
Federated Learning for Predicting the Next
Node in Action Flows

Daniel Lopes
daniel.f.lopes@tecnico.ulisboa.pt

Instituto Superior Técnico

(Advisor: Professor Lúıs Rodrigues, IST)
(Co-Advisor: João Nadkarni, Outsystems)

Abstract. Federated learning is a machine learning approach that al-
lows different clients to collaboratively train a common model without
sharing their data sets. We focus on centralized federated learning, where
a central server collects contributions from individual clients, merges
these contributions, and disseminates the results to all clients. Since
clients have access to different data, as well as personalised classifica-
tion preferences, there is a trade-off between the generality of the com-
mon model and the personalization of the classification results. Current
approaches rely on using a combination of a global model, common to
all clients, and multiple local models, that support personalization. We
survey the state-of-the-art solutions for federated learning and identify
unexplored alternatives for training the global and the local models that
are worth exploring. Our research is driven by the requirements of Out-
Systems, where federated learning is being explored as an alternative
approach to train Graph Neural Networks that are used to help program-
mers in their coding tasks.

Keywords: Federated Learning · Personalization · Graph Neural Net-
works

1

Table of Contents

1 Introduction . 3
2 Goals . 4
3 Background . 5

3.1 Machine Learning . 5
3.2 Federated Learning . 7
3.3 Communication Efficiency in Federated Learning 8
3.4 Privacy of Client Data . 9
3.5 Security of the Model . 10
3.6 Personalized Federated Learning . 12
3.7 Federated Learning with Graph Neural Networks 13

4 Related Work . 13
4.1 Systems Addressing Communication Efficiency 13
4.2 Systems Addressing Privacy . 14

4.2.1 Privacy Attacks . 14
4.2.2 Privacy Defense Systems . 15

4.3 Systems Addressing Poisoning . 16
4.3.1 Poisoning Attacks . 16
4.3.2 Poisoning Defense Systems . 16

4.4 Systems Addressing Personalization . 17
5 Architecture . 21

5.1 OutSystems’s Federated Learning Setting 21
5.2 General Architecture . 22
5.3 Communication Efficiency . 23
5.4 Ensuring Privacy and Security . 23

6 Evaluation . 24
6.1 Performance . 24
6.2 Communication Efficiency . 25
6.3 Privacy and Security . 25

7 Scheduling of Future Work . 25
8 Conclusions . 25
A Proposed Training Procedure . 29
B OutSystems’s Data Set Statistics . 30
C OutSystems’s Data Set Distribution . 30

1 Introduction

Machine Learning (ML) is an area of Artificial Intelligence (AI) that intends
to learn the parameters of a model from a given training data set such that they
can be used to predict an output given an input. Federated Learning (FL) is
a particular case of ML where different edge devices cooperate to construct a
common model without explicitly exchanging their data sets and compromising
performance while, ideally, preserving the privacy of their data. Our research is
driven by the requirements of OutSystems, where FL is being explored as an
alternative to the current fully centralized inference and training setup in order
to build a model intended to help programmers in their coding tasks.

Central
Server

Client 1 Client 2 Client 3

1 -
 m

od
el

pa
ram

ete
rs

1
- m

od
el

 p
ar

am
et

er
s

1 - model parameters

2 - local training 2 - local training 2 - local training

3 -
 cl

ien
t u

pd
ate

3 - client update

3 - client update

4 - calculate global update

Fig. 1. Example of the steps of a single FL communication round

In our work, we study the centralized FL approach, which uses a central server
to keep a global model. The server periodically performs communication rounds
with some clients (all or just a subset), to improve the global model with the help
of the individual training data from each client. Figure 1 illustrates the procedure
for a single communication round with three clients. In each communication
round, the selected clients receive the global model parameters from the central
server (step 1), train this model with their private data (step 2), and send back to
the server the resulting updates to the model (step 3). The server then aggregates
all the received local updates to generate a global update (step 4) to improve the
global model. This procedure is repeated over various communication rounds.

FL has many challenges. First, the communication rounds may consume sig-
nificant processing and network resources and should be made as efficient as
possible. Second, keeping data at the clients may not be enough to preserve pri-
vacy, as it may be possible to infer the content of the training data from the
updates to the model. Third, a faulty or malicious client may attempt to bias

3

or poison the global model. Lastly, clients may have different data and different
classification preferences, which creates the need for maintaining personalized
models, in combination with a common general model.

In this work, we are mainly concerned with the last challenge, particularly, in
techniques that can offer clients personalized models, while still benefiting from
FL. Aspects such as privacy preservation, security, and communication efficiency
will also be considered. Current approaches for personalization rely on using a
global model, common to all clients, which is then adapted to each client’s data,
or on splitting the model in two and having a shared global part and multiple
more specific parts, each one tailored and maintained exclusively by each client.
We survey the state-of-the-art solutions for FL and identify unexplored alterna-
tives for training in this personalized setup that are worth exploring. Based on
these findings, we propose to implement and evaluate some of these new variants.

We plan to experiment and evaluate these new variants in the context of
the Service Studio platform from OutSystems. Service Studio is a low-code
platform that allows users to design and manage systems and applications in
a simple and efficient manner through a visual and interactive user interface.
In this platform, among other things, the user defines the application logic by
creating a flow of actions. These actions can be of several types, for instance,
“if”, “for” or “assign” (many other actions related to, for example, user interface
development and data management, are possible). In this platform, ML is used
to give recommendations to the users about which actions should be added next
to an action flow.

In Service Studio, an action flow can be modelled as a graph where the actions
are nodes and the edges represent the flow from action to action. The graph can
then be used as input to a specific type of ML neural network model architecture,
a Graph Neural Network (GNN), which is specialized in interpreting graphs and
making predictions on them. In our case, the model predicts, from a finite set
of possible node types, which are the most probable to be added next to the
graph. This prediction is then used by Service Studio to recommend possible next
actions to the user. The use of FL in this context is relevant because it allows
the model to be trained using contributions from various clients, while ensuring
that information about the applications being developed remains private.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3, we present all the
background related to our work. Section 4 covers the related work. Section 5
describes the proposed architecture to be implemented, and Section 6 describes
how we plan to evaluate our results. Finally, Section 7 presents the schedule of
future work, and Section 8 concludes the report.

2 Goals

The high-level goal of our work is to explore new personalization approaches
for FL that, in practice, can be used by the OutSystems’s Service Studio.
Given that, in this application, the action flow to be modelled is represented by

4

a graph, we will use GNNs to perform node classification tasks. Also, since the
personalization of the classification results is of paramount importance, we aim
at FL algorithms that have good personalization characteristics. More precisely:

Goals: We aim at exploring different techniques that divide the ML
model in two parts that are combined, namely, a shared part and multiple
personalized local parts, to improve the performance of FL. While doing
so, we also want to study the impact of these techniques on the privacy,
security, and efficiency of the resulting FL system.

To achieve this goal, we plan to leverage recent research results such as Fed-
erated Learning with Personalization Layers (FedPer) [1], Federated Represen-
tation Learning (FedRep) [9], and Federated Averaging with Body Aggregation
and Body Update (FedBABU) [26], that already combine the use of global and
local models, and that have proposed different strategies to train these mod-
els. We aim at identifying new strategies that have not been explored by these
systems and assessing their potential.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the sys-
tem, including the proposed personalized training algorithm; ii) an im-
plementation of the system, iii) an extensive experimental evaluation
of the performance of the algorithm and, finally, iv) an analysis of its
privacy-preservation and security features.

3 Background

In this section, we present some background related to our work. We start
by a simple introduction to ML (Section 3.1), then we present FL as an ML
approach (Section 3.2). We then go over some of the challenges of FL, namely,
communication efficiency (Section 3.3), client data privacy (Section 3.4), model
security (Section 3.5) and model personalization (Section 3.6). Finally, we ex-
plore some of the work done for GNNs in FL (Section 3.7).

3.1 Machine Learning

ML is one of the branches of the vast area of AI. ML leverages algorithms
that receive data as input, known as training data, to build a model based on
that data. Given a data point as input, these models allow to make predictions
or decisions on a specific task for which they were trained on. If the training
data is carefully selected, the quality of the model can improve as more training
data is provided to the model. For this reason, one often states that ML models
can learn from experience. It should be noted, however, that if the training data
does not capture the diversity of the expected inputs, the resulting model may
be inadequate; for instance, a model can learn details or noise from the training
data that may lead to poor performance (problem known as overfitting).

5

The task of building an ML model usually leverages three phases: training,
validation, and testing. The data set is partitioned into three disjoint partitions,
one for each stage. This division allows assessing the generalization capabilities
of the model through the evaluations made in the unseen partitions. In this work,
we focus on the supervised training setting, where for each training data point
the expected output is also provided (other settings, such as semi-supervised
and unsupervised training are out of the scope of this study). The ML algorithm
uses the training data to find patterns in the data which allow it to derive the
expected output from the received input, these patterns are captured by the
model. The validation step, where the model performance is evaluated, is nor-
mally performed at the end of each training epoch (a single pass of the training
partition) and can be used to tune hyperparameters, such as the learning rate,
and to avoid overfitting to the training data (if the performance in validation
data is decreasing while the performance in training data keeps increasing it is
an indicator of that). Finally, after the training and validation of the model are
completed, we have the testing phase. In this phase, the model receives new un-
seen data from the test partition and its performance is evaluated by comparing
the outputs produced with the expected output, also known as the ground truth.
Unlike the validation data, the testing data should not be used to fine-tune the
model, nor to stop overfitting in the training stage.

There are several types of ML models. In this work, we focus on Artificial
Neural Networks and, particularly, on Graph Neural Networks (GNNs) [3], as
they are the architecture used by the AI-powered capabilities present in Service
Studio. GNNs learn data sets that are modelled as graphs. Other neural network
architectures exist for other types of data, such as Convolutional Neural Net-
works, suitable for data presented as a grid (such as images), or Recurrent Neural
Networks, for sequential data. GNNs itself can have different architectures, the
one used by OutSystems is the Message Passing proposed by Battaglia et al. [3].

A graph G = (V,E) is characterized by a set of nodes V and a set of edges
E. In the case of OutSystems, an Action Flow, also called a Logic Flow, is
a directed weakly connected graph. Nodes, represent the actions and are con-
nected through edges, which represent the flow between two actions. Each edge
is directed, meaning that there exists a flow relation between a source node and
a destination node. Each node has its own attributes which represent character-
istics or features of the action. For example, all nodes have a kind that indicates
the type of the action, it can be a “switch”, “assign”, “if”, and so on. Edges
also have attributes that represent the characteristics of the flow, for example
for a “switch” action one of the edge attribute indicates the condition the edge
corresponds to. In an action flow, G cannot have self-loops or parallel edges,
V must contain exactly one “start” node, where the flow begins and only has
outgoing edges, and the flow finishes in an “end”, or “raise exception” node, that
only have incoming edges.

Figure 2 shows an example of an OutSystems Action Flow for splitting a
string formatted in a given naming convention. The flow leverages a “switch”
action to select the initial string naming convention format, either snake case

6

Fig. 2. Service Studio Action Flow for splitting a string into multiple tokens according
to the used naming convention.

(condition 1) or pascal case (condition 2), otherwise, it raises an exception. For
the snake case, it first uses a “server action”, which runs logic on the server, to
split the string by “ ” and sets the output with an “assign” action. For the pascal
case, first a “server action” is performed to split the string by capital letters and
then the output is set. For example, for the input string ”FederatedLearning” in
the Pascal naming convention, this flow outputs ”Federated Learning”.

3.2 Federated Learning

Traditional ML approaches assume that the entire data set is available to the
workers that build the model. Even if the training is distributed, and some work-
ers may not be able to access the entire data set, there are no restrictions that
prevent specific data sets to be processed by specific workers. In contrast, in FL,
a set of clients aim at building a common model without explicitly exchanging
their data sets and, ideally, preserving the privacy of their data.

The most common approach to achieve FL consists in using a central server
to orchestrate the coordination among the clients. This architecture is described
by Bonawitz et al. [6]. The protocol proceeds in rounds of communication where,
in each round, the server selects a set of clients to participate. When the round
starts, the server sends the parameters of the current global model to each par-
ticipant. Afterwards, each participant independently trains the model received,
using its own data set, obtaining a local model. The client then sends an update
back to the server which reflects the changes that have been locally applied to
the global model. The central server collects the updates from different clients,
aggregates them, and uses the resulting global update to derive the new global
model. These rounds are repeated, possibly involving a different subset of clients
in each round, until the model converges, which means the model performance
stabilizes within a certain error range of the final value.

Federated Averaging (FedAvg) [22] is the underlying algorithm used in FL
to train the model locally in each client and to aggregate the local updates
in the central server. This algorithm relies on the Stochastic Gradient Descent
(SGD) [28] algorithm to calculate the local update of the client. Therefore, in
a communication round, after initializing its local model parameters with the

7

received global model parameters, the client divides its data set, D, into batches
of smaller size, B, and performs E rounds of local computation where, in each
round, it performs several updates to the local model, one update for each batch.
After finishing the E local rounds, the client sends its local model parameters
to the server. The server collects the parameters from the different clients and
performs a weighted average of all the received model parameters considering
the size of each client’s data set, obtaining the new global model parameters.

FL introduces several challenges, for instance, although clients do not share
their data sets explicitly, it may be possible to obtain information about the
clients’ private data from the client updates or even from the global model.
Also, a malicious client may attempt to bias the model. Additionally, if the data
each client has differs significantly from the data of the others, it may be hard
to ensure that the global model outperforms the local models when trained in
isolation, in such case we are dealing with a heterogeneous setting.

Different categories to classify FL approaches have been proposed in the liter-
ature [15,17,37]. One can categorize FL according to how the data is partitioned
across clients, the communication architecture and the scale of the federation.

In terms of how the data is partitioned across clients, it can be categorized
into horizontal, vertical or hybrid partitioning. In horizontal partitioning, data
shares common features from client to client but the data subjects differ, for
example, two sports teams have different supporters but collect the same type of
information for each supporter. In vertical partitioning, the data features differ
between clients, but the data subjects are similar, for example, a pharmacy and
a bakery in a given region will probably have the same clients but will record
different data about them. Finally, hybrid partitioning or transfer learning is
applied when the data differs both in the subjects but also in the features, for
example, a hospital from the United States and a store from Germany will have
different clients and will record different information about each client.

Regarding the communication architecture, FL can be classified as centralized
or decentralized. Centralized FL corresponds to the approach described previ-
ously. In decentralized FL, no central server exists, thus the clients communicate
with each other and each client can update the global model directly.

Finally, we can classify the FL approaches according to the scale of the fed-
eration as cross-silo or cross-device. In the cross-silo setting, the clients are typ-
ically organizations or datacenters, hence, the number of clients is small with
each one having a large amount of data and computational power. Normally, in
this setting, communications and computational power are not an issue. In the
cross-device setting, the number of clients is very large and clients are typically
mobile devices, which have limited computational power and network connec-
tivity, therefore, communication and computation efficiency is a key concern.

3.3 Communication Efficiency in Federated Learning

A characteristic of FL is that clients may be heterogeneous, with different
computational power and available bandwidth. Kairouz et al. [15] divide the

8

different optimizations that can be implemented to address client heterogeneity
into three objectives:

– Gradient compression, where the local updates from the client are com-
pressed. Compression of updates can be performed by applying techniques
of sparsification, quantization and/or subsampling. In sparsification, the pa-
rameter matrix is transformed into a sparse matrix reducing the number of
parameters sent (only non-zero entries are sent). Quantization transforms the
model parameters from continuous values into discrete values, reducing the
number of bits for each parameter. Subsampling means sending only a part
of the model. Despite being able to be combined, a few of these techniques
require more computation on the client-side and, others cannot be combined
with some of the privacy defense strategies that we will discuss next, namely
Differential Privacy, since this defense strategy adds real-noise to the updates
which is incompatible with the quantization compression strategy;

– Model broadcast compression, where the global model update sent to each
client is compressed using the same techniques mentioned previously;

– Local computation reduction, where the training algorithm is modified in
order to be computationally more efficient.

3.4 Privacy of Client Data

Privacy is a major concern of FL, as one of its main objectives is to allow
private client data to be used to train ML models without allowing the derivation
of any data or data characteristics from the global or client updates.

However, some successful attacks showed that it is possible to leak client data,
through inference attacks. Before outlining their types and possible defenses, it
is important to classify the different types of possible adversaries [5,21]:

– Honest-but-curious server, where the central server behaves correctly, but
can try to infer information from the received client updates;

– Malicious server, where the central server can deviate from the protocol, and
therefore can send an arbitrary global update to the clients;

– Honest-but-curious client, where a client behaves correctly, but can try to
infer sensitive data from the received global updates;

– Malicious client, where a client can insert arbitrary data in its data set or
send an arbitrary local update to the server;

– Outsider, where the attacker does not participate in the protocol but has
access to the global model, either by eavesdropping communications or by
using the final model.

Inference attacks try to infer sensitive information of the training data from
the model updates and they can be of one of four types [21,38]:

– Inference of class representatives, where the attacker generates data samples
that are not the real training data, but represent the classes of that data;

– Inference of membership, where the attacker tries to infer if a given data
point was used during the training process;

9

– Inference of properties, where the attacker tries to infer some properties of
the training data;

– Inference of training samples and labels, or reconstruction attack, where the
attacker tries to fully reconstruct the training data.

There are three commonly used approaches to protect from the above attacks,
each with its trade-offs [21,33]:

– Homomorphic Encryption, where the clients leverage encryption to hide their
local updates, while still allowing some operations on the encrypted data.
Therefore, the local updates from the clients are hidden and cannot be used
to perform inference attacks. Different operations can be performed, however,
having a larger suite of operations requires more computational power and
possibly loss of utility due to some approximations. Even with a smaller set
of operations, the computational overhead introduced by encryption makes
it impractical in scenarios with a large number of clients;

– Secure Multiparty Computation (SMC), where the clients jointly compute a
function using their own data, only having access to their private data and
the function result. Furthermore, the server does not have access to client
updates as these are masked in a way such that the masks from all the
updates cancel out when aggregating on the server. However, it does not
protect against inference attacks to the global update as SMC only protects
the client updates. The main disadvantage of this approach is that it intro-
duces both communication and computation overheads, which is detrimental
in situations with a large number of participating clients;

– Differential Privacy (DP), where noise is added to the updates, either local
or global, such that the sent update does not entirely match the calculated
one. The noise can be inserted either by the server or the client depending
on which update should be protected, global or local, respectively. However,
this privacy protection comes at the cost of accuracy, since the updates do
not correspond to the real computed values.

It should be noted that Homomorphic Encryption and SMC approaches mask
the client updates. However, this also facilitates poisoning attacks, covered in
Section 3.5, since the server cannot distinguish outlier updates from malicious
updates. This is not the case for DP based approaches.

Lastly, An attacker can have access to the local and global updates by eaves-
dropping the communication channels. Thus, secure communication channels
must be used to mitigate this threat.

3.5 Security of the Model

In FL, several clients participate in each round and directly influence the
global model. This opens the possibility for having malicious clients performing
poisoning attacks. These attacks consist of an attacker trying to modify the
global model to behave in a certain way and they can be of two types [21]:

10

– Data poisoning, where an attacker adds malicious data points that will poison
the local model and consequently poison the global model;

– Model poisoning, where an attacker can send arbitrary local updates that
will poison the global model.

Model poisoning attacks are significantly more powerful than data poisoning
attacks, since the attackers can send any desired update to the server instead
of manipulating the training data. Poisoning attacks can be further divided into
targeted and untargeted attacks. Targeted attacks are those where an attacker
tries to make the model perform in a certain way for a certain input, without
affecting the behaviour for other inputs. Untargeted attacks are those where the
attacker’s intent is to simply compromise the global model. In production envi-
ronments, the latter have more impact since they influence the whole model util-
ity. In terms of duration, attacks can also be determined as one-shot (only in one
communication round) or continuous (during several communication rounds).

Data poisoning attacks can also be classified as clean-label or as dirty-label.
In clean-label attacks, the attacker cannot modify the labels, or classifications,
of its training data as desired, since the labels must be consistent with the
corresponding data, whereas in dirty-label attacks the attacker can introduce
new training data with any desired labels.

The defense mechanisms available to try and mitigate poisoning attacks can
be of two types depending on the strategy used [30]:

– Robust Aggregation, where the aggregation algorithm is improved by, for
instance, selecting for aggregation only the closest update or set of updates
to the median or mean of the received updates;

– Anomaly Detection, where client updates considered as anomalies (or out-
liers) are dropped or their influence is limited, since updates significantly
different from the rest are more likely to be poisoned updates.

Unfortunately, there is no perfect defense strategy: some incur significant
computational costs on the server-side, which can be prohibitive in some cases;
some severely affect the performance of the model in heterogeneous settings
since, in these settings, updates are more likely to be genuinely different, so it is
more likely that correct updates are wrongfully dropped; and most of the current
defenses have been shown to be vulnerable to some attacks.

It is also important to mention that Shejwalkar et al. [29] argue that, for pro-
duction environments, the existent untargeted poisoning attacks are not effective
due to unrealistic assumptions, for instance, some attacks consider a significant
percentage of compromised clients (in some cases 25% to 50%), which can mean
a huge number of clients needs to be compromised. Their results show that
the impact of these attacks is negligible in production scenarios (less than 1%
impact, with 1% of compromised clients) even with long continuous attacks. Fur-
thermore, they also demonstrate that the least computational intensive defense
strategy is enough to protect FL in production against untargeted attacks.

11

3.6 Personalized Federated Learning

In an FL setting, one of the most unique characteristics is statistical hetero-
geneity. This particular characteristic means that each client’s private data has
its own specific features which can be completely different from other clients’
data, and therefore the data of one client does not represent the data of the
remaining clients. In this case, we say that clients have non-independent and
non-identically distributed data (non-i.i.d. data). Furthermore, the number of
data points in a client’s data set can differ from the other clients’ data set size,
meaning, the data may be unbalanced in the number of data points.

Such characteristics pose a significant challenge when trying to develop global
models which generalize well to all the clients. In order to handle the heterogene-
ity of client’s data, FL methods were proposed with the intent of personalizing
the global model to the different clients. Tan et al. [31] propose a taxonomy
where these methods can be classified at a high level as:

– Data-based, which focuses on reducing the heterogeneity between different
client data sets, to obtain a single global model;

– Model-based, which focuses on creating models that adapt to each client.

Next, some of the sub-types of methods are explained. The first two corre-
spond to data-based approaches and the remaining to model-based approaches.

Data Augmentation in FL consists in leveraging shared data in the training
process. This data can be either directly shared by clients, or generated through
a server model trained with the shared data. This strategy ensures the local
updates of each client are trained with some data points that represent the
overall data distribution, thus alleviating the heterogeneity of their updates.
However, it leads to some performance loss as models are less personalized and
also poses privacy risks as some data needs to be shared.

Client Selection approaches modify the server’s client selection policy to favour
certain clients for participation in a communication round. Therefore, clients
with more heterogeneous data sets are not selected as frequently for training.
However, this defeats the purpose of FL which is to learn from the different
clients and introduces issues of fairness in client participation.

Meta-learning is a model-based method. It consists in exposing the global model
to several similar tasks making it learn new similar tasks quickly and efficiently.

Regularization works by regularizing the client updates to limit the impact of
highly heterogeneous updates, hence, creating a better generalized global model
and improving convergence.

Clustering is a technique that groups clients into clusters based on the similarity
of their local updates, such that a model is trained for each one. However, this
approach normally incurs in high communication and computation costs, and it
requires additional cluster management logic.

12

Multi-task Learning is a method where a model is trained to learn several differ-
ent tasks, trying to capture relationships between each task, in order to generalize
through what it has learnt from each one. In FL this approach considers each
client as a task, therefore, each one trains its own model, which is improved
through the collaboration with other client models.

Parameter Decoupling is a technique that decouples the global model into two
parts, a representation, or body, and a classifier, or head. The body extracts the
features from the data and the head uses those features to output a classification.
Depending on the algorithm, one of them is global and the other is local and
specialized to each client. The clients can train both sub-models, but the updates
exchanged refer only to the global part, therefore, the communication efficiency
is improved. This approach allows each client to have its own personalized model
composed of the global shared part and the local specialized part.

3.7 Federated Learning with Graph Neural Networks

The use of FL to build GNNs is a recent research topic, in this section, we
outline some of them. In terms of privacy-preservation, Jiang et al. [14] pro-
pose an FL system for a graph classification task that interprets video frame
sequences in a semi-supervised setting, which leverages an SMC protocol, secure
aggregation (covered in 4.2). Furthermore, Zhou et al. [40] propose an FL system
for node classification tasks in vertical FL settings, using local DP.

In terms of personalization approaches, Wang et al. [34] propose an FL sys-
tem for node classification in a semi-supervised setting, leveraging meta-learning
for vertical FL. Xie et al. [36] propose an FL system for graph classification in
a vertical FL setting using clustering to group similar clients through their up-
dates.

Zhang et al. [39] view each client as having a specific local subgraph and
attempts to generate a global classifier for node classification in all subgraphs
through FL, while allowing the subgraphs to be connected between them.

All the mentioned approaches either focus on a different task other than node
classification or assume a different FL setting than ours (detailed in Section 5.1).

4 Related Work

In this section, we present some work related to the previously mentioned
FL challenges. Therefore, Section 4.1 explores communication efficiency systems,
Section 4.2 covers privacy attacks and defenses, Section 4.3 covers poisoning
attacks and defenses, and Section 4.4 addresses personalization systems.

4.1 Systems Addressing Communication Efficiency

Structured and Sketched updates [16] are two optimizations proposed for client-
to-server communications. Structured update forces the local updates to have

13

a specific structure, that is, it forces them to be a low-rank matrix or a sparse
matrix, meaning fewer parameters need to be sent in either case. Sketched update
is an optimization where the local update is compressed after local training using
subsampling or quantization techniques.

Federated Dropout [8] is a technique to reduce the costs of the server to client
communications by training updates for sub-models of the whole model. This
technique can be further enhanced with the compression techniques mentioned
previously. Therefore, the server first constructs a sub-model of the global model
and compresses it through quantization, sending the compressed update to the
client. The client decompresses the received update and trains it with its local
data, calculating the local update. Then, the client compresses the obtained local
update and sends it to the server, which upon receiving all the client updates,
decompresses them and performs an aggregation to obtain the global update.

Communication-Mitigated Federated Learning (CMFL) [20] changes the clients’
training algorithm by making each client only share local updates that represent
relevant changes to the model. In the proposed algorithm, the clients determine
if their updates are relevant by comparing their local update with the received
global update. If the update is deemed irrelevant, then it is discarded. Through
this procedure, clients with smaller contributions to the model in some commu-
nication rounds can be spared from sending their model updates.

4.2 Systems Addressing Privacy

4.2.1 Privacy Attacks

There are several examples in the literature that illustrate how FL can be com-
promised. Inference of class representatives attacks are explored by the multi-task
GAN for Auxiliary Identification (mGAN-AI) [35] framework which leverages
Generative Adversarial Networks (GANs) to break the client-level privacy by
generating class representatives of the client data from the local updates.

Inference of membership attacks have been demonstrated by Nasr et al. [25],
where the target model is run against a data point to individually compute the
model layers so as to obtain the model features. Then, through an encoder, the
probability of that data point having been used to train the model is obtained.

Inference of properties attacks are illustrated by Melis et al. [24]. The pro-
posed attack consists in using the global updates to generate both updates based
on data that contains the desired property and updates based on data without
the desired property. With both these updates, a classifier is trained to indicate
whether a model update was trained with the given property or not.

Inference of training samples and labels attacks have been exemplified by the
Deep Leakage from Gradients [41] attack. This attack leverages local updates to
obtain private training data by generating dummy data and dummy labels and
modifying them iteratively to minimize the distance between the local update
and the calculated update using the dummy data.

14

4.2.2 Privacy Defense Systems

Secure Multiparty Computation is one of the privacy defense strategies of which
the Secure Aggregation [7] protocol is an example of. This protocol hides the
client updates through pair-wise masks relative to each pair of participating
clients. The protocol ensures both the server and clients can only see the aggre-
gated result, hence, protecting client updates. It considers both an honest-but-
curious server and a malicious server. For simplicity, we only present a simplified
view for the former setting. In this setting, each client generates a secret shared
seed with every other client. After calculating the local update, the clients gen-
erate a mask for every client using their shared seed. Then, for every pair of
clients, one of the clients adds the mask to its update while the other subtracts
it, such that when aggregating all updates on the server, the masks are cancelled
out and the result obtained is equivalent to aggregating the unmasked updates.

However, global updates are still vulnerable to inference attacks. Further-
more, the communication costs increase as additional information needs to be
sent to/from the server as well as the computation costs, since clients need to
add the masks to their local updates. Lastly, as it hides client updates, it is not
compatible with poisoning defenses (Section 3.5).

Homomorphic Encryption is another possible defense strategy. Phong et al. [27]
propose a system leveraging additive homomorphic encryption to protect from an
honest-but-curious server. In this mechanism, the clients establish a common key
pair between them that is used to encrypt and decrypt the updates exchanged
with the server, which never sees updates in plaintext. Each client first receives
the encrypted model parameters, decrypts them and trains the model locally,
obtaining the local update. The update is then split into several parts which are
encrypted individually and sent to the server. The server receives each client’s
parts and adds each one to the corresponding part of the encrypted model.

However, this approach assumes a cross-silo FL setting where the participants
are honest, thus it does not take into account inference attacks performed by
clients. Furthermore, due to encryption, the computational costs for the clients
increase significantly as well as the communication costs, since more bits need
to be sent for each update. This increase in computational and communication
costs makes it a prohibitive approach for a cross-device FL setting.

Differential Privacy is the last defense strategy. Geyer et al. [13] propose a
system to protect the global model updates by changing the server’s averaging
procedure. Hence, the server first clips the received updates using the Euclidean
distance, such that it limits the amount of information learnt from each update.
Then adds Gaussian noise to the sum of all clipped updates, further limiting the
information gained from the aggregated updates. Finally, the result is normalized
by the number of participating clients to obtain the noised global update.

This strategy protects from attackers performing inference attacks to the
global updates, but requires the server to be trusted, since it has access to
the local updates. Furthermore, since noise is added to the global update, the

15

performance of the model decreases. Nonetheless, as demonstrated by McMahan
et al. [23], the performance can be improved by increasing the number of clients.
This technique is, therefore, advantageous in cross-device FL where there is a
significant number of clients. Moreover, contrarily to other strategies, since client
updates are not hidden to the server, poisoning defense techniques can be used.

4.3 Systems Addressing Poisoning

4.3.1 Poisoning Attacks

Several poising attacks have been identified in the literature. Data Poisoning
attacks are illustrated by Tolpegin et al. [32] through a label-flipping attack
which is a dirty-label targeted data poisoning attack. In this attack, a group
of malicious clients purposely change the label of their training data to a given
target to make the global model misclassify the input of a given source class to
the target class. For example, the attacker could make the global model classify
an image of a cat as a dog by changing the label of all the cats in its training
data to a dog.

Model Poisoning attacks have been explored by Bagdasaryan et al. [2] through
a targeted model poisoning attack, named the backdoor attack, where the global
model is modified such that it performs in a certain way in an attacker task, but
keeps performing well on the task it was developed for. The attack functions
by sending a local update that represents the difference between the attacker’s
intended model and the global model multiplied by a scaling factor to make sure
the backdoor survives the aggregation on the server.

4.3.2 Poisoning Defense Systems

Krum [4] is a robust aggregation defense system that tolerates up to f colluding
malicious clients through the definition of an aggregation rule. Therefore, when
aggregating the local updates from n clients, the server computes the set of the
n − f − 2 closest updates to each one of the received updates. Then, a score is
calculated for each update based on its closest set. Lastly, the server selects the
update with the least score which is used to obtain the global model update, as
this is the closest to the majority of the other updates.

However, Krum has its flaws. Firstly, it limits the number of malicious clients
to n/3, therefore, it is not flexible. Secondly, it is computationally expensive as
the server needs to calculate the closest updates for each one of the received
client updates, which can become costly with a large number of clients.

Foolsgold [12] is an anomaly detection defense system to mitigate targeted poi-
soning attacks performed by sybils, that is, several colluding clients controlled by
the same attacker. It works on the underlying assumption that sybils submit sim-
ilar updates since they are working towards the same goal. Therefore, it checks
for similar updates and reduces the learning rate of such updates, effectively
limiting the attacker influence.

16

One key feature of this approach is that it does not limit the number of mali-
cious clients since the server will increasingly degrade the learning rate the more
similar updates appear. However, this approach needs to be augmented with
other systems such as Krum to protect from other types of poisoning attacks.

4.4 Systems Addressing Personalization

In this section, some of the proposed systems to support personalization are
presented. Our main focus is on systems using the parameter decoupling tech-
nique, however, some other systems are also presented. The systems presented,
are some of the most recent or most cited in the literature. We characterize each
system according to: the number of models produced, as single model (S) or
multi-model (M); and the local training, as joint (J) or disjoint (D), depending
on if the body and head are trained jointly or not. Moreover, multi-model ap-
proaches are also classified according to the custom part of the model for each
client, as full model (F), body (B) or head (H).

Personalized Federated Averaging (Per-FedAvg) [11] can be classified as a single-
model joint-training (SJ) algorithm based on meta-learning, built on top of the
Model Agnostic Meta Learning (MAML) framework. MAML consists in finding
an initialization model (the meta-model) that performs well in a new task after
an update has been performed to it, the update consists of a few steps of gradient
descent. Hence, Per-FedAvg intends to find the initialization model by changing
the initial goal of the FedAvg algorithm, which is to find a model that performs
the best for all clients, to finding a model which can be easily adapted to perform
well on each client. In order to achieve this new goal, Per-FedAvg works similarly
to FedAvg , but performs more local computations to fine-tune the model to each
client’s data. Note that even though after fine-tuning the initialization model,
we obtain multiple models, the main goal of the algorithm is to find this single
initialization model, therefore, we classify it as a single model approach.

Per-FedAvg makes it easy for new clients to develop their models, only need-
ing to fine-tune the initialization model. However, it requires more client compu-
tation for fine-tuning; has worse performance than other algorithms (from [9]);
and is more costly in terms of communication, since the full model is exchanged.

FedProx [18] can be classified as a single-model joint-training (SJ) framework
based on regularization. This framework deals with both client heterogeneity
and statistical heterogeneity by changing the clients’ local objective. It works
like FedAvg in the sense that, in each communication round, the server selects a
set of clients to participate, and sends the global model parameters to each one.
However, in FedAvg the number of local rounds are fixed and the same for each
client, and if a client does not complete such local rounds within a given time
frame, its updates are skipped. Therefore, to account for client heterogeneity,
FedProx allows each client to perform a variable amount of local rounds, and
submit the work done to the server as long as the work done is within a certain
threshold of the final objective; this threshold is variable for each client. Secondly,

17

to deal with statistical heterogeneity, it includes a proximal term to the local
client objective, which controls how much the client can deviate from the received
global update, impeding local updates that are too heterogeneous, and ensuring
convergence of the global model.

FedProx is very flexible since it allows variable work for each client. However,
it exchanges the full model so it is costly in communications and it restricts the
client updates, meaning the global model will not be adequate leading to poor
performance in very heterogeneous settings.

FedU [10] can be classified as a multi-model joint-training full-model (MJF)
multi-task learning algorithm which leverages Laplacian regularization and takes
into account client relationships. Multi-task learning aims at trying to find rela-
tionships from other tasks and use the knowledge from each one to improve. In
the case of FL, FedU proposes that each client learns an individual model and
uses the other related client models to improve its own model, that is, there is no
global model. The server is the entity responsible for adapting each client model
according to its relationships. Therefore, it follows a different approach from
FedAvg and Per-FedAvg as the server maintains both the model parameters for
each client as well as the relationships between the clients and their strengths.
The framework works as follows, firstly the server selects a set of clients to par-
ticipate in a certain communication round and sends to each participating client
their current model parameters. Then, each client trains locally the model with
its local data and sends the new parameters of its model to the server. The
server, after receiving the client updates, applies a regularizer to each partici-
pating client’s received model parameters, which takes into account the models
of the client’s relationships, such that it learns from other clients’ models. The
new client model parameters are sent to each client when they participate in a
future round.

This approach allows each client to have its own local model while still ben-
efiting from weighted collaboration, meaning a client can choose how much to
learn from each other client. However, it requires the server to store a large
amount of information as it needs to store both the clients’ models and their re-
lationships, so it might not be suitable for settings with a large number of clients.
Furthermore, the computation on the server increases substantially, as the server
needs to update each participating client’s model in every communication round.
Also, the communications are costly since the full model is exchanged.

Federated Learning with Personalization Layers (FedPer) [1] can be classified as
a multi-model joint-training head-custom (MJH) algorithm based on parameter
decoupling. In this approach, the model is divided into two parts: the body,
or representation, which contains the first layers of the model that are shared
among all the clients; and the head, or classifier, which contains the last layers
of the model that are personalized for each client. The body is trained through
collaborative training using the FedAvg algorithm, whereas, the head, is trained
locally with each client’s data, being specialized to each one. Therefore, only the
body is exchanged between the clients and the server and not the full model,

18

thus, the server sends the current global body parameters to the clients and
aggregates the received local body updates, calculating the new global body.
The clients receive the global body from the server and join it with their local
head to form the local client model. Then, the local model is trained normally
through a few local rounds of SGD , being subsequently decoupled such that the
trained body is sent to the server, while the trained head remains at the client.

This approach has better communication costs than the previous three since
it only exchanges the body and it seems to converge in a few communication
rounds. Nonetheless, it is not flexible since the local training is performed jointly,
leading to worse performance. It is possible to improve performance by adapting
the head to the received body through fine-tuning of the head before the training
of the local model, however, this implies more computation.

Local Global Federated Averaging (LG-FedAvg) [19] can be classified as a multi-
model disjoint-training body-custom (MDB) algorithm that takes the opposite
approach from FedPer . It instead personalizes the body, in order to extract the
high-level features of the data of each client, and shares the head, so as to develop
a classifier that works for every client. By operating on local representations, the
global model is significantly smaller since only the head needs to be exchanged
which, typically, is smaller than the body, meaning the communication overhead
is lower. In a communication round, after receiving the head from the server,
each client’s local computation round consists of two SGD steps: on the first,
the local body is trained; on the second, the global head is trained, using the
newly trained body. After performing all the local computation rounds, the client
sends the updated head to the server, which performs a weighted average of the
received client heads, considering each client’s data set size, to obtain the global
head for the next communication round.

Although LG-FedAvg achieves better communication efficiency than FedPer ,
it seems that its performance is lower than FedPer ’s, according to the experi-
mental evaluation made by Collins et al. [9], indicating that personalizing the
head may be better than personalizing the body.

Federated Representation Learning (FedRep) [9] can be classified as a multi-
model disjoint-training head-custom (MDH) approach similar to FedPer but
with a slight change. The authors argue that the results from the centralized
deep ML suggest that data shares a common feature representation and the het-
erogeneity resides in the classifications. Therefore, FedRep, similarly to FedPer ,
divides the model in two, where the body is shared in order to try to generate
a common representation across the clients. The main difference from FedPer is
in the client local computation; while FedPer trains both head and body jointly
in the same step of SGD , FedRep fully trains the head first and then the body,
and each one can have its own number of training steps. This approach makes
it simpler for new clients to join the system since they only need to develop a
personalized head as they can use the global body already developed. Further-
more, the algorithm converges faster with more participating clients, making it
suitable for a cross-device setting.

19

FedRep achieves better performance than both FedPer and LG-FedAvg . Also,
FedRep is flexible since it allows setting a different number of local rounds for
training the head and the body, however, this flexibility comes at the cost of more
local computation. Furthermore, FedRep typically has more communication costs
than LG-FedAvg since the body is exchanged.

Federated Averaging with Body Aggregation and Body Update (FedBABU) [26]
can be classified as a multi-model disjoint-training head-custom (MDH) algo-
rithm based on parameter decoupling. Similarly to FedRep, FedBABU shares
the body, such that, a good representation of the data is collaboratively created
by the clients. The authors studied the FedAvg algorithm to understand why
an increase in performance of the global model does not necessarily mean that
fine-tuning it further increases the performance. They came to the conclusion
that aggregating the head introduces unnecessary noise to the global model, as
the classification is a specificity of each client. Therefore, FedBABU leverages a
shared fixed global head to train the body in each client, focusing on creating
a good generalized global representation. Then, and only during evaluation, the
head is fine-tuned to each client. Although the training phase only generates
a single model, similarly to Per-FedAvg , we consider FedBABU to be a multi-
model approach since its intent is not to create a single model but to develop
multiple models composed by a single global representation and custom heads.

The authors demonstrate the importance of fixing the head in FedBABU
by showing it performs better than FedRep when there is only one round of
head personalization in FedRep, since in such case the only difference between
the two algorithms is the training of the head in FedRep. Furthermore, in the
empirical studies performed, FedBABU achieves better performance than the
other mentioned personalization algorithms in most of the training settings.

However, FedBABU ’s fine-tuning is performed during evaluation, which is
not ideal since it requires a few more computation rounds. Therefore, it would
be preferable to have an algorithm that produces a model fully ready for inference
after the training phase. Also, since the model is fine-tuned from a fixed head
for every client, all the clients begin fine-tuning the head from the same initial
point. Since all the clients perform the same number of rounds of fine-tuning, it
can lead to some not being able to personalize their head sufficiently, therefore,
a head trained throughout the training phase would be more personalized which
could maybe lead to some performance gains. Moreover, if the head was trained
during the training process it would continuously be adapted to the changing
body.

Table 1 summarizes the algorithms mentioned. In terms of notation: N is
the number of clients; E the number of local training rounds; EH the number of
local head training rounds and; EB the number of local body training rounds.
However, some remarks need to be done: the number of SGD steps refer to a
single communication round and assume there is no batching of the data set; and
the number of steps for Per-FedAvg varies depending on the approximation used.
Also, we present two alternatives that, to the best of our knowledge, have not yet
been explored in the literature. In our work, we plan to assess the advantages

20

Table 1. Comparison between the different FL personalization algorithms.

Algorithm Taxonomy
Strategy
Used

Number
of

Models

Exchanged
Part

Custom
Part

SGD steps
per Client

Local
Training
Procedure

Fine-
Tuning

(FT Part)

Per-FedAvg SJ Meta-learning 1 full model - 2E or 3E full model

required
during

training
(full model)

FedProx SJ Regularization 1 full model - E full model

optional
after

training
(full model)

FedU MJF
Multi-task
Learning

N full model full E full model

optional
after

training
(full model)

FedPer MJH
Parameter
Decoupling

N body head E full model

optional
after

training
(full model)

LG-FedAvg MDB
Parameter
Decoupling

N head body 2E

body first
(w/ global head)

head last
(w/ trained body)

optional
after

training
(full model)

FedRep MDH
Parameter
Decoupling

N body head EH + EB

head first
(w/ global body)

body last
(w/ trained head)

optional
after

training
(full model)

FedBABU MDH
Parameter
Decoupling

N body head E
body only

(w/ fixed head)

required
after

training
(head only)

Alternative 1 MDH
Parameter
Decoupling

N body head EH + EB

head first
(w/ global body)

body last
(w/ fixed head)

optional
after

training
(full model)

Alternative 2 MDH
Parameter
Decoupling

N body head EB + EH

body first
(w/ fixed head)

head last
(w/ trained body)

optional
after

training
(full model)

and limitations of these alternatives, as we will describe in detail in the next
section.

5 Architecture

In this section, we elaborate on the proposed system. Therefore, we start
by defining the FL setting assumed, then, we present the proposed FL system,
including the suggested personalization algorithm. The presented system repre-
sents the core of our work, however, as a secondary objective, and only if enough
time is available, we also propose some communication efficiency improvement
techniques and some privacy and security defenses to be implemented.

5.1 OutSystems’s Federated Learning Setting

Before detailing our proposed FL solution, we first need to properly charac-
terize the environment for which such solution will be developed. In our setting,
the clients are the machines of the developers using the OutSystems’s Service
Studio. The trained model should be able to give predictions for possible next
nodes of an action flow, and for that, a GNN model is used. In particular, the
model’s objective is to predict one of the nodes’ attributes: the node kind.

21

Since the OutSystems platform has a limited number of possibilities for
the types of nodes in an action flow, the possible feature values for the “kind”
attribute of the nodes are also the same. However, each client has its own way
of coding, meaning action flows will be different for each client, for instance,
one client might use a “switch” node whereas another might use a chain of “if”
nodes to test for the correct condition. This difference between clients’ action
flows means we are dealing with a horizontal FL setting. Furthermore, we assume
the data for each client not to be representative of the data of other clients, since
each one has its own unique action flows. This means that our setting is highly
heterogeneous, therefore, we are dealing with non-i.i.d. data. Also, the data is
unbalanced since each client can have a significantly different number of data
points (in our case, action flows) in his data set.

Moreover, we assume a centralized setting where an OutSystems server acts
as the coordinator. Finally, as stated before, the clients of our FL protocol are
machines of developers, thus, we expect a large number of clients to participate,
meaning we are working in a cross-device setting. Having enterprise machines
as end devices means that the computation requirements are more relaxed than
those of traditional FL (which often relies on mobile devices). Additionally, since
these machines are normally connected to enterprise networks, we can also as-
sume that the network connection is more reliable than that of mobile devices,
meaning the communication restrictions are also more relaxed in our setup.

5.2 General Architecture

In Section 4.4, we explored some of the personalized FL algorithms that have
been proposed in the literature. We base our approach on two of them: FedRep
and FedBABU . Both these algorithms have been recently proposed and they
seem to report the most promising performance out of all the seen algorithms.

As seen before, FedRep argues that heterogeneity resides in the classification
and a common representation of the clients’ data can be obtained through client
collaboration. Therefore, it trains the head and the body of the model sepa-
rately, each possibly with a different number of local steps. On the other hand,
FedBABU argues that the training of the global representation is affected nega-
tively by the training of the local classifier. Thus, it proposes fixing the classifier
during the training process in order to achieve the best representation possible.

Our approach can be seen as a hybrid of the two algorithms, where we try to
obtain the best representation possible by training it with a fixed classifier as in
FedBABU while also allowing clients to train a personalized classifier using the
received global representation. This client-specific classifier is kept locally and
not used in the training of the local representation. By doing this, we follow the
approach of FedRep, where the head is trained separately from the body and
each one can have a different number of local training rounds.

The protocol proceeds in communication rounds similarly to FedAvg . The
server procedure is identical to FedBABU ’s, thus, the server first initializes the
global model. In each communication round, the server selects a random subset
of clients to participate and sends them the model parameters of the previous

22

round, composed by the body of the previous round, and the fixed head to be
used for local training of the body. The server then waits for the local updates
of the clients, that is, the client bodies after training with the local data. Af-
ter receiving the updates, the server performs a weighted average considering
the number of data points in each participating client’s data set to obtain the
aggregated body to be used in the following communication round.

In terms of the training procedure of each client, we propose two alternatives:
(1) the head is trained first; (2) the body is trained first. Appendix A contains the
pseudo-code for the proposed training procedure. In both of the alternatives, the
client maintains its personalized head. For (1), the personalized head of the client
is trained first by performing EH local training rounds executing SGD with the
received global body. Then, the body received from the server is trained with
the fixed head for EB local rounds, after which the trained body is returned
to the server. Alternative (2) follows the opposite procedure, it first trains the
global body for EB rounds with the fixed head and then trains the local head
with the newly trained local body, returning the trained body to the server after
finishing. In summary, the difference between the two alternatives is the local
head being trained with the global body, (1), or with the locally trained body,
(2), thus for the latter the obtained head is more specialized since the body used
was previously trained. Table 1 summarizes both alternatives (1) and (2) (rows
“Alternative 1” and “Alternative 2”, respectively).

Through this training procedure, we can have the personalized models read-
ily available for inference after the training phase, without needing to perform
unnecessary computation rounds for fine-tuning. Furthermore, the classifier is
constantly adapted to the global representation, instead of being personalized
from a fixed classifier as in FedBABU , meaning it can better fit the representa-
tion. Finally, it allows for training the representation without the influence of the
classifier which could degrade the quality of the obtained global representation.

5.3 Communication Efficiency

The proposed approach already reduces the communication costs when com-
pared to FedAvg since only the body of the model is exchanged. Furthermore, in
our setting (Section 5.1) the communication costs are not as relevant. Nonethe-
less, if we have enough time, we might experiment with some cost reduction
methods to reduce the number of parameters sent/received by the clients. Some
of the possible approaches are covered in Section 3.3.

5.4 Ensuring Privacy and Security

Before defining the defense strategies to be used, it is important to first
define the threat model assumed. Since the centralized server is controlled by
OutSystems, we assume it to be trusted, removing the necessity to protect
the sent client updates if secure communication channels are used. The clients,
on the other hand, can be both honest-but-curious, or malicious. Lastly, we also

23

assume eavesdroppers exist and can obtain both the local updates and the global
updates if the communication channels are not secure.

In terms of the security and privacy of the proposed training algorithm, we
argue that it does not introduce new security or privacy threats in comparison
to FedAvg , since the attack surface is the same for both approaches. The only
differences between the two reside in how the local computation on the client is
performed and on what part of the model is aggregated, both of which do not
increase the attacker power. Interestingly, since we only exchange the body, the
attackers cannot manipulate the head, limiting the attacker power.

As an additional objective, we propose to apply some defense mechanisms.
These are not meant to completely mitigate every attack, but rather try to
difficult the attacker’s attempts as much as possible, without severely affecting
the utility of the model. Therefore, TLS should be used for secure communication
channels to prevent eavesdroppers. Server-side DP should also be used to add
noise to the global update such that clients do not have access to the fully
denoised aggregated update. Finally, an anomaly detection mechanism should
be used to try to prevent poisoning attacks, for instance, Foolsgold, which can
also be enhanced by a robust aggregation algorithm.

6 Evaluation

The system will be evaluated primarily regarding the performance obtained
using the proposed training procedure. However, if enough time is available for
the implementation of the secondary objectives, the communication efficiency
and/or privacy and security guarantees of the system will also be evaluated.

The experiments will be run in the AWS cloud with a proprietary OutSys-
tems data set. This data set is composed of 986 real-world codebases from the
OutSystems platform, where each codebase contains all the applications of one
client. Each application is modelled as a graph that can contain multiple Action
Flows among other useful information. Our focus is on the action flow subgraphs
of each application graph as the objective of the trained model is to predict one
of the attributes of the next node of these subgraphs. Some statistics about the
data set are provided in Appendix B as well as the distribution graph of the
number of action flows per client in Appendix C. From these, we can clearly
see how widely spread in terms of action flows per client the dataset is as the
standard deviation is rather high. Moreover, each code base will be divided into
three partitions, one for each stage of the ML model building process (training,
validation, testing).

6.1 Performance

The performance will be evaluated by comparing the accuracy obtained
through our proposed training procedure with some of the existing personal-
ization algorithms as well as, and most importantly, with the current centralized
OutSystems’s algorithm and with locally trained client models. From previous

24

results, we know that the locally trained models obtain higher accuracy than
the centralized model. Therefore, ideally, our goal is for our approach to obtain
higher accuracy than the local models. Nonetheless, we also consider having
achieved encouraging results if the accuracy obtained stands in-between these
two approaches since we can achieve better performance than the current cen-
tralized model while giving clients better privacy guarantees through FL.

Furthermore, it is also interesting to test the accuracy for new clients, since
the main disadvantage of locally trained models is clients not having enough
data to extract data relationships, favouring our approach in this particular
case since those relationships would be supplied by the global model. Finally,
we also intend to test how the performance is affected by varying the different
parameters, for instance, the number of clients, the number of local computations
for the head/body, and the data heterogeneity.

6.2 Communication Efficiency

The communication efficiency will be evaluated to understand the commu-
nication costs of our approach. We intend to evaluate whether communication
reduction techniques can reduce the communication overhead while still main-
taining a good model performance. The efficiency of the communication will be
measured in terms of the number of model parameters sent through the network.

6.3 Privacy and Security

We also intend to measure the privacy and security of the proposed approach
with and without defense mechanisms. Therefore, we intend to perform some of
the attacks existent to assess how much information the attacker can obtain from
the global updates and how much can the attacker alter the global model.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 15 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish writing the dissertation.
– June 15 Deliver the MSc Dissertation.

8 Conclusions

FL is an ML approach that allows clients to collaboratively train a global
model with their own private data without its privacy being compromised. How-
ever, there are some challenges that emerge when developing an FL system.

25

In this report, we surveyed some solutions proposed for the challenges of FL
and based on the analyzed solutions, we propose a personalization training algo-
rithm to handle data heterogeneity in an attempt to train models that achieve
better performance than both the current OutSystems centralized algorithm
and locally trained models. We also explore some communication efficiency im-
provement techniques and some defense mechanisms, to ensure the privacy and
security of an FL system. Finally, we detail the methodology to be used to
evaluate the FL system to be implemented and finish by scheduling the future
work.

Acknowledgments We are grateful to Filipe Assunção, Miguel Lopes and
Afonso Gonçalves for the fruitful discussions and comments during the prepara-
tion of this report. This work was done in the scope of a curricular internship at
OutSystems.

References

1. Arivazhagan, M.G., Aggarwal, V., Singh, A.K., Choudhary, S.: Federated learning
with personalization layers. CoRR abs/1912.00818 (December 2019)

2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor
federated learning. In: Proceedings of the 23rd International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 108,
pp. 2938–2948. PMLR, Virtual Event (August 2020)

3. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R.,
et al.: Relational inductive biases, deep learning, and graph networks. CoRR
abs/1806.01261 (October 2018)

4. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with
adversaries: Byzantine tolerant gradient descent. In: Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, NeurIPS 2017. pp. 119–129. Curran Associates, Inc., Long Beach,
CA, USA (December 2017)

5. Blanco-Justicia, A., Domingo-Ferrer, J., Mart́ınez, S., Sánchez, D., Flanagan, A.,
Tan, K.E.: Achieving security and privacy in federated learning systems: Survey,
research challenges and future directions. Engineering Applications of Artificial
Intelligence 106, 104468 (November 2021)

6. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, H.B., et al.: Towards federated
learning at scale: System design. In: Proceedings of Machine Learning and Systems
2019, MLSys 2019. pp. 374–388. mlsys.org, Stanford, CA, USA (March 2019)

7. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S.,
Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving
machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security. pp. 1175–1191. ACM, Dallas, TX, USA (Oc-
tober 2017)

8. Caldas, S., Konečny, J., McMahan, H.B., Talwalkar, A.: Expanding the reach of fed-
erated learning by reducing client resource requirements. CoRR abs/1812.07210
(January 2019)

26

9. Collins, L., Hassani, H., Mokhtari, A., Shakkottai, S.: Exploiting shared representa-
tions for personalized federated learning. In: Proceedings of the 38th International
Conference on Machine Learning, ICML 2021. Proceedings of Machine Learning
Research, vol. 139, pp. 2089–2099. PMLR, Virtual Event (July 2021)

10. Dinh, C.T., Vu, T.T., Tran, N.H., Dao, M.N., Zhang, H.: A new look and con-
vergence rate of federated multi-task learning with laplacian regularization. CoRR
abs/2102.07148 (December 2021)

11. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theo-
retical guarantees: A model-agnostic meta-learning approach. In: Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020. pp. 3557–3568. Curran Associates, Inc.,
Virtual Event (December 2020)

12. Fung, C., Yoon, C.J., Beschastnikh, I.: Mitigating sybils in federated learning poi-
soning. CoRR abs/1808.04866 (July 2020)

13. Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning: A client
level perspective. CoRR abs/1712.07557 (March 2018)

14. Jiang, M., Jung, T., Karl, R., Zhao, T.: Federated dynamic gnn with secure aggre-
gation. CoRR abs/2009.07351 (September 2020)

15. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N.,
Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open
problems in federated learning. CoRR abs/1912.04977 (March 2021)

16. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon,
D.: Federated learning: Strategies for improving communication efficiency. CoRR
abs/1610.05492 (October 2017)

17. Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., He, B.: A survey on
federated learning systems: vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering (November 2021)

18. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Feder-
ated optimization in heterogeneous networks. In: Proceedings of Machine Learning
and Systems 2020, MLSys 2020. vol. 2, pp. 429–450. mlsys.org, Austin, TX, USA
(March 2020)

19. Liang, P.P., Liu, T., Ziyin, L., Allen, N.B., Auerbach, R.P., Brent, D., Salakhutdi-
nov, R., Morency, L.P.: Think locally, act globally: Federated learning with local
and global representations. CoRR abs/2001.01523 (July 2020)

20. Luping, W., Wei, W., Bo, L.: Cmfl: Mitigating communication overhead for feder-
ated learning. In: 39th IEEE International Conference on Distributed Computing
Systems, ICDCS 2019. pp. 954–964. IEEE, Dallas, TX, USA (July 2019)

21. Lyu, L., Yu, H., Ma, X., Sun, L., Zhao, J., Yang, Q., Yu, P.S.: Privacy and robust-
ness in federated learning: Attacks and defenses. CoRR abs/2012.06337 (Decem-
ber 2020)

22. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR,
Fort Lauderdale, FL, USA (April 2017)

23. McMahan, H.B., Ramage, D., Talwar, K., Zhang, L.: Learning differentially private
recurrent language models. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018. OpenReview.net, Vancouver, BC, Canada (April 2018)

24. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended fea-
ture leakage in collaborative learning. In: 2019 IEEE Symposium on Security and
Privacy, SP 2019. pp. 691–706. IEEE, San Francisco, CA, USA (May 2019)

27

25. Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis of deep
learning: Passive and active white-box inference attacks against centralized and
federated learning. In: 2019 IEEE Symposium on Security and Privacy, SP 2019.
pp. 739–753. IEEE, San Francisco, CA, USA (May 2019)

26. Oh, J., Kim, S., Yun, S.Y.: Fedbabu: Towards enhanced representation for feder-
ated image classification. CoRR abs/2106.06042 (June 2021)

27. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Transactions on Informa-
tion Forensics and Security 13(5), 1333–1345 (May 2018)

28. Ruder, S.: An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747 (June 2017)

29. Shejwalkar, V., Houmansadr, A., Kairouz, P., Ramage, D.: Back to the draw-
ing board: A critical evaluation of poisoning attacks on federated learning. CoRR
abs/2108.10241 (December 2021)

30. Sun, Y., Ochiai, H., Esaki, H.: Decentralized deep learning for mobile edge comput-
ing: A survey on communication efficiency and trustworthiness. IEEE Transactions
on Artificial Intelligence 1 (December 2021)

31. Tan, A.Z., Yu, H., Cui, L., Yang, Q.: Towards personalized federated learning.
CoRR abs/2103.00710 (March 2021)

32. Tolpegin, V., Truex, S., Gursoy, M.E., Liu, L.: Data poisoning attacks against fed-
erated learning systems. In: Computer Security – ESORICS 2020 - 25th European
Symposium on Research in Computer Security, ESORICS 2020. Lecture Notes in
Computer Science, vol. 12308, pp. 480–501. Springer, Guildford, UK (September
2020)

33. Truong, N., Sun, K., Wang, S., Guitton, F., Guo, Y.: Privacy preservation in fed-
erated learning: An insightful survey from the gdpr perspective. Computers and
Security 110, 102402 (November 2021)

34. Wang, B., Li, A., Li, H., Chen, Y.: Graphfl: A federated learning framework for
semi-supervised node classification on graphs. CoRR abs/2012.04187 (December
2020)

35. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring
class representatives: User-level privacy leakage from federated learning. In: 2019
IEEE Conference on Computer Communications, INFOCOM 2019. pp. 2512–2520.
IEEE, Paris, France (April 2019)

36. Xie, H., Ma, J., Xiong, L., Yang, C.: Federated graph classification over non-iid
graphs. CoRR abs/2106.13423 (November 2021)

37. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Concept and
applications. ACM Transactions on Intelligent Systems and Technology (TIST)
10(2), 12:1–12:19 (January 2019)

38. Yin, X., Zhu, Y., Hu, J.: A comprehensive survey of privacy-preserving federated
learning: A taxonomy, review, and future directions. ACM Computing Surveys
(CSUR) 54(6), 131:1–131:36 (July 2021)

39. Zhang, K., Yang, C., Li, X., Sun, L., Yiu, S.M.: Subgraph federated learning with
missing neighbor generation. CoRR abs/2106.13430 (November 2021)

40. Zhou, J., Chen, C., Zheng, L., Wu, H., Wu, J., Zheng, X., Wu, B., Liu, Z., Wang,
L.: Vertically federated graph neural network for privacy-preserving node classifi-
cation. CoRR abs/2005.11903 (April 2021)

41. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019. pp. 14747–14756. Curran Associates, Inc.,
Vancouver, BC, Canada (December 2019)

28

A Proposed Training Procedure

Algorithm 1 Proposed Training Procedure.

1: initialize w0
G = {w0

G,body , w0
G,head} . Server Executes

2: for each t = 1, 2, . . . do
3: m← max(C · f, 1)
4: St ← random set of m clients from C
5: for each k ∈ St in parallel do
6: wt

k,body ← ClientLocalUpdate(wt−1
G)

7: n←
∑m

i=1 n
t
i

8: wt
G,body ←

∑m
i=1

nt
i
n
wt

i,body

9:
10: wt

G ← {wt
G,body, w

0
G,head}

11: procedure ClientLocalUpdate(wt−1
G) . Client executes

12: {wt−1
G,body, w

0
G,head} ← wt−1

G

13: wk,body ← wt−1
G,body . wk,head is maintained locally

14: if head trained first then . 1st alternative
15: for each 1, 2, . . . , EH do
16: wk,head ← SGD(wk,body, wk,head,Dk, B)

17: for each 1, 2, . . . , EB do
18: wk,body ← SGD(wk,body, w

0
G,head,Dk, B)

19: else if body trained first then . 2nd alternative
20: for each 1, 2, . . . , EB do
21: wk,body ← SGD(wk,body, w

0
G,head,Dk, B)

22: for each 1, 2, . . . , EH do
23: wk,head ← SGD(wk,body, wk,head,Dk, B)

24: returns wk,body

Notation:

– C represents the set of total clients;
– f represents the fraction of clients that participate in every communication

round;
– wt

G represents the global model parameters calculated in round t which are
divided into: wt

G,body the body parameters; and w0
G,head the initial head

parameters (the fixed head);
– wt

i,body represents the local body update for client with index i of set St;

– nt
i represents the data set size for client with index i of set St;

– EB represents the number of local computation epochs for the body and EH

for the head;
– wk,body represents the local body for client k and wk,head the local head;
– SGD(wb, wh,Dk, B) means executing one step of the SGD algorithm for each

batch of size B obtained from the data set of client k, Dk, for a model with
body parameters wb and head parameters wh.

29

B OutSystems’s Data Set Statistics

Table 2. Statistics on the number of action flows per client in the OutSystems data
set.

min 8

max 54252

mean 4244.879

median 2289.500

var 39079685.969

std 6251.375

25 percentile 918.000

75 percentile 5020.250

90 percentile 9894.500

95 percentile 14561.000

99 percentile 32535.450

C OutSystems’s Data Set Distribution

Number of Actions Flow per Client

Fr
eq

ue
nc

y

0

100

200

300

0 -
 10

00

10
01

 - 2
00

0

20
01

 - 3
00

0

30
01

 - 4
00

0

40
01

 - 5
00

0

50
01

 - 6
00

0

60
01

 - 7
00

0

70
01

 - 8
00

0

80
01

 - 9
00

0

90
01

 - 1
00

00

10
00

1 -
 11

00
0

11
00

1 -
 12

00
0

12
00

1 -
 13

00
0

13
00

1 -
 14

00
0

14
00

1 -
 15

00
0

> 1
50

00

Data Set Distribution

Fig. 3. OutSystems’s number of Action Flows per client frequency distribution with
bin size of 1000

30

	Introduction
	Goals
	Background
	Machine Learning
	Federated Learning
	Communication Efficiency in Federated Learning
	Privacy of Client Data
	Security of the Model
	Personalized Federated Learning
	Federated Learning with Graph Neural Networks

	Related Work
	Systems Addressing Communication Efficiency
	Systems Addressing Privacy
	Privacy Attacks
	Privacy Defense Systems

	Systems Addressing Poisoning
	Poisoning Attacks
	Poisoning Defense Systems

	Systems Addressing Personalization

	Architecture
	OutSystems's Federated Learning Setting
	General Architecture
	Communication Efficiency
	Ensuring Privacy and Security

	Evaluation
	Performance
	Communication Efficiency
	Privacy and Security

	Scheduling of Future Work
	Conclusions
	Proposed Training Procedure
	OutSystems's Data Set Statistics
	OutSystems's Data Set Distribution

