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Abstract

Function-as-a-Service (FaaS) is a cloud computing model that allows developers to build and deploy

functions without having to worry about the underlying infrastructure. Current challenges such as cold

start delay are still being actively studied, which is seen as a delay in setting up the environment where

functions are executed, and one of the most significant performance issues. This causes great delays

of latency and reduced quality of service to the customer of this model. It is still difficult for users to

allocate the right resources, namely CPU and memory, due to the variety of function types, dependen-

cies, and input sizes. Resource allocation errors lead to either under or over-provisioning of functions,

which results in persistently low resource usage and significant performance degradation. This thesis

presents a novel approach to optimizing the performance of FaaS systems using a utility function that

takes into account customer entries. This utility function uses feedback from customers, in the form of

preferences and pricing goals, to determine the relative importance of different functions to the overall

system. This information is then incorporated into the scheduling process, ensuring that the most cus-

tomer desired functions receive the necessary resources to perform optimally. This work presents an

architecture to successfully implement the new approach into a scheduler in Apache OpenWhisk that

uses a utility function that receives customer entries to better determine resource allocation. We also

present the evaluation methodology to assess the implementation and analysis of the overall approach

performance.
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Resumo

Função como um serviço (FaaS) é um modelo de computação na núvem que permite construir e instalar

funções sem preocupações sobre a infraestrutura subjacente. Os desafios atuais tais como o atraso no

arranque a frio ainda estão em estudo. Este atraso correspode ao tempo gasto para montar o ambiente

de execução da função a ser invocada e corresponde a um dos maiores problemas de desempenho. A

grande latência traduz-se numa reduzida qualidade de serviço para o cliente deste tipo de modelos. É

ainda difı́cil reservar antecipadamente os recursos necessário à execução da função, nomeadamente

memória e CPU, devido à enorme diversidade de tipos de funções, suas dependências e quantidade

de dados de entrada. Imprecisões na reserva de recursos conduzem a que os recursos disponı́veis

sejam insuficientes ou em excesso, resultando numa subutilização dos recursos e degradação de de-

sempenho. Esta tese apresenta uma nova abordagem para melhorar o desempenho de sistemas FaaS

utilizando funções utilitárias que consideram a dimensão dos dados de entrada. Estas funções utilitárias

utilizam informação dos clientes, sob a forma de preferências e objetivos de custo, para determinar a

importância relativa das diferentes funções no desempenho global do sistema. Esta informação é in-

corporada no processo de escalonamento procurando que a maioria das funções do cliente receba

os recursos adequados a um desempenho ótimo. Este trabalho apresenta uma arquitetura que per-

mite realizar a nova abordagem no escalonamento realizado pelo Apache OpenWhisk que usa funções

utilitárias que determinam a melhor reserva de recursos considerando os dados de entrada especı́ficos

do cliente. Apresenta-se, igualmente, uma metodologia para a avaliação da realização proposta e a

análise do seu desempenho global.
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Edge computing [1], a development of cloud computing, has benefited from the cheaper cost and

improved energy efficiency of lower-end computation and storage equipment that are common at the

internet’s outer edges. As a result, the edge of the internet is now richer and loaded with numerous

resources that are yet mostly untapped.

Although users are initially willing to contribute, the sustainability of these community edge clouds

depends on the users’ access to interesting, relevant services, which are frequently deployed as vir-

tualized containers, and their ability to get something in return (incentives) for letting others use their

hardware [2].

At the same time, more organized and elastic applications, with reduced latency and better resource

use, are made possible by serverless computing and the Function-as-a-Service model (also know as

FaaS) [3].

1.1 Motivation

Current implementations of the Function-as-a-Service architecture such as Amazon AWS and Mi-

crosoft Azure focus deeply on the optimization of systems resources and performance while paying little

attention to the individual desires of each customer.

Current scheduling mechanisms [4,5] attempt to maximize available resources for the least cost, be

that cost resource consumption or execution time. Customers tend to wish for execution times to be as

low as possible, however, this is in general terms as not all customers are the same when it comes to

urgency. One customer might just be requesting a project to be done by the end of the day and has little

interest in when it is done in a few minutes or an hour, while another customer might need a request to be

done as soon as possible; this information can be leveraged by providers, by employing fewer resources

when they are scarce, while reducing the price charged to users [6]. We propose an optimization to

the scheduling mechanism in FaaS that will take into account these customer differences in priority as

well as provide monetary profits for the provider using our proposal by adjusting the price of the service

depending on the priority desired by the customer. This implies that a customer using our system will be

provided a few additional options, depending on the server’s state, when attempting to request such as

monetary discounts for slower execution times or extra monetary costs for his request to be completed

promptly. The latter is presented in case the system is saturated and unable to confidently complete

customer requests in the initially expected time frame.

While scheduling mechanisms are crucial when resources are limited, we also propose using these

to maximize customers’ quality of service when the system is not yet saturated (has an abundance of

resources available). To achieve this, we propose a scheduling optimization that uses more resources

than necessary, when the system has an abundance of resources, to generate faster execution on

3



repeated requests from a user. More resources than necessary are allocated, however, this comes at

a price. Given this, to complement this optimization, we propose a corresponding pricing adjustment

for the new total allocated resources. This allows the provider to still be able to offer a fair price to his

customers.

We propose a scheduling optimization in the Function-as-a-Service model that receives input from

the customer to assist its execution for a more intelligent and focused quality of service.

1.2 Contributions

To accomplish our desired Function-as-a-Service quality of service described above, we set out to

do the following objectives:

1. Examine the most cutting-edge FaaS technology in use today to comprehend their key challenges,

scheduling integrations, and customer-facing pricing models.

2. Survey current state-of-the-art open-source FaaS technology to determine the best-suited envi-

ronment to develop and present our proposed scheduler.

3. Design an architecture on the desired open-source FaaS technology that adheres to the require-

ments set forth by our vision.

4. Develop and implement our proposed architecture in Apache OpenWhisk.

5. Create a structured evaluation methodology to easily asses if our future implementation fulfills our

desired requirements.

These objectives are explored and described in the remaining sections of this work.

1.3 Document organization

This document is organized in two main sections, Section 2 and Section 3, followed by an evaluation

methodology used and a conclusion, Section 5 and Section 6 respectively. Section 2 is dedicated to the

related work in this field, primarily focused on Function-as-a-Service architecture. Following the related

work is Section 3 where this document presents our proposed architecture deployed in Apache Open-

whisk outlining and explaining how we wish to implement our desired scheduling extension adhering to

the requirements presented in Section 1.1.
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This section will discuss the most cutting-edge techniques and technologies currently being used in

this field and it is subdivided into three parts: Section 2.1 where a brief introduction to the Function-as-a-

Service architecture as well as presenting its benefits, use cases, and challenges; Section 2.2 presents

current scheduling and pricing mechanisms used throughout cloud computing; finally Section 2.3 cur-

rently used and developing Function-as-a-Service technologies that this work considered and studied.

2.1 Function as a Service

In terms of architectural layers of Cloud Computing, the Cloud is typically considered as numerous

Cloud Services [2]. In essence, it relates to who will oversee these Services’ many layers, these can be

classified as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service

(SaaS), Backend-as-a-Service (BaaS) and finally Function-as-a-Service (FaaS) the main cloud service

used of this work.

2.1.1 Other Cloud Services and FaaS

IaaS in the context of cloud computing refers to the management of the hardware and virtualization

layer, which includes servers, storage, and networking, by the cloud provider. Applications developed

over infrastructure built on top of IaaS are managed by the end user, including virtual instances, oper-

ating systems, applications, availability, and scalability. This service is the closest to the user, providing

the most amount of control over the system to the user as well as having the lowest transparency [2].

PaaS consists in providing a Service where the cloud provider can offer a platform that controls the

OS, availability, scalability, and virtual instances of instances built on top of IaaS. A provided runtime

environment can be used if there is no specific runtime environment requirements [2].

SaaS provides complete abstraction of the software and backend. These are full programs that don’t

require any further effort from the user and may be utilized remotely. However, the restriction is that the

organization has no control over the application [7].

BaaS and FaaS are now two additional service models. Both are thought to be serverless, as such

BaaS and FaaS are frequently used in conjunction because they share operational characteristics (such

as no resource management) [8, 9]. Applications that heavily rely on third-party (cloud-hosted) apps

and services to manage the server-side logic and state are referred to as BaaS applications. The client

then houses the bulk of the business logic, such applications are frequently referred to as “rich client”

applications, including single page applications and mobile apps. Google FireBase is a prime example

of BaaS. It is a complete mobile development platform that is hosted in the cloud and has direct client

communication capabilities. As a result, there is no server in the way, and all resource and management

concerns are handled by the database system [7].
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FaaS offers the ability to deploy code (also known as functions) in the cloud and it’s the greatest

difference from BaaS. As a result, the developer can utilize his own programming without having to

handle the hardware itself. An operator of a cloud service platform does not control everything, because

the abstraction with FaaS is greater than with PaaS. The provider also manages the data as FaaS must

come before PaaS (e.g., the state of the server). Scalability is another significant distinction between

FaaS and PaaS. While FaaS scaling is completely transparent, PaaS requires the organization to still

consider how to scale. Only the specific functions of the application are now deployed on FaaS [7].

When FaaS is invoked, the request is first authenticated using an authentication method, and FaaS is

only triggered when the Invoker is given permission to do so. The code logic provided while deploying the

FaaS function is used to activate FaaS for execution. Function instances are terminated once function

execution is finished. By storing the state during the execution phase in consistent state resources such

as Not Only SQL (NoSQL) databases, parameter stores, etc., the state of the FaaS function can be

preserved by external means. This defines the FaaS lifecycle and it provides security as well as ease of

use [2].

FaaS is our best prospect for this work due to the user only needing to worry himself with the business

logic presented to him as shown in Table 2.1.

Cloud Business App Data Runtime/ Virtualization/ Examples
Services Logic OS Storage

On-premise User User User User User Home
Computer

IaaS User User User User Provider Apache
Cloudstack

PaaS User User User Provider Provider AWS Elastic
Beanstalk

BaaS User User Provider Provider Provider Google
Firebase

FaaS User Provider Provider Provider Provider Apache
OpenWhisk

SaaS Provider Provider Provider Provider Provider Google
Workspace

Table 2.1: Cloud services and their levels of user control.

2.1.2 FaaS benefits

FaaS is a fairly straightforward implementation technique for micro-distributed APIs. The user only

pays for the period of time that the FaaS was in operation [2].

The application’s scalability and availability are not the user’s concerns. FaaS is naturally highly

available and automatically scalable. This greatly simplifies design architecture. FaaS can scale from a

few requests per day to thousands of requests per second, automatically depending on the demand that
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is necessary on the API. FaaS is extremely available by nature; even if one event fails, another one will

be ready to fulfill the request in a short period of time. Since the FaaS function is only accessible via API

to end users, it separates internal cloud resources from them and increases security because backend

servers are hidden from view outside of the FaaS function [2].

2.1.3 Use Cases

FaaS can be used for a variety of use cases from Infrastructural where it is used as a middleman to

achieve scalability and availability on top of an existing system such as in edge computing. However it

can also just as well be used as an application where it can offer a easy and scalable way to resolve

requests such as image and video manipulation for more direct results but in machine learning as well

for more controlled results.

A – Infrastructural Low latency is frequently needed for use cases like monitoring people’s vital

signs during emergencies or in daily life [10]. To save lives in the event of a big disaster, paramedic

assistance must arrive quickly. User-wearable sensors can offer vital details about a patient’s health and

assist in establishing a priority list for patient monitoring. Support for low latency is one of the primary

forces for edge computing. In this situation, a serverless computing framework can handle server,

network, load balancing, and scaling operational tasks [1].

There are a number of open-source FaaS frameworks that have been suggested to enable server-

less computing on private infrastructure and prevent vendor lock-in. Recent studies have assessed the

performance and utility of a few open source serverless frameworks [11, 12], but these studies do not

take into account the limitations imposed by an edge-based environment [3].

FaaS is a scalable and flexible event-based programming model so it’s a great fit for IoT events

and data processing [3]. Consider as an example a connected switch and printer. When the button is

pressed it sends an event to a function in the cloud which in turn sends a command to the printer to

turn itself on. The three components are easily connected and only the actual function code would need

to be provided. Thanks to managed FaaS, this approach also scales from two devices to thousands of

devices without any additional configuration [3].

One FaaS solution made specifically for edge situations is tinyFaaS. Edge nodes can be single-

board computers with low power or entire data centers, depending on their capabilities. FaaS platforms

primarily focus on these larger data centers or clusters of servers, however, tinyFaaS also take into

account the more prevalent limited edge nodes, such as single servers or single-board computers. Edge

nodes are far more cost-effective in the huge quantities needed for edge computing, even though they

have much less computational capacity than a full data center and are sufficient for many use cases [13].

These low-power edge nodes differ from cloud apps, which must scale across multiple cloud computers,
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in part because they are monolithic [3].

While scalability and fault tolerance are constrained if a large number of devices approach edge for

computation offloading requests, node management is drastically simplified, and platform management

overhead is kept to a minimum. One of the key reasons to process data at the edge rather than the

cloud is latency, which is a crucial component of the IoT. Alternative messaging protocols like MQTT or

CoAP, which tend to be much more resource-efficient, can help to reduce latency [14,15]. An edge FaaS

platform should therefore natively handle such IoT messaging protocols while being able to do without

the need for specialized triggers that are specific to cloud applications [3].

B – Applications Basic image and video processing that doesn’t require a state to be saved for

subsequent calls is a good fit for FaaS. Basic image and video operations like resizing, transformation,

cropping, image to text conversion, and thumbnail creation can be carried out [2]. Due to its frequent

use and ease of data analysis, this case study is frequently used for performance evaluations. For

example, in [16] by managing an image resizing case study and in [17] where they considered a more

complex image processing pipeline consisting of three functions in the final experiment. The first method

generates a thumbnail version of an image by downloading it from its URL; the second function mirrors

the image, and the third function converts the image to grayscale.

Application development is quick and reliable when using a distributed architecture based on mi-

croservices that can use multiple cutting-edge programming languages simultaneously for different

modules. With the aid of FaaS, it is possible to create and distribute websites and applications without

using backend servers for processing. Due to the built-in feature of autoscaling and the high availability

of FaaS, applications and APIs can be scaled automatically. The developer should only concentrate on

endpoint integration and processing logic [2].

The benefits of FaaS have triggered a growing interest in how to use it in Machine learning (ML).

Recently, research from both academia and industrial communities has focused their attention on the

FaaS model for those applications. For instance, in the study [18] it was found that deep neural networks

could benefit from the FaaS paradigm since users are allowed to decompose complex model training into

multiple functions without managing the server. A novel FaaS architecture for the deployment of neural

networks is discussed in [19]. Furthermore, various frameworks have been proposed to deploy machine

learning in FaaS environments. For example, SIREN is an asynchronous distributed machine learning

framework based on FaaS. AWS also provided one example of ML training in AWS Lambda using

SageMaker [20] and AutoGluon [21]. SageMaker is a fully managed service that provides the necessary

tools to create, train, and deploy ML models. AutoGluon is an open-source library that automates ML

tasks [22].

A lot of efforts have been done to identify the possible ways to deploy FaaS for applications where
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scientific computing is crucial. Existing studies, such as [23] demonstrated the feasibility of using

the FaaS model for scientific and high-performance computing by presenting various prototypes and

their respective measurements. In [23], the authors proposed a high-performance FaaS platform that

enables the execution of scientific applications. A prototype for executing the scientific workflows in FaaS

environments has been developed and evaluated by [24].

Without the need for intricate cluster-based systems, FaaS can also be activated from a variety of

events generated, such as system logs, data events, scalability events, etc. Event streaming pipeline,

queue, and stores can all be used as inputs for monitoring systems [2]. Table 2.2 shows the use cases

and their various studies.

Use cases Studies
Edge computing [11–13]

Image and Video Manipulation [16,17]
Multi-language Applications [2]

Auto-scaling highly available Websites and APIs [2]
Machine Learning [18,19,22]

Scientific Computing [23,24]
Event streaming [2,24]

Table 2.2: Use cases and theirs various studies.

2.1.4 FaaS challenges

A – Cold start delay The cold start delay, which is seen as a delay in setting up the environment in

which functions are executed, is one of the most significant FaaS performance issues [25].

Popular systems most frequently use a pool of warm containers, reuse the containers, and regularly

call routines to reduce cold start delay. However, these techniques squander resources like memory,

raise costs, and lack knowledge of function invocation trends over time. In other words, while these

solutions reduce cold start delay through fixed processes, they are not appropriate for environments

with dynamic cloud architecture [26].

Despite the fact that serverless computing reduces some of the major IoT difficulties, these conver-

gent technologies still have unique limits such as cold start time that must be addressed holistically. In

the work [26], the authors proposed an intelligent method that chooses the optimum strategy for main-

taining the containers’ warmth in accordance with the function invocations over time in order to lessen

cold start delay and take resource usage into consideration.

While in the work [27], the authors assume that the FaaS platform is a “black box” and use process

knowledge to reduce the number of cold starts from a developer perspective. They suggested three

methods to lessen the number of cold starts based on indicating the naive approach, the extended
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approach, and ultimately the global approach, as well as a lightweight middleware that can be deployed

alongside the functions for this purpose.

A straightforward illustration of provider-side cold start optimization is OpenFaaS. For each deployed

function, it always maintains a single warm container, according to [28]. However, this only takes into

account situations where the increase in arrival rate is smaller than one divided by the typical cold start

latency. Cold starts continue for every additional concurrent request [27].

Likewise, Apache OpenWhisk [29] uses so-called “stem cells” which are running containers that use

a base image without the function code and its libraries. This reduces the cold start time as containers

are already “semi-ready”.

An alternative FaaS platform called SAND combines the functionality of a single application into a

single container, preventing cold start buildup. SAND does not require our method, but as a research

prototype, it is not yet suitable for production, therefore we must still deal with today’s FaaS services [27].

B – Resource Allocation Due to a variety of function types, dependencies, and input sizes, it is still

challenging for users to assign the proper resources, namely CPU and memory. Resource allocation

errors cause functions to be either under or over-provisioned, which results in persistently low resource

use which generates considerable performance degradation.

Resource managers (RM) for FaaS platforms like Freyr [30] and SmartHarvest [31] optimize resource

efficiency by dynamically harvesting free resources from over-provisioned operations and shifting them

to under-provisioned services. Spock [32] suggests a cost and SLO-improving FaaS-based Virtual Ma-

chine (VM) scaling architecture. The works presented in [5] and [4] both aim to automatically change

CPU resources when detecting performance degradation during function executions for FaaS resource

management, which helps address the problem of resource over-provisioning.

The CPU resources allotted to functions by existing FaaS systems are typically distributed in pro-

portion to the user-configured memory allocation. Apache OpenWhisk uses the same approach. In

particular, the shares option of a newly constructed container for a certain action is set in proportion

to the memory value defined for the activity. By doing this, the OS-level scheduler will, in the event of

contention, offer actions with bigger memory allocations a higher share of CPU time [17].

C – Security Applications using FaaS raise several security challenges. Applications are vulnerable

to a number of security flaws since they are integrated with database services, and back-end cloud ser-

vices, and are connected through networks and events. For instance, event-data injection occurs when

an application receives an unauthorized and untrusted data entry and executes it without checking it

first. This kind of injection can target the container’s stored functions’ source code and other confidential

information. Denial of service or Denial-of-Wallet attacks can be launched by an attacker due to insecure

deployment setup and flawed access control. In order to increase costs or get unauthorized access to
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function resources, these attacks take the use of functions having lengthy timeouts. Poisoning the good

attacks, which frequently affect libraries and platform code, involves inserting harmful code into a library

that numerous programs rely on [22].

To address some of these issues, there are numerous commercial security solutions available [33,

34]. Aqua [33] is a program that continuously checks container images and function’s code, to make

sure that developers don’t add vulnerabilities in a library, embedded secrets (keys and tokens), or per-

missions. While for instance, Snyk [34] is one of the widely used tools for securing FaaS applications by

identifying, addressing, and monitoring any security flaws in open-source dependencies.

Researchers have also addressed security concerns and put forth several solutions [35,36]. Namely

SecLambda is an extensible security framework that [35] proposes for carrying out complex security

activities to safeguard a FaaS application and ensure control flow integrity, credential protection, and

DoS rate limitation. A workflow-sensitive authorization approach for FaaS apps was created by the

authors and published in [36]. It proactively examines the permissions of all workflow functions for

external requests. This minimizes the application’s attack surface by enabling the program to quickly

reject illegitimate requests. Table 2.3 summarizes the FaaS challenges and their various studies.

FaaS challenges Studies
Cold start delay [26–28,37–39]

Resource allocation [4,5,30–32]
Security concerns [22,35,36]

Table 2.3: FaaS challenges and theirs various studies.

2.2 Utility

There is a constant conflict between the provider and the customer throughout the entire product

industry. The supplier must work to increase revenue while still enhancing its product for the benefit of

the customer. There has been a lot of research done on cloud computing’s optimization [17,40,41], but

this rarely or never considers the potential revenue that these optimizations can provide [42]. We present

both sides of the conflict in this section. When it comes to scheduling, the provider can use optimization

techniques to improve the customer experience with little to no thought to the financial implications. And

pricing is the most recent development in cloud computing pricing methodologies that aim to maximize

revenue.
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2.2.1 Scheduling

In distributed systems, scheduling is frequently studied to establish a connection between requests

and available resources. For clusters [43], clouds [44], and cloud-edge (Fog) systems [45, 46], nu-

merous solutions have been put forth. Load balancing [40], maximizing resource use [47] and energy

efficiency [48], minimizing execution costs [49], and maximizing performance are the typical objectives

of scheduling [50]. In edge computing, scheduling is necessary when services must be successfully

offloaded. Offers scheduling innovations for edge computing that can be used in FaaS systems for this

purpose [41]. They provide many approaches that present a fair priority-based scheduling system by

taking into account the client and each request.

In the work presented in [17], they offer a cutting-edge scheduling system for FaaS that is QoS-Aware

and implemented in Apache OpenWhisk. By adding a Scheduler component, which takes over from the

Controller’s load balancing function and allows more scheduling policies, they expanded Apache Open-

Whisk. In this new design, incoming requests are routed through the Scheduler rather than the Con-

troller in order to be immediately scheduled to the Invokers. This Java-based scheduler, which serves

as middleware, is a meaningful inspirational factor in our work. Arrivals and Completions are the two

basic events that the Consumer receives. Upon receiving fresh requests, the Controller publishes arrival

events, which cause the related activation to enter the Scheduler buffer. In contrast, when activation pro-

cessing is finished, Invokers publish completion events. The Controller in the standard version of Apache

OpenWhisk uses this data, and their Scheduler also makes use of it to monitor the workload of the In-

voker. While many of the objectives we hope to attain are illustrated in this study, pricing approaches

are missing.

2.2.2 Pricing

The viability of cloud ecosystems is fundamentally dependent on service pricing [42]. Given the

size of cloud computing environments, it is essential to offer an energy-conscious cloud architecture in

addition to a business strategy with sensible resource pricing and allocation [51]. The bulk of studies

places a strong emphasis on lowering overall energy use while paying little attention to other aspects

like service pricing and proper cloud service billing [42].

One of the most crucial elements that could draw clients in is the pricing strategy. They consistently

seek the best quality of service at the lowest cost. In contrast, cloud service providers strive to increase

income while reducing expenses by implementing more modern technologies [52]. For the cloud ser-

vices they require, different users ask for different quality service classes. Both the requested services

and their quality are subject to change over time. Because it lacks the necessary capability to respond

to the dynamic changes in service demands and their quality, the fixed price strategy, although simple, is
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not a fair technique for both consumers and suppliers. Customers prefer to pay for what they have really

used, and service providers prefer to publish a fair pricing structure so that they can bill their clients fairly

and be competitive [42].

There are three basic difficulties with pricing models in cloud computing. Users of cloud services

are often unable to understand billing events since they take place within the cloud architecture. To do

this, a thorough taxonomy that takes into account all significant aspects of pricing schemes is required.

The discrepancy between resource utilization and billing time is another issue. Bills are issued far

after the use of the resource or service because the billing system is not synchronized with resource

consumption. By reducing the processing time, using a suitable pricing model can also reduce the gap

that was previously noted [42].

Not least of all, cloud service providers frequently combine or aggregate various events into a single

line of code by combining the code of various requests into a single line to be executed. It speeds up the

delivery of consumer bills and lowers the computing complexity for cloud providers, but accuracy and

fine-grained information in the system are sacrificed. While everyone can agree on a clear fair pricing

strategy that both service providers and customers are happy with, fair pricing is a subjective idea [53].

A – Compounded Moore’s Law and beginning expenditures In [54] the primary focus was ensur-

ing that cloud service users received a high level of quality of service by establishing two distinct price

restrictions. The upper bound is determined by the compounded Moore’s law, a modified form of the

original Moore’s law, while the lower bound serves to cover the beginning expenditures. The variables

that make up the initial costs are taken for granted in this analysis. Additionally, neither the cost calcula-

tion method nor a model to distinguish between the various parameter categories is disclosed [42].

B – Spot Instance The Spot Instance approach, which was extensively discussed in [55], is one of

the realistic attempts to apply dynamic pricing. The actual issues with the application of this strategy are

explained in this paper. The considerable price fluctuation of this pricing scheme is one of its drawbacks.

Additionally, clients are unable to relate to the many fluctuations that occur in the price and quality of

the given services since the pricing mechanism is not transparent to them. Last but not least, because

applications may abruptly end in Spot Instances, this approach is unsuitable for real-time, interactive, or

applications that require a stable level of quality of service and response time.

C – Price-at-risk The major goal of the work [56] was to address pricing uncertainty for on-demand

computing services by providing a Price-At-Risk technique. All of the dynamic conditions described

above are taken into account by Price-at-risk. The key issues for which the Price-At-Risk methodology

attempts to identify a workable solution are difficulties with demand estimation accuracy and demand

price elasticity. Machine learning can be used to tailor pertinent parameters based on the application
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and the type of service to address this problem. The problem of coarse-grained granularity by using

general formulas could be resolved, and the precision could be improved, by using machine learning

algorithms and other cutting-edge technologies [42].

D – Customer classification and resource consumption status In economics, the term “price dis-

crimination” is used to refer to varying prices [57]. To design advanced reservation pricing in Computer

Grids, [58] relies on two key pillars: revenue optimization [59] and price discrimination. To assess

income performance based on the aforementioned user types, the authors divide users into premium,

business, and budget groups. Meanwhile, resource utilization can be classified as peak, off-peak, or

saver. Two crucial cloud factors — customer classification and resource consumption status — were

carefully taken into account in this study. The primary shortcoming of this research is the coarse gran-

ularity of variable rates, as establishing a better pricing strategy for every person requires more precise

application parameters as well as service specifications. Table 2.4 summarizes the characteristics of the

various pricing mechanism highlighting their advantages and drawbacks.

Study Pricing method Advantages Drawbacks
[54] Compounded Moore’s law High degree Initial cost

and beginning expenditures of QoS taken for granted
[58] Customer classification and Income performance Coarse granularity

resource consumption status based on user types of variable rates
[55] Spot Instance Realistic Considerable

dynamic pricing price fluctuation
[56] Price-At-Risk Price elasticity Lack of accuracy

Table 2.4: Characteristics of the various pricing mechanisms.

For us to create a comprehensive and appropriate FaaS Scheduling that maximizes revenue we

must take into account the interests of both the developer (with financial offerings to keep supplying and

improving the service) and as well as the user/consumer (with the use the service for his own needs),

and not simply the performance of the cloud service.

2.3 Relevant and Related FaaS Systems

One benefit of cloud computing is the vast array of options from which a user can select the one that

best suits his needs. This also holds for all developers worldwide, enabling them to support and expand

current solutions or even develop new ones. Even though this idea of expanding already existing work

occurs much more frequently in open-source projects, it is still essential to have a thorough understand-

ing of what private businesses are providing to foster innovation within the cloud computing industry. We

outline the most popular FaaS implementation options in this section, along with open-source options
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that we as developers can tailor.

2.3.1 Amazon AWS

Lambda Service [2], a FaaS implementation in AWS, can scale up automatically as needed and can

handle from small numbers of requests per day up to thousands per second.

AWS Lambda offers the runtimes for Java Script, Python, Ruby, Java, Go, and .Net as well as other

programming languages as a platform for execution.

Support for custom library uploads is now offered for AWS lambda deployment. Numerous AWS

services, monitoring events on AWS CloudWatch, and URLs can all be used to trigger Lambda.

2.3.2 Google Cloud

In Google Cloud FaaS, a feature known as “Cloud Function” is included. This feature can scale up

automatically as necessary and can handle anywhere between a small number of daily requests and

millions of daily demands.

Java Script, Python, and Go Runtime are offered by Cloud Function as Platform.

Support for custom library uploads is not offered for Cloud Function deployment. Cloud Function can

be called manually, or it can be triggered by HTTP, Cloud Storage, or Cloud Pub/Sub events [2].

2.3.3 Microsoft Azure

The “Azure” function implementation in Microsoft Azure Cloud FaaS has the ability to scale up auto-

matically when enabled.

As platform options, Azure Function offers PHP, Java, Java Script, PowerShell, C Sharp, and Python

Runtime. Support for uploading custom libraries is offered for Azure Function deployment.

With the necessary IAM policies, Azure Function can use auxiliary services like Blob Storage, Cos-

mos DBs, EventGrid, Event Hub, HTTP, webhook, IoT Hub, Graph, Notification, Queue, Table Storage,

Timer, etc [2].

2.3.4 OpenStack-Cloud

Cloud FaaS is implemented in OpenStack using a variety of platforms, including “Apache Whisk”,

“Fission”, “IronFunctions”, “Fn Project”, “OpenLambda”, “Kuberless”, and “OpenFaaS.”

Underlying FaaS is implemented in OpenStack using services from Docker and Kubernetes. By de-

veloping the appropriate docker image, execution language support can be added as needed. Similarly,

RAM and core requirements can be customized according to the docker image implementation for FaaS.
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As a result, OpenStack Cloud offers a lot of customization options for microservices-based architecture.

FaaS workloads and microservices application containers are typically managed in OpenStack FaaS im-

plementations using Kubernetes. This makes it possible to implement the FaaS paradigm with precise

control over memory and processing power.

The benefit of implementing FaaS using OpenStack technologies is that it can be more hardware

specific by using the Ironic service. Additionally, specific memory and processing power requirements

can be configured when implementing the microservice distributed service architecture. However, public

cloud users have restrictions when taking these points into account [2]. These open source technologies

are likewise open source, making it simple to access the source code and giving developers everywhere

in the globe the tools they need to contribute (including us).

2.3.5 Kubeless

Kubeless is a FaaS framework that is native to Kubernetes. Functions, triggers, and runtime are the

three primitives on which the Kubeless programming paradigm is built. The code that will be executed

is represented by a function, and an event source is a trigger. Depending on the type of event source, a

trigger may be connected to a single function or a collection of related functions.

This platform’s key element is a controller, which constantly monitors for changes to function objects

and takes the required actions, such as creating or deleting a new function object, as needed. The

runtime image used to deploy a function may be explicitly supplied by the user, the image artifact may

be generated on the fly, or the function code may be delivered into the associated Kubernetes pod using

a pre-built image [11].

2.3.6 OpenFaaS

The fundamental building block of the OpenFaaS programming paradigm is the function. A handler

and a function need to be provided by the developer. An API gateway is this platform’s primary element.

The API gateway interacts with the orchestration engine to offer scaling, metrics collection, and access

to the functions (i.e., Kubernetes). Each function is packaged into a Docker container using a command

line interface. Every container has a watchdog, which is a webserver that serves as an entry point

and calls the function. The Kubernetes Horizontal Pod Scaler (HPA) or the AlertManager component

(coupled with Prometheus) are used by OpenFaaS to allow the zero-scale capability where idle functions

can be configured to scale down when they haven’t received any requests for a period of time [11].
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2.3.7 Knative

The Istio and Kubernetes platforms, which offer application (container-based) runtime and sophisti-

cated network routing, serve as the foundation for the Knative framework. As a result, Knative can add

CRDs to the Kubernetes platform to support higher levels of abstraction.

Building, Serving, and Eventing are this platform’s three key pillars. The Build component is a plug-

gable paradigm for building apps (in containers) from source code and is implemented using a Kuber-

netes CRD. Based on the requests it receives, this component offers scale-to-zero support and leverages

Istio for network routing. The essential primitives for consuming and creating events are provided by the

eventing component. The implementation of higher-level Application Programming Interface (API) con-

cepts, CLIs, tooling, etc. is left to the discretion of particular vendors since Knative is not a full-featured

FaaS platform [11].

2.3.8 Apache OpenWhisk

Actions, Triggers, and Rules are the three primitives on which the Apache OpenWhisk programming

paradigm is built. A trigger is a group of events that can be caused by a variety of sources, whereas

an action is a stateless function that runs code. A trigger and an action are connected by a rule. A

sequence is a lengthier processing pipeline that combines multiple actions from various languages.

The orchestration of the dataflow between functions and the language selection is separated by the

composition process’ polyglot character [11].

This platform’s core building blocks are made up of an NGINX webserver, a controller, an Apache

Kafka component, an Invoker component, and a CouchDB database for storing user credentials, action

information, namespaces, and definitions of actions, triggers, and rules.

The entire system uses the Nginx webserver as a reverse proxy. Each request is authenticated,

authorized, and routed by the controller component before control is transferred to the following compo-

nent. The connection between the controller and Invokers is controlled by the Kafka component. Code

from the CouchDB component is copied by the Invoker component and injected into a Docker container.

Additionally, this component keeps track of the active Docker containers where actions are running. The

outcome of a particular action is saved in the CouchDB component for retrieval once the execution of

that action is complete.

2.3.9 Kubernetes

A flexible open-source platform called Kubernetes is used to orchestrate and manage containerized

applications. Applications are executed in a cluster using pods, deployments, and services by Kuber-

netes. In Kubernetes, pods are the smallest deployable pieces of an application. They contain either
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a single container or a collection of containers that share an IP address and are running in the same

execution environment. One of the Kubernetes objects used to specify how to operate an application

container as a pod and regulate the replica count is called a deployment. Services are abstractions

that specify access rules and maintain a set of pods in the cluster. A name that is associated with

one or more pods can be used to refer to any service established in the cluster. The CoreDNS, DNS

server for Kubernetes, resolves the service names. Any DNS request is answered with an IP address by

the service discovery tool CoreDNS. It monitors service events and makes any necessary DNS record

modifications. When a user creates, modifies, or deletes a service or any of its associated pods, these

events are triggered.

For the execution of FaaS applications, Kubernetes provides a number of functions, including auto-

scaling, scheduling, load balancing, health checking, and self-healing of containers. One of Kubernetes’

key automation features, auto-scaling, helps organizations adapt swiftly to demand spikes. The Hori-

zontal Pod Autoscaler (HPA) is one of the well-known scaling techniques. In accordance with the current

resource usage, such as CPU or memory utilization, the HPA is used to automatically scale up and down

the number of pods associated with a single application.

The Kube-scheduler uses scheduling as a mechanism to choose the best node for pod placement.

When the Kube-scheduler has a pod to deploy, it ensures that the allocated node satisfies all of the

pod’s unique needs, including those for CPU and memory resources. It begins by selecting the relevant

nodes utilizing a set of filters in order to accomplish that. For instance, it makes use of affinity and

anti-affinity rules, which are defined by labels and annotations that put restrictions on where pods can

be placed. Second, the Kube-scheduler scores every node, giving nodes with higher affinity a higher

score and nodes with higher anti-affinity a lower score. The node with the greatest score receives the

pod last. The technique of effectively distributing the traffic among various pods of a particular service

is known as load balancing. The Kube-proxy component routes the traffic that is sent to a Kubernetes

service. By using iptables rules to build a virtual IP for a service, the Kube-proxy by default employs the

random selection mode, which directs incoming requests to a service’s randomly selected pod. The most

adaptable method for exposing services to the outside world is Ingress, which functions as a controller

in a dedicated pod and offers routing rules to govern access to the Kubernetes services.

Kubelet continuously checks the health of pods using a straightforward technique to learn more about

their current situation. The readiness probes may form the basis of the health check. The health and

readiness of the pods are checked using a readiness probe before they may begin accepting traffic.

When every container inside a pod is prepared, the pod is deemed ready. A pod gets removed from

service load balancers when it is not prepared. The readiness probe can be implemented in three

different ways: by an HTTP request, a TCP socket in which the IP and port of the container are checked,

and through a user-defined command. Kubernetes uses self-healing, an automated recovery technique,
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to make sure the cluster is actually in a healthy state. It includes automatic insertion, automatic restart,

and automatic replication. For instance, if a pod fails, Kubernetes restarts a new one. Similarly, if a

node goes down, Kubernetes immediately reschedules all the pods from the downed node onto other

healthy nodes (which may take up to 5 minutes). Many open-source FaaS frameworks shift the duty of

container orchestration functions to Kubernetes and concentrate solely on FaaS features to benefit from

the robust Kubernetes infrastructure.
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In this Chapter, we first present an overview of Apache Openwhisk’s systems, more specifically its

scheduling methodology, followed by our proposed scheduling extension which is subdivided into two

components: during an under-provisioned server state and an over-provisioned server state.

3.1 Apache Openwhisk overview

Figure 3.1: Overview of Apache Openwhisk’s default architecture

To create new functions, invoke existing ones, and query the outcomes of invocations, Apache Open-

Whisk exposes a Representational State Transfer (REST) interface built using NGINX. Users initiate

invocations using an interface, which is then transmitted to the Controller. To schedule the function invo-

cation, the Controller chooses an Invoker, which is commonly hosted utilizing virtual machines. Based

on (1) a hashing method and (2) information from the Invokers, such as health, available capacity, and

infrastructure state, the Load Balancer in the Controller schedules functions invocations. After selecting

an Invoker, the Controller delivers the function invocation request to the chosen Invoker via a Kafka-

based distributed message broker. After receiving the request, the Invoker uses a Docker container to
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carry out the function. Functions are commonly referred to as actions within Apache Openwhisk. The

Invoker sends the outcomes to a CouchDB-based Database after the function execution is complete and

notifies the Controller of its completion. The Controller then synchronously or asynchronously returns to

clients the outcomes of the function executions [60].

3.2 Scheduler extension

In our extended version of the Apache Openwhisk architecture, we will add a newly updated sched-

uler with all of our requirements for the pricing utility function as well as an updated Collector to allow

us to extend the capabilities of warm container creation with no additional overhead. Both of these extra

components are shown in Figure 3.2 as the green and blue containers.

Figure 3.2: General architecture with newly added scheduler and collector component
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Firstly the client uses the exposed REST interface built using NGINX to make a request. This request

is then forwarded to the controller that receives all the relevant information from the CouchDB for the

setup of the activation. It then uses that invocation information with the addition of both our new utility

function and the Invoker Pool state to determine the most suited Invoker to schedule the request to. After

sending it to the specific Invoker through Kafka it is executed by the containers within it. The completion

state is given to CouchDB directly by the Invoker. An activation ACK will be sent back to the controller

for it to update the scheduler with additional information for future requests. The enhanced collector will

support more advanced information given by the Invoker and Invoker Pool. After the operation has been

completed the client will receive the output of the action. We will provide a total of 6 combinations for

pricing opportunities, two initial options for the over-provisioned state and three additional ones for the

under-provisioned state. The client will be able to choose a combination of the initial and additional one

for a more customized experience.

3.2.1 Pricing options for the client

The two initial pricing options will be provided: (1) a Basic Version which merely finishes the request

with no additional benefits, or (2) a Premium Version that completes the request with additional Invokers

but the additional resources used for a faster execution of the request will come at a discounted price.

The second option is to use the request to create warm containers for this particular client’s repeated

uses, resulting in future execution times that are quicker. The client will receive all of this information for

transparency’s sake and encourage continued use.

The three additional different pricing augmentations will be provided if the servers are under provi-

sioned meaning some requests may need to wait in line before being executed. (1) Standard priority,

which offers no priority when it comes to scheduling requests but still offers the same cost per execution

time as when the servers are under-provisioned. (2) Urgent priority offers increased request schedul-

ing priority (though not an absolute priority) but at a higher cost for clients who have self-perceived

time-critical actions to be performed. An example of a such client is someone who detected a mistake

in a database and wishes it to be fixed as soon as possible so that further uses of the database not be

compromised. (3) Reduced priority which offers, for a reduced price tag, a lower priority in the system

for clients that have little interest in the execution delay of the operations, for example, a student that is

ahead of schedule for project delivery.

3.3 Introduction to Apache OpenWhisk’s base scheduling system

Openwhisk’s scheduling is subdivided into three main components: the Controller, Kafka, and In-

voker. The primary component of this system is the Controller which is responsible for deciding on
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sending the requests (mainly action executions) to the best Invoker possible.

3.3.1 Controller

Firstly the controller communicates with the CouchDB to verify if the user has privileges to execute

the request. If it does not, the action request is canceled and logged but the information is not registered

for consumption in the load balancer metrics. If the user indeed has privileges to execute such a request

then it utilizes a load-balancing algorithm to determine the best Invoker to send the request to.

At first, for every namespace + action pair a hash is calculated and then an Invoker is picked based

on that hash (hash % numInvokers). The determined index is the so-called home-invoker. This is the

Invoker where the following progression will start the majority of the time. If this Invoker is healthy and

if there is capacity on that Invoker, the request is scheduled for it. If one of these prerequisites is not

true, the index is incremented by a step-size. The step-sizes available are all coprime numbers smaller

than the number of Invokers available (coprime, to minimise collisions while progressing through the

Invokers). The step-size is picked by the same hash calculated above (hash & numStepSizes). The

home-invoker-index is now incremented by the step-size and the checks (healthy + capacity) are done

on the Invoker we land on now. This procedure is repeated until all Invokers have been checked at

which point the overload strategy will be employed, which is to choose a healthy Invoker randomly. In a

steadily running system, that overload means that there is no capacity on any Invoker left to schedule

the current request. If no Invokers are available or if there are no healthy Invokers in the system, the

loadbalancer will return an error stating that no Invokers are available to take any work. Requests are

not queued anywhere in this case. An example:

• availableInvokers: 10 (all healthy)

• hash: 13

• homeInvoker: hash % availableInvokers = 13 % 10 = 3

• stepSizes: 1, 3, 7 (note how 2 and 5 are not part of this because it’s not coprime to 10)

• stepSizeIndex: hash % numStepSizes = 13 % 3 = 1, stepSize = 3

Progression to check the Invokers: 3, 6, 9, 2, 5, 8, 1, 4, 7, 0, done. This heuristic is based on the

assumption that the chance to get a warm container is the best on the home-invoker and degrades the

more steps you make. The hashing makes sure that all load balancers in a cluster will always pick the

same home Invoker and do the same progression for a given action. Invoker health is determined via a

Kafka-based protocol, where each Invoker pings the load balancer every second. If no ping is seen for

a defined amount of time, the Invoker is considered “Offline”. Moreover, results from all activations are
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inspected. If more than 3 out of the last 10 activations contained system errors, the Invoker is considered

“Unhealthy”. If an Invoker is unhealthy, no user workload is sent to it, but test actions are sent by the

load balancer to check if system errors are still happening. If the system-error-threshold-count in the

last 10 activations falls below 3, the Invoker is considered “Healthy” again.

• “Offline”: ping missing for more than 10 seconds.

• “Unhealthy”: 3 system-errors or more in the last 10 activations, pings arriving as usual.

• “Healthy”: less than 3 system-errors in the last 10 activations, pings arriving as usual.

The maximum capacity per Invoker is configured using user-memory, which is the maximum amount

of memory for actions running in parallel on that Invoker. Spare capacity is determined by what the

load balancer perceives is scheduled for each Invoker. Upon scheduling, an entry is made to update

the books within the controller, and a slot for each MB of the actions memory limit in a semaphore is

taken. These slots are only released after the response from the Invoker (active-ack) arrives or after the

active-ack timeout. The Semaphore has as many slots as MBs are configured in user-memory.

Known caveats:

• In an overload scenario, activations are queued directly to the Invokers, which makes the active-

ack timeout unpredictable, possibly hurting tail latency. Timing out active-acks, in that case, can

cause the load balancer to prematurely assign a new load to an overloaded Invoker, which can

cause uneven queues.

• The same is true if an Invoker is extraordinarily slow in processing activations. The queue on this

Invoker will slowly grow if it gets slow to the point of still sending pings, but handling the load so

slowly, that the active-acks time out. The load balancer again will think there is capacity, when

there is none.

• The Controller is internally unaware of the real state of the container pool within each Invoker,

implying a lack of potential load balancing opportunities depending on the number of warm or

pre-warm containers present at a given moment in a desired Invoker.

Now that an Invoker has been chosen, a process that has an invocation setup is started before sending

the request. This process consists of generating a unique activationID for this given request and storing

a completion request inside a TrieMap. A TrieMap, also known as a Prefix Tree or Radix Tree, is a

tree-like data structure used to store a dynamic set of key-value pairs, where the keys are substrings.

The term “Trie” comes from the word ”retrieval” and is pronounced like “try” (not “tree”). This completion

request has a relevant timeout for the request. When the Invoker eventually sends to the controller the

request completion this TrieMap is used in combination with the activationID to check if the request
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exists and if it exists, whether it was completed and can be given back to the user. If at any point the

setup fails, the request is canceled and the user is informed that the cancellation was not his fault.

3.3.2 Kafka

Assuming the invocation setup was successful, the controller uses a Kafka provider to send the

invocation request to the proper Kafka topic relevant to the Invoker. In Kafka, a “topic” is a category or a

feed name to which messages are published. Topics are analogous to channels or queues in traditional

messaging systems. Producers write data to topics, and consumers read data from topics. Topics in

Kafka are highly flexible, allowing different producers and consumers to work independently without

direct coupling. This decoupling enables better fault tolerance, as well as the ability to add or remove

producers and consumers without affecting other components of the system. These queues are FIFO

in processing but can be fully checked by proper use of offsets. Offsets are a critical part of Kafka’s

design, as they enable consumer groups to achieve parallelism and fault tolerance while ensuring that

messages are not missed or duplicated during the consumption process. They represent the position of

the next message that a consumer will read from a particular partition. The consumer groups in Apache

Openwhisk’s case are the Invokers.

3.3.3 Invoker

The Invoker is notified by Kafka when a given topic has been updated and proceeds in its extraction

and execution. Upon receiving a request to run, it first attempts to schedule it to a warm container of

that given action using its name as a reference. Thus meaning if there is a warm container with the

same execution code but a different action name it will not be recognized. It’s important for users to

take this into consideration when deciding if they want to use an existing action or make a new one.

If no warm containers are available then it will attempt to seize a pre-warm container. If this also fails

then the Invokers will attempt to create a new cold container for the given action. Firstly it checks if the

Invoker has available memory for a new container since the Invoker might only have a few containers

and less than its maximum capacity. An example of this situation would be during startup where only a

few pre-warm containers are created.

If there is no capacity for the cold container to be created it will remove the least used nonactive

containers in order until it has enough capacity for the cold container. If this also fails, in case all of

the Invoker containers are in active states it will reschedule it within the Invoker itself and reattempt

this operation an additional time after the Invoker completes another activation. This reattempt has

priority over new incoming requests, but if the reattempt fails it will be sent back to the controller has an

unsuccessful activation.
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The Invoker has a sense of priority within incoming requests and will consume them in the order they

are given. However, that doesn’t mean they will return to the controller in the same order, as certain

activations might be faster than others. All parts of activation sequences are treated individually as

singular activations with one beginning after the last one is completed and providing no priority to the

Invoker upon receiving them.

After the execution is successful or not, it reports to the controller for it to update both the user and the

CouchDB, updating all metrics related to load balancing and caching data for future similar activations.

The containers are paused to reduce resource consumption but are removed after a sufficiently long

timeout.

The Apache Openwhisk controllers are responsible for the organization of requests received by the

clients. To do so the controllers manage Invokers. Invokers in turn are responsible for the management

of the container pools that will deploy the actions. Based on the total number of available pools, as

well as the overall number of controllers in the system, Apache OpenWhisk assigns a certain number of

Invokers to each controller. When a controller leaves or enters the system, these Invokers are dynami-

cally changed. When a controller receives an action identifies its home Invoker, which is responsible for

deploying that specific action on subsequent calls unless the Invoker is unavailable, in which case the

action is deployed to another Invoker.

The order in which Invokers are chosen given a specific action is determined by a hash calculation

using the action’s name and its client. This hash is then combined with the total number of Invokers in

the system to choose its home Invoker. As said previously when an action’s home Invoker is unable to

take any new requests due to capacity or went down due to unforeseen circumstances another Invoker

is needed. This choice is made through a combination of the previous Invokers index and the coprimes

lower than the total number of Invokers. Coprimes are used to minimize the collisions while progressing

through all Invokers. This algorithm creates an Invoker cycle for each action that minimizes their deploy-

ment collision, spreading out the actions throughout the system. Given an overloading scenario where

all Invokers are unable to receive actions due to a lack of resources, a randomizing function is used

to determine the Invoker to which the action is deployed. If all Invokers are unavailable due to being

unhealthy then the action deployment is cancelled and the client is notified.

Busy Pool, Free Pool, and Pre-Warm Pool are the three different types of pools that house contain-

ers in these Invokers. The Busy Pool is responsible for running the code for deployed actions, so if it is

overloaded with action deployments, it won’t be able to run the code for any additional deployed actions.

After an action has been deployed, containers are maintained in the free pool; these containers, which

are also referred to as warm containers for that particular action, are reused if the action with which they

are associated is deployed again. Last but not least, the Pre-Warm Pool maintains containers that only

require code initialization, making them quicker than newly created containers but slower than the warm
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containers of an action making them the second fastest option for an action deployment. The main dif-

ference between warm and pre-warm containers is that the former already has the code initialized and

only requires the inputs specific for the request, while the latter still has to go through code initialization

that while quite fast compared to a cold start is still additional time that leads to a slower total execution

time. Given that the Busy pool of a specific Invoker is not saturated, as highlighted in red, it will first try

to deploy the action using a container for the specific action in the Free Pool, as highlighted in green. If

no container exists it will then try to utilize a Pre-Warm container from the Pre-Warm Pool, as highlighted

in blue. Finally, if this attempt also fails; it schedules the Invoker to create a new container and deploy

the action. Finally, before any creation of new containers (including using pre-warm containers), the

scheduler deletes the least recently used container if the sum of containers in the free pool and busy

pool equals the max pool size, as highlighted in purple for the case where there are old containers and

brown when none are available exist. Algorithm 3.1 exemplifies in pseudo-code the steps described

above with the aforementioned highlighted colors.

Algorithm 3.1 Overview of Apache Openwhisk’s scheduling algorithm

3.4 Enhanced Scheduler

Through the combination of our new pricing model using a utility function, as well as the new sched-

uler, the price presented to the client will be dynamically adjusted based on the additional resources

used only if they were used.
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3.4.1 Scheduling during an over-provisioned state

The scheduling system will operate as usual if no pricing mechanism is used, or, in other words, if the

deployment uses the standard fee for the initial pricing option. If an additional premium fee is requested

then the scheduler will attempt to deploy the action to all Invokers, not just the home Invoker. This

scheduling modification has two additional benefits for the client: (1) if the action is repeatedly requested,

saturating the home Invoker, it allows for a much faster execution following the initial deployment. Clients

are further encouraged to use our system repeatedly because doing so will result in faster execution

times; (2) the request will be handled by the fastest Invoker at that given time which may not be the

home Invoker, while ignoring the overhead of calculating which one it is. The client may customize the

deployment to include both versions of the pricing mechanism on a case-by-case basis for each action

or trigger. This will allow the client to only include the premium option on specific actions within the

deployment.

Algorithm 3.2 Over-provisioned scheduling algorithm

Algorithm 3.2 will still queue the action if all Invokers are semi-saturated (the sum of busy and free

pool containers is equal to the max pool size), while the original scheduling algorithm will only queue if all

Invokers are saturated (busy pool is equal to the max pool size). However, this challenge should rarely

arise during an over-provisioned state in which this algorithm is designed for. The main changes made

to the algorithm are the ones highlighted in blue and red. Since the purpose of this new functionality

is to create new containers we forced the scheduler to ignore pre-warm containers when outside of the

action’s home Invoker to create warm containers on the other Invokers for future use, as highlighted in
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blue. As highlighted in red we adjusted the original algorithm to continue to search for non-fully saturated

Invokers instead of simply exiting when the scheduler found a single available Invoker.

Figure 3.3: A faster response for action A

Figure 3.3 shows an example where at timestamp t = 0 the controller receives an invocation for

action “A” on an environment with three Invokers each with a MaxPoolSize of three. When receiving
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action “A”, the controller finds its action home Invoker, where in this example is Invoker 1, and in default

circumstances only sends that action to that Invoker. In the premium version of the operation, the action

is also sent to all other Invokers.

When the execution, t = 1, within the Invoker is complete each Invoker will send back to the con-

troller the result. The controller will offer the client the fastest response from all the Invokers. In this

example, Invoker 2 was the fastest due to having a warm container ready for action “A”. Invoker 1

only had a pre-warm ready to be used which is slightly slower than warm containers. Invoker 3 had no

containers ready so it had to create a new action container for action “A” making it a cold start. If the

premium fee was not requested the Invoker 2 result would not exist since it’s not the actions “A” home

Invoker and Invoker 1 was not full, making the final result 20 ms (0.02 seconds) slower than using the

premium compared to the default.

Finally, on the last timestamp t = 2 it is shown the final state of the environment after the operation.

Due to the premium’s functionality a warm container on Invoker 3 now exists preventing potential future

cold starts for action “A” on itself and making the pre-warm container on Invoker 1 also a warm container

for even faster future invocations of action “A” just like Invoker 2 had in the default situation. If there is

a surge of invocations for action “A” soon, the premium fee is great at preventing cold starts, like those

expected in Invoker 3, while making the additional resources cheaper for the client.

All of the results of the multiple executions of the action are received by the controller. The cost of the

requested deployment by the client is calculated as a ratio between the cost without the extra Invokers

and the total cost of all resources used. Consequently, the cost the client will charge is given by the

equation

final cost = α c+ (1− α)C, (3.1)

where α is the ratio of the cost that remains static, c is the cost of the deployment under default condi-

tions, and C is the total cost of all resources used.

This creates a situation where if no additional actions were deployed on other Invokers the final costs

are equal to the normal pricing model.

3.4.2 Scheduling during an under-provisioned state

As stated in the final part of Section 3.3, a FIFO priority method is used in case action starts being

queued due to the server being saturated, this in turn results in a very low urgency methodology for

the clients. This work proposes a more advanced priority-aware system that allows more time-critical

situations to be more hastily resolved for an additional cost. It also allows the inverse situation where a

client might want a discount if the need arises.

The algorithm is based on a priority value coined by us aPrio, standing for absolute priority. If two
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actions have the same values of aPrio the FIFO priority will be applied. This aPrio value will be updated

every second while the request is in the queue. Given a request’s priority ranking of reduced, standard,

and urgent the aPrio value will be incremented by +p1, +p2, and +p3, respectively. Figure 3.4 exemplifies

four seconds of this algorithm in progress where p1 = 1, p2 = 2 and p3 = 5, and the variable t represents

the timestamp used in the system in seconds. Yellow requests are in the queue while red requests are

the selected actions for when resources are freed.

Figure 3.4: Four seconds of execution of the priority queue algorithm

The pricing model utilized is similar to what is offered during the over-provisioned state. The final

cost is given by the equation

final cost = α c+ (1− α)
c p

p1
, (3.2)

where α is the percentage of cost that remains static, c is the cost of the specific action, p represents

the value of the priority system used for the action, and p1 is the value of the reduced priority system.
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This Chapter will go over the development steps we took to achieve our realization of the architecture

presented in Chapter 3. Starting with an explanation of the two environments we developed in, followed

by an in-depth dive into the adjustments and extensions made to the source code of Openwhisk.

4.1 Apache Openwhisk deployment overview

Apache Openwhisk is a combination of various existing components such as CouchDB and NGINX

with the unique addition of the Controller and Invoker. For this reason, docker deployments are heavily

suggested for its use, given their ease of generation of complex environments and connections between

multiple types of components. We started development in a Kubernetes cluster due to it being the most

common approach in other works. However, after we took a deeper look into multiple other tools we

finalized our development in a Docker-compose environment.

4.2 Apache Openwhisk local deployment using Kind

Our initial attempt at deployment was using a local Kubernetes cluster on a Ubuntu machine. Local

deployments allow for greater control and provide options for easier development due to direct access

to all related systems instead of requesting logging information from a third party in the case of deploy-

ments of Kubernetes clusters in the cloud, like Google and Amazon AWS. These cloud deployments

should be considered for proper production deployments instead of development. For the local de-

ployment, Kind was used to generate the nodes related to the Kubernetes cluster. Kind stands for

“Kubernetes in Docker”, and it is a lightweight tool that allows you to run a Kubernetes cluster using

Docker containers as nodes. It was primarily designed for testing Kubernetes itself but may be used for

local development or CI. Kind uses Docker containers as nodes, making it lightweight and fast to set up

and tear down clusters. This is especially useful for us who need to spin up multiple clusters quickly for

different tests.

4.2.1 Kind deployment lifecycle

Kind by itself only creates the Kubernetes cluster nodes inside the docker meaning the nodes still

have no proper connections or sense of order within themselves. For this step, Helm was used. Helm

is a package manager for Kubernetes that simplifies and streamlines the deployment and management

of applications and services on Kubernetes clusters. It provides an easy way to define, install, upgrade,

and uninstall complex Kubernetes applications, often referred to as “charts”. Helm is widely used in

the Kubernetes ecosystem due to its numerous advantages. It uses Go templates to create reusable,

parameterized manifests. This allows you to define Kubernetes resources once and parameterize them,
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making it easier to deploy the same application with different configurations. Helm allows you to manage

different versions of your applications using charts and releases. You can easily roll back to a previous

version if an update causes issues, providing better control over deployments. Helm also supports

managing dependencies between charts. This is particularly useful when deploying applications that rely

on other services or components. Overall, Helm simplifies the process of deploying complex applications

on Kubernetes by providing a well-structured, version-controlled, and customizable packaging format. It

improves the efficiency, reliability, and maintainability of Kubernetes deployments, making it an essential

tool for managing applications in a Kubernetes environment.

As for the deployment itself, we built using Kind a cluster with one control plane and three worker

nodes. The control plane is the node in which the controller image will be deployed and the three

worker nodes are where the Invoker images will be deployed. This information can be checked and

altered in the kind-cluster.yaml file and it’s the central file used by Kind for its deployment. All of

the other components such as the Zookeeper, Kafka, CouchDB and NGINX will be deployed as well

within the Kubernetes cluster using their latest stable versions publicly available. Helm is then used to

properly finish the deployment. The file mycluster.yaml is where all the information is related to unique

requirements for Helm requested by us, the developers, such as port and hostname locations for the

components as well as any flags related to replica limits for Invokers and controllers.

4.2.2 Integration with Apache Openwhisk Development tools

By using Kind, a Helm a base local Apache Openwhisk deployment was successfully deployed and

ready to be used. Apache Openwhisk has developed and distributed three useful tools to manage and

interact with the cluster. These tools are wsk-cli, wsk-dev and wsk-admin.

The wsk-cli abstracts the complexity of interacting with the OpenWhisk platform through simple and

intuitive commands. It enables us to create, update, delete, and manage serverless functions and

actions effortlessly. We can use the wsk-cli to set parameters and pass input data to serverless actions,

making it easy to customize the behaviour of functions without modifying the underlying code.

Wsk-dev is a tool for developers to safely update the code within Apache Openwhisk. It allows us to

isolate testing and deployment of specific parts of the components within Openwhisk. Its main goal is

debugging any change made to the source code.

Finally, wsk-admin allows fast and easy management of security related to different user privileges.

Any security-related issues can be analysed and resolved through wsk-admin. While wsk-cli is the per-

fect tool to “toy” around with Openwhisk, any proper tools for testing and data analysis are incompatible

with wsk-cli, such as Artillery, Locust, Hey, and Jmeter. As such we dove deeper within the inner work-

ings of the wsk-cli written in the Go programming language. All Apache Openwhisk operations can be

represented through HTTP requests made to the NGINX server interface. An example is (user is named
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guest and was properly logged in for wsk-cli):

Wsk-cli - wsk action invoke action1

HTTP - Post request to /api/v1/namespaces/guest/actions/action1

This allows for proper workload testing for evaluating Apache Openwhisk using state-of-the-art tools.

This allowed initial success when understanding the inner workings of the Apache Openwhisk schedul-

ing system.

4.2.3 Analysis of Kind for development

However, difficulties arose when modifications to the controller were needed. While image alter-

ations with the help of the wsk-dev tool were successful the actual deployment of such image modi-

fications was not so much. While image alteration requests could be made through modifications to

the my-cluster.yaml file, the newly created images could not be trusted by Helm. This problem arose

due to the lack of proper certification required when deploying images using Kind. This issue can be

resolved with the use of cloud provider certification or the release of a personal institution-certified web-

site with proper certificates. Both of these solutions would push us much closer to a production-level

operation and further away from the development ease required to undertake such a deep understand-

ing of Apache Openwhisk. While initial information pointed us to the use of Kind for the deployment of

Apache Openwhisk and all their related components for local deployment, it proved to be more difficult

to develop and test components within. Kind is a tool for development in a Kubernetes environment and

not a tool to develop the tools within the Kubernetes cluster. It lacked the ease required to swap images

of the controller and its redeployment due to security constraints. If our goal was to test and develop a

project that used a Kubernetes cluster as support then Kind would be a perfect fit.

4.3 Apache Openwhisk Local Deployment using Docker-compose

As we sought more development-centered tools for Apache Openwhisk. We found the proper dev-

tools for Apache Openwhisk, with the help of the git Apache development community.

4.3.1 Openwhisk-Devtools Deployment

The new deployment was directly on Docker-compose where each component of the Openwhisk

architecture was a container node. This allows for easy version checking of the images, quick and

clean logging information as well as proper port flow management that tools such as Wireshark and

other network-related tools require for ease of packet checking. This allows for a much easier and
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stronger development environment where we can test and manage changes to the Apache Openwhisk

components.

Docker-compose came with its fair share of limitations such as lack of proper Kubernetes availability

and scalability. If a node was to fail the system would need to be restarted manually since failure in

a node’s health check would not prompt its reconstruction. As well as lacking the capability to deploy

additional Invoker and controller components mid-execution as resources are needed. Both of these

concerns need to be taken into consideration when deploying in a proper production environment. Since

our work wants to test and improve the system in both over-provisioned and under-provisioned states

both of these concerns can be ignored for the most part. They must still be taken into consideration

as any test in a production environment might alter the amount of resources for unrelated reasons to

the cluster itself, such as power failures and manual resource allocations. We imitated them as much

as possible the Kind deployment as that was never the issue. So we created one controller and three

distinct Invokers as well as all other components.

One additional new component was the Kafka-topics-Ui for the ease of visualization of Kafka-

related issues that might have arisen during development. All of these settings are present in the

docker-compose.yaml file. One disadvantage of the use of singular containers in docker-compose is the

forced use of ports. Whereas in Kubernetes we could combine all Invokers with one singular port. How-

ever, due to the reduced scale of our testing and development port availability was never a sufficiently

worrisome issue.

4.3.2 Deployment of Newly updated Container Images

Through the use of the devtools provided by the git repository and the available Makefile the deploy-

ment of the system was successful. Running the repository was as simple as make run as well as using

our own new development images as simply running make pull after the successful image naming al-

terations were made to the docker-compose.yaml. For new image development and conservation, we

utilized a docker assisted image-registry where we made available our images for docker of both new

versions of the Invoker and controller components by using the wsk-dev tool. The command wskdev

Invoker -b is used to compile and update the local image of the Invoker component of Apache Open-

whisk. A similar command is used for the controller wskdev controller -b. To update and push this

newly created image to our docker registry we executed the commands

docker tag whisk/Invoker localhost:5000/controller:v2

docker push localhost:5000/controller:v2

where localhost:5000 is the registry is location. After the system was up and running checking if the

new images were being successfully used we both checked the docker interface for their usage as well

as checking the logs generated by them in the logging folder determined in the docker-compose.yaml
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file for each component.

With all the considerations taken into account, we proceeded once again in the understanding of the

Apache Openwhisk internal scheduling operations.

4.4 Development of Action-Spreading

Firstly we must fully comprehend what the attempted solution presented in the Architecture chapter

entails. The goal is to (1) set up containers for future workloads as well as if possible, and (2) combine the

work of all Invokers for an even faster possible execution. Therefore we tackled both of these problems

separately starting from the more architecturally taxing, problem (1).

As Invokers are unaware of each other’s conditions, we are unable to generate containers at will

depending on the states of each other. Invokers also can’t create empty warm containers. The best

we could do would be to employ more pre-warm containers which are already greatly optimised by

Apache Openwhisk. So we should look at the controller as it is aware of some of the Invoker pool’s

state information. However, as described in the previous section it does not hold all information such

as Invoker pool states. Since we assume the global Openwhisk state is in an over-provisioned state

we can safely invoke additional actions without taxing already existing actions due to the containers

and their executions being isolated 1. The only overhead generated would be the increased controller

message load which is synced as well as Kafka’s additional messaging. Kafka however is known to

be made to be a high throughput, low latency, and ability to handle large volumes of data, making any

increase of workload during an over-provisioned state largely irrelevant, but something to be aware of

during evaluation nonetheless.

4.4.1 Main code adjstments

The initial approach would be to alter the algorithm in ShardingContainerPoolBalancer.scala, with

part of its original code shown in Listing A.1, to not stop at its search at the first available Invoker, but

instead, keep searching available Invokers to induce the action. Since our goal is to prepare the action

within all possible Invokers, be that in generating ready-to-use warm containers or simply creating cache

data for the Invoker our best solution would be to execute the action in all possible Invokers. This would

also solve our problem (2) presented in the goals. Since all possible Invokers will attempt to execute

the action not simply create a warm container, the fastest container at that moment will return the result

to the controller. As shown in the Listing A.1 for the base version of Openwhisk of the publish function

within the controller, the hash is calculated in lines 12-14, and the Invoker is chosen through the function

1During an over-provisioned state Invokers will have an abundance of resources available and due to containers being isolated
from each other, creation of additional containers should not result in a degradation of the Invoker’s performance
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“schedule” present in lines 17-25 where it returns an option where it’s None if all Invokers are down,

and a tuple with two inputs if there is at least 1 Invoker up. The first input of the tuple is which Invoker

was chosen and the second is True if the system was overloaded (an Invoker was chosen at random) or

False if not. The boolean is used for metrics purposes and serves no additional purpose for scheduling

options.

Afterwards, in lines 49-51 it sets up the activation message and sends it to the Invoker through

Kafka. If we are to change the algorithm itself we must dive into the schedule function called above.

This function as shown in Listing A.3 the schedule function in the base version of Openwhisk is a tail-

recursive function that will use at its tail the stepsDone and use it to know if it has cycled through all

Invokers. In lines 16-19 it is shown that after it finds an available Invoker, needing to be both a healthy

Invoker and the respective semaphore returning true for the required memory, it immediately returns.

This code also shows in lines 21-29 that, if all Invokers have been seen, it will forcefully acquire the

semaphore and choose a random healthy Invoker, returning afterward.

For our goal to be met we must spread the action to all available Invokers. We must then change the

schedule function’s return condition to only when all Invokers have been seen and registered all possible

Invokers that the action could be scheduled. We also want to maintain the home Invoker metric stable in

case our user does not request this additional functionality. To achieve all these conditions we altered in

Listing A.3 for schedule. The end result was a new function named scheduleAndSpread with the code

shown in Listing A.4. We maintained the tail recursion but simply removed the stopping condition and

added two additional tail arguments which are the additional Invokers that we want to spread the action

to and the homeInvoker named chosenInvoker within the code.

To fully ascertain our goal we must also alter the sending operation to take into consideration our

extra Invokers “if any”. Considering that the activationID is the same for all, the controller knows where

to send them back when it receives the response from all Invokers. With this, the action will safely be

spread to all Invokers and be executed by such in order to both create additional containers for future

use (1) and collect the fastest activation (2), since they all have the same activationID.

4.4.2 Remaining issues

While this fully resolves our issues from the client’s perspective, there are still issues to be solved from

the server’s perspective. The system was not made to have multiple acknowledgments with the same

activationID making it generate soft errors, meaning they don’t affect the output that the user receives

but generate errors internally. These errors heavily disrupt the logging information and database stability

so we must take care to resolve these logging messages.

The acknowledgment processing is made through the use of the TrieMap modified during the activa-

tion setup. This TrieMap assumes the Ids in the TrieMap, the activationID, are unique and will overwrite
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the old setup with the new one. This code is presented in the parent file CommonLoadBalancer.scala.

To solve the issue we simply need to adjust the code for the setup function to take into consideration our

new requirements as well as take care of these new possible values in the processCompletion function.

For the setup, we adjust the value Invokers to be the number of Invokers currently with this specific

activation and simply increment it by 1 if the activation already exists within the TrieMap. As for the

processCompletion we must simply decrement this new value by 1 when receiving a valid acknowl-

edgementMessage from the Invoker and only remove the activation from the TrieMap when no more

Invokers have this activation. The updated setup and processCompletion functions are shown in the

Listings A.6 and A.7.

We finally have proper action spreading within our new Apache Openwhisk controller, with both goals

(1) and (2) realised.

4.5 Development of Action priority

When the system is under-provisioned, we would like to implement action priority as described in

our architecture Chapter 3. The main goal is to create a sense of user agency for these situations but

provide a priority-induced queue when executing actions. There are two main places where queueing is

present in Apache Openwhisk, the Kafka and Invoker components.

4.5.1 Priority queue within Kafka

Kafka itself is a distributed event streaming platform designed to handle real-time data streams.

However, Kafka is not designed to offer priority when distributing its messages. Unlike other message

brokers such as RabbitMQ and ZeroMQ, Kafka follows a First-In-First-Out (FIFO) message processing

model, where messages are typically consumed in the order they are received. This comes with multiple

advantages to FaaS systems where high availability and fault tolerance are key.

There are solutions to make Kafka “support” message priority, such as multiple topics per consumer

and partitioning. Generating multiple topics per consumer seems to be the most promising due to

Openwhisk already creating topics per Invoker. However, this method greatly tarnishes Kafka’s speed

due to the fault tolerance procedures it takes and it is heavily discouraged unless speed is truly not

relevant, which is false in our case. FaaS is meant for event-driven procedures and prides itself on

availability, so major hits to the speed of the system would greatly reduce its availability. Partitioning is

simply sectioning a topic through multiple consumers, which in our case wouldn’t work since each topic

only has one singular Invoker.

Substituting Kafka for other brokers such as RabbitMQ would be a grand undertaking as Kafka is

one of the core components of ApacheOpenwhisk and the source code would have to be tremendously
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changed but even assuming that would be possible, other brokers that have focus on message complex-

ity which would only be valuable for this circumstance, and we would be losing on the scalability, high

throughput and data retention provided by Kafka which are main points for FaaS related systems.

Adjusting the controller to become the queueing system would be disastrous as the controller com-

ponent is synced and would lack scalability even if additional controllers were created. This makes any

avenue to implement priority inside Kafka fruitless if we want to maintain the system as a FaaS system.

4.5.2 Priority queue within Invoker

Another Queuing opportunity is within the Invoker. This queue is used for incoming requests that

arrive from Kafka. Adjusting this queue from a simple First-Come-First-Serve (FCFS) queue to a priority

queue is a simple task as Scala itself provides a priority queue component. By changing this queue into

a priority queue we could safely alter its functionality.

To test and analyze this new extended implementation of the Invoker queue we set up a simple

Docker-compose environment with one Invoker only. A stream of 200 simultaneous requests of a very

simple action that would just do the sum of 2 integer values. More in-depth information about the

environment and the testing process can be found in the Evaluation Chapter 5. We augmented the

Invoker logging information to be able to visualize the priority queue itself and not just the number of

elements for better analysis. We also check the Kafka logs for its queuing information to ascertain any

bottlenecks.

When observing the logs the priority queue of the Invoker would never exceed two items within it,

while Kafka had over 100 items in the queue. This observation was also detected when testing the

original version of the Invoker queue. This perceived inconsistency is answered through Kafka and the

Invoker interaction. When an Invoker has completed an activation as space within it can be used it

alerts Kafka, which then Kafka sends the message to the Invoker. This process is made before setting

up the return message to the controller. The Invoker will only start processing the next item in the

feed/queue after it has successfully sent the message to the controller. This means that the requests

in the Invoker queue only exist to more easily parallelize the message retrieval and sending from and

to Kafka. Changing its queue to a priority queue would be an easy task but would not even remotely

accomplish our goal, as we would be applying an advanced queuing system to a group consisting of 1

or 2 requests instead of the hundreds that Kafka handles.

4.5.3 Other possibilities

A common way to exercise priority in FaaS systems is to not implement them within FaaS but instead

exercise a third-party tool to order the HTTP request made to the NGINX server. This allows the FaaS
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system to preserve all of its advantages and allows user agency in request management. While this

solution is valid for a production environment it is in essence outside of the scope of Apache Openwhisk

as it acts outside of its borders. Examples of such tools are Envoy Proxy and HAProxy. Any company

seeking to use Apache Openwhisk with priorities for production-focused environments should use this

option instead of tarnishing or simply heavily reducing the unique functionalities presented by FaaS

systems. However, the use of such tools would be outside of the scope of this work.

4.5.4 Priority queue conclusion

While a priority-aware scheduling system was a valuable and interesting opportunity it brought an

immense overhead and a much higher complexity than initially expected during research and Architec-

ture development. As previously explained since Kafka was not originally designed for priority-aware

systems and its use is integral for Openwhisk Architecture a great undertaking would need to be done to

fully remodel the architecture. As such we will leave the possibility of a priority-aware scheduling system

using our utility function (3.2) for possible future work as the topic itself still is a valuable research direc-

tion for the FaaS system. As such we decided to instead focus the rest of this document on analyzing

the development of the Action-Spreading functionality.

4.6 Utility function management

As described in the architecture Chapter 3, the adjusted scheduling benefits for the user would be

described and presented through simple-to-understand utility functions.

We changed both the primitiveAction.scala and ShardingPoolBalancer.scala files to process

the action names uniquely so as to be able to take user interaction into account. The interaction is based

on the assumption that if a user wants to call action “fn” without the use of the additional spreading

functionality nothing special from the user will have to be made. This keeps the old interactions and

tests that a company might have when implementing this new system intact. However, if a user desires

to call an action with the additional functionality in mind then he must both create a new action and

invoke it with a new name.

Passing a new argument while possible would create additional overhead as it would need to be

combined with the HTTP header as a new flag, just like the blocking and overwrite flags. The new name

is simply the addition of “SPREAD ” at the start of the action name. So in the case of “fn” the user would

need to input “SPREAD fn”. This assumes that when creating the action the code placed in the action

“fn” is the same as “SPREAD fn”. The system will remove this prefix when sending to the Invoker to be

treated as the same action as the original allowing the creation of relevant warm containers.
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This modification is made in the file PrimitiveAction.scala as it is where the message sent to the

Invoker is made. The prefix “SPREAD ” is simply removed if it exists and added to the message. Had

this change not been made then the Invoker would treat this spreading action as an entirely different

action due to its name, and making useless warm containers for the relevant action that it would receive

in the future. This prefix is also checked ShardingPoolBalncer.scala to adjust its execution to either

use or not the new functionality. This gives all existing tests that have actions not including the prefix

“SPREAD ” with the same outputs as before.

The action spreading utility function can be easily calculated in real-time as logging information can

be accessed in real-time and the number of extra Invokers related to a specific activation is easily

accessed through a simple grep command within the log file. And making an automated system that

would do such an operation is simple. We developed this simple program in Python; its code is shown

in the Listing A.5. This script relies on the path of the controller logs file so it should be known. If

doubt arises on what this path is a simple check of the docker-compose.yml on the volumes section of

the controller will tell us where it is located. All of the remaining data needed for the utility functions is

determined by the company deploying the system and what profits they desire.

This process could be made faster through the use of more advanced tools and algorithms since, for

example, we can make the search faster by searching from the tail end first as the log file is chronological.

The tool ag, also known as “The Silver Searcher”, is a fast and highly efficient text searching tool,

primarily designed for searching code files and text content within large codebases, which could be

useful to make the search even faster if the log file becomes too big for grep.
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In this Chapter, we will go into depth about the system goals and the assessed metrics. We will im-

plement the system by deploying Apache Openwhisk on a development environment based on Docker.

The base open source code of Apache Openwhisk is extended to the requirements presented by the

architecture in Section 3. Data is assumed to be stored locally or on some cloud storage in the same

location.

5.1 FaaS Benchmarks

Four diverse FaaS workloads are used in the evaluation of our system those being Sleep functions,

File hashing, Video transformation, and Image classification [61]:

Sleep functions are a good FaaS benchmark because it is a simple, low-overhead operation that can

be used to measure infrastructural overheads, in our case the scheduling infrastructure, of a FaaS

platform.

File hashing is also a good benchmark because it is a relatively simple operation that can be used to

test the ability of the system to handle file inputs and outputs.

Video Transformation is a good benchmark for FaaS systems because it exercises many of the key

features of the system, such as scalability, concurrency, and performance. Video transformation

tasks, such as transcoding, are typically compute-intensive and require parallel processing. This

makes them well-suited for testing the ability of the FaaS system to handle high levels of concur-

rency and scale horizontally.

Image classification is a good FaaS benchmark for our evaluation as well due to it being a complex

operation that requires significant computational resources and can be used to test the ability of the

system to handle more demanding workloads. Additionally, Image classification is a common use

case for FaaS [17], especially in machine learning applications [18,19], so using it as a benchmark

can help to evaluate the system’s ability to handle real-world workloads.

5.2 Metrics

Latency, Scheduling delay, and Resource usage are the three main metrics considered to determine

the overall success of our system:

Latency is a metric that represents the amount of time it takes for a request to be processed and for

a response to be received. It is an important metric for evaluating the performance of a system

because it directly measures how long it takes for the system to respond to a user’s request.

51



Systems that have low latency can respond quickly, which can lead to a better user experience.

Systems that have high latency may result in slow response times and cause user frustration.

Scheduling delay is a metric that assesses the amount of time that elapses between when a user

request is ready to be executed and when it is allowed to run by the scheduler. It is an important

metric for evaluating the performance of a system because it measures how well the scheduler

can distribute resources and manage the execution of tasks. A low scheduling delay indicates

that the scheduler can quickly and efficiently assign resources to tasks, which can lead to better

overall system performance. On the other hand, a high scheduling delay can lead to poor resource

utilization, decreased system throughput, and increased response times.

Resource usage is a good metric to evaluate FaaS systems because it provides insight into how effi-

ciently the system is utilizing resources such as memory and CPU. By measuring resource usage,

one can identify any bottlenecks in the system and make adjustments to improve performance and

reduce costs. Additionally, monitoring resource usage can help in identifying and troubleshoot-

ing issues such as resource leaks, and it could be combined with information on how effectively

applications are making use of the resources allocated to them [62].

5.2.1 Server sided metrics

For Memory consumption and overload management metrics we require the access and analysis of

the logs provided by the Openwhisk components. These logs can be found in the file location described

in the “volumes” Section of the docker-compose.yml. Each service has its logging location and these

must be checked to have an understanding of both sides of a request.

These metrics are measured and compared with the Apache OpenWhisk default scheduler.

5.3 Evaluation Environment

This section is subdivided into six subsections. The first subsection is the documentation of how the

Environment used for the Evaluation was set up. It is followed by a subsection focused on explaining

how this environment can be interacted with. After this, a subsection introduces how the metrics used

for Evaluation are retrieved on the basic level. A subsection explaining Jmter which is the advanced tool

used to create and evaluate the tests performed in the following section. The next three subsections

detail the various variables used during the tests, these include the actions used, the starting sub-

environments of each test, and the two different hardware.

The environment used for evaluation of the newly enhanced Apache Openwhisk scheduling is sim-

ilar to the one presented during the Implementation Chapter 4. The cluster size was kept low, easily
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overloading the system if need be for testing. This means it was the same used for the Implementation

Chapter 4, meaning one container for each required component of Openwhisk plus three invokers man-

aged by one controller. The main testing variables are actions used, number of requests, and number of

parallel users. Since the core of our work is to offer the user agency within the execution of his actions,

we need to simulate different users requesting the server. We assume the server state is fresh at the

start of each evaluation. Each test was made in either a cold environment state or a warm environment

state. Both of these are more deeply explained in the subsections below. Authentication of the requests

required for each evaluation is made by the first request made to the server and is preserved within the

cache of the controller needing no additional authentication for the remaining duration of the test.

5.3.1 Docker Environment Set-up

The docker-compose base environment was set up through the standard installation found in the

docker website 1. The Openwhisk environment was deployed through the use of the GitHub repository

for the Openwhisk devtools 2. The docker-compose.yml file was altered from the original found in the

dev-tool repository to take into consideration our additional invokers and new image for the controller.

This file is subdivided into services and we are interested in the invoker and controller services. In the

controller service, we must adjust the image parameter to our desired image location. In our case, the

image was set up within a docker registry at localhost:5000, and the controller image was named

controller with tag v2. Leaving this parameter with image: localhost:5000/controller:v2 allows

docker to start up the container using our newly updated image.

For the addition of two extra invokers, we added two more new services named invoker2 and

invoker3 with the same information as the already existing invoker service except for three param-

eters, ports, command and volumes. The parameter port must be changed to a new unique port within

the system, while the volumes can be changed to alter the logging location of this specific invoker, to

not override the original invoker logging location. Last but not least, the command parameter must be

changed to include a different invoker id. This can be achieved through the change to the flag --id 1

to --id 2 and --id 3 for invokers 2 and 3, respectively.

Any additional invokers can also be added by following these steps as long as ids and ports are

unique. Any removal of invokers can be done simply by deleting or commenting the service within the

docker-compose.yml file. Before starting up the environment we also adjusted the Makefile present in

the devtools to include our new image name and tag throughout the file. More specifically in the pull

and docker-pull options, to verify that the image being used by the environment is up-to-date with the

one present in the docker registry.

1https://docs.docker.com/
2https://github.com/apache/openwhisk-devtools
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To start up the environment one must employ the command make quick-start to download and

set up every container within docker. Any further use can only make run. To stop but not destroy the

environment the command make stop is used. All of these operations are made in the command line

and are to execute the existing Makefile within the devtools repository. All images are downloaded

including Openwhisk-related ones such as the invoker image and api-gateway (NGINX), these images

are openwhisk/invoker:nightly and openwhisk/api-gateway:nightly respectively. For comparison

purposes with the base Openwhisk the controller used was the image openwhisk/controller:nightly

and is simply adjusting the docker-compose.yml controller service back to its original version. After the

system is running there can be seen within the docker all the components those being: minio, redis,

zookeeper, db (CouchDB), kafka, kafka-rest, kafka-topics-ui, api-gateway, controller, invoker, invoker2

and invoker3. With these containers confirmed running as shown in the Figure 5.1 the system can be

used and evaluated.

Figure 5.1: Docker setup successfully complete with all containers running
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5.3.2 wsk-cli

To interact with the system wsk-cli is used for simple interactions such as creating actions, triggers,

and rules as well as invoking singular actions. To use this tool we must first set up its interaction with

our system. Firstly we must set up the apihost and port through the commands wsk property set

--apihost <hostname>:<port> as shown in Figure 5.2. The hostname and port used for this operation

should be the ones defined by the api-gateway. This can be checked in the docker-compose.yaml file

or in the visual docker desktop.

Figure 5.2: wsk-cli apihost setup example

To finalise the initial setup of wsk-cli we still need to define the auth key for the user that the wsk-cli

should use. The auth key includes the username and password combined, these values refer to the

user that is executing the operations. In any production environment, a new user should be created

through the use of the wsk-admin tool by using the command wskadmin user create user1 and the

output of such command is the authkey to be used for further operations. The auth key includes the

username and password combined, these values refer to the user that is executing the operations. The

command wsk property set --auth <username>:<password> is used to set up the auth. Opewhisk

offers a guest user with their respective credentials. Figure 5.3 shows an example of the Openwhisk

guest user auth setup using the auth credentials for the guest user.

Figure 5.3: Example of auth for guest user

Now that wsk-cli is set up we can start interacting with the system, however, we must always include

the flag -i to all our commands since this environment operates on a self-signed certificate basis, all

commands related to the wsk-cli are assumed to have the -i flag set. A self-signed certificate is a

digital certificate generated and signed by the same entity that it identifies, without involving a third-party

Certificate Authority. In simpler terms, when you create a self-signed certificate, you are essentially

vouching for your own identity, stating that your server or website is secure and can be trusted. However,

this self-asserted trust isn’t backed by any external verification. For production environments, it’s strongly

recommended to use certificates issued by trusted Certificate Authorities. These certificates are verified

by third-party organizations that follow industry standards and security best practices. This verification

process builds trust with users, as their browsers automatically recognize and accept certificates from

these trusted sources without showing warnings. Even in a development environment like ours, it’s
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important to test our system with encrypted connections (HTTPS) to ensure that they work correctly

under secure conditions.

Self-signed certificates provides a way to enable HTTPS in your development environment without

the need to purchase or obtain a certificate from a trusted Certificate Authority. If the flag -i is not

used, an error will emerge as shown in Figure 5.4.

Figure 5.4: Example of not using the -i flag in wsk-cli

Action creation is done through the use of the command wsk action create fn fn.js as shown in

Figure 5.5 where fn is the name of the action within the Openwhisk server and fn.js is the path

to the file where the code of the function is located. This example action fn is a simple sum of two

values received as input.

Figure 5.5: Example of creating action fn

Updating an action is made through the operation wsk action update fn fn.js to force the override

of the action fn with the new updated code, as shown in Figure 5.6. If we were to attempt to create

an action with wsk action create fn fn.js with the updated code an error would be present as

shown in Figure 5.7.

Figure 5.6: Example of updating action fn

Figure 5.7: Example of creating action fn that already exists

Deleting an action from the server we simply need use the command wsk action delete fn, as

shown in Figure 5.8.
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Figure 5.8: Example of deleting action fn

Management of triggers and rules is made through commands wsk trigger create fn trigger

and wsk rule create fn rule fn trigger fn in order to create triggers and rules related to the

fn action. Useful for more advanced utilization of FaaS in production environments, examples of

these commands are shown in Figures 5.9 and 5.10.

Figure 5.9: Example of creating a trigger for fn

Figure 5.10: Example of rule for action fn

Invoking actions directly is done with the command wsk action invoke fn or in case we wish to

use an existing trigger the command wsk trigger fire fn trigger is used instead as shown in

Figures 5.11 and 5.12, respectively.

Figure 5.11: Example of invoking action fn with no input

Figure 5.12: Example of firing a trigger for action fn

The Output of these operations is the activation id that is required to check the complete result of the

operations through the use of the command wsk activation get <activation id> as demon-

strated in Figure 5.13. This shows all information related to the invocation not just the operational

result of the action. If one desires just the action result one can also invoke the action with an

additional flag wsk action invoke fn -result as shown in Figure 5.14, however, this invocation

will become blocking. Blocking invocations still have an activation id that can be checked after-

ward, but their main purpose is to get the result for the action as soon as possible on the wsk-cli,

allowing us to gauge latency metrics for each invocation. All of these invocations are all without

the use of any parameters meaning our action fn is constantly returning "result": null.
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Figure 5.13: Example of a complete activation result

Figure 5.14: Example of an activation result for action fn with no input

Invocations with function parameters we must include each parameter with the command --param

<paramID> <paramValue>. In the case of our example action fn where we sum two params

named num1 and num2 we can complete our invocation with the operation wsk action invoke

fn --param num1 3 --param num2 4 for the result to be 7. Both the invocation and its result are

shown in Figure 5.15. If the inputs are too massive or complicated one can also augment the invo-

cation with a file as input instead of passing the parameters in the command line through the flag

-P. This file should be in JSON format and have all the relevant inputs inserted as demonstrated in

Figure 5.16. Combining this file with the invocation we get the command wsk action invoke fn

-P fn input.json as shown in Figure 5.17.

Figure 5.15: Example of invoking action fn with parameters

58



Figure 5.16: Example of a json file with inputs for action fn

Figure 5.17: Example of invoking action fn with a file

With this a basis for interaction with the system is made, however, data measuring tools cannot use

this tool. As such these tools must interact with Openwhisk more directly. Even still this work seeks to

evaluate action execution, so action creation will be done using wsk-cli for ease of use and management.

The wsk-cli is a powerful tool that abstracts the reality of the interaction between the user and the server.

In its most simple terms, HTTP requests are made to the NGINX server or api-gateway in the case of

our development. Understanding these requests are key to properly evaluating our system using state-

of-the-art tools.

5.3.3 Curl and Base Evaluation

Curl, short for Client URL, is a command-line tool and library for transferring data with URLs. It

supports a wide range of protocols, including HTTP, HTTPS, FTP, FTPS, SCP, SFTP, LDAP, and

more. It is widely used for interacting with web services, Application Programming Interfaces (APIs),

and other network resources from the command line or scripts. Curl is straightforward to use and comes

on many Unix-like operating systems and there even exists a Windows port nowadays, making it readily

available for various tasks.

All of the Openwhisk operations can be made directly to the API gateway instead of the wsk-cli,

through the use of REST call to it. REST is an architectural style defining constraints for creating and

interacting with web services. RESTful APIs are designed based on these principles to allow communi-

cation between different software systems over the Internet. REST calls, also known as HTTP requests,

are the methods used to interact with resources exposed by RESTful APIs.

There are several types of REST calls, each serving a specific purpose. The GET method is used to

retrieve data from the server. It requests a representation of the specified resource and does not cause

any changes on the server. In other words, it’s used for reading data. The POST method sends data

to the server to create a new resource. It typically includes data in the request body that will be used
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to create the resource. It can also be used for submitting data to be processed. The PUT method is

used to update or create a resource. It replaces the existing resource with the new data provided in the

request. If the resource doesn’t exist, it might create a new one depending on system capabilities and

settings.

Action creation requests are PUT HTTP requests and can be made with curl by using by structure

shown in Figure 5.18. The -u flag indicates the username and password for the <user> that is request-

ing the operation. In a development case, we can simply use the user guest and the username and

password mentioned above. The -k flag is equivalent to the -i flag used previously where curl will

ignore self-signed certificates. The -d flag is the code of the function itself and must be sent through

JSON format. As such since the fn.js file is an executable we use the exec, it’s a Nodejs file so we

use the nodejs:14 for its kind. Note that Openwhisk by default supports a variety of languages and ex-

ecutables, but the version of these languages must match those present within Openwhisk. In this case,

Openwhisk is loaded with Nodejs version 14 and the code is compatible with this version of Nodejs so it

can be used. The “code” section is simply the full extension of the functions code. Finally the actual path

for the request given to curl where fn is the name of the action. Just like the wsk-cli action creating, it

will generate an error if the action already exists as shown in Figure 5.19. To counteract this we update

the PATH used for the action https://localhost/api/v1/namespaces/<user>/actions/fn by adding

the flag ?overwrite=true for a complete PATH as demonstrated in Figure 5.20. Since bigger functions

would clutter the terminal we heavily encourage everyone to use a tool like wsk-cli to create actions.

Figure 5.18: Example of curl PUT to create action fn

Figure 5.19: Example of curl PUT to create an already existing action fn
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Figure 5.20: Example of curl PUT to update action fn

Action invocation requests are similar and require a POST request as shown in Figure 5.21. The

command is very similar to the PUT operation, however, the -d flag is used for the parameters that action

invocation might require. The response body given by Curl for the POST request solely contains the

activationId and just as when utilizing wsk-cli this ID can be used to get the result of the activation

when it is completed. To achieve this in Curl we must do a GET request as shown in Figure 5.22, where

the PATH used is:

https://localhost/api/v1/namespaces/<user>/activation/<activationID>.

This operation requires the proper authentication so we must include the -k and -u flags.

Figure 5.21: Example of curl post for action fn

Figure 5.22: Example of curl get for the result of invoking action fn

With this, we can start evaluating Openwhisk by utilizing the -w and -v flags of curl to analyze

request time latency and request information respectively. Note that requests without the blocking

flag of Openwhisk will not return the proper execution time, as without it the request simply returns
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the activationID that the user can use to check the activation result when he deems it necessary. For

evaluation purposes we want all our requests to be blocking to properly evaluate execution and latency

times. The -w flag gets the operation total execution time, but we must retrieve it in a readable way so

it is common to add a human intuitive text to the flag like, for example, is the actual return value for the

use of the flag. The -v flag offers a lot of connection-related information such as IPs used and type

of connection used like UDP or TCP. This is mostly valuable for testing more advanced deployments

where multiple servers are located in different networks. Our local deployment is a very simple network

so information from this flag is limited. To achieve this we simply add ?blocking=true at the end of the

request path as Figure 5.23 shows. The response body will contain the same information as the GET

operation for the activationID of the invocation followed by any additional information provided from the

additional flags like -w and -v.

Figure 5.23: Example of curl post for action fn with blocking and timer

While Curl allows us to evaluate requests it is not enough as we wish to test the system during

multiple types of workload scenarios. To do so we employ a proper evaluation tool such as Apache

Jmeter.

5.3.4 Jmeter and load evaluation

JMeter is an open-source performance testing tool designed to test the performance, load, and

stress of web applications, APIs, databases, and other network services. It allows you to simulate a

large number of users interacting with your application to measure its performance and identify potential

bottlenecks or issues under different load conditions. JMeter supports a wide range of protocols and

technologies, including HTTP, HTTPS, FTP, JDBC, SOAP, REST, JMS, and more. This makes it suit-

able for testing various types of applications and services, just like Curl. JMeter can simulate thousands

of virtual users concurrently, allowing you to test how your application performs under different levels of

load and stress. To fully use Jmeter in our evaluation process we first had to create a testPlan. Each
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test can be saved separately and rerun in the future for further data analysis. Within a testPlan our main

tool is the threadGroup, allowing large amounts of controller instances of HTTP requests in our case.

We can adjust both the number of concurrent threads (users) as well as the number of executions. This

will allow us to easily keep track of different test cases. Within the threadGroup we need three main

components: HTTP Header Manager, HTTP Authorization Manager, and HTTP request. The HTTP

Header Manager must be added and modified to include the content type of the request. In our case, it

needs a new Item with the name Content-type and value application/json.

The HTTP Authorization Manager is where the username and password of our user must be added.

Multiple of these authorizations can be added depending on the number of different users that are used

in the tests. We simply add a new Item and adjust the username and password to the desired user.

For development and evaluation purposes we can use the guest user provided by Openwhisk. The

mechanism must also be changed to BASIC DIGEST, the remaining options can be left empty.

Finally the HTTP request, we can add as many entries of this item as we want to different types of

requests. The number of these HTTP requests will vary in our case when we desire a different number

of action types within a singular test. Optionally we can add Aggregate Graphs, View Results Tree,

View Results Table, and Aggregate Report to aid us in our data collection. Aggregates are used to

view data of the test such as latencies, percentage error, Throughputs, and medians while Viewers are

used to check the results of singular requests to help identify issues and order of consumption. Timers

may also be used to add variety to the tests, such as request delays for a random or static amount of

time. Within the HTTP request item, we need to properly set it up. The “webserver” section needs to be

updated with the servername or IP and the port of the API-gateway container. Assuming the previous

curl execution of the action fn it would be localhost and 443 respectively. For the “requests” section

itself the protocol needs to be https and the method is POST for action invocations, PUT for action

creations, and GET for activation results. The path is the same as the one used for curl without the initial

section, meaning /api/v1/namespaces/<user>/actions/fn?blocking=true, where <user> is the user

and can be substituted for guest in development or evaluation scenarios. Additionally, if the request

needs arguments you can send parameters directly, but it’s not recommended. Instead, we will add

JSON file items to the “Send Files With Request” section with our required arguments for the action.

With this set up we can properly evaluate our Openwhisk system when it comes to the client side of the

requests. Examples of the HTTP Header Manager, HTTP Authorization Manager, and HTTP request

are shown in Figures 5.24, 5.25, and 5.26, respectively.

Figure 5.24: Example of a setup of a Jmeter HTTP Header Manager
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Figure 5.25: Example of a setup of a Jmeter HTTP Authorization Manager

Figure 5.26: Example of a setup of a Jmeter HTTP request

5.3.5 Actions used

For evaluation, we will vary our testing by using a variety of actions. These actions as described in

Section 5.1, have varied performance differences and seek to analyze our system in as many ways as

possible. For fast and simple actions F1 was used. This action seeks to represent fast trigger executions

and is the common staple of FaaS user event systems. It represents operations like File hashing. For

sleep type functions F2 and F3 were utilized. These functions simply sleep the system for either 5000 ms

(5 seconds) or 10000 ms (10 seconds) and will allow us to accurately detect scheduling delays present

within the system if the system is not performing any CPU or Memory operations. F4 was used for CPU-

intensive functions to let us know of any overall performance degradation throughout the system. The F4

function used was a recursive Fibonacci series. The Fibonacci series is a sequence of numbers in which

each number is the sum of the two preceding ones. It starts with 0 and 1, and then each subsequent

number is the sum of the previous two. Here’s how the sequence is generated:

1. Base Cases: The Fibonacci sequence starts with the first two terms: F (0) = 0 and F (1) = 1.
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These are the base cases of the sequence.

2. Recurrence Relation: Each subsequent term is generated by adding the two previous terms. In

mathematical terms, if we denote the nth Fibonacci sequence term as F (n), where n ∈ N0 is the

position of the term in the sequence (starting from 0), then the recurrence relation is:

F (n) = F (n− 1) + F (n− 2)

For example, F (2) = F (1) + F (0) = 1 + 0 = 1, F (3) = F (2) + F (1) = 1 + 1 = 2, and so on.

In our evaluation, the Fibonacci of 42 was used due to it being a high number for the complexity de-

sired for our executing times. This operation heavily simulates image classification workloads due to its

computational complexity.

For all actions, there exists the Default, Base, and Spread versions. The Default version is the action

on the original version of Openwhisk. The Base version is the same type of action as the Default but it

is run on our version of the system with no additional inputs or modifications to the invocation. Both of

these should offer the same execution results, in both result and execution time. It is used to measure

our system scheduling delay compared to the Default version of Openwhisk. The Spread version is the

same action as both the Default and Base version but its invocation requests the use of our newly added

functionality. The action result should be the same but the execution time may vary depending on the

circumstances. These circumstances are extensively explored during the tests.

All actions are created during the setup of the test and this extra execution time is not considered for

the test as it bears no interaction with the modified locations of our newly updated system.

5.3.6 Sub-Enviroments

A set of two sub-environments were made to test our enhanced scheduler. These sub-environments

reference the initial state of the system immediately before the execution of a given test.

Cold Sub-enviroment “C”: We sought to evaluate our system as the worst case possible where all

currently existing warm containers within the invokers mismatch the invoked action. This will allow

us to evaluate our system when handling cold invocations, and how well it successfully warms up

the system to generate the best user experience. This was achieved through the mass invoca-

tion of a “hello world” action which simply returns “hello user” to the user. The mass invocation

comprises 100 parallel invocation calls using JMeter, by setting up a thread group with 100 users

and 1 call each. The execution of the tests ignores this environment setup and it’s done after all

containers within the invokers enter the paused state just as shown in Figure 5.27.
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Warm Sub-enviroment “W”: A fully cold enviroment it’s not entirely realistic as prewarm and warm

containers contribute heavily towards faster request execution times and are the backbone of FaaS

systems. As such for the same set of tests as the sub-environment 1, we evaluated our system

under a warm environment where only prewarm and warm containers of the action to be invoked

were present. In the same way as the sub-environment 1 was achieved the warm environment was

made with 100 concurrent calls for the specific action related to the test. Once again this execution

time was not taken into consideration during the test. Jmeter was set up with 100 users with one

HTTP request each.

Figure 5.27: Docker setup for a cold environment

5.3.7 Hardware used

Two different pieces of hardware were used for testing to accurately determine potential system

degradation caused by our scheduler.

Hardware A: A laptop with an Intel® Core™ i7-6700HQ CPU @ 2.60GHz processor with 4 physical

cores and 8 threads on Ubuntu 20.04.6 LTS 64-bit. Most of the testing was done in this hardware

due to its ease of access and testing environment. Important to note that only 1 data bus exists

within the hardware meaning all interaction between threads and memory is centralized.
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Hardware B: To have access to results closer to a production environment we utilized much stronger

tools with access to more CPU cores. This hardware B uses a Intel(R) Core(TM) i7-8700 CPU @

3.20GHz, 3192, 8 Physical Core(s), 18 Logical Processor(s).

5.4 Performance evaluation

A total of 6 tests were made to evaluate our newly augmented scheduler. These tests vary in both

Sub-environment and hardware. Each test is referred to by the test number, which Sub-Enviorment it

uses followed by which hardware it utilizes, for example, “Test 1, W-A” is test number 1 and uses both

a Warm Sub-environment and hardware A. An additional evaluation of our utility function is made to

analyze its behavior if applied in our tests. Following this section, an analysis of all of the tests’ unique

results is made that more deeply analyses the behavior of the utility function given the outcome of the

tests.

5.4.1 Test 1, W-A

Test 1, W-A, seeks to evaluate our system in the same conditions as the base version of Openwhisk.

A total of 30 invocations were made non-concurrently with a 2000 ms (2 seconds) between each call to

allow the system to reuse the same resources and safely evaluate the scheduling delay. Jmeter was set

up with 1 Thread group comprised of 1 user and 30 calls of a single HTTP request of the action. The

action used was F1 which is the simple and fast function, as the actual execution time of the action is

irrelevant for this test. As we seek to evaluate the system in the same conditions we did not use the

additional spreading functionality of our system. The results of this test are shown the Table 5.1 with

“Base” referring to the base version of Openwhisk and “Standard” to the updated version without the use

of any spreading functionality.

average latency median 99% line variance extra invoker calls total time
Default 234 155 2808 479 0 65097
Base 206 134 2538 427 0 64353

Table 5.1: Comparison between the different possible schedulers

As expected the latencies and total execution times are very close to each other. This shows that

the systems are very comparable when it comes to scheduling delays under the same conditions. Our

updated version shows very slightly better results probably due to the more optimized tail function used

for scheduling, but as the results are so similar to one another it could just as likely be a faster cold

container creating as the difference between total execution time is close to the same as the difference

between 99% lines. However, since the relative difference between 99% lines is very slight it wouldn’t
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indicate anything of note while the absolute difference would generate considerable changes in the

average latencies. The difference between the 99% line and the median is also very large, indicating

that only very few invocations resulted in cold starts.

This allows us to safely conclude that we can use our new version of the system without worries of

additional overhead if we use it for the same operations we would use the old version of the system.

For the remainder of this section the Base version of Openwhisk results will be omitted as they were

consistently similar to the Standard operation of our updated version and any conclusions made through

comparing our additional functionality and the base version would be the same as comparing it with the

Standard operation of our version.

5.4.2 Test 2, C-A

For this test, we evaluate our system during the ideal scenario where the user uses the system

lightly before an abundance of similar requests. This work primarily seeks to better the user experience

by allowing him to for a reduced cost better prepare the system for incoming overloading scenarios. To

achieve this ideal scenario the test is subdivided into two sections.

The first is the start-up section where the user lightly uses our system. This is achieved through the

execution of 5 concurrent requests of the action. The second section is the overloading scenario. To

achieve such an overload scenario 20 concurrent requests of the same action are made. The second

set of requests is made 15000 ms (15 seconds) after the first set of requests is made. Jmeter was set

up with two distinct thread groups, one for each set of requests. Where the seconds set has an added

scheduling delay of 15 seconds. The second set of requests is the same between tests and only the

first set is modified to either use or not our newly implemented spreading functionality.

In this test, we seek to observe a faster total execution time for our version as there are expected to

be fewer cold starts for the second set. The results for this test are shown in Table 5.2

average latency median 99% line variance extra invoker calls total time
Base F1 5243 4186 9156 2742 0 24507

Spread F1 2216 655 10379 3377 8 17002
Base F2 14410 12413 24158 6153 0 39009

Spread F2 19821 19524 29214 3802 9 37952
Base F4 29720 29720 41610 10077 0 61223

Spread F4 38330 36376 49497 7653 9 66829

Table 5.2: Reduced colds starts evaluation

For action F1 which is a fast execution action we can see great improvements to the total execution

time. As we can also observe the difference between 99% and median is much higher for the test made

by our additional functionality showing much lower amounts of cold starts while the 99% difference
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between the tests remains very similar meaning the cold starts themselves generated largely the same

latency.

For action F2 we can see slight improvements but due to the nature of delay functions the total

execution time wouldn’t change much since the delay of 5000 ms (5 seconds) is higher than the cold

container start-up. Still, we can see that the system got quite overloaded and many delay functions were

queued up as the average delay was much higher than 5000 ms.

For action F4 we can see major issues in all aspects of the data. This is due to the set-up phase

executions exceeding the 15-second startup, making the overloading section actions queue after the

set-up section actions, which is not ideal. However, we can still observe that the primary culprit for the

additional total execution time is the setup since the variance is much lower and the 99% line is higher.

This test allows us to conclude two aspects. First, if the setup phase of the action is longer than

the execution of the action then the system greatly improves cold start delay impacts during follow-up

overloading scenarios. Second, due to the hardware used to test this system being weak for such par-

allel execution, a concurrent operation such as the start-up of the F3 gets greatly slower. This system

would have to be deployed in a much higher parallel capacity environment for the concurrency issue

to be minimized, as the results of one container execution time got worse if other containers on dif-

ferent invokers were also running, which should be impossible if the system on the scale observed if

the containers/invokers were truly isolated and running in completely separate threads since only the

connection overhead should be noticed and not scale with the execution time of the action.

5.4.3 Test 3, W-A

This test was made within a warm environment. A total of 30 action invocations were made non-

concurrently without made timer between them. This allows us to evaluate if our system is affected

by the type of action executed and any bottlenecks or overhead present within it. In Table 5.3 we can

observe the result of this test.

average latency median 99% line variance invoker calls total time
Base F1 267 195 723 155 0 8140

Spread F1 339 292 699 120 60 10244
Base F4 5655 5579 6358 326 0 169699

Spread F4 8189 7986 9656 754 60 245733
Base F2 5480 5403 6339 216 0 164519

Spread F2 5583 5576 5817 82 60 167596
Base F3 10315 10302 10649 89 0 309507

Spread F3 10681 10541 12417 467 60 320548

Table 5.3: Evaluation of the scheduling delay present

From the results for the tests of F1 and F4, we could see a great difference in total execution time
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and average latency. However, this is hard to be given the association to the scheduling overhead of our

system since it seems to scale with the execution time of the action performed. As for the cold-starts,

99% lines were much slower for the spreading testing when the invokers were untouched with our new

version. We can safely assume that the hardware that the system we tested on was insufficient for

such concurrent operations that spread demands. To attest to this, the test 4 will further evaluate this

phenomenon.

The results for tests of F2 and F3 we can see much closer values since sleep functions are much

more easily made concurrent due to the lack of CPU-intensive operations if a system lacks concurrency

hardware. We can also see a lower deviation for the spreading functionality since it is collecting the

fastest output of the 3 invokers leading to less variance in invoker performance. This allows us to con-

clude that in sleep-like functions where the difference between cold starts and warm starts is smaller

than the sleep amount the spread functionality neither provides tangible benefits nor considerable over-

head.

Also within all results of this test, the number of invoker calls remained the same meaning the system

during spreading operations fully utilized all 3 invokers during all 30 invocations. This is the expected

result but it still servers as confirmation that the system is working as intended.

5.4.4 Test 4, W-A

As shown in the last test there are some doubts if the lack of performance is due to the scheduling

system or simply due to the extra concurrent workload given to the hardware to do. To better test this

doubt we set up the same environment as the last test but added a new set of situations where we

try to simulate the spreading operation using the standard scheduling system through Jmeter. Since

the last test was made with 1 user and 30 requests non-concurrently, we simply adjust the number of

users to 3 and that makes it so that we have 30 non-concurrent sets of 3 concurrent invocations. This

will accurately simulate the number of extra invocations the spreading functionality does plus keep the

total number of invocations made by the system also the same. The values for this test are shown in

Table 5.4.

average latency median 99% line variance invoker calls total time
Base F1 267 195 723 155 0 8140

Spread F1 339 292 699 120 60 10244
Base F1x3 342 288 724 161 0 10133
Base F4 5655 5579 6358 326 0 169699

Spread F4 8189 7986 9656 754 60 245733
Base F4x3 8032 7863 9555 825 0 239233

Table 5.4: Control test to check parallelism capabilities of the scheduler
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As we can safely ascertain from this test, the hardware is unable to take care of concurrent requests

truly isolated from each other. The number of concurrent requests in both the spreading tests and

3 user tests are the same making both demonstrate the same values. This also confirms that our

scheduling system is comparable in execution time given the same conditions, those being 30 requests

of 3 concurrent invocations each. Making our system offer a less expensive version if the user simply

wants the extra invocations into creating warm containers and the company providing the service uses

our utility function to determine its price.

5.4.5 Test 5, W-B

For this test, we redid test 4 using this new hardware. We sought to find if the increased latency

and total execution time found in test 4 were due to the scheduler itself or the hardware being unable to

handle such load. Table 5.5 shows the results for this test.

average latency median 99% line variance invoker calls total time
Base F1 151 149 159 12 0 11655

Spread F1 167 157 233 98 60 12655
Base F1x3 181 133 337 180 0 14095
Base F4 2880 2857 3309 164 0 84625

Spread F4 3372 3213 3654 215 60 102948
Base F4x3 3780 3733 4109 365 0 114158

Table 5.5: Same executions as test 4 but using hardware B

We can still see that Openwhisk degrades with an abundance of requests even with stronger hard-

ware. However, we can see improvements in the Spread functionality compared to the Base x3. Due to

the optimization made where the fastest response from the Invokers is the one the user consumes and

the access to more parallelism functionality from the stronger hardware, we can see a much lower vari-

ance. Since the Base x3 has to receive requests from all of the responses if an Invoker gets overloaded

it will still need to wait for the requests from it while the Spread functionality will simply skip over the

additional requests. This test made it clear that the hardware/scale of the environment required to see

an improvement for the functionality of retrieving the fastest response from all Invokers to offer benefits

is very high. This makes us aware that the system is simply overloaded with parallel requests instead of

the scheduler itself generating the overhead.

5.4.6 Test 6, C-B

Finally, we still wish to see if using stronger hardware still offers an improvement for the main attrac-

tion of the Spread functionality of setting up warm containers for a future abundance of requests for a
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cheaper price. To achieve this we redid test 2 on this stronger hardware and its values are shown in

Table 5.6.

average latency median 99% line variance invoker calls total time
Base F1 1011 236 2366 906 0 17016

Spread F1 607 169 2459 838 9 15236
Base F2 13429 11422 24163 7956 0 38164

Spread F2 18821 17995 29111 3645 10 36346
Base F4 3922 3409 6197 2269 0 21089

Spread F4 3478 2885 5587 2364 10 20560

Table 5.6: Same executions as test 2 but using hardware B

For action F2 we can see that no substantial differences were found between the two hardware as

expected. Maintaining both executions similar since the cold start delay is not very noticeable for a

10-second sleep function, as well as confirming that hardware A while weaker has little issues were

executing sleep function in parallel.

For action F1 the improvement was noticeable in absolute values, meaning the actual total execution

time was lower for this stronger hardware compared to hardware A, however, the relative improvement

was smaller. This is probably due to the warm start and cold start execution time difference being larger

in hardware A.

As for action F4 we can observe an improvement in this new hardware. Due to its greater parallel

computation capabilities the execution times of the setup phase of the test no longer exceed 15000 ms

(15 seconds), allowing the creation of warm containers with no delay on the total execution time. This

allows our scheduling system to show better results while when using hardware A we saw a reduced

efficiency.

5.5 Utility Function Evaluation

While the performance of the extended scheduler is crucial we must also evaluate and analyze how

our utility function and the final cost to the client vary with the use of the Equation (3.1) shown in the

architecture Section 3. The primary values our clients are interested in are how much the latency, total

execution time, and final cost vary when using the new scheduling option. As for the provider, the extra

resources consumed during the operation and the α used for the utility function are the most important

factors. The client would generally want higher latency and total time decrease while paying the least

amount. As for the provider, he would want the least amount of extra resources and the highest α that

the clients would still be paying for the service. Table 5.7 contains all of the previously done relevant

tests and evaluations of the above factors. The values of Latency decrease, Total time decrease, Extra
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resources, and Cost are relative compared between the Base version of the test and our enhanced

schedulers, with the Base version as the absolute value. For example, if our scheduler used a total

of 10 seconds to execute and the Base version 20 seconds instead, then there was a two times (2x)

decrease in total execution time. This is done for easier comparison between extra resources consumed

and improvement. Since using, two times the resources for two times the speed is simpler for clients to

understand instead of twice the resources for half the time.

Table 5.7: Utility evaluation

Test Latency decrease Total time decrease Extra resources α Cost
0.8 1.06x

2− F1 2.37x 1.44x 1.32x 0.6 1.13x
0.4 1.19x
0.8 1.07x

2− F2 0.73x 1.03x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.07x

2− F4 0.76x 0.92x 1.36x 0.6 1.14x
0.4 1.21x
0.8 1.4x

3− F1 0.78x 0.80x 3x 0.6 1.8x
0.4 2.2x
0.8 1.4x

3− F2 0.98x 0.98x 3x 0.6 1.8x
0.4 2.2x
0.8 1.06x

6− F1 1.67x 1.12x 1.36x 0.6 1.14x
0.4 1.19x
0.8 1.08x

6− F2 0.71x 1.05x 1.4x 0.6 1.16x
0.4 1.24x
0.8 1.08x

6− F4 1.13x 1.03x 1.4x 0.6 1.16x
0.4 1.24x

We can observe that our new enhanced scheduler must be used with care and awareness as it is

only beneficial in certain situations. We can see that in the case of an already warm environment such

as test 3, the performance degradation of additional invocations takes quite a heavy toll on the system

and only serves to promote worse performance values across the board. However, we can also observe

that due to the abundance of additional resources used (3 times the amount) the α determined by the

seller can heavily sway the final cost. This will allow unexpected or undesired uses of our scheduler to

be mitigated should the client negotiate with the seller allowing a more positive interaction between the

two.

We can also see that depending on what hardware is used the benefits can vary. Test 2 uses

hardware A while test 6 uses hardware B. F1’s benefit is greater in the weaker hardware A. F2 saw no
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change between hardware, but we can see the latency decrease being an issue while the total execution

time remains largely untouched. On the other hand F4 on hardware A is severely slower in all aspects

being mostly a detriment to the use of the enhanced scheduler while in hardware B we can see some

improvements. While the latency decrease for test 6 action F4 was a small 1.13 times compared to the

real extra resources of 1.4 times more, depending on the α employed by the seller the trade might still

be beneficial for the client. For example, if the α value used was 0.6 then the latency decrease would

equally match the extra cost while maintaining the overall cost of the resources cheaper since the true

cost for the seller would be 1.4 times more. If the α used was 0.8 then it would become beneficial as

long as the client did not prioritize total execution time.

This combination of allowing the client to choose between two options and the modification of the α

used for the seller always provides a two-way negotiation in the case of a measuse of the functionality.

However, if the client is smart then situations such as test 2 action F1 can arise where no matter the

α chosen by the seller the increased performance will always outpace the extra cost, making the extra

resources effectively cheaper for the client.

Figure 5.28: Cost’s behaviour depending on α values

In Figure 5.28, we can see that the knowledge of the type of environment located within the system

can heavily alter how much control the seller has over the final cost of the request. In the cases where

the functionality is used in a cold environment, where it is expected to be used, the leverage presented

to the seller is reduced thus making the use of the functionality more consistent during its expected

environment. In cases where the functionality is misused such as a completely warm environment then

the seller who was probably taken by surprise by the amount of additional resources consumed for little

to no benefit is allowed a lot more leverage to control the final cost.
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5.6 Analysis and Discussion

After all these tests and evaluations, we can observe that the use of our enhanced scheduler needs

attention to a lot more factors than just knowledge of the requested action. Knowing the current state of

the system is important as our enhanced scheduler mainly provides benefits if an action does not have

an already existing warm container within the system. As such only requesting initial requests with the

new spread functionality would be expected to provide the most amount of benefits. Clients should also

be aware of the hardware in which the action is expected to be executed. Weaker hardware might just

be overwhelmed when using CPU-intensive actions and reduce overall performance. However, one can

also take advantage of weaker hardware and abuse its value to have greater relative improvements as

shown in the use of action F1 in tests 2 and 6.

Our enhanced scheduler requires transparency from the seller for the best quality of service. All of

the information of the system state and action spread-ability is easily checked through the use of logs.

Lack of transparency or clarity of the system’s current state may result in the client paying more for less

performance, in the case of a warm environment, leading to less trust from the client.

Our enhanced scheduler is flexible and customizable for both the client and seller. The client can only

incorporate the functionality in the actions it deems valuable and be rewarded. The seller may modify

the α present in the utility function to customize the balance between the profit margins it desires and

client satisfaction.

Finally, our enhanced scheduler easily complements the already existing Apache Openwhisk allow-

ing previous workflows that use the original version to be unaffected in both performance and complexity.

Allowing the seller to easily dictate the number of resources available and increase or decrease them.
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Our work describe the current state of cloud computing’s Function-as-a-Service technology and

some of its key benefits and difficulties. To better understand the common customer concerns and

desires, and to better assess our requirements, we also examined the cutting-edge scheduling and

pricing mechanisms utilized throughout our cloud computing.

We created a scheduler extension architecture that considers user preferences when adjusting

scheduling to provide a higher quality of service to the user. Apache Openwhisk was used to imple-

ment our solution. For over-provisioned system conditions a new functionality that we named “Action-

Spreading” was implemented to allow warm containers to be set up for a reduced cost in preparation

for an influx of requests. For an under-provisioned system state originally we intended to implement a

priority-aware scheduling extension, however throughout the implementation process it exceeded our

expected architectural complexity and we deemed it outside of the scope of this work. Finally, we evalu-

ated our enhanced scheduler through a series of tests.

We concluded that under over-provisioned system conditions, it provided a substantial benefit for the

client with a latency decrease of up to 2.37 times for only a maximum of 30% additional cost. We also

were able to conclude that should the scheduler be used under unforeseen system conditions it allows

for a positive client-seller solution through the use of the proposed utility function management.

6.1 Future work

This work was able to successfully develop an enhanced scheduler that allowed for a better quality

of service for FaaS clients by providing more consumer options that would benefit the client mainly

during over-provisioned server conditions. However, there were some roadblocks and undesired results

discovered throughout the development of this enhanced scheduler.

Some undesired results were ascertained from the “Action-Spreading” functionality such as the lack

of performance during a server state where an abundance of warm containers was available. While

we were able to observe that the primary bottleneck was hardware performance degradation it was an

unsatisfactory result. Perhaps in the future, if we were to be able to have access to more advanced clus-

ters with truly independent machines then we would be able to further test and optimize this scheduler

to have our initial desired results.

One of the primary roadblocks was the unexpected complexity of the priority-aware extension we

initially desired for our enhanced scheduler. To us, the idea of a priority-aware scheduling system is still

a very relevant idea for cloud systems like FaaS even if we were unable to implement it. Since systems

like Apache Openwhisk were made with quickness in mind when initially developed they prioritized tools

that enhanced such traits, for example, Kafka. The effort required to circumvent the original design of

these systems proved to be far greater than initially expected.
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Maybe the development of a complete substitute for Kafka and other similar components that don’t

have priority-aware mechanics in mind specifically for FaaS systems would be a great avenue for future

research in this field.
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A
Code of Project

Listing A.1: Publish function, base Openwhisk

1 override def publish(action: ExecutableWhiskActionMetaData,

2 msg: ActivationMessage)(

3 implicit transid: TransactionId):

4 Future[Future[Either[ActivationId, WhiskActivation]]] = {

5 val isBlackboxInvocation = action.exec.pull

6

7 val actionType = if (!isBlackboxInvocation) "managed" else "blackbox"

8

9 val (invokersToUse, stepSizes) =

10 if (!isBlackboxInvocation) (

11 schedulingState.managedInvokers, schedulingState.managedStepSizes)

12 else (schedulingState.blackboxInvokers, schedulingState.blackboxStepSizes)

13
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14 val chosen = if (invokersToUse.nonEmpty) {

15 val hash =

16 ShardingContainerPoolBalancer.generateHash(

17 msg.user.namespace.name, action.fullyQualifiedName(false))

18 val homeInvoker = hash % invokersToUse.size

19

20 val stepSize = stepSizes(hash % stepSizes.size)

21

22 val invoker: Option[(InvokerInstanceId, Boolean)] =

23 ShardingContainerPoolBalancer.schedule(

24 action.limits.concurrency.maxConcurrent,

25 action.fullyQualifiedName(true),

26 invokersToUse,

27 schedulingState.invokerSlots,

28 action.limits.memory.megabytes,

29 homeInvoker,

30 stepSize)

31 invoker.foreach {

32 case ( , true) =>

33 val metric =

34 if (isBlackboxInvocation)

35 LoggingMarkers.BLACKBOX SYSTEM OVERLOAD

36 else

37 LoggingMarkers.MANAGED SYSTEM OVERLOAD

38 MetricEmitter.emitCounterMetric(metric)

39 case =>

40 }

41 invoker.map( . 1)

42 } else {

43 None

44 }

45

46 chosen

47 .map { invoker =>

48 val memoryLimit = action.limits.memory

49 val memoryLimitInfo = if (memoryLimit == MemoryLimit())

50 {"std" } else { "non-std" }

51 val timeLimit = action.limits.timeout
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52 val timeLimitInfo = if (timeLimit == TimeLimit())

53 { "std" } else { "non-std" }

54 val activationResult = setupActivation(msg, action, invoker)

55 sendActivationToInvoker(messageProducer, msg, invoker).map(

56 =>activationResult)

57 }

58 .getOrElse {

59 val invokerStates = invokersToUse.foldLeft(

60 Map.empty[InvokerState, Int]) {

61 (agg, curr) =>

62 val count = agg.getOrElse(curr.status, 0) + 1

63 agg + (curr.status -> count)

64 }

65 Future.failed(LoadBalancerException("No invokers available"))

66 }

67 }

Listing A.2: Publish function, updated Openwhisk

1 override def publish(action: ExecutableWhiskActionMetaData,

2 msg: ActivationMessage)(

3 implicit transid: TransactionId):

4 Future[Future[Either[ActivationId, WhiskActivation]]] = {

5

6 val isBlackboxInvocation = action.exec.pull

7 val actionType = if (!isBlackboxInvocation) "managed" else "blackbox"

8 val (invokersToUse, stepSizes) =

9 if (!isBlackboxInvocation) (

10 schedulingState.managedInvokers, schedulingState.managedStepSizes)

11 else (schedulingState.blackboxInvokers, schedulingState.blackboxStepSizes)

12 var spreadInvokers: Option[List[InvokerInstanceId]] = None

13

14 logging.info(

15 this,

16 s"Action name is ${action.fullyQualifiedName(true).name.toString()}"

17 )

18

19 val willSpread: Boolean =
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20 action.fullyQualifiedName(true).name.toString().startsWith("SPREAD ")

21

22 val chosen = if (invokersToUse.nonEmpty) {

23 val hash =

24 ShardingContainerPoolBalancer.generateHash(

25 msg.user.namespace.name, action.fullyQualifiedName(false))

26

27 val homeInvoker = hash % invokersToUse.size

28

29 val homeInvokerId = invokersToUse(homeInvoker)

30

31 val stepSize = stepSizes(hash % stepSizes.size)

32

33 val invokers: Option[(InvokerInstanceId,Boolean,List[InvokerInstanceId])] =

34 ShardingContainerPoolBalancer.ScheduleAndSpread(

35 action.limits.concurrency.maxConcurrent,

36 action.fullyQualifiedName(true),

37 invokersToUse,

38 schedulingState.invokerSlots,

39 action.limits.memory.megabytes,

40 homeInvoker,

41 stepSize,

42 willSpread)

43

44 invokers.foreach {

45 case ( , true, ) =>

46 val metric =

47 if (isBlackboxInvocation)

48 LoggingMarkers.BLACKBOX SYSTEM OVERLOAD

49 else

50 LoggingMarkers.MANAGED SYSTEM OVERLOAD

51 MetricEmitter.emitCounterMetric(metric)

52 case =>

53 }

54 spreadInvokers = invokers.map( . 3)

55 invokers.map( . 1)

56 } else {

57 None
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58 }

59

60

61 val numInvokersSpread: Int = spreadInvokers match {

62 case Some(list) => list.size

63 case None => 0

64 }

65

66 logging.info(

67 this,

68 s"Going to scheduler to ${chosen} and ${spreadInvokers}

69 invokers for a total extra invokers of ${numInvokersSpread}"

70 )

71 spreadInvokers

72 .map { invokerList =>

73 invokerList

74 .map { invoker =>

75 val memoryLimit = action.limits.memory

76 val memoryLimitInfo = if (memoryLimit == MemoryLimit())

77 "std" else "non-std"

78 val timeLimit = action.limits.timeout

79 val timeLimitInfo =

80 if (timeLimit == TimeLimit()) "std" else "non-std"

81

82 val activationResult = setupActivation(msg, action, invoker)

83 sendActivationToInvoker(

84 messageProducer, msg, invoker).map( => activationResult)

85 }

86 }

87

88

89 chosen

90 .map { invoker =>

91 val memoryLimit = action.limits.memory

92 val memoryLimitInfo =

93 if (memoryLimit == MemoryLimit()) { "std" } else { "non-std" }

94 val timeLimit = action.limits.timeout

95 val timeLimitInfo =
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96 if (timeLimit == TimeLimit()) { "std" } else { "non-std" }

97 logging.info(

98 this,

99 s"scheduled chosen ${chosen}, activation ${msg.activationId},

100 action '${msg.action.asString}' ($actionType),

101 ns '${msg.user.namespace.name.asString}',

102 mem limit ${memoryLimit.megabytes} MB (${memoryLimitInfo}),

103 time limit ${timeLimit.duration.toMillis} ms

104 (${timeLimitInfo}) to ${invoker}")

105 val activationResult = setupActivation(msg, action, invoker)

106 sendActivationToInvoker(

107 messageProducer, msg, invoker).map( => activationResult)

108 }

109 .getOrElse {

110 // report the state of all invokers

111

112 val invokerStates =

113 invokersToUse.foldLeft(Map.empty[InvokerState, Int]) { (agg, curr) =>

114 val count = agg.getOrElse(curr.status, 0) + 1

115 agg + (curr.status -> count)

116 }

117

118 logging.error(

119 this,

120 s"failed to schedule activation ${msg.activationId},

121 action '${msg.action.asString}' ($actionType),

122 ns '${msg.user.namespace.name.asString}'

123 - invokers to use: $invokerStates")

124 Future.failed(LoadBalancerException("No invokers available"))

125 }

126 }

Listing A.3: Schedule function, base Openwhisk

1 def schedule(

2 maxConcurrent: Int,

3 fqn: FullyQualifiedEntityName,

4 invokers: IndexedSeq[InvokerHealth],
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5 dispatched: IndexedSeq[NestedSemaphore[FullyQualifiedEntityName]],

6 slots: Int,

7 index: Int,

8 step: Int,

9 stepsDone: Int = 0)(

10 implicit logging: Logging, transId: TransactionId):

11 Option[(InvokerInstanceId, Boolean)] = {

12 val numInvokers = invokers.size

13

14 if (numInvokers > 0) {

15 val invoker = invokers(index)

16 if (invoker.status.isUsable &&

17 dispatched(invoker.id.toInt).tryAcquireConcurrent(

18 fqn, maxConcurrent, slots)) {

19 Some(invoker.id, false)

20 } else {

21 if (stepsDone == numInvokers + 1) {

22 val healthyInvokers = invokers.filter( .status.isUsable)

23 if (healthyInvokers.nonEmpty) {

24 val random =

25 healthyInvokers(ThreadLocalRandom.current().nextInt(

26 healthyInvokers.size)).id

27 dispatched(random.toInt).forceAcquireConcurrent(

28 fqn, maxConcurrent, slots)

29 Some(random, true)

30 } else {

31 None

32 }

33 } else {

34 val newIndex = (index + step) % numInvokers

35 schedule(maxConcurrent, fqn, invokers, dispatched,

36 slots, newIndex, step, stepsDone + 1)

37 }

38 }

39 } else {

40 None

41 }

42 }
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Listing A.4: ScheduleAndSpread function, updated Openwhisk

1 @tailrec

2 def ScheduleAndSpread(

3 maxConcurrent: Int,

4 fqn: FullyQualifiedEntityName,

5 invokers: IndexedSeq[InvokerHealth],

6 dispatched: IndexedSeq[NestedSemaphore[FullyQualifiedEntityName]],

7 slots: Int,

8 index: Int,

9 step: Int,

10 homeInvoker: Int,

11 stepsDone: Int = 0,

12 finalList: List[InvokerInstanceId] = Nil,

13 chosenInvoker: Int = -1)(implicit logging: Logging, transId: TransactionId):

14 Option[(InvokerInstanceId, Boolean, List[InvokerInstanceId])] = {

15 val numInvokers = invokers.size

16

17 val invoker = invokers(index)

18

19 if (stepsDone == numInvokers) {

20 if (chosenInvoker == -1){

21 val healthyInvokers = invokers.filter( .status.isUsable)

22 if (healthyInvokers.nonEmpty) {

23 // Choose a healthy invoker randomly

24 val random = healthyInvokers(ThreadLocalRandom.current().nextInt(

25 healthyInvokers.size)).id

26 dispatched(random.toInt).forceAcquireConcurrent(

27 fqn, maxConcurrent, slots)

28 Some(random, true, finalList)

29 } else {

30 None

31 }

32 } else {

33 Some(invokers(chosenInvoker).id, false, finalList.reverse)

34 }

35

36 } else {

37 if (invoker.status.isUsable &&
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38 dispatched(invoker.id.toInt).tryAcquireConcurrent(

39 fqn, maxConcurrent, slots)) {

40 val newIndex = (index + step) % numInvokers

41 if (chosenInvoker == -1) {

42 ScheduleAndSpread(maxConcurrent, fqn, invokers,dispatched,

43 slots, newIndex, step, homeInvoker, stepsDone + 1,

44 finalList, invoker.id.toInt)

45 } else {

46 ScheduleAndSpread(maxConcurrent, fqn, invokers, dispatched,

47 slots, newIndex, step, homeInvoker, stepsDone + 1,

48 invoker.id :: finalList, chosenInvoker)

49 }

50 } else {

51 val newIndex = (index + step) % numInvokers

52 ScheduleAndSpread(maxConcurrent, fqn, invokers, dispatched,

53 slots, newIndex, step, homeInvoker, stepsDone + 1,

54 finalList, chosenInvoker)

55 }

56 }

Listing A.5: Python code to calculate the number of additional invocations

1 import re

2

3 filename = '/home/henrique/tmp/openwhisk/controller/logs/controller-

4 local logs.log' # Replace with the actual file name

5

6 pattern = r'invokers for a total extra invokers of (\d+)'

7

8 total sum = 0

9

10 with open(filename, 'r') as file:

11 for line in file:

12 match = re.search(pattern, line)

13 if match:

14 y value = int(match.group(1))

15 total sum += y value

16
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17 print(f"Total sum of Y values: {total sum}")

Listing A.6: Setup function for CommonLoadBalancer, updated Openwhisk

1 protected def setupActivation(msg: ActivationMessage,

2 action: ExecutableWhiskActionMetaData,

3 instance: InvokerInstanceId):

4 Future[Either[ActivationId, WhiskActivation]] = {

5

6 totalActivations.increment()

7 val isBlackboxInvocation = action.exec.pull

8 val totalActivationMemory =

9 if (isBlackboxInvocation) totalBlackBoxActivationMemory else

10 totalManagedActivationMemory

11 totalActivationMemory.add(action.limits.memory.megabytes)

12

13 activationsPerNamespace.getOrElseUpdate(msg.user.namespace.uuid,

14 new LongAdder()).increment()

15 activationsPerController.getOrElseUpdate(controllerInstance,

16 new LongAdder()).increment()

17 activationsPerInvoker

18 .getOrElseUpdate(InvokerInstanceId(instance.instance,

19 userMemory = 0.MB), new LongAdder())

20 .increment()

21 val completionAckTimeout =

22 calculateCompletionAckTimeout(action.limits.timeout.duration)

23

24 val resultPromise = if (msg.blocking) {

25 activationPromises.getOrElseUpdate(msg.activationId,

26 Promise[Either[ActivationId, WhiskActivation]]()).future

27 } else Future.successful(Left(msg.activationId))

28

29 // Adjusted section

30 if (activationSlots.contains(msg.activationId)) {

31 val existingEntry = activationSlots(msg.activationId)

32 val updatedInstance = existingEntry.invokers + 1

33 val updatedEntry = existingEntry.copy(invokers = updatedInstance)

34 activationSlots.update(msg.activationId, updatedEntry)
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35 } else {

36 activationSlots.getOrElseUpdate(

37 msg.activationId, {

38 val timeoutHandler =

39 actorSystem.scheduler.scheduleOnce(completionAckTimeout) {

40 processCompletion(msg.activationId, msg.transid, forced = true,

41 isSystemError = false, instance = instance)

42 }

43 ActivationEntry(

44 msg.activationId,

45 msg.user.namespace.uuid,

46 1,

47 action.limits.memory.megabytes.MB,

48 action.limits.timeout.duration,

49 action.limits.concurrency.maxConcurrent,

50 action.fullyQualifiedName(true),

51 timeoutHandler,

52 isBlackboxInvocation,

53 msg.blocking,

54 controllerInstance)

55 })

56 }

57 resultPromise

58 }

Listing A.7: ProcessCompletion function for CommonLoadBalancer, updated Openwhisk

1

2 /** 6. Process the completion ack and update the state */

3 protected[loadBalancer] def processCompletion(aid: ActivationId,

4 tid: TransactionId,

5 forced: Boolean,

6 isSystemError: Boolean,

7 instance: InstanceId): Unit = {

8

9 val invoker = instance match {

10 case i: InvokerInstanceId => Some(i)

11 case => None
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12 }

13

14 val invocationResult = if (forced) {

15 InvocationFinishedResult.Timeout

16 } else {

17 if (isSystemError) {

18 InvocationFinishedResult.SystemError

19 } else {

20 InvocationFinishedResult.Success

21 }

22 }

23

24 activationSlots.get(aid) match {

25 case Some(entry) =>

26

27 if (entry.invokers > 1) {

28 val existingEntry = activationSlots(aid)

29 val updatedInstance = existingEntry.invokers - 1

30 val updatedEntry = existingEntry.copy(invokers = updatedInstance)

31 activationSlots.update(aid, updatedEntry)

32 } else {

33 activationSlots.remove(aid)

34 }

35 totalActivations.decrement()

36 val totalActivationMemory =

37 if (entry.isBlackbox)

38 totalBlackBoxActivationMemory else totalManagedActivationMemory

39 totalActivationMemory.add(entry.memoryLimit.toMB * (-1))

40 activationsPerNamespace.get(entry.namespaceId).foreach( .decrement())

41 activationsPerController.get(entry.controllerId).foreach( .decrement())

42

43 invoker.foreach{ inv =>

44 activationsPerInvoker

45 .get(InvokerInstanceId(inv.instance, userMemory = 0.MB))

46 .foreach( .decrement())

47 }

48 invoker.foreach(releaseInvoker( , entry))

49
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50 if (!forced) {

51 entry.timeoutHandler.cancel()

52 logging.info(this,

53 s"received completion ack for '$aid' from invoker $invoker,

54 system error=$isSystemError")(tid)

55 MetricEmitter.emitCounterMetric(LOADBALANCER COMPLETION ACK REGULAR)

56 } else {

57 activationPromises

58 .remove(aid)

59 .foreach( .tryFailure(new Throwable(

60 "no completion or active ack received yet")))

61 val actionType = if (entry.isBlackbox) "blackbox" else "managed"

62 val blockingType = if (entry.isBlocking) "blocking" else "non-blocking"

63 val completionAckTimeout =

64 calculateCompletionAckTimeout(entry.timeLimit)

65 logging.warn(

66 this,

67 s"forced completion ack for '$aid',

68 action '${entry.fullyQualifiedEntityName}' ($actionType),

69 $blockingType, mem limit ${entry.memoryLimit.toMB} MB,

70 time limit ${entry.timeLimit.toMillis} ms,

71 completion ack timeout $completionAckTimeout from $instance")(

72 tid)

73 MetricEmitter.emitCounterMetric(LOADBALANCER COMPLETION ACK FORCED)

74 }

75 invoker.foreach(

76 invokerPool ! InvocationFinishedMessage( , invocationResult))

77 case None if tid == TransactionId.invokerHealth =>

78 activationSlots.remove(aid)

79 logging.info(this,

80 s"received completion ack for health action on $instance")(tid)

81 MetricEmitter.emitCounterMetric(LOADBALANCER COMPLETION ACK HEALTHCHECK)

82 invoker.foreach(

83 invokerPool ! InvocationFinishedMessage( , invocationResult))

84 case None if !forced =>

85 activationSlots.remove(aid)

86 logging.warn(

87 this,

99



88 s"received completion ack for '$aid' from $instance which has no entry,

89 system error=$isSystemError")(tid)

90

91 MetricEmitter.emitCounterMetric(

92 LOADBALANCER COMPLETION ACK REGULAR AFTER FORCED)

93 case None =>

94 activationSlots.remove(aid)

95 logging.debug(this,

96 s"forced completion ack for '$aid' which has no entry")(tid)

97 MetricEmitter.emitCounterMetric(

98 LOADBALANCER COMPLETION ACK FORCED AFTER REGULAR)

99 }

100 }
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