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Abstract
To ensure the privacy of their data when stored in the cloud,
users can choose to encrypt files before exporting them. Un-
fortunately, without additional mechanisms, encrypted data
storage makes it impossible to implement server-side dedu-
plication techniques, as two identical files will have different
encrypted versions. In this thesis, we address the problem of
reconciling the need to encrypt data with the advantages of
deduplication. In particular, we study techniques that achieve
this objective while avoiding frequency analysis attacks, i.e.,
attacks that infer the content of an encrypted file based on
how frequently the file is stored and/or accessed. We propose
a new protocol for assigning encryption keys to files that
leverages the use of trusted execution environments to hide
the frequency of chunks from the adversary.

1 Introduction
The use of cloud storage systems is now ubiquitous and has
numerous advantages, but on the other hand, it can compro-
mise data privacy of customers in the face of curious operators.
One way to get around this limitation consists of encrypting
the data before exporting it to the cloud. Unfortunately, this
may prevent the Storage Service (SS) from applying mech-
anisms that significantly reduce the resources required to
provide the service, such as deduplication mechanisms.

Deduplication is a technique that allows a storage provider
to identify duplicated files (or chunks of these files) and there-
fore, avoid storing too many copies of the same content, by
deleting some redundant copies. Such a technique can obtain
significant savings in storage cost, since it was experimentally
verified that in systems that store large amounts of data from
several users, such as Dropbox [1] and Google Drive [2], it is
possible to find large amounts of repeated data. Unfortunately,
it is difficult to apply deduplication to encrypted data. If users
encrypt their data before storing it and use different keys to
perform the encryption, the same chunk will produce differ-
ent cryptograms. This makes the storage provider unable to
identify which data is redundant, preventing deduplication.

Encrypted deduplication is the name given to techniques
that combine file encryption and data deduplication. This
combination usually requires some form of direct or indirect
coordination between the different clients. The challenge
is to carry out this coordination in an efficient manner that

allows for the preservation of the privacy of the information
stored by each user. A potential vulnerability of encrypted
deduplication techniques is exposure to frequency analysis
attacks. A frequency analysis attack allows storage providers
to infer which content is encrypted by observing how often it
is accessed.

Recent work takes advantage of Trusted Execution Envi-
ronment (TEE) to increase the performance and security of
encrypted deduplication systems [3, 4], in this document, we
follow the same path.

We present FH-Dedup, a tunable encrypted deduplication
system that leverages TEE to perform sensitive cryptographic
operations and keep track of the frequency of all chunks. This
data is stored in a frequency table (cache) internal to the
TEE and in a larger encrypted table stored in an untrusted
environment. We are the first to offer full privacy protection
while achieving exact deduplication. We name our system
FH-Dedup since we provide secure deduplication through
Frequency Hiding. We propose techniques to protect the vul-
nerable external table stored outside the TEE. Additionally,
our proposed protocol allows clients to read their files with-
out requiring interaction with the TEE, offering an increased
performance on reading operations, more than 5x faster.

The rest of the document is organized as follows: Section
2 introduces the main concepts relevant to our work and Sec-
tion 3 describes the main techniques to implement encrypted
deduplication. Section 4 describes the system architecture
and implementation, and Section 5 shows our evaluation of
the system. Finally, Section 6 concludes the document and
highlights directions for future work.

2 Background
This section introduces concepts relevant to our work. We
start by introducing deduplication (2.1) and encrypted dedu-
plication (2.2), then we present the main attack against en-
crypted deduplication (2.3), we also present present secure
mediation (2.4), and finally, we introduce TEEs, and their
security mechanisms and properties (2.5).

2.1 Deduplication
Deduplication is a technique that allows the storage space
needed to store large sets of data to be reduced by identifying
duplicate content. We consider deduplication of equal-sized
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chunks of files, not complete files. When a client wants to
store a file, the system divides the file into chunks. Then, the
storage service checks whether each of these chunks have
already been stored (by the same client or another). If so, stor-
ing a new replica set of that chunk is avoided. Studies show
that deduplication can generate significant storage savings in
a production environment, for example, savings of 50% on
primary storage [5] and up to 98% on backup storage [6].

2.2 Encrypted Deduplication
When customers encrypt data before storing it, opportuni-
ties to perform deduplication can be drastically reduced. The
reason is that if two clients store the same file/chunk, the
ciphertext will be different. Encrypted deduplication is a class
of techniques that aims to reconcile file encryption with dedu-
plication. Most of these techniques are based on mechanisms
that allow clients to coordinate, implicitly or explicitly, to
choose the same keys to encrypt the same files, and in this
way guarantee that chunks with the same content result in the
same ciphertext. One of the possible techniques to achieve
this end is Message-Locked Encryption (MLE) [7] that deter-
ministically derives the encryption key from the data content,
normally through a cryptographic function of hash (e.g., SHA-
2) applied to the chunk content. However, MLE has several
limitations. In particular, if a malicious storage provider has
access to a given content, it can generate the corresponding
ciphertext and then identify the clients that have this content,
breaking the client’s privacy.

2.3 Frequency Analysis
Unfortunately, encrypting the contents of files may not be
enough to ensure the privacy of the contents stored by a given
user. Another vulnerability can be exploited if an attacker
knows the frequency in which certain content appears in a
dataset, as it can correlate this value with the frequency with
which a ciphertext is submitted for storage and infer relation-
ships between the ciphertexts and their original content. Some
encrypted deduplication techniques, such as MLE, suffer from
this vulnerability: as a given content is always encrypted with
the same key, the ciphertext frequency is exactly the same as
the original content. That is, MLE preserves opportunities to
apply deduplication, but does not offer any protection against
frequency analysis attacks.

2.4 Secure Mediation
A way to achieve encrypted deduplication and prevent fre-
quency analysis consists of resorting to a trusted entity, the
secure mediator, that coordinates the allocation of content-
encryption keys. Whenever clients need to encrypt a file,
clients contact a secure intermediary, who is responsible for
indicating which key must be used to encrypt each chunk.
Given multiple copies of the same content, the choice of keys
by the mediator allows separating these copies into different
sets, within each set, the copies are encrypted with a given
key (enabling deduplication), and each set uses a different
key (avoiding frequency analysis). Trust in the mediator can

be achieved using cryptographic techniques and/or secure
hardware.

2.5 Trusted Execution Environments
A TEE is a secure mode of the CPU that allows one to run
code and store data isolated from the operating system and
user-level processes. Enclaves are trusted execution environ-
ments that are available on many common Intel CPUs; they
are provided by an architecture called Intel Software Guard
Extensions (SGX) [8], which uses hardware mechanisms such
as hardware secrets, remote attestation, sealed storage and
memory cypher. The use of enclaves is one of the possible
techniques to realize secure mediators in encrypted dedupli-
cation systems.

The enclave relies on a hardware-protected memory region
called Enclave Page Cache (EPC) to host protected code and
data. An EPC comprises 4 KB pages, and any application
in the enclave can use up to 128 MB. If an enclave is larger
than EPC, it encrypts unused pages and transfers them to un-
protected memory, suffering a performance penalty [9]. SGX
provides two interfaces: ECALLs, used by an application to
invoke enclave functionality, and OCALLs, used by enclave
code to access an external application.

3 Related Work
In the literature, it is possible to find several proposals for
secure mediators to facilitate encrypted deduplication.

Duplicateless Encryption for Simple Storage (DupLESS) [10]
uses a dedicated server to assign encryption keys to chunks.
Its operation is inspired by MLE since the encryption key
depends on the hash of the chunk. However, unlike basic
MLE, the encryption key also depends on a secret known
only to the mediator. This prevents the storage server from
knowing which ciphertext is associated with a given content.
Trust in the mediator is achieved through cryptographic pro-
tocols, based on oblivious pseudo-random functions [11] and
blind RSA signatures [12–14], which ensures that the server
cannot extract the hash of the chunk and that the client can
only extract the cipher key.

Tunable Encrypted Deduplication (TED) [15] uses a simi-
lar architecture, but adds mechanisms to control the number
of times a given content is encrypted with the same key. For
this purpose, the mediator keeps a record of how many times
the same key has already been assigned to a given chunk,
changing the key when necessary.

The use of trusted execution environments to run the me-
diator avoids the use of complex cryptographic algorithms
to ensure trust in the mediator, which is assured directly by
the hardware. In particular, the attestation mechanisms allow
clients to confirm which code is being executed by the media-
tor, and the rest of the enclave’s security mechanisms ensure
that the mediator’s execution is protected.

SGXDedup [4] is a variant of DupLESS that uses SGX
to avoid the heavier cryptographic protocols of DupLESS.
Despite introducing several improvements over DupLESS,
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SGXDedup suffers from the same vulnerabilities as the sys-
tem on which it was based, in particular with regard to fre-
quency analysis attacks.

SGX Enabled Secure Deduplication (S2Dedup) [3] is also
based on TEEs, but keeps a table with the frequencies of
chunks inside the enclave, in order to ensure that a key is not
reused more than a predetermined number of times for the
same content. A limitation of S2Dedup is that, due to the lim-
ited memory of the enclave, it cannot keep a complete history
of the access frequency of all objects. In this way, it is forced
to reset its frequency table, changing keys more often than
strictly necessary, limiting the efficiency of deduplication.

4 FH-Dedup
This section describes the architecture and implementation
of FH-Dedup. Our system is inspired by previous work and
is based on the realization of a secure mediator, running in a
server enclave.

4.1 Threat Model
We make the following assumptions:

1. The integrity and confidentiality of the data sent through
the communication channel between the client and
server are protected by the use of cryptographic op-
erations;

2. Communication between the client and the enclave is
secure;

3. There is no collusion between the client and the storage
server;

4. The recipe files (explained in more detail ahead) are
stored securely, as they are protected with the client’s
key;

5. The enclave guarantees confidentiality and integrity of
the code and data held therein.

We consider an honest but curious attacker, that is, one
who does not change the system protocol but who has access
to a set of auxiliary data and observes the access frequency
distribution of the hashes of the chunks.

This attacker aims to identify the original content of en-
crypted chunks on the server by observing the accesses in the
server (comparing the frequency of accesses of a given entry
to the frequency of a given chunk hash), the accesses to the
data itself, and the accesses to the metadata of the system,
specifically the entry point for the encrypted table stored in
the untrusted area on the server (presented in the following
paragraphs).

4.2 Components and Interactions
The architecture of FH-Dedup can be seen in Figure 1. It
has 3 main components: Clients, which hold the chunks (in
plaintext) that will be later sent and stored in the server. The
Server (or SS), which contain the encrypted data of the clients,
and the Enclave that runs in the server.

Similarly to the related work, we consider that clients can
write and read their data as they wish. This is done by estab-
lishing a secure connection with the enclave present on the
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Figure 1. FH-Dedup server access protocol and components

SS, which is responsible for encrypting the data and placing
it in encrypted storage. The enclave will choose the key to
encrypt the data, taking into account the frequency of each of
the chunks. Next, we describe the operations of sending and
reading a file on FH-Dedup.

The data write/send operation is represented in Figure 1a.
A client who wants to send a file F, first divides the file into
several chunks, and builds a recipe file based on the order
of the chunks in the file. The size of the chunks is a system-
wide constant, e.g., 4KB. The client then encrypts the recipe
file with the client key Kc (unique per client) and sends it
to the storage server. The client then sends all the chunks
and the client key, through the secure communication chan-
nel with the enclave. The enclave generates a key for each
chunk based on its frequency, a parameter t that indicates the
maximum number of equal copies that can be encrypted with
the same key, and a secret known only to the enclave, and
encrypts each chunk with its respective key. After generat-
ing all cryptograms, the enclave builds a key recipe, which
contains the keys for all the chunks that were encrypted. The
enclave encrypts this recipe with the client key Kc, and stores
the encrypted chunks and the encrypted recipe file in the SS.

To read a file (see Figure 1b), a client retrieves the en-
crypted file recipe and the encrypted key recipe from the
storage system, as well as the encrypted chunks. Then it de-
crypts the recipe files with the Kc client key. Finally, the client
decrypts each encrypted chunk using the respective key and
reconstructs the file based on the file recipe.

To prevent frequency attacks, it is necessary to store a
cache in the enclave with the frequency of each chunk, that is,
the number of times it has already been written. Due to the
memory limit of the enclaves (128 MB) [16], it is not possible
to store the frequency of all chunks within the enclave cache,
e.g., using SHA-256 it is possible to obtain 2256 different
hashes.
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With 100MB available for the enclave cache, it is only
possible to store approximately 2M entries in the enclave,
as each entry occupies 42 bytes (including the hash, a fre-
quency counter, and a reference to the respective entry in the
frequency table). In real storage systems, these 2M entries
can represent 5% of the number of existing chunks.

This type of cache was already present in S2Dedup [3], but,
in that system, when the enclave memory limit is reached,
the table is reset, preventing the use of deduplication for the
chunks from which information was lost. To overcome this
problem, our system maintains the frequency of all chunks
even when the memory limit of the enclave is reached. The
server contains a second encrypted frequency table, outside
the enclave, whose contents can only be deciphered by the
enclave. The enclave will consult this table (as seen in Figure
1a) when the maximum memory is reached and it is not
possible to store the frequency of new chunks. A problem
that can arise when using a table in an untrusted zone is
that the server can observe the access of the enclave to the
entries of this table, and thus also infer the contents through
the frequency of accesses [17]. To mitigate this problem,
our solution includes a new component within the enclave,
called Access Manager. This component implements access
dispersion policies and cache eviction policies to mask the
frequency of accesses to each entry.

4.3 Fault Tolerance
Since our system was designed for cloud storage, failures
in data centers may affect the functioning of our system. In
our design, some information is directly dependent on the
enclave and can be lost if the enclave fails. In such a situation,
clients would continue to be able to read their data, as reads
do not depend on interactions with the the enclave. However,
our frequency cache and the secret key used to encrypt the
external table would become unavailable. A possible solution
is to synchronize multiple enclaves to maintain a copy of
this secret key and also replicate the frequency table. The
synchronization of this table may not be trivial, since the
frequencies may diverge during some time period resulting
in different choices for when to perform deduplication inside
the enclave.

4.4 Privacy Guarantees
To quantify the level of privacy that our Access Manager
component is able to offer to our table in the untrusted zone,
we decided to follow a variant of the privacy preservation
criterion used in PraDa [18], called 𝛼-privacy. This criterion
ensures that there are always at least 1

𝛼
chunks with the same

frequency. In our work, we consider a generalization of this
criterion, called (𝛼, 𝛿)-privacy, which ensures that, given a
chunk accessed with a frequency f, there are always at least
1
𝛼

chunks that are accessed with a frequency in the interval
[𝑓 − 𝛿, 𝑓 + 𝛿]. Note that when 𝛿 = 0 the (𝛼, 𝛿)-privacy is
equivalent to 𝛼-privacy.

Figure 2 shows an example of the frequency distribution of
a data set; this data set contains 5 chunks, some of the chunks
share the same frequencies, while others do not.
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Figure 2. Example dataset frequency distribution.

When applying our criterion with 𝛿 = 0, the value is 1
𝛼

equals 1, since for each chunk, there is at most 1 chunk with
a difference of 0 in frequency. When 𝛿 = 1, 1

𝛼
is equal to 2,

since there are at most 2 chunks with a max difference of 1 in
frequency. And with 𝛿 = 2, 1

𝛼
is equal to 5, since all chunks

have a maximum difference of 2 in frequency.
This generalization allows for capturing scenarios where

the frequency of a given chunk cannot be accurately esti-
mated.

4.5 Implementation
In this section, we present the implementation of FH-Dedup.
We start by discussing the technologies used to develop our
prototype, then we move to the implementation details of
the write and read operations, and finally we discuss the
implementation of the Access Manager component.

4.5.1 Technologies. Our prototype is based on the S2Dedup
code base. This simplified the development and let us focus
on the most important aspects of our solution. The prototype
is implemented in C and takes advantage of both Intel SGX
and the user space Software Performance Development Kit
(SPDK) [19, 20], a framework that provides a set of tools and
libraries for writing high-performance, scalable, user-mode
storage applications.

Our deduplication engine is also implemented as an SPDK
virtual block device. It intercepts incoming block I/O requests,
performs secure deduplication with user-specified fixed chunk
size, and then forwards the request to an NVMe block device
or another virtual processing layer depending on the target
SPDK deployment. Using NVMe drivers in SPDK is valuable
since it provides zero-copy, highly parallel access directly to
an SSD from a user-space application.

These requests eventually reach the NVMe driver and stor-
age device, unless intermediate processing removes such a
need (for example, repeated writes). In addition, SPDK pro-
vides a set of storage protocols that can be stacked on top of
the block device abstraction layer. Among them, our work
is also implemented using Internet Small Computer System
Interface (iSCSI) targets, allowing clients to remotely access
storage servers.
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4.5.2 Write Operations. When a client wishes to write
data to the remote storage server, it begins the process by en-
crypting each chunk with a key established between the client
and the enclave, using a symmetric encryption scheme, in
this case, the standard AES scheme with 256-bit keys in XTS
mode. XTS was designed as a more robust alternative to other
available block cipher modes such as CBC. We choose it be-
cause it is a length-preserving scheme (i.e., the ciphertext has
the same length as the plaintext), and does not apply chaining,
thus supporting random access to encrypted data [21]. We
encrypt the data to protect it against attackers eavesdropping
on the communication channels.

Next, the encrypted data is sent over the network through
the iSCSI protocol. The server sends the data to the enclave,
which will first decipher the data with the shared key with
the client. It will then generate the chunk encryption key
using TED’s probabilistic scheme, using both the enclave
secret and the chunk frequency. The frequency of a chunk can
be obtained from the enclave cache or by using the Access
Manager component, with the policies that we describe below.
After generating the key and encrypting the data, the enclave
writes the data directly to storage. The enclave also encrypts
the chunk encryption key with the shared client key; in order
to decrypt the chunk later, this encrypted key is stored inside
the server also.

4.5.3 Read Operations. When the client retrieves data from
the remote server, the server will fetch the encrypted chunks
and send them back to the client. For each encrypted chunk,
the client will contact the server to retrieve the key (in en-
crypted form) to decipher the chunk. The client decrypts the
key with its shared client key and with the resulting key de-
crypts the data. This way the enclave is not present in the
read operations and no re-encryption of data is done as in
S2Dedup. The read performance comparison between our
solution and S2Dedup is also present in Section 5.

4.5.4 Access Dispersion Policies. As mentioned in the pre-
vious section, our strategy to prevent frequency analysis at-
tacks lies in the Access Manager mediating the interaction
between the frequency cache residing in the enclave and the
encrypted frequency table stored outside the enclave. Its op-
eration is based on the combination of an access dispersion
mechanism that is applied whenever the enclave accesses the
encrypted frequency table that is in the untrusted zone, and a
cache eviction mechanism, which is used to replace entries
in the cache when it reaches the maximum size. Next, we
describe some of the policies that can be implemented by
these mechanisms.

The information exchange mechanism between the enclave
cache and the encrypted table on the server can be performed
by following several approaches. We consider three access
dispersion policies:

• Direct Access: The Access Manager directly accesses
the entry present in the table. This approach has good
computational and storage performance, as only the
desired server entry is accessed;

• K-Anonimity Access: The Access Manager queries K
entries (the desired entry and K− 1 random), in random
order. This allows for changing the frequency of ac-
cesses, causing infrequent chunks to be consulted more
often;

• Bucket Access: It consists of storing server entries in
buckets. To retrieve the desired entry from the server,
the Access Manager indicates its bucket, not its hash.
In this way, the server will send all the entries present
in that bucket and will not be able to understand which
entry was requested. The bucket of a given entry is
given by:

Hashcode(ℎ) mod N (1)

where N is the number of buckets, and Hashcode is a
function that returns an integer given an hash h (e.g.,
ℎ[0] ∗ 31𝑛−1 +ℎ[1] ∗ 31𝑛−2 + ... +ℎ[𝑛 − 1], where h[0]
is the first character of h, and n is the number of charac-
ters). The result identifies the bucket in which the new
entry will be placed. This scheme assumes a uniform
distribution of entries by buckets and allows chunks
with less frequent accesses to share the same bucket
with chunks with frequent accesses, thus increasing the
access frequency of the former.

4.5.5 Cache Eviction Policies. When it is necessary to
store the frequency of a chunk but the enclave cache has
already reached its maximum capacity, it is necessary to evict
one of the entries, to store the new one inside the enclave. For
this purpose, we consider 4 eviction policies:

• Random: Evict a random element present in the enclave
cache;

• Least Recently Used (LRU): Evict the element that was
accessed the longest in the enclave cache;

• Less Frequent: Evict the element with the lowest fre-
quency present in the enclave cache;

• Least Accessed Externally: Evict the element with the
least access to the encrypted table on the server that is
present in the enclave cache.

4.5.6 Policies Combination. The different access disper-
sion policies can be combined with the different cache evic-
tion policies, allowing 12 different modes of operation of
the Access Manager component. The 12 possible combina-
tions were evaluated, and the results obtained are presented
in Section 5.

5 Evaluation
In this section, we evaluate the storage savings provided by
our solution, analyze the privacy guarantees in the access to
the encrypted table on the server, and evaluate the perfor-
mance of read and write operations.

5.1 Storage Saving and Privacy Guarantees
In order to evaluate the frequency distribution of access to the
server’s encrypted table, we created a dataset susceptible to
frequency analysis, i.e., a dataset that contains a number of
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Figure 3. Distribution of accesses to the server’s encrypted table with different cache policies for each approach.

chunks with a high frequency. This dataset was obtained using
a data generator that follows a Zipfian distribution (see Figure
4) with 10K distinct chunks and 100M accesses. The cache
present in the enclave can store up to 500 entries, meaning
it can only store 5% of the frequencies of the chunks in the
enclave (green area).
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Figure 4. Frequency distribution of the chunks in the data set.

5.1.1 Storage Savings Analysis. The purpose of having
an external frequency table is to store the frequencies of all
chunks, maximizing the deduplication gain. To verify the
deduplication gain, we simulated the storage cost when the
S2Dedup solution is used (with t = 350, when the frequency
of a chunk reaches t a new key is used to encrypt it [15]), and
our solution (with t = 350). The results are shown in Table 1.
The analyzed dataset has approximately 381.5 GB (4KB size
chunks). These simulations were done by varying the cache
size, meaning, the enclave storage capacity.

As S2Dedup needs to restart the frequency table within the
enclave whenever it reaches its maximum size, S2Dedup is
limited by the size of the enclave table to offer storage savings
through deduplication. On the other hand, FH-Dedup takes
advantage of a table in the untrusted zone, overcoming this

Table 1. Storage savings in S2Dedup and in our solution.

Percentage of entries that
can be stored in the enclave 5% 50% 95% 100%

Storage Savings S2Dedup 2.7% 29.3% 70.1% 99.74%
FH-Dedup 99.74% 99.74% 99.74% 99.74%

limitation, and thus being able to take full advantage of chunk
deduplication. As can be seen in Table 1 our solution always
offers maximum storage savings, while S2Dedup has a hard
time applying deduplication the smaller the enclave memory.
It can only save 2.7% of storage when the enclave can keep
only 5% of the entries.

5.1.2 Accesses to Untrusted Storage Analysis. To eval-
uate the information that a malicious server can obtain by
observing the accesses to its encrypted table, the execution of
each of the combined policies for the dataset presented above
was simulated. In addition to the type of access policy used
to query the server table, we wanted to understand whether
cache eviction policies somehow influence the number of
accesses. Figure 3 shows the results obtained.

The frequency distribution for the dataset analyzed is shown
in blue (the same as shown in Figure 4), to represent the effect
of policies on access frequency. The distribution of accesses
to the encrypted table on the server, using the strategies Direct
Access, K-Anonimity Access and Bucket Access, is represented
in red, orange, and green, respectively.

When the Random cache eviction policy is used, the strate-
gies Direct Access and K-Anonimity Access show the same
type of accesses as the original distribution, however, the ac-
cesses are more accented using K-Anonimity Access, as the
number of hits becomes greater than the original. The access
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Figure 5. Privacy guarantees offered by each combination.

policy Bucket Access manages to change the frequency of
accesses of chunks but increases the number of accesses.

For strategies Direct Access and K-Anonimity Access, the
LRU policy does not properly manage the elements that are
evicted, as it only takes into account the order in which the
chunks are accessed. The access policy Bucket Access main-
tains the previous behavior.

The eviction policy Less Frequent ensures that the most
frequent elements are kept within the enclave; however, the
less frequent elements will always be evicted, so when they
are needed, it will be necessary to retrieve their counter from
the frequency table outside the enclave. With access poli-
cies Direct Access and K-Anonimity Access, this reduces the
number of accesses to some elements. The access policy
Bucket Access shows a reduction in the number of accesses,
but this number continues to be much higher than the other
approaches.

Finally, the eviction policy Least Accessed Externally is
the one that best normalizes the frequency of access to each
element in the server table. This can be observed especially
with strategies Direct Access and Bucket Access, which are
closer to a straight line. This effect is not easy to achieve with
the K-Anonimity Access approach because, despite dumping
the least accessed elements in the untrusted table, their ac-
cesses are random, causing some elements to continue to be
accessed many more times.

5.1.3 Privacy Guarantees Analysis. In order to evaluate
the (𝛼, 𝛿)-privacy offered by each combination, the criterion
presented in Section 4.4 was applied to the dataset for differ-
ent values of 𝛿 . The results are shown in Figure 5.

The calculation of 𝛼 was performed using the function
f(X,𝛿), which calculates 𝛼 for a given 𝛿 in a dataset X. Note
that the value of 𝛼 falls between 1/𝑁 and 1, where N is the
number of distinct chunks. The higher the value of 1/𝛼 and
the lower the value of 𝛿 , the greater the privacy offered by the
combination.

The combination of the Bucket Access access policy with
the Least Accessed Externally eviction policy has the best
(𝛼, 𝛿)-privacy. With 𝛿 equal to 100, we have 𝛼 = 1/24. Given
that 1

𝛼
= 24, this means that for each chunk we have 24 other

chunks with a maximum difference of 100 in frequency. With
𝛿 equal to 500, all 10K chunks have a maximum frequency
difference of 500. The second best combination is Direct
Access with the Least Accessed Externally cache eviction
policy: with 𝛿 equal to 100, 1

𝛼
equals 4; with 𝛿 equal to 500,

1
𝛼

equals 960; with 𝛿 equal to 1K, 1
𝛼

equals 2197; and with 𝛿

equal to 5K, 1
𝛼

is 10K.
The other combinations are able to achieve 1

𝛼
equal to

10K but for much larger values of 𝛿 , making it easier to
distinguish the chunks between them, making the use of these
combinations less secure.

The other combinations are able to achieve 10k(𝛼, 𝛿)-privacy
but for much larger values of 𝛿 , making it easier to distinguish
the chunks between them, making the use of these combina-
tions less secure.

5.2 Performance Evaluation
To evaluate the performance of FH-Dedup, we carried out
experiments to understand the impact of the use of the Access
Manager on the performance of write operations and the
intervention of the enclave in read operations. Our testbed
consists of an Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz
with 16GB of RAM and SGX.

5.2.1 Write Operations. Our solution allows us to main-
tain deduplication gains while providing privacy guarantees:
however, to maintain this effect, the Access Manager has
to interact with the encrypted frequency table of the server
to store information about chunks that it cannot store in the
enclave cache.

To evaluate the impact of the encrypted table in an un-
trusted environment, we performed multiple write operations
with 4KB chunks, more specifically we only compare the cost
of enforcing each policy. By this, we mean that we measure
operations that include hash calculations, OCALLs, and table
accesses since this is where our policies and S2Dedup differ.
For these write operations, we exclude operations that require
chunk encryption or memory copies, since such operations are
equal in any policy. We made this choice to better understand
the performance overhead introduced by each combination of
policies.
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Figure 6. Cost to enforce each policy for a new chunk.

We compared each of our access combinations (except
LRU, not implemented) with S2Dedup; the results are shown
in Figure 6.

In this experiment, we use a cache inside the enclave that
supports 8196 entries and gradually increases the dataset size,
composed only of write operations, which are those that make
the enclave interact with the external frequency table. Another
important aspect is that we tested the worst case where all
writes consist of distinct chunks, which causes FH-Dedup
to interact with the server’s encrypted frequency table every
time the cache is full and a new chunk is written.

While the number of writes is up to 8196 (213 in the figure),
our solution behaves exactly like S2Dedup, i.e., information
about chunks is written directly to the enclave cache. When
the number of writes is greater than 8196, communication
with the server is required since the cache no longer allows
for the storage of more information.

There are two factors in FH-Dedup that increase overhead.
The first is the access policy, which can contribute to a larger
number of OCALLs and memory allocation; the second one
is the cache eviction policy, which can cause evictions from
Access Manager to take a longer period of time.

The Direct Access policy requires OCALLs to retrieve the
desired entry from the server frequency table, and an OCALL
to write the new (or updated) information about the evicted
entry.

The K-Anonimity Access policy requires the same number
of OCALLs as the Direct Access policy multiplied by K, we
will consult K entries in the server, and evict one entry.

Finally, the Bucket Access policy retrieves all the entries
in the desired bucket, since we ask for information from the
server by sending a bucket identifier and not a hash through
an OCALL. It scans all elements until it finds the desired
entry and decrypts its counter. Later, it will evict one entry
from the enclave cache.

For all the policies, we also need to allocate memory for
the information to be returned from the server, and we need
to decrypt the desired entries counters.

We can see in the figure that the random cache eviction
strategy is the least expensive. This happens because enclave
entries do not need to be sorted, we just generate a random
value in the range [0, 8196] and select the entry in the gener-
ated index.

Other cache eviction strategies are more expensive because
they require entries to be sorted by frequency or external hit
counts in the server frequency table.

The least external access strategy outperforms the least
frequency strategy because the sorting process takes less time.
This happens because external accesses to server frequency
table entries do not change while they are in the enclave
cache, as opposed to an entry frequency, which gets updated
for elements inside the cache.

K-Anonimity Access is the slowest access strategy due to
our implementation. Every time a new entry needs to be
added, it needs to pick K-1 items from the enclave cache in
a random fashion, so it must first create an array with all the
elements of the cache, and then select these random elements.
Later, when evicting an entry, it must pick another random
element to evict, so it must bring all cache elements again
into an array and then randomly select one element. The other
access strategies only require this last step.

The implementation of the K-Anonimity Access policy
could be improved using other data structures, however, this
improvement could not be implemented in time.

5.2.2 Read Operations. To observe the performance dif-
ference of read operations in S2Dedup and FH-Dedup, we
performed several read operation experiments, we varied the
number of 4KB chunks read and measured the amount of time
required to read and decrypt these chunks. We also use the
same type of symmetric cipher as S2Dedup, AES-256-XTS.
The results are shown in Figure 7.

From the results obtained, we conclude that FH-Dedup,
on average, performs read operations 5.38 times faster than
S2Dedup.

To cross-check our results are trustworthy, we tested the
speed of this cipher suite using OpenSSL’s speed command.
It takes 3 seconds to encrypt/decrypt 3,147,723 4KB chunks.
This means that it can encrypt/decrypt an average of 1,049,241
4KB chunks per second. FH-Dedup takes approximately 2.25
seconds to read and decrypt 1,048,576 4KB chunks, making
the result credible.

In S2Dedup, every time a client requests an encrypted
chunk, this encrypted chunk must be deciphered in the enclave
using the enclave key, and ciphered with the client key, later,
the client will decipher the encrypted chunk with its key,
finally retrieving the original plaintext chunk. This means
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Figure 7. Time cost to read and decrypt different datasets.

that every time the client requires the same chunk, it will
be necessary to perform two decryption operations and one
encryption operation on chunks.

In FH-Dedup there is no need to communicate with the
enclave; the client retrieves the encrypted key recipe from
the server and deciphers it with its key, and from the key
recipe, the client can retrieve the key needed to decipher the
chunk. Due to this approach, there are only two decryption
operations, one necessary to obtain the key for decryption
and one to decrypt the chunk.

This makes FH-Dedup reads more performant and scalable
than S2Dedup, removing bottlenecks in the enclave during
reads. Typically, reads have a 70/30 ratio compared to writes,
making them the most common operations in memory sys-
tems [22].

5.3 Discussion
It is observed that the access policy Bucket Access is the one
that manages to keep the access frequencies of the chunks
close to each other, regardless of the cache eviction policy
used, making it more difficult to distinguish the chunks. This
happens because less frequent chunks can be placed in the
same bucket as more frequent chunks, changing their access
frequency, and making it more difficult to perform frequency
analysis attacks. However, this access policy is computation-
ally more expensive than the Direct Access policy, and also
increases the number of accesses by more than an order of
magnitude. With the Least Accessed Externally policy, the
Direct Access access policy is also able to keep the access
frequencies of the chunks close to each other, but with a lower
number of accesses. However, using this eviction policy im-
plies higher memory usage within the enclave, which leads
to a smaller number of entries that can be stored in the en-
clave. We can also observe that FH-Dedup creates overhead
when it must retrieve information from the encrypted table
during write operations; nevertheless, in the most common
operations, the read operations, we achieve faster reads than
systems that require the enclave interaction, specifically, we,
are on average 5.38 times faster than S2Dedup.

6 Conclusions
With the rapid growth of data, cloud storage systems have
become popular. To allow the storage of duplicate data with-
out compromising storage efficiency, new techniques were
introduced.

Data deduplication is a technique that reduces the amount
of redundant data held in a cloud storage service. If the data
is already stored, a pointer to that copy of the data is created,
rather than storing additional copies of the data.

To address users’ privacy, encrypted deduplication was
created, combining deduplication with privacy, allowing users
to store data encrypted while allowing storage systems to
apply deduplication.

Several attacks can occur in these types of systems, one of
them, being frequency analysis, which aims to find out which
data is being stored encrypted by users.

In this work we presented an Intel SGX-based solution
that is capable of supporting deduplication while maintaining
strong levels of privacy, preventing frequency analysis attacks.
In this context, we propose and compare different combina-
tions of cache strategies and policies to prevent frequency
analysis attacks.

Our evaluation demonstrates that the combination of differ-
ent caching strategies and policies influences the privacy guar-
antees and the number of accesses to the server (encrypted)
frequency table. Our performance evaluation also let us under-
stand the overhead added by our solution in write operations
when new elements cannot be stored inside the enclave cache,
nonetheless, our read operations are faster than the state-of-
the-art systems, in particular, on average 5.38 times faster
than S2Dedup.

Furthermore, the storage savings in our system are constant,
regardless of the size of the cache present in the enclave,
having greater storage savings than the most recent state-of-
the-art solution, which also uses chunk frequency to apply
encrypted deduplication inside an enclave. In this way, we are
enabling storage efficiency, with a commitment to privacy.

6.1 System Limitations and Future Work
Our work shows that it is possible to use TEEs as secure
mediators in encrypted deduplication systems while maintain-
ing deduplication gains even with memory limitations, our
solution uses an external encrypted frequency table to keep
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track of chunks frequencies which it can no longer store in-
side the enclave cache. However, our solution with the use of
OCALLs and different access and cache eviction policies has
a performance penalty during write operations, we consider
that better access strategies and cache eviction policies should
be discussed and implemented.

Our current architecture allows for one server and multiple
clients, in a more realistic environment, there should be multi-
ple servers that a client can contact to store/retrieve data. For
this reason, we consider that an improvement is having multi-
ple servers that communicate with each other the frequency
of their chunks through a lazy replication communication
protocol such as gossip, although this design seems simple it
is not trivial, remember the chunk frequency in the server is
encrypted, so the chunk frequencies must first be decrypted
in the enclaves and later be updated.
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