
Packet Loss Detection in the Data Plane

Afonso Gonçalves
afonso.corte-real.goncalves@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisors: Professors Lúıs Rodrigues and Fernando Ramos)

Abstract. The task of monitoring the operation of computer networks
is a key component to ensure the performance of current distributed
systems. In particular, we are interested in the use of monitoring to de-
tect, in a timely manner, network anomalies such as links that exhibit
excessive packet loss. In this work we survey the main techniques that
can be used to detect network anomalies, giving emphasis to techniques
that leverage the availability of programmable switches to increase the
efficiency of the monitoring tasks. Inspired by the advantages and disad-
vantages of related work, we propose a research road-map that aims at
improving the task of localizing faulty links in networks that have a mix
of programmable and non-programmable switches.

1

Table of Contents

1 Introduction . 3
2 Goals . 3
3 Background . 4

3.1 Network Monitoring . 4
3.2 Software Defined Networks . 5

4 Related Work . 6
4.1 Active vs Passive Monitoring . 6
4.2 Placement . 7
4.3 Techniques . 9
4.4 State of the Art . 11
4.5 Discussion . 19

5 Proposed solution . 21
5.1 Underlying Model . 21
5.2 Overview . 21
5.3 Detecting Drops in Virtual Links . 22
5.4 Fault Localization . 24
5.5 Parametrization . 24

6 Evaluation . 25
6.1 Experimental Evaluation . 25
6.2 Theoretical Analysis . 26

7 Scheduling of Future Work . 26
8 Conclusions . 26

1 Introduction

The task of monitoring the operation of computer networks is a key compo-
nent to ensure the performance of current distributed systems. Network moni-
toring allows to gather information that can be used for planning the network
evolution, to verify that the network operation complies with target service level
agreements, and to detect anomalies, such as faults and intrusions.

In our work we are interested in the use of network monitoring for anomaly
detection and, in particular, to detect links that experience excessive packet loss
rates. We survey the main techniques that can be used to detect network anoma-
lies, giving emphasis to techniques that leverage the availability of programmable
switches to increase the accuracy and efficiency of this task.

From previous work we have identified two main strategies to detect faulty
links. The first strategy involves the active exchange of probe traffic among
different “observation-points” placed in strategic locations in the network; the
data collected by these observation points can be correlated to give hints on the
location of eventual faulty links and/or switches. The second strategy uses pro-
grammable network switches to detect faulty links in a passive manner, without
the need to inject probe traffic; unfortunately, it only works for links that connect
directly two programmable switches, and cannot be trivially applied to networks
that have a combination of programmable and non-programmable switches.

Based on these observations, we propose a new strategy that combines and
extends the two techniques above. First, we aim at using programmable switches
to detect packet loss in the path connecting these switches, even if the path
includes multiple links and non-programmable switches, such that a few pro-
grammable switches can be used as passive observation points. Then, we plan
to correlate the information collected by these switches to narrow the set of
potential faulty physical links. We believe that the proposed approach has the
advantage of avoiding probe traffic, of providing a faster detection of anomalous
behaviour, and of being easier to deploy in already functioning networks.

The rest of the report is organized as follows: Section 2 briefly summarizes
the goals and expected results of our work; In Sections 3 we present background
related with our work; Section 4 analyses the state-of-the-art solutions in this
topic; Section 5 describes our proposed solution; and Section 6 describes how we
plan to evaluate our results; Finally, Section 7 presents the schedule of future
work and Section 8 concludes the report.

2 Goals

This work addresses the problem of detecting potential sources of packet loss
in a computer network. More precisely:

Goals: We plan to design, implement, and evaluate a system that can
help in identifying the occurrence of excessive packet loss in a network
and that can provide an indication of the subset of links and switches
that can be the root cause for the observed anomaly.

3

To achieve this goal, we plan to extend and combine complementary tech-
niques that have been previously proposed in the literature. In particular, we aim
at leveraging the potential of programmable switches to perform anomaly detec-
tion in a passive and timely manner while, at the same time, supporting this op-
eration in networks that can have a mix of programmable and non-programmable
switches.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the
anomaly detection mechanisms; ii) an implementation for the Intel Bare-
foot Tofino switch; iii) an extensive experimental evaluation using a com-
bination of small scale real network examples and simulations; and iv) a
theoretical evaluation to determine the cost and limitations of the pro-
posed solution.

3 Background

3.1 Network Monitoring

Our society is highly dependent of networked computer systems. Online bank-
ing, online commerce, e-mail, messaging, social networking, virtual meetings, me-
dia streaming and on-line gaming are just a few examples of the myriad of daily
activities that are dependent on the correct operation of computer networks.

Network monitoring is the task of continuously extracting information re-
garding the operation of a computer network, in order to better understand
how it is being used and to detect potential anomalies, faults, attacks, or other
impairments to its correct operation. Network monitoring is required to accom-
plish many high-level tasks such as: capturing usage patterns and changes in
those patterns, understanding how the load is distributed in the network, un-
derstanding which flows consume more resources, detecting faulty components,
verifying if the routing of packets complies with established routing policies,
detect intrusions and/or denial of service attacks, among many others.

The need for network monitoring, as part of the broader task of network
management, has been recognized from the inception of the Internet, and early
protocols, such as SNMP [18], already provided support for this task. However,
the scale of computer networks, as well as the amount of traffic they support,
has grown immensely. For instance, networks with thousands of switches and
hundreds of thousands of links, transporting Pbps of traffic, are common to-
day [46, 47, 40]. The scale of current networks, combined with the heterogene-
ity of equipment and protocols that can be used, make the task of performing
network monitoring extremely challenging. Fortunately, some technological ad-
vances in the networking architecture and hardware, including Software Defined
Networks [34] and programmable switches [5, 4, 21], can now be leveraged to
make network monitoring more accurate and efficient.

4

3.2 Software Defined Networks

Network routers and switches can perform multiple tasks. One of the main
tasks is packet forwarding, which consists in receiving a packet from an ingress
link and forwarding it to the next hop towards the destination via an egress
link. To perform this task, the switch needs to maintain a forwarding table,
that specifies which egress link should be selected when forwarding a packet.
The other main task, according to the original Internet design, is to execute the
logic required to populate the forwarding table, typically a distributed routing
protocol, such as RIP [19], OSPF [33], or BGP [37]. The former task is designed
to execute in the Data Plane, and the latter in the Control Plane.

There are several advantages of running the Control Plane in every router,
being one of the most important the autonomy and decentralization it provides:
routers that can execute the Control Plane can coordinate with each other to
populate their forwarding table without being dependent of other additional
components. However, this choice also comes with some disadvantages. First,
distributed routing protocols are notoriously complex and difficult to debug. Sec-
ond, routing equipment was typically provided by vendors with proprietary im-
plementation of a fixed set of routing protocols that could not be easily adapted
or expanded.

SDN Software Defined Networking is an architectural model that decouples
the Data Plane from the Control Plane. In this model, switches only implement
packet forwarding and export an interface that allows an external component to
populate the forwarding table. The Control Plane is executed in this logically
centralized entity, the controller, that decides how to populate the forwarding
table of every switch.

Having a single point of control has some issues. For instance, it can become
a bottleneck and, without appropriate fault-tolerant measures, it can be a single
point of failure. This challenge is handled today with production-level distributed
controllers [25]. However, it also brings several relevant advantages. Namely,
it makes the control logic simpler and easier to verify, and facilitates network
configuration. Moreover, it allows to have a global view of the network, and
consequently to compute optimized solutions for the entire network, which was
not possible to do with a distributed Control Plane [34].

OpenFlow [31] is a standard that specifies the interface between the controller
and the switches and that allows the controller to remotely update the forwarding
tables. According to this standard, each switch maintains a Flow Table that
keeps a list of Match-Action rules, each consisting of a matching and an action
part. The matching rule corresponds to a set of conditions that must be met
to activate the action part to that packet. It is possible to match packets based
on many header fields, from different OSI layers, namely the TCP/UDP source
and destination IPs and ports, ARP and ICMP parameters, the switch ingress
port where that packet came from, and so on. The action, in turn, defines what
should be done to the matched packet. Typical actions are dropping a packet or
forwarding it to one or multiple egress ports, but can also include changing or

5

pushing header fields. For each packet, the switch finds the first matching rule
and applies the corresponding action, or the default action if no rule matched
the packet.

Programmable Data Plane Processing packets according to OpenFlow rules
requires switches to be able to extract the information required to match those
rules. For this reason, before performing the Match-Action phase, switches exe-
cute a Parsing stage to extract that information.

Traditionally, both the parsing and match-action stages were static and in-
grained in the switch, which limited the number of different headers it could
recognize and parse, and the type of matches and actions it could support. These
fixed-function switches [8] impaired the development of SDN in two ways [34]:
First, the heterogeneity between switches from different manufacturers forced
the Control Plane to be aware of the Data Plane implementation, which hin-
dered the Control and Data Plane disaggregation. Second, the fixed-function
logic prevented switches from processing packets according to new or custom
protocols, and the only way to introduce new packet processing was to design a
new switch chip.

The emergence of Reconfigurable Match-Action Tables (RMT) [5] allowed
switches to parse arbitrary headers and define match-action rules programmat-
ically. This further led to the development of architectures and languages that
were able to leverage this capability. The P4 programming language [4] can now
be used to specify exactly how to parse packet headers and the Match-Action
rules to be applied in the forwarding pipeline. Moreover, the P4 language cre-
ates an abstraction that completely separates the Control Plane from the Data
Plane, as it can be compiled into numerous targets, such as ASIC switches,
Field-Programmable Gate Arrays (FPGA), etc. [4]. The language includes the
P4 Runtime API [15], a gRPC-based mechanism that allows a remote controller
to update the tables of any P4-programmable target.

Switch programmability allowed to redesign multiple network solutions, as
it granted network insights that proved to be extremely useful in tasks such as
network debugging and monitoring.

4 Related Work

In this section we make an overview of the network monitoring techniques
and systems that are most relevant for our work. We start by characterising
the different approaches to network monitoring, then we enumerate the most
common techniques that are used in the implementation of monitoring systems,
and finally we describe, with some detail, a number of monitoring systems that
can be used to detect network anomalies.

4.1 Active vs Passive Monitoring

Monitoring strategies can be classified as active or passive. Both approaches
have advantages and disadvantages.

6

Active monitoring relies on exchanging packets whose sole purpose is to per-
form monitoring tasks. We call this extra packets probing or monitoring traffic,
to distinguish it from the application traffic that exists in the network. Active
monitoring sends probing messages to the network and extracts information from
the behaviour of these probes. For example, an active approach can send ping
messages to a given node to measure the round-trip time (RTT) of that path.

Passive monitoring, on the other hand, avoids sending additional traffic on
the network, and extracts the desired information from the data collected during
the forwarding of application traffic. A passive approach can calculate network
latency by observing the time each application packet spends at each switch, or
detect faulty links by observing how many packets are lost in each link.

One advantage of active monitoring is that it makes monitoring more inde-
pendent from application traffic. For instance, it allows to measure the latency of
a link when no other traffic occurs. Also, active monitoring allows to artificially
create and test scenarios, such as specific sequence of packets, that can occur
only sporadically but that need to be addressed [47]. However, active monitoring
has also some important disadvantages:

First, one can claim that active monitoring is unsound by design, as it only
detects anomalies that directly affect monitoring traffic (e.g. does not detect
black-hole drops that affect application traffic), allowing false negatives to take
place [28]. In the limit, a faulty network may be reported as healthy if its anoma-
lies only affect application traffic, rendering this solution ineffective. Moreover,
active monitoring cannot detect transient anomalies that take place between
probing epochs. Passive approaches, on the other hand, do not face this prob-
lem, since they directly monitor the application traffic.

Second, active monitoring can be less efficient, as it requires additional traffic
to be generated and, often, a substantial part of this traffic does not contribute
to detect any anomaly [46]. From this perspective, active monitoring can be more
effective as a complementary diagnosing tool, after an anomaly is detected by
some other mechanism [47].

Finally, the latency of anomaly detection is a function of the probing fre-
quency, and anomalies that are recurrent but of short duration may pass un-
noticed, as they are unlikely to occur when probing takes effect. This can be
mitigated by increasing the probing frequency, but this may generate more mon-
itoring traffic in the network, which may cause more congestion and further de-
grade its performance [24]. With passive monitoring, an anomaly that affects
the application traffic can potentially be detected faster.

In our work, we will give preference to passive techniques, to avoid the costs
of exchanging probing traffic.

4.2 Placement

One can classify different solutions based on where the information is col-
lected and processed, each location having its advantages and limitations. Our
survey allowed the categorization of placement into three types, Host-Based,
Switch Assisted and In-Switch, that will be discussed below.

7

Host-Based We denote host-based monitoring as an approach that runs on
end-hosts without any support from other network components. Host-based so-
lutions can be passive, if they use solely the traffic that is being generated by
the application, or active, if they resort to sending probing messages, such as
ping messages or dedicated data packets. These solutions are very general and
consequently easier to deploy in already functioning networks, as they do not
require any network modification. However, these approaches are unable to get
network insights that are crucial to detect and locate certain anomalies, such as
packet traces or the traffic intensity distribution.

Switch Assisted We say a solution is Switch Assisted when it employs switches
to collect the network statistics used to monitor the network, but requires an
external component (or set of components) to process them.

Although it was already possible to perform Switch Assisted monitoring with
tools like SNMP [18], the emergence of SDN made it more powerful. It allowed
to install forwarding rules that would give more network insights not possible to
attain before. For example, it enabled the collection of packet traces which would
reveal the last switch that processed a certain packet or disclose the presence of
routing loops [17, 28]; to assemble network statistics that would unveil devices
overloaded with traffic [44]; or even to collect inter-packet time statistics to
identify malicious activity in the network [3]. These insights not only allow for
higher coverage, as there is more information available to the monitoring task,
but some may also help locating the causes of network anomalies.

Despite these advantages, this approach still poses a challenge that must be
addressed: As only a small portion of application traffic suffers network anoma-
lies [47], most of the monitoring traffic generated by these solutions will not be
useful. This poses a serious efficiency problem given that the monitoring traf-
fic may congest the network, cause more anomalies, and/or require significant
computational resources to process it [47]. Although there are several techniques
that aim to alleviate this limitation (Section 4.3), it is not possible to completely
mitigate it because it lies on the design of Switch Assisted solutions: As the
anomaly detection is done exclusively in the Control Plane, switches are unable
to select only the necessary information and consequently will always produce
unnecessary monitoring traffic.

In-Switch We denote in-switch monitoring as an approach that performs the
anomaly detection inside the switch. Note that although these solutions may
store the collected information in external devices for further analysis, they do
not depend on any external device to monitor the network.

The advent of the PISA architecture [4] and the emergence of programmable
switches enabled this approach, that has several advantages. First, it avoids
the efficiency limitation discussed in the previous approach: as programmable
switches allow to migrate the entire anomaly detection logic to the Data Plane [46,
39, 22, 20], the monitoring traffic can consist exclusively of anomaly related in-

8

formation. Second, In-Switch solutions are, in general, more scalable since the
detection logic is distributed across the network.

Nonetheless, this approach is not exempt from limitations: First, to main-
tain high throughput levels, modern programmable switches have limited com-
putational and memory resources available. For instance, it is not possible to
execute multiplications or cycles in current programmable switches. This limi-
tation constrains the logic that can be executed in the switches. Moreover, fine-
grained monitoring becomes extremely challenging to implement entirely inside
the switch, as it requires large amounts of memory to store all the required coun-
ters. Second, resource limitations prevent switches from storing large amounts
of anomaly information and external components must be used to perform this
task. These components may become a bottleneck as the number of detected
anomalies increases, and the traffic generated to send this information may be
unacceptably large in some situations. Hence there is a continuous effort to re-
duce the size of the required monitoring traffic.

4.3 Techniques

In this section, we enumerate some of the main techniques used to monitor
the network and discuss the strengths and limitations of each. These are Probing,
Mirroring, Sampling, Filtering, Compressing, Sketching, Coding and Selecting.

Probing This approach injects monitor traffic in the network to infer its state
based on what happens to that traffic. For example, a solution may detect packet
drops, forwarding loops or black-holes if the injected traffic does not reach its
destination. This approach has the benefit of allowing to test specific conditions
that may not occur often in the network. However, as the traffic generated in
this approach is artificial, it may not reflect the behaviour of the network with
real application traffic.

Mirroring This technique consists of making switches copy certain packets and
sending those copies to an observation point in the network. These copies are
often processed before being sent, to include only the necessary information, such
as the switch ID or in/egress ports [36]. It allows end-hosts to collect information
that may be crucial to detect anomalies, but incurs in the risk of generating too
much traffic that may disrupt the network performance.

Sampling Sampling occurs when a solution only considers a random subset of
the application traffic, and is often used to reduce the processing and monitoring
traffic overhead. We have identified two major approaches to sampling:

In the first approach, packets are fully randomly sampled. This can either be
done by picking every ith packet, or by picking every packet until it reaches the
sampling capacity [36]. As the order in which packets pass through switches is

9

unpredictable, this approach successfully covers a wide variety of flows and pack-
ets. Nevertheless, this method cannot ensure that different devices will sample
the same packets, which may be required for some tasks [41].

In the second approach, different devices may sample the same random subset
of packets, typically by relying on hash-functions to select which packets to
take [47]. This technique can be used to sample random packets, by hashing the
packet identifier, or to sample all the packets that belong to the same flow, by
hashing the flow identifier, for example. As long as every device uses the same
hash function, it is certain that if a packet is sampled in one device, then it
will be sampled in every device that processes it, which may be useful in some
scenarios.

Note that the assumption that the collected sample is a good representation
of the network traffic may not hold in every situation. For example, the presence
of heavy hitters in the network may bias the measured statistic. Moreover, pack-
ets that are not sampled may contain crucial information to some monitoring
tasks, such as identifying flow size distribution or detecting black holes. For this
reason, sampling may not be appropriate to some applications [12, 13, 28].

Filtering Another way to reduce the number of processed packets is by filtering
only the packets that satisfy certain rules, specified by the network operators.
This technique differs from sampling in the way that the former targets specific
traffic, while the latter targets a random subset of it. This approach may lead to
more accurate monitoring results as it grants a finer control on the monitored
traffic. For example, it allows to collect only the packets that are originated from
or targeted to a certain set of IPs, or packets that follow a specific protocol, such
as TCP or ARP [47]. Nevertheless, contrarily to sampling, this approach cannot
estimate the amount of traffic that will be monitored, as it depends on the traffic
that is circulating in the network [28]. For instance, it is possible that either every
single packet or no packet at all matches an established filter.

Compressing Unlike the previous techniques, compression aims to curtail the
monitoring traffic without discarding any information, by reducing the size that
information takes. There are several ways of using compression. For instance,
some approaches compute the diffs of consecutive packets (diff encoding) [17]
while others employ off the shelf compression algorithms, such as LZMA, gzip
or rar [35]. This technique allows to collect more network information and to
consequently achieve more accurate results at the cost of consuming more com-
putational resources.

Sketching Sketches are space-efficient probabilistic data structures used to
compute accurate network statistic estimates with low memory requirements and
provable resource-accuracy tradeoffs [1, 44, 30, 29]. The computation required to
operate these data structures is simple enough to be computed inside the switch.

10

Indeed, several solutions today use this approach to fulfil numerous tasks, in-
cluding frequency estimation [9], heavy hitter detection [39], distinct flow count-
ing, [2], change detection [26], entropy estimation [27], and attack detection [3].

The use of sketches has two main shortcomings: First, sketches demand higher
computing resources, which limits the amount of sketches that can be calculated
in each switch. Second, these structure typically stores “heavy” traffic, often
losing the “mice” flows. The the coarse-grained statistics thus obtained may lose
information crucial to specific fine-grained monitoring tasks, such as anomaly
location or per-flow monitoring [28, 46].

There is an active effort to overcome these limitations. To deal with the
limited number of sketches that can be computed in each switch, some so-
lutions allow to dynamically change and configure the sketches computed at
each switch [44]. Others employ universal streaming primitives, from which it
is possible to calculate several metrics [7, 6, 30]. It is also possible to calculate
fine-grained sketches by filtering packets into different sketches. However, this
solution incurs in a tradeoff between granularity and memory cost.

Coding This technique works by encoding the information to be transmitted
into a different representation, with the goal of either reducing the size of the
monitoring traffic or, on the other hand, improving transmission robustness by
adding coding redundancy. The coded representation can then be decoded to
retrieve the original information. Contrary to techniques based on sketches, cod-
ing is based on deterministic algorithms. For instance, FlowRadar [28] (further
analysed in Section 4.4) is a monitoring solution that employs this technique
by encoding (with a bit-wise XOR) multiple packet counters in colliding table
entries. These entries are then decoded to retrieve the original packet counters.
A solution that uses sketches would either need to store a counter for each flow,
which would use too much memory, or to employ stochastic data structures, such
as Count Min sketches [10] or Bloom sketches [45], to hold that information. This
benefit comes at the cost of demanding additional computational power to per-
form the encoding and decoding operations. These operations are hard to fit
into devices with limited resources, such as switches, although recent work gives
hope that the challenge is not insurmountable [14].

Selecting This technique is able to reduce the monitoring traffic by discard-
ing unnecessary information. It consists of picking only the information that
represents monitoring targets [46]. For example, NetSeer [46] is a solution that
employs this technique to detect packet anomalies, such as drops or high latency.
Instead of storing packet counters or measuring the time every packet takes at
each switch, it only reports (or selects) the dropped packets or the ones that
experience latency higher than a threshold.

4.4 State of the Art

In this section we analyze monitoring systems that illustrate different tech-
niques that can be used to detect packet loss. The goal of this analysis is twofold.

11

On the one hand, to understand potential limitations of existing solutions. On
the other, to get a more in-depth and practical view of techniques that may help
us in achieving our goals.

PingMesh [16] PingMesh is a Host-Based Active solution that uses Probing to
measure the latency between hosts in a geo-distributed data-center network. It
makes end-hosts ping other nodes to collect statistics and has three main com-
ponents: the Controller, the Agent and the Data Storage and Analysis (DSA).

The Controller generates a pinglist file for each Agent. These files contain the
set of peers each Agent will ping, as well as additional parameters to configure
the number and size of each probe. It aims to find a balance between network
coverage and the amount of traffic the pinglists will generate: On the one hand,
the set of pinglists must cover a wide range of paths in the network to present
accurate results. On the other hand, having too many pings may cause an un-
acceptable traffic overhead that may damage network performance. The best
compromise was found to be the following: By leveraging the Clos topology [11]
of the target network, the authors were able to cluster different hosts according
to the Pod they belong to. Every host would ping every other host belonging to
the same Pod. To test inter-Pod connectivity, the Controller would make every
host of each Pod probe a single host of every other Pod. Finally, to test inter-
data-center connectivity, each data center would select some of its hosts and
each of them would ping a single host of every other data-center. This scheme
allows to test virtually every connection in the entire network while minimizing
the number of redundant probes.

Each server in the data-center has a PingMesh Agent instance running in it
and will periodically retrieve the most recent pinglist file from the controller and
ping the other Agents listed in that file. These probes use TCP/HTTP traffic to
be as similar to application traffic as possible. After collecting the probing results,
each Agent calculates the desired performance metrics (latency and packet drop
rate) and then uploads them to the DSA for storage and further analysis.

The DSA is able to detect packet drops and black-holes from the latency
data. As the TCP timeout value is known for the target data-center and is
significantly higher than the average RTT, it is possible to infer the number
of retransmissions done by TCP, and consequently the percentage of dropped
packets, from the latency values. This information can further be used to deduce
the presence of packet black-holes: if several servers connected to the same ToR
experience higher packet drops rates than usual, then it is possible that that ToR
switch is causing black-hole packet drops. The same reasoning can be done for
higher levels in the network topology. If several ToR switches experience higher
packet drops, maybe the drops are caused by the Leaf or Spine layer.

A crucial feature of PingMesh is that it allows to monitor the connectivity
and latency between virtually every host pair while generating relatively few
probing messages. Moreover, as it is Host-Based, it can be deployed without
requiring any modification to the targeted network.

12

Despite being able to identify connectivity problems, this solution cannot
locate the devices that may be hindering that connectivity because it only has
data collected in the edge of the network. Additionally, by following an Active
approach, this solution generates unacceptable amounts of monitoring traffic for
modern data-center networks (at least 4× 106 probes per epoch [16]).

NetBouncer [40] NetBouncer is another Host-Based, Active monitoring solu-
tion that uses Probing to locate the links and switches that cause packet drops
in the network. It consists of three main components: the Hosts, the Controller
and the Processor.

Hosts probe the network by sending IP-in-IP [38] “bouncing packets” to spe-
cific switches that lie in it. Each host creates an IP packet addressed to the
intended switch and inserts another IP packet addressed to itself in the payload
of the first packet. When that packet reaches the intended switch, it unwraps
the inner IP packet and sends it back to the original host. In this way, hosts
are able to obtain a count of the number of both sent and received packets for
each switch, statistics that are then sent to the Processor. This behaviour allows
hosts to act independently, as eventual failures will not affect the measurements
of other servers, further improving the accuracy of this solution.

The Controller is responsible for generating a probing plan that specifies
which switches each Host should probe and to keep them updated with this plan.
The probing plan should be link identifiable, meaning that it should generate
enough data to determine the status of every link. The authors prove that in
a layered network where every switch is traversed by, at least, one path that
does not drop any packet, a probing plan where every host probes all the paths
to top-layer switches is link identifiable. As the Controller knows the network
topology at any instant, it is trivial to generate a link identifiable probing plan.

The Processor is assigned to infer the faulty devices based on the data col-
lected from the Hosts. Faulty switches are identified as the ones that have no
healthy path traversing it (a healthy path is one that did not drop any packet
during a certain epoch).

To create a link failure location mechanism, the authors modeled the network
as a graph and assigned a drop probability for every link. These probabilities are
assumed independent and, for this reason, the drop probability of a path can be
defined as the product of the probabilities of its links. This result can be used
to create an equation system that correlates the measured packet drops in each
probed path with the drop probabilities of each link. As Host measurements may
contain noise, the authors converted this equation system into an optimization
problem and added a regularization term to approximate the measured probabil-
ities from 0 or 1. Armed with this mechanism, the Processor is able to estimate
the drop rate of each individual link in the network and to identify the faulty
ones as those that have a probability higher than a certain threshold.

The main feature of this solution is its ability to locate faulty links and
switches inside the network based exclusively on the drop rates measured by

13

the Hosts. Moreover, despite being a Host-Based solution, NetBouncer is able
to probe arbitrary paths in the network, starting at any end-host.

Nevertheless, as this solution only monitors probing traffic, the results of its
measurements may fail to identify links or devices that drop specific application
packets. In addition, the additional probing traffic may congest the network and
induce drops in healthy regions of the network.

Planck [36] In contrast to the previous solutions, Planck is a Passive Switch
Assisted monitoring system that employs Mirroring and Sampling to calculate
the real-time throughput and congestion in every link in the network. To achieve
this goal, it makes every switch mirror every packet and send them to a Collector,
which computes the intended metrics from the gathered data. These results are
then stored for future application queries.

The sampling occurs naturally, as switches oversubscribe the mirroring port.
When the mirrored traffic intensity exceeds the port capacity (note that usually
there is a single port to mirror the traffic of every other port), excess packets
start accumulating in the switch queue and are dropped once that queue is full.
One can say that this mechanism allows Planck to dynamically sample traffic,
according to its intensity.

This unpredictable sampling rate creates a new challenge when computing
the throughput of each flow, as it is not possible to use the packet sizes to
calculate the number of sent bytes anymore. Instead, Planck uses header fields
(e.g. SYN value for TCP) of two different packets from the same flow to infer that
value. The throughput of each flow is then calculated by dividing the number of
bytes by the elapsed time between the reception of those packets. The Controller
is able to calculate the throughput of each link by summing the throughput of
each flow that is sent to each link. This latter information can easily be obtained
from the network topology and routing tables of each switch.

Planck grants a higher mirroring rate than other solutions [41] since it mirrors
packets directly in the Data Plane. Doing it using the switch CPU significantly
reduces the mirroring throughput [36]. However, oversubscribing mirroring ports
will fill congestion buffers with mirrored traffic, which may increase the num-
ber of application packet drops and may reduce the accuracy of the calculated
throughput at the Collector, as the time delta between packets may be altered.

Everflow [47] Everflow is another Passive, Switch Assisted monitoring solu-
tion that employs Mirroring, Sampling, Filtering and Probing to detect network
anomalies, such as routing loops and packet drops. This solution uses network
switches to collect packet traces from the entire network by mirroring certain
packets to external Analysers. After receiving a complete packet trace, Analysers
process it to detect anomalies that may have occurred and store the results in a
common storage device. The network Controller can then query that storage to
retrieve the anomaly information and further answer application queries.

To reduce the number of mirrored packets and to assure that traced pack-
ets are traced at every switch, packet sampling is based on the hash value of

14

their packet identifier. Moreover, this solution determines the Analyser mirrored
packets are sent to according to the hash value of their flow identifier, to ar-
range the traces of the same flow into the same Analyser. Additionally, it also
mirrors packets that contain a certain debug bit in the header set to 1, as it al-
lows to force certain packets to be traced. These mirroring rules alone, however,
may disregard smaller flows, as the smaller number of packets makes them less
likely to be sampled. For this reason, this solution also mirrors every packet that
establishes or terminates a TCP connection (Filtering).

After receiving an entire trace, Analysers can process the buffered informa-
tion to detect and locate network anomalies. As a practical example, if a switch
appears more than once in a packet trace, then that packet suffered a routing
loop. Additionally, packet drops are detected when the last switch in a packet
trace does not correspond to the expected last switch for that flow, which is
given by the network topology and routing policies. Note that this technique
may generate False Positives if the network drops the mirrored packet sent by
the final switch.

Finally, Everflow is able to actively inject guided probes in the network to
further investigate certain anomalies. For instance, this mechanism allows to
determine if a detected packet drop is an intermittent or persistent fault. To
this end, Everflow crafts special packets that will follow a certain path in the
network. That path is established by using IP-in-IP [38] and the debug bit in
the packet header is set to 1 to assure it will be traced at every switch. Despite
this Active characteristic, we still consider this solution Passive since the guided
probes are used solely to diagnose already detected anomalies.

There are two key ideas we can take from this solution: First, by employing
active probes in a Passive approach, it is possible to test arbitrary scenarios
that could be impossible to have in an entirely passive solution, while avoiding
the unbearable traffic overhead typical of Active solutions. Second, the ability
to collect complete packet traces allows to detect packet drops or routing loops,
which could not be detected otherwise. Nonetheless, the techniques used to re-
duce the monitoring traffic overhead end up disregarding application traffic that
is still susceptible to suffer network anomalies. This detail seriously tarnishes
the coverage of this solution [46]. From this solution, we can also observe that
when collecting packet traces, it is crucial to find a compromise between the
monitoring coverage and the consequent traffic overhead.

OpenSketch [44] OpenSketch is a Passive, Switch Assisted solution that uses
Sketching, Sampling and Filtering to perform fine-grained analysis with lower
traffic overhead. To this end, switches compute sketches that represent the tar-
geted network statistics and regularly send the collected data to the Controller,
which is responsible for analysing it to detect network anomalies.

Switches are equipped with generic and efficient sketches and let the Con-
troller determine the ones to be computed. This design allows to dynamically
change the metrics that are being collected at switches, and to implement new
analysis algorithms on the Controller, without requiring to reprogram the Data

15

Plane. Furthermore, the Controller is able to automatically configure the preci-
sion of each sketch based on network operators’ needs and on the available re-
sources at the switch. This characteristic grants a great measurement flexibility
that is not present in other solutions. Nonetheless, the switch scarce computa-
tional resources limit the number of metrics that can be computed simultane-
ously [30].

OpenSketch performs a finer-grained analysis by accounting packets in differ-
ent sketches based on user defined filters. These filters become more expressive
with the usage of hashing. For example, filtering packets that match a certain
Bloom Filter or randomly sampling packets based on their hash prefix become
possible with the usage of hash functions. More practically, it allows to sepa-
rately count the number of packets destined to a specific set of IPs, enabling the
detection of DDoS attacks. Unfortunately, this fine-granularity is constrained
by the available memory on each switch, thus tasks such as tracking per-flow
counters are unfeasible in this approach.

UnivMon [30] Univmon is a Passive, Switch Assisted solution that employs
Sketching to monitor the network.

Similarly to OpenSketch [44], the Control Plane regularly sends a manifest
to every switch, stating the sketches it will compute. Nonetheless, this solution
differs from the latter in two main ways: To begin with, it employs universal
streaming algorithms [6, 7] to compute more metrics with fewer sketches. Fur-
thermore, the Controller runs an optimization algorithm to assign sketches to
each switch in a way that reduces the required computation at each switch.
The authors noticed that if every switch computed the same set of sketches,
that redundant computation would hinder the solution performance, thus, the
employed optimization algorithm assigns sketches to a subset of switches that
cover every flow. Ideally, that subset would be the smallest possible, however
doing so would assign every sketch to the same subset of switches, which would
waste the computing power of every other switch. For this reason, the algorithm
also pretends to evenly distribute sketches among switches. This way, UnivMon
successfully creates a “one big switch” abstraction [23], i.e. it is able to monitor
the network with the same detail as if it were a single switch.

Since the metrics computed by UnivMon only consider the top-k flows, it
effectively reduces the communication overhead by identifying those flows in
the Data Plane and sending the respective counters to the Controller. Notwith-
standing, UnivMon still lacks in the variety of metrics it can compute [43] and
its accuracy is below desirable [42].

FlowRadar [28] FlowRadar is a Passive, Switch-Assisted solution that uses
Coding to track, for each flow, the number of packets that were processed by
each switch in the network. It then uses that information to locate packet drops
and to identify routing loops and black-holes in the network.

FlowRadar keeps a table to store per-flow counters and uses hashing to di-
rectly access the table entries. However, as opposed to other solutions, it encodes

16

colliding flows into the same entries. To do so, it keeps a Bloom Filter to track
the flows that were already registered and a table that stores the flow counters.
Each table entry contains three fields: FlowXOR, FlowCount and PacketCount,
containing, respectively, a cumulative XOR of flow identifiers, the number of
flows that were mapped to that entry and the total number of packets that were
accounted for every flow. For each incoming packet, FlowRadar calculates l dif-
ferent hashes that will index l different rows where that packet will be accounted
and increments the PacketCount field of all those entries. If the Bloom Filter
indicates this packet belongs to a new flow, FlowRadar registers it in the Bloom
Filter and then, for each of the l rows, it proceeds to XOR the flow identifier in
the FlowXOR field and increments the FlowCount entry by one.

Each switch periodically sends this table to a remote Controller, which uses
its increased computational power to decode this information. To do so, it first
identifies the entries that store a single flow, by checking the FlowCount field of
each row. The values present in the FlowXOR and PacketCount fields of those
entries correspond to the identifier (flow id) and packet count (count) of the
respective flow, hence these are called pure entries. For each pure entry, the
Controller determines the other rows that flow was encoded into by calculating
the same l hash values that were computed in the switch, and proceeds to remove
the information related to that flow from the other entries. To do so, it i) XORs
the flow id into the FlowXOR field, ii) subtracts count from the PacketCount
field and iii) decrements the FlowCount by one. This process may generate new
pure entries, which will allow to decode more flows, thus it is repeated until there
are no pure entries left.

When decoding, it is possible to exhaust the pure entries in the table, while
still having entries to decode, which makes further decoding impossible. In this
situation, FlowRadar leverages the information received from other switches to
decode more flows: For every neighbouring switch pair switchi and switchj ,
FlowRadar finds the flows that were decoded by the first but not by the latter
and, from those, selects the flows that were registered in switchj ’s Bloom Filter.
For those flows, FlowRadar uses the hashes employed in switchj to get the rows
where those flows were stored and proceeds to remove the respective information
from those entries. If this process generates new pure entries, FlowRadar can
further decode more flows. Due to possible packet loss between neighbouring
switches, packet count decoding must be performed by solving a linear equation
system, created from the PacketCount values of each table and the combination
of the entries where each flow was mapped to. Nonetheless, this mechanism
cannot guarantee that every flow will be successfully decoded, which may hinder
the monitoring task.

Although this solution detects packet drops in the network, FlowRadar can
only locate faulty links if the monitoring switches are connected by a physical
link. This constraint does not allow to deploy this solution in networks with
a mix of programmable and non-programmable switches. Additionally, packet
duplication may conceal packet drops, as switches have no mechanism to prevent
counting the same packet twice.

17

NetSight [17] NetSight is a Passive, Switch Assisted monitoring solution that
tracks every step a packet takes inside the network and uses Compression to
minimize the generated traffic. This information is then used by numerous ap-
plications to perform a plethora of monitoring tasks, including locating packet
drops, and identifying routing loops and black holes. This solution assumes that
every switch in the network is programmable and is connected to a NetSight
Server, that will be collecting its reports. There may be more than one NetSight
Server in the network.

Whenever a switch processes a packet, it creates a postcard of that packet
and sends it to the NetSight Server it is assigned to, for future analysis. A
postcard contains the packet headers, the identifier of the switch that created
the postcard, and the port that packet was forwarded to. NetSight aims to
aggregate the postcards of the same packet into the same packet history, however
these postcards may be scattered across the network, as the switches the packet
passed through may be assigned to different NetSight Servers. For this reason,
NetSight Servers regularly reshuffle the postcards they have received, using the
hash of the flow identifier to determine the Server each postcard will be sent
to. This mechanism successfully aggregates postcards of the same flow into the
same Server while equally distributing the flows across every Server.

NetSight effectively reduces traffic overhead and memory costs by compress-
ing postcards and histories, before shuffling and storing, respectively. It leverages
the similarity of consecutive packets and employs delta encoding to reduce their
size. Finally, it uses a standard compression algorithm to further minimize its
size. Although it is possible to use Filtering or Sampling to reduce the traffic
overhead, those techniques would inhibit a full traffic coverage and consequently
hinder the monitoring capability.

The main feature of this solution is its ability to monitor every packet circu-
lating in the network, which grants a high coverage to this solution. Nevertheless,
the bandwidth and computing power required to shuffle and compress postcards
of every packet become intolerable in networks with high traffic intensity [47].
Additionally, to fully detect anomalies, this solution requires to generate a post-
card at every switch, thus it could not be deployed incrementally in an already
functioning network.

NetSeer [46] NetSeer is a Passive, In-Switch monitoring solution that detects
and locates network anomalies, such as packet drops, congestion, path change
and routing loops. It leverages the Data Plane programmability to effectively
Select the packets that experience the targeted anomalies and sends that infor-
mation to an external storage for future queries. Each reported anomaly con-
tains information about the affected flow, as this information helps reducing the
anomaly detection and recovery time.

Packet drops can occur either inside the switch (intra-switch packet drops),
for example, due to invalid header formats or congestion, or in the link that
connects two switches (inter-switch packet drops). This solution effectively de-
tects intra-switch packet drops by following the packet processing pipeline and

18

creating an event reporting packet drops whenever one is detected. For instance,
NetSeer generates a packet drop event whenever a packet is discarded due to full
queues.

NetSeer runs a switch coordination algorithm to detect inter-switch packet
drops. Every switch maintains a sequential number for each of its outgoing ports,
representing the sequence of packets that were sent to each, and attaches it to
every packet that is sent to the respective port. They also record the highest
sequence number received from each incoming connection, and updates it as
it receives new packets. NetSeer assumes switches are connected by physical
links, and for this reason, packets will arrive in a FIFO order. Therefore, if the
downstream switch receives a packet with a sequence number new seq such that
new seq− old seq > 1, being old seq the previously stored sequence number for
that ingress port, then it is sure that new seq−old seq−1 packets were dropped.

To keep the flow-event mapping, the upstream switch keeps a buffer where
it stores the flow associated with each sequence number, for each egress port.
When the downstream switch detects a packet drop, it informs the upstream
which sequence numbers were missing and the latter then uses the buffer to
identify the flows that suffered those drops.

NetSeer employs two techniques to further reduce the traffic overhead it gen-
erates. First, it aggregates events affecting the same flow into the same flow
event. Each flow event stores the affected flow identifier, the number of affected
packets and other event-related information, such as queuing latency for con-
gestion events, or drop cause for packet drop events. The flow-event is reported
whenever the number of affected packet exceeds certain thresholds. Second, this
solution uses packet recirculation in the switch to aggregate multiple flow events
into the same message before sending it to the external storage. As flow events
are smaller than the minimum ethernet frame size, this technique promotes an
efficient bandwidth usage.

One of the main features of this solution is its ability to detect inter-switch
packet drops inside the network. Nonetheless, the switch coordination algorithm
assumes that the monitoring switches are connected by a FIFO link – i.e., they
are directly connected – which does not hold in every situation. For instance, if
the switches are interconnected by another network, this assumption does not
hold. Even in the case this solution is run in a single-domain network, in the
common situation where there is a mix of programmable and non-programmable
switches, packet reordering may occur, and the NetSeer solution will not be
effective. This makes it difficult to gradually deploy this solution in already
functioning networks, and is a strong motivation for our work.

4.5 Discussion

Table 1 presents a summary and comparison of the previously surveyed sys-
tems. The fact that a vast majority is Switch-Assisted reflects the challenge that
is implementing the anomaly detection logic in the limited switch resources, and
the advantage that comes from having finer network insights.

19

System Activity Location Prb Mir Spl Flt Cpr Skt Cdg Sel

PingMesh Active Host-Based ✓

NetBouncer Active Host-Based ✓

NetSight Passive Switch-Assisted ✓ ✓

Planck Passive Switch-Assisted ✓ ✓

Everflow Passive Switch-Assisted ✓ ✓ ✓ ✓

OpenSketch Passive Switch-Assisted ✓ ✓ ✓ ✓

Univmon Passive Switch-Assisted ✓

FlowRadar Passive Switch-Assisted ✓

NetSeer Passive In-Switch ✓ ✓

Table 1. State of the art comparison. Prb. stands for Probing, Mir. for Mirroring,
Spl. for Sampling, Flt. for Filtering, Cpr. for Compression, Skt. for Sketching, Cdg. for
Coding, and Sel. for Selecting

In this work, we aim to quickly and accurately perform packet drop detection.
As there are already solutions that perform this task, we can learn from them
and use that knowledge in the design of our solution. And we can also learn from
their limitations.

NetBouncer [40] is a relatively recent solution that allows to infer the location
of packet drops by correlating the drop rates measured in different network
paths. Although this solution effectively locates faulty links with few observation
points, it is limited in two ways. First, being an Active solution, NetBouncer may
incur in undesirable overhead and miss application traffic anomalies. Second, the
coverage accuracy of this solution may be limited because the observation points
are restricted to the edge of the network. We hypothesise that having observation
points in the core of the network may grant better results.

While NetSight [17], Planck [36] and Everflow [47] are able to detect and
locate packet drops, these solutions incur in unacceptable traffic overhead [46],
due to the employed mirroring technique. Moreover, the Sampling and Filtering
techniques used to reduce this overhead end up damaging the accuracy and
coverage of these solutions. Plank, on the one hand, neglects traffic during the
occurrence of traffic intensity spikes; Everflow, on the other hand, neglects traffic
that is filtered out by its rules.

FlowRadar [28] is also able to passively locate packet drops with low traffic
overhead, however its encoding mechanism may lead to data loss that can hinder
this task.

Finally, NetSeer [46] is able to passively locate packet drops entirely in the
Data Plane, with low traffic overhead and high coverage and accuracy. Nonethe-
less, this solution is based on the assumption that the entire network is composed
of programmable switches, directly connected, and all running NetSeer. These
assumptions do not generalise to the most common cases, namely in already
functioning networks.

Our goal is a solution that relaxes these assumptions, by considering only
a small set of programmable switches, connected by other non-programmable

20

switches or even external network that may reorder, duplicate, and drop packets.
To fulfill our objective, we plan to use an inter-switch drop detection mechanism
similar to NetSeer, but tolerating packet reordering. In addition, we plan to
introduce a host-based drop location inference algorithm, similar to the one
used in NetBouncer, to help pinpoint faulty links. Our solution required regular
communication with several elements, which may generate too much monitoring
traffic. One challenge is thus to find a good compromise between minimizing
traffic overhead while maintaining acceptable accuracy levels.

5 Proposed solution

We propose a technique to detect inter-switch packet drops, with the goal to
identify the set of links and switches where losses may have occurred. It leverages
the availability of programmable switches to insert observation points inside the
network, but improves over state-of-the-art solutions (namely, NetBouncer and
NetSeer) in two aspects. First, we can have more observation points in the net-
work than NetBouncer, which paves the way for more accurate results. Second,
we do not require all switches to be programmable, nor to be directly connected,
as in NetSeer. Third, it supports passive monitoring, avoiding signaling overhead
and allowing to monitor real application traffic.

5.1 Underlying Model

This work assumes the network is composed of a mix of programmable and
non-programmable switches, and where only the former have monitoring capa-
bilities. For simplicity, switches that perform monitoring activities are denoted
m-switches, and every other switch is denoted as a regular switch, or r-switch.
We also define m-neighbours as any pair of m-switches that are connected by
one or more r-switches, and call each of those paths a virtual link. Virtual links
should cover every physical link and switch in the network and should not con-
tain loops, i.e. each switch appears at most once in a virtual links. We assume
that virtual links may drop, reorder and duplicate packets. An m-neighbourhood
is the largest subset of m-switches which virtual connections form a complete
graph. This notion is useful since it allows to analyze different neighbourhoods
independently, which simplifies the problem we are trying to solve.

Figure 1 presents a network composed of 5 m-switches and 4 r-switches,
organized into two m-neighbourhoods: {1, 2, 3} and {2, 3, 4, 5}. We can see that
switch 5 is m-neighbour of 2, 3 and 4, but it is not neighbour of 1, since every
path from 5 to 1 traverses, at least, an m-switch. We can also note that there
are three virtual links connecting 2 and 3: (2 → 6 → 3), (2 → 7 → 8 → 3) and
(2 → 7 → 9 → 8 → 3).

5.2 Overview

The proposed monitoring technique uses three main components: The m-
switches, the analysers, and a controller, and works as follows. Every m-switch

21

Fig. 1. Underlying model

counts the dropped packets for each incoming virtual link and regularly reports
that information to an analyser. Each analyser knows the devices that form each
virtual link and combines that information with the counters received from the
m-switches to find the subset of devices that may be causing packet drops. The
controller, in turn, is responsible for keeping the m-switches and analysers up to
date with the network topology: m-switches must know which virtual links each
flow uses and the analysers must know the links and switches that form each
virtual link.

The ability to divide the network into multiple m-neighbourhoods allows our
technique to be modular. First, instead of locating faulty devices in the entire
network, the task is reduced to locating faults in individual m-neighbourhoods.
Second, by assigning an analyser to each m-neighbourhood we allow the solution
to scale with the network size.

5.3 Detecting Drops in Virtual Links

NetSeer [46] employs an effective technique to detect inter-switch packet
drops. However, it assumes that the links connecting a pair of switches respect
FIFO order; we cannot make the same assumption for virtual links. We thus
plan to augment NetSeer’s algorithm to tolerate packet reordering and duplica-
tion by using counters and circular buffers to track the packets that were already
received. More precisely, each m-switch keeps a sequence number (sn) for each of
its outgoing virtual links, representing the number of packets sent to the corre-
sponding virtual link. The value of the sn is appended, along with the virtual link
identifier, to every packet that is sent to the corresponding virtual link, regardless
of the flow that packet belongs to. Each m-switch also keeps, for each incoming
virtual connection, the largest sn received (max sn) and a circular buffer (buf)
of size N, that tracks the reception of packets pmax sn−N+1, ..., pmax sn. Each
position i in buf corresponds to an expected pi and contains a 1 if that packet
has already been processed or a 0 otherwise.

Every time an m-switch receives a packet pi with i > max sn, it updates the
value of max sn to i. As max sn changes, say it is increased by x, the first x

22

Fig. 2. Buffer update example

entries will now track the reception of packets pi−x, ..., pi. For this reason, the
switch needs to perform two operations to these entries. First, it needs to count
how many of them were still set to 0, meaning that the corresponding packets
have not been received yet, and reports them as dropped packets. Second, it sets
those entries to 0, to start tracking the new packets. The entry corresponding
to pi will be set to 1, since that packet was already received.

Figure 2 illustrates the procedure described above with an example with a
buffer of size N = 16 and a max sn set to 42, when receiving p46. The image on
the left depicts the buffer state before receiving the new packet and the blue line
delimits the beginning and the end of the buffer. When receiving p46, the first
46−42 = 4 entries of the buffer will track p43 to p46. We can see that the entries
associated with p27 to p30 were still set to 0 (in red), meaning that those packets
were not received yet, thus the m-switch will report them as dropped. Finally,
the new entries (highlighted in green) were all set to 0 to track the incoming
packets, except for that last one, since p46 was already received. The image on
the right depicts the state of the buffer after these changes have been applied.

Now, consider that m-switch A sends k packets to m-switch B with sn p0,
p1, ..., pk and that B receives them in the following order: p0, pk, p1, ..., pk−1.
When B receives p0, it becomes the new max sn and buf is correctly updated.
If we would only store the highest sn, which is equivalent of having a buf of
size N = 1, we would report p1 to pk−1 as dropped after receiving pk. However,
if N ≥ k, receiving pk would not cause the buffer to override the entry of any
packet that was not received yet (if N == k, then pk would override the position
of p0, which was already received). On the other hand, if N < k, pk would be
stored in the position of pk−N , meaning that packets from p1 to pk−N , inclusive,
would be reported as dropped even if they arrived after pk.

This example illustrates how the buf size affects this solution performance: on
the one hand, having a buffer that is too small may lead to reporting dropped
packets too soon, which will lead to more false positives. On the other hand,
having a buffer that is too large may increase the detection latency, as it is only
possible to detect the drop of pi after receiving pj , j ≥ i + N . Since network

23

traffic intensity is unpredictable, we intend to dynamically change the buffer
size to one that does not cause premature drop detection nor takes too long to
detect a packet drop. For instance, receiving packets that precede pmax sn−N

may indicate that the buffer size must be increased.

5.4 Fault Localization

This work aims to locate faulty devices by combining the drop counters
received from every m-switch in a m-neighbourhood into an equation system
that correlates the expected drop rate of each physical link with the measured
rates in each virtual link, a technique that proved to offer good results in previous
work [40]. Moreover, by having more observation points inside the network and
by clustering network segments into m-neighbourhoods, we expect our technique
to yield more accurate results.

5.5 Parametrization

We now discuss the following aspects: i) how to collect m-switch counters,
ii) how to assure measurement consistency across different switches and iii) how
often to collect those measurements.

Regarding the first issue, a strawman approach would be to make every m-
switch report packet drops as soon as they are detected. Although this solution
would provide a close to real time drop detection, it would incur in an unaccept-
able traffic overhead that could disrupt the network [46]. For this reason, several
solutions [28, 44, 30, 46] accumulate statistics over a period of time (epoch) and
only report those results at the end of each epoch. However, using epochs opens
the possibility for different m-switches measuring different network states in the
same epoch, which would induce erroneous measurements (ii). One can curtail
this limitation by synchronizing the m-witches in the network and making them
be in the same epoch simultaneously.

There are two main strategies to perform switch synchronization: In a time-
based strategy, every switch would have a synchronized clock (e.g. by running
NTP [32]) and the epochs would change at predefined time instants. At the
end of each epoch, every m-switch would send its counters to the analyser and
restart the measurement process. Another approach would use the analyser of
each neighbourhood to determine the end of each epoch, by sending a message to
each m-switch notifying the epoch change. This message would trigger a response
from every m-switch, containing the measured counters of that epoch. Ideally, an
epoch would end as soon as there were enough measurements to have accurate
results, hence we propose a mixed solution where as soon as an m-switch collects
enough information, it sends it to the analyser, which in turn contacts the other
m-switches in the m-neighborhood to collect the value of their counters. This
method also allows the epoch change to be initiated by the analyser, after a
certain timeout.

When it comes to determine the length of an epoch (iii), we face a tradeoff.
On the one hand, we want measurements to be close to real time, to detect

24

transient anomalies quickly. On the other hand, reducing the duration of each
epoch could lead to noisy results [36]. We intend to experimentally find the
optimal epoch duration for a number of scenarios to be defined.

6 Evaluation

We intend to implement a prototype of the proposed solution and to evalu-
ate its performance and limitations. This evaluation will be done in two parts.
First, we will experimentally measure the performance of the drop detection
and localization mechanisms. Second, we intend to theoretically determine how
many m-switches are required to perform accurate detection for different network
topologies.

6.1 Experimental Evaluation

We plan to evaluate the performance of our solution in four different aspects.
First, we want to study how well m-switches detect packet drops, by measuring
the number of undetected packet drops 1 (FNdet) and the number of incorrectly
reported packet drops (FPdet). Second, we will evaluate the drop location mech-
anism, by measuring the number of correctly detected faulty devices (TPloc), the
number of healthy devices reported as faulty (FPloc) and the number of unde-
tected faulty devices (FNloc). Third, we intend to calculate the traffic overhead
generated by the proposed solution, by measuring the number of bytes received
by the monitor. Finally, we aim to measure the time our solution takes to detect
and locate packet drops.

This evaluation process will consist of several executions, for every targeted
topology. Each execution will have a different configuration regarding the traffic
intensity, the frequency and amplitude of packet reordering, the drop rate of
each link and the number of faulty devices. Having different configurations will
allow us to understand how these factors affect the performance of our solution.
We will simulate a faulty link by making that link pass through a programmable
switch that will be programmed to randomly drop packets, based on the hash
value of the packet identifier.

During each execution, the faulty links will record, for each dropped packet,
the virtual connection it belonged to, so we can compare, after each execution,
the number of detected drops with the number of drops registered by the faulty
links. These metrics allow to calculate the number of false negatives (FN) and
the number of false positives (FP) as follows:

FNdet =
∑
vc

max(0, realvc − detectedvc)

1 Here, FN stands for number of False Negatives. Using the same logic, we have that
FP stands for number of False Positives and TP stands for number of True Positives.
The det and loc stand for detection and location, respectively.

25

FPdet =
∑
vc

max(0, detectedvc − realvc)

being detectedvc and realvc, respectively, the number of detected and real
drops for virtual connection vc.

After running the fault location algorithm, we can compare its output with
the configuration of that run, to measure the TPloc, FPloc and FNloc.

Finally, to measure the time it takes for our solution to detect a faulty device,
we will set up a simple topology with no programmed faults and make the
monitor send an OpenFlow message to the device we intend to make faulty,
that will configure it to start dropping packets. The monitor will record the
time instant that message was sent and, after receiving the data from the m-
switches and detecting the faulty device, it will compute the time elapsed since
the OpenFlow message was sent.

6.2 Theoretical Analysis

This work proposes a solution that allows network monitoring in networks
that may have non-programmable switches in it, hence we intend to understand
the minimum cost required to implement this solution in an already functioning
network.

For that reason, we also aim at performing a theoretically analysis to deter-
mine, for different network topologies, i) the minimum number of m-switches
required to perform fault detection and location, as a function of the network
size, and ii) the maximum number of neighbourhoods that it is possible to create
with a fixed number of m-switches, ideally while minimizing the variance of the
neighbourhood size, i.e. to evenly divide the network into the maximum number
of neighbourhoods of similar size.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 15 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

8 Conclusions

In this report we present a survey of the state of the art in network mon-
itoring techniques, giving emphasis to approaches that can localize the source

26

of packet drops in the network. Based on an analysis of the strengths and lim-
itations of the different approaches, we propose a new technique to localize the
source of packet drops that leverage programmable switches, but that can op-
erate on a network that has a mix on programmable and non-programmable
switches. Programmable switches are used to detect packet loss on virtual links,
composed of multiple physical links connected by non-programmable switches.
The information collected by different programmable switches is then correlated
to pinpoint the physical link that is the source of the packet loss. The report also
discusses the evaluation methodology that we plan to use to assess the merits of
the proposed solution.

Acknowledgments We are very grateful to Tiago Antunes, Daniel Lopes and
Daniel Seara for the fruitful discussions and comments during the preparation
of this report.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the fre-
quency moments. Journal of Computer and system sciences 58(1), 137–147 (1999),
https://www.sciencedirect.com/science/article/pii/S0022000097915452

2. Bar-Yossef, Z., Jayram, T., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: International Workshop on Randomization
and Approximation Techniques in Computer Science. pp. 1–10. Springer (2002)

3. Barradas, D., Santos, N., Rodrigues, L., Signorello, S., Ramos, F.M., Madeira,
A.: Flowlens: Enabling efficient flow classification for ml-based network security
applications. In: Proceedings of the 28th Network and Distributed System Security
Symposium. NDSS’21, San Diego, California, USA (2021)

4. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44, 87–95 (jul
2014), https://doi.org/10.1145/2656877.2656890

5. Bosshart, P., Gibb, G., Kim, H.S., Varghese, G., McKeown, N., Izzard, M., Mu-
jica, F., Horowitz, M.: Forwarding metamorphosis: Fast programmable match-
action processing in hardware for sdn. In: Proceedings of the 2013 ACM Con-
ference on Special Interest Group on Data Communication. p. 99–110. SIG-
COMM ’13, Association for Computing Machinery, Hong Kong, China (2013),
https://doi.org/10.1145/2486001.2486011

6. Braverman, V., Ostrovsky, R.: Zero-one frequency laws. In: Proceedings of the
Forty-Second ACM Symposium on Theory of Computing. p. 281–290. STOC ’10,
Association for Computing Machinery, Cambridge, Massachusetts, USA (2010),
https://doi.org/10.1145/1806689.1806729

7. Braverman, V., Ostrovsky, R., Roytman, A.: Zero-one laws for sliding win-
dows and universal sketches. In: Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015).
pp. 573–590. Leibniz International Proceedings in Informatics (LIPIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015), http:

//drops.dagstuhl.de/opus/volltexte/2015/5324

27

8. Butun, I., Tuncel, Y.K., Oztoprak, K.: Application layer packet processing using
pisa switches. Sensors 21, 8010 (2021)

9. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. In:
Proceedings of the VLDB Endowment. vol. 1, p. 1530–1541. VLDB Endowment
(2008), https://doi.org/10.14778/1454159.1454225

10. Cormode, G., Muthukrishnan, M.: Count-min sketch. (2009)
11. Dally, W.J., Towles, B.P.: Principles and practices of interconnection networks,

chap. 6.3. Elsevier (2004)
12. Duffield, N., Lund, C., Thorup, M.: Estimating flow distributions from sampled

flow statistics. In: Proceedings of the 2003 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications. p. 325–336. SIG-
COMM ’03, Association for Computing Machinery, Karlsruhe, Germany (2003),
https://doi.org/10.1145/863955.863992

13. Estan, C., Keys, K., Moore, D., Varghese, G.: Building a better netflow. In: Pro-
ceedings of the 2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. p. 245–256. SIGCOMM ’04, Association
for Computing Machinery, Portland, Oregon, USA (2004), https://doi.org/10.
1145/1015467.1015495

14. Goncalves, D., Signorello, S., Ramos, F.M., Médard, M.: Random linear network
coding on programmable switches. In: 2019 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS) (2019)

15. Group, T.P.A.W.: P4runtime specification. https://opennetworking.org/wp-

content/uploads/2020/10/P4Runtime-Specification-120.html (2020)
16. Guo, C., Yuan, L., Xiang, D., Dang, Y., Huang, R., Maltz, D., Liu, Z., Wang,

V., Pang, B., Chen, H., Lin, Z.W., Kurien, V.: Pingmesh: A large-scale system for
data center network latency measurement and analysis. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. p. 139–152.
SIGCOMM ’15, Association for Computing Machinery, London, United Kingdom
(2015), https://doi.org/10.1145/2785956.2787496

17. Handigol, N., Heller, B., Jeyakumar, V., Mazières, D., McKeown, N.: I know what
your packet did last hop: Using packet histories to troubleshoot networks. In:
Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation. p. 71–85. NSDI’14, USENIX Association, Seattle, Washington,
USA (2014)

18. Harrington, D., Wijnen, B., Presuhn, R.: An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks. RFC 3411 (dec
2002), https://rfc-editor.org/rfc/rfc3411.txt

19. Hedrick, C., et al.: Routing information protocol. Tech. rep., RFC 1058, Rutgers
University (1988)

20. Holterbach, T., Molero, E.C., Apostolaki, M., Dainotti, A., Vissicchio, S., Van-
bever, L.: Blink: Fast connectivity recovery entirely in the data plane. In: Pro-
ceedings of the 16th USENIX Conference on Networked Systems Design and Im-
plementation. p. 161–176. NSDI’19, USENIX Association, Boston, Massachusetts,
USA (2019)

21. Intel: Intelligent fabric processors. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch.html (2019)

22. Ivkin, N., Yu, Z., Braverman, V., Jin, X.: Qpipe: Quantiles sketch fully in the
data plane. In: Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies. p. 285–291. CoNEXT ’19, Association
for Computing Machinery, Orlando, Florida (2019), https://doi.org/10.1145/
3359989.3365433

28

23. Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the ”one big switch” ab-
straction in software-defined networks. In: Proceedings of the 9th ACM Conference
on Emerging Networking Experiments and Technologies. p. 13–24. CoNEXT ’13,
Association for Computing Machinery, Santa Barbara, California, USA (2013),
https://doi.org/10.1145/2535372.2535373

24. Kohavi, R., Longbotham, R.: Online experiments: Lessons learned. Computer 40,
103–105 (2007)

25. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M.,
Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: A dis-
tributed control platform for large-scale production networks. In: Proceedings of
the 9th USENIX Conference on Operating Systems Design and Implementation.
p. 351–364. OSDI’10, USENIX Association, Vancouver, BC, Canada (2010)

26. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based change detec-
tion: Methods, evaluation, and applications. In: Proceedings of the 3rd ACM
SIGCOMM Conference on Internet Measurement. p. 234–247. IMC ’03, Asso-
ciation for Computing Machinery, Miami Beach, Florida, USA (2003), https:

//doi.org/10.1145/948205.948236

27. Lall, A., Sekar, V., Ogihara, M., Xu, J., Zhang, H.: Data streaming algorithms for
estimating entropy of network traffic. In: Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems. p. 145–156.
SIGMETRICS ’06/Performance ’06, Association for Computing Machinery, Saint
Malo, France (2006), https://doi.org/10.1145/1140277.1140295

28. Li, Y., Miao, R., Kim, C., Yu, M.: Flowradar: A better netflow for data centers. In:
Proceedings of the 13th Usenix Conference on Networked Systems Design and Im-
plementation. p. 311–324. NSDI’16, USENIX Association, Santa Clara, California,
USA (2016)

29. Liu, Z., Ben-Basat, R., Einziger, G., Kassner, Y., Braverman, V., Friedman, R.,
Sekar, V.: Nitrosketch: Robust and general sketch-based monitoring in software
switches. In: Proceedings of the 2019 ACM Conference on Special Interest Group
on Data Communication. p. 334–350. SIGCOMM ’19, Association for Computing
Machinery, Beijing, China (2019), https://doi.org/10.1145/3341302.3342076

30. Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One sketch to rule
them all: Rethinking network flow monitoring with univmon. In: Proceedings of
the 2016 ACM Conference on Special Interest Group on Data Communication.
p. 101–114. SIGCOMM ’16, Association for Computing Machinery, Florianopolis,
Brazil (2016), https://doi.org/10.1145/2934872.2934906

31. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: Enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 69–74 (mar 2008), https://doi.org/10.
1145/1355734.1355746

32. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans-
actions on communications 39, 1482–1493 (1991)

33. Moy, J.T.: OSPF: anatomy of an Internet routing protocol. Addison-Wesley Pro-
fessional (1998)

34. Peterson, L., Cascone, C., O’Connor, B., Vachuska, T., Davie, B.: Software-Defined
Networks: A Systems Approach. Systems Approach, LLC (2021)

35. Politopoulos, P.I., Markatos, E.P., Ioannidis, S.: Evaluation of compression of re-
mote network monitoring data streams. In: NOMS Workshops 2008-IEEE Network
Operations and Management Symposium Workshops. NOMS 08, IEEE, Salvador
da Bahia, Brazil (2008)

29

36. Rasley, J., Stephens, B., Dixon, C., Rozner, E., Felter, W., Agarwal, K., Carter,
J., Fonseca, R.: Planck: Millisecond-scale monitoring and control for commodity
networks. In: Proceedings of the 2014 ACM Conference on Special Interest Group
on Data Communication. p. 407–418. SIGCOMM ’14, Association for Computing
Machinery, Chicago, Illinois, USA (2014), https://doi.org/10.1145/2619239.

2626310
37. Rekhter, Y., Li, T., Hares, S., et al.: A border gateway protocol 4 (bgp-4) (1994)
38. Simpson, W., et al.: Ip in ip tunneling. Tech. rep., RFC 1853, October (1995)
39. Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford, J.:

Heavy-hitter detection entirely in the data plane. In: Proceedings of the Sympo-
sium on SDN Research. p. 164–176. SOSR ’17, Association for Computing Machin-
ery, Santa Clara, California, USA (2017), https://doi.org/10.1145/3050220.

3063772
40. Tan, C., Jin, Z., Guo, C., Zhang, T., Wu, H., Deng, K., Bi, D., Xiang, D.: Net-

bouncer: Active device and link failure localization in data center networks. In: Pro-
ceedings of the 16th USENIX Conference on Networked Systems Design and Im-
plementation. p. 599–613. NSDI’19, USENIX Association, Boston, Massachusetts,
USA (2019)

41. Wang, M., Li, B., Li, Z.: sflow: towards resource-efficient and agile service federa-
tion in service overlay networks. In: 24th International Conference on Distributed
Computing Systems, 2004. Proceedings. pp. 628–635. ICDCS 2004, IEEE, Hachioji,
Tokyo, Japan (2004)

42. Yang, T., Jiang, J., Liu, P., Huang, Q., Gong, J., Zhou, Y., Miao, R., Li, X., Uhlig,
S.: Elastic sketch: Adaptive and fast network-wide measurements. In: Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communica-
tion. p. 561–575. SIGCOMM ’18, Association for Computing Machinery, Budapest,
Hungary (2018), https://doi.org/10.1145/3230543.3230544

43. Yu, M.: Network telemetry: Towards a top-down approach. SIGCOMM Comput.
Commun. Rev. 49, 11–17 (feb 2019), https://doi.org/10.1145/3314212.3314215

44. Yu, M., Jose, L., Miao, R.: Software defined traffic measurement with opensketch.
In: Proceedings of the 10th Usenix Conference on Networked Systems Design and
Implementation. pp. 29–42. NSDI’13, USENIX Association, Lombard, Illinois, USA
(2013)

45. Zhou, Y., Jin, H., Liu, P., Zhang, H., Yang, T., Li, X.: Accurate per-flow measure-
ment with bloom sketch. In: IEEE INFOCOM 2018-IEEE Conference on Computer
Communications Workshops. pp. 1–2. INFOCOM WKSHPS, IEEE, Honolulu, HI,
USA (2018)

46. Zhou, Y., Sun, C., Liu, H.H., Miao, R., Bai, S., Li, B., Zheng, Z., Zhu, L., Shen,
Z., Xi, Y., Zhang, P., Cai, D., Zhang, M., Xu, M.: Flow event telemetry on pro-
grammable data plane. In: Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication. p. 76–89. SIG-
COMM ’20, Association for Computing Machinery, Virtual Event, USA (2020),
https://doi.org/10.1145/3387514.3406214

47. Zhu, Y., Kang, N., Cao, J., Greenberg, A., Lu, G., Mahajan, R., Maltz, D., Yuan,
L., Zhang, M., Zhao, B.Y., Zheng, H.: Packet-level telemetry in large datacen-
ter networks. In: Proceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication. p. 479–491. SIGCOMM ’15, Association for Com-
puting Machinery, London, United Kingdom (2015), https://doi.org/10.1145/
2785956.2787483

30

