
Window Based Monitoring: Packet Drop Detection in the
Network Data Plane

(extended abstract of the MSc dissertation)

Afonso de Paiva e Pona Corte Real Gonçalves
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professor Fernando Ramos and Professor Luís Rodrigues

Abstract
Detecting network anomalies, such as packet loss, is becom-
ing an increasingly important task to network operators, as
applications are becoming more and more performance sen-
sitive. Several solutions aim to detect these events as soon
as they occur, as well as to disclose where they are taking
place. Unfortunately, some of them incur in unacceptable
overhead while others have to sacrifice coverage in order to
cope with the increasing traffic intensity. Software Defined
Networks and the Programmable Data Plane are relatively
recent technologies that allow network operators to config-
ure how switches process packets, which opens the door to
efficient monitoring solutions. In this thesis, we develop WB-
Mon, a passive solution that leverages the Data Plane pro-
grammability to perform an inter-switch coordination algo-
rithm that detects packet drops in arbitrary paths at line speed.
Additionally, we employ a Failure Inference Algorithm (Net-
Bouncer [9]) to enable localizing the links responsible for
packet drops. Our evaluation shows that WBMon is able to
detect every packet drop in less than 2ms, which allows to
detect short-lived failures.

Keywords: Drop Detection; SDN; Programmable Switches.

1 Introduction
The task of monitoring the operation of computer networks
is a key component to ensure the performance of current
distributed systems, as it allows to gather information that
can be used for planning the network evolution, and to detect
anomalies, such as faults and intrusions.

In our work we are interested in the use of network moni-
toring for anomaly detection and, in particular, to detect links
that experience excessive packet loss rates. We survey the
main techniques that can be used to detect network anomalies,
giving emphasis to techniques that leverage the availability
of programmable switches to increase the accuracy and effi-
ciency of this task.

From previous work we have identified two main strategies
to detect faulty links. The first strategy involves the active ex-
change of probe traffic among different “observation-points"
placed in strategic locations in the network; the data col-
lected by these observation points can be correlated to give
hints on the location of eventual faulty links and/or switches.

The second strategy uses programmable network switches
to detect faulty links in a passive manner, without the need
to inject probe traffic; unfortunately, it only works for links
that connect directly two programmable switches, and cannot
be trivially applied to networks that have a combination of
programmable and non-programmable switches.

Based on these observations, we propose a new strategy
that combines and extends the two techniques above. First,
we aim at using programmable switches to detect packet loss
in the path connecting these switches, even if the path in-
cludes multiple links and non-programmable switches, such
that a few programmable switches can be used as passive
observation points. Then, we plan to correlate the information
collected by these switches to narrow the set of potential
faulty physical links. We experimentally show that our solu-
tion is able to detect every packet drop in computer networks
and that, in certain topologies, it is able to locate 99% of the
faulty links while using only 60% of monitoring switches.

2 Background
Network monitoring is the task of continuously extracting
information regarding the operation of a computer network,
in order to better understand how it is being used and to detect
potential anomalies, faults, attacks, or other impairments to
its correct operation. The scale of current networks, combined
with the heterogeneity of equipment and protocols that can
be used, make the task of performing network monitoring
extremely challenging. Fortunately, some technological ad-
vances in the networking architecture and hardware, including
Software Defined Networks and programmable switches, can
now be leveraged to make network monitoring more accurate
and efficient.

2.1 Software Defined Networks
One of the main tasks of network routers and switches is
packet forwarding, which consists in receiving a packet from
an ingress link and forwarding it to the next hop towards the
destination via an egress link. To perform this task, the switch
needs to maintain a forwarding table, that specifies which
egress link should be selected when forwarding a packet. The
other main task is to execute the logic required to populate
the forwarding table, typically a distributed routing protocol,

1

such as RIP, OSPF, or BGP. The former task is designed to
execute in the Data Plane, and the latter in the Control Plane.

One of the most important advantages of running the Con-
trol Plane in every router is the autonomy and decentralization
it provides: routers that execute the Control Plane can coordi-
nate with each other to populate their forwarding table without
being dependent of other additional components. However,
distributed routing protocols are notoriously complex and dif-
ficult to debug. Additionally, routing equipment was typically
provided by vendors with proprietary implementation of a
fixed set of routing protocols that could not be easily adapted
or expanded.

2.1.1 SDN. Software Defined Networking is an architec-
tural model that decouples the Data Plane from the Control
Plane. In this model, switches only implement packet forward-
ing and export an interface that allows an external component
to populate the forwarding table. The Control Plane is exe-
cuted in this logically centralized entity, the controller, that
decides how to populate the forwarding table of every switch.

Having a single point of control has several relevant advan-
tages. Namely, it makes the control logic simpler to program
and easier to verify, and facilitates network configuration.
Moreover, it allows to have a global view of the network,
and consequently to compute optimized solutions for the en-
tire network, which was not possible to do with a distributed
Control Plane.

OpenFlow [5] is a standard that specifies the interface be-
tween the controller and the switches and that allows the
controller to remotely update the forwarding tables. Accord-
ing to this standard, each switch maintains a Flow Table that
keeps a list of Match-Action rules, each consisting of a match-
ing and an action part. The matching rule corresponds to a set
of conditions that must be met to activate the action part to
that packet. The action, in turn, defines what should be done
to the matched packet. Typical actions are dropping a packet
or forwarding it to one or multiple egress ports, but can also
include changing or pushing header fields.

2.1.2 Programmable Data Plane. Processing packets ac-
cording to OpenFlow rules requires switches to be able to
extract the information required to match those rules. For this
reason, before performing the Match-Action phase, switches
execute a Parsing stage to extract that information.

The emergence of Reconfigurable Match-Action Tables
(RMT) allowed switches to parse arbitrary headers and define
match-action rules programmatically. This further led to the
development of architectures and languages that were able to
leverage this capability. The P4 programming language can
now be used to specify exactly how to parse packet headers
and the Match-Action rules to be applied in the forwarding
pipeline. Moreover, the P4 language creates an abstraction
that completely separates the Control Plane from the Data
Plane, as it can be compiled into numerous targets, such as
ASIC switches, Field-Programmable Gate Arrays (FPGA),

etc.. The language includes the P4 Runtime API, a gRPC-
based mechanism that allows a remote controller to update
the tables of any P4-programmable target.

Switch programmability allowed to redesign multiple net-
work solutions, as it granted network insights that proved to
be extremely useful in tasks such as network debugging and
monitoring.

2.2 Packet Reordering
Whenever two machines are communicating over a network,
it is not guaranteed that the packets arrive in the same order
as they were sent. In this section, we formalize the reordering
concepts used along this document.

Let’s start by assuming that the sending machine numbers
packets in the order they are sent, and that the receiver records
the highest number it has received. For simplicity, we call
sequence number, or sn to the number representing the packet
ordering, and max_sn to the highest sn stored by the receiver.
Note that these sequence numbers are different from the ones
used in TCP. While TCP sequence numbers refer to the byte
ordering, the sequence numbers used in this work are relative
to the packet ordering, regardless of the size of each packet.

In this work we define reordered packets in accordance to
RFC 4737. A packet is reordered if, at the time of its arrival,
its sequence number is smaller than max_sn. In other words,
reordered packets arrive after any of its successors, thus we
also call them late packets.

In the context of the present work, it is also important to
consider packets that arrive sooner than expected. We call
them early, or premature packets. We say a packet is early
if, at the time of its arrival, its sequence number is greater
than max_sn + 1. For instance, if the downstream receives the
packet sequence {1, 2, 4, 5, 3}, we only consider packet 3 to
be reordered, and say that 4 is premature.

We can also calculate the displacement of any packet at
the time of its arrival as displacement = (max_sn + 1) −
received_sn. With this definition, late packets will have a
positive displacement, and premature packets will have a
negative displacement. For instance, in the above packet se-
quence, packets 1, 2 and 5 will have a displacement equal to
zero, packet 4 will have a displacement of −1, and packet 3
will have a displacement equal to 3.

3 Related Work
The literature on network monitoring is extensive and cov-
ers many solutions that follow different approaches. We can
classify existing solutions as Host-Based, Switch Assisted and
In-Switch, according to the location where the monitoring
data is collected and processed.

Host-Based solutions monitor the network solely from the
end-hosts, and often rely on the exchange of additional pack-
ets to perform monitoring tasks. For example, PingMesh [1]
is able to detect abnormal latency in data center networks
by making end-hosts ping other network nodes and measure
the elapsed time. NetBouncer [9], in turn, uses IP-in-IP to

2

measure the drop rates in multiple pre-defined paths, and cor-
relates that data to locate faulty links in the network. Although
these solutions are easier to deploy in already functioning net-
works, they are unable to collect crucial network insights,
such as packet traces or the traffic intensity distribution. Ad-
ditionally, the solutions that need to inject additional traffic in
the network (we call them active solutions) tend to incur in
unacceptable traffic overhead that often damages the network
performance.

Switch Assisted solutions use switches to collect useful
network insights, while using external components to process
them. For instance, NetSight [2] and EverFlow [12] mirror ap-
plication traffic to end-hosts, allowing to collect packet traces
that enable anomaly detection and localization. Planck [6],
in turn, mirrors the processed traffic to dedicated servers to
detect real-time throughput and link congestion. Other solu-
tions, such as OpenSketch [10] and UnivMon [4], leverage
the Data Plane programmability to compute sketches that are
then used by end-hosts to detect the targeted anomalies. The
fine-grained information collected by these solution allows
to detect a wider variety of anomalies, and to often detect
their origin. Nonetheless, this approach requires switches to
send the collected data to the external components, which
may degrade network performance.

In-Switch solutions are able to execute the full anomaly
detection logic in the Data Plane. HashPipe [8], for example,
is able to perform heavy hitter detection entirely in the Data
Plane. NetSeer [11], in turn, performs an inter-switch coor-
dination algorithm to detect multiple anomalies, including
per-flow packet loss. By detecting network anomalies in the
Data Plane, one can drastically reduce the associated traffic
overhead. Note that although these solutions may store the
collected information in external devices for further analysis,
they do not depend on them to monitor the network and to
detect anomalies.

Our goal is to develop a Passive, In-Switch monitoring
solution that relaxes the assumptions taken by NetSeer. While
NetSeer requires monitored links to be physically connected
to programmable switches, we aim to develop a solution able
to detect packet drops between programmable switches that
are connected by other non-programmable switches, or even
an external network, that may reorder, duplicate, and drop
packets. To fulfill our objective, we propose an inter-switch
drop detection algorithm that extends the one used in NetSeer
by tolerating packet reordering. In addition, we adapt the
Failure Inference algorithm used in NetBouncer [9] to help
pinpoint faulty links.

4 Window Based Monitoring
This section introduces Window Based Monitoring (WBMon),
a system that detects packet drops in the network and identi-
fies the lossy links that caused them. It leverages the availabil-
ity of programmable switches (we call them m-switches) to in-
sert observation points inside the network, but improves over
state-of-the-art solutions (namely, NetSeer and NetBouncer)
in several aspects:

Figure 1. WBMon workflow overview

First, NetSeer requires every monitored link to be physi-
cally connected to two m-switches, which greatly increases
the cost of deploying that solution in legacy networks. To
do so, operators must either select a small subset of links to
be monitored, which hinders solution coverage, or upgrade a
larger amount of switches, which comes with a higher cost.
Instead, WBMon is able to detect packet drops in arbitrary
long sequences of links that are delimited by m-switches. This
way, we can cover a wider range of links, while keeping the
number of monitoring switches at a minimum. Additionally, it
allows to gradually deploy and increase the solution coverage
and accuracy by upgrading new switches over time.

Second, by using passive monitoring, our solution is able to
directly monitor application traffic. This not only reduces the
signaling overhead required by active monitoring solutions,
but also allows to detect network failures that only affect
application traffic, such as routing blackholes or ACL miscon-
figurations. Additionally, passive monitoring allows to collect
data at higher rates with no additional cost, which allows to
detect transient faults and presents a significant improvement
over NetBouncer [9].

Finally, by monitoring packet drops across well defined
paths in the network, WBMon is able to identify the set of
links that may have caused each drop. We incorporated Net-
Bouncer’s Failure Inference Algorithm [9] to correlate the
packet drops detected along multiple paths and identify the
faulty links in the network. However, NetBouncer is restricted
to monitor the network from its end-hosts, which limits the
variety of paths that can be monitored. By performing in-
switch monitoring, WBMon can monitor a wider variety of
paths and to collect more and better data, which improves the
failure inference accuracy.

4.1 System Architecture Overview
Figure 1 presents a diagram of WBMon’s workflow. We can
describe it as follows: Before deploying WBMon, network
operators must determine the optimal location for the m-
switches, given the target network topology (1 in Figure 1).

3

The m-switch placement must be such that the network
links are identifiable [9], i.e. the data collected in the moni-
tored paths should be enough to identify the lossy links in the
network.

Finding the best location for m-switches is an example of
an NP-Hard problem, called the facility location problem.
Panopticon [3] provides an efficient algorithm to determine
the legacy switches that should be upgraded first, according
to the operators needs. For this reason, solving this problem
is out of the scope of the current work. Nonetheless, Sec-
tion 5 discusses the implementability of WBMon in different
network topologies.

After having the m-switches deployed in the network (the
yellow circles in Figure 1), the Controller configures them
with the forwarding rules required to monitor the network.
This configuration can lead the m-switches to use different
routes for different flows, in order to increase the number of
monitored paths. Then, as the application traffic circulates
through the network, each pair of m-switches executes the
coordination algorithm described in Section 4.3 to count the
number of packet drops that took place in each of the paths
connecting them. The m-switches regularly send the number
of detected packet drops and the number of processed packets
to the network Analysers (2 in Figure 1), which in turn run
the Failure Inference Algorithm to locate the lossy links in the
network and report them to the Controller (3 in Figure 1).
Although the default behavior is waiting for the information
to arrive from the m-switches, Analysers can also query it if
necessary.

When defining the m-switch placement, the Controller
can also split the network into multiple neighborhoods (Sec-
tion 4.2), depicted by the dashed regions in Figure 1. This
technique reduces the task of locating the faulty links in the
entire network to locate the faulty links in each individual
neighborhood. Additionally, by assigning each Analyser to
subsets of neighborhoods, we allow WBMon to scale with
the network size.

4.2 Underlying Model
WBMon considers a network consisting of a mix of pro-
grammable and non-programmable switches connected by
bidirectional links, where only the programmable switches
have monitoring capabilities. This network is modeled as an
undirected graph G = (S,L), where S denotes the switches,
and L the set of bidirectional links. Additionally, S is parti-
tioned into two subsets M and R, where the former contains
all the programmable switches (monitoring switches, or m-
switches), and the latter the non-programmable switches (reg-
ular switches, or r-switches). Each link 𝑙𝑖 ∈ L has a certain
probability of successfully transmitting a packet, denoted as
𝑥𝑖 . We assume that the success probabilities of different links
are independent [9]. We also consider that both the topol-
ogy and the forwarding rules at each switch are known, and
do not change over time. This allows us to define a virtual
connection, or vconn, as a sequence of links that connects
two m-switches, without containing any loop and without

passing through any m-switch. We assume that a vconn may
drop, reorder and duplicate packets, and denote the set of all
vconns in G as V. Note that, as opposed to links, vconns
are unidirectional. If two links participate in the same set of
virtual connections, we say those links are indistinguishable
since it is impossible to distinguish them using only the data
collected by the m-switches. We denote the set of links that
cannot be distinguished from 𝑙 as I(𝑙). This concept will be
relevant in Sections 4.4 and 5.

We also define a neighborhood as the set of r-switches
and links that form a connected component on the network
obtained after removing from G the m-switches and the links
that directly connect two m-switches [3]. This notion is useful
since it allows to analyze different neighborhoods indepen-
dently, which simplifies the problem we are trying to solve,
and allows our solution to scale to larger networks.

4.3 Drop Detection Algorithm
To better understand the drop detection algorithm, let’s as-
sume we have an infinite buffer split into different slots with
W bits each. Let’s also consider that the arriving packets carry
a sequence number (sn), corresponding to the order in which
they were sent. During the rest of the document, we will refer
to the slot in position i as 𝑠𝑖 , and to packet with sequence
number x as 𝑝𝑥 . We call current slot to the slot the arriving
packet belongs to, and newest slot to the slot that received the
packet with the highest sequence number.

The buffer is initially filled with zeros and whenever a
packet arrives, the m-switch writes a 1 in the position cor-
responding to the packet’s sequence number. That position
consists of a pair (slot_idx, offset), where the first field de-
termines which slot will register that packet, and the second
determines the bit that will be set to 1 in that slot. These
values are calculated as follows:

slot_idx =

⌊ sn
W

⌋
; offset = sn mod W

Since packets may be reordered, reporting a packet as
dropped immediately after receiving one of its successors
could be premature, since that packet may be late. To avoid
premature reports, we define a tolerance window that waits
for late packets to arrive before reporting them as lost. This
window comprises the tws slots that record the packets with
the highest sequence numbers. More precisely, the tolerance
window ranges from 𝑠newest_slot−tws+1 to 𝑠newest_slot, inclusive.
We call them "tolerance slots", since they are used to tolerate
packet reordering.

As new packets arrive, the newest slot will eventually be
updated and consequently the tolerance window will slide
over the buffer. We can determine the number of dropped
packets by counting the number of remaining zeros in the
slots that exit the tolerance window. Note that despite us-
ing a tolerance window, this mechanism will still produce
false positives if 𝑝𝑖 arrives after 𝑝𝑖+W×tws, which stresses the
importance of having an adequate tws:

4

In the current Tofino implementation, we stored the value
of each slot in a Register. However, the finite resources avail-
able in hardware forced us to reuse the same Register for
multiple slots. We assume that the m-switch contains N avail-
able Registers. Registers were reused in a round robin ba-
sis, i.e., slots {0, 𝑁 , 2𝑁, ...} are assigned to Register 0, slots
{1, 𝑁 + 1, 2𝑁 + 1, ...} are assigned to Register 1, and so on.
We say that slots stored in the same register are cohabitants,
and that a slot is active if it contains information about which
packets have already arrived, and inactive otherwise.

To assure correctness, each Register must be cleaned before
being reused by another slot, otherwise the remaining bits set
to one could conceal some packet drops. For this reason, we
introduced a cleaning window that is responsible to clean the
dirty slots that exit the tolerance window range as it advances.
We call the slot that is being cleaned the cleaning slot, or
the slot to clean. The cleaning window comprises at most
cws slots and is, by definition, mutually exclusive with the
tolerance window. To maximize reordering tolerance, we set
the window sizes such that cws + tws = 𝑁 . Note that if there
are no dirty slots, the cleaning window has a size of zero.
The current implementation is able to clean an entire slot for
each processed packet. Hence, we conclude that the cleaning
window advances W times faster than the tolerance window.

Figure 2. Tolerance Window update

Figure 2 illustrates the process of advancing the tolerance
window and cleaning the dirty slots during the arrival of four
packets, in an m-switch with N = 4 Registers. In this diagram,
slots are represented by rectangles and are arranged such
that cohabitant slots are displayed in the same column. The
gray circle indicates the position where each packet will be
registered.

Initially, we assume the buffer is in its normal state, having
no dirty slots and receiving a packet belonging to the tolerance
window. In this example, the tolerance window consists of 𝑠1
and 𝑠2. Let’s suppose that the second packet is an early packet,
belonging to 𝑠4. Since the previously stored newest slot was
𝑠2, its arrival will cause the tolerance window to advance by
4−2 = 2 slots. Consequently, 𝑠1 and 𝑠2 become dirty slots and
must be cleaned, so that 𝑠5 and 𝑠6 are ready to receive new
packets (note that 𝑠1 and 𝑠5, and 𝑠2 and 𝑠6 are cohabitants).
During the arrival of the second packet, we can immediately
clean 𝑠1 and detect which of its packets were lost by counting

the remaining zeros in that slot. Similarly, we can do the same
to 𝑠2 when the third packet arrives. Finally, when the fourth
packet arrives, there are no more dirty slots and the buffer
returns to its normal operation.

The algorithm described in this section is trivially extended
to a network with multiple vconns. To do so, each m-switch
must keep, for each incoming vconn, N Register arrays to
store the buffer, and two Register arrays to store the newest
slot and the slot to clean. For each outgoing vconn, each m-
switch must only keep a single Register array, that tracks the
next sequence number that is going to be sent to the respective
vconn. In this work we assume that the Controller regularly
resets the buffers and sequence numbers of m-switches such
that sequence numbers do not grow boundlessly.

The resources available in the adopted switch model al-
lowed us to use 𝑁 = 4 Registers with 𝑊 = 32 bits each,
for 256 vconns. We believe that, as these switches evolve,
there will be more Registers available and that, in time, these
buffers may be larger and comprise more slots.

4.3.1 Solution Correctness. From Figure 2, one may notice
that the arrival of packets with certain sequence numbers may
lead our solution to produce incorrect results. For instance,
if a packet arrives after its slot is cleaned, we know that
packet was falsely considered dropped. We can define a safety
slot interval that guarantees the solution correctness if every
packet falls in it. This interval can be described with the
following equations:

current slot > slot to clean (1)

current slot < slot to clean + 𝑁 (2)

Where current slot denotes the slot the arriving packet
belongs to, and slot to clean denotes the slot that will be
cleaned during the processing of that packet. If there are no
dirty slots, the slot to clean corresponds to the first tolerance
window slot.

The above integrity conditions may not hold in a real-world
scenario, thus it is important to determine the switch behavior
when these conditions are not met. Ideally, m-switches would
be able to detect the violation of these conditions, and emit
a message reporting the incident. However, the hardware
limitations of the Tofino switches inhibited this behavior. We
concluded that, when receiving a late packet that violates
condition 1, the best response is to not register that packet in
the buffer and to leave the number of detected drops intact.
This is because the late packet may be a duplicate, and doing
so would lead our solution to produce False Negatives. When
receiving an early packet that violates condition 2, the best
action to take is to proceed normally, i.e. update the newest
slot and register the incoming packet in the respective slot.
We argue this is the best action to take since not advancing
the tolerance window would completely stop WBMon in the
presence of a large drop burst.

As discussed in Section 2, it is impossible to simultane-
ously clean and update a Tofino Register, hence it is important

5

to decide which action to take if the cleaning slot cohabits
with the current slot. In the current implementation, we opt to
clean instead of updating the Register, since doing so will pro-
duce at most one False Positive, while the alternative would
produce at most𝑊 False Negatives.

4.4 Failure Inference Algorithm
NetBouncer [9] proposes an optimization algorithm to locate
the faulty links in a network, which we will briefly describe,
for self-containment. For a more in-depth analysis, the reader
can consult [9].

By assuming that the packet loss events are independent in
different links, one can calculate the success probability 𝑦𝑖 of
path𝑖 as the product of the success probabilities of the links
composing it. More precisely:

𝑦𝑖 =
∏

𝑗 :𝑙 𝑗 ∈path𝑖

𝑥 𝑗

One can combine this notion with the measured success
probabilities of each vconn (𝑦𝑖), and formulate an optimiza-
tion problem that finds the values of 𝑥𝑖 that minimize the error
between 𝑦𝑖 and 𝑦𝑖 :

minimize 𝐸 =
∑︁

𝑗 :vconn𝑗 ∈V
(𝑦 𝑗 −

∏
𝑖:𝑙𝑖 ∈vconn𝑗

𝑥𝑖)2

subject to 0 ≤ 𝑥𝑖 ≤ 1,∀𝑖
(3)

After finding the optimal values of 𝑥𝑖 , NetBouncer identi-
fies the faulty links as the ones that have a success rate lower
than a user defined threshold.

Note that NetBouncer calculates 𝑦𝑖 as the ratio of probes
that returned to the sending host. Instead, our solution calcu-
lates those values using the drop and packet counters from
the m-switches.

Since indistinguishable links, by definition, belong to the
same set of vconns, permuting the 𝑥𝑖 of those links will not
change the value of 𝐸, thus it is possible that the Failure
Inference algorithm blames healthy links that could not be
distinguished from faulty links. For this reason, the WBMon
Analysers yield the estimated success probabilities of each
link along with the sets of indistinguishable links. With this
information, network operators should investigate both the
links with values of 𝑥𝑖 below the stipulated threshold, as well
as the links that cannot be distinguished from those. We argue
that under a link identifiable [9] m-switch placement, there
will be no indistinguishable links.

5 Evaluation
This section details the experiments employed to evalu-

ate the developed solution. We start by measuring the Drop
Detection algorithm accuracy for different packet drop and re-
ordering configurations, and discussing its limitations. Then,
we perform a theoretical analysis that aims to understand the
impact of the m-switch arrangement on WBMon’s perfor-
mance, and study the viability of this solution in two common
real world topologies.

5.1 Drop Detection Algorithm
To evaluate the Drop Detection algorithm we developed con-
trolled benchmarks to understand to which extent it tolerates
packet loss reordering, and then test it against realistic packet
traces. These experiments were executed using a single m-
switch and a single Controller, to reduce possible errors origi-
nated outside of our algorithm. Both the Controller and the
m-switch were executed on a Virtual Machine running Ubuntu
20.04.4 LTS, with 4GB RAM. The m-switch was emulated
using the Intel SDE 9.7.0. The used implementation contained
a tolerance window of size tws = 2, and was configured to
use 𝑁 = 4 registers of𝑊 = 32 bits each.

In each experiment, we used a traffic generator to produce
packet sequences containing arbitrary packet drops and re-
ordered packets. Packets were guaranteed to arrive the switch
in the same order they were generated. After executing each
experiment we queried the number of drops detected by the
switch (detected_drops). By comparing it with the number of
actual drops (n_drops), we can calculate the number of False
Positives (#FP = max(0, detected_drops − n_drops)), and
False Negatives (#FN = max(0, detected_drops − n_drops)).

5.1.1 Reordering Tolerance. In this experiment we gener-
ated multiple traces, each consisting of 266 packets starting at
the same sequence number. In every trace we reordered 𝑝165
and varied the displacement from −𝑁𝑊 to 𝑁𝑊 . Additionally,
the switch was reset to the same initial state before sending
each trace. As the traces used in this experiment did not drop
any packet, we will only analyse the number of generated
False Positives.

Figure 3. Number of False Positives (#FP) for different Re-
ordering Displacement values

The results shown in Figure 3 reveal that WBMon produced
no False Positives for traces with a reordering displacement
in range [−37, 59]; a single False Positive for traces with a
reordering displacement greater than 58; and a linearly de-
creasing number of False Positives for traces with reordering
displacement lower than -37.

6

We can understand that the traces with reordering displace-
ment greater than 59 generated a single FP since in those
traces, the reordered packet arrived after its respective slot
was cleaned, thus it was considered dropped before it arrived
to the switch. The traces with reordering displacement lower
than -37, in turn, cause the reordered packet to arrive too
early, inducing a premature tolerance window update. When
this happens, the switch will start cleaning the generated dirty
slots before all of its packets have the chance to arrive. Note
that the earlier a packet arrives (the smaller the reordering
displacement), the more of its predecessors will be falsely
considered dropped.

5.1.2 Drop Burst Tolerance. In this experiment we gener-
ated several packet traces that would drop a single burst of
successive packets. The burst size varied from 0 to 3𝑊𝑁 −1 =
383. To isolate the effect of the drop burst, these traces were
deprived from packet reordering and duplication. Addition-
ally, to avoid external noise, every trace started with the same
sequence number (32) and the drop bursts also started in the
same packet (𝑝112).

Figure 4. Number of False Positives and False Negatives
generated for different drop burst sizes

The results shown in Figure 4 reveal that WBMon is able
to correctly identify every packet drop, despite of the burst
size. However, as the burst size increases, our solution starts
producing False Positives. This happens since, for drop bursts
larger than the buffer size, the number of dirty slots will be
larger than 𝑁 . When this happens, as the packets arrive after
the drop burst, it is inevitable that some of them will cohabit
the cleaning slot, and thus will not be registered. With bigger
drop bursts, the more packets will be affected by this situation.
We can also note small False Positive spikes, highlighted by
the purple and red circles in Figure 4. The FP of Type A are
generated when the drop burst has a size such that the first
packet arriving after the burst is registered in a slot whose bit
of the corresponding offset is already set to one. The FP of
Type B, in turn, occurs when one of the packets that could
not be registered belongs to offset 𝑊 − 1. In this situation,

its successor will belong to offset 0 of the consecutive slot,
coinciding again with the cleaning slot.which will cohabit the
next cleaning slot and consequently generate an additional
FP.

Note that our solution may generate False Positives in the
presence of drop bursts larger than (𝑊 − (𝑊 − 1)) +𝑊 ×
(tws + 0 × 𝑁) =𝑊 × 𝑡𝑤𝑠 + 1 In the used implementation that
represents less than 2

65 = 3% of the dropped packets, in the
worst case.

5.1.3 Performance with realistic traces. To predict WB-
Mon’s performance under realistic scenarios, we generated
multiple traces where we varied the drop and reorder prob-
abilities such that they resemble a realistic scenario. The
reordered packet displacement followed a normal distribution
N(` = 0, 𝜎2 = 0.752) [7]. The reorder and drop ratios used
for each scenario are summarized in Table 1. In each scenario,
we calculated the False Positive Rate (FPR) and the Detected
Drop Rate as follows:

FPR =
#FP

#packets
;Detected Drop Rate =

#drops
#drops + #packets

Scenario Configuration FPR Detected Drop
RateReordering Rate Drop Rate

Normal Operation 1.65% 1% 0.00 1.00%

Failed Link 1.65% 90% 0.05 90.00%
1.65% 95% 2.42 95.24%

Faulty Switch 70% 5% 0.00 5.02%
75% 15% 0.00 15.02%

DoS Attack
70% 80% 0.00 80.01%
60% 90% 0.18 90.03%
70% 90% 0.19 89.96%

Table 1. Detected Drop Rate under different realistic scenar-
ios

Table 1 presents the FPR and Detected Drop Rate generated
in each experiment. The measurement values shown in each
column correspond to the average of 10 executions. This
experiment produced no False Negatives in every execution,
which indicates that our solution is able to effectively detect
every packet drop that takes place in the monitored vconn.

We can observe that WBMon produces no False Positives
in scenarios with drop rates lower or equal to 15%, despite
of the amount of reordered packets. However, when the drop
rate is 90%, and the reordered packet ratio is 1.65%, our so-
lution produces an FPR of about 0.05‰. If the number of
reordered packets increases to 60% and 70%, while keep-
ing the amount of reordered packets, the value of the FPR
increases to 0.18‰ and 0.19‰, respectively. This result sug-
gests that under higher levels of packet loss, our system is
more sensitive to the amount of packet reordering. When the
monitored vconn drops 95% of its traffic, there is a great
increase in the number of False Positives generated by our so-
lution. Nonetheless, the amount of False Positives is relatively
small when compared to the number of packets processed by
the switch. Under these circumstances, WBMon has an FPR
of 2.42‰.

7

These results indicate that our solution is able to correctly
detect the drop rate of the monitored virtual connections. In
most scenarios, the difference between the real and estimated
drop rates was lower than 0.05%. The scenario that simulated
a faulty link with a drop rate of 95% was the one in which
the estimated drop rate varied the most. In this scenario, the
expected drop ratio was 95.24%.

5.1.4 Convergence Time. This experiment aimed to esti-
mate the time required for the Drop Detection Algorithm to
converge to the real drop rate of each monitored vconn. To
do so, we simulated the emission of several packets through a
vconn with a drop rate of 𝑦. For each packet, we generated
a random number and compared it with 𝑦 to determine if
the packet was dropped. We obtained the estimated drop rate
𝑦 of that vconn as the percentage of sent packets that were
dropped. We counted the number of packets we had to send
such that |𝑦 − 𝑦 | < 𝜖. With this value, the detection time is
trivially calculated by dividing the number of sent packets by
the vconn throughput. We assumed that the average packet
size is 1KB [11].

Figure 5. Time (ms) required to approximate each vconn
drop rate for different vconn loss rates (𝑥 axis) throughput
values (𝑦 axis), with 𝜖 < 0.05%

Figure 5 shows the time that the Drop Detection Algorithm
takes to correctly approximate the vconn drop ratio with an
error lower than 𝜖 = 0.05%, for different loss rates (x axis) and
throughput values (y axis). The estimated times for ISP and
data center networks are highlighted by the blue and orange
rectangles, respectively.

The results show that WBMon takes less than 13ms to
detect the vconn loss ratio for ISP networks. Moreover, if
the traffic throughput in ISP networks is higher than 1Gbps,
it takes less than 2ms to do so. In data center networks, in
turn, the detection time for WBMon is lower than 2ms. This
means our solution is able to detect transient failures of at
least 2ms, which 5 orders of magnitude faster than active
approaches [1, 9].

5.2 M-Switch Placement
In the following sections we study different m-switch arrange-
ments on two real-world topologies, and evaluate their impact
on WBMon’s performance, more specifically, on the amount
of faulty links successfully and falsely identified. We start by
describing the followed procedure in Section 5.2.1 and then
discuss the results obtained in Sections 5.2.2 and 5.2.3.

5.2.1 Simulation Setup. For each analysed topology, we
select several m-switch arrangements and select a random
subset of links F ⊆ L to be faulty. Then, we assign a success
probability 𝑥𝑖 to each, according to the loss model used in [9]:
We then generated the drop reports that Analysers would
receive from the m-switches under the given configuration,
according to the procedure followed in [9]. Finally we fed the
drop reports of each vconn to the Failure Inference algorithm
to obtain the set of "blamed" [9] links B. In this experiment
we blamed all the links with the estimated success probability
𝑥𝑖 lower than 99.8%, as well as all the other links that could
not be distinguished from those.

By comparing the faulty and blamed links, we were able
to calculate the number of True Positives (#TP), the Recall
(#TP/#F) and Precision (#TP/#B) of the failure inference
algorithm.

5.2.2 ISP Topology. This experiment was conducted on
Abilene, a real-world ISP topology extracted from the In-
ternet Topology Zoo. We started by generating several ran-
dom m-switch placements, while varying the percentage of
monitoring switches in the network between 40% and 80%.
We generated 100 random m-switch placements for each m-
switch ratio, and for each placement and faulty link ratio, we
selected 100 subsets of faulty links. This allowed us to study
how the amount of m-switches affects WBMon’s ability to
locate faulty links. Then, we repeated the same experiment
with three hand-made m-switch arrangements that aimed to
reduce the number of indistinguishable links, while using
the minimum amount of m-switches. Figure 6(a) depicts the
Abilene Topology, and Figures 6(b) to 6(d) illustrate the hand-
made arrangements used in this experiment. r-switches are
depicted by the blue circles, and m-switches by the yellow
circles.

The results obtained in this experiment are summarized
in Figure 7. The graphics are organized as a grid, where the
first row contains the Recall scores for the different config-
urations, and the second row contains the Precision scores.
The graphics on the left are relative to the random m-switch
arrangements, and the graphics on the right display the re-
sults of Placement 1 (P1), Placement 2 (P2), and Placement
3 (P3). For simplicity, we will refer to the random m-switch
arrangement with 𝑋% of m-switches as R(𝑋).

These results indicate that WBMon is able to detect 70%
of the faulty links (Recall), while monitoring the network
from only 40% of its switches; and 80% of the faulty links
while monitoring the network from 60% of its switches. The
Recall scores consistently increase with the m-switch ratio,

8

(a) Abilene topology (b) Placement 1
.

(c) Placement 2 (d) Placement 3

Figure 6. Hand-made m-switch placements for the Abilene
topology

Figure 7. Recall and Precision of the Failure Inference Algo-
rithm for the Abilene topology. Random m-switch placements
on the left, Hand-made m-switch placements on the right.

indicating that adding more m-switches to the network in-
creases the number of faulty links that can be successfully
detected. Despite having relatively high Recall scores, the
random m-switch placements for this topology lack in Preci-
sion, scoring values ranging from 53% to 83%. This indicates
that WBMon often blames the wrong links in this topology.
This result comes from the existence of indistinguishable link
sets (ILS) originated by the random m-switch placements.

We can observe a significant increase in the Recall and
Precision of WBMon when using the hand-made m-switch ar-
rangements. Namely, P2 and P3 were able to correctly identify
more faulty links (higher Recall) and blamed fewer healthy
links (higher Precision) than R(80), while using only 64%
and 73% of the switches to monitor the network. Addition-
ally, P1 obtained higher Precision scores than R(70) in the

experiments with less than three faulty links, and higher Preci-
sion scores than R(50) in the experiments with 3 faulty links.
These results stress the impact of having a good m-switch
placement. In fact, having optimal m-switch arrangements
reduces the amount of m-switches required to monitor the
network with the same Precision and Recall.

5.2.3 Data Center Topology. Clos topologies were widely
used in former data center networks [1, 9, 12], and their well
defined structure makes them a good candidate to study dif-
ferent m-switch placements. In this experiment, we study
a 4-ary Fat Tree topology, which is a special instance of a
Clos network. The switches of Fat Tree topologies are di-
vided into the Edge, Aggregation and Core layers: The hosts
connect to the Edge layer, the Edge is connected to the Ag-
gregation layer, and the latter is connected to the Core layer
(Section 5.2.3). Since hosts are exclusively connected to the
Edge layer, the traffic also follows a predictable pattern. For
this reason, we tested this topology using two hand-made
m-switch arrangements.

The first m-switch placement considered was obtained by
upgrading only the switches at the Edge layer (Figure 8(a)),
which resulted in a configuration with an m-switch ratio of
40% and no indistinguishable links. This placement corre-
sponds to the minimal set of monitoring switches that allow
to monitor the entire traffic circulating in the network. The
second m-switch arrangement, in turn, consisted of updat-
ing the switches at the Edge and Core layers. This resulted
in an arrangement with 60% of monitoring switches and no
indistinguishable links. Note that the paths measured with
the last configuration are the same as the ones monitored in
NetBouncer’s link identifiable probing plan [9].

(a) Edge placement (b) Edge and Core placement

Figure 8. Different m-switch placements for a 4-ary Fat Tree
Topology

The results shown in Figure 9 reveal that the Edge place-
ment is able to successfully identify 99% of the faulty links
in the network, while using only 40% of monitoring switches.
However, it produces too many False Positives, which makes
the Precision of that arrangement have scores of at most
51%. This suggests that the Edge arrangement is not link
identifiable, and that the number of monitoring points in this
configuration was not enough to correctly monitor the net-
work.

By adding the Core switches to the monitoring set, we
were able to drastically improve the solution’s Precision. In
fact, the second m-switch configuration was able to correctly
identify 100% of the faulty links and did not blame any non-
lossy link, while using only 60% of monitoring switches.

9

Figure 9. Comparing the Recall and Precision of the Edge and
Edge+Core m-switch placements in the Fat Tree topology.

We can understand this result as this arrangement is link
identifiable [9].

This experiment demonstrates that, for certain network
topologies, it is possible to reduce the number of monitoring
switches without damaging the monitoring quality.

6 Conclusion
Detecting packet loss and locating its origin is a crucial task to
manage and enhance the performance of computer networks.
In fact, multiple solutions aim to solve this problem with
countless techniques. Some of them provide fine grained
metrics that allow to locate faulty devices with high precision,
at the cost of requiring multiple observation points. This
requirement increases the solution deployment cost, which
may prevent operators from adopting it. Others aim to reduce
this cost by computing coarse grained statistics that may not
be enough to precisely locate the faulty devices.

In this thesis, we developed and evaluated WBMon, a pas-
sive monitoring solution that sits in the middle ground be-
tween the existing solutions. On the one hand, we leverage
the Data Plane programmability to perform an inter-switch
coordination algorithm that allows to detect the exact number
of dropped packets in individual network paths. On the other
hand, by employing a correlation algorithm, our solution
requires fewer observation points, which makes it cheaper
to deploy in already functioning networks. Our evaluation
demonstrates that the developed solution is able to correctly
identify the majority of faulty links while requiring about half
of the monitoring points.

References
[1] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray

Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi-Wei Lin, and Varugis Kurien. 2015. Pingmesh: A Large-Scale
System for Data Center Network Latency Measurement and Analysis.
In Proceedings of the 2015 ACM Conference on Special Interest Group

on Data Communication (SIGCOMM ’15). Association for Computing
Machinery, London, United Kingdom, 139–152. https://doi.org/10.
1145/2785956.2787496

[2] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ières, and Nick McKeown. 2014. I Know What Your Packet Did Last
Hop: Using Packet Histories to Troubleshoot Networks. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI’14). USENIX Association, Seattle, Washington,
USA, 71–85.

[3] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja
Feldmann. 2014. Panopticon: Reaping the Benefits of Incremental SDN
Deployment in Enterprise Networks. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14). USENIX Association, Philadelphia,
PA, 333–345. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/levin

[4] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In Proceedings of the 2016
ACM Conference on Special Interest Group on Data Communication
(SIGCOMM ’16). Association for Computing Machinery, Florianopolis,
Brazil, 101–114. https://doi.org/10.1145/2934872.2934906

[5] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. SIG-
COMM Comput. Commun. Rev. 38 (mar 2008), 69–74. https:
//doi.org/10.1145/1355734.1355746

[6] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Felter,
Kanak Agarwal, John Carter, and Rodrigo Fonseca. 2014. Planck:
Millisecond-Scale Monitoring and Control for Commodity Networks.
In Proceedings of the 2014 ACM Conference on Special Interest Group
on Data Communication (SIGCOMM ’14). Association for Computing
Machinery, Chicago, Illinois, USA, 407–418. https://doi.org/10.
1145/2619239.2626310

[7] Pedro Rodrigues Torres-Jr and Eduardo Parente Ribeiro. 2020. Packet
Reordering Metrics to Enable Performance Comparison in IP-Networks.
Journal of Computer Networks and Communications 1, 1 (2020), 1–8.

[8] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S.
Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection
Entirely in the Data Plane. In Proceedings of the Symposium on SDN
Research (SOSR ’17). Association for Computing Machinery, Santa
Clara, California, USA, 164–176. https://doi.org/10.1145/3050220.
3063772

[9] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, and Dong Xiang. 2019. Netbouncer: Active
Device and Link Failure Localization in Data Center Networks. In
Proceedings of the 16th USENIX Conference on Networked Systems
Design and Implementation (NSDI’19). USENIX Association, Boston,
Massachusetts, USA, 599–613.

[10] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined
Traffic Measurement with OpenSketch. In Proceedings of the 10th
Usenix Conference on Networked Systems Design and Implementation
(NSDI’13). USENIX Association, Lombard, Illinois, USA, 29–42.

[11] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng
Zhang, Dennis Cai, Ming Zhang, and Mingwei Xu. 2020. Flow
Event Telemetry on Programmable Data Plane. In Proceedings of
the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’20). Associa-
tion for Computing Machinery, Virtual Event, USA, 76–89. https:
//doi.org/10.1145/3387514.3406214

[12] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao,
and Haitao Zheng. 2015. Packet-Level Telemetry in Large Datacenter
Networks. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication (SIGCOMM ’15). Association
for Computing Machinery, London, United Kingdom, 479–491.

10

https://doi.org/10.1145/2785956.2787496
https://doi.org/10.1145/2785956.2787496
https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/2619239.2626310
https://doi.org/10.1145/2619239.2626310
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/3387514.3406214
https://doi.org/10.1145/3387514.3406214

	Abstract
	1 Introduction
	2 Background
	2.1 Software Defined Networks
	2.2 Packet Reordering

	3 Related Work
	4 Window Based Monitoring
	4.1 System Architecture Overview
	4.2 Underlying Model
	4.3 Drop Detection Algorithm
	4.4 Failure Inference Algorithm

	5 Evaluation
	5.1 Drop Detection Algorithm
	5.2 M-Switch Placement

	6 Conclusion
	References

