
Proofs of Timely-Retrievability for Third-Party
Storage at the Edge

Rita Prates
rita.prates@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisors: Professor Lúıs Rodrigues and Professor Miguel Correia)

Abstract. Edge computing is a model that places servers close to the
edge of the network, in order to assist applications that run in resource-
constrained devices. Edge servers may be required to keep local copies
of data that is also stored in the cloud, to serve clients with low-latency.
Because the capacity of edge nodes is limited, providers of edge storage
may be tempted to oversell their capacity and to hide this behavior by
fetching, on-demand, data from the cloud instead of serving it from local
storage. In this report, we study techniques that can help in detecting
this type of misbehavior. We survey the main auditing mechanisms that
have been proposed in the literature to cope with rational behavior in
distributed storage systems, and propose a new proof of storage for edge
scenarios, that we name proof of timely-retrievability. The report also
describes the initial design of an auditing mechanism to obtain this type
of proof.

1

Table of Contents

1 Introduction . 3
2 Goals . 3
3 Data Storage on Third-Parties . 4

3.1 Peer-To-Peer Storage . 4
3.2 Cloud Storage . 5
3.3 Edge Storage . 5
3.4 Service Level Agreement . 6
3.5 Addressing Rational Behavior . 6

4 Auditing Third-Party Storage Services . 7
4.1 Proofs of Storage . 7
4.2 Obtaining Proofs of Storage . 8
4.3 Components of a Proof of Storage Challenge 8

4.3.1 Set of Objects . 9
4.3.2 Sequence of Objects . 9
4.3.3 Cryptographic Hashes . 9
4.3.4 Deadline . 9

4.4 Challenges Previously Proposed in the Literature 10
4.4.1 Time Bounded Encoding Challenge . 11
4.4.2 Parallel and Sequential Time Bounded Challenge 11
4.4.3 Data Geolocation and Time Bounded Challenge 12
4.4.4 Constraint-based Data Geolocation Challenge 13

4.5 Discussion . 13
5 Architecture . 14

5.1 Proof of Timely-Retrievability . 15
5.2 Assumptions . 16
5.3 Placement of the Auditor . 16
5.4 Challenge . 17
5.5 Optimization . 20

6 Evaluation . 20
6.1 Reading Delay . 21
6.2 Network Delay Variance . 21
6.3 Number of Challenged Data Blocks . 21

7 Scheduling of Future Work . 21
8 Conclusions . 22

1 Introduction

Today, there are many scenarios where an end-user or an organization stores data
on machines run by third-parties, either to ensure durability and availability,
or to provide others with low latency when accessing data. Relevant examples
include cloud storage (such as Dropbox, iClould, googleDrive, and many others),
peer-to-peer storage (including the storage services used for crypto-currencies [1,
2]), content distribution networks (for instance, Akamai), and more recently, edge
storage [3].

In these scenarios, the user has some expectations regarding the quality of
service to be provided by the third-party. This, naturally, includes the expecta-
tion that the third-party will not discard or corrupt the stored data, but also
that it stores the data while preserving some additional Service Level Agreement
(SLA) properties. Those properties may be data storage in multiple distinct ma-
chines, data storage in specific geographic locations, or serve data clients with
some bounded delay.

Unfortunately, a rational [4–6] third-party may opt to avoid complying to
some of these expectations, if it can gain some benefit and pass unnoticed. For
instance, the third-party can keep the data in fewer replicas and/or fewer loca-
tions than agreed, assuming that it can be impossible for the customer to audit
how many replicas are used or where these replicas are located. This motivated
the development of auditing techniques, able to extract proofs of storage, i.e,
evidences that the third-party is complying with (or violating) the SLA.

In this work we address the problem of deriving audit techniques tailored for
edge-storage scenarios, in particular, that are able to verify that data is placed
by an edge-storage provider in locations that are able to guarantee that data
is served with low-latency to end-users. Because the capacity of edge nodes is
limited, providers of edge storage may be tempted to oversell their capacity
and to hide this behavior by fetching, on-demand, data from the cloud instead
of serving it from local storage. We survey the main auditing mechanisms that
have been proposed in the literature to cope with rational behavior in distributed
storage systems and propose a new proof of storage for edge scenarios, that we
name proof of timely-retrievability. The report also describes the initial design
of an auditing mechanism to obtain this type of proof.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 4 we present all the
background related with our work. Section 5 describes the proposed architecture
to be implemented and Section 6 describes how we plan to evaluate our results.
Finally, Section 7 presents the schedule of future work and Section 8 concludes
the report.

2 Goals

This work addresses the problem of auditing edge storage providers, to assess if
copies of data items are stored in fog nodes in a way that supports its retrieval
with low latency.

3

Goals: To design a auditing mechanism that is able to extract a proof
of timely-retrievability, i.e., a proof that a given fog node is able to serve
requests without violating some given data access latency constraint δ.

To implement the auditing mechanism we plan to design a challenge that
requires the fog node to assess, in sequence, a pseudo-random set of data items
and to respond to the challenge in a timely manner. The challenge must be
designed such that if the fog node does not store locally a significant fraction of
the objects, it will be unable to respond in time. To ensure that the challenge
is executed by the fog node being audited, and not in some other, we plan to
leverage on the trusted execution environments supported by modern hardware,
namely on the Intel Software Guard Extensions (SGX).

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the au-
diting mechanism; ii) an implementation for nodes that support the Intel
SGX, iii) an extensive experimental evaluation to assess the accuracy of
the produced proofs of timely-retrievability.

3 Data Storage on Third-Parties

There are several scenarios where a user may opt to store data on machines
controlled by a third-party. In this report we consider three main examples,
namely, peer-to-peer storage, cloud storage, and edge storage. Using third-parties
for data storage can bring several advantages, including reduced cost (it may
be more cost efficient to run a large shared storage service than multiple small
storage devices), fault tolerance (by keeping multiple copies of the data, possibly
in different geographical locations), and reduced latency when accessing the data
(copies may be placed in locations near to the users). However, it also brings
challenges, given that the third-party may not comply with the service agreed.
In this section we introduce different scenarios where storage by third-parties is
used and list the main challenges that are raised in these settings.

3.1 Peer-To-Peer Storage

Peer-To-Peer (P2P) storage is a storage model where different parties coordinate
to keep redundant copies of each other files. P2P storage is driven by two main
observations. In first place, the capacity of storage devices, such as hard-disks,
has increased significantly over the years, and many users consume just a frac-
tion of their local storage capacity; the excess capacity remains underused. In
second place, it may be impractical for many users to deploy their own devices
in multiple locations, a requirement to tolerate the loss of local storage due to
theft, fire, or other disasters.

The idea of P2P storage is that users can cooperate to store copies of files
from other users, leveraging the spare capacity of each individual storage. This

4

approach has the advantage of being inexpensive and has the potential to pro-
vide a high-level of reliability. If the users are located in different geographical
locations, and multiple copies of a file are created, the likelihood of loosing files
can become arbitrarily small.

However, P2P storage relies on reciprocity: one party stores data for a third
party under the assumption that the third party will also store data for other
parties. This opens the door for free-riding [7–9], where a party benefits from
the contribution of other nodes without doing its part (for instance, by failing
to locally store copies of files that have been assigned to it).

3.2 Cloud Storage

Cloud storage is a model where large service providers offer storage services
to the end users for a fee. Cloud storage is widely used today, and there is
a large variety of companies that sell this type of service (Amazon, Google,
Microsoft, and others). The main drive of cloud storage is the cost savings that
can be achieved when the storage servers, and the infrastructure to maintain
those servers (power supply, cooling, etc) are shared by a large number of users.
This allows cloud storage providers to maintain multiple copies of the data, in
different servers, possibly in different locations, for a fraction of the cost that
would need to be payed by individual users, if they attempted to build a similar
infrastructure for their own use only.

Users of cloud storage pay for the service under the assumption that the cloud
provider implements the necessary fault-tolerance techniques to make highly
unlikely that data can be lost due to the failure of individual components, such
as a hard-drive or a server. However, it is not easy to the customer to audit if the
expected levels of redundancy are actually implemented by the cloud provider.
A dishonest provider could be tempted to maintain less copies of the data than
advertised, to reduce costs.

3.3 Edge Storage

There is a range of new tasks, such as image processing for face or object recog-
nition [10, 11], as marker detection [10], and just-in-time video indexing [12],
that require a response time below 5–30 milliseconds [13]. For these application,
it is fundamental to access data with low-latency, something that cannot be
guaranteed with cloud storage alone.

Edge computing, that consists in placing computing resources closer to the
edge of the network, emerges as a strategy to offer low latency access to pro-
cessing and storage resources to these applications. Edge servers, also known as
fog nodes or cloudlets, extend cloud services closer to users. Fog nodes, that can
be seen as micro data centers in a box [3], are resource constrained, and are not
able to keep a copy of all objects maintained in the cloud. Also, edge nodes are
often more vulnerable to attacks by malicious players[14] and are not aimed at
providing long-term reliable storage. Instead, they will typically keep copies of
items that are primarily stored in the cloud. Because the capacity of edge nodes

5

is limited, providers of edge storage may be tempted to oversell their capacity
and to hide this behavior by fetching, on-demand, data from the cloud or from
other servers instead of serving it from local storage.

3.4 Service Level Agreement

In any case, regardless of the type of storage used, the client as some expecta-
tions regarding the properties of the service provided by the third party. These
expectations are captured by a (implicit or explicit) Service Level Agreement
(SLA), that lists the requirements the service provider must comply with. In the
context of third-party storage services, the SLA may cover the following aspects:

– Integrity: the stored documents have not been corrupted;
– Retrievability: the documents are retrievable;
– Replication: the provider keeps at least n replicas of an item, in indepen-

dent storage servers/disks;
– Geo-replication: the provider keeps n replicas of an item, in different stor-

age nodes, in different geographically distributed locations;
– Timely Retrievability: documents are retrieved within some (typically

small) latency δ.

3.5 Addressing Rational Behavior

Like any local storage system, third-party storage can be affected by faults that
may compromise data availability. Disks can malfunction and loose the data
stored on them. A faulty controller can corrupt data when it is stored on disk.
A malicious intruder may modify or delete stored data. Natural disasters may
damage the storage equipment. These faults can be masked with the help of
replication, by keeping multiple copies of each data item on different machines,
ideally in different locations, using diverse hardware maintained by different
teams, such that the chances of multiple correlated faults happen in a short
time interval becomes small.

A significant difference between privately-owned storage and third-party stor-
age is that, with the later, it may be difficult for the user to assess if the desired
fault-tolerant and data placement policies are, in fact, deployed by the stor-
age provider. In the absence of appropriate auditing mechanisms, the storage
provider may have incentives to avoid deploying the desired redundancy levels,
to save the costs associated with the additional storage and replica coordination.

As we have noted, in P2P storage, a node can simply not store the data it is
supposed to store. When the data is requested, it may attempt to fetch it from
another peer. Naturally, if other peers also do this, the chances that data is lost
become high. This behavior is unlikely to occur in a cloud service provider, as
it will be easily detected as soon as a client would attempt to access the data.
However, the cloud provider may be tempted to keep less replicas of the data, in
fewer locations, than the advertised. In turn, edge storage providers may have
incentives to keep copies of data item in just a fraction of their fog nodes, to

6

augment the capacity they can sell to their customers, at the cost of providing
increased latency to data users.

One way to avoid this type of misbehavior consists in deriving auditing mech-
anisms that can assess if the third-party storage service keeps the desired number
of data copies in the desired locations. When the auditing detects a misbehavior,
this can be used to penalize the provider. In a P2P system, a faulty node may
be prevented from further using services provided by other nodes, cloud or edge
storage providers may be forced to compensate clients for violations of the SLA.

4 Auditing Third-Party Storage Services

When a storage provider is subject to auditing, it must provide a proof that it is
applying the data replication and data placement policies specified in the SLA.
In the context of this report, such proof is generically called a proof of storage
[15]. Because an SLA may cover different aspects of the storage implementation,
such as the target number of replicas, the location of these replicas, or the latency
observed by users when accessing data, it is possible to define different proofs of
storage, each covering a different sub-set of the aspects enumerated above.

In this section we survey the main proofs of storage, and respective imple-
mentations, that have been proposed in the literature. First, we describe an
overview of the different proofs of storage, and SLA aspects that they cover.
Then, we describe the different auditing mechanisms and implementations for
the introduced proofs. We have been inspired by the mechanisms used in these
implementations for the construction of our proof of timely-retrievability.

4.1 Proofs of Storage

Each one of the following proofs of storage as been conceived to prove a different
subset of the aspects that can be covered by a SLA, as described in Section 3.4.

– Proof of Data Possession (PDP) A proof of data possession proves in-
tegrity of the stored data;

– Proof of Retrievability (PoRet) A proof of retrievability proves docu-
ments are available to be downloaded;

– Proof of Replication (PoRep) A proof of replication proves that data
copies are stored at different servers/storage devices;

– Proof of Geographic Replication (PoGR) A proof of geographic repli-
cation proves that data copies are stored at different geographic locations.

Although a storage node to build a PDP needs to have available the requested
data items, the result of the proof may be a cryptographic hash over those
data items, not proving that the auditor is able to download the stored data.
Instead, with PoRet the proofs themselves return a part of the stored data, thus
necessarily allowing to retrieve the stored data.

Table 1 matches the different proofs of storage with the quality of service
aspects that they cover. As highlighted in the table, none of the proofs of storage
previously proposed in the literature addresses timely retrievability.

7

Integrity Retrievability Replication Geo-replication Timely Retrievability

PDP ! – – – –

PoRet ! ! – – –

PoRep ! – ! – –

PoGR ! – ! ! –

Table 1. Proofs of Storage vs SLA aspects

4.2 Obtaining Proofs of Storage

On a first approach, one might think that, in order to perform an audit, one
could just read the objects stored and check if the provider is able to return their
correct value. This simple method could, in fact, offer a proof of retrievability.
Unfortunately, this method has several limitations. In first place, this approach is
very expensive, as it requires the auditor to consume large amount of bandwidth
to obtain the proof. In second place, this technique is unable to verify some of
the QoS aspects, for instance, it cannot assess if the object is kept locally by
the target or fetched on-demand from another location, nor is able to detect if
the provider keeps just one or several replicas of the object. Therefore, more
sophisticated approaches are needed, not only to save bandwidth, but to check
the different aspects of the SLA.

Most audits are based on the notion of a challenge, a sequence of tasks that
the storage providers need to execute in order to produce a proof, i.e., the content
and the timeliness of the response to the challenge serves as a proof. Each tasks
typically requires the provider to perform some cryptographic operation on the
content of (a part of) a file, such that it can only obtain a correct and timely
response if the data is stored locally. The challenge can be set-up in such a
way that, in order to respond in a timely manner, the provider must perform
several of the tasks in parallel, which in turn, requires the data to be replicated
in different media. The number and sequence of tasks in a challenge depends on
the type of proof the auditor aims at obtaining.

The challenge must guarantee that the computed proof of storage is unique
(i.e, that the provider cannot re-use outputs from previous audits), computed
on-demand (i.e., the provider cannot pre-compute an answer before the audits
starts), and authentic (the proof is produced by the target storage node). It must
also prove the required QoS aspects.

4.3 Components of a Proof of Storage Challenge

As a challenge is issued to obtain a proof of storage, a challenge is typically
characterized by four main components: i) the set of objects that the nodes need
to access; ii) the sequence by which these objects should be accessed; iii) the
output that the node should produce (a function of the content of the objects
accessed) and; iv) a deadline, by which the proof must be produced. We briefly
discuss each one of these components next.

8

4.3.1 Set of Objects A challenge could force the storage node to access
all objects that it is required to store. However, in most cases, this would be
extremely expensive. Therefore, most challenges resort to sampling, i.e., to pro-
duce the proof the node only needs to access a subset of the data objects and,
from these objects, it may also be required to access some sample blocks. Then,
each challenge must select a different set of objects/blocks, using some pseudo-
random function unknown to the node being audited, such that the node can
not predict which objects it needs to maintain to answer a given challenge. The
number of objects included in the challenge depends on different aspects, that
will be discussed later in the report. In any case, this number should be selected
such that the probability of producing a proof without having the entire set of
objects is negligibly small.

4.3.2 Sequence of Objects In some cases, the challenger may want that the
node being audited accesses the objects in a specific sequence, in particular, the
challenger may want to prevent the audited node from knowing which is the next
object in the sequence, unless it has already accessed the previous objects. To
avoid excessive communication between the auditor and the node being audited,
the identifiers of objects to be accessed, except the first object, may be sent
encrypted. Then, it is possible to use the content of the ith object to decrypt the
identity of the (i+ 1)th in the sequence, such that the audited node is forced to
respect the desired sequencing.

4.3.3 Cryptographic Hashes For each object or data block included in the
challenge, the audited node may be forced to include the entire content in the
proof of storage. Again, this can be very expensive, namely, it may consume
a significant amount of bandwidth to transfer the proof. Due to this reason,
most challenges require the audited node to send just a cryptographic hash of
the accessed content. The auditor can then check if the hash that is produced
as part of the proof matches the genuine content of the data. Naturally, it is
important to ensure that the audited node has the original data, and not only
a set of pre-computed hashes. For this purpose, the challenge include a random
nonce η, that is unique and that cannot be guessed by the audited node. The
hash to be returned as part of the proof is a function of the data stored and the
nonce η, and can only be computed in response to the challenge.

4.3.4 Deadline Most challenges need to be answered by a given deadline,
otherwise the audited node would have enough time to download, from another
source, the data required to produce the proof. The deadline should be defined
such that it can only be met if the audited node has the data, possibly stored in
different servers. To define the right deadline for a challenge, the auditor needs to
have models that characterize the delays involved in the production of the proof.
These include the delays associated with reading data from persistent storage,
computing hashes, and communicating with the auditor. As we will discuss, as

9

non-negligible part of defining a challenge, and a proof of storage is related with
the correct definition of such models.

For the time to read a data object from disk, and because storage nodes
may be heterogeneous (have different storage media), the auditor may bound
this metric with estimation measurements from the storage media available in
the market. The same approach could be used to estimate the time required to
compute the cryptographic operations required to produce the proof.

Unfortunately, to measure experimentally the latency of the communication
between the auditor and the audited node can be difficult without the partici-
pation of the target node, which can then introduce the artificial delays in the
experiments to lead the auditor to over-estimate the communication latency
which, in turn, would create a slack that the node could exploit to defeat the
challenge. Therefore, this latency is often not obtained experimentally, but in-
ferred from other parameters.

A technique that is often used consists in estimating the network latency from
the physical location of the nodes involved in the communication [6]. In a first
step, a metric of physical distance between the two nodes is obtained. Then,
the physical distance is used to predict the network latency. These predictive
models are built with the help of a set of storage nodes in known locations to
the auditor, referred as landmarks.

The distance between two nodes in the network may be determine with the
the following distance measurements [6]:

– Haversine Distance: distance between two points in a sphere;

– Driving Distance: distance between two cities, using Google Maps API;

– Topology-based Distance: distance between hosts in the Internet based
on the network topology.

Then, the distance can be used to estimate the latency, using techniques such
as [6]:

– Speed of Light: 4
9×(speed of light) as an upper bound for Internet latency;

– Best Fit Line: With the set of sampling measurements (distance, latency)
between landmarks, use a linear regression function to obtain the best fit
line that better accommodates these values;

– Site Expected: With latency measurements, for a given node, calculate the
linear regression of these points.

However, this latency is a lower bound on the communication delay, as this
delay has other components, such as the delay introduced by buffering routers.

4.4 Challenges Previously Proposed in the Literature

In the following sections, we describe different challenges that have been pro-
posed in the literature.

10

4.4.1 Time Bounded Encoding Challenge Benet et al. [15] provide a time
bounded encoding challenge to check data replication, i.e., to build a proof of
replication.

To guarantee independent storage of n replicas of data D, before an audit,
each storage node encodes the data replica stored locally with a different key,
creating n encoded replicas between all nodes. Then, when subject to an audit,
each storage node has to prove compliance with a given encoding, leading all
nodes together to prove local storage of n unique replicas. To avoid a storage
node to resort to a neighbor node to fetch the replicas that are discarded, or to
re-encode them from D, the proof of replication must be produced on time. A
proof of replication issued by a storage node is only valid if it is correct, i.e.,
proves n replicas, and it was built within a time limit. The time limit is set as the
network delay plus the delay to retrieve the already encoded replicas. In case the
n replicas are not stored locally, or the storage node needs to re-compute them
by re-encoding D, the extra network or computation delay will exceed the time
limit, and the proof will be considered invalid. Therefore, the encoding function is
the main point to detect a rational cloud storage provider. The encoding function
must be slow enough, to detect re-encoding on-demand, by the target node or
by a neighbor one. Benet et al. set block cipher with block chaining and layering
as the more accurate encoding function: it provides sequential encryption, where
each cipher block in each iteration depends on the ciphered blocks from previous
ones. By using this function, the auditor guarantees that data encryption can
not be parallelized.

Benet et al. ensure each proof is unique, and computed on-demand by forcing
each storage node to commit to a specific encoding, and authentic due to proof
computation within a time limit.

4.4.2 Parallel and Sequential Time Bounded Challenge Li et al. [4]
introduce a parallel and sequential time bounded challenge to build a proof
of physical reliability (PoPR). A PoPR is equivalent to proof of replication, as
proves data replication in independent storage. At the same time, a PoPR may
be extended to prove data geo-replication.

Files are broken into ns subfiles and encoded with an error correction code
(ECC), producing a verifiable version, which is later subdivided in n l-bit blocks,
referred as symbols. Later, symbols are distributed across the cloud storage
provider n storage nodes, defining a symbols layout, that must be followed by the
cloud storage provider. Because each storage node will keep one symbol of each
subfile, when retrieving a document, it is required to access all storage nodes.
Symbols in the same storage node are retrieved serially, and in parallel to other
nodes, and hashed before being returned to the auditor.

Once a rational cloud storage provider may store symbols in fewer nodes than
the defined in the layout, when retrieving a document to build a PoPR, more
symbols need to be read serially than in parallel, leading documents retrieval
to take longer than expected, and allowing the auditor to detect misbehavior.
Therefore, as each storage node is challenged in parallel, the auditor sets the time

11

limit as the delay to read from disk the symbols expected to be stored locally
in that node, plus the computation delay to build the proof. Because storage
nodes may be heterogeneous, the read delay is set between loose boundaries: the
upper bound is the fastest data access rate known so far plus an error margin,
and the lower bound the lowest reading delay registered from that node, plus a
margin. These loose boundaries guarantee that the reading delay is independent
from the storage nodes hardware, and that a storage node with fast disk access,
if it misbehaves, it is detected.

In addition, as each storage node will have a different response deadline due
to the different number of symbols to be retrieved, when issuing a challenge, the
auditor must mask the challenge length. Otherwise, the cloud storage provider
detects what is the smallest challenge, and process it first; and just then process
the larger ones. Because the larger challenges will have a larger deadline, even if
the cloud storage provider processes the smallest challenge first, it could compute
valid proofs (correct and on time) for both challenges. Therefore, the challenge
length must be hidden, which can be achieved by creating a dependency between
the symbols to be retrieved (the next one to be retrieved is only known after
the previous one is retrieved) and by hashing the last symbol to be retrieved.
A challenge is only finished when the hash of the retrieved symbol matches the
hash of the last one. With this method and by choosing pseudo-randomly the
symbols to be retrieved, the auditing entity guarantees that each built PoPR is
unique and computed on-demand.

To prove data geo-replication and increase proof authenticity, the above
mechanisms may be applied to storage nodes in different known geolocations. If
a response to the challenge is not received within the deadline, it is assumed that
the clients files are not kept locally, and then the data is not in that location.

4.4.3 Data Geolocation and Time Bounded Challenge Benson et al.
[6] introduce a geolocation and time bounded challenge to obtain a proof of
geographic replication.

As each data block is stored together with an authentication tag, storage
nodes are challenged to prove data storage of both elements in less than T ,
where T is the execution time of some audit protocol plus the network delay. To
guarantee proof authenticity, T must be lower enough to ensure that the target
storage node does not reach to a neighbor one that will answer the challenge,
i.e., the challenged storage node must be the one computing the proof. At the
same time, as each challenge requests retrievability of as much random blocks
that can be retrieved in T , any extra network delay to reach a neighbor node
will exceed the time limit. With blocks being randomly selected, this challenge
ensures that the proof that is built is unique.

On the other hand, to assess data geo-replication, the auditor, with a set
of landmarks, builds a latency-distance predictive model (Section 4.3.4), that
is later applied to storage nodes in unknown locations. Benson et al. discuss
the three models, previously introduced, with Haversine and Driving Distance,
and according to them, and as expected the Best Fit Line and Site Expected

12

models with Haversine distance outperform the Speed of Light model, when
retrieving content from 40 universities hosts in North America. The 4

9 the speed
of light is a to large upper bound for latency, leading to inaccurate distances and
geolocations.

However, as these predictive models require a set of landmarks, Benson et
al. extend their approach by providing an IP analysis of the retrieved content as
a way to detect data centers geolocation. If for a set of data requests the storage
nodes’ IPs are geo located to the same region, then, most likely in that region
there is a data center.

4.4.4 Constraint-based Data Geolocation Challenge Gondree et al. [5]
provide a constraint-based data geolocation (CBDG) challenge that combines a
proof of data possession with constraint-based geolocation [16] to build a proof
of data geographic replication.

Documents are broken into n blocks and tagged with a message authenti-
cation code (MAC), and later stored at cloud storage provider’s storage nodes.
Before executing an audit, the auditor to assess data integrity and ensure the
computed proof is unique, selects c random indices referring the stored blocks
and tags to be retrieved. At the same time, the auditor requests a set of trusted
landmarks to build a latency-distance predictive model between them that they
will later apply. Due to its simplicity, Gondree et al. considered the Best Fit Line
model, from Section 4.3.4, has the latency-distance predictive model.

Next, when executing an audit, the auditor forwards a challenge (the c ran-
dom indices) to the landmarks that will, in turn, challenge the target storage
node. For each challenge, each landmark will record the delay response time,
and together with the pre-built predictive model estimate its distance d to the
target storage node. Then, with distance d, each landmark computes the circular
constraint region, with radius r that forwards to the auditor, together with the
storage node response to the challenge.

With the radius r from all landmarks, and the responses, the auditor checks
responses correctness, and if they are correct, computes the intersection between
the different circular regions. This intersection will result in the most feasible
region for the storage node geolocation. Therefore, this method allows to geo
locate storage nodes in unknown locations.

4.5 Discussion

In this section, we summarize and analyze the different challenges proposed in
the literature, to help us to understand how we can design an accurate challenge
to obtain our proof of timely-retrievability. We begin by providing a table, Ta-
ble 2, and then we discuss how the literature satisfies the previously introduced
challenge components.

Table 2 provides an overview of the proofs of storage provided by each scheme
in the literature. As the described challenges are applied to a cloud storage
environment, that, at the same time, is unable to satisfy data users requests
with low latency, none of the previous works prove data timely retrievability.

13

Challenges PDP PoRet PoRep PoGR

Time bounded encoding[15] ! ! ! –

Parallel and sequential time bounded[4] ! – ! –

Data geolocation and time bounded[6] ! – ! !

Constraint-based data geolocation[5] ! – ! !

Table 2. Proofs of storage provided by each each challenge in the literature.

We now analyze how the schemes provided in the literature guarantee each
one of the components of a proof of storage challenge, previously introduced in
Section 4.3.

– Set of Objects: In [15], as the cloud storage provider must prove storage
of the n data replicas, storage nodes are forced to retrieved all data items.
However, as in [4, 6, 5] the auditor selects a random number of data blocks to
retrieve, a challenge will only address a sample of the remotely stored data.
Nevertheless, in the three cases the number of challenged data blocks will
determine the probability to detect a rational cloud storage provider: larger
the challenge, longer the storage nodes will take to respond. Then, a proof
will only be computed on-time if the accessed data items are kept in local
storage.

– Sequence of Objects: To assess data storage in fewer nodes than the
agreed, in [4], data blocks in the same node are retrieved serially, and in
parallel to other nodes. If data is kept in fewer nodes, more data items need
to be read serially, and therefore the issued proof will exceed the deadline.
In this work, the number of data items to be retrieved is also masked, by
identifying the next data item to retrieve from the previous one.

– Cryptographic Hashes: Because in [15] the auditor requests for the data
replicas, and in [6, 5] the storage nodes have to answer the data items, to-
gether with their tags, this audits bring extra overhead to the network, and
are more expensive. Therefore,the hash computed by the storage nodes in
[4] is a more accurate solution, as it is cheaper, and does not overload the
network, at the same time it allows to assess data integrity.

– Deadline: As [15, 4] address storage nodes in known locations, the auditors
in both challenges set the deadline as a correlation between the size of data
to be retrieved, and the time to compute the proof, together with an upper
bound estimate for the network delay. However, in [6] and [5], because stor-
age nodes may be in unknown locations, and challenges aim to assess data
geolocation, the auditor estimate a more accurate network delay from a set
of predictive latency models (previously introduced in Section 4.3.4).

5 Architecture

We now address the problem of building proofs of storage for edge computing
settings. We assume a system, illustrated in Fig. 1, where a set of fog nodes are

14

Fig. 1. Communication and auditing (bold) channels.

requested to locally store documents, that are also available in the cloud, such
that they can serve local clients with low latency. For instance, a given fog node
could be requested to store information regarding maps and points of interest in
its geographical region. We assume that the edge nodes are managed by some
edge storage service provider (ESSP) and that the objects that need to be served
by each fog node with low latency are specified in the SLA.

If the ESSP is rational, it may opt not to store all objects in the fog nodes
as requested, and fetch documents from the cloud, or from other fog nodes in
order to serve clients. In this case, clients will observe latencies larger than those
specified by the SLA, defeating the purpose of using edge storage. Our aim is to
design a set of mechanisms to assess if a fog node can retrieve the objects it is
supposed to store fast enough.

5.1 Proof of Timely-Retrievability

To address the problem above, we define a proof of timely-retrievability, a proof
that a fog node produces to demonstrate that it is able to serve objects with low
latency. More precisely:

Proof of Timely-Retrievability (PoTR) A proof of timely-retrievability
proves documents retrieval within some (typically small) latency δ.

As δ reflects the maximum time for a fog node read a data object from
disk to answer a user data request with low latency, and as edge services and
applications require response times between 5–30 milliseconds, in our work, we
define δ in the magnitude of milliseconds.

15

5.2 Assumptions

In our work, we assume that the cloud storage provider is trustworthy to the
client, and that an edge storage provider may misbehave to save resources costs.

As the data outsourced to the edge storage provider is managed, in the first
place, by the cloud storage provider, we assume that the cloud storage provider
knows the data expected to be stored locally in each fog node, but it is the edge
storage provider the entity responsible to spread the data items to the diverse
fog nodes. We also assume that each fog node has a processor with the Intel SGX
extension: we will use guarantees provided by a trusted execution environment
to support the execution of the challenge on the fog node. A trusted execution
environment, also referred as enclave, is an isolated environment that guarantees
code, and data integrity, and confidentiality [14, 17]. However, in this report, we
did not consider the use of Intel SGX extension in detail, as we focused on how
to obtain our propose proof of timely-retrievability.

Finally, we assume that is not economically for the ESSP to download all ob-
jects to a fog node at the beginning of the audit, i.e., that the cost of downloading
all objects every time there is an audit would exceed the costs of maintaining
these objects locally.

5.3 Placement of the Auditor

In our work, we have opted to run the audit from a node located in the cloud. This
has advantages and disadvantages. The main advantage of this option is that it
simplifies the deployment. A single auditor can be placed in a central location
and be used to extract proofs of timely-retrievability from multiple fog nodes.
The main disadvantage is that is that the communication between the auditor
and the fog node being audited is subject to variable delays, and the challenge
must take this variance into account when selecting the number of objects to
be sampled and the deadline for producing the proof. Fig. 1 represents in bold
the auditing channels, between the cloud storage provider and the fog nodes,
together with the remaining communication channels existing in the network
(fog node—fog node; cloud—client; fog node—client).

As an alternative, the auditor could be deployed in specific clients, deployed
on purpose for the effect. A significant advantage of this option is that the
auditor could use exactly the same network as the data clients, and obtain a
more accurate estimate of the delays observed by other clients. However, this
would require to deploy at least one auditor node for each Fog client, which
could be impractical.

A third alternative we could delegate auditing capabilities to the clients
owned by end users. In this case, the data users would collect information re-
garding the observed latencies when accessing data. This data could be collected
later on for processing in order to assess the fog node compliance with the SLA.
We have disregarded this option due to the significant privacy issues associated
with collecting data access and location information from end users.

16

5.4 Challenge

We now describe the challenge that we have designed, to be used by an auditor
placed in the cloud. The challenge requires the fog node to access a number of
objects in sequence and return within a specified deadline. In the following we
describe how we setup the different parameters of the challenge.

Set of Objects The auditor selects the number of documents subsets N to be
retrieved from each fog node. Then, with a pseudo-random function selects a
sequence of N indexes, each one referring to a document subset (a data block)
expected to be locally stored at the target fog node.

As N reflects the number of data blocks to be retrieved, and higher the value
N , longer the fog node will take to read those data blocks from disk. The auditor
must choose an N value that allows to detect the fog node access time to disk,
and reduce error margins, and time variances from network communications.

Sequence of Objects The auditor before sending the challenge to the fog node
enclave arbitrarily orders the list of selected N indexes. This method will increase
the probability to detect if the target fog node keeps data blocks in local storage,
as the node is forced to do random jumps when accessing the disk. Case a part
of the data is kept remotely, this random jumps most likely will fall into an
unavailable data block, requiring it to be downloaded on-demand.

To ensure the proof is executed in the desired node, the auditor forwards the
list of randomly ordered indexes to the trusted execution environment of the fog
node. However, because data items are kept outside the enclave, due to its limited
storage capacity, each data block to be read requires the fog node processor to
change its execution mode (from secure to normal, and vice-versa)[14] repeatedly.
The enclave (secure mode) requests the fog node (normal mode) to read and
compute a hash of a data block, at a time. The index of the next data block to
be retrieved is only provided to the fog node, after it has returned to the enclave
the previous hashed block. This process is repeated until all required data blocks
have been retrieved, and hashed, i.e., until the N data blocks have been serially
read from disk. The fog node must retrieve data blocks serially from disk, and
not in parallel, to signal to the the auditor the delay the target fog node takes
to retrieve a data block.

At the same time, because the fog node needs to resort to the enclave to
known the next data block, we guarantee that our proof of timely-retrievability
is authentic, as it can not be computed by a neighbor fog node, or in the cloud.
If we considered the scheme introduced in Section 4.3.2, where the identity of
the following data block cloud be inferred from the hash of the previous one, we
would not guarantee that the proof was authentic. The fog node could request
a neighbor node, or even the cloud to compute the proof.

Cryptographic Hashes With each retrieved data block, the fog node computes
an hash, together with a nonce η (previously chosen by the auditor and provided
to the fog node through the enclave). The nonce, unique per fog node, not only

17

guarantees that the issued proof is unique, as it guarantees it is computed on-
demand (a valid proof can not be computed without η).

In turn, the enclave as it receives the hashed data blocks with the nonce
keeps them in memory. At the end, after all required blocks have been read and
hashed, the enclave computes a new hash of all blocks that will forward, as a
response, to the auditor.

Before checking proof correctness, for each challenged fog node, the auditor
computes the same sequence of data blocks hashes, with the respective nonce,
building a verifiable version. When receives the response from the enclave, com-
pares the obtained proof with the computed verifiable version, if both computa-
tions match, the issued proof is correct.

Deadline The auditor defines a deadline T that each challenged fog node has
to comply to build a on-time proof of timely-retrievability. As each fog node can
only satisfy users data requests with low latency, if the time it takes to retrieve a
data object from disk is at maximum δ milliseconds, the auditor must guarantee
that the deadline T is only met if the fog node retrieves each one of the requested
data blocks, in the challenge, at maximum δ milliseconds. If the fog node does
not keep data blocks in local storage, and needs to fetch them from a neighbor
node, or from the cloud, this maximum retrieval time δ will not be respected,
leading to an invalid proof of timely-retrievability (the proof is issued over the
time limit).

At the same time, as for each one of the N requested data blocks to be
retrieved the fog node needs to compute an hash, together with the previously
provided nonce η, this computation delay will influence the fog node response
time to the challenge. So, the auditor, when defining the deadline T , needs also
to account with the delay to compute the hash of the N data blocks. We define
α as an estimate value of the computation time of a data block hash.

Because an audit requires the auditor to send the challenge to the fog node,
and the fog node to answer back the computed proof, when defining the deadline
T , the auditor needs to account with the delay the messages take in the network.
Therefore, being d an estimate value for the network delay in one direction
communication, the auditor accounts for the deadline the network delay of both
directions communications (2d).

As this being said, the auditor defines T as the sum of the communication
network delay (2d) plus the delay to retrieve and compute the hash of the se-
lected N data blocks (N(δ+α)). Once the auditor aims to prove the data timely
retrievability, the delay to retrieve a data block is set as δ, the maximum delay
accepted to provide data to users with low latency. Nevertheless, as communi-
cation delays, accesses to disk, and hashes computation may be subjected to
variances and error margins, we add estimate margins to the deadline T : εd, εδ,
and εα that correspond to error margins of network delay, access time to disk,
and hash computation time, respectively. Equation 1 provides an overview of
the described deadline T .

T = (2(d± εd)) +N × ((α± εα) + (δ ± εδ)) (1)

18

As εα and εδ may be negligibly small, the same does not happen with εd.
As the network is frequently unstable, and the auditor may be distant to the
target fog nodes, the network delay and respective error margin (εd) may be
over-estimated, providing a slack for the fog nodes to misbehave without being
detected. Therefore, as a countermeasure, the auditor must guarantee that the
number N of requested data blocks is sufficiently high to attenuate the network
delay variances. The auditor must guarantee that the time the fog node takes to
compute a proof is mainly dependent on the time to retrieve, and hash the N
requested data blocks. Nevertheless, as εα, and εδ are present when processing
a data block, these errors do not attenuate with the increase of N .

Being tc the time a fog node takes to answer a challenge; dc the network delay
verified in the challenge; αc the hash computation delay during a challenge; and
δc the time a fog node takes to retrieve a data block, when subjected to a
challenge; tc, together with the considered error margins, may be described as
in Equation 2.

tc = (2(dc ± εd)) +N × ((αc ± εα) + (δc ± εδ)) (2)

From Equation 2, we can obtain the delay (δc) a fog node takes to read a data
block (Equations 3 and 4).

δc =
tc − 2dc ± 2εd −Nαc ±Nεα ±Nεδ

N
(3)

δc =
tc − 2dc −Nαc

N
± (

2εd

N
+ εα + εδ) (4)

Where, in Equation 4, (2εd

N + εα + εδ) captures the error εc in estimating δc the
challenge is subject to (Equation 5).

εc =
2εd

N
+ εα + εδ (5)

As the number N of data blocks to be retrieve increases, the estimation error
εc of the reading delay δc is subject to decrease. So, the auditor must select a
value N to ensure the reading delay has the lower possible error margin (Equa-
tion 6). Thus, the minimum value for N may be determine by the auditor from
Equation 7.

N =
2εd

εc − εα − εδ
(6)

N >
2εd

εc
(7)

Then, with a minimum number N of data blocks, the auditor guarantees that
the time to retrieve a data block is larger than the error margins, it is subject to
(Equation 8), that will allow a auditor to determine whether a fog node is able
to retrieve a data block in δc ≤ δ, or not.

εc << δc (8)

19

We now describe a more concrete example, on how the auditor may determine
the number of minimum data blocks to be read, to assess the delay to retrieve
each one of them.

For an maximum expected δ of 30 milliseconds, and a desired estimation
error of less than 3 milliseconds (εc < 3ms), and a network delay variance of 100
ms (εd = 100ms) [18], the auditor must guarantee that:

2 × 100

N
ms < 3ms (9)

2 × 100

3
≈ 70 < N (10)

So, the auditor must select at minimum 70 data blocks to be retrieved.
In summary, a fog node to prove that it is able to satisfy users data requests

with low latency, must build a valid proof of timely-retrievability. A proof of
timely-retrievability is valid if the computed final hash representing N retrieved
data blocks, together with the nonce, is correct, and the proof is issued in tc ≤ T .

As the fog node is challenged to retrieve each one of the N data blocks at
maximum in δ milliseconds. If the delay to retrieve each data block (δc) is longer
than δ milliseconds, the proof will be over-time, and so invalid. An invalid proof
will, in turn, alert the auditor that the agreed service is not being complied by
the ESSP. At the same time, a fog node that reads each challenged data block
in δc ≤ δ milliseconds, will provide a valid proof of timely-retrievability, proving
compliance with the desired QoS aspect: data timely retrievability, which means
that is able to respond to users data requests with low latency.

5.5 Optimization

As the network delay brings highly variance to the deadline, and may provide a
space for a fog node to misbehave without being detected, the removal of this
parameter could improve audit confidence. Therefore, a possible way to achieve
this is by having the enclave, which is a trusted part to the cloud storage provider,
measuring the delay the fog node takes to build a proof. This will not just reduce
the estimation error in time measurements, as it will allow to reduce the number
N of data blocks to be retrieved (saving resources), as network variances are no
longer taken into account. Nevertheless, this approach requires the Intel SGX
extension to read the system clock, which is still an open issue in the literature.

6 Evaluation

Our main goal is to evaluate the accuracy of our proposed challenged, and re-
spective proof of timely-retrievability to detect rational edge storage service
providers. More precisely, we will evaluate the true-positive rate (how often
the challenge successfully flags as faulty a misbehaving fog node) and the false-
positive rate (how often the challenge unfairly marks as faulty a correct fog node)
for different system scenarios. We will build the scenarios by varying different

20

parameters, namely: i) the actual average reading delay δc a fog node takes to
retrieve a data block; ii) the variance of the network delay (between the auditor
and the fog node); and iii) the selected number N of data blocks to be retrieved
during a challenge.

6.1 Reading Delay

Let δ be the reading delay that needs to be observed by a fog node that complies
with the SLA. A faulty fog node will suffer an average delay δfaulty > δ. Natu-
rally, the larger the difference between the desired delay δ and the actual delay
δfaulty, the easier should be to detect the misbehavior. We plan to experiment
with different values of δfaulty, to assess the sensibility of our challenge to this
parameter.

Note that if the fog not is faulty, the value of δfaulty will depend on the
fraction of objects that are not stored on the fog node and also on the location
used to fetch these object on demand. Thus, different behaviors of a rational fog
node can lead to the same value of δfaulty. We also plan to assess if these factors
have an impact on the accuracy of our challenge.

6.2 Network Delay Variance

Because the network is frequently unstable, and the auditor may be distant to
the challenged fog nodes, the auditor will verify a higher network variance when
measuring the time a fog node takes to answer to a challenge. This high variance
will, in turn, interfere with an accurate measurement of the time a node takes to
read a data block. As the number N of requested data blocks may overcome this
situation, we will evaluate how the network variance influences readings measure-
ments, and whether according to the auditor/fog nodes geolocation, the number
N of requested data blocks needs to be changed (increased, or decreased).

6.3 Number of Challenged Data Blocks

Equation 7 provides a method to derive the number of objects N that should be
included in the challenge, as a function of the target estimation error and the
known errors in the network, disk access and computing delays. We plan to run
challenges using different values of N , including values smaller and larger than
the value suggested by Equation 7, to understand if this formula is the most
appropriate.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

21

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

8 Conclusions

As third-party storage systems may be affected by faults that compromise data
availability, data must be replicated across different storage nodes. However, as
this requires extra costs to deploy and manage data replicas, storage providers
may rationally misbehave by keeping data items in fewer storage nodes than
the required by the client. Therefore, storage providers, and their storage nodes
must be subjected to audits to detect misbehavior, and non compliance with an
agreed service. Apart from data replication, third-party storage providers may
not comply with data integrity, data retrievability, geo-replication and timely
retrievability.

One of the characteristics a cloud storage provider can not comply is data
timely retrievability (documents are retrieved within a typically small latency),
due mainly to network distance of data centers to users. Therefore, a cloud
storage provider may resort to a edge storage provider to place copies of users’
data in storage nodes (fog nodes) closer to them. But as edge storage providers
have a limited storage capacity, they may be tempted to rationally oversell their
capacity and to hide this behavior by fetching, on-demand, data from the cloud
or from other servers instead of serving it from local storage, at the cost of
serving users with high latencies.

In this work, we provide a challenge as an auditing mechanism from which a
proof of timely-retrievability can be obtained. Our proof of timely-retrievability
allows a trustworthy cloud storage provider to assess service compliance by a
hired edge storage service provider (ESSP). The auditor challenges fog nodes,
managed by the ESSP, to prove they are able to retrieve a set of data blocks
within milliseconds, as a way to guarantee data clients are satisfied with low
latency.

Acknowledgments We are grateful to Cláudio Correia for the fruitful dis-
cussions and comments during the preparation of this report. This work was
partially supported by the FCT via project COSMOS (via the OE with ref.
PTDC/EEI-COM/29271/2017 and via the “Programa Operacional Regional de
Lisboa na sua componente FEDER” with ref. Lisboa-01-0145-FEDER-029271)
and project UIDB/ 50021/ 2020.

References

1. Benet, J.: Ipfs: Content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561 (2014)

22

2. Swarm: Swarm: Storage and communication for a sovereign digital society (2019)
3. Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., Sabella, D.: On multi-

access edge computing: A survey of the emerging 5g network edge cloud architec-
ture and orchestration. IEEE Communications Surveys Tutorials 19(3) (2017)

4. Li, L., Lazos, L.: Proofs of physical reliability for cloud storage systems. IEEE
Transactions on Parallel and Distributed Systems 31(5) (2020)

5. Gondree, M., Peterson, Z.N.: Geolocation of data in the cloud. In: Proceedings
of the Third ACM Conference on Data and Application Security and Privacy, San
Antonio, Texas, USA (2013)

6. Benson, K., Dowsley, R., Shacham, H.: Do you know where your cloud files are? In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop,
Chicago, Illinois, USA (2011)

7. Ramaswamy, L., Liu, L.: Free riding: a new challenge to peer-to-peer file sharing
systems. In: 36th Annual Hawaii International Conference on System Sciences,
2003. Proceedings of the. (2003)

8. Feldman, M., Chuang, J.: Overcoming free-riding behavior in peer-to-peer systems.
SIGecom Exch. 5(4) (jul 2005) 41–50

9. Andrade, N., Brasileiro, F., Cirne, W., Mowbray, M.: Discouraging free riding in
a peer-to-peer cpu-sharing grid. In: Proceedings. 13th IEEE International Sympo-
sium on High performance Distributed Computing, 2004. (2004)

10. Streiffer, C., Srivastava, A., Orlikowski, V., Velasco, Y., Martin, V., Raval, N.,
Machanavajjhala, A., Cox, L.: eprivateeye: To the edge and beyond! In: Proceed-
ings of the Second ACM/IEEE Symposium on Edge Computing (SEC), San Jose,
California, ACM (2017)

11. Drolia, U., Guo, K., Tan, J., Gandhi, R., Narasimhan, P.: Cachier: Edge-caching
for recognition applications. In: Proc. of the 37th Inter’l Conf. on Distributed
Computing Systems (ICDCS), Atlanta (GA), USA (June 2017) 276–286

12. Satyanarayanan, M., Gibbons, P., Mummert, L., Pillai, P., Simoens, P., Suk-
thankar, R.: Cloudlet-based just-in-time indexing of iot video. In: Proceedings
of the Global Internet of Things Summit (GIoTS), Geneva, Switzerland, IEEE
(2017)

13. Ricart, G.: A city edge cloud with its economic and technical considerations. In:
Proc. of the 1st Inter’l Workshop on Smart Edge Computing and Networking,
Kona (HI), USA, IEEE (2017)

14. Correia, C.: Omega: a secure event ordering service for the edge. Master’s thesis,
Instituto Superior Técnico, Universidade de Lisboa (nov 2019)

15. Benet, J., Dalrymple, D., Greco, N.: Proof of replication. Protocol Labs, July 27
(2017) 20

16. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of
internet hosts. IEEE/ACM Transactions on Networking 14(6) (2006)

17. Ekberg, J., Kostiainen, K., Asokan, N.: The untapped potential of trusted execu-
tion environments on mobile devices. IEEE Security Privacy (2014)

18. Aikat, J., Kaur, J., Smith, F., Jeffay, K.: Variability in tcp round-trip times. In:
Proceedings of the 3rd ACM SIGCOMM Conference on Internet Measurement.
IMC ’03, Miami Beach, FL, USA, Association for Computing Machinery (2003)

23

