
Cloud DReAM - Dynamic Resource Allocation

Management for Large Scale MMOGs

Miguel António Moreira de Sousa Adaixo

Dissertation submitted to obtain the Master Degree in

Information Systems and Computer Engineering

Jury

President: Professor Pedro Manuel Moreira Vaz Antunes de Sousa

Supervisor: Professor Paulo Jorge Pires Ferreira

Co-Supervisor: Professor Lúıs Manuel Antunes Veiga

Members: Professor João Carlos Serrenho Dias Pereira

November 2012

Agradecimentos

Quero agradecer aos meus orientadores Paulo Ferreira e Lúıs Veiga por todas as opiniões, conhecimento

e disponibilidade, sem o qual este trabalho não teria sido possivel.

Agradeço também à minha familia, especialmente aos meus pais Manuel Adaixo e Olga Adaixo, e à minha

irmã Margarida, por todo o apoio e paciência que me deram não só durante a realização deste trabalho,

mas durante toda a vida.

Ao André Pessoa, pelo seu contributo para o resultado final desta tese e pelo apoio indispensável que me

prestou na fase final deste trabalho.

Um agradecimento final a todos os meus colegas e amigos, com quem partilhei bons e maus momentos,

e que ajudaram a tornar este trabalho possivel.

i

ii

Resumo

Nos ultimos anos os massively multiplayer online games (MMOG) têm vindo a ganhar um número

crescente de adeptos. Este tipo de sistemas colocam uma série de dificuldades aos criadores do jogo.

Dificuldades tais como garantir escalabilidade do sistema, ao mesmo tempo que é mantido o desempenho

do jogo aos olhos do jogador, de modo a que este disfrute de uma boa experiência. As implementações

mais comuns destes sistemas baseiam-se numa arquitectura cliente-servidor, usando estratégias diferentes

para distribuir a carga pelos vários servidores. Esta abordagem levanta questões relevantes no que toca

a escalabilidade dos seus recursos. Tem sido realizada muita investigação nesta área, quer seja a tentar

optimizar as abordagens actuais ou usando outras novas. Peer-to-peer e mais recentemente o paradigma

de cloud computing são exemplos de novas abordagens. Neste trabalho propomos uma abordagem baseada

em cloud computing, de modo a resolver os principais problemas com os quais um MMOG tem de lidar,

tendo em mente que a utilização de recursos deve ser optimizada.

iii

iv

Abstract

In the last few years massively multiplayer online games (MMOG) have been gaining an ever increasing

number of adepts. This type of systems pose a series of difficulties to designers. Difficulties such as

guaranteeing scalability of the system, while maintaining the overall game performance to the users in

order to make the game an enjoyable experience. The most common implementations of these systems

rely on a client-server organization, using different types of approaches to distribute the load among the

various servers. This approach raises relevant issues when it comes to scalability of its resources. There

has been a lot of research on the area, either trying to optimize this approach or trying to use other

types of structures. Peer-to-peer and more recently the cloud computing paradigm are examples of such

structures. In this work we propose an approach that uses a cloud computing platform in order to solve

the major issues that a MMOG has to deal with, having in mind that resource waste should be optimized.

v

vi

Palavras Chave

Keywords

Palavras Chave

Computação na Nuvem

Elasticidade

Gestão de Recursos

Jogos Online Multijogador

Keywords

Cloud Computing

Elasticity

Resource Management

Multiplayer Online Games

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Difficulties/Problems . 2

1.4 Existing solutions advantages/disadvantages . 2

1.5 Proposed solution . 3

1.6 Thesis Outline . 4

2 Related Work 5

2.1 Architectures . 5

2.1.1 Client-Server . 5

2.1.2 P2P . 6

2.1.3 Cloud . 7

2.2 Interest Management . 7

2.2.1 Auras . 8

2.2.2 Vector Field Consistency . 8

2.3 Load Distribution Algorithms . 9

2.3.1 Dynamic Load Sharing Algorithm . 9

2.3.2 Dynamic Load balancing Algorithm . 10

2.3.3 Locality Aware Dynamic Load Management . 10

2.3.4 Hybrid Load Balancing . 11

2.3.5 Microcell Oriented Load Balancing . 12

2.3.6 Load Balancing with Kd-Tree Partition . 13

2.4 P2P Further Discussion . 15

2.4.1 Consistency . 15

2.4.2 Player Distribution and Load Balancing . 16

ix

x CONTENTS

2.4.3 Game Security . 17

2.5 Cloud Approaches . 18

2.6 Proxys . 18

2.7 Academic Systems . 19

2.7.1 Kosmos . 20

2.7.2 Solipsis . 21

2.7.3 HyperVerse . 21

2.7.4 Darkstar . 22

2.8 Summary . 22

3 Architecture 25

3.1 Introduction . 25

3.2 System Overview . 25

3.3 Cloud DReAM . 27

3.3.1 System Components . 27

3.3.2 Interest Management . 29

3.3.3 Load Balancing / Player Distribution . 30

3.3.4 Map Division . 31

3.3.5 Client Connection . 32

3.3.6 Server Connection . 33

3.3.7 Client Redirection . 34

3.3.8 Communication Model . 35

3.3.9 Scaling Algorithm . 36

3.4 Summary . 37

4 Implementation 39

4.1 Game Choice . 39

4.2 Development Environment . 39

4.3 Eucalyptus cloud . 39

4.4 Game Conversion . 40

4.4.1 Server Conversion . 41

4.4.2 Client Conversion . 43

4.5 Application Programming Interface . 43

CONTENTS xi

4.5.1 Cloud DReAM Client API . 43

4.5.2 Cloud DReAM Server API . 44

4.5.3 Cloud Manager API . 44

4.6 Data Structures . 46

4.6.1 CubeOriObj . 46

4.6.2 CubeEvent . 47

4.6.3 CubeHit . 48

4.6.4 MapArea . 48

4.7 Load Balancing Mechanisms . 48

4.8 Scaling Mechanisms . 49

4.9 Server Image . 49

4.10 Summary . 50

5 Evaluation 51

5.1 Tests Performed . 51

5.1.1 Original Game . 51

5.1.2 Cloud DReAM with static infrastructure . 51

5.1.3 Cloud DReAM . 52

5.1.4 Migration Tests . 52

5.1.5 Usability Tests . 52

5.2 Used Infrastructure . 53

5.3 Used Map . 54

5.4 Ideal Scenario . 54

5.5 Launch Instances . 54

5.6 Scenarios Evaluation . 55

5.6.1 Original Game . 55

5.6.2 Cloud DReAM with static infrastructure . 55

5.6.3 Cloud DReAM . 58

5.7 Migration test result . 62

5.8 Usability test result . 63

5.9 Summary . 64

6 Conclusion 67

6.1 Future Work . 67

xii CONTENTS

List of Figures

2.1 The two topologies of P2P networks . 6

2.2 2 dimensional Kd-tree structure . 13

3.1 General view of the system using a cloud platform . 26

3.2 Representation of the interaction between the 3 components of the system 27

3.3 System components architectural view . 27

3.4 Consistency areas around a player’s avatar . 29

3.5 World map divided with players avatars represented . 31

3.6 Example of different partition sizes and a player’s area of interest spreading across them . 32

3.7 Two alternative area split methods . 32

3.8 Server requesting peer list from the cloud manager . 33

3.9 Server contacting the two peer servers . 34

3.10 Effective migration of a client . 35

3.11 Client moving back and forth in the border and not being migrated 36

3.12 Flow chart of the scaling algorithm . 38

4.1 Implementation of the Cube2 game with the VFC4FPS system 41

4.2 Implementation of the Cloud DReAM version of the game 42

4.3 Data structures distribution across the Cloud DReAM system 47

5.1 Enquire answered by volunteers . 53

5.2 CPU Usage for the server . 55

5.3 CPU Usage for server 1 (Static) . 56

5.4 CPU Usage for server 2 (Static) . 56

5.5 CPU Usage for server 3 (Static) . 56

5.6 CPU Usage for server 4 (Static) . 56

5.7 Events received for server 1 (Static) . 56

xiii

xiv LIST OF FIGURES

5.8 Events received for server 2 (Static) . 56

5.9 Events received for server 3 (Static) . 57

5.10 Events received for server 4 (Static) . 57

5.11 Clients connected to each server per second . 57

5.12 CPU Usage for server 1 (Cloud DReAM first case) . 59

5.13 CPU Usage for server 2 (Cloud DReAM first case) . 59

5.14 Events received for both servers (Cloud DReAM first case) 59

5.15 Objects received for both server (Cloud DReAM first case) 59

5.16 Clients connected to each server per second . 59

5.17 CPU Usage for server 1(Cloud DReAM second case) . 61

5.18 CPU Usage for server 2 (Cloud DReAM second case) . 61

5.19 CPU Usage for server 3 (Cloud DReAM second case) . 61

5.20 Events received for the 3 servers (Cloud DReAM second case) 61

5.21 Objects received in the 3 servers (Cloud DReAM second case) 61

5.22 Clients connected to each server per second . 62

5.23 Online game experience vs. differences noticed . 64

5.24 Online game experience vs. enjoyability compromising problems 64

List of Tables

2.1 Comparative table . 23

5.1 Redirection times for a simultaneous 10 player migration 63

5.2 Redirection times for a simultaneous 20 player migration 63

xv

xvi LIST OF TABLES

List of Abbreviations

AOI Area of Interest

API Application programming interface

FPS First person shooter

IaaS Infrastructure as a service

MMOG Massively multiplayer online game

NPC Non playable character

P2P Peer-to-Peer

PaaS Platform as a service

RPC Remote procedure call

SaaS Software as a service

VFC Vector Field Consistency

xvii

xviii LIST OF TABLES

1Introduction

1.1 Motivation

A Massively multiplayer online game (MMOG) is a genre of game in which a very large number of players

interact with one another within the game’s virtual world. This type of interaction uses the internet as

a support medium, and requires a persistent game world in which the player’s actions take place.

This type of system is a clear example of a distributed system. Taking this into account, most of the

common problems with distributed systems apply in this type of game, and in some cases can be even

harder to solve than on regular distributed systems. The two main distributed systems concerns that are

dealt with in this case are scalability and usability of the application.

Typically such games run on top of a client-server architecture, with many clients connecting to one

server where the game world is hosted. Users want to play the game as smoothly as possible no matter

how big the number of players currently connected to the server. This can pose a serious challenge to the

server, which has to process many clients at the same time, and respond to them in a timely manner. It

becomes clear that this process can be very heavy on resource consumption on peak hours, where most

players are connected.

Thinking about the costs of all this operation, it is easy to realise that it will be very high, especially

on those hours where the number of clients connected is lower. During these periods of lower resource

demand, it is not justified to have resources being wasted on potential clients that will not connect within

that time periods. In order to solve this problem, we want to develop a system that manages this resource

management automatically with a minimal impact on the game performance, preventing the waste of

resources.

1.2 Objectives

The main objective of this project is to create a distributed system, that has the capability to dynamically

adjust the resources it uses to support the MMOG. This means increasing or decreasing the number of

resources used, in order to support an ever changing number of players. This adaptation performed by

the system, should be done in an automatic and timely fashion to serve the needs of the users. It also

has to be done in such a way that it allows for the usability of the game to be kept unchanged as much

as possible. It is also necessary for the cost of the resource usage to be kept to the minimum value

possible while maintaining the service quality on par with what is currently done. The last aspect being

1

2 CHAPTER 1. INTRODUCTION

considered is the security of the application. Avoiding cheating or other unauthorized actions that might

hinder legitimate players experience is an important concern that is being taken into account.

1.3 Difficulties/Problems

There are a series of difficulties and problems related to what we are trying to achieve. One of them is

the problem of threshold. When is it time to add or remove resources? In order to minimize resource

usage and the corresponding cost, this has to be taken into account. Furthermore, it is important to find

what is the best metric to use as threshold. We can think about using the number of players connected,

the load of the servers, the communications taking place between servers among some other options.

The next problem we have to deal with is game consistency. When we add resources, in this case more

server machines to support the increasing number of players, we have to ensure that the game world

remains consistent in both the new machines and the older ones. This is also relevant when we remove

machines that are no longer needed. It is mandatory to ensure that any information present on the

disconnecting machines is kept so that players are not affected by any loss of data.

The performance of the game is another difficulty that we face in this system. It is necessary that the

users do not realise what is happening in the background while they play. What this means is that

gameplay should be kept smooth independently of the addition or removal of machines that might be

taking place.

Security of the game state and information is also to be considered. MMOG’s deal very often with some

sort of ingame currency or other information that can not be tampered with. If an attacker or malicious

user manages to compromise the application’s security, he will also compromise the enjoyment of the

game by the legitimate users.

Finally, it is very important to consider scalability, since it is a main concern in this kind of systems.

The typical client-server architecture that is in use nowadays is not the most scalable approach and game

companies often have to find complex solutions to make it scale.

1.4 Existing solutions advantages/disadvantages

There are some already existent approaches that try to solve the same problem that we want to solve.

We describe them briefly here and discuss their advantages and disadvantages; On a later section we go

deeper in how they work.

To begin with, there are two common architectures being used for MMOG, which are the peer-to-peer

(commonly known as P2P), and the client-server architecture [11]. P2P has some advantages related with

transmission latency and the absence of a single point of failure. It is however hard to prevent cheating

and to manage the game state using this architecture. For this reason most companies rely on the classic

client-server architecture which solves the disadvantages of P2P at the expense of the number of servers

and bandwidth consumption.

1.5. PROPOSED SOLUTION 3

Project Darkstar [37] is described as a platform that proposes to solve all the hard issues related with

the development of MMOG, one of them being the addition or subtraction of resources as needed, and

leaves to the programmers only the task of creating a fun game. Darkstar is a server-side infrastructure

designed to exploit the multithreaded, multicore chips that exist today. It also aims to scale to a large

group of machines while giving the programmer the illusion of being developing in a single-threaded,

single-machine environment. The project has since lost its funding due to restructuring in the company

where it was being developed, and was not concluded and tested enough.

A different solution based on P2P [28] was also proposed, which uses the advantages of this type of

architecture in order to achieve the resource efficiency that we are looking for. It does however need to

have some special nodes or trusted peers that control the security aspect of the game, which makes the

system not able to fully exploit a P2P architecture. Another proposed approach was a MMOG support

system [3], that presented a solution for most of the MMOG problems. However, scalability is a bit

neglected and relieved to a second plane of focus. The test setting for this approach is also somewhat

limited which does not make it clear how the system would behave on a larger scale.

1.5 Proposed solution

We propose a solution based on a cloud computing approach [2]. Cloud computing is a fairly recent

approach to resource usage, that seems very interesting in the context of a MMOG. It provides the re-

sources that a game of this type requires, while managing them in an efficient way that helps to minimize

resource waste in times of low usage by the users. This contrasts with the other two commonly taken

approaches. Client-server is limited when it comes to scalability. Peer-to-peer raises problems such as

how will the game work when there are not enough nodes connected and how to effectively store the game

data among the peers. Security is also an important concern that is hard to ensure in a peer-to-peer

architecture.

In our approach we use Eucalyptus 1, an open-source platform that supports cloud computing. We chose

this platform because it fits the requirements of our system. This platform allows us to virtualize a set

of resources and then use them for our game. The game servers are hosted in this cloud. New instances

of the server is launched when the need for it arises. An image of the game server has been previously

uploaded to the cloud system, so that it can be launched when necessary.

Our system mediates the interaction between the clients and the cloud system. It acts as middleware

and has direct control over the cloud actions. The Eucalyptus platform provides tools that allow for

this control and monitoring. The middleware controls how the cloud scales and deal with the increase or

decrease in the number of players. It also deals with the clients state and respective updates, as well as

the persistence of the servers game data.

1http://open.eucalyptus.com/

4 CHAPTER 1. INTRODUCTION

1.6 Thesis Outline

The rest of this document is organized in the following manner. Chapter 2 addresses the related work,

analysing other systems with a similar goal. Chapter 3 describes the proposed architecture and how we

solve the problems that have been identified. On Chapter 4, we describe how we implemented our system

and detail its components. In Chapter 5 we describe how we evaluate the system and present our results.

To conclude, Chapter 6 summarizes the work done so far and reason about the overall success of the

work, as well as present our ideas for future work.

2Related Work

This chapter addresses the related work already mentioned in the introduction with more detail, and

focus on the points that are important to our current solution. We begin by discussing in more detail

the most common network architectures for MMOG. We then address some already existent solutions to

the problems we previously identified, as well as other topics that are relevant to the goal we are trying

to achieve.

2.1 Architectures

2.1.1 Client-Server

Client-server [32] is a distributed systems classic architecture. The main idea is to split the tasks of the

system between two types of entities. The first entity is the server, which provides a given service, and

the second entity is the client, which connects to the server and requests the service that it provides. The

most common scenario for this architecture is having clients and servers in different machines, communi-

cating with each other through some network setup.

The servers are said to be sharing their resources with the clients that connect to them, while clients

do not share anything neither between themselves, nor with the server to which they connect. In this

scenario, the communication is started with the clients initiative to ask the server for a connection, while

the servers simply wait for incoming requests to which they reply.

The vast majority of MMOG employ some variant of this approach, mainly because of the advantages it

gives, such as an easy to manage game state, and the prevention of cheating, since all the game logic runs

on the server side, and only updates are sent to client. However, this approach has some downsides that

derive from the advantages it provides. In order to achieve the advantages stated, this approach puts a

higher resource cost on the server side, and also consumes a lot of bandwidth. There is also the issue of

reduced interactivity between the clients, since every action has to go through the server, before it can

reach the other clients.

The other main problem with this approach is the single point of failure located in the server. If the server

fails then the game becomes unplayable for every client. Finally, it becomes clear that this approach is

limited concerning scalability, since it is very dependent on the server resources.

5

6 CHAPTER 2. RELATED WORK

2.1.2 P2P

Peer-to-peer computing [32] is a distributed application architecture that partitions tasks or workloads

among peers. Peers are equally privileged, equipotent participants in the application. They are said

to form a peer-to-peer network of nodes. In this architecture, every node accumulates the functions of

client and server, and shares its resources, such as processor power, disk space and so on, with the other

nodes. This architecture exists in two different forms: pure P2P where all nodes are equal, and hybrid

P2P where there is at least one central server node that manages the others as we can see in Figure 2.1.

Pure P2P Hybrid P2P

Figure 2.1: The two topologies of P2P networks

P2P seems attractive to the MMOG market because it minimizes the transmissions latency, it has

no single point of failure, and it also reduces the costs to the game companies, since they do not have to

invest so much money on server hardware and bandwidth.

On the other hand, P2P makes it harder to monitor possible cheating attempts from users with bad

intentions. Since we have a part of the game logic running on the client machine, as there is no server, it

is fairly easy for the cheats to be introduced. For the same reason it is also harder to manage the game

state using this approach.

Some authors have listed a series of six aspects [12] they consider of utmost importance when consid-

ering to use P2P in a MMOG. Those issues are interest management, game event dissemination, NPC

(non-playable character) host allocation, game state persistency, cheating mitigation and incentive mech-

anisms.

For all that was previously mentioned, P2P has not been used in many commercial solutions and the pre-

vailing architecture is client-server that was described in the previous section. However, there are many

studies being developed in this area, and some of them present interesting ideas and concepts which are

discussed in Section 2.4.

2.2. INTEREST MANAGEMENT 7

2.1.3 Cloud

There is a third alternative solution, that has been gaining many adepts lately. The cloud computing

paradigm [2] consists in the delivery of computing power as a service instead of as product. Clouds can

be grouped into three major styles, the infrastructure as a service (IaaS), platform as a service (PaaS)

and software as a service (SaaS). As the designation indicates, this classification refers to clouds in terms

of service they provide, depending on the portion of the stack that is being delivered as a service. A

cloud works as a pool of resources that are provided to the user. The users of the cloud only need to be

concerned with the computing service being asked for, as the underlying details of how it is achieved are

hidden. This method of distributed computing is done through pooling all computer resources together

and being managed by software rather than a human. There are already some existing solutions using

cloud computing such as the Amazon EC21 or the Google app engine2

This type of resource distribution seems attractive because of the way it allows an application to scale

by requesting more resources as the need for them arises. Clouds also deal with the problem of machine

failure without letting the user know it has happened.

On the other hand, using a cloud for a MMOG to host its servers also rises some important issues. Since

clouds are supposed to be pools of shared resources (according to the architecture of a cloud), that are

made available to the user by some service provider, might not seems very attractive to game developing

companies that would obviously have to get their code running on the providers machines. Also if we

think of the current way clouds are provided, every time the game needs to add another server to deal

with the number of players, all the game server logic would have to be sent to the cloud in order for the

server to work which is surely a time consuming task. This last concern is not relevant in some systems,

that allow the creation of an image that is kept by the cloud and is launched when necessary. It is

always possible for the company to create its own cloud dedicated to the game, which would solve these

two problems, but that might destroy the advantage of reducing costs on the resource consumption and

maintenance that normal clouds are supposed to offer its users.

From a theoretical point of view, clouds allow for a good scalability and resource management, while

keeping the costs reduced to a minimum. In practice the real cost reduction is dependent on the way the

cloud is to be deployed. It also allows for a proper security measures enforcement, since the servers are

always under the control of the game provider.

2.2 Interest Management

When a player takes any action inside the virtual world of a MMOG, it changes is own state. In the

same way, all the other players with which he interacts, also perform actions that cause them to change

state. In order for a player to have a consistent view of what is happening around him, each player must

maintain a copy of the relevant game state on his machine [8]. The simplest way of achieving this would

1http://aws.amazon.com/pt/ec2//192-7629682-8045352/
2http://code.google.com/intl/pt-PT/appengine/

8 CHAPTER 2. RELATED WORK

be for every player to keep a full copy of the game state, and all players would broadcast updates to all

other players. It is very easy to realise that this approach is no feasible, as it consumes a lot of resources

and it requires an enormous available bandwidth, which makes this solution simply not scalable enough

for this type of system.

It is important to clarify what is the information that is relevant to the player, such as events that are

happening on is immediate vicinity up until a certain distance. For this reason interest management is

normally modelled as a sphere around the player avatar [8].

Interest management schemes can be grouped into two major categories, space-based and class-based, or

extrinsic and intrinsic respectively [23]. Space-based interest is determined based on the relative position

of objects in the virtual world, while class-based is determined from an object’s attributes [8].

2.2.1 Auras

The space-based approach is normally based on proximity, so it is modelled using an aura-nimbus model,

where the aura represents the area that bounds the presence of an object in space and the nimbus

represents the area where the avatar can perceive other avatars. Both aura and nimbus can be modelled

as circles around the players avatar, being the nimbus a circle with a larger radius than the aura. A

player can then see and receive updates from actions of other players located inside the area covered by

his nimbus. This approach when used in its pure form allows for a fine-grained interest management in

which only the relevant updates are sent to subscribers. On the other hand it is not very scalable due to

the cost of computing the intersections between players auras and nimbus [8] [21].

To mitigate the problems of the pure aura-nimbus approach, region-based approaches can be used. These

approaches divide the game into regions that are static and are used to calculate the area of interest in

a cheaper way. The quality of this solution is strongly related with the way the game world is divided

into areas. The most common approach is dividing into square tiles, but there are other shapes that have

been shown to be more efficient such as hexagons [8].

2.2.2 Vector Field Consistency

A different approach to interest management that unifies several forms of consistency enforcement and

multi-dimensional criteria to limit replica divergence with techniques based on locality-awareness. This

technique is called vector field consistency(VFC) [34].

VFC splits the world into zones around a pivot (the player avatar). This creates consistency zones based

on the distance between the pivot and the target object. Consistency zones are iso-surfaces, ring shaped

and concentric in the pivot. This separation in consistency zones, guarantees that objects in the same

zone have the same degree of consistency. Each zone has a degree of consistency assigned to it that

specifies the degree of consistency to be used for that region, and obviously this degree gets weaker as

the distance gets higher.

The consistency degrees are defined as a 3 dimensional vector, where each dimension is a numerical scalar,

2.3. LOAD DISTRIBUTION ALGORITHMS 9

representing time, sequence and value. Time specifies the maximum time a replicated object can spend

without a refresh; sequence specifies the maximum number of lost replica updates; and value represents

the maximum relative difference between replica contents or against a constant. When any of these values

is exceeded, it means that the current replica needs to be updated. It is possible to ignore any of these

values, by setting them to an infinite value.

An application of this algorithm to a first person shooter game [21] was also proposed, which was imple-

mented for the game Cube 2: Sauerbraten 3, and showed good results, with a considerable decrease in

communication and an overall increase of the game performance and scalability.

The results of this approach seem interesting from a point of view of resource consumption. With this ap-

proach it is possible to limit interactions between players to the ones that are in fact relevant. This allows

for a reduction of resource consumption and the overhead of communication. This effectively increases

the system performance while keeping the resource consumption under control, which is a fundamental

aspect that we are considering.

2.3 Load Distribution Algorithms

Architecture is not the only concern when it comes to MMOG. It is also important to have a load

distribution algorithm, to distribute the load among the available servers in an efficient way. This section

presents some existing approaches.

2.3.1 Dynamic Load Sharing Algorithm

A dynamic load sharing algorithm [11], divides the game world into a grid of equal cells. Cells are an

abstraction that represent the different zones of the world. The number of servers can be less or equal

to the number of cells. Each server manages a group of neighbouring cells, which is called a partition. A

server also talks to his neighbour servers when it is necessary to perform load sharing. There are various

levels of neighbours being considered. Level one are the ones adjacent to the current partition; level two

are the ones that are adjacent to level one neighbours and so on.

Each avatar receives updates from within the partition where it is currently located, and also from avatars

in other partitions that are located on the border between the two partitions. This introduces the concept

of subscription region, which are the cells that compose the border of each partition. An avatar that is in

partition A and close enough to the border to be able to see avatar in partition B, should be subscribed

into B’s subscription region which is composed by the border cells of the partition.

The system works with a fixed threshold of clients, above which the server is considered overloaded. They

also consider another variable that is called Extra load, which represents the capability that the current

server has to accept load from other servers.

This approach seems to perform well even with skewed workloads, and effectively decreases the workload

on the servers, successfully balancing the overall load among the available servers, and also minimizes

3http://sauerbraten.org/

10 CHAPTER 2. RELATED WORK

the migration ratio of clients between servers while balancing.

2.3.2 Dynamic Load balancing Algorithm

A dynamic load balancing algorithm [22] divides the game server architecture into two types of servers,

a master server and a number of game processing servers. The master server acts as the controller of the

system, and also as a sort of gateway for connecting clients, since it distributes this connections among

the game processing servers. The master server also controls the number of processing servers active at

the moment.

The game processing servers are the major game servers that process actions of game units such as the

player avatar and NPCs. These servers are composed of four manager components, which are the unit

action manager, the player connection manager, the load balancing manager and boundary interaction

manager. The unit processing manager as the name implies, is responsible for managing all the action

taken either by player units or by non-player units that work under autonomous routines. The player

connection manager is responsible for checking the status of the clients connection and also of sending

him notifications. The load balancing manager is where the load balancing algorithm performs his job in

order to decrease performance degradation which comes as a natural consequence of the movement of the

players inside the game universe. Finally, the boundary interaction manager, is responsible for dealing

with the problem that we described previously, which occurs when game units are located in the border

between two partitions.

The first step of the proposed algorithm is the spatial partition of the game regions. The authors propose

a vertical partition against the x axis. Each of these partitions is managed by a processor which means

that every game unit present in that partition, is assigned to the corresponding processor. They also

consider the border areas of the partitions, and call them export areas or import areas. Import areas are

located in the neighbour processors and contain the game units that can be transferred to the current

processor, while export areas are located in the current processor and represent the opposite.

Each node has one of five possible states: normal, overloaded, locked, underloaded and unknown. The

nodes check periodically their current load and compare it to a fixed threshold value and sends a request

for help in case of an overload. These requests are only sent to its two direct neighbours. If the neighbour

nodes can not accept the extra load, they notify that fact and the requesting node is forced to send a

remote help request, which is forwarded by the neighbour nodes to their direct neighbours. When a node

is found the message goes back through the neighbour chain until the original requester and the load is

shared.

In the tests performed, the system was compared with static partitioning and revealed some better results

as expected.

2.3.3 Locality Aware Dynamic Load Management

One common event in MMOG is the gathering of a large number of players in a common place called

hotspot. This event which is known as flocking is the main motivation for the locality aware dynamic

2.3. LOAD DISTRIBUTION ALGORITHMS 11

load management algorithm [10]. The authors propose an algorithm that uses dynamic partition of the

game world among the available servers in order to solve this problem. There are two main aspects

being considered: The balance of the server load in terms of the number of players, by splitting the game

world partitions across more servers; Decreasing inter-server communication by maintaining the locality

of adjacent regions or aggregating adjacent regions into large partitions to be assigned fewer servers[10].

The two main concepts of this approach are locality aware load shedding and locality aware load aggrega-

tion. When a server detects that it is taking more than a certain predefined time to send updates to 90%

of its clients, the server is considered overloaded and load shedding is started. Load shedding attempts

to migrate some load to its neighbour servers (neighbours in this case are actual pyshical servers that are

close to the loaded server) as long as these servers are below a given safe load threshold, which means

the servers are still available to take extra load. This first attempt to split to closer servers is due to its

objective to maintain locality. If it is not possible to find a neighbour to send the extra load, the server

floods the network with a message to find a server that is capable of receiving its load. In this case, the

other server also checks its threshold before accepting any extra load.

As already mentioned, the other aspect of this algorithm is aggregation. After an hotspot is formed and

players rush into it, its interest eventually disappears and players start to move out of that area. When

the hotspot was formed it most certainly triggered a load shed and so that area is now split among various

servers. As players move out, this splitting of areas between servers causes an increase in inter-server

communications, which is not a desirable situation. What the algorithm does in this case is attempting

to group closer regions back into the same server, in order to reduce not only the number of servers used,

but also the communication performed between servers, thus improving the game performance.

In the tests performed by the authors, the algorithm showed very encouraging results when compared

with other existing approaches. This type of algorithm improved the performance by a factor of 8 when

compared to a static partitioning algorithm, and by a factor of 6 when compared with other load balancing

algorithms like [11] [22], that do not consider spacial locality.

2.3.4 Hybrid Load Balancing

Most of the load balancing algorithms fall into one of two categories, global load balancing or local load

balancing. Global load balancing takes the entire state of the system into account when performing load

balancing, while local load balancing considers only the state of the current server and its adjacent peers.

The global load balancing approach gives a better view of the system, but it can be very slow to generate

it. The local load balancing option is in fact faster, but has the disadvantage of creating load distribution

solutions that do not last long, since they did not consider the global view of the system and decided

how to split the load based only on the neighbour servers. The Hybrid load balancing algorithm [20],

proposes a solution to this problem, by combining both approaches.

The Hybrid load balancing algorithm starts with the usual split of the game world into regions, and

creates a set that represents the load of each server. It also creates the opposite set to this last one, which

is the capacity a server has to receive extra load without being overloaded. Based on this information, it

12 CHAPTER 2. RELATED WORK

creates clusters of servers, which are groups of servers with an overall reduced load and that are capable

of accepting load from other more heavily loaded servers. The clusters have an abstract value called the

center of mass, which represents the mean location in the game world of all users that are present in the

regions managed by that cluster.

When a server is overloaded, it checks the neighbours load information and based on that tries to find a

potential server to share the load. Using the information just described, the server tries to find a set of

potential target clusters. To select which server cluster receives the load, the server evaluates the values

of load in that cluster as well as the center of mass, to choose the one that is closest to the current server.

If for any reason that cluster can not accept the extra load, the process then checks the next cluster

present in the set.

This method was compared with the algorithm that served as a basis for the authors proposed approach.

It was found that it takes more time for it to execute the load balancing, but it produces better results

in terms of overloaded servers during the test time.

Another approach that can be considered an hybrid approach is detailed in [19], where information

about local load and global load are used to achieve a better load balance. The world is divided into

hexagonal areas, as the authors argue that it reduces the communication between neighbours. When a

server is loaded, the algorithm starts with a local search for possible candidates to share the load, and

creates candidate lists with this information. The search is expanded until all the overloaded servers

are identified as well as the servers that possibly will receive the extra load. This approach was tested

against local and global load balancing approaches, and showed an average of loaded servers close to the

global approach, and much better than the local one. The ratio of migrated users is much lower than the

global approach and slightly above the local approach which was to be expected. When it comes to the

global system operation cost, it was shown that the algorithm manages to stabilize that operation cost

faster than global and local approaches, and keep it stable as time increases, while the other approaches

fluctuate much more.

2.3.5 Microcell Oriented Load Balancing

Some solutions use some form of P2P to solve the load balancing problem, even if not in a pure form, but

using the hybrid version of P2P. In [1], the authors argue that a pure P2P approach is not feasible for an

MMOG, and that the hybrid version is a more suited architecture to use. In this approach, the authors

propose the use of hexagonal shapes to divide the game world into different areas known as microcells.

Special nodes, called masters are responsible for one microcell, and coordinating in a collaborative manner

the interactions between the members active in each microcell. There is a pool of master nodes, that are

responsible for controlling the game world.

One of the main concerns of this approach is the definition of hotspots in the game. It is argued that

simply counting the number of players in a zone is not a correct approach, as the real thing that generates

load is the amount of messages exchanged due to the players interactions either between themselves or

with the environment. In order to address this, the rate message generation rate, is being used as a

2.3. LOAD DISTRIBUTION ALGORITHMS 13

measure to estimate the load on the master nodes.

When a server is loaded, it is necessary to move some of the microcells it is responsible for to a less loaded

server. In order to do this, each microcell defines a border area, similar to what is done in [22], where

information is shared between adjacent microcells, concerning avatars present in those border areas. Only

microcells that are managed by different peers, even though they are adjacent, have this border area,

since it is not necessary in the case where both regions are managed by the same peer. This allows for a

sharing of a partial state of the microcell, rather than a full state, which allows for the reduction of the

communication needed, and an overall reduction of system load.

When a server is loaded, the algorithm looks for all the clusters of microcells that are being managed by

the overloaded server, and then it selects the smallest cluster, and chooses the cell that currently has less

connections with other cells, which means it has less avatars that are connected to avatars in other areas

(such as border cases). The selected cell is then migrated to a less loaded server. The process is repeated

until the server is no longer overloaded.

An alternative approach to this idea is taken in [35], where the authors also propose a microcell type

division for the game world, but in this case apply it to a client server architecture, having one server

deal with clusters of microcells. The approach is very similar to the one described in [1]; The main

difference resides in the various algorithms proposed to make an efficient distribution of this microcells

in the available servers. Four algorithms are proposed and tested for this purpose. The results show that

the best of them is a deployment algorithm that combines simulated annealing that allows for a reduction

of up to 30% in the individual servers load. The test setting for this approach is somewhat limited in its

scale, thus it is not clear if this approach would scale well with a large scale MMOG.

2.3.6 Load Balancing with Kd-Tree Partition

A Kd-tree, which is short for K dimensional tree, is a data structure used in computing. It is used to

organize points in k-dimensional spaces. Their most common use includes searches that include multiple

dimensional keys. One example of this is nearest neighbour searches. Fig. 2.2 shows an example of a 2

dimensional kd-tree.

The first two assumptions that are made for the load balancing with Kd-tree algorithm [5], are the fact

X

X

Y

Figure 2.2: 2 dimensional Kd-tree structure

14 CHAPTER 2. RELATED WORK

that the system is heterogeneous, since every server might have different resources, and that load is not

proportional to the number of players. The load is considered to be the amount of bandwidth required

to send state update messages between clients and servers.

In this approach it is proposed the use of a Kd-tree with k=2, since the authors claim that most of the

current games use a two-dimensional representation of space, even though they are three-dimensional.

We are not sure if this claim is still valid nowadays as some of the games stated as examples for this have

evolved and might now use a three-dimensional representation of space (for instance, World of Warcraft4

allows players to fly in a three dimensional world), but it is always possible to use a tree with a higher

branching level.

The representation of world regions for this approach is done in the following manner: each node of

the tree represents a region of the space. In each node it is also stored a value the authors call a split

coordinate, that refers to the division of this region in sub-regions. This subdivision is represented by the

child nodes, which represent the sub-region before it was split and the sub-region that contains points

whose coordinates are greater than or equal to the split coordinate. Each level of the tree represents

the x and y axes of a two-dimensional world; that is, if level one represents the x axis, then level two

represents the y, and then level three represents x again and so on. On the leaf nodes no coordinates are

stored, only the list of avatars present in that region. Leaf nodes are mapped to game servers. Each node

also stores two more values that refer to the capacity and load of the subtree. Each non-leaf node’s load

is equal to the sum of the loads of its children nodes, and the same happens to the capacity value, where

the value is also the sum of the capacities of its children nodes.

One of the key factors of this algorithm is the distribution of player avatars. The authors argue that

taking into account the number of players is an unrealistic measure of load, and propose the use of the

amount of communication needed between them as a better suited measure. To do this they assume

that players that are farther apart in the world map, have less need to communicate between themselves,

so they create a sorted list of avatars based on their coordinates. After having sorted the avatars, it

is possible to calculate the load they generate and thus define the load of the node to which they are

attributed. Each node uses a dynamic load balancing algorithm based on the KD-tree structure that

allows for the splitting of the load when needed.

This approach was compared with other similar systems such as the Progrega and BFBCT [6]. It was

shown that the KD-tree approach achieves better results when it comes to the deviation of the ideal

balance of a system, and also has a better migration ratio in a situation with hotspots in the game

world as well as a lower communication between servers, than both the approaches proposed in [6]. This

approach has some encouraging results concerning communication, which definitely impacts the game

performance. Although, this approach might consume more resources than what would be desirable.

When the game world becomes too subdivided, and the number of players is high enough, the processing

of the structure might be complex. The idea of using communication has one of the load metrics, is

definitely interesting and seems to fit well in our dynamic resource allocation scenario.

4www.wow-europe.com

2.4. P2P FURTHER DISCUSSION 15

2.4 P2P Further Discussion

There is a lot of research on the subject of using P2P for MMOG. As it was previously stated in this

document, P2P seems like a very natural solution to scalability for a MMOG environment. In this section

we discuss some further aspects of P2P that do not fit our previous discussion of architectures. These

are, however, just as relevant to our discussion as the architecture part. They present possible solutions

to some of the problems that we described and that are mentioned in [12] as being essential for any

system that attempts to use P2P for a MMOG.

There are some proposed approaches to using P2P for MMOG. In one of these approaches [14], the au-

thors claim that it is possible to take advantage of P2P by creating an overlay network that uses a series

of components to achieve its goals. The first component is Pastry [30], a DHT-based Overlay Network,

which provides the organization and structure that allows the system to tolerate network failures as well

as a high number of connecting peers.

To manage the game objects, the authors are using an extension to Pastry called Past which allows the

persistence of objects. The last component is Scribe, another extension of Pastry that is meant to deal

with multicast, which is used to disseminate the game events to all the peers. This approach has been

tested with an MMOG that is not too time critical. The authors claimed their approach suffices in that

case, but they have not conducted tests on a more typical MMOG. They are in fact time-critical, and

latency is a serious issue. The approach taken in [28], seems like an interesting approach that actually

solves most of the issues with P2P that could be problematic for an MMOG. It does require some special

nodes to control the security aspect of the game, so it can be argued that it is not pure P2P, which might

bring some problems like points of failure that P2P normally does not have. These special nodes have to

monitor in some way the actions of other peers, which introduces an additional layer of complexity and

possible overhead to the application that is not desirable.

2.4.1 Consistency

One of the referenced problems with P2P for MMOG is the difficulty of keeping state and by consequence

of keeping consistency of the various servers. On the approach taken in [31], the authors state that a

game does not always need the same consistency level on every situation. This is not a new idea, it is

directly related to the already discussed concept of area of interest that was previously described. What

the authors propose is a consistency management infrastructure based on P2P, which allows for different

consistency models to be applied. For each situation, different consistency models are available, and it is

decided at runtime which one of them is to be used. This requires the use of a reflective API, that can

provide information such as current delay on responses, system load and other important informations

that allow the selection of an appropriate consistency model. It is possible for a user of this infrastructure

to extend it to suit his own needs, by using plugins that allow the creation of new consistency models to

add to the ones that already exist.

16 CHAPTER 2. RELATED WORK

Finally, in order to fully exploit the P2P network, the authors propose that objects can be dynamically

relocated between peers in order to provide a better gameplay. A simple example provided is a player

fighting a NPC while the latency between the peer of the player and the peer hosting the NPC is high,

it is possible to relocate the NPC to the player peer, in order to provide a higher consistency and

synchronization that does not hinder the gameplay. Nevertheless, this relocation is only performed in

cases where the interaction is expected to be long lasting and not only of mere seconds, since the cost of

relocations can be high.

There are some other approaches to consistency in P2P like the ones proposed in [16] [9], where Voronoi

diagrams are used to address consistency. A Voronoi diagram is obtained by dividing a given area, where

a set of points exist. This partition is done in such a way that for a given point p, a region is associated

with it that contains all the points that are closer to p than to any other point in the space. This creates

a more dynamic division of space which according to the authors suits better the needs of P2P load

distribution, and helps to create a better model for consistency and area of interest around the player.

2.4.2 Player Distribution and Load Balancing

Some authors argue that the world division into areas is unavoidable in any algorithm that tries to

solve the load balancing problem for MMOG. Their approach [18] uses P2P, and they have created an

algorithm that tries to effectively distribute zones of the game world among all the peers, in such a way

that inter-zone communications cost can be kept to a minimum. It was presented proof that this is a

NP-hard problem, and an heuristic to solve this problem was provided and tested.

Some would disagree with the fact that every area of the game needs a server attached to it; An algorithm

for player clustering [29] argues that conceptually areas with no players in them, do not need servers to

be assigned. This approach can be achieved by grouping the players into what is called player clusters.

To create such clusters, each player’s distance is evaluated, and if they are close enough to each other

then they belong in the same group. These groups have arbitrary shapes because the distance is being

computed with relation to the players, instead of to the center of the cluster.

Each cluster is assigned to a Virtual Server (VS) that is responsible for that cluster and follows the group

as it moves. VS’s are also responsible for deciding which VS’s are its neighbours and which of them are

not; since there is no central authority the VS’s have to decide this by themselves.

Since a cluster of players is equivalent to a VS, when the load on this VS exceeds a certain threshold

it is necessary to take some measures. For load balancing purposes, the authors consider three possible

approaches, moving clusters from one node to the other, moving one or some players from one cluster to

another, or splitting one cluster into two parts and move them to different servers, as described in [29].

This approach was tested against a CAN-based approach [27], and revealed advantages in some situations,

but performed clearly worse when it was tested with an uneven distribution of players from a real game,

having to transfer almost the double of the players than the CAN approach.

2.4. P2P FURTHER DISCUSSION 17

2.4.3 Game Security

One of the main reasons P2P is not more widely used in MMOGs is cheating. As stated before, it is hard

to monitor user’s actions in a P2P environment. To address this issue there have been some proposals

[17] that aim to create a reputation system similar to that of auctioning websites such as eBay5. The

basic concept is that every member has a rating based on his interactions with other members. These

ratings can only be given when two members enter each others area of interest, and rate each other based

on their interaction.

In order to avoid users tampering with their own rating, each users rating is stored by one or more nodes

known as trusted peers, which are chosen among the peers based on their rating. When a query for a

users rating is made, its reputation value is given based on the reply of the majority of trusted peers, in

order to keep malicious trusted peer from tampering with the reputation.

This approach has many positive aspects, and solves some problems related with the P2P security, but

it is still exploitable; nothing prevents two peers from crossing each other many times and interacting,

in order to elevate each others rating. Also, the mechanism for choosing the trusted peers is also not

perfect, mainly due to the fact that was just mentioned, but this problem is very much mitigated by the

way the reputation queries work, by using a type of quorum approach that rules out malicious users.

Another important aspect in P2P environments is authentication. In a MMOG it is essential to have the

players authenticated in order to track their actions, and to guarantee that they are who they claim to

be. Based on this fact, there was a proposal for an authentication mechanism for P2P MMOG environ-

ments [36], that tries to deal with the security problem.

To begin with, the authors assume two types of virtual environments, open and moderated, where mod-

erated ones are operated by a specific system operator that is responsible for managing the environment

and the players that participate. An open environment has no operator and it is operated cooperatively

by all the participants.

Two approaches to authentication are proposed, one for each type of environment. The first one is based

on the well known concept of certificate authority [15] and is applied in the moderate environments.

The operator issues certificates to the other users, with which they sign and validate their and the other

player’s messages, while the operator acts as a certificate authority. For the open environments, the

authors propose a scheme based also on public keys exchange. A user creates its key pair and then stores

it in several peers. Since peers can not be trusted, when it is necessary to retrieve a key, the valid key is

chosen based on a majority mechanism.

The approach used for moderate environments implies the use of an entity that regulates the entire pro-

cess. This creates a possible point of failure. On the second approach the solution relies on the peers not

being compromised. This is something that is hard to achieve in a P2P environment, thus this approach

might have some issues there.

5http://www.ebay.com/

18 CHAPTER 2. RELATED WORK

2.5 Cloud Approaches

Cloud computing is a relatively new paradigm. Only in recent years have we started to see applications

of this idea for commercial purposes. Systems such as the Amazon EC2 or the Google AppEngine are

examples of this. Several companies have started providing their cloud platforms for others to use.

MMOGs are not using this approach yet. Game companies rely on huge data centers to deal with

the game servers. This approach requires a lot of maintenance and specialized personnel to install and

maintain the game servers. There is some research on the topic of cloud MMOGs, but its use in actual

services is still purely academic and very limited.

MMOGs are applications that can require a very large amount of resources at one time, and very small

amounts in other periods of time. Observations of user behaviour in applications such as Runescape6

or the Steam platform7, show that player connections have a large variation during different hours of

the day [24]. A cloud approach seems like a natural solution to solve the problem of client connection

variation. The resource elasticity it gives, can solve the resource adaptation problem.

Different studies have addressed the problem of virtualization overhead [25], that rises from the use

of clouds. It was found that virtualization has some costs when it comes to performance of the game

specially during hours of heavy client usage and high load. Nevertheless, it was found that if such costs

are taken into account when developing the system, it is possible to achieve good results.

The OnLive 8 platform is one of the first to deliver a gaming platform in the cloud. Although it operates

as a service that provides games to clients independently of their personal machine configuration, some

of its concepts are interest to our current discussion. Based on what is done on this platform, a new

system that mixes cloud computing with p2p [33] was proposed. This approach tries to explore clients

and server location in order to minimize the delays from communication. On this platform, the client

installed on the user’s computer is a small application, and the vast majority of the computation that

occurs, is taken care of by the cloud. The cloud hosts both the clients and the servers, even if in different

physical locations. This creates a P2P overlay that can operate on the cloud while having the illusion

of being in a normal distributed environment. Updates are sent directly between peers, and the cloud is

being used as a host to provide the resources. It seems like this approach suffers from the same problems

of the other P2P approaches that we have previously mentioned. Problems such as the fact that the

number of connected nodes might not be enough to support the game at all times, are to be considered

in this case. On the other hand, the security issues that normally rise on P2P, are more contained in this

case, since the game provider has more control over the peers.

2.6 Proxys

The network aspect of a multiplayer game is also an important aspect that must be considered. Some

authors compare the growth of the MMOG to that of Web a few years back, which led to the creation

6http://www.runescape.com/
7http://store.steampowered.com/
8http://www.onlive.com/

2.7. ACADEMIC SYSTEMS 19

of Web caches, URL-based switches and other solutions to support that technology [4]. They argue that

the enormous growth of MMOG systems, more than justifies a similar approach, and in order to achieve

this, they propose a concept of booster box.

The observation that led to the attempt to address the several MMOG problems in the network was the

fact that servers need to share state, either from the game world or the users, and most of the times

servers are exchanging information among themselves that is not relevant to all of them, for instance

because a player is not in the area of interest of another player. This is where booster boxes come into

play; they are network aware devices, through monitoring traffic, measuring network parameters such as

delay, by participating in routing exchanges, or by acting as an application layer proxy server [4]. The

booster box combines network and application awareness in a single entity that serves one or more clients

in its network vicinity.

The main operations of a booster box are caching, aggregation of events, intelligent filtering and application-

level routing. The caching operation is common to other types of systems, and here is no different: it

stores non-real-time events, and acts on behalf of the server in order to reduce its load. Aggregation of

events derives from the idea that clients might send similar requests to the server, so the booster box

groups them in only one relevant event and sends it to the server. Intelligent filtering uses the application

awareness of the booster box in order to decide if a given event is still relevant, and in a negative scenario,

those events are effectively dropped by the booster box without ever reaching the server. Finally the

application-level routing operation makes the booster box act as a router and only send the events to the

servers that are responsible for handling them.

This approach is thinking ahead into the future, where the data structures that support current MMOG

will not be able to deal with larger numbers of users. This would require ISP’s to install the boosters

boxes, and allow third parties such as the development company to have access to the box and configure

it for their particular application, which in the current way things are done is still very hard to achieve,

and would most likely bring more problems than it would solve. This solution does not seem very scalable

either, which is a major requirement for our system. Moreover it can not really achieve the elasticity

of resources that the system requires, as the booster boxes are not fully under the control of the game

provider. Security also seems to be an issue in this case, since booster boxes are somewhat public and

are dealing with game logic. This aspect makes them vulnerable.

2.7 Academic Systems

We now discuss some academic systems, that even though their final goal might not be the same as the

one we are proposing, have some similarities. The solutions proposed are close to what we intend to do

in some important aspects. We briefly analyse them and point out where they differ from our goal.

20 CHAPTER 2. RELATED WORK

2.7.1 Kosmos

Kosmos [3] is not a system by itself, it is a game that was created with the purpose of showing how the

concept designed by the authors would work in a real world environment. The authors propose a solution

for an MMOG that attempts to deal with all the common issues related with this type of system. The

structure proposed is a common client-server implementation, where all the game servers are connected

with each other, and accept client connections. The game world is divided into regions, that can assume

the form of any convex polygon. Each region is assigned to a different server.

Kosmos introduces two concepts of locking: the region lock and the object lock. Region refers to the act

of locking a certain region of the game world. The authority to do this lies solely with the server that

is responsible for that region, and it accepts requests from other servers that might be executing events

that somehow involve that region. As usual, when a server acquires the lock, subsequent requests are

queued and have to wait for the lock to be released. The object lock is similar to this one, servers request

locks for objects, and the lock is granted by the server that is responsible for managing the state of that

object. Both this locks are used in order to maintain the consistency of the game, even if not in a very

efficient manner.

Another important concept in this approach, are the events. Events are atomic transactions that hap-

pen in the world and change one or more object states. In order to announce these events, the pub-

lish/subscribe pattern is being used. As usual in this type of game, problems always arise in the border

between region. Interest management between players in neighbouring areas is an example of such a

problem. In order to solve this the authors use publish/subscribe, where every server is subscribed to re-

ceive events from neighbouring servers, if these events occur in the border areas between the two. Servers

also subscribe clients to receive relevant events, when their avatar is in a border area that belongs to

the players area of interest, and unsubscribe them as well when they leave this border area. Clients may

receive events from various servers, but they only communicate with one server at a time.

In order to deal with the appearance of hotspots in the game world, the authors propose an algorithm

that tries to predict the formation of an hotspot, and gradually starts to migrate data to another server

that is less loaded over an extended period of time, in order to maintain seamless player transfer between

servers. Unfortunately, this algorithm relies on predicting something that the authors themselves claim

that is unpredictable, which is the spontaneous formation of hotspots. It is very likely that the goal of

seamless player transfer is not be fully achieved.

Another issue is scalability, which the authors only address briefly and do not really provide a solid

algorithm to deal with the fluctuation of the number of clients connecting at any given time.

The solution was tested using a simple game called Kosmos, and was tested for a relatively small num-

ber of clients, showing good results in handling the border problems. Nevertheless, while some of the

approaches proposed here are interesting and can probably be developed further, this scenario is not the

most common one for today’s applications of this type, where the number of players is way higher than

the 500 used in the tests.

2.7. ACADEMIC SYSTEMS 21

2.7.2 Solipsis

Solipsis [13] uses P2P, which theoretically is a self-scalable architecture. There are three types of entities

being considered: avatars, objects and sites. Avatars in this context, represent the users which are the

main actors of the system, objects can represent everyday objects in the virtual world such as books,

furniture etc. Sites represent parts of the virtual world that can be populated by users and occupied by

objects.

In a more technical aspect, Solipsis is divided into hosts, which maintain the information about every

entity in the virtual world, having one host for each instance of the virtual world. Since an host can have

multiple entities under its responsibility at any given time, the concept of node is introduced. A node

is a set of resources that is allocated to the management of a given entity, it maintains the information

about the entity.

As previously stated, this system works over a P2P overlay based on Voronoi tesselation to map the

relations between the nodes in the virtual world. The nodes are self-suficient, and compute most of the

data that they need, such as position in the world with relation to physical concepts. The system employs

some form of interest management, based on concentric circular areas with different consistency levels.

This is done in order to limit the updates that are being exchanged. This management is achieved for

every site and concerning entities that are in that site at the time.

Solipsis proposes a general system for P2P use for a virtual environment However it does not take into

account factors that are fundamental for a typical MMOG, such as security. MMOG normally deal with

some form of virtual currency or items that are prone to exploitation, and Solipsis does not propose any

solution to that, mainly because it is not its main purpose. It might constitute a good foundation, but

it would need a big refinement in order to be usable for an application of MMOG type.

2.7.3 HyperVerse

HyperVerse [7] is a system for supporting distributed environments, that relies on P2P as a base structure

for operation. It does not use a pure P2P approach, but rather a two-tier one, with a federated backbone

and a loosely structured P2P client overlay. The system implements an interest management algorithm,

based on a circular are around the player. This is done in order to determine what information is relevant

to the avatars. It briefly suggests an interest management scheme based on social bias between players,

where avatars could choose who they interact with and get updates only from those avatars. They do

describe this approach as almost impossible to attain with current structures and methods.

The world is subdivided into regions as in many other approaches that we have seen. These regions are

used to enforce different levels of consistency in cooperation with the interest management techniques

also in use.

The distribution of information between the peers is being done using a torrent protocol, that the authors

argue deals well with big amounts of information specially in crowded areas.

One of the problems with this proposal, besides the fact that it was not thoroughly tested yet, is the fact

that much like the previous system presented [13], it does not consider the security aspect that has to

22 CHAPTER 2. RELATED WORK

be considered when using P2P for a commercial MMOG.

2.7.4 Darkstar

The MMOG market is an ever growing phenomenon. That was the conclusion drawn by the responsible

for project Darkstar [37]. He also acknowledges that the current state of game development is not directed

to exploiting the today’s multi-core processors architecture. He argues it could be very useful to this type

of game, since most of the events that happen in-game can be parallelized. This classifies MMOG’s as

embarrassingly parallel problems. This type of problem is one in which its tasks can be almost trivially

parallelized, but as the author explains, games have always been seen as single threaded programs, and

their developers are not familiar with the nuances of multi-core programming, so they can not effectively

exploit this inherent parallelism.

In order to deal with these issues project Darkstar was created. It is an attempt to create a server-side

infrastructure that deals with the multithreaded and multicored aspects of the current computer chips,

relieving the programmer of such task, and giving him the illusion of being working in a single threaded,

single machine environment. The system works in an event based fashion, that creates a server task to

respond to user input events, and has the capability to change the game world.

Darkstar provides a container for the server to run and benefit from interfaces for persistence and com-

munication purposes. All the data is kept in data stores that can be accessed by any cluster of machines

that is running the Darkstar stack and game logic, which allows for any piece of data to be moved between

all the machines. The same happens with communications, which allows the movement of tasks between

machines which helps to deal with the load balancing problems by allowing to move information and

players around, instead of partitioning the world at compile time.

This project had some interesting concepts but was not totally concluded before it lost its funding due

to restructuring on the company where it originated. This makes it hard to know if it would achieve its

purpose efficiently.

2.8 Summary

In this chapter we discussed the most relevant research related to our work. We analysed and discussed

the infrastructure aspect of an MMOG. On this subject we presented and discussed the advantages and

disadvantages of client-server, P2P and cloud infrastructures. We have discussed interest management

approaches and evaluated their impact when it comes to the game network and overall performance. We

have also discussed several load balancing and player distribution techniques, analysing their advantages

and disadvantages. To conclude we presented several academic and commercial systems, that have a

similar goal or that contribute in any way to our work. Table 2.1 compares the analysed systems against

our requirements.

2.8. SUMMARY 23

Scalability Usability Performance Resource Optimization Security
Client-Server not enough yes yes no yes

P2P yes yes yes not completely no

Cloud yes
implementation

dependent
implementation

dependent
yes yes

Auras it helps not related yes no not related
Vector Field
Consistency

it helps not related yes yes not related

Dynamic Load
Balance

no yes not clear not clear yes

Locality Aware not clear yes yes yes yes
Hybrid Load

Balance
not clear yes not clear yes yes

Kosmos no not clear not clear yes yes
Solipsis yes not clear not clear yes no

Hyperverse yes not clear not clear yes no
Darkstar yes not tested not tested not tested yes

Table 2.1: Comparative table

24 CHAPTER 2. RELATED WORK

3Architecture

3.1 Introduction

In this work we decided to use the cloud computing approach. Cloud computing has a series of char-

acteristics that we already mentioned early in this document which greatly contributed to our decision.

This characteristics are in line with our requirements of scalability, elasticity of resources, performance

and usability. The main characteristic that weighted on our decision was the elasticity aspect of clouds.

Furthermore, this is also an approach that has not been widely explored for MMOG, in contrast with

the other two possible approaches that we have discussed, and that have had extensive research on this

subject.

The cloud approach seems very natural for Cloud DReAM. We want a very scalable system, that is also

capable of adjusting its resource usage as the need arises, and clouds are capable of performing both roles.

It might be argued that P2P would present itself as a more scalable and effective solution; however, as

we have discussed in previous sections, despite its many positive aspects, P2P lacks in the security, game

state persistence and availability aspects, which are critical for an MMOG.

As for client-server, it is simply not scalable enough for the type of system that we are aiming at. Even

though most of the actual MMOG in the market use this approach, it is still not elastic enough to deal

with client fluctuation. It also has a higher monetary cost not only on the type of hardware that is needed,

but also on the personnel required to maintain it. Furthermore, the possible overhead of managing the

addition and subtraction of servers could severely hinder the game performance which is something that

can not happen in a MMOG.

3.2 System Overview

On a very high level view our system is represented in Fig. 3.1, where a number of game clients connects

to the game servers that are being hosted by our cloud platform. Each of the servers present in the cloud

is running a previously loaded image of the game server. Clients connect to one of the servers according

to the cloud’s load balancing policies. The resources (in this case the servers) being used to support the

game are managed dynamically. The game can start with one single server, and due to the interactions

happening inside the game world, it might be necessary to add more resources to support the increasing

demand on the servers. The opposite is also true, the number of resources being used can be decreased,

if the current demand does not justify their presence. This management is performed automatically by

25

26 CHAPTER 3. ARCHITECTURE

Game Clients Server Cloud

D

R

e

A

M

Figure 3.1: General view of the system using a cloud platform

the system and the player is not aware of what is happening in the background.

The Cloud DReAM middleware system acts between the client and the cloud server. It is split between

the clients, the servers and the cloud manager. On the client side, it is responsible for dealing with the

client status updates having into account its area of interest (AOI). The client’s status is kept by the

middleware as well as the status of other players that might be relevant. This information is then used

to decided what is to be presented to the player. The communication between client and the middleware

platform is possible through an API.

On the server side, it is necessary to take into account the load balancing issues. Cloud DReAM is

responsible for dealing with this aspect. To fulfil this task, it is important to consider how the players

are distributed among the servers. Cloud DReAM uses an algorithm which divides the game world into

different areas that are managed by different servers. The consequence of this is that players connect to

the server that is responsible for the game area where their avatar is currently located. Based on this

information, the system takes the appropriate measures. These measures are the migration of clients

between servers based on their position inside the game world.

The servers are capable of keeping some state locally, but since they are volatile machines that can be

removed when they are not needed, it is necessary to guarantee that any state they had is kept. Cloud

DReAM can use the tools provided by the cloud platform in order to coordinate the state transfer between

the virtual machines and, if needed, the persistent storage of the game information.

The third component of the system is the cloud manager. This component is the direct responsible for

the operations performed on the cloud platform. The decisions related with scaling and load balancing

are managed by this component. In order to perform its function, the cloud manager receives information

from clients and servers. It also provides them with information they need to operate. Fig. 3.2 illustrates

the role of the cloud manager as a component that oversees what is happening on the system.

All the actions of our system are performed in the background, and need to be as efficient as possible, in

order to maintain the performance and enjoyment of the game. Any effort to scale and optimize game

resources is not useful if the playability is compromised by that process.

3.3. CLOUD DREAM 27

Cloud Manager

Game Servers

Client 1

Client 2

Client 3

Client 4

Figure 3.2: Representation of the interaction between the 3 components of the system

Client

API

Middleware

Client

State

Others

States

Server

API

Middleware

Players

Information

/States

Persistent

Data

Support

Cloud Manager

Managed

Game Map

Area

Figure 3.3: System components architectural view

3.3 Cloud DReAM

The Cloud DReAM is intended to be deployed into a cloud environment. It uses concepts such as interest

management and load balancing to perform its functions. It is divided into three major components,

the clients, the servers and the cloud manager. This section describes all the architectural details of the

system.

3.3.1 System Components

In Fig. 3.3 we present a more detailed view of our components. This view provides a better insight into

the details of each component and to how they work, as well as to the relations that exist between them.

We now describe each one of these components in detail.

Clients

Clients are connected to a single server at each moment. When they join the network they are assigned

to a given server and remain connected to that server throughout the execution of the game, until their

28 CHAPTER 3. ARCHITECTURE

avatar moves to a position located on an area of the map managed by a different server, in which case

the player is transferred to the new server. The management and execution of the interactions between

a server and its clients is performed by the server.

Each client keeps a local copy of its state, and of the states of other avatars on its AOI. Clients exchange

messages with their designated server in order to receive and send updates. The other possible type of

message exchanged is the command to change the current designated server to a different one.

The clients simply send any state updates from themselves to the server, and receive updates related to

other players states when the server sends them.

Servers

Servers are responsible for running the game logic, as well as performing all the operations related with

consistency and load balance. Each server has an area of the game map over which it is responsible.

Players located inside this area are responsibility of the server. The management of which area belongs

to each server is responsibility of the cloud manager. When a client connects to the game, it is connected

to the server that is responsible for the area where the avatar is in that moment. The server is then

responsible for managing the client connection, redirecting it to a different server when it is necessary, as

described in section 3.3.7

The servers are organized in a topology similar to P2P. What this means is that servers act as peers

between themselves, and exchange information. They do not need to be aware of every other server, but

they need to be aware of the servers managing the neighbouring areas of the map. Servers can be added

in two different moments, at the beginning of the game or during the execution of the game, in order to

share the load of overloaded servers.

Servers enforce the consistency of the system. They are the ones enforcing the interest management tech-

niques that are explained in section 3.3.2. They also need to monitor themselves in order to determine

when they are overloaded. A threshold is defined for the processor usage. When this threshold is reached

the server is considered overloaded and requires assistance. To do this, an overloaded server notifies the

cloud manager to that fact, so that it can take the appropriate measures. An analogous process applies

when a server finds itself underloaded.

Cloud manager

The cloud manager, as the name implies, is responsible for the management of the cloud infrastructure.

It is responsible for monitoring the server status and decide when it is time to add more servers. Servers

contact the cloud manager when they are overloaded in order to request the creation of new instances to

share the load. The cloud manager has the tools to create the new instances and to designate the area

of the game map over which the new instances are responsible.

The cloud manager knows which server is responsible for each area. When a client connects to the game,

3.3. CLOUD DREAM 29

Figure 3.4: Consistency areas around a player’s avatar

it first connects to the cloud manager. Since the cloud manager knows the region over which each server

is responsible, it redirects the client to the server who currently manages the position of the player’s

avatar. This means that the cloud manager is also effectively working as a sort of gateway into the

system. This approach might not be desirable when it comes to scalability as the cloud manager can

become a bottleneck, but for now we only use one of these components.

When an existing server finds itself to be overloaded, it notifies the cloud manager. The cloud manager

then commands the cloud infrastructure to launch new instances of the server in order to address the

excess of load on the requesting server. The new server is given an area over which it is responsible. Any

necessary data such as players states and other relevant information is replicated to this new instance.

Finally the player’s clients that are on the area of this new server are redirected in order to communicate

with the correct server.

The opposite happens when a server finds itself to be underloaded. After an area being split between two

servers, there can be the case where the load in those two servers does not justify the existence of both of

them. The cloud manager is responsible for the termination of the excessive resources, by commanding

the cloud to terminate those instances.

3.3.2 Interest Management

To help us with keeping game performance despite the operations performed by Cloud DReAM, we are

using an interest management method on the system. As it was discussed in section 2.2, interest man-

agement allows us to reduce the amount of bandwidth that is required for the several game components

to communicate. The interest management approach that Cloud DReAM uses is VFC [34]. As previously

described, VFC provides several concentric consistency zones centered on the pivot. The consistency gets

monotonously smaller as we move away from the pivot. This means that the closer an object is to the

pivot, the higher its consistency will be when compared to objects that are located farther away from the

pivot. Fig. 3.4 illustrates the VFC concept. Each zone is defined by a consistency array. This array is

three-dimensional and each of its dimensions represents a different constraint to the replica divergence:

30 CHAPTER 3. ARCHITECTURE

• Time: Specifies the maximum time in seconds, that a replica can spend without being updated.

• Sequence: Specifies the maximum number of updates that a replica can ignore before it needs to

be updated.

• Value: Specifies the maximum difference between the content of the replica and the original object.

This value is specified as a percentage.

Any of the previous values can be ignored by setting it to an infinite value. For example an array

defined by k = [1,∞, 50], stipulates that an object replica in this area is at most 1 second behind the

master object that it represents, and differs from it no more than 50%. The value of sequence is being

ignored in this case.

The VFC system used on the Cloud DReAM relies on a Client-Server architecture, where the server is

the most consistent point of the system. It is also the server responsibility to manage the consistency of

the clients.

Each client has a local pool of replicated objects. These objects are replicas from the main objects that

are hosted on the server. Clients can freely read and change their local replicas. Any change to the local

replicas is propagated to the server. The server is responsible for the management and propagation of

the updates, having into account each clients view.

The updates are periodic, although they are independent from each other, since there is no synchronism

between clients and server. Any update received from clients is not immediately applied to the main

replica. It is only applied when the consistency round is over. Each round, the server performs the

consistency management and determine which of the clients need to receive updates. After determining

which clients need updates, and what are the updates that should be sent, the server sends them the

information.

3.3.3 Load Balancing / Player Distribution

For load balancing we use an algorithm [26] that divides the game world among the available servers.

Since bandwidth usage is always a concern in this type of game, this algorithm is already considering the

usage of the VFC interest management approach to minimize this concern.

The world is divided into rectangular shapes, and each shape is assigned to a different server among the

available ones, as illustrated in Fig. 3.5. This division is not static and is bound to change as the game is

in progress. When a client connects to the game, it is assigned to one of the existing servers, depending

on the positions of his avatar on the game world. The user is not aware of this division. When the avatar

changes its position to an area managed by a different server, the client is redirected to the corresponding

server, and the user does not notice this transition.

As mentioned in section 3.3.1, servers are organized in a structure where communication is analogous

to P2P. A server is only aware of a subset of all the existing servers at any given time. This partial view

contains the server’s direct neighbours (in terms of the area of the map that each server is responsible for).

To support the VFC functionalities, servers need to perform two actions. The first one is the subscription

3.3. CLOUD DREAM 31

Figure 3.5: World map divided with players avatars represented

to other servers (peers) where the areas of interest of their players can overlap. In the Cloud DReAM this

subscription is done by registering the server with its peers when it first connects. The second action that

is required is the object subscription. Servers need to determine which objects that belong to a different

server, should be subscribed for updates. In the Cloud DReAM system, every object currently present

on the peers pool is migrated to the connecting server upon registering. This creates two different sets

of objects. The first ones correspond to the objects owned by the server, which represent players in the

server’s current area of the map. The second ones are subscribed objects, which correspond to players in

other servers area of responsibility, but whose state updates are important in order to enforce VFC. The

updates are sent to clients according to the values defined by the VFC consistency vector. It is important

to note that servers do not perform any VFC operations between themselves. Each server enforces VFC

for the clients currently connected to him. It does however use the information provided by other servers

to do this. Using this strategy does not optimize the communication that the servers need to perform

between each other, but ensures that every server has the most recent values to work with.

Servers can join and leave the network at any given time depending on the game’s current needs. Most

servers join at the beginning of the game, but there can be a case when a server needs to join while the

game is running. This mainly happens in order to reduce the load on another server, so that playability

is always guaranteed.

When a server is added to the network, it registers itself with the cloud manager. The cloud manager

sends him the area over which it is responsible. This area originated from the division of the area of

an overloaded server into two areas. After this the cloud manager informs the neighbour servers of this

change. Fig. 3.6 shows how the partitions can work. Each partition is managed by a different server. As

we see partition 2 and 4 are bigger than the other remaining ones. In order to mitigate the problem of

different sized areas, we use an algorithm to split areas that is described in section 3.3.4

3.3.4 Map Division

As we have described previously, the game map is divided between servers. This division is performed

when the need for it arises. This can happen when a server is overloaded and needs to share some

load. We are assuming the map base structure is always a square (even though the structures that can

32 CHAPTER 3. ARCHITECTURE

Figure 3.6: Example of different partition sizes and a player’s area of interest spreading across them

Server 1 Server 1 Server 2

Server 1 Server 1 Server 2

Always Vertical Split

Alternate Vertical / Horizontal Split

Server 1 Server 2 Server 3

Server 1

Server 2

Server 3

Figure 3.7: Two alternative area split methods

be created inside the map can limit it to different shapes), so we are using a linear division scheme as

described earlier in section 3.3.3. When an area needs to be divided, it is split in half into two equal

zones. The division of an area alternates between vertical and horizontal division. This is done so that

we do not end up with a large number of rectangular areas instead of smaller square areas. To better

illustrate this methodology, we present an example in Fig. 3.7. The first alternative shows a vertical only

division, where in a limit situation we would have a series of rectangular areas that would cover the full

length of the map while having a very small width. The second option shows an alternation between

vertical and horizontal split. In this case, a record is kept of whether the current area was originated in

a vertical or an horizontal split. When the area is to be split again we use that information to split it

vertically if it was last split horizontally, or horizontally if was last split vertically.

3.3.5 Client Connection

When a client connects to a game session, apart from the initial connection with the cloud manager, two

other connections are established. The first connection is created between the game client and the game

server. The second one is between the VFC client and the VFC server. In order to know to which server

3.3. CLOUD DREAM 33

Cloud Manager

Game Servers

1 – Request

Peer List

2 - Peer list

New server

Figure 3.8: Server requesting peer list from the cloud manager

it should connect, the game client contacts the cloud manager upon connection. The cloud manager

knows all the existing servers, and knows which areas they manage. The reply from the cloud manager

to a connection request is the address of the server to which the client should connect. This choice of

server is based on the area of the map where the client’s avatar is on when it connects. Additionally a

client is issued a unique client identifier, that is provided by the server when they connect. this identifier

enables the distinction of the client throughout the game session.

3.3.6 Server Connection

Servers are Virtual Machine instances that are launched by the cloud manager when necessary. When a

server starts running, it attempts to register itself with the cloud manager. When successfully registered,

the server is issued an unique identifier by the cloud manager, that represents the server while it is active.

The server also requests from the cloud manager an area of the map over which it is responsible. Finally,

it requests a list of direct peers from the cloud manager as illustrated by Fig 3.8. We can see in the

illustration that message one corresponds to the request for the peer server list. Message two represents

the reply from the cloud manager containing the peer servers list. Every server that manages an area

that is adjacent to the current connecting server’s area, is considered a direct peer.

After successfully registering with the cloud manager and receiving the direct peer list, the server at-

tempts to register with its peers as illustrated in Fig. 3.9. On the illustrated example, only two of the

servers are considered peers, so the new server only contacts those two servers. On connection with

a peer, a server identifies itself with its unique id. Both peers register each others addresses in order

to communicate. The peer that requested the connection then requests a copy of the objects that are

currently present in the pool of its peer, and add them to its own pool to be used by VFC. These objects

34 CHAPTER 3. ARCHITECTURE

Cloud Manager

Game Servers

New server 1 - Contact

Peer 1

3 - Contact Peer 2

2 - Peer 1 pool copy

4 – Peer 2 pool copy

Figure 3.9: Server contacting the two peer servers

are marked with their owning server ID. This process is repeated for each of the peers in the list that

was provided by the cloud manager.

3.3.7 Client Redirection

Clients may not stay connected to the same server throughout a game session. Since servers divide the

game map among themselves, a client is bound to require a server change as he moves from one area of

the map to another. As previously said, this area division is not evident to the player, since as far as he

is concerned the game is a single large map over which he can move.

When a server performs an update round to the objects in its pool, it also checks if the objects that it

owns are still currently within the limits of its own area. If it finds that an object that it owns is outside

the area he manages, it notifies the cloud manager to that fact. The cloud manager acknowledges this

fact and store the information. The client migration is not immediate. If a client is found to be outside

of the current server area of responsibility for more than a predetermined number of update rounds, the

cloud manager then instructs the client to change servers as illustrated by Fig. 3.10. This is done to avoid

the problems that can rise in the border between two game zones. A client can be walking in the border

between two zones and occasionally move to the neighbour area, and immediately back to the original

one. This can occur a few times in a row, and would trigger a series of unjustified migrations. On our

system, only after the client is found to have consistently changed to a different area, it is migrated. An

example of this situation is illustrated in Fig 3.11, where a player moves several times across the border

and ends in the original server. In this case the client is not migrated between servers

When a migration is triggered, the client connects to the new server. After the connection is successful,

3.3. CLOUD DREAM 35

Server 1 Server 2

Server 1 Server 2

Client 1

Area 1 Area 2

Player

Server 1 Server 2

Client 1

Disconnect

server 1

Connect

server 2

Figure 3.10: Effective migration of a client

the client disconnects from the old server, and changes the ownership of object that represents himself

to the ID of the new server. This change is propagated to the other servers by the new server during the

next update round.

3.3.8 Communication Model

We consider two different types of communication options on the Cloud DReAM. The first one corre-

sponds to the periodic updates messages (either between servers or between servers and clients). Their

periodic nature poses the problem of excessive use of bandwidth. This problem is addressed by the inter-

est management techniques and by the protocols used in the transport of the information. This messages

are not guaranteed to arrive, but since they are periodic, it is not problematic to loose one message. An

example of a message of this type are the status updates between clients and servers.

The second type of communication considered are the messages with non-periodic nature, and with a

necessity for reliability of the transmission. This type of messages are not filtered by the VFC technique

and need to be guaranteed to arrive. An example of an event that could use such a message in a game

is the firing of a shot by a player. This message is only sent when a player performs this action, and

it is important that it is not lost, or the enjoyability of the game will not be maintained. To address

this issue, Cloud DReAM provides an abstraction to this messages which are known as events. Events

are guaranteed to arrive to their destination. When an event is generated, it is replicated among peer

servers so that every client that might be affected by it receives the information. Since events are more

bandwidth consuming, the servers only replicate events to the peers that contain players that might be

interested on this information.

36 CHAPTER 3. ARCHITECTURE

Server 1 Server 2

Server 1 Server 2

Client 1

Area 1 Area 2

Player

Server 1 Server 2

Client 1

Figure 3.11: Client moving back and forth in the border and not being migrated

3.3.9 Scaling Algorithm

The scaling algorithm is split between the servers and the cloud manager. We chose to use a simple

algorithm for the first version of the system. The servers monitor themselves in regular time intervals.

This monitoring happens in 30 second intervals. The current version of the algorithm uses the processor

current usage as a metric for the scaling to happen. When the server CPU is found to be above a thresh-

old value for more than a given number of monitoring rounds, the scaling operation is triggered. Both

the threshold value and the number of monitoring rounds that should be tolerated before scaling, can be

easily configured and are not fixed.

When the decision to scale is made, the requesting server contacts the cloud manager, informing him

of that fact. The cloud manager knows how many instances of the servers are running, as well as the

remaining capacity of the cloud to launch more instances. If the total capacity of the cloud has not yet

been reached, the cloud manager orders the launch of a new instance.

The downscaling operation is very similar. During the server monitoring rounds, if it finds itself to be

under loaded for more than a given amount of rounds, the server informs the cloud manager to that

fact. In this situation the cloud manager is aware of the current load on the remaining machines. It

checks if the remaining machines will become overloaded as a result of this downscale operation. If the

answer is positive, the machine is not terminated, as it is very likely that after its termination, a new

instance would have to be immediately launched. If the cloud manager believes that there is a small risk

of overloading the remaining machines, then the requesting machine can be safely terminated.

Before any machine can be terminated, the clients that are currently connected to that server, need to

3.4. SUMMARY 37

be informed that they have to redirect to another server. The new server to where they should connect

corresponds to the one that takes control over the area of the terminated server. The machine is not

immediately terminated, since there may be some information there that is not replicated yet. Any client

data that needs to be migrated to the peer servers, is migrated. When this process is complete, the

machine instance can be safely terminated. In Fig. 3.12 we present a flowchart that summarizes this

algorithm.

3.4 Summary

In this section we described in detail the architecture of our system. We started with a general overview

on the system and its most relevant aspects. Then, we described the working details of our system

components. We also described the various algorithms that we use to perform roles such as interest

management and load balancing. We finalized our architectural description by detailing our scaling

algorithm.

38 CHAPTER 3. ARCHITECTURE

Wait for 30

seconds

CPU above

threshold?

Increment

Overload

Counter

Yes

Counter Above

Threshold?

No

No

Scale

request

Yes

Start New

Instance

Requester has a

pending request?

No

Yes

Server Cloud Manager

CPU below

threshold?

No

Increment

Underload

Counter

Yes

Underload

Counter Above

Threshold?

No Request

Termination

Yes

Requester ID = 1?

Other servers

might become

overloaded?

No

Yes

Instance limit

reached?

Yes

Yes

Terminate

Instance

No

No

Figure 3.12: Flow chart of the scaling algorithm

4Implementation

This chapter describes the implementation details of our system. We first present the development

environment and why it was chosen. We then move on to describe the APIs that were changed and

created to achieve our goals. We also present the data structures that we created to support our cloud

environment.

4.1 Game Choice

The game that was chosen for this work was Cube 2: Sauerbraten. It is an open source first person

shooter (FPS), which enjoys some popularity online. The game is developed in C++, and can easily

interact with a C# application, in which the Cloud DReAM middleware was developed. The game maps

have big dimensions, and there are a number of extra maps developed by the community. We also have

a previous implementation of the VFC interest management technique for this game. This allows us to

benefit from the performance improvements provided by this technique in our implementation.

4.2 Development Environment

The Cube 2 game is implemented in C++ language. The implementation we are using for VFC

(VFC4FPS) was developed as a library implemented in C# using Microsoft .NET platform1. The game

communicates with the VFC4FPS library through an API that can be invoked directly from the native

game code. We have decided to use the same framework in our system. Since we are extending the

VFC4FPS implementation to work in a cloud environment, we think it would not make sense to change

this approach. The .NET platform provides all the resources we need to develop our system, such as the

remoting features that allow an easy communication between every components.

4.3 Eucalyptus cloud

Since the purpose of this work is not the development of a dedicated cloud platform, we use an already

existing and tested cloud solution. We use the Eucalyptus cloud platform to serve as a base for our work.

Eucalyptus is a widely used software platform for private clouds, providing an infrastructure as a service

(IaaS) type of cloud.

1http://www.microsoft.com/net/

39

40 CHAPTER 4. IMPLEMENTATION

We chose to use this platform for a number of reasons. First of all it is an open-source license platform,

which allows us to change it if need be, and can be used without any further costs. The platform is

organized in a modular fashion, with all of its components very well-defined, which also allows for further

customization in case we need to switch one of the original components with a different one. These

components can also be installed in different machines as the users sees best fit.

Eucalyptus is also compatible with the API of the Amazon’s EC2 and S32 services. This is important

to the persistence aspect of the system. The EC2 is a very widely used cloud computing platform, by

assuring compatibility with these two API’s, Eucalyptus can interact with both services to further expand

the features it provides. This allows us to create a system that has a wider range of compatibility with

other cloud platforms that use these two common API’s. This is an important feature, since our aim

is a middleware system that can support different games on different cloud platforms. Furthermore,

Eucalyptus is classified as a Hybrid cloud, it can draw resources from private clouds and again thanks

to the compatibility with the EC2 API, it can also draw further resources from public clouds, which

increases the capacity of the system. This aspect helps the system to have a bigger scaling potential.

Finally it allows for the installation of different types of operating systems to run on top of the cloud,

which makes this approach rather flexible and extensible. For our game we needed to use a Windows

system in order to run the game server, so this is an important feature. This platform is also hypervisor

agnostic.

By using Eucalyptus we have direct control over the resources and their management. We can control

to which machine the clients connect, which is essential in managing the game status and logic. This is

not the case with every cloud platform, so it makes sense to choose Eucalyptus for our implementation

prototype.

For all that was stated and due to the fact that Eucalyptus allows for a fine control of the cloud actions

through its tools, we feel that this platform is the ideal one to use for our solution.

4.4 Game Conversion

As we have previously mentioned, Cube 2 is not a multiple server game. In its native implementation,

one server manages the entire game map, and all the clients connected to that game on any given moment

as illustrated by Fig. 4.1. In order to use this game for our cloud system, we had to proceed with its

conversion into a multiple server game.

There were multiple steps on this process. We had to perform changes to the game logic on both client

and server components of the original game. Fig. 4.2 illustrates the modified version of the game, with

all the differences it has with regard to the original one. We now describe those changes in more detail.

2http://aws.amazon.com/pt/s3/

4.4. GAME CONVERSION 41

Cube2 - Client Cube2 - Server

VFC4FPS API

VFC4FPS Client VFC4FPS Server

VFC4FPS API

Object Update (UDP)

RPC (.NET Remoting (TCP))

Events

Figure 4.1: Implementation of the Cube2 game with the VFC4FPS system

4.4.1 Server Conversion

In order for the server to work on a cloud environment we converted the client ID’s to a unique ID for each

client. On the original version of the game, each client was issued a number by the server, that identified

the client in the game session. We have kept the unique number approach for client identification, but we

have made it centralized at the cloud manager. Whenever a client connects to the game, the server checks

if he is a new client or an existing one. If the connection belongs to a new client, the server requests a

new client number from the cloud manager using the remoting features of the .NET platform. The server

then creates the local object with the given ID and reports the ID to the client so that it knows its own

number. These ID’s are unique across servers, so no two clients have the same ID even if they connect

to different servers. The cloud manager maintains the register of this unique number within a simple

variable that is incremented with every request. Since the remoting library is multi-threaded, the cloud

manager also applies locking mechanisms to assure that no race conditions are created on the access to

this variable.

In the original solution and on the VFC solution, the servers only sent state updates to their connected

clients. On our solution that would not be possible. The servers were adapted so that when they receive

an update from one of their clients, they immediately send that update to their peer servers. This extra

communication between servers is performed by the Cloud DReAM server component. The approach

used is similar to that used by clients to send updates to servers, using UDP. In fact the same UDP

socket that is used to receive the client updates, is used for the status updates between servers. The

immediate update of status between servers is done so that peer servers have the most recent state for

clients they do not own, in order to perform the VFC updates to their own clients. VFC is managed by

each server independently and is not centralized in any way.

42 CHAPTER 4. IMPLEMENTATION

Cube2 - Client Cube2 - Server

Cloud DReAM

API

Cloud DReAM

Client

Cloud DReAM

Server 1

Cloud DReAM

API

Events (.NET Remoting (TCP))

Object Update (UDP)

Cube2 - Server

Cloud DReAM

API

RPC (.NET Remoting (TCP))

Object Update (UDP)

Events

Cloud Manager
Cloud Manager

Client API

Cloud Manager

Server API

Cloud Manager

Server API

Cloud DReAM

Server 2...n

Figure 4.2: Implementation of the Cloud DReAM version of the game

Servers also need to replicate events across each other. The VFC4FPS did not address this issue, as it was

not its main focus, but we need to address it in order to make the game work in the cloud environment.

When an event takes place, a server processes it as the original game solution would process it. It also

adds it to the Cloud DReAM server list of events to send to peer servers. If only a limited number of

clients are involved in an event, the server identifies to which servers those clients belong, and sends the

event to those servers. If it is an event that affects every client on neighbour servers, it is replicated to

every other server on the neighbours list. This replication is performed using the .NET remoting features.

This uses the TCP protocol, which has a bigger communication overhead. We have opted to accept this

overhead in order to ensure that no events are lost, which is something that may happen with UDP.

Furthermore, events are not as frequent as the clients state updates, so the impact of the TCP overhead

is contained. Finally if the event only concerns clients connected to the current server, the event is not

replicated to the peer servers. When servers during their update cycle process their local events, they

request the list of pending remote events from the Cloud DReAM server and process those as well in order

to update the global state of the game. After the list request by the game server, the Cloud DReAM

server resets the remote events list and waits for new events.

4.5. APPLICATION PROGRAMMING INTERFACE 43

4.4.2 Client Conversion

The main change that was performed to clients was the addition of support for other clients that are

connected to different servers. As we have previously explained, clients can be connected to different

servers, and still be able to see each other and interact with each other. Part of this problem was ad-

dressed by replicating events in the servers, but it is also necessary for clients in different servers to see

each other. To solve this, clients process not only the other clients information that they receive from the

game server, but also processes information from clients that are connected to different servers. Since the

state of those clients is replicated between servers, the Cloud DReAM server is able to provide its own

clients with information from other clients that are not connected to the same server. Clients add the

information about this objects to their local pool, so that the game logic can access them and make them

visible to the player. The difference on this process relative to the original implementation is how the

addition is performed. On the original solution, when a client connects, the server sends every other client

that is connected a message to inform them of the new client connection. On our solution when a client

requests the other clients information from the Cloud DReAM client, it also receives the information

about the server to which they are currently connected. When a client from a different server is detected,

we generate a dummy message similar to the one the server would send upon connection of a new client.

The client logic processes it and creates the corresponding object just like it would do if there was only

one server.

4.5 Application Programming Interface

The Application programming interfaces are the bridge between the the game and the Cloud DReAM

components. The VFC4FPS already has some of these interfaces implemented and working. Those

interfaces were extended in order to provide the extra functionalities that are required to properly function

in a cloud environment. A new component was also introduced, known as Cloud Manager, that provides

an interface for both clients and servers to perform a series of cloud related operations.

We now present the relevant changes that were performed to those interfaces in order to achieve a

multi-server functionality that can be deployed in a cloud infrastructure, as well as the interface for the

cloud manager component.

4.5.1 Cloud DReAM Client API

This section describes the new methods that were added to the existing client interface, to support the

cloud operation.

Redirect:This method is used to check if the client needs to be redirect. It contacts the cloud man-

ager in order to verify if the current client’s ID is flagged for redirection. The method returns a boolean

value of true if the client needs to be redirected, and false otherwise.

44 CHAPTER 4. IMPLEMENTATION

RedirOnProcess:This method is invoked by the client in order to check if it is currently being redirected.

Clients keep no information regarding a redirection process. This method is needed to filter messages

that are sent by the server during a connection process. Some of these messages only make sense in the

context of a first time connection. An example of such a message is the one that sends the client its

client ID. When a client is being redirected this special messages are processed differently according to

the result of the invocation of this method. The method receives as an argument the client’s ID, and

returns a boolean value that is true if the client is being redirected, and false otherwise.

RedirectToServer:This method is used by the client to start a redirection process. It receives as an

argument the server port and the client’s port. This method generates a connection message to the new

server. After the connection with the new server is confirmed, it disconnects the client from the old server.

4.5.2 Cloud DReAM Server API

This section describes the new methods that were added to the existing server interface, to support the

cloud operation.

NewClientId:The clients unique ID is provided by this method. When a client connects, if it is con-

necting for the first time, this method is invoked to obtain a new ID. This method contacts the cloud

manager, which provides the unique identifier. The server uses this identifier to create the local object

representing the client.

NewEvent:This method is used to add a new event to the Cloud DReAM server pending events list.

The events added to this list are candidates to being replicated to the peer servers. This method receives

as arguments the target of the event, which is a unique client ID, and receives the object that represents

the event itself.

AddHit:This method is similar to the previous one, but in this case is used for the hits. The method

receives the object that represents the hit as an argument.

GetPendingEvents:This method is invoked during the update rounds of the game server. When this

method is invoked, it returns the list of all the events received from peer servers that have not been

processed yet. After returning the list, the method clears the pending events list on the Cloud DReAM

server.

GetPendingHits:This method returns the list of pending hits on the Cloud DReAM server. After being

invoked and returning the hit list, it clears the pending hits list of the Cloud DReAM server.

4.5.3 Cloud Manager API

This section describes the methods provided by the Cloud Manager API, to the server and client in order

to support cloud operation.

4.5. APPLICATION PROGRAMMING INTERFACE 45

Server Methods

ServerJoin: This method is used by the game servers. When a game server is started in the cloud

(a new instance is created and the game server starts running), it contacts the cloud manager in order

to register itself by invoking the ServerJoin method. This method generates a new serverId for the

connecting server and add the server, and corresponding IP address, to the cloud manager list of active

servers. The newly created serverId is returned to the invoking server.

ServerLeave: This method is the opposite of the previous method. When a server is about to be termi-

nated, it informs the cloud manager that he is about to be disconnected. The cloud manager marks all

the clients currently connected to that server as being in need for a redirection. Finally the cloud manager

attributes the area managed by that server to another server, and removes the server information from

its active servers list.

LaunchInstance: This method is used to create a new server instance in the cloud. A server that finds

itself overloaded, invokes this method in order to request the cloud manager for help. When this method

is invoked, the cloud manager checks if it is possible to launch a new server instance (taking into account

the available cloud resources), and if it is possible starts the launching process. This process consists

of connecting to the machine hosting the cloud, using the SSH protocol and invoking the corresponding

command to launch a new instance of the specified type to assist the overloaded server. The last task of

this method is to order the split of the area managed by the overloaded server. The area is split into two

different areas, and one of them is immediately sent to the requesting server. The second area is placed

on a queue waiting for the server that was just launched to fully start and receive the area information.

ServerArea: Connecting servers invoke this method after they finish their startup process. This method

returns to the server the area over which it is responsible.

ComputeNeighbours: When a new server connects, it needs to know which servers are managing areas

that are neighbours to its own area. The method receives the unique identification for the server, and

checks its database for areas that are neighbours to the area currently registered for the given identifi-

cation. When it finishes, the method returns a Dictionary structure with the neighbour server ID’s and

respective IP addresses.

ServerReady: After launching a new server, it is not immediately ready to receive incoming connec-

tions. The server first needs to receive the information that is relevant to him, taking into account the

area that it is managing. When this warm-up process is completed, the server invokes the ServerReady

method, which receives a serverId as an argument. This invocation, tells the cloud manager that the

server is ready to perform its task, and can now start to receive connections from players.

GetClientId: If a connecting client is new to the game, it needs to have and ID. When a server receives

a request from a new client to connect to the game, the server invokes GetClientId to request the cloud

manager for a new unique id for the client. The cloud manager generates the new ID and returns it to

the server, which is responsible for forwarding it to the client.

ToBeRedirected: Throughout the game, clients move from one server to the other. Servers monitor

the clients currently connected to them to see if they are still within their area. When they find a client

46 CHAPTER 4. IMPLEMENTATION

outside of their area of responsibility, they notify the cloud manager using the ToBeRedirected method.

This method receives a list of clientId corresponding to the clients that were outside of the responsibility

area. The cloud manager keeps track of this notifications, and after he receives a predetermined number

of notifications for the same client, it is marked for redirection.

Client Methods

ClientConnection: This method is used by the game client to connect to a server. Before the client

connects to the server, it contacts the cloud manager using the ClientConnection method. The method

receives the client ID as an argument. The return of this method is the address of the server to which

the client should connect.

ClientNeedRedir: Clients often check if they are marked for redirection. The method ClientNeedRedir,

receives a clientId as an argument, and checks if that ID is currently marked for redirection. The return

value of this method is a boolean value that represents the need for the client to start a redirection pro-

cess.

ClientRedirection: This method represents the start of the redirection process. If the result of the

ClientNeedRedir method is true, the client invokes ClientRedirection to start the redirection. This method

receives the clientId and the position of the player in the game world. Based on the player’s position on

the game world, the cloud manager determines the address of the server to which the client should be

redirected. The return of the method corresponds to the IP address of the new server.

4.6 Data Structures

In order to support the multi-server functionality required for the cloud environment, we had to create

some new data structures, and extend existing ones. In Fig. 4.3 we illustrate where this structures are

used in our system. In this section we describe what was changed in the existing data structures, as well

as the new ones that were created.

4.6.1 CubeOriObj

This class implements the IOrientableObject interface, and represents the player’s avatar status. The

original VFC4FPS implementation only had information relating to the player’s position. On our imple-

mentation, since we have to consider events as well (which VFC4FPS did not consider), we need to have

some extra information regarding the player. This extra information is needed since not all players are

connected to the same server. The information that was previously obtainable directly through the game

server, now has to be replicated in a different way.

We extended the CubeOriObj to have some additional fields. The fields are the player’s health informa-

tion (lifesequence, health, armour, armourtype). This information is important for the client program to

4.6. DATA STRUCTURES 47

Client

Object Pool

(CubeOriObj)

Server 1

Object Pool

(CubeOriObj)

State Updates

(CubeOriObj)

Cloud Manager

Pending Events

(CubeEvent)

Pending Hits

(CubeHit)

Original Events

Servers Managed

Area (MapArea)

Managed Area

(MapArea)

Server N

Object Pool

(CubeOriObj)

Pending Events

(CubeEvent)

Pending Hits

(CubeHit)

Managed Area

(MapArea)State Updates

(CubeOriObj)

Events

(CubeEvent)

Hits (CubeHit)

Figure 4.3: Data structures distribution across the Cloud DReAM system

know which of the objects are supposed to be displayed on screen. This type of object is used by both

servers and clients as illustrated in Fig. 4.3.

4.6.2 CubeEvent

The CubeEvent class represents the various events that can occur on the original game. Event such as

a shot fired by an avatar, an avatar respawn, can be represented by this type of object. This class was

created due to the previously mentioned need for an event replication system. When an event is created

in a server, it creates the corresponding CubeEvent object to represent that event. The created object is

replicated to the peer servers to which it is relevant as illustrated in Fig. 4.3.

This object can represent various types of events, that shared most of the information that needed to

be replicated. This object contains the player responsible for the creation of the event (cliId), the iden-

tification of the event type (type) and the event id generated by the game (id). It also has a temporal

sequence number that is maintained by the servers which is marked in the event (millis). In the specific

case of a shot event, the object keeps the coordinates of origin of the shot (fromX, fromY, fromZ), and

destination of the shot (toX, toY, toz). This information about the shot is needed by the VFC system

to decide which shots are relevant to each client across different servers.

48 CHAPTER 4. IMPLEMENTATION

4.6.3 CubeHit

The CubeHit object represents a hit in the game. A hit can be from a shot or an explosion that occurs in

the game world, and affects the players health. An hit is also treated as an event by the game. We have

decided to make it a different type of object, because the information it needs to share is very different

from the information shared by the remaining events.

This object contains information about the player that generated the hit, and the player affected by the

hit (clientId, targetId). It contains information about the type of gun used to generate the hit (gun),

information about any type of power up to the weapon damage (quadmillis), the distance of the hit (dist)

and information concerning graphic effects, such as the number of rays generated by a shot (rays).

4.6.4 MapArea

The division of the game map among servers is represented by the MapArea class. Each server has one

instance of the class that represents the zones he is currently responsible for as illustrated in Fig. 4.3.

The cloud manager also knows which are belongs to each server, as it keeps a list of MapArea associated

with the server ID. Since the map division is only made considering two dimensions, this class contains

two Point objects, which are two dimensional. The first Point represents the starting point of the area

(start) and the second one represents the end of the area (end). Since we are only considering square or

rectangular areas on this implementation, this representation is enough to describe the areas.

This object also provides the methods to determine if two areas are next to each other, from now on

known as neighbour areas. The method used for this calculation is NeighbourAreas. The implementation

of this method, takes two areas, and verifies if they are next to each other in any direction.

Another important aspect of the system is the division of one area into two distinct areas. The MapArea

class also provides a method that splits the current area into two distinct areas, known as SplitArea. This

method can perform a vertical area split or an horizontal area split. As previously said this is done to

prevent the generation of large rectangular areas with a big length that can span across the entire map

area. To help perform this task, the class contains information about the orientation of the last split

performed on the current area vertical. Depending on the value contained on this variable, the area is

either divided vertically or horizontally.

Finally this class provides a method to determine if a given Point is contained within the area that is

represented. This functionality is implemented in the method PointBelongsToArea.

4.7 Load Balancing Mechanisms

The load balancing is performed by player position within the game world. Every time a server receives

and processes an update from a player currently connected to him, the server checks if that player is still

within its area of responsibility. To do this, the server compares the position contained in the CubeOriObj

that represents the player, with the area represented by MapArea. If the player is found to be outside

4.8. SCALING MECHANISMS 49

of the server area, the cloud manager is notified. The cloud manager registers the fact that the player is

outside of the server area, but does not immediately issue the redirection order. The notification causes

the cloud manager to increment a counter that represents the player. If enough consecutive requests are

received relative to the same player, the cloud manager marks the player ID as in need for a redirection,

on the redirection list. If the notifications received from the server are not consecutive, the cloud manager

does not trigger the redirection. This enforces what was explained in section 3.3.7.

4.8 Scaling Mechanisms

Our scaling algorithm is working on two of our components, the cloud manager and the server. Each

server has a monitoring thread that is sleeping for the most part of the game. This thread wakes up every

thirty seconds, and inspects the current CPU usage percentage. The server checks if the value obtained is

above the defined threshold value. In the positive case, the server increments a counter (cpuAboveTresh).

When this counter reaches the defined number of rounds to tolerate before scaling, the scaling request is

performed by notifying the cloud manager. The same thread also checks if a server is underloaded and

uses a similar process to detect it and notify the cloud manager.

The cloud manager keeps information about the scaling operations. It keeps a list that contains the ID’s of

the servers that have a pending scale request. If a server has requested a scale which is still in progress, and

then tries to make a second request before the first one completes, the cloud manager blocks that second

request. When a scale request is received by the cloud manager, it contacts the Cloud Controller (CLC)

of the eucalyptus cloud to launch a new instance. To do this, the cloud manager opens an SSH connection

to the CLC machine and invokes the euca-launch-instance command. The execution of this command

returns a unique instance ID, that identifies the instance within the eucalyptus cloud. This ID is different

from the server ID that we use in our system, this ID is only used by the eucalyptus platform. The cloud

manager stores this ID in a Dictionary, associated with the ID used by our system to identify the server.

When an instance needs to be terminated, the cloud manager uses the stored Eucalyptus instance ID to

do it. It connects to the CLC through SSH and invokes the command euca-terminate-instance instanceId.

4.9 Server Image

Our server application runs on a Windows environment. For the deployment of our servers in the cloud

we created an image of a Windows machine where we installed our application. We used Windows 7 as

our target system. This image had all the necessary components for our server to run installed, such as

the .NET 4.0 platform. Eucalyptus requires some components to be installed on this image in order for it

to run on the cloud. This components were installed according to the Eucalyptus administration guide,

and using the tools provided with Eucalyptus.

50 CHAPTER 4. IMPLEMENTATION

We also performed some simple configurations to better suit our needs. We have setup a user in the

machine image named eucalyptus. This user has administration privileges on the machine. For this user

we have a password less login in place, so that when the machine is booted, it immediately logs in to this

user’s area. Finally we have configured the machine to run our server application when a user logs in, so

that it is automatically launched when Eucalyptus creates a new virtual machine instance.

4.10 Summary

On this section we described the most important implementation details of our system. We detailed the

process of conversion that was necessary for the Cube2 game to work with our system. We also detailed

the communication interfaces between our system components, as well as the data structures that support

our system’s operation.

5Evaluation
In this chapter we describe the testing process to the Cloud DReAM system. We begin with a description

of how the evaluation was performed and the infrastructures used on the tests. We conclude with a

qualitative evaluation of the game in order to understand if overall playability and enjoyment of the

game was maintained.

5.1 Tests Performed

In order to properly evaluate the difference between the original game approach and our system, we need

to perform some tests for comparison, using the original system, and two versions of our system, one

using a static infrastructure and another one using a dynamic infrastructure. We designed these tests to

evaluate if our system achieves our requirements of scalability, performance and usability when compared

to the original game.

5.1.1 Original Game

On this test, we use the original game with the VFC4FPS system, and play a game that lasts approx-

imately 10 minutes (which is a normal duration of a game round on this type of game). The game is

played using artificial intelligence controlled players (bots). For this test we use 50 bots, and we had a

warm-up time of 10 minutes where we were connecting all the bots to the server. After the 10 initial

minutes warm-up, when we consider the game to be on stable testing conditions, we started measuring

the server usage for another 10 minutes.

This test is important in order to compare the difference between server usage on the original solution,

with the one we implemented on our system.

5.1.2 Cloud DReAM with static infrastructure

This test used our modified version of the game. On this version we have multiple servers running the

game, sharing the game map among them. For this test, 4 servers were used. The game map was divided

equally among the 4 servers, so each one of them managed a same shape and size zone. The servers were

created statically, which means we have started the game with all the 4 servers running and expecting

client connections. Clients connect and move freely across the map, migrating between servers as they

move from one area to the other.

We used a similar testing condition to the one performed for the original game test. We used the same 50

51

52 CHAPTER 5. EVALUATION

bots to play a 10 minutes game. We also gave the system a 10 minutes warm-up period before we start

registering our values. This test is important to understand how the servers perform in a static multi

server environment, where every server remains connected from the start of the game up until the end.

This scenario may be compared to the most common scenario of current commercial games on the market.

5.1.3 Cloud DReAM

The last scenario uses our system with dynamic servers. This means that the resources (in this case

servers) will be adjusted according to the needs of the system. We start the test with one single server

and start connecting bots to the game. We have used a server number limit on our system, so it will not

scale beyond that number. For this test the maximum number of servers working at any given moment

is 4. This is done so that we can compare it with the static version of this test.

The scalability triggers we used on this test were CPU above the value of 50% to launch a new instance,

and CPU load below 5% in order to terminate an instance. The rest of the conditions were similar to the

previous tests apart from the duration. Since it takes longer for the system to adapt, these tests lasted

as long as 30 minutes. The number of used bots was also 50.

5.1.4 Migration Tests

Since clients can migrate between servers, we want to understand what is the cost of this migration and

how it can impact the game. We performed some tests with the purpose of measuring the migration times

of the clients between servers. As we wanted to evaluate the impact of migrating a different number of

clients, we performed a few different types of tests. The first test we performed was the migration of a

single client between two servers. For the second test we migrated 10 clients simultaneously from one

server to a different one. Finally, on the last test, we migrated 20 clients from the same server, to a

different server. The purpose of these tests is to understand the impact of the migration for both the

client and the server.

5.1.5 Usability Tests

In order to test the usability of the system we asked real users to participate in a game that was using

the Cloud DReAM system. To start the test we asked the users to play a game on the normal version of

the game with 45 other bot clients. After that test, we asked the same user to play the game using the

graphical game client, against 45 bot clients on the VFC2 map, using the Cloud DReAM system. The

users are not aware of the underlying differences between the two versions. After performing both tests,

the users were asked to answer a simple enquire about their experiences with both versions. The enquire

model can be seen in Fig. 5.1. The purpose of this test is to understand the impact of our intervention

occurring in the background, to the enjoyment of the game. We want to understand if the existence of

multiple servers hinders the game enjoyability in any way. The two main aspects we are aiming to test

5.2. USED INFRASTRUCTURE 53

Idade:_________

Sexo: M F

Experiência com jogos online:

Nenhuma Pouca Alguma Muita

Considerou a jogabilidade das duas versões diferente?

 Sim Não

Detectou algum problema que prejudicou a sua

experiência de jogo?

 Sim Não

Se sim qual?___________________________________

Em que versão?___________

Figure 5.1: Enquire answered by volunteers

are the events that involve players located in different servers, and the player migrations between servers.

We consider these two situations to be the ones where there can potentially be noticeable differences

between versions.

5.2 Used Infrastructure

To perform the previous tests we used the following systems:

For our cloud infrastructure we used a Desktop computer with an Intel Core i7 2.94GHz and 16GB of

RAM. This system is running on Ubuntu 12.04 LTS and the version of Eucalyptus that is being used is

3.1. Each game server is running on a virtual machine created on the cloud. Each virtual machine has 1

CPU with 2.93GHz and has 1 GB of RAM available.

The Cloud Manager component is running on an Intel Pentium 4 3.20GHz and 1GB of RAM, with Win-

dows XP Professional.

The client bots used on the tests are running on machines equipped with Intel Core2 Quad Q6600 2.40GHz

and 8GB of RAM available. These machines are running Windows 7 Professional 64 bits version. All the

tests were performed on a local network with 100Mbps bandwidth.

54 CHAPTER 5. EVALUATION

5.3 Used Map

We have used for our tests the VFC2 map. This is a custom map that was designed to test the VFC4FPS

system. This map is a perfect square arena, with a dimension of 2048x2048. This measurement is done

in cubes, which are the native unit of measure of Cube 2. The map is a medium sized area with a fully

open space. We opted to use this medium sized map due to the number of players we could simulate

with our resources. We found that this map size was the ideal to exercise our load balancing and scaling

algorithms.

Since this system is aimed at MMO styled games with large maps, we also performed tests with a larger

map named VFC3, which is 4096x4096. This map is also a perfect square arena styled map. On this work

however we only present the results from the tests performed on the VFC2 map. The tests performed

on VFC3 showed that with our test setting, the players would scatter around the map, and the load

generated would not be enough to stress the system. This caused the system to remain stable with only

one server, which is an acceptable result. However, we wanted to test our load balancing and scaling

algorithms further and thus decided to present the results of VFC2 which are more interesting to discuss.

5.4 Ideal Scenario

It is important to define the ideal scenario that describes the results of a perfect system. We use this to

compare with our own results and try to understand how close we get to the ideal results. For this system,

an ideal scenario can be described as the following: the game starts off with one server; clients connect to

the server and start generating load on the machine; The machine considers itself to be overloaded and

asks for help; A new server is launched to help deal with the increasing load; when the second server is up,

the system is now capable of supporting an extra number of players; this number can, in theory, be twice

the number of players that was supported by a single server; this could go on by adding more servers;

in all this scaling operation, usability of the game is maintained; the server machines are kept within

certain load values that are considered ideal for maintaining game usability. It is important to note that

the scaling operation would only go as far as the game requires it to. This means that new servers are

only created when they are needed, so that resource usage is optimized. It is also to be expected that for

the same number of players on each server, the load values remain close to each other.

)

5.5 Launch Instances

The eucalyptus cloud platform needs between 4 minutes and 30 seconds, to 5 minutes and 10 seconds to

launch a new instance of our server image. During this time period, eucalyptus launches a new instance

in the cloud infrastructure, the instance performs the normal boot routines of the windows system, and

our server application is launched. This time is measured from the moment that the launch instance

5.6. SCENARIOS EVALUATION 55

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

1

2
4

4
7

7
0

9
3

1
1

6

1
3

9

1
6

2

1
8

5

2
0

8

2
3

1

2
5

4

2
7

7

3
0

0

3
2

3

3
4

6

3
6

9

3
9

2

4
1

5

4
3

8

4
6

1

4
8

4

5
0

7

5
3

0

5
5

3

5
7

6

5
9

9

6
2

2

6
4

5

6
6

8

6
9

1

7
1

4

7
3

7

7
6

0

7
8

3

8
0

6

8
2

9

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.2: CPU Usage for the server

command is issued, up to the moment that the server instance contacts the cloud manager to register

itself. This time period is something that is out of our control. It depends on the cloud platform, and on

the operating system being used in our images.

5.6 Scenarios Evaluation

5.6.1 Original Game

This test reflects the original version of the system, working only with one server. This server is performing

the VFC operations on the game. The results from this test can be seen in Fig. 5.2. This chart represents

the CPU usage in percentage during the entire test. In the beginning we can see that the usage is very

low and starts growing as we connect more players up to the maximum number that was used for this

test. After this initial setup time, we can see that the CPU usage remains stable on values around 45%

to 60%, throughout the entire duration of the test.The decrease of usage in the end occurs due to the

disconnection of clients that was performed to finalize the test.

This setup shows what is the performance of a server, in a single server setup. We use the results obtained

in this test as a baseline for comparison with the multiple server approaches. We can see that the number

of players used is enough to put some stress on the server in terms of processor usage. Other factors such

as networking were not considered for this case, as they are the same as described in [34]. The usage of

RAM was also found to be very consistent, with values between 40 MB and 50 MB, and not very worthy

of further detailing.

5.6.2 Cloud DReAM with static infrastructure

This test uses 4 servers that are active throughout the entire game. Fig. 5.3 through Fig. 5.6 show the

CPU usage for the 4 servers used in this test and Fig. 5.11 shows the player distribution across servers.

The charts show that the load on all the servers stays below the 50% value (for the great majority of the

56 CHAPTER 5. EVALUATION

0

5

10

15

20

25

30

35

40

45

50

55

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.3: CPU Usage for server 1 (Static)

0

5

10

15

20

25

30

35

40

45

50

55

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.4: CPU Usage for server 2 (Static)

0

5

10

15

20

25

30

35

40

45

50

55

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.5: CPU Usage for server 3 (Static)

0

5

10

15

20

25

30

35

40

45

50

55

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.6: CPU Usage for server 4 (Static)

0

500

1000

1500

2000

2500

3000

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

6
4

9

6
7

3

6
9

7

7
2

1

7
4

5

7
6

9

R
e

ce
iv

e
d

 b
y

te
s

seconds

serv1

Figure 5.7: Events received for server 1 (Static)

0

500

1000

1500

2000

2500

3000

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

6
4

9

6
7

3

6
9

7

7
2

1

7
4

5

7
6

9

re
ce

iv
e

d
 b

y
te

s

seconds

serv2

Figure 5.8: Events received for server 2 (Static)

5.6. SCENARIOS EVALUATION 57

0

500

1000

1500

2000

2500

3000

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

6
4

9

6
7

3

6
9

7

7
2

1

7
4

5

7
6

9

re
ce

iv
e

d
 b

y
te

s

seconds

serv3

Figure 5.9: Events received for server 3 (Static)

0

500

1000

1500

2000

2500

3000

1

2
5

4
9

7
3

9
7

1
2

1

1
4

5

1
6

9

1
9

3

2
1

7

2
4

1

2
6

5

2
8

9

3
1

3

3
3

7

3
6

1

3
8

5

4
0

9

4
3

3

4
5

7

4
8

1

5
0

5

5
2

9

5
5

3

5
7

7

6
0

1

6
2

5

6
4

9

6
7

3

6
9

7

7
2

1

7
4

5

7
6

9

re
ce

iv
e

d
 b

y
te

s

seconds

serv4

Figure 5.10: Events received for server 4 (Static)

0

5

10

15

20

25

30

35

40

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

3
9

7

4
1

9

4
4

1

4
6

3

4
8

5

5
0

7

5
2

9

5
5

1

5
7

3

5
9

5

6
1

7

6
3

9

6
6

1

6
8

3

7
0

5

7
2

7

7
4

9

7
7

1

n
º
 o

f
c
li

e
n

t
s

serv 1 serv2 serv 3 serv4

seconds

Figure 5.11: Clients connected to each server per second

duration of the experience), and remains between 15% and 30% most of the time, with some occasional

peaks to around 40%. Some periods of greater load are visible on some of the servers, where the usage

can go beyond 50%. Those periods can be justified with the presence of a greater number of players on

the area that is being managed by that server. Recall that we are distributing players between servers

based on their location inside the game world. This makes it possible for a sudden migration of every

player to the same server. This type of situation will bring the CPU usage closer to what was observed

in the previous test case with a single server, where the usage was always between 45% and 60%.

Comparing this test setting with the original one described in the previous section, we can observe a

reduction of the CPU usage for all the server machines. This was an expected result, as the servers are

splitting the load generated by the players, between themselves. We can also observe that the load is not

perfectly split. In an ideal scenario, if we maintain the same number of players, every server would have

approximately the same load, and it should be a fraction of the load observed in the single server case. To

justify this we present in figures 5.7 through 5.10 the information related to the network communication

58 CHAPTER 5. EVALUATION

between servers. This communication did not exist in the original solution (since it only had one server).

This extra network usage is due to the player state updates and event replication between servers. What

this means is that servers have extra events and states to process, independently of the number of players

that are connected to them at the moment. This extra data that is required to be processed is what

causes the results to differ from the ideal case. This communication is, however, necessary and has to be

performed in order to maintain the game consistency. It can still be optimized further. This test setting

also allows us to conclude that we are using more resources than the ones we need. Every server machine

in this game is showing CPU usages that are relatively low. This means that for the number of clients

connected and consequent traffic and processing generated, the number of servers being used is higher

than what would be required. This is a perfect example of the waste of resources that we are trying to

mitigate with the Cloud DReAM system. We use this scenario as a comparison for the Cloud DReAM

solution, since the scenario shown here is a representation of what happens with many game solutions

nowadays.

5.6.3 Cloud DReAM

The results description and analysis of this test setting is focused on two distinct cases. During our

experiments, we found out that these two outcomes were very common and interesting to be presented

and analysed. The first case that we find interesting starts off with one server, and as the game progresses

the system decides to scale to two different servers and remain this way through the rest of the game.

On the second case, we also start off with one server, but in the end the system has decided to scale up

to three different servers, and terminate the third one sometime before the end of the test.

First case:

The first case that we describe starts off with one server. We start to connect our players to the

server. When the server considers itself to be overloaded, it ask for help from the cloud manager. The

cloud manager orders the launch of a new server instance. The players distribute themselves across these

two servers in an even way. The system remains stable with the two servers until the end of the test. In

Fig. 5.12 and Fig. 5.13 we have the CPU values for both servers, and in Fig. 5.16 we have the players

distribution across servers. The charts illustrate the scenario that we have described. On the first chart

we can see a CPU usage increase around 171 seconds, that triggered the launch of the second server.

After the second server is operational around 524 seconds (with relation to chart 5.12) , the players are

redistributed between the two servers according to their positions. On this situation we see that after

that moment, the CPU usage on both servers remains stable. Server 1 registers CPU usages of 20% to

40%, while server 2 registers values of 10% to 30%. Even though the load is not perfectly spread across

both servers, it is very close. This means that the players on both servers, and the actions they perform

do not generate enough load to trigger any other scaling operation.

In Fig. 5.14 and Fig. 5.15, we present the communication between servers that took place during this

test. As we can see, during the first 445 seconds of the objects chart, and 520 seconds of the events chart,

the communication is zero. This happens because we only have one server during these first moments.

5.6. SCENARIOS EVALUATION 59

0

5

10

15

20

25

30

35

40

45

50

55

60
1

3
5

6
9

1
0

3

1
3

7

1
7

1

2
0

5

2
3

9

2
7

3

3
0

7

3
4

1

3
7

5

4
0

9

4
4

3

4
7

7

5
1

1

5
4

5

5
7

9

6
1

3

6
4

7

6
8

1

7
1

5

7
4

9

7
8

3

8
1

7

8
5

1

8
8

5

9
1

9

9
5

3

9
8

7

1
0

2
1

1
0

5
5

1
0

8
9

1
1

2
3

1
1

5
7

1
1

9
1

1
2

2
5

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.12: CPU Usage for server 1 (Cloud DReAM
first case)

0

5

10

15

20

25

30

35

40

45

50

55

60

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

6
4

1

6
6

1

6
8

1

7
0

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.13: CPU Usage for server 2 (Cloud DReAM
first case)

0

100

200

300

400

500

600

700

800

900

1000

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

3
7

1

4
0

8

4
4

5

4
8

2

5
1

9

5
5

6

5
9

3

6
3

0

6
6

7

7
0

4

7
4

1

7
7

8

8
1

5

8
5

2

8
8

9

9
2

6

9
6

3

1
0

0
0

1
0

3
7

1
0

7
4

1
1

1
1

1
1

4
8

1
1

8
5

1
2

2
2

b
y

te
s

re
ce

iv
e

d

serv1 serv2

seconds

Figure 5.14: Events received for both servers (Cloud
DReAM first case)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

3
7

1

4
0

8

4
4

5

4
8

2

5
1

9

5
5

6

5
9

3

6
3

0

6
6

7

7
0

4

7
4

1

7
7

8

8
1

5

8
5

2

8
8

9

9
2

6

9
6

3

1
0

0
0

1
0

3
7

1
0

7
4

1
1

1
1

1
1

4
8

1
1

8
5

1
2

2
2

o
b

je
ct

s
b

y
te

s
re

ce
iv

e
d

serv1 serv 2

seconds

Figure 5.15: Objects received for both server (Cloud
DReAM first case)

0

10

20

30

40

50

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

1
0

1
6

1
0

5
1

1
0

8
6

1
1

2
1

1
1

5
6

1
1

9
1

1
2

2
6

n
º
 o

f
c
li

e
n

t
e

s

serv1 serv2

seconds

Figure 5.16: Clients connected to each server per second

60 CHAPTER 5. EVALUATION

The objects chart starts to have communication earlier than the events one due to the periodic nature of

the objects exchange messages, which is not the case for events.

From the moment the second server connects, the two servers start exchanging updates between them-

selves. As we can see by comparing Fig. 5.14 with Fig. 5.15, the quantity of information exchanged

between servers is mainly due to player state updates. This is due to the fact that state updates are peri-

odic in its nature and occur every 33 ms. The events are not periodic, they occur based on player actions

inside the game. Furthermore, not every event is replicated between servers. An event is only replicated

when it affects players on both servers. This explains why the amount of information exchanged by the

status updates is higher than that of the events.

All this extra network traffic has an impact on the server. Every one of these updates that are received,

either state or event, needs to be processed. This is the main reason why the load on the CPU for the

same total number of players, is not perfectly split between servers.

Second case:

The second case starts similarly to the previous one. One server is connected and players start to join

the game. After a while, the server considers itself overloaded and asks the cloud manager to scale. When

the second server is ready and connects, a large portion of clients immediately migrates to that server.

This sudden migration happens because of the game world division. A large portion of the players is now

located in the area of the second server, and thus is migrated to that server. This increase in the server

load causes the second server to consider itself overloaded and requests the cloud manager for help. This

generates the launch of a third server. Fig. 5.17 through Fig. 5.19 show the loads for the different servers

and Fig. 5.22 we have the players distribution across servers. These charts differ from the static ones

since the servers were not all running for the same period of time. They also illustrate what we have

just described. We can see an increase in the CPU load on server one around 186 seconds, that triggers

the scaling operation. The chart also shows that another load spike occurs on server one right after the

scaling operation. This does not trigger a new scale because the cloud manager knows there is a pending

scale request from server 1. After server 2 finishes the connection process, we observe the increase in its

CPU load around 81 seconds (with relation to server 2 time scale) and the consequent scale request that

generates the launch of server 3. Finally, nearing the end of the test, we can see that server 3 has a CPU

load below 5% starting from 175 seconds (with relation to server 3 time scale). This causes this instance

to be terminated. The machine was terminated because its load was low, and the cloud manager decided

that it would not cause additional stress on the remaining two machines.

Similarly to what we have seen on the static test with 4 servers, the CPU load is effectively split between

all three servers. What we discussed for that case also applies here. The load is not perfectly split. This

is caused in part by our load balancing algorithm which may cause uneven distribution of players between

the servers. An example of this is what happened in this scenario with server 2, that triggers a scale

operation right after it was launched. The other factor that contributes to the extra load on the servers

is the network and processing overhead that we also discussed for the static case.

In Fig. 5.20 and Fig. 5.21 we show the network values for this scenario. Similar to what happened on the

5.6. SCENARIOS EVALUATION 61

0

5

10

15

20

25

30

35

40

45

50

55

60

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

3
7

1

4
0

8

4
4

5

4
8

2

5
1

9

5
5

6

5
9

3

6
3

0

6
6

7

7
0

4

7
4

1

7
7

8

8
1

5

8
5

2

8
8

9

9
2

6

9
6

3

1
0

0
0

1
0

3
7

1
0

7
4

1
1

1
1

1
1

4
8

1
1

8
5

1
2

2
2

1
2

5
9

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.17: CPU Usage for server 1(Cloud DReAM
second case)

0

5

10

15

20

25

30

35

40

45

50

55

60

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1

6
4

1

6
6

1

6
8

1

7
0

1

7
2

1

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.18: CPU Usage for server 2 (Cloud DReAM
second case)

0

5

10

15

20

25

30

35

40

45

50

55

60

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

2
0

5

2
1

1

2
1

7

C
P

U
 u

sa
g

e
 %

seconds

Figure 5.19: CPU Usage for server 3 (Cloud DReAM second case)

0

500

1000

1500

2000

2500

3000

3500

1

3
8

7
5

1
1

2

1
4

9

1
8

6

2
2

3

2
6

0

2
9

7

3
3

4

3
7

1

4
0

8

4
4

5

4
8

2

5
1

9

5
5

6

5
9

3

6
3

0

6
6

7

7
0

4

7
4

1

7
7

8

8
1

5

8
5

2

8
8

9

9
2

6

9
6

3

1
0

0
0

1
0

3
7

1
0

7
4

1
1

1
1

1
1

4
8

1
1

8
5

1
2

2
2

1
2

5
9

e
v

e
n

ts
 r

e
ce

iv
e

d
 b

y
te

s

serv1 serv2 serv3

seconds

Figure 5.20: Events received for the 3 servers (Cloud
DReAM second case)

0

5000

10000

15000

20000

25000

30000

35000

1

3
9

7
7

1
1

5

1
5

3

1
9

1

2
2

9

2
6

7

3
0

5

3
4

3

3
8

1

4
1

9

4
5

7

4
9

5

5
3

3

5
7

1

6
0

9

6
4

7

6
8

5

7
2

3

7
6

1

7
9

9

8
3

7

8
7

5

9
1

3

9
5

1

9
8

9

1
0

2
7

1
0

6
5

1
1

0
3

1
1

4
1

1
1

7
9

1
2

1
7

1
2

5
5

o
b

je
ct

s
re

ce
iv

e
d

 b
y

te
s

serv1 serv2 serv3

seconds

Figure 5.21: Objects received in the 3 servers (Cloud
DReAM second case)

62 CHAPTER 5. EVALUATION

0

10

20

30

40

50

1

3
6

7
1

1
0

6

1
4

1

1
7

6

2
1

1

2
4

6

2
8

1

3
1

6

3
5

1

3
8

6

4
2

1

4
5

6

4
9

1

5
2

6

5
6

1

5
9

6

6
3

1

6
6

6

7
0

1

7
3

6

7
7

1

8
0

6

8
4

1

8
7

6

9
1

1

9
4

6

9
8

1

1
0

1
6

1
0

5
1

1
0

8
6

1
1

2
1

1
1

5
6

1
1

9
1

1
2

2
6

1
2

6
1

n
º
 o

f
c
li

e
n

t
s

serv1 serv2 serv3

seconds

Figure 5.22: Clients connected to each server per second

previous case, the charts start with no communication until the second server connects. It is clear that in

this experience, the event data is much higher than what was observed on the previous case. This means

that there were more events occurring on the game, which tells us that players were interacting more

with each other. This causes the status updates to have more information as well which can be seen in

Fig. 5.21. We have claimed that the network communication is one of the causes for the extra load we

see after a split, and this experience confirms it. We can compare this case with the previous one, where

we had the same conditions, but the network values were lower. On that case the system only required

two servers to maintain a stable game. On the current experience, the system required 3 server to deal

with the extra load it was experiencing, but eventually stabilized and decided to terminated the third

instance.

When we compare both of the scenarios described in this section with the static one described in

the previous section, we can draw some conclusions. The first thing that we notice is that the scenarios

that are using the Cloud DReAM system used less servers to support the same number of clients. This

supports our claim that there is a waste of resources in the static approach. Furthermore this shows that

our system can in fact improve the usage of resources, by dynamically deciding when to scale or reduce

the number of resources that are required. Another observation that we make is that we can further

optimize the communication between servers as well as the load balancing algorithms being used. We see

by our tests that the load balancing algorithm based on areas of the map is not ideal and can generate

weird situations. The improvement of the load balancing algorithm will allow for an even better resource

usage, that will be closer to the ideal case of a perfect split of the load.

5.7 Migration test result

After performing our migration tests we obtained the following results: For the single client migration,

we observed values of migration time that ranged between 60 to 80 ms. For the 10 clients migration test

the range of values did not change much from the first experience. We observed values of migration time

5.8. USABILITY TEST RESULT 63

Player Time
1 75 ms
2 103 ms
3 90 ms
4 63 ms
5 87 ms
6 95 ms
7 92 ms
8 85 ms
9 67 ms
10 91 ms

Table 5.1: Redirection times for a simultaneous 10
player migration

Player Time
1 227 ms
2 107 ms
3 224 ms
4 156 ms
5 156 ms
6 146 ms
7 212 ms
8 159 ms
9 98 ms
10 109 ms
11 68 ms
12 194 ms
13 136 ms
14 230 ms
15 116 ms
16 147 ms
17 120 ms
18 106 ms
19 116 ms
20 89 ms

Table 5.2: Redirection times for a simultaneous 20
player migration

ranging from 60 to 115 ms as illustrated by table 5.1 . On the final test, when we migrated 20 clients,

we did notice an increase in migration time for some of the clients. The maximum value observed for a

client migration on this test was 248 ms. Table 5.2 illustrates the times obtained for one of the tests.

Even though the values on the last test have doubled from the previous ones, they are still acceptable

and did not pose any playability issues. Furthermore, the event of 20 players migrating simultaneously

is a very rare occurrence and did not seem to have a great impact neither on the server side nor on the

client side. It is important to notice that these tests were performed on a local network and the clients

migrated were mostly bots running on the same machine. We were unable to determine the impact of the

bots running on the same machine for the migration times. From our empirical observations we believe

that some of the extra delay might be caused by this factor, but it remains to be systematically proven.

5.8 Usability test result

We have asked 13 volunteers to perform this test. The average age of the volunteers was 24. All the

volunteers were male. When asked if they noticed any difference between the playability of both game

versions, 3 of them said they noticed differences. This means that 77% of the user enquired did not

notice any difference in playability. In Fig. 5.23 we present a chart showing the relation between player

experience with online games, and the differences noticed in playability.

When asked if they had seen any differences that affected their experience with the game, 4 of the

volunteers answered positively. The differences they have reported were inconsistencies on the score table,

such as scores being reset to zero; Some glitches on enemy players, that caused them to miss shots; some

64 CHAPTER 5. EVALUATION

0

1

2

3

4

5

Nenhuma Pouca Alguma Muita

N
ú

m
e

ro
 d

e
 j

o
g

a
d

o
re

s

Experiência com jogos online

Jogabilidade diferente Jogabilidade igual

Figure 5.23: Online game experience vs. differences noticed

0

1

2

3

4

Nenhuma Pouca Alguma Muita

N
ú

m
e

ro
 d

e
 j

o
g

a
d

o
re

s

Experiência com jogos online

Problema detectado Nenhum problema

Figure 5.24: Online game experience vs. enjoyability compromising problems

animation bugs, such as a player shooting his weapon and no animation is performed on his avatar. All

of these differences were reported on the Cloud DReAM version of the game. In Fig. 5.24 we can see an

illustrative chart of the answers.

While the differences that were presented are important in terms of gameplay, they are not game breaking.

Most importantly, none of the volunteers noticed any type of differences caused by migration of players

between servers, or interactions between players of different servers. This is a positive aspect, that shows

that the impact of our system on playability is very reduced and was not very noticeable to players.

We can conclude that apart from some minor implementation bugs, we managed to achieve our goal of

maintaining playability and enjoyment of the game even with Cloud DReAM performing its operations.

5.9 Summary

On this section we have presented the results from the evaluation to the Cloud DReAM system. We

have performed tests to evaluate the performance of our system. We have also evaluated the adaptability

capabilities of our system when load on the servers changes. We have compared the results obtained for

the Cloud DReAM system, with common static implementations. Finally we have presented the results

5.9. SUMMARY 65

from the usability tests performed.

The evaluation conducted in this section represents the first step in the evaluation of this system. The

test settings need to be further expanded with more players and more servers. This is important to

understand the real benefits that may be gained from using a cloud platform to support an MMOG.

66 CHAPTER 5. EVALUATION

6Conclusion
On this document we have analysed the current state of the art in terms of multiplayer games. We have

analysed the most common infrastructure setups, the load balancing algorithms and interest management

techniques. We have also analysed some existing systems that have very similar goals to our own.

With resource usage optimization in mind, we opted to develop an approach to be deployed on a cloud

environment. The result was the Cloud DReAM system presented in this work. From our evaluation,

we can conclude that there is in fact enough potential for a solution based on the cloud computing

paradigm to be used. Even though the game used for this prototype is not an MMO type of game,

and has important differences that are relevant to be discussed, the solution showed encouraging results.

We have shown that it is possible to use the cloud infrastructure to manage the available resources and

still provide a usable game environment, where users remain unaware of our actions in the background.

We managed to create a first approach to resource usage optimization that has managed to maintain

the game usability and performance as we required it to. In terms of scalability, our test setting is not

enough to claim with certainty that the system is scalable. The game used poses some limitations on

this matter, as well as the resources we had available for testing. However we believe that with a game

that is capable of supporting more players and is developed with a cloud infrastructure in mind, a good

scalable system would be achievable.

It is a fact that our results are encouraging, but they also show that there is still a large margin for

improvement. We have some aspects that are all ready identified and will be subject to improvement.

The more important ones that we have identified are: The optimization of the communication between

servers; The reduction of the information sent relative to the game events; Optimization of the load

balancing and scaling algorithm.

6.1 Future Work

This work is a first step into deploying the game servers on a cloud environment. As such there are

improvements that can be performed:

• The VFC consistency system is being enforced by the servers with relation to the clients that are

directly connected to them. It would be interesting to have the servers performing some form of

interest management between themselves. This would reduce the bandwidth usage even more than

the current implementation does.

• The usage of different scaling algorithms is potentially interesting to be explored. An algorithm

67

68 CHAPTER 6. CONCLUSION

that can consider for instance statistical values relative to previous usage history on the servers

could help optimize the solution.

• There are different approaches to splitting the map and to divide the players across servers. It would

be interesting to evaluate the impact of different algorithms on the performance of the system.

• The solution is deeply connected to some of the specific details of the Cube2 game. It would be

interesting to make it a more generic platform that could be extended to different games with ease.

Bibliography

[1] Dewan Tanvir Ahmed and Shervin Shirmohammadi. A microcell oriented load balancing model for

collaborative virtual environments. School of Information Technology and Engineering, University

of Ottawa.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski,

Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A

berkeley view of cloud computing. UC Berkeley Reliable Adaptive Distributed Systems Laboratory,

February 2009.

[3] Marios Assiotis and Velin Tzanov. A distributed architecture for mmorpg. Netgames, October 2006.

[4] Daniel Bauer, Seam Rooney, and Paolo Scotton. Network infrastructure for massively distributed

games. Netgames, April 2002.

[5] Carlos Eduardo B. Bezerra, João L.D. Comba, and Claudio F.R. Geyer. A fine granularity load

balancing technique for mmog servers using a kd-tree to partition the space. Insituto de Informática,

Universidade Federal do Rio Grande do Sul.

[6] Carlos Eduardo B. Bezerra and Claudio F.R. Geyer. A load balancing scheme for massively mul-

tiplayer onoine games. Special issues of Springer’s Journal of Multimedia Tools and Applications,

2009.

[7] Jean Botev, Alexander Hohfeld, Hermann Schloss, Ingo Scholtes, and Markus Esch. The hyperverse

- concepts for a federated and torrent-based 3d web. Proceedings First International Workshop on

Massively Multiplayer Virtual Environments, March 2008.

[8] Jean-Sébastien Boulanger, Jörg Kienzle, and Clark Verbrugge. Comparing interest management

algorithms for massively multiplayer games. School of Computer Science, McGill University, Canada.

[9] Eliya Buyukkaya and Maha Abdallah. Data management in voronoi-based p2p gaming. Proceedings

of IEEE CCNC, 2008.

[10] Jin Chen, Baohua Wu, Margaret Delap, Björn Knutsson, Honghui Lu, and Cristiana Amza. Locality

aware dybamic load management for massively multiplayer games. PPoPP, June 2005.

[11] Ta Nguyen Binh Duong and Suiping Zhou. A dynamic load sharing algorithm for massively multi-

player online games. IEEE, 2003.

69

70 BIBLIOGRAPHY

[12] Lu Fan, Phil Trinder, and Hamish Taylor. Design issues for peer-to-peer massively multiplayer online

games. School of Mathematical and Computer Sciences , Heriot-Watt University.

[13] D. Frey, J. Royan, R. Piegay, A.M. Kermarrec, E. Aceaume, and F. Le Fessant. Solipsis: A decentral-

ized architecture for virtual environments. Proceedings First International Workshop on Massively

Multiplayer Virtual Environments, March 2008.

[14] Thorsten Hampel, Thomas Bopp, and Ribert Hinn. A peer-to-peer architecture for massive multi-

player online games. Netgames, October 2006.

[15] R. Housely, W. Fordand W. Polk, and D. Sodo. Internet x.509 public key infrastructure. Internet

Engineering Task Force Draft, PKIX Working Group.

[16] Shun-Yun Hu, Shao-Chen Chang, and Jehn-Ruey Jiang. Voronoi state management for peer-to-peer

massively multiplayer online games. Proceedings of IEEE CCNC, 2008.

[17] Guan-Yu Huang, Shun-Yun Hu, and Jehn-Ruey Jiang. Scalable reputation management for p2p

mmogs. Proceedings First International Workshop on Massively Multiplayer Virtual Environments,

March 2008.

[18] Xinbo Jiang and Farzad Safaei. Supporting a seamless map in peer-to-peer system for massively

multiplayer online role playing games. IEEE Conference on Local Computer Networks, October 2008.

[19] Wang Junzhong and Yue Zhigang. A finding less-loaded server algorithm based on mmog and

analysis. International Conference on Intelligent Computation Technology and Automation, 2010.

[20] Rynson W.H. Lau. Hybrid load balancing for online games. ACM Multimedia International Con-

ference, October 2010.

[21] Bruno Loureiro, Luis Veiga, and Paulo Ferreira. Vfc-game. INESC-ID/IST, 2010.

[22] Dugki Min, Eunmi Choi, Donghoon Lee, and Byungseok Park. A load balancing algorithm for a

distributed multimedia game server architecture. Department of Computer Science and Engineering,

Konkuk University.

[23] K. L. Morse. Interest management in large-scale distributed simulations. Department of Information

& Computer Science, University of California, Irvine, 1996.

[24] Vlad Nae, Radu Prodan, and Thomas Fahringer. Cost-efficient hosting and load balancing of mas-

sively multiplayer online games. Grid Computing (GRID), 2010 11th IEEE/ACM International

Conference, October 2010.

[25] Vlad Nae, Radu Prodan, Thomas Fahringer, and Alexandru Iosup. The impact of virtualization on

the performance of massively multiplayer online games. Network and Systems Support for Games

(NetGames), 2009 8th Annual Workshop, November 2009.

BIBLIOGRAPHY 71

[26] André Filipe Pessoa Negrao. Vfc large-scale: consistency of replicated data in large scale networks.

Instituto Superior Técnico, September 2009.

[27] Sylvia Ratnasamy, Paul Francis, Mark Handley, and Richard Karp. A scalable content-addressable

network. SIGCOMM, August 2001.

[28] Simon Rieche, Klaus Wehrle, Marc Fouquet, Heiko Niedermayer, Leo Petrak, and Georg Carle.

Peer-to-peer based infrastructure support for massively multiplayer online games. RWTH Aachen

University / University of Tübigen.

[29] Simon Rieche, Klaus Wehrle, Marc Fouquet, Heiko Niedermayer, Timo Teifel, and Georg Carle.

Clustering players for load balancing in virtual worlds. Proceedings First International Workshop on

Massively Multiplayer Virtual Environments, March 2008.

[30] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and routing

for large-scale peer-to-peer systems. Proc. of The 18th IFIP/ACM International Conference on

Distributed Systems Platforms, November 2001.

[31] Gregor Schiele, Richard Suselbeck, Arno Wacker, Tonio Triebel, and Christian Becker. Consistency

management for peer-to-peer based massively multiuser virtual environments. Proceedings First

International Workshop on Massively Multiplayer Virtual Environments, March 2008.

[32] Rudiger Schollmeier. A definition of peer-to-peer networking for the classification of peer-to- peer

architectures and applications. IEEE, 2002.

[33] Richard Suselbeck, Gregor Schiele, and Christian Becker. Peer-to-peer support for low-latency mas-

sively multiplayer online games in the cloud. Network and Systems Support for Games (NetGames),

November 2009.

[34] Lúıs Veiga, André Negrao, Nuno Santos, and Paulo Ferreira. Unifying divergence bounding and

locality awareness in replicated systems with vector-field consistency. INESC-ID, Lisboa Portugal.

[35] Bart De Vleeschauwer, Bruno Van Den Bossche, Tom Verdickt, Filip De Turck, Bart Dhoedt, and

Piet Demeester. Dynamic microcell assignement for massively multiplayer online gaming. Netgames,

October 2006.

[36] Arno Wacker, Gregor Schiele, Sebastian Schuster, and Torben Weis. Towards an authentication

service for peer-to-peer based massively multiplayer virtual environments. Proceedings First Inter-

national Workshop on Massively Multiplayer Virtual Environments, March 2008.

[37] Jim Waldo. Scaling in games and virtual worlds. Communications of the ACM, 51, August 2008.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Difficulties/Problems
	1.4 Existing solutions advantages/disadvantages
	1.5 Proposed solution
	1.6 Thesis Outline

	2 Related Work
	2.1 Architectures
	2.1.1 Client-Server
	2.1.2 P2P
	2.1.3 Cloud

	2.2 Interest Management
	2.2.1 Auras
	2.2.2 Vector Field Consistency

	2.3 Load Distribution Algorithms
	2.3.1 Dynamic Load Sharing Algorithm
	2.3.2 Dynamic Load balancing Algorithm
	2.3.3 Locality Aware Dynamic Load Management
	2.3.4 Hybrid Load Balancing
	2.3.5 Microcell Oriented Load Balancing
	2.3.6 Load Balancing with Kd-Tree Partition

	2.4 P2P Further Discussion
	2.4.1 Consistency
	2.4.2 Player Distribution and Load Balancing
	2.4.3 Game Security

	2.5 Cloud Approaches
	2.6 Proxys
	2.7 Academic Systems
	2.7.1 Kosmos
	2.7.2 Solipsis
	2.7.3 HyperVerse
	2.7.4 Darkstar

	2.8 Summary

	3 Architecture
	3.1 Introduction
	3.2 System Overview
	3.3 Cloud DReAM
	3.3.1 System Components
	3.3.2 Interest Management
	3.3.3 Load Balancing / Player Distribution
	3.3.4 Map Division
	3.3.5 Client Connection
	3.3.6 Server Connection
	3.3.7 Client Redirection
	3.3.8 Communication Model
	3.3.9 Scaling Algorithm

	3.4 Summary

	4 Implementation
	4.1 Game Choice
	4.2 Development Environment
	4.3 Eucalyptus cloud
	4.4 Game Conversion
	4.4.1 Server Conversion
	4.4.2 Client Conversion

	4.5 Application Programming Interface
	4.5.1 Cloud DReAM Client API
	4.5.2 Cloud DReAM Server API
	4.5.3 Cloud Manager API

	4.6 Data Structures
	4.6.1 CubeOriObj
	4.6.2 CubeEvent
	4.6.3 CubeHit
	4.6.4 MapArea

	4.7 Load Balancing Mechanisms
	4.8 Scaling Mechanisms
	4.9 Server Image
	4.10 Summary

	5 Evaluation
	5.1 Tests Performed
	5.1.1 Original Game
	5.1.2 Cloud DReAM with static infrastructure
	5.1.3 Cloud DReAM
	5.1.4 Migration Tests
	5.1.5 Usability Tests

	5.2 Used Infrastructure
	5.3 Used Map
	5.4 Ideal Scenario
	5.5 Launch Instances
	5.6 Scenarios Evaluation
	5.6.1 Original Game
	5.6.2 Cloud DReAM with static infrastructure
	5.6.3 Cloud DReAM

	5.7 Migration test result
	5.8 Usability test result
	5.9 Summary

	6 Conclusion
	6.1 Future Work

