to this work.
In section 2 we will analyse existing approaches, ranging from context definition (see

2.1.1), where we will discuss the concept of context per se. Human and computer consid-
erations will be taken into account. Context representation will also be address (see 2.1.2)
through a series of comparisons.

Context sensing (2.1.3) will focus on techniques and used approaches to gather contex-
tual information, distinguishing between direct (perceived) context and indirect (inferred)
context.

We will then approach reasoning (see 2.1.4) for a more detailed overview of the (pre)processing
possibilities for a context-aware system. Existing infrastructures (see 2.1.4.4) will also be
covered at the aim of defining the most efficient and effective design paradigms.

Our architecture for the problem in hands (see 4) will follow, providing the basic concepts
related to it. We will important implementation aspects (see section 5) addressing some
technology-related issues (see section 5.2) in the process.

To finalise we will assess the performance of the system (see section 6) through which
conclusions are made (see section 7).

4 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

The project presented in this work is built on several different technologies, areas and tech-
niques. Context is without a doubt the biggest dimension of this work, it represents infor-
mation and meta-information about an entity, information which can be used to enrich an
application, providing a wider range of functionalities. It is however a complex subject. We
will focus on several aspects of context, from its meaning, to its representation and reasoning.

Along side context, social groups represent a very popular source of information. It is
undeniable the massive usage of these services, which make them an important source both
for information, endpoint addresses and valuable users. We will focus on the architecture
and protocols of these systems, their interaction with the project and the information avail-
able through them.

Having several different sources of information, extraction, transformation, and loading
(ETL) of such information becomes a very important problem that must be addressed. This
problem will be approached by analysing different merging techniques, conflict resolution
approaches along side with available paradigms.

2.1 Context-Awareness

Any entity, being a person, object or place, has associated information, whether referring
to activity status or room color, even object temperature. Obviously not all information
regarding an entity is relevant, but we will address this issue later on this document, what is
important however is that in the right environment, this information does indeed provide to
a system parameters that can be used to better solve a problem, more efficiently and more
adequately given the current context of the participants.

In figure 2.1 may we understand that context information allows an application to take
the adequate action automatically and autonomously, in the example, selecting the most
appropriate network connection.

It is undeniable however that this subject has several complex dimensions. Throughout

5

6 CHAPTER 2. RELATED WORK

this chapter we will discuss the definition of context itself, hence allowing for the distinc-
tion between relevant and irrelevant information, enabling the system to focus on what is
important.

Figure 2.1: Example of Context-Aware Choice

We will then discuss context representation techniques, trying to achieve a representation
that is able to encapsulate the existing relevant information, enabling actions towards such
information and avoiding data loss.

Context reasoning, a more complex subject, will then be discussed. Existing techniques
of inference will be addressed as well as different levels of context reasoning, ranging from
active, passive and informative approaches.

We will then finalise with deployed infra-structures that already work with context in
order to gather relevant solutions that might be adapted to the project’s problem.

2.1.1 What is context?

When we discuss pervasive computing and context-aware systems, we must first decide what
context is in fact. Although it is a dictionary word, its meaning is not so straightforward.
Is every information regarding a particular entity relevant at any time? Can we even gather
every information regarding an entity? How can we determine which information should we
gather and use?

In this chapter we will deepen this subject, first by analysing human behaviour and hu-
man usage of context. As sentient beings, human interactions are a rich source of information
and guidelines on how to perceive and use context.

We will follow with the computer needs and capabilities and we will try to assess a
common definition of context, and ultimately how can humans and computers exchange
information.

2.1.1.1 Common understanding of context

If we ask ”what context is” most people will say ”something that describes a domain, situa-
tion or environment”, or ”situation where something happens”, but those people show great
difficulty in defining context with words.

In the dictionary context is defined as

2.1. CONTEXT-AWARENESS 7

”The situation within which something exists or happens, and that can help
explain it.”1

It is a good definition, but rather generic. In order to properly design and create context-
aware systems, we must decide which information is relevant to an interaction and which is
not.

To achieve this common understanding of context we are going to analyse the human
perspective of it.

2.1.1.2 Human perspective of context

If we look around and pay attention to human interactions, we will find that humans are
indeed context aware. We can infer intentions and make decisions based on the surrounding
environment and personal variables.

Considering two different case studies (we will analyse this matter later in this section)

• Situation 1: Alice asks Bob to close the door. Bob will (correctly) assume that the
door to be closed is the one from the room where they both stand in.

• Situation 2: Charlie is driving. When he comes across a broken vehicle, and knowing
that no other car is coming in the opposite direction, he knows that he may cross the
lane in order to proceed his march.

This ability to use implicit situational information makes us quite successful at conveying
ideas to each other and reacting appropriately, broadening the bandwidth of a conversation
or the range of an action[18].

We must address other components of context. The most desirable way would be to
find a directly mappable structure to computer science. To obtain such structure in an
understandable perspective, human perception and usage of context can be assessed through
several human capabilities which grants us context abilities[13]:

• Ontology sharing, meaning that humans are able to share communication languages
and vocabularies.

• Sensing, as humans being capable of perceiving their surrounding environment through
sensing organs.

• Reasoning, meaning that humans are able to make sense out of perceived information,
already known information, experience and social conditions.

As we can see, not all context is well interpreted or even relevant. Analysing again
situation 1 (see 2.1.1.2) we can assume that location was undeniably part of the context.
Although, if we analyse a slightly different interaction, for example, Alice’s tone of voice
when asking the question was somehow dishonest and her intention (perceivable through
that tone of voice) was to get ride of Bob, sending him to close a door elsewhere. We then

1Cambridge Advanced Learner’s Dictionary

8 CHAPTER 2. RELATED WORK

must assume that the tone of voice is considered context as well. In many cases the robust-
ness of human-to-human communication is based on the implicitly introduced contextual
information, such as gestures, body language, and voice[49].

The mentioned implicit information is probably the most difficult to map to machines,
mainly due to the fact that we have difficulties to understand the extent to which we use
such implicit knowledge. We must however understand that basic object information (color,
position, status, etc.) are not enough to decide or take actions upon.

2.1.1.3 Computer perspective of context

In computer science the definition of context has been widely discussed. We will analyse
several approaches to defining such concept and hopefully provide an acceptable, simple and
correct definition.

First definition attempts

Content-aware was first defined by Schilit and Theimer[47], refereing to context as

”The location, identities of nearby people, objects and changes to those ob-
jects”

As location being the most widely used property in context-aware systems [5, 54, 4, 15], a
natural reaction is to try to define context through such a property, although, as previously
mentioned (see 2.1.1.2), context is a much more comprehensive concept, even including
implicit information.

Ryan et al. took a more concrete approach, but still fixed in a relatively strict set of
variables[41], defining context and context-awareness as

”The ability of the computer to sense and act upon information about its
environment, such as location, time, temperature or user identity”

In a first attempt to solve this dilemma, Dey in its Cyber desk project states[17]

”Context includes, but is not limited to, information the user is attending to,
emotional state, focus of attention, location and orientation, date and time of
day, objects and people in the user’s environment”

Some authors try to define context through synonyms, Hull et al. [26] understood context
as

”The aspects of the current situation”

We then fall into the common understanding of context (see 2.1.1.1), being too generic
to directly design and/or prototype a context-aware system. Brown found a particularly
interesting definition [10]

”Context consists of a combination of elements of the environment that the
user’s computer knows about”

2.1. CONTEXT-AWARENESS 9

Alice Bob Door Room

Context Information

Clothing Clothing Size Color
Mood Mood Color Temperature
Age Age Mechanical/Automatic Number of doors
Etc. Etc. Etc. Etc.

Table 2.1: Context information based on Dey’s definition

Proposed definition

Context is all about the whole situation relevant to an application and its set of users. We
cannot enumerate which aspects of all situations are important, as this will change from
situation to situation. Dey produced a very accurate definition of context that takes into
account these concerns[18].

”Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves.”

It becomes much easier to assess context information in a specific situation/interaction
using this definition, and through that assessment designing and prototyping of applications
are largely empowered, but still, we must be able to identify what is important for each
interaction, rather than using all information available, even if it is specific to an entity.

Lets analyse situation 1 again (see 2.1.1.2) using Dey’s definition. The actors of this
interaction are (roughly) Alice, Bob, the door and the room itself. These entities have
properties such as age, mood, color, clothing and so on. On table 2.1 we summarize a
possible set of information. Among all data available, some are truly important to the
interaction, like Alice’s mood, the number of doors on the room, just to point out a few.
But is Bob’s clothing relevant for instance? Lets study another, slightly different, interaction.

• Situation 1b, Alice asks Bob to adjust the air-conditioning temperature level.

Situation 1b requires a completely different set of information, for example Alice’s cloth-
ing. The room’s color plays no part on it.

A limitation found in Dey’s definition consists on neglecting what is considered contextual
information (or simply entity’s information) and context per se. In a more formal way, we
have:

Context = ∃i,a,b(Interaction(i), Actor(a), Actor(b)) ∧

∧(∀infoA=Information(a) ∧

∧∀infoB=Information(b)

Useful(a, i, infoA, InfoB) ∧ Useful(b, i, infoA, infoB))

InfoA and infoB are simply every information regarding a and b respectively. It is
precisely the distinction between general information and context that we believe to be

10 CHAPTER 2. RELATED WORK

important for context-aware systems design and prototyping.

Context = ∃i,a,b(Interaction(i), Actor(a), Actor(b)) ∧

∧(∀infoA⊆Information(a) ∧

∧∀infoB⊆Information(b)

Useful(a, i, infoA, InfoB) ∧ Useful(b, i, infoA, infoB))

Through our definition, infoA and infoB, for a specific interaction i, consist of a subset

of a’s information and b’s information respectively, opposing to the whole set. Therefore,
our definition of context is

Context is relevant information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves. Relevant information means information that, given a
specific interaction between a user and an application, is useful and of meaning
to that interaction and intervening actors.

The main difference consists in distinguishing information and context. Although an en-
tity can be described in different levels, not all information is useful on a specific interaction.

There are immediate consequences in system performance. Processing a complete set of
information opposed to a sub-set of said information. Although an overhead exists due to
the distinction that has to be made in order to only use relevant information, the end-result
can be more efficient.

2.1.2 Context representation

A context model is needed to define and store context data in a machine processable form.
To develop flexible and usable context ontologies that cover the wide range of possible con-
texts is a challenging task[5].

Whilst combining information, context representation must also be dynamic, both refer-
ring to extensibility and interoperability.

Local processing capabilities must be taken into consideration as well. Devices that
interact with the system might not possess the computing power required by some context
representations or associated processing tasks.

In any interoperable system standards enable a well-defined, commonly accepted way of
communication between different systems.

These represent the dimensions that must be taken in consideration.

Existing techniques

Strand and Linnhoff-Popien[52] researched this particular issue, establishing a group of used
representations and their target areas.

2.1. CONTEXT-AWARENESS 11

We will analyse different representation models, namely the key-value model, mark-up
scheme model, graphical model, object-oriented model, logic-based model and ontology-
based model.

2.1.2.1 Key-Value models

These models represent the simplest data structure for context modelling. They are fre-
quently used in various service frameworks, where the key-value pairs are used to describe
the capabilities of a service. Service discovery is then applied by using matching algorithms
which use these key-value pairs.

Schilit et al. developed a context-aware system where context information entered into
the computer is tagged with context keys facilitating future retrieval [48].

The key-value modelling approach is frequently used in distributed service frameworks
(e.g. Capeus[44]).

The services themselves are usually described with a list of simple attributes in a key-
value manner, and the employed service discovery procedure (e.g. SLP, Jini[33]).

2.1.2.2 Mark-up scheme models

All mark-up based models use a hierarchical data structure consisting of mark-up tags with
attributes and content. Profiles represent typical mark-up-scheme models. Typical exam-
ples for such profiles are the Composite Capabilities/Preference Profile (CC/PP) [53] and
User Agent Profile (UAProf) [55], which are encoded in RDF/S. It has been a largely ex-
perimented approach, Capra et al used an mark-up approach, in their scenario, middleware
defines the grammar, that is the rules that must be followed to write profiles, in an XML
Schema; the application designer then encodes the profile in an XML document that is a
valid instance of the grammar. Every change done later to the profile must respect the
grammar, and this check can be easily performed using available XML parsers[12].

Held[23] assessed several requirements to a comprehensive context representation. His re-
quirements were based on the argument ”Context information is gathered, stored, and in-
terpret at different parts of the system. A representation of the context information should
be applicable throughout the whole process of gathering, transferring, storing, and inter-
preting of context information”. Many of these requirements were already mentioned on
the beginning of this section, structure, interchangeability, composability/decomposability,
being uniform, extensible and standardised.

The Centaurus project[29] provides an infrastructure and communication protocol for pro-
viding ’smart’ services to mobile devices. It uses XML for defining ontologies and describing
properties and interfaces of Services. As this is already being widely used, their approach
was belived to be helpful in integrating Centaurus with already existing systems. The infor-
mation flowing in the system is strictly in the form of CCML (Centaurus Capability Mark-up
Language) which is built on top of XML.

12 CHAPTER 2. RELATED WORK

The stick-e project[10] in term found a solution for portability of information using SGML,
a mark-up language based on which XML was developed.

In this project a document is an ordered set of SGML-encoded notes. Two approaches
have been explored in order to represent the document. In the first one the notes were stored
end-to-end within a single file (with a starting and matching end tag). The second approach
stored a note per file, being the main document a simple list of file names, representing the
notes that encompass it, thus a single copy of a note being easily shared between several
different documents.

This discussion is important because presents us with a trade-off between the two points
of view, extra flexibility versus extra complexity [11]

Other examples exist beside the ones presented in this section [52][16][42][27].

2.1.2.3 Graphical models

The Unified Modeling Language (UML) can be used to specify information related to the
design of context-aware services, it is suitable for modelling context. Various approaches
exist where contextual aspects are modelled by using UML.

Sheng and Benatallah[50] defined a language for the model-driven development of context-
aware Web services based on the Unified Modelling Language.

Another modelling approach by Henricksen et al.[24] was based on two factors, firstly the
models of context currently in use in context-aware systems typically lack formality and
expressiveness, and are primarily concerned with representing context in a form suitable
for applications to query, secondly commonly used conceptual modelling approaches, such
as UML and ER (entity-relation model) are not well suited to capture special features of
context information. They proposed an extension to the Object-Role Modelling (ORM) in
order to represent and design context and context-aware systems.

2.1.2.4 Object-oriented models

Modelling context by using object-oriented techniques offers to use the full power of object
orientation (e.g., encapsulation, re-usability, inheritance). Existing approaches use vari-
ous objects to represent different context types (such as temperature, location, etc.), and
encapsulate the details of context processing and representation.

Access to the information and the context processing logic is provided by well-defined
interfaces. Hydrogen [25] uses such an object-oriented example.

2.1.2.5 Logic-based models

Logic-based models have a higher degree of formalism. Typically, facts, expressions and
rules are used to define a context model. A logic based system is then used to manage the
aforementioned terms and allows to add, update or remove new facts.

2.1. CONTEXT-AWARENESS 13

The inference (also called reasoning) process can be used to derive new facts based on
existing rules in the systems. The contextual information needs to be represented in a formal
way as facts.

One of the first approaches was published by McCarthy and Bucca [34].

2.1.2.6 Ontology-based models

Ontologies represent a description of the concepts and relationships. Therefore, ontolo-
gies are a very promising instrument for modeling contextual information due to their high
and formal expressiveness and the possibilities for applying ontology reasoning techniques.
Various context-aware frameworks use ontologies as underlying context models, such as
OpenSocial(not confirmed).

Öztürk and Aamodt’s starting point for a context ontology[3] was that problem solving
is a deliberate process in which two basic elements are the agent and the external situation
in which the problem solving occurs, ontologies were the best approach to this matter.

2.1.2.7 Analysis

Key-value models are clearly limited, in representation, influencing information richness
and quality, failing to address ambiguity, requiring that each system knows about the data
structure and how to use it. Partial validation should be highly desirable[52].

As for mark-up scheme models, the partial validation represents a strong concern. Val-
idation is possible through schemas and validation tools, such as XSD or DTD, but dis-
ambiguation of context information must be done at application level. A comprehensive
scheme definition is a step towards a high level formalism and thus may be used to deter-
mine interoperability[52].

The graphical approach comprehends the structure of the contextual information, fa-
cilitating applicability, although merging different models represents a limitation to some
extent. Such models are mainly used for human interpretation of the problem.

Object-oriented modelling approaches are capable of a high interoperability, and inherent
to the Object-Oriented paradigm, extension can be handled in a linear way.

Logic based models are very difficult to maintain, due to their extremely high level of
formalism and applicability can be considered as a major drawback since in ubiquitous
computing, logic reasoners are usually not available.

Ontologies can address most of interoperability issues. Validation (partial or total),
formality, unambiguity and applicability make ontologies the most promising context repre-
sentation technique.

2.1.2.8 Proposed representation

It is undeniable that today’s approaches of interoperability are mainly based on standards
(HTML, XML, etc.) and thus we aim to use such a standard definition. Among the

14 CHAPTER 2. RELATED WORK

most promising alternatives, ontology models and markup scheme models, there are well-
established standards such as OWL2 and PIDF3.

From the existing context representation techniques (see 2.1.2) markup models and ontol-
ogy models can represent information in a structured, well defined manner, which positively
collides with our aim. Representation of context must be directly connected to the envi-
ronment where the context-aware system will act. Not all representations can be computed
in any device, logic-based representations for instance require a high debit (compared to a
cellphone) processing capability, hence the strong connection between representation and
environment. Ubiquitous computing environments (see chapter 1) may contain devices with
rather limited resources (computing power, memory) therefore a light processing method
must be used.

Ontologies require the ability to understand the meaning of relations between entities.
The application (wherever it resides) must be capable of interpreting this representation.
Markup scheme model fulfils our needs to represent and share context maintaining a de-
gree of formality capable of assuring integrity and relieving possible resource-constrained
devices from additional processing actions. Markup scheme models do required validation
(achievable through schemas) and reasoning at application level, although a limitation in
situations where computing power is an issue, in ubiquitous computing environments such
disassociation between information gathering and information reasoning might be desirable.

Being context highly dependent on the given interaction (see 2.1.1.3) extensibility must
also be assured. Therefore, RPID4 an extension to PIDF provides us with a standard
representation of context/presence information which can be easily created, validated, shared
and extended.

2.1.3 Context sensing

Context sensing is a delicate subject. Context information can be defined in two different
types[20]: explicit information, obtained through direct observation or behaviour analysis
and explicit user definition, or implicit information, inferred from known information, or
perceived through indirect behaviour.

A direct mapping between the human capability of sensing context and the computer
capabilities (see 2.1.1) is hardly simple. Explicit context can be somehow obtained, for in-
stance, using sensors. A person uses his vision/hearing to determine the location of another
person. A computer can, through a GPS device, determine the same information. When
it comes to implicit information, mood for instance, there is a completely different level
of complexity. A person might be able to perceive another person’s mood through his/her
facial expression, blushing or general posture. A computer might be able to use face recogni-
tion techniques and biometrical sensors to obtain such information, but still, such variables
change from person to person and are not always usable.

2OWL Web Ontology Language: http://www.w3.org/TR/owl-features/
3Presence Information Data Format - RFC 3863: http://www.ietf.org/rfc/rfc3863.txt
4Rich Presence Extensions to the Presence Information Data Format - RFC 4480:

http://www.ietf.org/rfc/rfc4480.txt

2.1. CONTEXT-AWARENESS 15

Implicit context should be user-defined as much as possible, or liable for user revision.
Chen presents three approaches on how to acquire context information on computer science
[14].

• Direct sensor access. This approach is often used in devices with sensors locally
built in [30]. The client software gathers the desired information directly from these
sensors, i.e., there is no additional layer for gaining and processing sensor data. Drivers
for the sensors are hard-wired into the application, so this tightly coupled method is
usable only in rare cases. Therefore, it is not suited for distributed systems due to its
direct access nature which lacks a component capable of managing multiple concurrent
sensor accesses.

• Middleware infrastructure. Modern software design uses methods of encapsulation
to separate e.g., business logic and graphical user interfaces[19]. The middleware based
approach introduces a layered architecture to context-aware systems with the intention
of hiding low-level sensing details. Compared to direct sensor access this technique
eases extensibility since the client code has not be modified anymore and it simplifies
the reusability of hardware dependent sensing code due to the strict encapsulation.

• Context server. The next logical step is to permit multiple clients access to remote
context sources. This distributed approach extends the middleware based architecture
by introducing a managing remote component. Gathering sensor data is moved to this
so-called context server to facilitate concurrent multiple access. Besides the reuse of
sensors, the usage of a context server has the advantage of relieving clients of resource
intensive operations. As probably the majority of end devices used in context-aware
systems are mobile gadgets with limitations in computation power, disk space etc., this
is an important aspect. In return one has to consider about appropriate protocols,
network performance, quality-of-service parameters etc., when designing a context-
aware system based on client-server architecture.

When analysing sensors themselves we will most commonly think about little electronic
gadgets, like movement detectors or light sensors. Some sensors however might be virtual.
A simple application that monitors a computer’s network connectivity is also a sensor. We
must then analyse how can sensors be divided and understand which information can be
gathered from each type. Concerning the way data is captured, sensors can be classified in
three groups[28, 5]:

• Physical sensors. The most frequently used type of sensors are physical sensors.
Many hardware sensors are available nowadays which are capable of capturing almost
any physical data.

• Virtual sensors. Virtual sensors source context data from software applications or
services. For example, it is possible to determine an employee’s location not only by
using tracking systems (physical sensors) but also by a virtual sensor, e.g., by browsing
an electronic calendar, a travel-booking system, emails etc., for location information.

16 CHAPTER 2. RELATED WORK

Other context attributes that can be sensed by virtual sensors include, e.g., the user’s
activity by checking for mouse-movement and keyboard input.

• Logical sensors. These sensors make use of a couple of information sources, and
combine physical and virtual sensors with additional information from databases or
various other sources in order to solve higher tasks. For example, a logical sensor can
be constructed to detect an employee’s current position by analysing logins at desktop
PCs and a database mapping of devices to location information.

Context-data acquisition is very important, since it predefines architectural parameters
of the system, at least to some extent [14]. Our work will focus on middleware infrastructures
and context server throw multiple sensor types.

Another concern we must address is the pre-processing of context-data. We will address
this matter on following chapter, context reasoning.

2.1.4 Context reasoning

Useful information is the basis of a good decision. We have analysed different approaches
to gathering data (see section 2.1.3) but in order to achieve our goal we must consider how
raw the data is. Furthermore several conclusions might be inferred from lower level data.
Data obtained through a location sensor (GPS for instance) might return the coordinates
of the target. Although correct such information may be way too low-level for application
direct usage, which in most cases wants to know the room/street the target is in. Other
situation relies on assuming that Bob is taking shower analysing his location (bathroom),
water heater status (on) and door status (closed).

An extra level of information retrieval must then be considered before reasoning about the
information itself. Pre-processing of contextual information applies aggregation/composition
of lower level context, hence raising the results of the sensor layer to a higher abstraction
level information [5].

This ”extra” layer is often used in context servers rather than in applications themselves,
since this encapsulation advances the reusability and, therefore, eases the development of
client applications.

When a computer system knows something (often a lot) about a user, it might have
enough information to take actions on behalf of that user. When should an application
take such actions? We will analyse different approaches to reasoning with different levels of
”intrusion”.

2.1.4.1 Passive context-awareness

There are genuine risks involved in allowing the system to take the initiative in any activity
in which human participants are involved [40]. As we see, there is simply too much vari-
ability as to what should be done, given different conditions, for designers to successfully
model appropriate outcomes in advance. This may not be problematic when the output of
the application simply represents the location of a sensed object. Things get much more

2.1. CONTEXT-AWARENESS 17

complicated when applications take it upon themselves to interpret human activity and ”do
things” for people by invoking services[9].

Bellotti et al.[7] claim that user intervention must always be required in order to a
context-aware system to be accepted[9]. Through a series of experiments, Barkhuus et al.
studied human reactions facing different context-aware systems.

Passive context-awareness addresses Bellotti’s human concerns, allowing applications to
directly gather and reason about contextual information but, rather that automatically and
dynamically taking an action[20], they simply suggest that action.

Our approach must address such human concerns, although we aim for a deeper automa-
tion.

2.1.4.2 Active context-awareness

Gu et al.[20] on the Service-Oriented Context-Aware Middleware (SOCAM) consider context-
aware services as agents (hopefully through standards, such the ones defined by FIPA5,
and/or adequate languages, such as KQML6), applications and services that make use of
different levels of context in order to adapt the way they behave according to the current
context. This process does not take into account direct user intervention aiming for highly
adaptable services during their life-cycle.

It is undeniable the diminishing of user control through this approach and users do feel
that decrease, but still, most users prefer computers to take action on their behalf, after a
suitable learning period adequate to the application purpose[7].

In our work we intend to composite passive and active context-awareness, providing
services capable of automatically taking actions but based on user defined rules.

2.1.4.3 User-defined context-awareness

Another possibility of reasoning about contextual information is simply based on learning
patterns.

After a learning period the system might know enough in order to provide the user with
relevant information. Google Inc., the famous search engine, analysis search patterns and
provide advertisement links accordingly. Analogously, Kawsar et al. use everyday objects,
which maintain their original capabilities, to obtain the users context. Based on user pre-
defined information (profession, interests, etc.) the AwareMirror can provide to the user
relevant information (news, traffic conditions) on an usual object (mirror) while he/she is
brushing his/her teeth (toothbrush is moving)[30].

Common social group’s applications, such as MSN R©7, empower users with explicit
context definition capabilities. Based on this attributions the application adapts (though
slightly) its behaviour: a user’s context of ”Busy” avoids sound playing from the application.

5Foundation for Intelligent Physical Agents: www.fipa.org
6Knowledge Query and Manipulation Language: www.cs.umbc.edu/kqml/kqmlspec/spec.html
7Microsoft R© Network

18 CHAPTER 2. RELATED WORK

IRC8 allows for the definition of ”away messages”, providing additional information to
possible incoming communications.

2.1.4.4 Infrastructures

To realize new applications for new computing technologies there is a need for supporting
software infrastructure to catalyse their development and operations[38].

Much of the earliest work focused on location transparency, i.e. seamlessly providing
the same communications, computation, and resources that the user is offered on their
desktop computing environments. Noble et al. [46] suggest a more realistic proposal, called
application-aware adaptation, and a concrete implementation of their ideas in the Odyssey
API, an extension to the UNIX operating system. The aim of this system was to relieve
the user from explicit intervention due to communication limitations. For example, a video
player application may adjust the frame rate, image size, number of colours, etc. of the
video stream to make the use of the available computing and communication resources.

This ability to adapt the behaviour in runtime leads us neatly on to software infrastruc-
ture for context-awareness, where it is this very adaptation and reaction to the environment
of use that is the center of interest. First tries where made by Schilit el al. [48] achieving a
framework which served as basis for many applications, namely location centric yellow pages
and location-based file browser.

Gu et al.[20] claim a much more abstract approach, arguing that a common context model
(see 2.1.2) should be the basis for a context-aware system, since context-sources range from
a wide variety of possibilities (see 2.1.3). As stated by Strand and Linnhoff-Popien [52], on-
tology’s properties address dissemination and interpretation of context, being the advised,
though not compulsory, suggestion of Gu et al.. Their solution, on an other level, consists
of a set of services that perform context acquisition, discovery, interpretation and dissemi-
nation.

A main distinction between authors reside on the location of the several components.
Dey and Sohn [19] try a decoupled solution, leaving context gathering and interpretation to
pervasive devices themselves, though requiring a centralized location server.

SOCAM framework approach requires a centralized context server. This type of servers
relieve less powerful devices from additional (pre)processing, but single-point-of-failure issues
might arise.

2.1.5 Discussion

The definition of context is cause for discussion. Analysing the various aspects of context and
situation where context plays an important role, we were able to understand the relevance
of certain information relative to the situation in hands. Not all information is context in
every situation.

8Internet Relay Chat

2.2. SOCIAL GROUPS 19

Complexity Effort required Interoperability Computer
to extend Understandable

Key-Value Low High None Yes
Mark-up Median Low Total Yes
Graphical Median Low Total No

Object-Oriented Median Low Partial Yes
Logic-based Very High Very High Unknown Yes

Ontology High Median Total Yes

Table 2.2: Context Representation models analysis

Key- Mark- Graphical Object Logic- Ontology
value up Graphical Oriented based Ontology

Bucca et al.[34] X
Capeus[44] X

Centaurus[29] X
Eclipse (plugin) 1 X

Hydrogen[25] X
Jini[33] X

OpenSocial 2 X
SLP[33] X

StarUml 3 X
Stick-e[10] X

Table 2.3: Context Representation models and client applications analysis

Similarly, context representation has several different possible approaches (see table 2.2),
each of which with different degrees of complexity and richness. Key-value pair represen-
tation, although very limited when representing context, is the most simple representation
technique, enough for specific applications. Mark-up models represent the most extensible
and standardised approaches to the representation of context information. Graphical models
although easily extensible are complex to map into a computer understandable language.
Object-Oriented models are dependent on the implementation language in order to achieve
interoperability. Logic-based models are too complex, requiring specialised qualifications
to develop, being also hard to maintain and extend. Finally, ontologies are very similar to
mark-up models, the only difference being an additional overhead when extending, mainly
due to restrictions validation.

Reasoning based on context must be ruled by privacy policies. There are several differ-
ent levels of ”intrusion” when speaking of context-aware applications. We analysed this
levels and understood their purpose, based on the application finality.

2.2 Social Groups

The definition of group can be stated as two or more humans interacting with each other
and having one or more aspects in common (expectations, obligations, identity, etc.).

20 CHAPTER 2. RELATED WORK

However a true group exhibits some degree of social cohesion and is more than a simple
collection or aggregation of individuals[21]. Characteristics shared by members of a group
may include interests, affiliation, hobbies, etc.

A social group as we see it in the project environment is precisely a group with char-
acteristics in common that communicate with one another through virtual means.

Why are social groups so important? Most people have used or do use social groups fre-
quently. It is visible that the growth of these networks is not slowing at all, meaning that
new users are connecting through this means everyday.

On a company’s perspective it is important to consider the Metcalfe’s law9 which states
that the value of a telecommunications network is proportional to the square of the number
of connected users. Interacting among them consequently adds value to the system.

Other perspective is related to the richness of the information that such groups can provide,
both in terms of address information (since every user on these networks have an endpoint
from where they communicate) as well as context information, due to the fact that most
social groups have a built-in presence system10 , which provides availability information
(context) to the project’s system. It is important however to mention that this presence
system is not completely trustworthy, since a user’s given presence might not accurately
describe the user’s real presence.

We will now analyse social groups architecture, having in mind the pull-based and push-
based models, followed by a closer over the most common protocols used. Information
acquisition will be addressed too, followed by an analysis of real world examples, GTalk,
Sapo Messenger and MSN, ending with an overhaul discussion.

2.2.1 Architecture

Most social groups such as MSN R©and GTalk R©follow the same basic architecture (see picture
2.2) . First of all there is an authentication system, imperative to accommodate multiple
users as well as to maintain confidentiality.

A preamble phase often occurs to determine protocol versions, presence state, desired
name aliases and so forth. After the mentioned preamble the contact list of the owner is
obtain from the server and each entry on that list is contacted, either using a pull-based
or a push-based model, in order to obtain the most up-to-date information regarding said
entries. This information ranges from presence information, aliases changes, personal data
changes etc.

Pull-based model

The pull-based model consists of a client periodically contacting the information provider
for new, up-dated information. This model relieves the information source from managing

9Metcalfe’s Law: en.wikipedia.org/wiki/Metcalfe’slaw
10MSN: http://msnpiki.msnfanatic.com/index.php/MSNP rotocolV ersion8

2.2. SOCIAL GROUPS 21

Figure 2.2: MSN Messenger Architecture

entities which are following its state changes, however this approaches brings forward an
additional network overhead.

Push-based model

The push-based model is roughly the opposite of the pull-based model. A client only registers
itself in the information source. The latter is responsible to contact each client (listener)
when a state change occurs, usually asynchronously.

2.2.2 Protocols

Although there are opensource well-defined protocols for social group communication not all
providers use the same protocol. Commercial reasons or performance factors might cause
such heterogeneity, it is imperative however to understand the most common protocols
features.

We will analyse some different protocols based on the services that use them, such as
Microsoft R©MSN Messenger, Google’s GTalk and Sapo Messenger.

MSN

Microsoft Network R©(MSN) uses a proprietary protocol. Their protocol, MSNP (Microsoft
Notification Protocol) has been revised several times over the years and contains all basic
commands required to initiate and manage an instant conversation and presence information.

22 CHAPTER 2. RELATED WORK

MSNP, as mentioned, is a closed protocol and therefore all information available about
it was obtain through reverse-engineering11.

GTalk

Google Talk R©(GTalk) uses a standard open-source protocol known as Extensible Messag-
ing and Presence Protocol (XMPP) which allows applications to manage instant messaging,
presence, multi-party chats, voice and video calls, collaboration and many more 12 13 14 15

16 17 18.

Sapo Messenger R©uses XMPP as well.

2.2.3 Information Acquisition

Social groups to some extent can be seen as endpoints of communication. A person using
such service has a new way of communicate and receive communications. This presents an
interesting addition to the system, a new, intensively used and quite reliable way of reaching
a person. This however represents only the address side of the conversation.

Presence is, by definition, a form of context (see 2.1.1) which could be and is used by
our system to determine not only where the user is present (in terms of address) but also
where is he/she available, can he/she be disturbed or should alternative ways of reaching
him/her be assessed.

When we described the basic social group architecture we mentioned ”contact list”. Any
person who is subscribed to a social group service has indeed a contact list which contains
every person that the user wants to be aware of. This represents another valuable feature
of social groups, being able to discover endpoints of communication regarding people that
might not even know of the existence of this project’s system and even acquire presence
information about them.

This asset allows the system to work with entities (see section 4.3.4) regardless of their
awareness of our system, the only requirement being the person who initiates the desired
action to have enough privileges on our system.

2.2.4 Real world examples

It is undeniable the quantity of social group’s services that exist today (AIM, IRQ, MSN,
GTalk, MSN, IRC, etc.), being evident that we couldn’t interact with every single one

11MSN: http://msnpiki.msnfanatic.com/index.php/MSNP rotocolV ersion8
12XMPP Core - RFC 3920: http://www.ietf.org/rfc/rfc3920.txt
13XMPP IM - RFC 3921: http://www.ietf.org/rfc/rfc3921.txt
14XMPP CPIM - RFC 3922: http://www.ietf.org/rfc/rfc3922.txt
15XMPP E2E - RFC 3923: http://www.ietf.org/rfc/rfc3923.txt
16XMPP URN - RFC 4854: http://www.ietf.org/rfc/rfc4854.txt
17XMPP ENUM - RFC 4979: http://www.ietf.org/rfc/rfc4979.txt
18XMPP URI - RFC 5122: http://www.ietf.org/rfc/rfc5122.txt

2.2. SOCIAL GROUPS 23

(due to time and relevance restrictions), however one service would not be enough either.
Extensibility and scalability are two very important conditionals that rule our system. This
conditionals were indeed met and will be discussed further on.

2.2.4.1 GTalk

GTalk R©is Google’s approach to instant messaging. one of the main features about this ser-
vice is the capability of interacting with it through several different means, from web-based
applets to standalone desktop applications, cellphone widgets or even email messages.

Since it uses XMPP (see section 2.2.2) it is even possible for a person to develop their
own application to interact with the service.

2.2.4.2 Sapo Messenger

Like GTalk R©, Sapo Messenger R©uses the XMPP protocol, meaning that it is not required
to use the Sapo Messenger application to interact with the service.

One interesting feature however about their application is the capability of using one
application to interact with both Sapo Messenger and MSN.

2.2.4.3 MSN

MSN R©is without a doubt is the most used social group and instant messaging service.
Although as mentioned above their protocol is proprietary, there are ways of interacting
with this service that we explored.

2.2.5 Discussion

Social groups are roughly based on the same architecture. Although protocols might vary
from service to service, the set of information provided by this services is the same: address
information (communication endpoint), and context information (presence).

Address information is not as rich as a address book analogous information, it provides
however a communication end-point to the user. On the other hand, context provides (with
its associated confidence) a new source of information regarding the user’s availability or
even activity.

All analysed social group services (MSN, GTalk and Sapo Messenger) represent real world
networks. We have assessed the protocols that they use along side the importance that each
one represents to this project.

As we have analysed, Metacalf’s law proves the value of such systems upon the present
project.

24 CHAPTER 2. RELATED WORK

2.3 Extract, Transform, and Load (ETL) Information

Information integration is today one of the most important problems of information technol-
ogy. This is caused both by the abundance of available information inside an organization
through ever-improving network capabilities and from outside organizations through Web
services, portals etc., and by the increasing awareness of added value through information
integration. The evidence for the latter reason is seen in data warehousing activities, instal-
lation of intra-organizational Web services etc [35].

Information integration projects and products have in common the use of some form of
mapping from one or more data source schemata to a target schema [51]. Merged infor-
mation should however be governed by two main metrics, completeness and correctness

[35].

Completeness

Completeness of merged data is desirable to ensure that no data or relationship among data
is ignored, when merging it from multiple sources. That is, all data stored about an object
in all sources should be considered in some form in the target, as long as the target schema
can store this data.

For instance, two sources reporting the same author of a book, identified by its ISBN,
enforce that this person is indeed the author of that book. Sources complement each other if
they store data about different attributes of the same object. For instance, a source storing
only the publisher of a book complements a source storing only the number of pages of the
same book. Sources conflict if they store different values for the same attribute of the same
tuple. For instance, a source storing 205 as the number of pages of a book conflicts a source
storing 150 as the number of pages of the same book.

Ensuring completeness is, in effect, the problem of aggregating attribute values from different
tuples into a final value that appears in the merged tuple [35].

Correctness

Correctness of merged data is desirable to ensure that the combined data adheres to (possibly
implicit) primary key constraints in the target database. That is, even though the data
sources store multiple tuples about the same real world object, only one tuple about this
object should appear in the target. To this end, one must recognize multiple tuples about
the same real world object and assign a common ID. If there is a globally consistent ID,
such as the URL or social security number, that is used and provided by all sources, this
task is simple: Tuples with the same ID represent the same object and can be merged. In
the absence of such an ID, object identification techniques can be employed [31].

These techniques find duplicates automatically by evaluating the data that is available.

2.3. EXTRACT, TRANSFORM, AND LOAD (ETL) INFORMATION 25

Data sources can overlap in two dimensions: extensionally and intentionally [35]. The
extensional overlap between two sources is the set of real world objects that are represented
in both sources. For instance, multiple sources can store information about the same book.
The intentional overlap between two sources is the set of attributes both sources provide.
For any given book, different sources can store the same information about it, such as title
and author.

To accommodate both types of overlap and to integrate data in a meaningful and useful
way, identical objects represented in different sources must be recognised (object identifica-
tion), and any data conflicts among values must be resolved (conflict resolution).

2.3.1 Object Identification

Merging data from different sources requires that different representations of the same real
world object be identified as such [31]. This process is called object identification. Object
identification is difficult, because the available knowledge about the objects under considera-
tion may be incomplete, inconsistent, and sparse. A particular problem occurs if no natural
identifiers (IDs) exist. For instance, the URL of a Web page is a natural ID for the page.
A meta-search engine can use the URL of reported hits to find and integrate duplicates.
On the other hand, a used car typically has no natural ID other than the registered license
plate for instance and sources about used cars do not store an ID. An integrated information
system for used cars has no easy way of identifying a specific car being advertised in different
data sources.

Object identification in the absence of IDs, which is essentially the same problem as dupli-
cate detection, record linkage, or object fusion [37][36], is typically approached by statistical
methods. Our approach is no different.

For simplicity purposes we hereby assume that the following statistical methods, as de-
scribed next, are applied to a small set of attributes, such as name and local uri (Local
Uniform Resource Identifier).

Levenshtein Distance Algorithm

Levenshtein Distance Algorithm is a metric for measuring the amount of difference between
two sequences of characters (i.e., the so called edit distance) [32]. By amount of difference
we understand the number of operations (inserting, changing or removing a letter) in order
for the first string to become equal to the second string.

Considering two strings, plate and plot . The first step is to determine the length of each
string, in this example the former has length of five whilst the latter has length of four. This
represents the dimensions of the result matrix, 5 by 4.

The main logic of the algorithm is as follows, for each letter in the first string (i repre-

26 CHAPTER 2. RELATED WORK

p l a t e
0 1 2 3 4 5

p 1 0 1 2 3 4
l 2 1 0 1 2 3
o 3 2 1 1 2 3
t 4 3 2 2 1 2

Table 2.4: Levenshtein algorithm at work

senting the index of the letter we are analysing at some point) and for each letter of the
second string (j representing the index of the letter we are analysing at some point): if
both letters are equal then the operation cost equals zero, otherwise it equals to one (or the
custom cost for substituting a letter for another one).

In the result matrix, the position (i, j) will contain the minimum value between three
possibilities:

• Adding the cost of an insertion operation to the value present in position (i - 1, j) of
the result matrix

• Adding the cost of a deletion operation to the value present in position (i, j - 1) of the
result matrix

• Adding the cost calculated earlier to the value present in position (i - 1, j - 1) of the
result matrix

Following these steps will fill the result matrix with several values which represent all
the possibilities for editing a string to obtain the target one. Applying this algorithm to our
example (table 2.4) the distance between plate and plot is two.

Since we assumed that every operation had the same cost, this result means that two
operations were necessary for the word plot to become plate. In table 2.4 is an highlighted
”path” that emphasises these operations. The letter ”o” in ”plot” must be substituted with
the letter ”a”, and finally we must insert the letter ”e” at the end of plot.

Although this algorithm does not use any remarkable sophistication it can be used quite
reliably by any system. This raw approach has a space requirement of m x n, being m the
length of the first string and n the length of the second one.

The usefulness of this technique is achieved when used to detect possible duplicate entries.
Although several approaches are possible, a simple one would consist in defining an edition

threshold (for instance 4). Everytime such a threshold were respected, the two strings
involved would be marked or signalled (see section 2.1.4) as referring to the same entity.

Soundex Algorithm

Soundex Algorithm19 is a phonetic algorithm for indexing names by sound. The goal is for
homophones to be encoded to the same representation so that they can be matched despite
minor differences in spelling.

19Soundex Algorithm: http://www.archives.gov/genealogy/census/soundex.html

2.3. EXTRACT, TRANSFORM, AND LOAD (ETL) INFORMATION 27

b voiced bilabial plosive
p voiceless bilabial plosive
f voiceless labiodental fricative
v voiced labiodental fricative

c voiceless palatal plosive
j palatal approximation
g voiced velar plosive
k voiceless velar plosive
x voiceless velar fricative
q voiceless uvular plosive
s voiceless alveolar fricative
z voiceless alveolar fricative

d voiced alveolar plosive
t voiceless alveolar plosive

l alveolar lateral approximation

m voiced bilabial nasal
n voiced labiodental nasal

Table 2.5: Consonants list by pronunciation

The inner workings of this algorithm are rather simple, similarly to the Levenshtein dis-
tance algorithm mentioned earlier.

The Soundex code for a name consists of a letter followed by three numerical digits: the
letter is the first letter of the name, and the digits encode the remaining consonants. Similar
sounding consonants share the same digit so, for example, the labial consonants B, F, P, and
V (see table 2.5) are each encoded as the number 1. Vowels can affect the coding, but are
not coded themselves except as the first letter. However if ”h” or ”w” separate two conso-
nants that have the same soundex code, the consonant to the right of the vowel is not coded.

Summarising the stages of the algorithm, we have:

1. If ”h”, ”w” separate two consonants with the same soundex code, change consonants
to right of the vowel into ”h” until they have the same soundex code.

2. Replace consonants with digits as follows (but do not change the first letter):

• b, f, p and v become 1

• c, g, j, k, q, s, x and z become 2

• d and t become 3

• l becomes 4

• m and n become 5

• r becomes 6

28 CHAPTER 2. RELATED WORK

3. Collapse adjacent identical digits into a single digit of that value.

4. Remove all non-digits after the first letter.

5. Return the starting letter and the first three remaining digits. If needed, append zeroes
to make it a letter and three digits.

”Robert” and ”Rupert” both produce the soundex code ”R163”, while ”Rubin” produces
the soundex code ”R150”.

Both the present methods enable a system to be equipped with basic (although rather
satisfactory) techniques to identify different objects referencing the same entity.

2.3.2 Conflict Resolution

Once different tuples have been identified as representing the same real world object, the
data from them can be merged [35]. In general, a result that is integrated from tuples of
different sources, contains tuples where:

1. The value for some attribute is not provided by any of the sources. Sources may not
provide the value, because they do not store the particular attribute, or because they
have stored a null value for the particular tuple. Because none of the sources provide
a value, the tuple in the result has no value either (null value).

2. The value for some attribute is provided by exactly one source. In this case, there is
also no actual data conflict. When constructing the result, the single attribute value
can be used for the result tuple. If a missing value has the meaning ”not applicable”
instead of ”unknown”, the absence of data can be taken into account as well. For the
remainder, we assume the ”unknown” semantics for null values.

3. The value for some attribute is provided by more than one source. This case demands
special attention, because several sources compete in filling the result tuple with an
attribute value. If all sources provide the same value, that value can be used in the
result. If the values differ, there is a data conflict and a resolution function must
determine what value shall appear in the result table.

2.3.3 Rule-Based Systems

Roughly speaking a rule-based system automates problem-solving know-how, providing a
means for capturing and refining human expertise [22]. Such a system enables an automation
regarding conflict resolution or information merging as well.

Experts tend to express most of their problem-solving techniques in terms of a set of
situation-action rules, and this suggests that rule-based systems should be the method of
choice for building knowledge-intensive expert systems. Our system aims for the general
computer-science related public, thus expertise should not be a requirement. However cus-
tomization capabilities must be provided in order for such general users to change data
perception as they see fit. This is impressively similar to expert systems based on rules.

2.4. ANALYSIS 29

Although many different techniques have emerged for organising collections of rules into
automated experts, all rule-based systems share certain key properties [22]:

1. They incorporate practical human knowledge in conditional if-then rules

2. Their skill increases at a rate proportional to the enlargement of their knowledge base

3. They can solve a wide range of possibly complex problems by selecting relevant rules
and then combining the results in appropriate ways

4. They adaptively determine the best sequence of rules to execute

5. They explain their conclusions by retracing their actual lines of reasoning and trans-
lating the logic of each rule employed into natural language

Hayes-Roth has also determined a set of areas where these systems and the knowledge
contained within could be most useful, including:

1. Specific inferences that follow from specific observation

2. Abstraction, generalization and categorization of given data

3. Etc.

2.4 Analysis

Over this previous chapter, related work (see chapter 2) different aspects of context-awareness
were addressed.

The definition of the concept ”context” itself was the starting point of this chapter, where
we analysed different approaches, starting with the common understanding of the concept
(see section 2.1.1.1). We then evolved to the human perspective of context (see section
2.1.1.2), and how humans perceive and reason with context. The human perspective was
then mapped to computer science and the computer perspective of this information (see
section 2.1.1.3) leading us to the first definitions of context. Our definition itself is based on
a previous definition (see section 2.1.1.3 and 2.1.1.3).

Having a definition of what context is and means, we addressed the information repre-
sentation suitable to store it (see section 2.1.2). Different approaches were analysed, namely
key-value models, mark-up models, graphical and object-oriented models, logic-based models
and ontology ones.

After this analysis we assessed the more suitable representation to the project in hands
(see section 2.1.2.7).

Context sensing was briefly studied (see section 2.1.3) where we analysed different archi-
tectural approaches possible to context-aware applications and scenarios where they are
more effective.

30 CHAPTER 2. RELATED WORK

Context reasoning covered the client-side concerns regarding an automated system tak-
ing actions of behalf of a client (see section 2.1.4). Context-aware applications may have
different levels of pro-activity, namely passive context-awareness, where they roughly act as
a warning system, leaving the ultimate action to the client; active context-awareness, where
the application automatically and autonomously takes an action on behalf of the client;
and user-defined context, where the client himself/herself defines the context information
associated with him/her.

Social groups, as an important part of this project, were analysed on different levels. Their
architecture (see section 2.2.1) and protocols (see section 2.2.2), the information that can
be acquired through these services (see section 2.2.3) and actual real-world services that
interact with this project (see section 2.2.4).

Extract, Transform, and Load (ETL) Information addressed different areas of informa-
tion treatment. Object identification, along side with duplicate detection was addressed
(see section 2.3.1) were addressed with special emphasis on comparison algorithms such like
Levenstein String Edition Distance and the Soundex algorithm.

Conflict resolution was another level of ETL addressed (see section 2.3.2) where we
specially analysed situations within this project, where conflict might occur.

As an automated system for conflict resolution, rule-based systems were assessed (see
section 2.3.3) based on scalability, adaptability and performance among other important
dimensions.

Chapter 3

Funambol Background

As we discussed previously, social groups can be regarded also as communication endpoints.
Gathering and aggregating information regarding endpoints can be very difficult, specially
due to the fact that endpoints and contact information is usually stored using a myriad
of formats, often not interoperable. The same occurs with our contacts. Most users have
their friends’ and acquaintances’ addresses stored in several different systems: address book,
cellphone, email contact list, just for a few.

Funambol is an open-source synchronization system that allows the synchronization of
several different contact storage systems, propagating changes from one to another and to
some extent merging information (including conflict resolution). As we can see through
picture 3.1 Funambol’s approach is to separate the platform (device) being synchronized
(cellphone for example) from the system that executes the synchronization itself.

Each device has its own connector to the system, This connector is in charge of gath-
ering all contacts from the device, converting those contacts into an understandable and
interchangeable representation, communicate changes to those contacts to the server and,
if necessary, exchange data. It is important to understand that the Funambol system does
not synchronise solely contacts, it is capable of synchronizing calendars, file system directo-
ries and virtually anything a person can think of. Its abstraction layers allow for a generic
treatment of the objects to be synchronized.

Such a system would be ideal to synchronise information in the context of the already
mentioned heterogeneity of the systems that a person might use to store his/her friends
contact information, allowing our system to use multiple platforms that provide relevant
information.

Funambol is based on SyncML (Synchronization Markup Language), the Open Mobile
Alliance (OMA) standard for Data Synchronization (DS) and Device Management (DM).
Many leading device manufacturers now include a SyncML client in their new devices.

31

32 CHAPTER 3. FUNAMBOL BACKGROUND

Figure 3.1: Funambol Architecture

3.1 Contact Format

When it comes to contact representation and storage there are several different possibilities.
vCard for instance is a file format standard for electronic business cards. It defines how the
contact information of a person should be stored along with its properties.

Some representations actually have their base in vCard, such as hCard, a microformat
representation of 1:1 vCard in semantic (X)HTML or XML vCard, defined by XMPP Stan-
dards Foundation and used in protocols such as XMPP (see section 2.2.2).

Funambol is capable of dealing with these formats and several more, such as Microsoft
Exchange Personal Information Management (PIM) data format.

3.2. SYSTEM INTERNALS 33

3.2 System Internals

We will briefly introduce the synchronization protocol performed by Funambol (see picture
3.2).

Figure 3.2: Synchronization sequence diagram

The process itself is divided in three phases:

1. Preparation

2. Synchronization

3. Finalization

Preparation

The preparation phase is the process of detecting modifications and analysing the differences
between two or more databases (called SyncSources) obtaining a list of sync operations (add,

34 CHAPTER 3. FUNAMBOL BACKGROUND

delete, update) that applied to the sources involved in the synchronization will make the
databases look identical, i.e., they will converge to the same set of values.

Modification detection has several approaches[43], although the one used is based on the
modified bits technique[39]. Given the information

• A - Items belonging to source A

• B - Items belonging to source B

• Am - Modified items belonging to source A

• Bm - Modified items belonging to source B

• AmBm Items modified either in source A and B (intersection between Am and Bm)

• (A-Am)Bm Items unmodified in A, but modified in B

• Am(B-Bm) items unmodified in B, but modified in A

Synchronization

The synchronization step is the phase where the sync operations prepared in the previous
step are executed. Executing a SyncOperation means applying the required modification to
the SyncSource involved.

Finalization

As for the finalization stage,the third and last step, it is intended for clean up purposes.
Auxiliary data structures used to store temporary information are cleaned, consistency of
the information is checked and the status code for each updated tuple is changed to the
target status code.

3.3 Discussion

Some Funambol-specific decisions during this project will be addressed further on this dis-
sertation (see section 5.2), however Funambol represents an example of a real-world system
with multiple users, first considering the information it provides, covering a significant num-
ber of sources that can participate in it, secondly because this information is associated with
real people. Along with social groups (see section 2.2) our system is being built over systems
with commercial usage, therefore leveraging the commercial usage of our system as well.

Chapter 4

Architecture

We want our system to be scalable, enhancing the richness of information that can be used,
achieving that by providing an easy way to extend information sources.

To provide a scalable infrastructure the system was thought as a modular application. Each
module has its own responsibilities and implementation, providing however a public, well-
defined, generic interface that allows external applications to access its information and
functionality.

In our exposition, specific vocabulary must be considered:

• Interfaces: Particular virtual classes that define the methods (and their signatures)
that any class implementing such interface must provide.

• Components: Programming logic which provides or consumes a set of services. Com-
ponents are the modules of an higher level application. Although components represent
modules, and implement a generic interface, their inner workings might require direct
interaction with the ”outside” environment, being responsible of transportation of any
ingoing or outgoing package.

During our analysis we found that our system requires two types of information, one
regarding context information, the other regarding address information.

Following this line of thought our system was basically divided in two parts, each one
addressing each type of information.

The main component of our system, the Group Enabler, consumes contact and context
sources in order to provide its own set of features. The number of each type’s sources should
not be limited, hence we used interfaces to catalyse scalability across the whole system.

As we can also see in figure 4.1, each external system has its own connector. This con-
nector works as an adaptation layer between said system and our own. This approach
allows for a standardized processing of information within our system.

We will begin by analysing the system interfaces (see section 4.1), their methods and
the motivation behind those methods. We will then address the system components (see

35

36 CHAPTER 4. ARCHITECTURE

Figure 4.1: Solution’s Architecture

section 4.2), which make use of the defined interfaces. Following this sections we will take
a look over the information architecture of the project (see section 4.3), analysing the main
information entities present in it. To finalise this chapter we will look over specific interfaces
developed during the execution of this project which are closely related to external systems
(see section 4.4).

4.1 Interfaces

As earlier described, interfaces define a well-known set of methods. This means that any
application using a service which implements such interfaces knows precisely the methods
available, regardless of the service implementation.

This approach allows multiple different implementations to produce a common interface
to applications, hence stimulating scalability.

4.1. INTERFACES 37

We will now take a closer look on the interfaces themselves: Social Group Connector Inter-
face, Contact Source Interface, Context Source Interface and Context-Aware Group Enabler.

4.1.1 Social Group Connector Interface

This component represents a set of methods associated with the interaction with social
group environments. Social groups will be discussed further on (see section 2.2), but it is
important to notice that these external services often use their own protocols, either for
exchanging information or to transport it.

This interface does not take into account any type of protocols that must be used, solely
defining methods regarding the collection of information. The method signatures provided
by this interface are as follow:

• Get Connector Type: Method to obtain the type of the connector that is being used.
Since applications might not (and probably don’t) know the type of the connector,
only the type of the interface that it implements, it can be useful in some use-cases to
have access to this information.

• Get Contact List : Provides a list of Social Group Entities (see section 4.3 for more de-
tails) that contains all information regarding contacts belonging to the owner’s contact
list.

• Get Contact Context : Method that, providing an user id, returns that user’s context
information. At this level the context information is the same as social group presence
information.

• Subscribe: Any external application that wishes to be aware of changes regarding any
contact’s information (either address or context related) use this method to subscribe
to it.

• Unsubscribe: Inverse operation of the previous method, removing the given application
from the listener list.

It is explicit the simplicity of the interface per se. No restrictions are made as for the
technology behind any building block that implements it.

Any social group connector developed must only provide this set of methods to be enabled
for usage by our system.

4.1.2 Contact Source Interface

A contact source is any application or building block that provides address information
regarding a specific entity or set of entities.

An address book, for example, represents a contact source (although our system does
not interact with this type of manual devices).

38 CHAPTER 4. ARCHITECTURE

Since address sources are vast, specially with the proliferation of personal emails, busi-
ness emails, multiple cellphones per person, etc, address information can be provided by
several different systems.

In order, once more, to allow scalability we define an interface that any contact source
must implement.

One important note, all methods specified by this interface require, apart from eventual
additional arguments, the owner’s id, in order to assure that only a person authorized to do
so accesses to address information.

• Get Contact Addresses: This method provides all known address information regarding
a specific entity.

• Get All Contacts Addresses: Similar to the previous method, this one provides a set
of information, indexed by entity id, regarding all entities address information.

• Sync Contacts: Method with default empty logic that when defined enforces a synchro-
nization action between our system and the source system. This method stimulates
information freshness.

Once again the set of methods do not limit at all the systems that can interact with our
own system.

4.1.3 Context Source Interface

Context sources represent external systems that can provide contextual information regard-
ing an entity or set of entities.

It is virtually impossible to standardize a representation of all context as we have dis-
cussed previously (see section 2.1.2), it is however possible to create a generic representation,
based on raw objects, which in term can be cast at application level to a more meaningful
type.

Lets however analyse this interface’s methods.

• Get Contact Context : Similar to contact addresses, this method provides the context
information known to a certain user. Additionally we must define which source we
want to obtain the information from (based on the connector type).

• Get Contact Context : This method is very similar to the previous one, however it
provides a set of contextual information based on all available context sources.

• Subscribe: Due to the fact of contextual information being highly volatile, any appli-
cation that wishes to be aware of such changes can use this method to register itself
over the context source.

• Unsubscribe: Opposite action of the previous method, removing the given application
from the listeners list.

4.1. INTERFACES 39

The first method is important however for building blocks that must somehow execute
pre-processing over the context information provided, based on the its source.

4.1.4 Context-Aware Group Enabler

Finally we have the main component interface. This interface describes all functionality that
can be obtained from our system. It does not have the objective of scalability or extensibil-
ity, its existence is mainly due to technology factors (see section 5.2). System performance
was addressed in previous components, however this component acts as a front-end between
a client application and the developed system itself. The connector’s logic is rather simple,
invoking other components’ methods to perform the functionality requested.

Lets analyse the features that this interface defines.

• Create Group (empty): This method allows the creation of an empty group, associated
to the user that triggered the action (owner).

• Create Group (credentials): It is possible to create a group based on several external
services such as social groups. This method is capable of creating an unified point
of view over the contacts an entity has based on the services that he/she has access
to. To accomplish this the user must provide his/her credentials to each service. We
will discuss problems that arise from this approach later on this document (see section
5.1.1).

• Create Group (named): Similarly to the Create Group (empty) this method creates an
empty group, however it has a name associated with it.

• Get Group: Returns the group associated with the given id.

• Get Group Element : Returns an entity representation that belongs to the group with
the specified id and that has the specified entity id.

• Get Groups From Owner : Not all users of the system have the same privileges over
our system (see section 4.3), for the users that do have privileges to create groups
(Customers) this method allows to obtain the list of groups that a specific user owns.

• Get All Group Owners: With this method it is possible to obtain all users that are
owners of at least one group.

• Get Group Owners: A group might be related to one or more owners. This method
returns a list containing all its owners.

• Get Group Context : Group context is inferred based on rules over the context of its
elements and attributes of the group itself. How this is obtained is analysed on section
2.3. This method allows an application to obtain such information.

• Get Group Element Context : Similarly to a group, a group element also has context,
this one however is inferred based on the entity’s context and the activities that the

40 CHAPTER 4. ARCHITECTURE

element is performing on the group. This method allows an application to obtain such
information.

• Add Group Owner : Self-explanatory method that adds a new owner to a group.

• Add Group: An application can create what could be called as an ”offline group”.
This method allows the application to store such group in our system (with all further
features that comes with such action).

• Add Element : Method to add an element to a group.

• Join Group Elements: Two entities obtained from different sources might reference
the same entity in the real world. This method unifies two entries that meet this
conditions (the merging process will be addressed on section 2.3).

• Update Group: A group can be altered outside the scope of our system. To keep our
system up-to-date this method can be used.

• Update Element : Similarly to the previous method, this method scopes the perspective
of a group element.

• Remove Group Owner : Opposite to Add Group Owner this method removes an owner
from a group, except if he/she is the only owner left.

• Remove Group: Method to be used whenever a group should be deleted.

• Remove Element : Method that removes a specific element from a group.

• Set Group Context Rules: Context inference is based on rules. We will discuss this
matter later on, this method however allows for the definition of the rules to be used.

• Set Group Element Context Rules: Like the previous method, this method specifies
the context rules to be applied to a particular group element.

• Register : Finally we have a method so an entity can register itself in our system.

4.2 Components

Lets now analyse the building blocks that implement these interfaces and understand there
relevance within our system, namely: GTalk, Sapo Messenger and MSN Connectors, Social
Group Aggregator, the Funambol Connector, the Upcase Connector and the Contect-Aware
Group Enabler internals.

4.2.1 GTalk, Sapo Messenger and MSN Connectors

GTalk is a social group service provided by Google Inc. Similarly Sapo Messenger is another
social group service provided by Sapo and finally, MSN is the analogous service provided by
Microsoft R©.

4.2. COMPONENTS 41

All these connectors implement the Social Group Connector Interface interface, therefore
their inner workings is irrelevant for any other building block or application that uses them.

Their main goal is to serve as a translator between the mentioned external services and
our system. Therefore if another external social group service were to be added a similar
connector should be created for it. Apart from the effort required to develop a connector
that understands the service and implements Social Group Connector Interface interface, its
insertion within the core system logic is trivial, since our approach was to keep the system
unaware as much as possible about the lower level implementation details.

For the system itself these connectors are simply interfaces. This means that removing
or adding a new connector will make virtually no impact, apart eventually from performance
metrics.

4.2.2 Social Group Aggregator

This building block aggregates all social group services, providing their information as an
unified set of data. Social groups will be discussed in more detail later on (see section 2.2)
however it is important to retain the multiplicity of information that these groups provide,
contact information (end-points of communication) and context information (presence).

As we can see in picture 4.1 the Social Group Aggregator building block ”consumes” building
blocks that implement the Social Group Connector Interface interface. In turn this com-
ponent provides two distinct interfaces, an address related one, Contact Source Interface
interface, and a context related one, Context Source Interface interface.

4.2.3 Funambol Connector and Funambol Connector Sync Source

Funambol is a synchronization system that uses SyncML to execute a set of functionalities
(see section 3). This system is external to our own, meaning that the appropriate infras-
tructure had to be built in order to enable communication.

Funambol Connector represents, analogously to the Social Group Aggregator, a translator
between two systems. This translation however required another sub-component to interact
on-the-fly with such system, hence Funambol Connector Sync Source.

This connector only provides address related information, therefore it is only required to
implement the Contact Source Interface interface.

4.2.4 Upcase Connector

Upcase was a parallel project developed by Instituto Superior Técnico and PT Comu-
nicaçoes. The objective of this project was to determine the user’s activity (or activities)
based on sensors placed on the surroundings, such as cellphone, clothes and similar.

42 CHAPTER 4. ARCHITECTURE

This information represents context information, undoubtedly demanding this connector
to implement the Context Source Interface.

4.2.5 Context Aware Group Enabler System

The core system contains a working implementation of the Context Aware Group Enable
interface and provides all the functionalities discussed up until now.

Many aspects of the group environment have been taken into consideration. Our system
aims to provide a rich set of functionalities and information that enables any application to
excel at their objectives.

4.3 System Entities

As any slightly complex system different concepts are involved. Furthermore the relation-
ships between this concepts represent the core guidelines of any project’s design (see figure
4.2).

In this chapter we will present the concepts defined by our system as well as the rela-
tionships between them.

We are going to approach the information architecture’s explanation using a bottom-up
approach, as such, the core concept is undoubtedly the different contact types.

We will begin by describing the different contact types existent in the project, followed
by a closer look over the addresses, context, entities (which include customers and exter-
nal entities), group elements, group and the distinction between internal and aggregated
context.

4.3.1 Contact Types

The source of information might be important, meaning that contact types are based on
extensible enumerations which will be related to any contact information provided by the
system.

This approach allows both a generic treatment: Disregarding the information’s source using
solely the information acquired; or a more specific treatment: Taking in consideration the
contact source to trigger a certain action/reaction, such as acting only based on information
gathered through the GTalk service.

4.3.2 Addresses

Following up the previous section, contact addresses were the next logical concept to be
defined.

Simple observation is enough to acknowledge the multiplicity of means that one can use
to contact another person. In our system this evidence is even more present since our system

4.3. SYSTEM ENTITIES 43

Figure 4.2: Information Architecture

itself interacts with multiple different sources of such information.

As such, this concept has the objective of encapsulating all the contact information
known to the user such as street address, phone number, cellphone number and so on.

Issues however arise, specially when the merge of contacts is required (see section 2.3).

4.3.3 Context

Our system objective is to coordinate both contact addresses and context in order to provide
a richer set of features. A contact’s context represents a concept where the low level context
information provided by the context sources is associated with that contact.

One important key element in this concept is the multiplicity of sources which provide
this type of information. Since our information can be accessed by different applications
building blocks or even applications themselves we must not restrict the information we
provide. Following our philosophy related to contact types (see section 4.3.1) all context

44 CHAPTER 4. ARCHITECTURE

information, regardless of source, is made available to any request presented.

4.3.4 Entity

An entity represents a person, system or even a group that in some way interacts with our
system. The importance of this concept is that every action taken or advised by the system
is based on information provided by the entities involved.

One important aspect of entities, although being defined as abstract classes/objects, is
their unique identifier which exists regardless of specialization and allows the system to
unambiguously identify an entity within the system.

Due to company policies URI generation must not be delegated to database management
system, instead the application itself must generate such identifiers. For this project an URI
generator was created, generating URI’s that have a company well defined prefix followed
by an unique number.

As previously mentioned, entity is a rather generic concept, therefore specializations of
it were made.

4.3.4.1 Customer

A customer represents an entity that is registered in our system. This parameter implies
a possible and probable bigger knowledge of the entities address and context information,
turning them into valuable sources of information.

One other important aspect is related to system privileges, only customers are allowed
to fully use our system’s features.

4.3.4.2 External Entity

An external entity represents an entity that although not being registered in our system has
information related to it, gathered through our system and providing a set of features to be
used towards such entities. A contact entry of a Customer’s contact list is an example of
such type of entity.

The external entity might not even know about the existence of our system and does not
have any privileges to use its features, even if it belongs to a group (see section 4.3.5).

4.3.5 Group Element

An interesting fact unveiled during the development of our system resides in the fact that
an entity, by itself, might not be related to any group. Taking the example a newly created
customer, even though the system probably possesses information about it, at this particular
stage the customer is not associated with any group.

Opposed to this is the possibility of an entity being associated with multiple groups, having
particular behaviours and contributions to each one. Both the former and the latter provide

4.3. SYSTEM ENTITIES 45

valuable information for the group, since such information might be considered context (see
definition of context).

As such, a group element as the name implies, represents the concept of an entity stipulating
however a compulsory relation between the mentioned entity and a group (see section 4.3.6).

4.3.6 Group

We come then to the most important concept, group. Although being a very important one
it is not complex at all. A group is no more that an aggregation of group elements (and
implicitly entities) based on a particular criteria.

By criteria we understand for instance the list of personal contacts associated with a
particular entity, or a company department.

The contact entries of a user’s GTalk contact list represents a group. The criteria in this
case being those entries belonging to the users contact list. In the event that those contact
entries are not aware of our system, each entry represents a Group Element (see section
4.3.5) closely related with an External Entity (see section 4.3.4.2).

We can conclude that in a group the system has knowledge regarding the element’s context,
whether an element is associated with an external entity or a customer (see section 4.3.4.1),
the context itself will be discussed further on (see section 4.3.7). As an entity, address
information is also available to each entry.

Since, in this scenario, each contact entry is compulsory associated with a group, they
have context within that group. We mentioned that an entity might not be related to a
group unless it is closely associated with a group element, and consequently a group.

4.3.7 Internal and Aggregated Context

One important aspect of a group element is its context. We have already identified the
context concept (see section 4.3.3) however, a group element or a group should not rely
solely on low level context.

With this objective present every group element has associated with it what we call
”aggregated context”. Aggregated context contains all the low level context previously
mentioned as well as higher level context inferred from rules and priorities (see section 2.3.3).

Aggregating context (or any type of data) instantly brings up several conditionals to the
matter, data loss, data consistency, custom treatment and inference. We will discuss in more
detail this issues further on (see section 2.3).

This aggregated context however cannot accommodate all the information that the system
actually has.

46 CHAPTER 4. ARCHITECTURE

4.3.7.1 Group Element Perspective

A group element is an entity associated with a group (see section 4.3.5). Every entity in
our system was built gathering information from several different sources, in order to build
a richer and complete representation of it.

But what about context provided by belonging to a group? Every group element has
associated with it an internal context. This concept accommodates all activities that the
group element is performing within the group, such as typing, presenting a slide-show, shar-
ing desktop, etc.

We conclude therefore that a group element’s context is the combination of its aggregated
context along with its internal context within the group.

4.3.7.2 Group Perspective

Similarly to group elements, a group has these two components.

A group’s aggregated context if inferred from the context of its elements (see section
2.3.3). Along this form of context is the group’s internal context. The later is the combi-
nation of different properties of the group, ranging from group theme, interests, number of
elements and virtually any property that can be found relevant to a certain situation,

4.4 Generic Interfaces

In any system the implementation techniques used, limit or catalyse the scalability of the
system itself.

Figure 4.3: Menu Example

Taking a basic restaurant menu manager program for example (figure 4.3). The objec-
tive of such program would be to output the menu of said restaurant. Only the method
print menu is defined and, to some extent, it would be enough.

Lets however imagine a situation where we want our program to have different menus
each day. With the architecture of figure 4.3 we would not be able to do so. Figure 4.4
shows a possible alternative. We acknowledge that the requirements are met, however,
changing menus over the weeks might be problematic, since it would require to change the
core program.

Both approaches shown before to note provide scalability to the system. But how about
interfaces?

Interfaces generally refer to an abstraction that an entity provides of itself to the outside.

4.4. GENERIC INTERFACES 47

Figure 4.4: Menu Example 2

This separates the methods of external communication from internal operation (for example
two different functions written in Java language have the same interface if they have the
same arrangements of arguments and the same type of return value, but the function body
may be implemented in different way), and allows it to be internally modified without af-
fecting the way outside entities interact with it, as well as provide multiple abstractions of
itself.

We analysed the interface possibility (figure 4.5). This approach bases its behaviour
on the creation of an interface. Implementation is left for any other class that decides to
implement this interface, in the example of figure 4.5 Monday Menu, Tuesday Menu, etc.
What is the use of this approach? Any application that wants to obtain the restaurant menu
must only know the interface. Due to metamorphism properties of Java object-oriented
programming language, any class that implements such interface can be access as if it were
of the interface type, not its own type. (expose better?)

Other advantage of this approach is precisely scalability. We added seven menus to the
program and the way to access those menus is exactly the same, whether we had one menu
or one thousand. In our example we defined menus for every day of the week, we could
also define a default menu and specific menus for weekends only. The impact on the core
program would be virtually none.

Interfaces also provide a generic way to access to the system. Any class with its own
implementation is accessed the same way as any other.

Other major feature of interfaces is the possibility of developing a system in a modular
way.

Modular programming is a software design technique that increases the extent to which
software is composed from separate parts, called modules. Conceptually, modules represent
a separation of concerns, and improve maintainability by enforcing logical boundaries be-
tween components. Modules are typically incorporated into the program through interfaces,
as we could see in the menu example. A module interface expresses the elements that are

48 CHAPTER 4. ARCHITECTURE

Figure 4.5: Menu Example 3

provided and required by the module. The elements defined in the interface are detectable
by other modules. The implementation contains the working code that corresponds to the
elements declared in the interface.

Before getting into our system, we must first look at a very important component of JBoss.

4.4.1 Integration with JNDI

Java Naming and Directory Interface (JNDI) is a Java API for a directory service that allows
Java software clients to discover and look up data and objects via a name. Like all Java APIs
that interface with host systems, JNDI is independent of the underlying implementation.
Additionally, it specifies a service provider interface (SPI) that allows directory service
implementations to be plugged into the framework. The implementations may make use of
a server, a flat file, or a database; the choice is up to the vendor.

4.4. GENERIC INTERFACES 49

The name used is often referenced as binding name, being all EJBs1 (see section 5.2) as-
sociated with one. In our system each individual social group connector is an EJB, therefore
they are registered in our application server’s JNDI. We defined a local naming convention
for social group connectors. Each connector is bound to the name SocialGroupConnector-
Interfaces/local. Some might ask the reason for this apparently irrelevant convention.

4.4.2 Social Group Interface

As we have seen before, social groups represent a very important part of our system (see
section 2.2). Having different protocols, inner workings, authentication systems among other
things, they behave much like the weekly menu. They all provide the same information, not
necessarily the same way.

Hence we developed a specific interface for social groups. This interface defines all meth-
ods that a social group connector must provide, such obtaining the contact list or an entry
presence information. The way each connector provides this information is up to the con-
nector itself.

As we have previously exposed, we developed three social group connectors:

• GTalk Connector

• Sapo Messenger Connector

• MSN Connector

All these connectors in term implement the social group interface. This means that the
social group aggregator module works solely with this interface, and not needing to know
the connectors (and social group services) that it deals with.

Enterprise JavaBeans (EJBs) are based also on interfaces in order to provide a modular
approach to software development. This is important due to the technology dependent
technique used to abstract even more the connectors that are in fact in use, as well as pro-
viding weak connections between connectors. By weak connections we mean connections
between components that do not make them dependent of one another.

The social group aggregator, although dealing exclusively with social group interface types,
must obtain working instances of connectors that implement this interface.

The basic approach would be to explicitly write in the source code the location of each
connector. The aggregator would not need to know the class of the connector, only its
location.

This approach does not meet our needs. Any change in the connectors (adding or re-
moving a connector) would require changing the aggregator, and worst, recompiling it.

1Enterprise JavaBeans (EJB) is a managed, server-side component architecture that encapsulates the
business logic of an application, used for modular construction of enterprise applications.

50 CHAPTER 4. ARCHITECTURE

At first we used property files. Property files are system files that can be changed in runtime
and possess several attributes important to govern the application that uses it.

We used such file to list the connectors that the social group aggregator should use. This
was a much better approach, adding and removing a social group connector would only
require to change the property file. However, in our system, social group connectors might
be dependent on a user basis, each user not needing necessarily all social group connectors.

This was precisely the motivation for the usage of name discovery techniques. Using
the JNDI technique allows the aggregator to load any connector that its useful to it (the
aggregator looks only to the local naming convention we mentioned before), being trivial
the addition or removal of connectors.

4.4.3 Contact Source Interface

Following the modular programming philosophy, contact sources fall in the same level as the
daily restaurant menu.

A contact source is a provider to the system. It provides addresses related to an entity.
We have already discussed contact sources in our system, namely social groups (see section
2.2) and Funambol (see section 3).

The number of contact sources that system might use is not limited to the ones devel-
oped throughout this project. Once more scalability must be assured. Having this in mind,
contact sources are also bounded to an interface named Contact Source Interface. The
”Contact” part of the name refers to means of communication, addresses, and not entities
in the general meaning of the word.

The basic inner workings of an application or building block that uses contact sources are
rather simple. Similarly to social group connectors, contact sources provide the same set of
known methods, and can be treated as being of the type of the interface. The said application
or building block does not need to know the particular realizations of the interface.

In term all contact sources are used, providing a multiple source contact address infor-
mation. This brings out an already mentioned problem, merging information. How can
we merge information based on multiple sources? Contact address information is actually
rather simple to merge, since most information is complementary to one another. In case of
conflicting fields, a basic timestamp technique is enough to assure consistency and freshness
of information.

4.4.4 Context Source Interface

Context sources are much alike contact sources, and most of the basic concepts apply to
both of these interfaces. The main distinction between them however is a very important
aspect, how to merge context.

Multiple context sources provide a rich wide variety of contextual information. We can’t
however make a merging decision based on timestamps for instance, since the confidence

4.4. GENERIC INTERFACES 51

attribute is associated with all context information. Merging information is further discussed
on section 2.3.

In this chapter we analysed the system interfaces (see section 4.1), the motivation behind
their existence and the features provided by them. We have also analysed the system
components (see section 4.2), the building blocks of the system which implement the system
interfaces. The information concepts, relationships and importance was discussed as well
(see section 4.3) having finalised with a closer look over interfaces directly connected with
external systems (see section 4.4).

52 CHAPTER 4. ARCHITECTURE

Chapter 5

Implementation

In this chapter we will analyse implementation specific situations and problems that arose
during the development of the project. Since this project was developed under the standards
and objectives of a communications company, several implementation aspects had to address
company specific concerns and rules.

We will begin by focusing on social groups and how it is possible (and relevant) to ob-
tain and use information provided by this type of systems. A technology discussion will
address Enterprise JavaBeans (EJB), the relevance of this programming framework, and
specific considerations regarding the Funambol system.

We will address persistence as well, and the implementation decisions taken regarding
this subject, along side a brief consideration about important database management systems
to our project. To finalise this chapter we will analyse on an implementation perspective
rule-based inference and management systems.

5.1 Social groups

Social groups are an undeniable rich source of information, but we also aim to go beyond
the speculation and theoretical levels, hence we focused on interacting with real world,
well-known services that not only provide the information we need but also adds to our
application a real world value and a tangible objective towards commercial usage.

We will focus now on how does our system use these groups to acquire the said value.
Roughly the process can be described in two stages, obtaining information and using infor-
mation.

5.1.1 Obtain Information

In order for our system to obtain information from social groups it must have a way of
representing the user before these groups.

The user must provide their authentication information to our system, which triggers a
well-known issue, trust. Although our system does not use personal information beyond the

53

54 CHAPTER 5. IMPLEMENTATION

scope of its features many users feel reluctant to share personal information with third-party
applications.

In a scenario where the user provides his/her authentication information our system in
term accesses the services on behalf of that user. On systems that allow multiple endpoints
to coexist simultaneously our system is invisible. This approach prevents the occurrence of
misunderstandings regarding the users actual location and availability.

Our system follows all steps that a normal client-side application does (see section 2.2.1)
not allowing however to communicate directly with anyone through it.

As any client-side application our system will be aware of the user’s contact list, since
the service itself provides this information.

The initial information, both address and context, is automatically gathered after suc-
cessfully impersonating the owner. We however acknowledge that changes can occur quite
frequently, specially information related to presence, and therefore context.

Virtually all social groups are based on the publisher-subscriber design pattern and most
of them work on a push-based model (elaborate here or above?) to propagate this changes.
This model assumes the usage of some type of listener to serve as a proxy of the subscriber.

Our system, to be real-world viable had to address the volatility of the information and
therefore behave as most social group applications. To each social group connector we
developed a listener to represent our system, that listener acts as a subscriber to every in-
formation changes to any objects existent and relevant on the service. Through this method
we are able not only to obtain information at initialization stage but also to be aware when
it changes on-the-fly, propagating it to the rest of the system.

5.1.2 Use Information

With the address and context information related to social groups gathered it is possible
now to use it as necessary. This low level information must be converted to an agreed generic
representation used throughout the system (see section 4.3.3).

In the last section (section 5.1) we discussed the importance of keeping the low-level context
information as is, but one important aspect also is to be aware if the aggregated information
was provided by one or several different sources.

Any object representing social group context has by default an attribute which indicates
from where the information was gathered. In the event that it originated on more than one
source a ”generic” label is applied.

5.2 Technology-related Aspects

All these techniques have a technological background, being decisions based on future work
within the company’s philosophy, compliant with existing and operating software infrastruc-

5.2. TECHNOLOGY-RELATED ASPECTS 55

tures and technology choices.

For interoperability purposes the programming language used was Java. Java is a object-
oriented programming language developed and supported by Sun Microsystems. Its exe-
cution is based on pre-compiled source code (known as byte codes) that run in any Java
Virtual Machine (JVM), regardless of the computer’s architecture.

Microsoft’s .NET framework, like Java, is an object oriented multi-programming-language
framework that allow different programs, written in different programming languages, to in-
teract with one another as long as they share a common ground for understanding, in this
case .NET. Two main reasons however benefit Java over .NET

1. Released under the GNU General Public License 1 Java is free or charge and can be
used without restrictions, unlike .NET which is proprietary and although being dis-
tributed for free require the payment of software licenses when it comes to development
environments.

2. Java is cross-platform. JVMs are availabe for almost every operating system used
today, which represents the biggest asset of this technology. On the other hand .NET
officially is only supported on Windows R©environments, although community projects
exist to make it available on other platforms 2

This disassociation with a computer’s architecture and even operating system allows the
usage of the same program anywhere with virtually no changes required.

Within the Java technology several different ways of development can be taken, from web
development, applets, widgets, to enterprise applications. In our case we developed our
system with the objective of an enterprise usage. To develop at this level Java provides the
so called Enterprise JavaBeans Technology (EJB).

Component Organization (EJB)

Enterprise JavaBeans (EJB) technology enables rapid and simplified development of dis-
tributed, transactional, secure and portable applications.

Similarly to JSLEE specifications, EJBs are no more than building blocks that can be
developed independently or can be combined to provide higher level features.

Having modularity, extensibility and scalability as main conditionals of our system (see
section 4) the EJB technology provides an adequate development environment.

Our system uses Enterprise Java Beans (EJBs) as building blocks, most of which are
stateless. This means that upon a request a bean is created to address it and upon com-
pletion it is eliminated. Lazy fetching the information is not possible in this situation since
the objects themselves could (and most likely will) be treated in another EJB or application.

1GPL: http://www.gnu.org/copyleft/gpl.html
2Mono: http://www.mono-project.com/

56 CHAPTER 5. IMPLEMENTATION

EJB technology only addresses the development of building blocks, in turn these build-
ing blocks must run on an application server that provides all the technology’s features and
execution environment.

Once again this choice was made given the company’s policy. The JBoss application
server, an implementation of Java Enterprise Edition (J2EE) developed by Red Hat, was
used to accommodate our EJB building blocks

Funambol-specific Considerations

Following Funambol’s architecture (see chapter 3) there were two possibilities in order to
achieve a successful interaction between Funambol itself and a client application.

Funambol’s definition of module consists of a server extension which defines its own way
to synchronize information, deal with requests and even synchronized information. This
approach however brings forward an significantly complex issue, the re-implementation of
all needed interfaces as well as all plugins.

There are plugins for virtually all systems and mobile devices3. Implementing a new
module would implicate the re-programming of all plugins that we had intention of using.

This approach would allow us to synchronize the information as we wish, formatted to
a standard of our choosing for example. However such commodity would not come without
a huge work overhead.

For the sake of proof of concept we took a different direction, the definition of our own
plugin (not module). Through a plugin, we were able to access both the core functionalities
of Funambol with minimal configuration requirements but we could also easily interact, upon
the completion of the plugin, with all the other plugins, enabling our system to indirectly
access information provided by Outlook R©, cellphone, or any other system (virtually all)
that has a plugin developed for it on Funambol.

Every plugin synchronizes its information with the synchronization server. Lets analyse
figure 5.1. Plugin X synchronizes with the server. The former contains the object A, while
the latter contains no objects. After synchronization both contain object A.

When plugin Y, which contains object B, synchronizes with the server it will propagate
that object to it and in term will receive object A from the server.

This method allows for several different systems that might not even be aware of one an-
other to indirectly exchange information. Funambol connector behaves precisely as a plugin,
capable of obtaining information from the server that was previously synchronized with it
through other existing plugins.

One problem had however to be address. Funambol plugins must implement certain inter-
faces, which go beyond the scope of this document, however a limitation had to be address.

3Those plugins are intended to work with Funambol’s PIM contact module.

5.2. TECHNOLOGY-RELATED ASPECTS 57

Figure 5.1: Plugin interaction

The capability of managing multiple users.

Multi-user configurations Funambol plugins do not have any built-in multiple user
management system. This ”flaw” had to be addressed. Developing one plugin per user of
our system would make scalability almost impossible, system’s complexity would increase
significantly and program maintenance would also be greatly affected.

The basic authentication system used by plugins make use of property files stored in the com-
puter to obtain multiple information, from plugin version to synchronization type (Two-way,
one-way, etc.), data format and also username and password of the user using the plugin.

This information, prior to synchronization beginning, is loaded into the system’s prop-
erties. Our workaround was precisely to interfere at this stage. The property file was filled
with a random, non-valid authentication information. When action is required from our
connector, such request must possess valid authentication information before our system.
On success the system properties were changed to reflect the real user authentication infor-
mation. The actual synchronization process only takes effect after this preamble.

Synchronization Source The basic requirements for a plugin to interact with a Fu-
nambol server is to implement a specific interface called SyncSource. This interface defines
the basic operations required in any synchronization request (see section 3.2).

Although our system does not add, remove or otherwise edit any contact entry, it must
store the obtained information for two main purposes:

1. Efficiency: Requesting full information from the synchronization server every time
such information was needed would add a considerable network and processing over-
head to the system.

58 CHAPTER 5. IMPLEMENTATION

2. Usability: Allowing for the rapid access of information regardless of the system trying
to access it.

The solution being obviously to persist the gathered information in an easily accessible
location.

5.3 Persistence

We have address throughout this document several systems that provide a rich set of infor-
mation that can be used by our own system. This inf ormation however must be treated
properly. We should not depend directly on external services to have access information,
hence persistence is required.

5.3.1 Object-Relational Mapping

For many developers, their use of Java represents the first time they have had to contend
with the challenges of object storage. Even though the Java environment includes a built-in
object serialization facility to provide primitive object persistence, it is suitable only for the
simplest of applications.

Persistence can be defined as a network of persistent objects whose root is serializable.
Any object that a persistent object can touch automatically becomes persistent and thus a
member of the network. This concept is called persistence by reachability. At storage time,
the Java environment converts all the objects in the network to a byte stream for storage in
a flat file [8].

The limitations of serialization stem from the fact that the entire network of objects
must be accessed as a whole. It is not possible to manipulate an individual object. Each
time a member of the object network is stored, the entire byte stream containing all objects
in the network has to be serialized and stored. The opposite procedure occurs each time a
persistent object is accessed. Moreover, object serialization lacks fundamental database ca-
pabilitieslike transactions and queriesthat multi-user enterprise applications require. Clearly,
serialization is inadequate for robust application development.

Data management tasks in object-oriented (OO) programming are typically implemented
by manipulating objects that are almost always non-scalar values. For example, consider an
address book entry that represents a single person along with zero or more phone numbers
and zero or more addresses. This could be modelled in an object-oriented implementation
by a ”person object” with ”slots” to hold the data that comprise the entry: the person’s
name, a list (or array) of phone numbers, and a list of addresses. The list of phone numbers
would itself contain ”phone number objects” and so on. The address book entry is treated
as a single value by the programming language (it can be referenced by a single variable, for
instance). Various methods can be associated with the object, such as a method to return
the preferred phone number, the home address, and so on.

However, many popular database products such as structured query language database
management systems (SQL DBMS) can only store and manipulate scalar values such as in-

5.3. PERSISTENCE 59

tegers and strings organized within normalized tables. The programmer must either convert
the object values into groups of simpler values for storage in the database (and convert them
back upon retrieval), or only use simple scalar values within the program. Object-relational
mapping is used to implement the first approach.

The core of the problem is translating those objects to forms that can be stored in the
database for easy retrieval, while preserving the properties of the objects and their relation-
ships; these objects are then said to be persistent.

One aim for the Object-relational database is to bridge the gap between conceptual data
modelling techniques such as Entity-relationship diagram (ERD) and object-relational map-
ping (ORM), which often use classes and inheritance, and relational databases, which do
not directly support them.

Another, related, aim is to bridge the gap between relational databases and the object-
oriented modelling techniques used in programming languages such as Java, C++ or C.
However, a more popular alternative for achieving such a bridge is to use a standard rela-
tional database systems with some form of ORM software.

Due to the information-intensive nature of this project, an automated mapping between
object representation of information and persistent database representation greatly reduces
the development time, query complexity and adaptability. Concerns regarding database
consistency are delegated to well-tested, well-defined tools.

5.3.2 Persistence Framework

In our development the formerly mentioned ORM software was Hibernate, an object-relational
mapping library for the Java language, providing a framework for mapping an object-
oriented domain model to a traditional relational database. Mapping Java classes to database
tables is accomplished through the configuration of an XML file or by using Java Annotation

This type of frameworks not only take care of the mapping from Java (or other program-
ming language’s) classes to database tables (and from Java data types to SQL data types),
but also provide data query and retrieval facilities. It can also significantly reduce develop-
ment time otherwise spent with manual data handling in SQL and JDBC (Java Database
Connector)[1].

Hibernate provides transparent persistence for Plain Old Java Objects (POJOs). The
only strict requirement for a persistent class is a no-argument constructor, not compulsorily
public. Proper behaviour in some applications also requires special attention to the equals
and hashCode methods.

Most object relations of type one-to-many are represent as sets or lists of other objects
(whether primitive Java types or other custom classes). This generic collection providers
are supported by the Hibernate framework. One important point to mention is the access
type that can be associated with this collections. A collection of objects can be accessed in
lazy mode, in which only a proxy of the actual object is obtained from the database, having
solely the key attribute of that object. Additional information that is required regarding

60 CHAPTER 5. IMPLEMENTATION

that object is fetched on request. The other possibility is to use an eager strategy in which
the entire object is loaded upon the first request.

Given our system entities and architecture (see section 4.3) all entities annotated in order
to be easily processed by the Hibernate framework.

Since the basic database operations (add, update, remove) do not fit our system com-
pletely custom database access objects (DAO) add to be created, however these are not
common DAOs. Hibernate provides a SQL inspired language called Hibernate Query Lan-
guage (HQL) which allows SQL-like queries to be written against Hibernate’s data objects.
This language was used to provided customized data access to objects.

5.3.3 Database Management Systems

The abstraction provided by Hibernate between the programming language and the database
management system (DBMS) allowed for a simpler versality of storage and hosting.

On a first development stage the DBMS used was MySQL, provided by IBM. Although
slight configurations are required, specially at the application server (JBoss) level, our sys-
tem was not aware at all of the management system in use.

Since we do not seek to restrict the technology choices of possible customers the capa-
bility of changing the DBMS was a feature to look forward to.

In order to use a company’s database the system had to change to PostgreSQL, an open-
source DBMS. This migration had very little impact to our application, proving the capa-
bility of changing data management systems within reasonable limits.

5.4 Rule-based Inference and Rule Management

Rule-based systems satisfy the project’s needs regarding context inference, which we built
into our own system in order to aid it while reasoning.

Several implementations are available as of today, providing all sets of features related
to this matter. We will look now more deeply into the system used during the project de-
velopment, namely Drools Rule Engine.

Drools Rule Engine is a rule-based system developed in Java, it is JSR94 compliant4 and
aims for an open-source rule engine.

The system inner workings are beyond the scope of this document, we will however focus
on rules themselves.

Whilst considering the possibility of using a rule-based system to infer higher level con-
text an issue arose. What should be associated with rules? The whole system should not
be bounded by the same rules across it nor an administrator should be restricted to use the
same custom rules for all their owned groups. Rules are case-related hence each set of rules

4JSR94: http://jcp.org/en/jsr/detail?id=94

5.4. RULE-BASED INFERENCE AND RULE MANAGEMENT 61

1 rule ”Under Age Rule”
2 when
3 person : Person()
4 eval(person.age < 18)
5 then
6 System.out.println(pessoa.name + ” is under age”);
7 end

Listing 5.1: Rule Example

is associated with a group or an element group individually rather that being generic to all
system.

The basic inner workings of such a rule are rather simple: for every object of type ”Per-
son” present in the rule-engine working memory it fires the ”Under Age Rule” rule. If all
conditions present in the ”when” section are met then any action present in the ”then” block
will be triggered.

We will now analyse an example rule used in our system (listing 5.2). The objective of
this rule is to assess the aggregated context of a group element considering its overhaul
context.

The mechanics are simple, given a group element, the rule-based systems assesses each
context entry associated with the group element, keeping a counter for each distinct type.
The context type that occurs more frequently represents the aggregated context of that
group element.

It is important to note however that this rule is merely an example, as such the aggre-
gated context calculation logic can be redefined with little effort by anyone interested in
doing so.

62 CHAPTER 5. IMPLEMENTATION

1 package pt.ptinovacao.rules;
2

3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.HashMap;
6 import pt.ptinovacao.information.∗;
7

8 function SocialGroupPresence getMoreFrequent(ContextAwareGroupElement cage){
9 HashMap contexts = cage.getEntity().getContactContext().getContext();

10 int contadores[] = new int[SocialGroupPresence.values().length];
11 int maxIndex = 0, maxValue = −1;
12 for(int i = 0; i < contadores.length; i++){
13 contadores[i] = 0;
14 }
15

16 for(int i = 0; i < contexts.size(); i++){
17 Object elem = contexts.values().toArray()[i];
18 for(int j = 0; j < SocialGroupPresence.values().length; j++){
19 if(elem.equals(SocialGroupPresence.values()[j])){
20 if(++contadores[j] > maxValue)
21 maxIndex = j;
22 break;
23 }
24 }
25 }
26 return SocialGroupPresence.values()[maxIndex];
27 }
28

29 rule ”Create rule”
30 when
31 $tipo : ContextAwareGroupElementAction()
32 eval($tipo.equals(ContextAwareGroupElementAction.CREATE))
33 $element : ContextAwareGroupElement()
34 $resultado : SocialGroupPresence() from getMoreFrequent($element)
35 then
36 System.out.println(”Creating an element”);
37 insert($resultado);
38 end
39 rule ”Merge rule”
40 when
41 $tipo : ContextAwareGroupElementAction()
42 eval($tipo.equals(ContextAwareGroupElementAction.MERGE))
43 $element : ContextAwareGroupElement()
44 $resultado : SocialGroupPresence() from getMoreFrequent($element)
45 then
46 System.out.println(”Merging elements to ” + $element.getUri());
47 insert($resultado);
48 end
49 end

Listing 5.2: System’s Example Rule

Chapter 6

Evaluation

In this section we will provide evaluation data regarding the developed system. Several
dimensions must be considered and the tests undertaken simulate different usage patterns
and data intensity.

This project was developed under the scope of PT Inovação, SA company. The entire
project is part of a commercial solution under development by this company, being as so an
important asset for the overall capabilities and flexibility of the final system load.

The entirety of the company project where our work is included is out of the scope of
this project

The measurements obtained during the evaluation phase addressed different dimensions:

• Source multiplicity: determines if the number of sources has a relevant impact in
the system (i.e., performance with the number of sources).

• Loading time: determines the time required for the system to be fully functional and
ready (i.e. system setup latency).

• Contact sources processing time: analyses the cost of iterating through all contact
sources (i.e. performance with the number of contacts).

• Context gathering: determines the required time to obtain contextual information
for all entities that need so (i.e. performance with context queries).

• Entries scalability: determines how the system behaves given a raising number of
contact entries.

• Duplicate detection performance: Although the algorithms are rather simple, the
growth of entries might affect this dimension.

• Database impact: determines the impact of database persistence.

63

64 CHAPTER 6. EVALUATION

Tester1 Tester2 Tester3
Number of Contacts 2 9 17

Table 6.1: Test users characteristics

Average Standard Variance X-min X-max % of
Deviation total time

Load time 0.0482 0.019753 0.00039 0.027143 0.069257 0.5
Processing 3.058 0.140032 0.019609 2.908726 3.207274 31.2
Contact
Source time
Total time to 0.0094 0.014502 0.00021 -0.00606 0.024859 0.1
gather context
Total time to 4.493 0.317954 0.101095 4.154061 4.831939 45.8
persist entries
Possible matches 0.0078 0.001789 3.2E-06 0.005893 0.009707 0.1
detection time
Group 0.1122 0.044824 0.002009 0.064418 0.159982 1.1
persistence
time
Useless 2.0078 0.001304 1.7E-06 2.00641 2.00919 20.5
Total 9.808 0.312616 0.097728 9.474752 10.14125 100.0

Table 6.2: Test user 1 - Results

6.1 Test Environment

All tests ran on a CoreTM2 Duo CPU computer at 2.66 GHz frequency, with 4 GB ram
memory and Windows VistaTMBusiness 32-bit operation system.

The tests were based on three prototypical test users with different characteristics:

The result tables are now presented, upon which we will draw the evaluation analysis.

Before analysing the statistical tables it is important to understand the difference, in
terms of percentage, between the test users.

• Test user 2 has 350% more contacts than test user 1

• Test user 3 has 88.8% more contacts than test user 2

6.2 Loading

Analysing all test user tables (tables 6.2, 6.3 and 6.4) we conclude that the loading time is
constant, regardless of the number of contacts. The system was built having in mind scal-
ability and extensibility, as such, the connectors to be loaded should not limit the system
performance and interoperability.

Furthermore the loading time represents a very small fraction of the execution time, roughly
0.5% of the total time.

6.2. LOADING 65

Average Standard Variance X-min X-max % of %
Deviation total time increase

Load time 0.0568 0.028891 0.000835 0.026002 0.087598 0.5 17.8
Processing 3.4636 0.156292 0.024427 3.296992 3.630208 27.6 13.3
Contact
Source time
Total time to 0.0102 0.009284 8.62E-05 0.000303 0.020097 0.1 8.5
gather context
Total time to 6.4996 0.425991 0.181468 6.045494 6.953706 51.9 44.7
persist entries
Possible matches 0.0926 0.02851 0.000813 0.062209 0.122991 0.7 1087.2
detection time
Group 0.3024 0.021149 0.000447 0.279855 0.324945 2.4 169.5
persistence
time
Useless 2.019 0.005196 0.000027 2.013461 2.024539 16.1 0.6
Total 12.5342 0.529033 0.279876 11.97025 13.09815 100.0 27.8

Table 6.3: Test user 2 - Results

Average Standard Variance X-min X-max % of %
Deviation total time increase

Load time 0.0548 0.024763 0.000613 0.028403 0.081197 0.4 -3.5
Processing 3.2308 0.266993 0.071285 2.946186 3.515414 23.1 -6.7
Contact
Source time
Total time to 0.0264 0.021893 0.000479 0.003062 0.049738 0.2 158.8
gather context
Total time to 7.719 0.10464 0.010949 7.607454 7.830546 55.3 18.8
persist entries
Possible matches 0.3102 0.020389 0.000416 0.288466 0.331934 2.2 235.0
detection time
Group 0.5122 0.024601 0.000605 0.485976 0.538424 3.7 69.4
persistence
time
Useless 2.0362 0.005357 2.87E-05 2.030489 2.041911 14.6 0.9
Total 13.9632 0.283642 0.080453 13.66084 14.26556 100.0 11.4

Table 6.4: Test user 3 - Results

66 CHAPTER 6. EVALUATION

6.3 Contact Sources Processing

The iteration through all contact sources is a very important aspect to be taken into ac-
count. Although it represents solely the iteration through the entries of a contact least, its
performance affects significantly and directly the overall system performance in a top load
situation.

As we can analyse the, the time it takes to process contact sources grows gracefully as
the number of contact entries increases. The major difference detected was when there was a
350% increase in the number of contacts (table 6.3) which increased this processing by 13.3%.

This graceful growth is very successful given the global impact of this dimension, which
represents more that one quarter of the total system execution time.

6.4 Context Gathering

Context gathering occurs after the acquisition of contact entries. For each entry the system
tries to obtain its context, roughly representing the cumulative of contacting context sources
repeatedly. All context information providers have built-in, well-defined publish-subscribe
mechanisms which reduce the number of actually executed queries to a minimum. The im-
pact of this dimension on the overall performance is almost negligible. On test user 3 we do
however witness a 188% growth (table 6.4), this represents nevertheless the global impact
to grow from 0.1% to 0.2%.

It is not understandable through the statistical data acquired the reason for the mentioned
growth, specially due to the much lower growth analysed for a much higher increase of con-
tact entries (table 6.3). We believe that the external services overhead might be the cause
for such disparity, being only a hypothesis.

6.5 Connectors Persistence

The developed system is data-intensive, with most information being persisted using a
database. The persistence process has a high impact on the overall system performance.
The results of test user 3 (table 6.4) persistence represents 55.3% of the total time.

This dimension grows gracefully as well, given a high increase in the number of contact
entries, it does however represent half of the total time. Optimization in database interac-
tions will provide great improvements on the system.

6.6 Group Persistence

It is important to distinguish between the persistence of raw auxiliary data from the persis-
tence of object graphs with contact and context information previously processed, for which
there are a number of possible optimization approaches.

6.7. DUPLICATE DETECTION 67

This persistence has a higher increase rate compared to the previous persistence section.
The global impact of the group persistence is much lower than the connector persistence,
but using test user 2 results (table 6.3), for a 350% increase in contact entries, connectors
persistence grew 44.7%. For the same user, the group persistence grew 169.5%. Both types
of persistence are below the contact growth (i.e. sub-linear overhead) percentage but they
do have an unavoidable impact on the system.

6.7 Duplicate Detection

Duplicate detection, accordingly to the test results, must be reformulated in future work.
The approach taken in this project revealed to be inefficient.

For a 350% contact entries growth (table 6.3) duplicate detection grew 1087.2%, similarly
for a 88.8% contact entries growth (table 6.4) the same dimension grew 235%. This is the
only dimension that performs worst than linear growth, being in essence in a quadratic
growth complexity order.

As future work, alternative approaches must be considered, such as the use of a different
data-structure that allows for a by-letter indexation (of by-first-two-letters indexation) that
avoid exhaustive tuple comparison. Optimisation is mainly a space-time trade-off problem.

Duplicate detection represents the current bottleneck of the developed system. For the
tests undertaken its global impact is small, however its growth rate is reason for further
future study.

6.8 Global Analysis

The developed system proved to be scalable. Given a high rate of growth in the number of
contact entries, the overall performance of the system grew gracefully. The addition of new
sources, either address sources or context sources, produce a minor impact in the mentioned
system.

Stateless Java Beans allowed for on-the-fly resource allocation to take place.

Extensibility was achieved as well. The addition of new sources (GTalk R©) required close to
no effort aside from the interface implementation.

The interface approach was capable to provide a real extensible framework.

The system was ported to another environment, based on Linux operating system and
PostgreSQL database management system. It was not possible due to company policies to
execute performance tests in such environment. It is possible however to conclude that the
system is in fact portable.

Choosing the Java language and Hibernate as the persistence manager empowered our
system with portability across platforms with very little effort required.

It is important to mention some values acquired. For test user 3 (table 6.4) there are

68 CHAPTER 6. EVALUATION

negative increase percentage values, even when the number of contact entries grew. The
only explanation for this fact relies within the external services’ performance which the de-
veloped system cannot control.

On all result tables there is a dimension named ”Useless”. This dimension has a close to
zero growth percentage. It represents system actions that can be removed with no impact
at all for the system. These actions go from log functions to auxiliary console information
and debug information.

During the execution of the tests these actions could influence the real final result of the
relevant dimensions, therefore its impact was kept separate from other dimensions.

Chapter 7

Conclusions

During the development of this project we concluded that the need for a context-aware
application in the addressed scenario was real. The application should be capable of adapting
its behaviour autonomously and dynamically according to external factors.

We analysed several existing approaches to context-aware software, either in terms of
representation, reasoning, and sensing. Social groups are an important component of this
project. Their information value (and commercial usage) meant a challenge and an asset.
Ensuring interoperability between heterogeneous systems required the definition of capable
data representation formats and translators. The information provided by these systems
proved to be an asset based on the information richness gathered through them.

Information merging proved to be a complex subject, specially when customisation must
be supported. Although the performance regarding the duplicate detection in particular
was not as initially expected, adaptability is still a reality, with users being able to change
merging rules as they see fit.

The architectural design of this project proved to fit the objectives pre-determined. The
system’s scalability and portability were observed, being interoperability already proved,
due to the interaction with external systems.

69

70 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Hibernate - Relational Persistence for Idiomatic Java.

[2] Boeing 777 digital design process earns technology award. Technical report, 1997.

[3] Agnar Aamodt. Towards a model of context for case-based diagnostic problem solving.
In in Context-97; Proceedings of the interdisciplinary conference on modeling and using
context, (Rio de Janeiro, pages 198–208, 1997.

[4] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and
Mike Pinkerton. Cyberguide: A mobile context-aware tour guide. Wireless Networks,
3:421–433, 1997.

[5] Matthias Baldauf. A survey on context-aware systems. Int. J. Ad Hoc and Ubiquitous
Computing, 2, 2007.

[6] Louise Barkhuus. Context information vs. sensor information: A model for categorizing
context in context-aware mobile computing. Symposium on Collaborative Technologies
and Systems, pages 127–133, 2003.

[7] Louise Barkhuus and Anind Dey. Is context-aware computing taking control away
from the user? three levels of interactivity examined. Proceedings of UbiComp, pages
150–156, 2003.

[8] Douglas Barry and Torsten Stanienda. Solving the java object storage problem. Com-
puter, 31(11):33–40, 1998.

[9] Victoria Bellotti and Keith Edwards. Intelligibility and accountability: Human consid-
erations in context-aware systems. HUMAN-COMPUTER INTERACTION, 16:193–
212, 2001.

[10] P. J. Brown. The stick-e document: a framework for creating context-aware applica-
tions. ELECTRONIC PUBLISHING-CHICHESTER, 1995.

[11] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications: from the laboratory
to the marketplace. IEEE Personal Communications, 4(5):58–64, October 1997.

[12] Licia Capra, Wolfgang Emmerich, and Cecilia Mascolo. Reflective middleware solutions
for context-aware applications. pages 126–133, 2001.

[13] Harry Chen, Sovrin Tolia, Craig Sayers, Tim Finin, and Anupam Joshi. Creating
context-aware software agents. The Knowledge Engineering Review, 2004.

[14] Harry Lik Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Sys-
tems. PhD thesis, University of Maryland, Baltimore County, 2004.

[15] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Efstratiou.
Developing a context-aware electronic tourist guide: some issues and experiences. In
CHI ’00: Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 17–24, New York, NY, USA, 2000. ACM.

[16] Ekaterina Chtcherbina and Marquart Franz. Peer-to-peer coordination framework
(p2pc): Enabler of mobile ad-hoc networking for medicine, business, and entertain-
ment. In In Proceedings of International Conference on Advances in Infrastructure
for Electronic Business, Education, Science, Medicine, and Mobile Technologies on the
Internet (SSGRR2003w) (L’Aquila/Italy), 2003.

71

72 BIBLIOGRAPHY

[17] Anind K. Dey. Context-aware computing: The cyberdesk project. In AAAI 1998 Spring
Symposium on Intelligent Environments, pages 51–54, Palo Alto, 1998. AAAI Press.

[18] Anind K. Dey. Understanding and using context. Personal and Ubiquitous Computing,
2001.

[19] Anind K. Dey and Tim Sohn. Supporting end user programming of context-aware
applications. In CHI 2003 Workshop on End User Development, 2003.

[20] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A service-oriented middleware for
building context-aware services. Journal of Network and Computer Applications, 2005.

[21] A. Paul Hare. Handbook of small group research. Free Press, 1976.

[22] Frederick Hayes-Roth. Rule-based systems. Commun. ACM, 28(9):921–932, 1985.

[23] Albert Held, Sven Buchholz, and Er Schill. Modeling of context information for perva-
sive computing applications. Proceedings of SCI 2002/ISAS 2002, 2002.

[24] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Generating context
management infrastructure from high-level context models. In In 4th International
Conference on Mobile Data Management (MDM) - Industrial Track, pages 1–6, 2003.

[25] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef Alt-
mann, and Werner Retschitzegger. Context-awareness on mobile devices - the hydrogen
approach. In HICSS ’03: Proceedings of the 36th Annual Hawaii International Con-
ference on System Sciences (HICSS’03) - Track 9, page 292.1, Washington, DC, USA,
2003. IEEE Computer Society.

[26] Richard Hull, Philip Neaves, and James Bedford-Roberts. Towards situated computing.
Wearable Computers, IEEE International Symposium, 0:146, 1997.

[27] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen. Ex-
periences in using cc/pp in context-aware systems. In In Proc. of the Intl. Conf. on
Mobile Data Management (MDM, pages 247–261. Springer, 2003.

[28] Jadwiga Indulska and Peter Sutton. Location management in pervasive systems. In
ACSW Frontiers ’03: Proceedings of the Australasian information security workshop
conference on ACSW frontiers 2003, pages 143–151, Darlinghurst, Australia, Australia,
2003. Australian Computer Society, Inc.

[29] Lalana Kagal, Vlad Korolev, Harry Chen, Anupam Joshi, and Timothy Finin. Centau-
rus: A framework for intelligent services in a mobile environment. In In Proceedings of
the International Workshop on Smart Appliances and Wearable Computing (IWSAWC,
2001.

[30] Fahim Kawsar, Kaori Fujinami, and Tatsuo Nakajima. Experiences with developing
context-aware applications with augmented artefacts. Experiences with Developing
Context-Aware Applications with Augmented Artefacts, 2005.

[31] William Kent. The breakdown of the information model in multi-database systems.
SIGMOD Rec., 20(4):10–15, 1991.

[32] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Technical Report 8, 1966.

[33] Ludwig and Maximilians. Service Interoperability in Ubiquitous Computing Environ-
ments. PhD thesis, University Munich, 2003.

[34] John McCarthy and Sasa Buvac. Formalizing context (expanded notes). Technical
report, Stanford, CA, USA, 1994.

[35] Felix Naumann and Matthias Häussler. Declarative data merging with conflict reso-
lution. In International Conference on Information Quality (IQ 2002). 2002, pages
212–224, 2002.

BIBLIOGRAPHY 73

[36] H. B. Newcombe. Handbook of record linkage: methods for health and statistical studies,
administration, and business. Oxford University Press, Inc., New York, NY, USA, 1988.

[37] Yannis Papakonstantinou, Serge Abiteboul, and Hector Garcia-molina. Object fusion
in mediator systems. pages 413–424, 1996.

[38] Jason Pascoe. Context-Aware Software. PhD thesis, University of Kent at Canterburry,
2001.

[39] Neil Rhodes and Julie McKeehan. Palm Programming: The Developer’s Guide. O’Reilly
Media, 1998.

[40] Gene I. Rochlin. Trapped in the Net: The Unanticipated Consequences of Computeri-
zation. Princeton University Press, Princeton, NJ, 1997.

[41] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-
aware archaeological assistant. In V. Gaffney, M. van Leusen, and S. Exxon, editors,
Computer Applications in Archaeology 1997, British Archaeological Reports, Oxford,
October 1998. Tempus Reparatum.

[42] Nick Ryan. Contextml: Exchanging contextual information between a mobile client
and the fieldnote server. 1999.

[43] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–
81, 2005.

[44] Michael Samulowitz, Florian Michahelles, and Claudia Linnhoff-Popien. Capeus: An
architecture for context-aware selection and execution of services. In Proceedings of
the IFIP TC6 / WG6.1 Third International Working Conference on New Develop-
ments in Distributed Applications and Interoperable Systems, pages 23–40, Deventer,
The Netherlands, The Netherlands, 2001. Kluwer, B.V.

[45] V. Sassone. Context-aware software-intensive systems. 2004.

[46] M. Satyanarayanan, Brian Noble, Puneet Kumar, and Morgan Price. Application-aware
adaptation for mobile computing. In EW 6: Proceedings of the 6th workshop on ACM
SIGOPS European workshop, pages 1–4, New York, NY, USA, 1994. ACM.

[47] B. N. Schilit and M. M. Theimer. Disseminating activemap information to mobile hosts.
Network, IEEE, 1994.

[48] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In
In Proceedings of the Workshop on Mobile Computing Systems and Applications, pages
85–90. IEEE Computer Society, 1994.

[49] Albrecht Schmidt. Implicit human computer interaction through context. Personal and
Ubiquitous Computing, 3:191–199, 2000.

[50] Quanzheng Sheng and B. Benatallah. Contextuml: A uml-based modeling language for
model-driven development of context-aware web services development. International
Conference on Mobile Business (4th : 2005 : Sydney, Australia), 2005.

[51] Amit P. Sheth and James A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–
236, 1990.

[52] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey. In In: Work-
shop on Advanced Context Modelling, Reasoning and Management, UbiComp 2004 -
The Sixth International Conference on Ubiquitous Computing, Nottingham/England,
2004.

[53] W3C. Composite capability/preference profiles (cc/pp). 2004.

[54] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active badge
location system. ACM Transactions on Information Systems, 1992.

[55] Wapforum. User agent profile (uaprof), 2001.

[56] M. Weiser. Ubiquitous computing. IEEE Personal Communications Computer ”Hot
Topics”, 1993.

	Introduction
	Related Work
	Context-Awareness
	What is context?
	Common understanding of context
	Human perspective of context
	Computer perspective of context

	Context representation
	Key-Value models
	Mark-up scheme models
	Graphical models
	Object-oriented models
	Logic-based models
	Ontology-based models
	Analysis
	Proposed representation

	Context sensing
	Context reasoning
	Passive context-awareness
	Active context-awareness
	User-defined context-awareness
	Infrastructures

	Discussion

	Social Groups
	Architecture
	Protocols
	Information Acquisition
	Real world examples
	GTalk
	Sapo Messenger
	MSN

	Discussion

	Extract, Transform, and Load (ETL) Information
	Object Identification
	Conflict Resolution
	Rule-Based Systems

	Analysis

	Funambol Background
	Contact Format
	System Internals
	Discussion

	Architecture
	Interfaces
	Social Group Connector Interface
	Contact Source Interface
	Context Source Interface
	Context-Aware Group Enabler

	Components
	GTalk, Sapo Messenger and MSN Connectors
	Social Group Aggregator
	Funambol Connector and Funambol Connector Sync Source
	Upcase Connector
	Context Aware Group Enabler System

	System Entities
	Contact Types
	Addresses
	Context
	Entity
	Customer
	External Entity

	Group Element
	Group
	Internal and Aggregated Context
	Group Element Perspective
	Group Perspective

	Generic Interfaces
	Integration with JNDI
	Social Group Interface
	Contact Source Interface
	Context Source Interface

	Implementation
	Social groups
	Obtain Information
	Use Information

	Technology-related Aspects
	Persistence
	Object-Relational Mapping
	Persistence Framework
	Database Management Systems

	Rule-based Inference and Rule Management

	Evaluation
	Test Environment
	Loading
	Contact Sources Processing
	Context Gathering
	Connectors Persistence
	Group Persistence
	Duplicate Detection
	Global Analysis

	Conclusions

