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ABSTRACT
Robotic applications and their capabilities have grown expo-
nentially in recent years, but hardware limitations and envi-
ronment restrictions still lead to unfulfilled requirements. As
Cloud Computing matured, however, robotics began taking
advantage of its elastic resources by offloading computation
and data to the cloud, effectively creating what is now called
Cloud Robotics. Although a multitude of frameworks have
been proposed over the years, each with its own unique spec-
ifications and goals, none has become dominant nor able to
provide a standard and generic solution linking both robots,
users and the cloud.

An innovative platform, bridgeOS, attempts to take on this
role by providing a new solution and framework, integrating
recent Services paradigms, using a web-oriented approach
and supporting a prominent software for networked robotics,
the Robot Operating System (ROS). To accomplish this, we
propose a cloud-based extension for the bridgeOS framework,
capable of dynamic service deployments for the robots, and
add support for adaptive decision making, based on available
resources and performance metrics, to optimize in real time,
both how those services are distributed and how well they
perform.

Overall, the middleware we developed is robust, resilient,
versatile and capable of scaling to hundreds of components.
Our experimental results show that it is a viable solution, with
benefits exceeding the overhead it generates.
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INTRODUCTION
Cloud Robotics is a fairly recent concept and field in robotics.
It was first coined in November 2010 by James Kuffner [10],
who presented through it a novel approach, inspired by the
DAvinCI framework [1], portraying the main advantages of
using cloud computing together with robotics. The resulting
benefits generally revolve around two topics, having shared
databases with general knowledge, skills or behaviors, and mi-
grating the heavier computing tasks to the cloud ([16] and [7]).
The idea of creating separate databases, is not new and origi-
nated from the Networked Robotics field in the 90s [5], derived
from advances made in telerobotics and telepresence systems.
Back then, researchers began interconnecting robots, forming

peer-to-peer networks allowing for cooperative behaviors be-
tween them, and connecting them, mostly through Internet,
to external resources, such as servers harboring databases or
remote services, or as a swift way to enable remote access
[19].

Since then, technology has progressed significantly, and is
bound to continue at an exponential rate [11], turning Cloud
Robotics into the logical next step for connected robots. From
one side we have advances in hardware, that increase the com-
putational capacities while reducing costs. On the other hand,
they are coupled with new software capable of handling mas-
sively distributed and parallelized system, leading to what is
known as cloud computing. This easy access to elastic and
virtually unlimited resources and storage of huge amounts of
information, or related to Big Data, opened up a new range of
viable applications as it matured. The recent revolution in arti-
ficial intelligence and machine learning is a notable example
of it. Big Data and massive processing power, together with
new methods and algorithms to train and optimize models [12],
enabled considerable progress in image processing and clas-
sification in general. It is especially visible within the Deep
Learning field, where new types of neural networks were able
to break efficiency records, held by other types of models, in
multiple areas ranging from character and speech recognition,
to language translation or object classification [17], and in
some case even surpass human-level performance ([13] and
[3]). Meanwhile, new frameworks, predominantly the Robot
Operating System, appeared with the intention of standard-
izing not only how robots could communicate and exchange
data, but also the drivers provided by the manufacturers for
their sensors and actuators.

These advances increased the capabilities of robots and their
levels of mobility and autonomy. However those new possibil-
ities also require more resources to operate in real-time, spe-
cially when dealing with computer vision and motion planning,
which cannot be integrated in their totality, neither on-board
nor in an external infrastructure, due to multiple constraints
involving costs restrictions, computational resources, energy
capacity or even bandwidth limitations. Joining robotics with
cloud computing then became a clear necessity in order to
profit from its economies of scale, massive infrastructure, adap-
tive resources and elevated availability. Even though many
hurdles still have to be overcome, as demonstrated by the lack
of a predominant framework or standards for Cloud Robotics,



they will soon be surpassed due to its expected progress. Stim-
ulated, in particular, by service robots, which are only this
decade starting to grow into a significant market 1.

Motivation and Research Proposal
This Master Thesis work emerges from a proposal defined in
cooperation with an external company, Bridge Robotics, who
is developing the bridgeOS robotics platform. As addressed
in the introduction, robotics is a Future-oriented field with a
colossal potential and an exponentially growing market, spe-
cially its service robotics branch. However, it still lacks a
standardized framework for cloud robotics, which comes in
tandem with what this work intended to accomplish. As brid-
geOS overcomes current challenges and issues unanswered by
the other solutions, with the overall goal of facilitating the de-
velopment of service robotics. Our work complements Bridge
Robotics’ offering, by providing a cloud-oriented middleware
with low overhead, resource optimization and abstraction of
services, that will be beneficial for developing the sector.

Shortcomings of Current Solutions
The shortcomings of current solutions are addressed by many
surveys [14] [4] [2]. Although not uniformly lacking from
each existing solution, it includes:

• Non-generic or narrow scope of services;
• Use of proprietary or non web-oriented communication

protocols, and custom data formats or drivers, instead of
supporting ROS;

• Static or limited techniques for offloading computation, and
no guarantees of service quality nor monitoring capabilities;

• Lack of data resynchronization mechanisms for handling
network failures;

• Lack of security, privacy and anti-tampering mechanisms
for network connections.

Proposed Solution and Contributions
To address the existing shortcomings and implement the re-
quirements sought by the research proposal, we propose a
reliable middleware, distributed between the cloud and robots,
that operates privately within a Virtual Private Network, pro-
tecting communications and isolating robots. The middle-
ware is divided into a centralized Master Controller, tasked
with coordinating the overall system and providing an access
point to the current bridgeOS Cloud Platform. And individual
Robot Controllers, present in each robot, orchestrating local
deployment of Skills. Skills, are dynamic robot functionalities,
that are transparently distributed and can adapt in real-time
based on current events to optimize performance. Any type
of containerized functionality is supported and we provide a
backbone for operating ROS networks conjointly.

Furthermore, our proposed solution embraces state of the art
technologies and sets up procedures to mediate disruptions
and failures. And includes mechanisms to data resynchroniza-
tion and Firewall-friendly communication protocols to ease
its deployment within any network and avoid possible traffic
1International Federation of Robotics: http://www.ifr.org/service-
robots/statistics.

restrictions. It can also provide adaptive computation offload-
ing based on available resources, general or service-dependent
performance metrics, and according to the quality of service
or optimization required.

Overall, we contributed a powerful, versatile and complete
middleware for bridgeOS, that is actually appropriate for
robotic applications, as it is scalable enough to accommo-
date hundreds of concurrent local deployments and support
large exchanges throughput.

RELATED WORK
In this section, we address the research work and relevant
systems related to our work, its domain and goals. Presenting
successively, the core technologies integrated by our middle-
ware.

Architectures for Networked Robotics
There are many frameworks for interconnecting robots, be
it for creating small peer-to-peer networks or establishing
links over distributed infrastructures. We start by covering
the renowned architecture for networking robots, ROS, and
proceed to the cloud robotics framework extended by this
work, bridgeOS.

Robot Operating System
ROS is a portable open-source framework that provides a
structured communication layer for creating heterogeneous
networks of robots and other systems interacting with them.
ROS natively supports a multitude of robots and other hard-
ware, such as sensors. Its digital ecosystem contains a consid-
erable number of tools, libraries and drivers, permitting rapid
creation and deployment of modular applications [8].

The ROS network is composed of ROS nodes, interconnected
following a peer-to-peer two-tiered architecture. First a cen-
tralized layer which links all nodes to a master node, while
the second layer is simply for direct communications between
them. This master node functions as a naming service and
is responsible for managing the Topics system, based on a
publisher/subscriber model for exchanging data using topics.
Nodes can register themselves to the master, to subscribe, pub-
lish or provide a service. The master will in turn advertise
each side, so they can open channels without intermediaries.

bridgeOS
BridgeOS was unveiled in 2016 by Bridge Robotics, as a plat-
form to run generic applications for service robots. It provides
robots with modular and on-demand functionalities, repre-
sented as Skills. And allows the deployments of applications,
subscribing or processing information related to robots, that
expose such data to external, web or mobile based, applica-
tions.

The bridgeOS cloud uses a runtime platform, responsible
for managing and monitoring applications, which in addition,
provides an intuitive web user interface. Through this UI, end-
users can visually monitor their robots and applications, con-
figure them as needed and even upload new ones. Although,
bridgeOS supplies basic Skills, users can develop their own or
integrate those from third-parties, as stores for both Skills and



applications become available. To facilitate development or
integration with other platforms, its development framework
supports diverse programming languages and offers libraries
to ease connectivity. Furthermore, the interconnection with
robots is performed through ROS for greater compatibility
with existing solutions.

Containers
Containers are small blocks of software concatenated to pro-
vide a service or application. Operated through a lightweight
virtualization technology, they run directly on top of the host
OS and have their own isolated processes and resources. This
type of virtualization provides portability between a vast num-
ber of heterogeneous operating systems and machines, and is
language-neutral. Whereas component frameworks are mostly
dependent to specific environments. This paradigm presents
multiple advantages when compared to direct virtualization
and virtual machines (VMs) [9]. Since there is no guest oper-
ating system on top of the hypervisor, the boot time is much
faster and containers can make direct calls to instructions of
the host’s CPU with performances near those of native appli-
cations, much better than VMs [18].

Docker
Docker is a recent container framework with high portability,
supporting many platforms, including UNIX and Windows.
The idea is to promote a "single service/application per con-
tainer" model, synergistic with the microservices paradigm
[15]. The argument behind this perspective is to further de-
compose applications into elementary services, all of which
can then communicate or be linked through configurations and
dependencies passed on at launch [6]. This provides additional
benefits, services can then be updated individually without nec-
essarily disrupting whole applications and scalability becomes
more precise, only increasing the bottlenecked parts.

Here, containers are created from templates known as Docker
images and operated by the Docker Engine. Images are stored
locally inside a Docker registry and can be easily shared using
the global public registry, Docker Hub, or even private reg-
istries. Due to its popularity, many software providers have
developed their own images for public dissemination, while
other open-source software was included by Docker’s devel-
opers directly. Furthermore, many public cloud platforms
already support Docker containers, meaning developers can
enjoy the cloud elastic resources without additional config-
urations. Docker Engine provides a series of tools, besides
managing containers and images, and includes an API so that
remote or local clients can operate it.

Docker Swarm
Container Managers facilitate the orchestration and scheduling
of highly scalable environments with large clusters of contain-
ers, through sets of management and supervision tools. Docker
Swarm is the official manager and is nowadays included inside
the Docker Engine. Each Swarm consists of a cluster of nodes,
running the Engine in swarm mode, that can operate in either
predefined roles, manager and worker. Managers administrate
the swarm, schedule services among workers, monitor tasks
and provide external access to the swarm API. Usually, a small
number of nodes are set as manager to provide the cluster with

built-in fault-tolerance features, additionally one is randomly
elected as leader and focuses solely on orchestrating tasks.
Worker nodes only function is to execute containers as per the
requests received.

The work performed by the swarm is classified by services,
that define a Docker image and the set of tasks required. In
turn, a task represents a container, running an instance of
that image, and a list of commands needed to be executed by
said container. Services can be updated incrementally, with
controllable delays between different nodes, while leaving the
possibility of roll-backing to a previous version at any time.
Two service models are provided, global services, in which all
workers run a service’s task, and replicated services, where
the manager redistributes tasks amongst workers depending on
the scale desired. Scales can be set dynamically and managers
automatically set the appropriate replication by monitoring the
current state of workers and their tasks, readjusting whenever
necessary, even when dealing with full host failures.

ARCHITECTURE OF THE PROPOSED SOLUTION
The system-wide architecture for the cloud-based bridgeOS
implementation, augmented by our proposed middleware, is
depicted in Figure 1. With it, the extensions undertaken by
this work for the bridgeOS platform are apparent. To be
noted however, the separation between the cloud-part of the
middleware is merely for illustration purposes, as they are
fully integrated and, from an outside perspective, represent the
same cloud infrastructure.

By reason of security considerations nowadays necessary, the
whole system is enclosed by a bridgeOS Virtual Private Net-
work, acting as a general protection mechanism providing
security features sought for all established communication
channels and robots using bridgeOS. While a VPN creates a
barrier blocking external parties, our security precautions go
one step further, adding another layer of protection inside the
system, to fend off possible vectors of attack coming from
within, due to compromised or rogue internal elements. Each
robot has its own private network, isolating restricted data
or skills, regardless of their location, and only exposing the
pertinent parts through the Controllers API to the bridgeOS
platform, and thus other robots and users.

To deal with monitoring and middleware management, we
developed a tailored event-based communications protocol to
be used over WebSockets. As for other design choices, each
middleware module, contains a web interface implementing
said protocol, to permit bi-directional interactions.

The proposed middleware supports groups of robots. They
can access the bridgeOS cloud infrastructure by means of their
local Robot Controller, which establishes the VPN tunnels
and links them with the Master Controller. Figure 2 offers a
more in-depth look about how robots interact with and use our
middleware, and subsequently, the bridgeOS cloud platform.
Logically, some robots might already possess core functionali-
ties and will turn to bridgeOS as an option to enhance them.
It is then plausible, that some robots will have native ROS
drivers not instantiated by bridgeOS, such as those controlling
local actuators or sensors, and likely a ROS master to manage



Figure 1. Overview of the extended bridgeOS architecture

Figure 2. Detailed architecture from a robot point-of-view. Red arrows
represent communication channels using WebSockets, dedicated to mon-
itoring and management purposes, while blue arrows represent commu-
nication channels for ROS. Not depicted, are all connections involving
components, which can be over ROS or use any other type of protocol.

them. Therefore, we have to anticipate the occurrence of a
local ROS master, while also planning for the opposite possi-
bility. The middleware is permits both scenarios, it can adapt
by managing network routes and enable packet forwarding,
and if no ROS master is detected locally, a cloud container
will provide a dedicated ROS master instance to such robot.

Additionally, as a means to provide a portable middleware,
and in substitution for being executed directly in the host like
native applications, both the Master and Robot Controller mod-
ules can also be launched containerized through Docker, simi-

larly to bridgeOS Skills. For Robot controllers, the benefits
of executing them as native applications, are to allow greater
control of the host and its resources, and enabled increased
monitoring capabilities. For instance, even with its privileged
mode, with Docker we are unable to obtain complete access to
the host file system, a necessity if the user desires specific disk
monitoring metrics or selects cost heuristics and functions that
use them. On the other hand, using the controller modules as
Docker containers helps achieve the interoperability character-
istic desired for the middleware. Considering that, any system
supporting Docker will be able to launch them without hassle,
avoiding lengthy pre-configurations.

Master Controller
The Master Controller is the principal management component
of our middleware, and has the purpose of serving multiple
crucial roles. For starters, it acts as a gateway, providing robots
with an entry point to the bridgeOS platform by exposing a
common WebSockets interface for Robot Controllers. And
is responsible for persisting and sharing their startup config-
uration. Inversely, it also enables bridgeOS services, users
and applications to reach robots, by means of a HTTP web
interface.

Located inside the cloud infrastructure, one of its core func-
tions is to orchestrate cloud containers, using Docker Swarm,
for Skill components, dedicated ROS masters and other con-
tainerized bridgeOS services. It this sense, it can manage and



access all isolated subnetworks composing the robots virtual
private networks.

Furthermore, another core function is to create a centralized
information hub, logging data regarding the current states
and offloading changes, and monitoring everything related
to robots, skills, components and modules. In practice, the
Master Controller is only charged with monitoring cloud con-
tainers and connections with robots, broadcasting any relevant
data back to them. Meanwhile, Robot Controllers deal with the
local side of their private network, forwarding to the Master
all metrics and events generated by them, their Skill Managers
and Skill Routers, such as ROS statistics and offloading de-
cisions. This circumstance emerges from the design choice
of implementing fault-tolerance and high-availability mecha-
nisms locally (i.e. to provide cloud redundancy), essentially,
each robot has its own Docker daemon, not connected to the
cloud Docker Swarm. All this data horded by the Master Con-
troller is persisted to a cloud database created specifically for
this middleware, although the database can be accessed by the
bridgeOS platform through the API.

Robot Controller
This module represents the local administrative part of the
middleware, and is present within each robot, with the purpose
of attaching them to the bridgeOS cloud. Locally, they take
on a small network-related role, as they are responsible for
bounding to the bridgeOS VPN and configuring its on-board
firewall, to secure and conceal exchanges with the cloud. They
also have to setup their local subnetwork, to be used by the
robot’s docker containers, and establish the needed network
routes, to ensure that all containers, modules, ROS nodes and
other processes can communicate with each other, regardless
of their location. When launched as a container, the Robot
Controller appears to function as a network bridge, given that
all inbound and outbound traffic is redirected through it, since
the VPN tunnel is established inside its container.

When launched, Robot Controllers authenticate themselves
with the Master Controller and retrieve their bridgeOS startup
configuration, containing information regarding their local
subnetworks and Skills. Earlier, during the overview section of
this chapter, we acknowledged that a robot could already have
a running ROS master. The Robot Controller is tasked with
verifying this scenario and act accordingly when connected
to the cloud. Therefore, when a ROS master is found, its ip
address and port is disclosed, otherwise a request for launching
a cloud ROS master is transmitted to the Master.

However, the core role of a Robot Controller is to manage the
deployment of skills and orchestrate components, based on
user configurations and requests from Skill Managers, to meet
the desired performance, Quality of Service or any other quan-
tifiable criterion. Although, for cloud containers, it merely
forwards commands to the Master Controller. Additionally,
it has to continuously monitor robot resources, local contain-
ers and the cloud availability, and share those metrics, both
with its Skills and the cloud, to provide real-time information
about its robot. The generated information is also exploited
locally for allocating the available resources efficiently, during
container deployments.

To permit cooperation with Skills, a Robot Controller oper-
ates a WebSocket server, implementing our common API,
that listens for incoming connections from Skill Managers.
This enables administrative exchanges and constant feedback,
shared up to and from the Master Controller. This continuous
monitoring network, created between all modules, is then ex-
ploited by the Master Controller, for supervising current states,
of the network and its components, and permitting logging
any relevant information. And, by Skill Managers, to perform
real-time performance checks, enabling adaptive offloading
decisions. While the Robot Controller poses as an interme-
diary, on top of the monitoring information and management
services it offers.

A premise and driving factor of this thesis, is that robots have
limited on-board resources, thus, Robot Controllers cannot
blindly deploy containers locally simply based on Skill Man-
agers requests, and have to analyze whether it is beneficial
to do so. Consequently we developed a Resource Allocation
algorithm for generating decision based on current resource
availability and usage, heuristic functions and cost thresholds.

Another important function of the Robot Controller, is to
handle state synchronization of components during their mi-
grations. Performing this, is not as straightforward as one
would think. Normally, if we were using virtual machines,
we could easily capture a snapshot of their current state and
use it to replicate a given virtual machine somewhere else.
However, this is not achievable with Docker containers, since
Docker’s layered storage architecture is much less transparent
and makes it impossible to simply replicate specific layers in
another host. Therefore, we have to rely on other mechanisms
such as synchronizing shared Docker volumes, which can be
specific to each Skill or component, and storing ROS mes-
sages, based on user configurations, to be shared with the help
of the Skill Router when a migration happens.

Components synchronization is not constrained solely to mi-
grations. Some of the objectives tackled by this thesis regard
questions of redundancy, robustness and fault-tolerance. For
those reasons, we implemented mechanisms to enable the
Robot Controller to adapt to unreliable circumstances and act
accordingly. Hence, the added responsibility for resynchroniz-
ing data whenever confronted with disconnections and other
network failures. In such events, it keeps any local messages,
retransmitting them when possible, and informs the local man-
agers, triggering any eventual data synchronization behavior
specific to each Skill.

bridgeOS Skills
BridgeOS Skills are assemblies of components, working to-
gether to provide particular functionalities such as navigation,
speech, grasping and so on. They already implement an ar-
chitecture based-on microservices, where each component
executes limited processing tasks or expose services (e.g. a
ROS node), and adopt the containerized approach of Docker.

With our middleware, bridgeOS Skills are embodied slightly
differently. Their components can be launched both locally or
in the cloud, thus ceasing to be represented by single contain-
ers. However, only one container of each is kept active, while



the other is either stopped or made incapable of interacting.
And, they are bundled together with two dedicated middleware
modules, Skill Manager and Skill Router, operating with the
purpose of organizing them. Hence, each skill instantiation
can now become transparently distributed between the robot
and the bridgeOS cloud. Furthermore, to enhance coopera-
tion and data sharing between components, a common Docker
volume, kept synchronized and replicated across locations, is
provided and accessible by all within the same Skill, including
the respective middleware modules.

The Skill Manager supervises Skill performance and the state
of all components, along some other metrics related to the
robot itself, such as network bandwidth or battery available, to
generate offloading decisions in real-time using user policies.
While the Skill Router essentially abstracts the location of all
components, rerouting communications accordingly, based
on the dynamic offloading decisions received. An intended
benefit of this design, is that it allows specific components
to concurrently operate during migrations, switching the ac-
tive location only when their counterparts are available, thus
reducing any possible downtime and avoiding conflicts. Addi-
tionally, for the purpose of increasing middleware resilience
and robustness, they both reside exclusively in the robot, so
that, if the Master Controller fails or the cloud infrastructure
becomes unavailable, they can continue operating and decide
the appropriate course of action, as addressed before with the
fault-tolerance mechanisms implemented by the Robot Con-
troller and the interactions depicted between all three modules.

Network and Communications Protocols
As addressed during the overview of the middleware archi-
tecture, all entities interacting within a bridgeOS ecosystem
are protected by a global VPN securing all communications.
While conjointly, further isolated robots by bounding them to
dedicated internal private networks. Fundamentally, robots
are allocated subnets for local and cloud use, with their access
overseen by the VPN server. To provide such network capabil-
ities, we selected a robust open-source solution, OpenVPN.

With regards to our middleware needs, communications be-
tween the developed modules occur using the web-oriented
WebSocket protocol and exposing web services access points.
Of course, the benefit of this, is to take advantage of its in-
herent capabilities, namely bidirectional exchanges, interop-
erability, performance, Firewall-friendly approach and high-
throughput, well suited for real-time web exchanges. For
it, we designed an event-based protocol dealing with man-
agement and monitoring exchanges using JSON messages,
that defines fault-tolerance and retransmission mechanisms,
and sets up push (e.g publishing a status update) and request-
response (e.g. requesting the current location of a component)
exchanges logic.

Finally, we assess a possible risk, robots can sometimes be
unable to join the bridgeOS VPN, either because the server
failed (highly unlikely) or their local network restricts VPN
traffic (increasingly possible nowadays). In such scenarios, we
must to still be capable of providing basic security guarantees.
Therefore, whenever VPNs are unavailable, our modules will
switch to the secure version of WebSocket, WSS, which is

protected by TLS, akin to HTTPS for HTTP. And all docker
subnetworks will be hid, protected by firewall rules, setup in
both sites, to restrict their access. On top of that, if the Robot
Controller is containerized, all external traffic is still redirected
through it, easing network monitoring.

EVALUATION
In this section we introduce the results obtained through two
series of experiments designed to assess and evaluate the va-
lidity of the middleware presented in this thesis. First, to
primarily test the potential of our offloading capabilities, we
implemented 3 use cases commonly used by robots. Second,
to benchmark the different modules developed and charac-
terize the soundness of such middleware as an extension to
bridgeOS and more generally for integrating cloud computing
with robotics.

Testing was performed in a simulated environment, enclosed
by a VPN, consisting of a bridgeOS Cloud Infrastructure,
divided into a bridgeOS Platform and an instantiation of the
Master Controller, with resources to launch cloud components.
And a robot, hosting our robot-side middleware modules, and
an instantiation of the Robot Controller.

Simulated Setup
To assess the developed middleware, we had at our disposal
1 laptop with an Intel Core i7-3610QM CPU at 2.30GHz,
8151MB of available RAM memory, and HDD 7200 RPM
SATA 3Gb/s 16 MB Cache, connected by a 220 Mb LAN. Two
servers, provided by INESC-ID and IST in Lisbon, with an
Intel Core i7-2600K CPU at 3.40GHz, 11926MB of available
RAM memory, and HDD 7200RPM SATA 6Gb/s 32MB cache,
connected by a 1 Gb LAN. And, from Amazon Web Services,
1 T2.Micro cloud instance, located in Ohio (USA), using 1
Virtual Core of an Intel Xeon E5-2676 v3 @ 2.40GHz, 990MB
of RAM and 16GB SSD limited to 160Mb/s.

For both evaluation suites, we implement the network envi-
ronment depicted in Figure 3. In which the Laptop acted as
the bridgeOS Platform, providing the VPN server and our
added PostgreSQL database, in addition to the regular brid-
geOS services. And, 1 server provided the cloud part of our
middleware. However, for testing the implemented use cases
we used 1 T2.Micro cloud instance for simulating the robot,
while for benchmarking purposes we employed the second
server. We selected this setup as to better reflect the different
aspects being tested in each suite.

Offloading Performance
The goal of this series of tests was to observe the potential
of our middleware, in terms of its offloading capabilities, and
measure the overhead it may cause. To that end, we selected 3
existing bridgeOS Skills relevant for robotics, and integrated
them with our architecture as to create 3 standalone use cases
that use ROS. For both navigation and mapping Skills, we used
a virtual instantiation of a robot called Husky, a 4x4 all-terrain
mobile base, whose simulation is provided by ROS official
website.

For each skill, every feasible and relevant combination of its
components, location-wise, was be tested. This allows for a



Figure 3. Middleware Evaluation Setup

Figure 4. Use Cases Results - Skills Resource Usage

performance comparison of the middleware with relation to
settings ranging from native to pure-cloud (every possible task
offloaded into the cloud) execution. During testing, we mon-
itored the resource usage of Skills and the middleware from
the robot’s point-of-view, and measured some performance
metrics pertinent to each use case, namely, loss rate of ROS
messages, time required to process a single pointcloud, time
needed for completing a map tour.

Results
We present in Figure 5, the performance measured for each
Skill during the tests performed, and in Figure 4, their resource
usage in the robot. To be noted, while navigation and mapping
were simulated in the same environment, their trajectory were
different, since the first used a path planner with scarce points
and the latter a predefined route, therefore their durations albeit
similar, are unrelated.

Based on resource usage alone, an overall decreasing tendency
is clearly apparent, although with some notable exceptions.
Case in point being the spike in CPU usage for navigation
Skill during Tests 3 and 3, correlating with a performance loss.
Of course, a decrease is to be expected from the perspective
of the robot, since we are offloading components to the cloud.
However, if we examine tests with the most number of cloud
components, their results also prove that the overhead caused
by the middleware modules of a Skill, Router and Manager,
can be insignificant.

With regards to performance, Skill initialization persisted un-
der 5 seconds during all tests, and surprisingly, the success
rate of ROS messages transmission measured by the Skill
Router remaining stable at 98.42±0.63%. In terms of Skill-
wise performance, we note a slight increase in tour duration for
navigation, correlated as stated before with a resource spike,
and a stable outlook with mapping. A stability in the duration
is actually a very good result, since the conditions remain the
same (i.e. a robot moving at the same speed over the same
path, will take the same time), demonstrating that our routing
mechanism does not hinder certain tasks.

For people detection Skill the takeaway is different. With a dra-
matic increase in the mean processing time of pointclouds, we
cannot at first assume the middleware performed well. How-
ever, it is easily explained when we consider how the Skill
works and the locations of its components. The pointclouds
generated by the Publisher had sizes of around 30-40 MBytes,
and were forwarded successively to the Sampling and, from it,
to the Detector. So, whenever they were in different locations,
and additional round-trip was required. And, since the point-
clouds were published periodically, the Skill rapidly generated
a network bottleneck. Which is why, an improvement was
observed in its last test.

Lastly, with the results obtained, we were able to determine
which, if any, combination of components performed best
with relation to the native execution (i.e. Test 1 of each Skill,
the combination with most components executed locally.).
Based on Table 1, for navigation and mapping Skills, the
conclusion is succinct, offloading components to the cloud is
very advantageous. For people detection Skill, the verdict is
more ambiguous, as we have a trade-off to consider between
decreased on-board resource usage and decreased performance
and network availability. With a live robot, it would depend
on the priority given for such functionality and its degree of
importance, for example if it was for live remote viewing or to
be used with another local application for people recognition.

Middleware Benchmarking
The intended objective of this series of experiments was to test
the overall resiliency, robustness, reliability and scalability of
our middleware, and determine the overhead consumed by its
modules. To achieve such analysis, the middleware modules
were stress tested through a series of tests and benchmarks,
where the parameters were amplified until their failure or
impossibility to continue.

Since each module has a different role within our middleware,
we defined numerous experiments designed to assess differ-
ent aspects of their core functions. First, to benchmark our
middleware, we gradually increased and measured the number
of both, startup and concurrent, Skills the Robot Controller
was capable of handling. Startup Skills are also concurrent,

Table 1. Skill Offloading Comparison
Skill Performance CPU RAM Network IO Power Cloud Instances

People Detection +64,76% -88,32% -45,85% +137,21% -63,10% 2 containers
Navigation +2,11% -83,99% -5,30% +2,98% -72,33% 2 containers
Mapping -8,18% -92,78% -67,87% -80,85% -87,93% 3 containers



Figure 5. Use Cases Results - Skills Performance

Figure 6. Skills Benchmarking Results - Initialization

but are launched in parallel at the robot’s startup, using the
Robot Controller’s internal pooling mechanisms, whereas for
concurrent Skills, we launched them sequentially. Then, we
concentrated on the Skill modules, repeating the same concur-
rency experiment, but this time with components. The purpose
is also to analyze the overhead caused by the neural networks
employed by the Skill Manager. Finally, given the prime im-
portance of ROS for robotics and bridgOS, we focused on the
Skill Router to test its ROS routing capabilities. Assessing
first its capacity of handling topics, in absolute terms, and then
of routing messages, by experimenting with both the number
of publishers and subscribers, and their message publishing
rate.

During those tests, we monitored the usage made by the mod-
ules of robot resources, and measured temporal statistics about
their initializations. To obtain a more accurate and precise
representation of their overhead, we created a mockup Skill
composed of a dummy component, which performs a repeti-
tive and meaningless task. Except for concurrent components
benchmarking, Skills were composed of a single dummy com-
ponent launched in the cloud.

Results

Figure 7. Skills Benchmarking Results - Resource Usage

Overall, our middleware was able to surpass the symbolic bar
of 100 concurrent Skills. Specifically, it managed to complete
startups of 110 Skills without failures, and even cross the line
of 150 concurrent Skills when launched sequentially. How-
ever, shortly above the 100 Skills threshold, we began noticing
sporadic Skill failures, leading to their shutdown. In reality,
those failures can be explained by two factors, on-board re-
sources and monitoring. By aggregating the usage made by
all Skills and the Robot Controller, we realized the results
were actually limited by the resources of the robot. Secondly,
in order to closely simulate a live setup, we left active their
monitoring functionalities, which generated periodic increases
in resource usage, explaining why failures began to happen
sooner. This factor also accounts for the exponential increase
in data exchanged with the cloud, as bandwidth grows propor-
tionally to the number of containers monitored.

Analyzing the temporal costs of Figure 6, we observed that up
to 100 concurrent Skills, their initialization remained stable
at 5.26±0.61 seconds each, afterwards it deteriorates rapidly
due to the scarcity of resources. An average similar to the
one measured previously about the implemented use cases.
Meanwhile, parallel launches of Skills can slash such average
to merely 2.19±0.33 seconds.

Regarding components, our middleware was able to guarantee
deployment of skills with up to 250 robot components. More
than that led to failures of our Skill Manager, and unlike with
Skills benchmarking, the cause was not a lack of resources.
Since, upon reaching such volumes, Skill Managers began ex-
periencing some failures, network-wise and internally. Some
experiments managed to exceed 300 components, though they



Figure 8. Components Benchmarking Results

were unreliable and not always reproducible. We also want
to state that, these limits regard components that can be of-
floaded. Components with fixed locations are expected to be a
minority, and would portray less accurate results since they do
not require neural networks.

Nonetheless, the results indicate that even when instantiat-
ing skills of 250 components, the mean duration required for
initializing each component remains stable at 0.89±0.16 sec-
onds. This measure includes both the container launch and the
neural network initialization, besides the cost resulting from
network exchanges between modules, and is, in our opinion,
quite positive. In terms of resource usage, Skills Managers
follow a linear trend, an expected exception being bandwidth
due to component monitoring, we discovered that they have
a memory baseline of 19.97±1.3 MBytes of RAM. Lastly,
the spikes in RAM usage correlate with the processing of
monitoring metrics, whose periodicity can coincide with the
initialization and skew results.

Figure 9. Skill Router Benchmarking Results - Initialization

In terms of the mapping capacity of ROS topics by Skill
Routers, the results are also quite good. We were able to
map up to 5000 topics with a single Skill Router. An arti-
ficial limit, since we considered the total initialization time
required and concluded that there was no interested in further
testing such feature. The main takeaway of Figure 9 is that
the mapping a ROS topic lasts in average 443±20 ms, and
remains stable under 0.5 seconds even with 5000 topics. A
downside is that Skill Routers required an increasingly more
time to initialize, although it only hinders their capacity to
route all components, since they are still able to communicate
with the remaining modules and thus, operate partially. We

Figure 10. Skill Router Benchmarking Results - Resource Usage

also discovered that each Skill Router has a memory base-
line of 46.47±1.3 MBytes of RAM, and that Topic Handler
consumes an additional 10 KBytes of RAM.

Regarding our routing capabilities, a Skill Router was able
to easily handle 100 concurrent pairs of ROS publishers
and subscribers, instantiated in the cloud. Once again, this
boundary does not correspond to an actual limitation of our
middleware, but rather of the available cloud resources. Given
this upper bound of publishers, we decide to instead increase
their message publishing rate, successively increasing it, going
from their baseline of 1Hz and up to 500Hz, reaching a total
throughput of 50 000 messages each second. Each iteration
was sustained for a period of 10 seconds, counting from the
moment when all publishers and subscribers were instantiated.
An attempt was made at 1kHz, and although the cloud server
crashed after a few seconds, the Skill Router was able to keep
up during that time.

Those are surprisingly good results, considering ROS nodes
with high framerates (i.e. cameras, transformations, statistics)
almost never surpass 100Hz. Of course, usually in those
cases the message payload is also much larger. Resource-wise,
the Skill Router also performs positively, as its usage trends
remain linear with relation to publishing rates and number of
publishers, although with slightly more pronounced slopes.

CONCLUSION
To conclude, the middleware, represented by the different
modules we conceived, is able to achieve most requirements
we sought for this thesis. It consolidates mechanisms for
fault-tolerance, data retransmission and resynchronization, dis-
ruption resiliency and cloud replication. The assessment pro-
vided afterwards, demonstrated its ability to scale and operate
in geographically distributed environments facing real-time
constraints, displaying benefits that outweigh its overhead.

Given the broad scope and diversity inherent to robots and their
requirements, characteristics and capacities, we enforced a
principle of customization into our modules, enabling versatile
configurations that adapt to specific needs, without requiring
technical modifications to their code.



To conclude, we believe that our bridgeOS middleware, will
be beneficial for cloud robotics and useful for extending robot
functionalities, permitting newer applications and others to
finally become viable.

Future Work
During the completion of this work, we identified some next
steps, worthy of study, that could be undertaken as a continua-
tion of the work we initiated via this middleware.

Due to the architecture of ROS, a loss of connection with the
ROS master, will most likely force improperly designed nodes
to shutdown. So even though our takeover mechanism is able
to restore Skills, some local components will still have to be
restarted. A solution would be to replicate the ROS master
across both sides and have the Robot Controller further cement
its role as a network bridge between both robots and cloud
networks, mirroring topics that are needed on both sides and
effectively acting as a proxy. This brings an additional level of
complexity and redundancy, with benefits and disadvantages,
that certainly need to be analyzed. For instance, there would
be no disruption of ROS-based functionalities during loss of
connectivity, components interacting only within the cloud
boundary would avoid going through the Skill Router first.
Thus, increasing the black box aspect and blind integration
of existing functionalities as Skills. On the other hand, it
could degrade performance due to redundant connections and
mapping.

Offloading mechanisms are currently applied on a per com-
ponent basis, however a Skill-level decision module could
instead be implemented. It would require much larger quan-
tities of real data, which is the argument behind our current
selected. There are also some challenges in constructing a
generic, scalable and sophisticated architecture, that remains
versatile enough. In our opinion, a single decision module per
robot would be to broad and lose the ability to adapt to specific
needs of Skills. Therefore, the Robot Controller is better let
off solely with the resource allocation aspect.

A final welcoming idea, is the creation of Developer Tools to
help generate bridgeOS Skills and Docker images for compo-
nents. For components using only specific technologies, such
as elementary ROS nodes, NodeJS or Python applications,
and so on, can be fused directly into the official base images
provided for those technologies and programming language,
without the need for further customization. Backend Tools for
bridgeOS, enabling automatic generation of Skill configura-
tions based on container analysis and ROS packages retrieval
would also be interesting additions.
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