
How to avoid the cost of causal communication in large-scale
systems�

Luı́s Rodrigues Paulo Verı́ssimo
ler@inesc.pt paulov@inesc.pt

Technical University of Lisboa - IST - INESC y

Introduction

In a distributed system, consisting of a collection of processes that communicate by exchanging
messages, the order in which messages are delivered to processes is of major relevance to the
application design. With the aim of simplifying the design of distributed applications [14,4,11],
several algorithms and protocols have been proposed to provide causal order delivery [4,6,9,7,10].

Despite its advantages, the use of causal communication has been somewhat limited by the
overhead incurred by existing implementations. We can cite some disadvantages of existing
causal communication services [5]: (i) potential large size of “history” information that needs to
be stored and exchanged to maintain causality; (ii) little user control over message piggybacking
policies; (iii) reliable communication is mandatory to avoid blocking of message delivery.

In the Navigators group at INESC, we are currently studying mechanisms to improve the
efficiency of multicast communication over (geographically) large-scale networks. This research
is complementary to the joint effort between U. of Bologna and EPFL that aims to provide reliable
(virtually synchronous) communication for large scale-systems [2].

We claim that, to allow applications to take advantage of multicast communication, new
services (based on weaker assumptions about the system) must be provided. To support this
claim, this paper proposes and describes a new quality of service, referred to as transparent causal
messages.

Related work

Many protocols have been presented to provide causal order delivery. However, despite the
diversity of algorithms, most systems provide a single causal multicast communication primitive,

�A version of this report will be published in the Proceedings of the 6th SIGOPS European Workshop, Sept., 1994,
Dagstuhl, Germany. This work was partially supported by the CEC, through Esprit Project BR 6360 (Broadcast).

yInstituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal, Tel.+351-1-
3100000.

1



giving limited flexibility to the application designer. Taking into account the limitations of the early
systems, recent research is defining alternative primitives that better match user requirements.
Examples of such primitives are the virtually-synchronous communication defined in [13] (that
only orders “bags” of messages in respect to group changes) or the global-flush protocol of [1]
that orders messages in respect to special flush messages. In another report [12], we proposed a
primitive that provides the users with explicit control over (message) piggybacking policies.

Transparent causal messages

One of the criticisms made of causal multicast communication systems [5] concerns the mandatory
requirement for reliability. Once a message introduces a causal dependency, that message must
be reliably delivered; otherwise, succeeding messages will be prevented from being delivered. In
some cases the delivery of a causal message is delayed until there is a guarantee that the message
will be delivered at all destinations. Additionally, the sender may be prevented from sending new
messages before this guarantee is obtained.

Although the above is true, it is also true that one can find a number of distributed applications
which take full advantage of causal ordering. Moreover, there is evidence that, when causal
delivery properties are necessary, ad-hoc solutions to the problem are usually complex and hard
to prove correct [3].

To solve this contradiction, we propose a scheme that distinguishes two types of messages:
(normal) opaque causal messages and transparent causal messages. Transparent causal messages
are messages that are delivered in causal order with respect to (normal) opaque messages but that
do not introduce causal dependencies. Thus:

� no message is ever delayed by a transparent message;

� no reliability constraints are imposed on the transmission of transparent messages.

The delivery order for transparent messages with regard to opaque messages is summarized
in the following table (where opaque messages are represented in capital, transparent messages
in lower-case, and right-arrows, !, represent transitive “happened-before” relation as defined in
[8]).

relation delivery order relation delivery order
M1 !M2 M2 afterM1 m1 !M2 undefined
M1 ! m2 m2 afterM1 m1 ! m2 undefined

The implementation of transparent messages is fairly simple and any causal communication
protocol can be adapted to provide this service at almost no cost. We do not fully present the
implementation here but we note that a transparent message only needs to carry the time-stamp
of the sender without incrementing its clock.

2



read.2

write.1

comm.2.3 read.3

Client 1

Client 2

Client 3

comm.1.2

Replicated service

Figure 1: A simple example.

Client-server interactions using transparent messages

In the context of large-scale systems, transparent messages can be extremely useful to implement
replicated client-server interactions respecting causal order. The reason is that large-scale systems
can be characterized by a number of attributes such as, among others, existence of partitions, non-
transitive node-to-node connectivity, and large communication delays. To always enforce reliable
multicast communication in such a setting can be prohibitively expensive. We illustrate the use of
transparent messages in this context with the example of figure 1.

Consider a replicated service exporting read and write operations. Assume that clients interact
with the replicated service using causal multicasts. The way replica consistency is maintained
is orthogonal to this example. This could be achieved using additional inter-replica messages
or by increasing the semantics of the multicasts, for instance requiring all writes to use a totally
ordered multicast. Clients can also communicate among themselves (using either point-to-point
or multicast communication). To illustrate our point, consider an execution where the following
causal relations among messages are observed:

write.1 ! comm.1.2 ! read.2 ! comm.2.3 ! read.3

If a single (opaque) causal primitive is offered, not only would all multicasts have to be reliable,
but also any communication impairment with read.2 would delay read.3. This is clearly too costly
for some applications. Now assume that all reads and replies (not depicted in the figure) are
executed using transparent messages. Clients 2 and 3 still “see” the update performed by client 1.
However, reads can now be implemented using inexpensive best-effort multicasts and reliability
ensured by end-to-end replies. Furthermore, communication delays in one read operation would
not delay other read operations.

The above example is quite straightforward, but clearly illustrates the power of transparent
messages. The example can be further expanded to make all interactions between clients and
the replicated server via inexpensive transparent messages and restrict the use of (opaque) causal
communication among replicas.

We illustrate this particular use of transparent causal messages with another example (see
figure 2). Clients use point-to-point communication to contact a given replica. Replicas of the
service communicate among themselves to ensure replica consistency. In this simple example, a

3



Client 1

Replicated service

multicast
R1

R2
Client 2

delaywrite.1_R1

write.1_R2

read.2_R1 reply.1

comm.1.2

Figure 2: Another example.

replica that is contacted to execute a write operation issues a totally ordered multicast within the
replica group before it replies to the client. Replicas keep track of which requests were executed
such that if a client contacts more than one replica at-most-once semantics can be guaranteed.
As before, causal delivery is globally enforced such that clients have a consistent view of the
replicated service state. Consider the following execution:

write.1 R1 ! write.1 R2 ! multicast ! reply.1 ! comm.1.2 ! read.2 R1

In this execution, client 1 tries to contact replica R1 first. Since the communication link is slow,
it tries to contact the other replica (R2). Replica R2 receives the request and issues a totally ordered
multicast in the group of replicas. In a large scale system, and because communication delays are
not transitive, this multicast can be received at R1 before the first write.1 R1 message. With an
appropriate retry detection mechanism (for instance, see [12]) it is possible to make immediate
progress. Clearly, is not desirable that the multicast depends on the first write request, as this
would block replica R1 until the request arrives. However, as in the previous example, it is useful
that the precedence relation multicast ! read.2 R1 is preserved by the communication system. For
instance, in the example, when accessing replica R1 client 2 should see the update performed by
client 1. This problem can be circumvented by keeping inter-replica multicasts opaque but using
transparent messages among clients and between clients and individual replicas.

In large-scale settings, using unreliable point-to-point communication to access remote (po-
tentially replicated) services has many advantages over using reliable multicasts. One of the most
important is that clients are not required to keep a fully accurate view of replica membership.
This drastically reduces the required synchronization among clients and replicated services. Ad-
ditionally, less reliable links between the client and the service can be easily tolerated. Reliable
group communication can be restricted to inter-replica communication, for instance, by making
replicas of a given service members of a virtually-synchronous group [13,12]. However, even
when point-to-point messages are used, the propagation of causal precedence can strongly sim-
plify the design of cooperating clients that access a common set of replicated services. Transparent
causal messages provide the user with a simple way to express the duality between messages that
introduce causal dependencies and messages that just propagate such dependencies. Finally, the
definition of transparent causal messages is completely independent of the mechanisms used to
implement causality. This permits its use over a large set of platforms.

4



Conclusions and future work

In the past years, research in the area of reliable communication has focused on algorithms and
protocols to efficiently support causal communication. However, the acceptance of these services
is far from expected. One reason for this is the relative lack of flexibility of most interfaces. In
this paper we claim that new services, that better match application needs, should be sought and
provided. However, not all of these services imply new or complex protocols. We illustrated our
claim with a simple primitive, incurring low implementation cost, that can be extremely useful to
support client-server interaction in large scale-systems.

We have recently developed a remote invocation protocol having large-scale in mind [12]. The
protocol, called GRIP, provides flexible support for the construction of replication-transparent
remote invocation of replicated services. Unlike the functionality provided by most existing
systems, GRIP leaves the semantics of the replication protocol transparent to the remote invocation
protocol and provides support for dynamic reconnection and client semantic control; moreover,
it introduces explicit support for weakly consistent replication strategies and provides optional
per-invocation distributed retry detection. In this protocol, clients use efficient point-to-point
communication primitives to access replicated services. The protocol is now being adapted to take
advantage of transparent causal messages in order to further reduce the amount of (unnecessary)
synchronization between clients and server replicas.

References

[1] Mohan Ahuja and Michel Raynal. An implementation of global flush primitives using
counters. Technical Report CS94-342, University of California, San Diego, January 1994.

[2] Ozalp Babaoglu and Andre Schiper. On Group communication in Large-Scale Distributed
Systems. In Proceedings of the 6th ACM-SIGOPS European Workshop, Dagstuhl, Germany, 1994.

[3] Kenneth P. Birman. A Response to Cheriton and Skeen’s Criticism of Causal and Totally
Ordered Communication. Technical report, Cornell University, October 1993.

[4] K.P. Birman and T.A. Joseph. Exploiting replication in distributed systems. In Sape Mullender,
editor, Distributed Systems, pages 319–366. ACM Press Frontier Series, 1989.

[5] D. Cheriton and D. Skeen. Understanding the Limitations of Causally and Totally Or-
dered Communication. In Proceedings of the 14th Symposium on Operating Systems Principles,
Asheville, NC, USA, December 1993.

[6] C. Fidge. Timestamps in Message-Passing Systems that Preserve the Partial Ordering. In
Proceedings of the 11th Australian Computer Science Conference, 1988.

[7] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Lazy Replication: Exploit-
ing the Semantics of Distributed Services. Technical Report MIT/LCS/TR-84, MIT Laboratory
for Computer Science, 1990.

[8] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System. CACM,
7(21), July 1978.

5



[9] Larry L. Peterson, Nick C. Buchholdz, and Richard D. Schlichting. Preserving and Using
Context Information in Interprocess Communication. ACM Transactions on Computer Systems,
7(3), August 1989.

[10] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Computing. ESPRIT
Research Reports. Springer Verlag, November 1991.

[11] Robbert van Renesse. Causal Controversy at Le Mont St.-Michel. ACM Operating Systems
Review, 27(2):44–53, April 1993.

[12] L. Rodrigues, Ellen Siegel, and P. Verı́ssimo. A Replication-Transparent Remote Invocation
Protocol. In Proceedings of the 13th Symposium on Reliable Distributed Systems, Dana Point,
California, October 1994. (To Appear).

[13] Andre Schiper and Aleta Ricciardi. Virtually-synchronous communication based on a weak
failure suspector. In Digest of Papers, The 23th International Symposium on Fault-Tolerant Com-
puting, pages 534–543, Toulouse, France, June 1993. IEEE.

[14] F. B. Schneider. The state machine approach: a tutorial. In Proceedings of the Workshop on
Fault-tolerant Distributed Computing, Lecture Notes in Computer Science. Springer-Verlag,
1988.

6


