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Abstract

Migrating a monolith application into a microservices architecture can benefit from automation methods,

which speed up the migration and improve the decomposition results. One of the current approaches

that guide software architects on the migration is to group monolith domain entities into microservices,

using the sequences of accesses of the monolith functionalities to the domain entities. In this paper,

we enrich the sequence of accesses solution by applying code vectorization to the monolith, using the

Code2Vec neural network model. In the related work, we go through an evolution of the lexical analy-

sis for automating monolith decompositions, from code tokenization approaches to the use of machine

learning models. We apply Code2Vec to vectorize the monolith functionalities. We propose two strate-

gies to represent a functionality, one by aggregating its call graph methods vectors, and the other by

extending the sequence of accesses approach with vectorization of the accessed entities. To evaluate

these strategies, we compare the proposed strategies with the sequence of accesses strategy, and an

existing approach that use class vectorization. We run all these strategies over a large set of codebases,

and then compare the results of their decompositions in terms of cohesion, coupling, and complexity.
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Migration
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Resumo

A migração de uma aplicação monólita para uma arquitetura de microserviços pode beneficiar bastante

da sua automatização, acelerando a migração e melhorando os resultados da decomposição. Uma das

abordagens atuais para ajudar os arquitetos de software a realizar a migração consiste em agrupar

as entidades de domı́nio do monólito para o decompor em micro-serviços, utilizando as sequências

de acessos às entidades do domı́nio pelas funcionalidades do monólito. Neste trabalho, enriquece-

mos a solução da sequência de acessos utilizando uma análise lexical do código monólito baseada

na vetorização do código utilizando o modelo de rede neural Code2Vec. No trabalho relacionado, de-

screvemos a evolução da análise léxica para a automatização das decomposições monolı́ticas, desde

abordagens que utilizam apeans os tokens presentes no código até à utilização de modelos de apren-

dizagem de máquina. O Code2Vec é utilizado para vectorizar as funcionalidades do monólito, de modo a

que a distância entre esses vectores possa ser utilizada para identificar monólitos. São propostas duas

estratégias para representar uma funcionalidade, uma agregando os vetores dos métodos utilizados na

sua execução, e a outra alargando a abordagem de sequência de acessos com entidades vetorizadas.

Para avaliar estas estratégias, comparamos as estratégias propostas com a estratégia de sequência

de acessos, e uma abordagem de decomposição com a perspetiva de classes que também utiliza o

Code2Vec. Executamos todas estas estratégias sobre um grande conjunto de repositórios, e depois

comparamos os resultados das suas decomposições em termos de coesão, coupling, e complexidade.

Palavras Chave

Monólito; Microserviços; Identificação de Microserviços, Análise Estática; Apendizagem Máquina; Migração

de Arquitetura
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As microservices architectures prove their value over monoliths, an increasing number of applications

are decomposing their architecture into microservices, which provides significant benefits in terms of

scalability and maintainability.

Despite these advantages, and depending on the size and complexity of a codebase, this migration

process can become very complex and expensive, making its automation a great option to save time

and effort.

1.1 Context

Abdellatif et al. [2] present, in a survey on the modernization approaches of legacy systems, several

migration strategies are classified by their inputs, processes, and outputs. These approaches work on a

codebase’s model obtained by applying collection tools, which are static if they do not require the system

execution, or dynamic otherwise.

However, according to this study, it can be observed that the majority of the approaches for a system

migration perform a static analysis of the source code, followed by a clustering algorithm in conjunction

with similarity metrics that differ depending on the strategy.

In what concerns the collection part, the static analysis requires an effort that is not generalizable,

because it depends on the particular programming languages and frameworks used in the monolith

implementation.

1.2 Problem

The goal of this paper is to study whether an approach that does not require a complex data collection

can achieve good decompositions. This would remove some bottlenecks of previous work since the

collector wouldn’t be restricted to a particular programming language, web development stack, and

object-relational mapper.

This approach is inspired by Al-Debagy and Martinek’s work [3], which analyze the monolith code

like a Natural Language Processing problem (Natural Language Processor (NLP)). They use a neu-

ral network model called Code2Vec for microservices identification. This model takes advantage of a

method abstract syntax tree (Abstract Syntax Tree (AST)) and the lexical interpretation of its tokens to

calculate a numerical vector, representing as much information about that method as possible. With this

tool, they generate vectors associated with the monolith codebase classes and measure the quality of

the decomposition in terms of cohesion and coupling metrics.

On the other hand, in our previous work [4], the monolith codebase analysis is done from a perspec-

tive of the monolith functionalities, and the generation of a decomposition that minimizes the number of

3



distributed transactions that are required to implement a functionality. The results of this approach are

measured in terms of the transactional complexity of the candidate decompositions.

1.3 Research Questions and Contributions

In this paper, we leverage on [3, 4], by integrating their perspective to verify, using a larger number of

codebases, whether:

1. The use of Code2Vec with the functionality perspective provides better results than sequences of

accesses in [4];

2. The application of the functionality perspective provides better results than Al-Debagy and Mar-

tinek [3];

3. The input parameters of the proposed strategies impact the results of the evaluation metrics.

The proposed solution starts with a Data Collection phase, where a new collector is used to extract

all the methods of a codebase, along with all their information (package, class, type, source code, and

method calls). During this phase, the Code2Vec model is used to generate each method’s respective

vector. After, we test different approaches to the extracted vectors in order to derive the functionalities

vectors.

For evaluation, we apply the different strategies to a large set of codebases, and then compare the

results using cohesion, coupling, and complexity metrics.

1.4 Organization of the Document

After this section, Chapter 2 discusses work related to the application of machine learning techniques

in software migration, followed by Chapter 3 which explains the proposed solutions to improve the de-

composition process, and Chapter 4 with the implementation process and the overall architecture of

the solution. Chapter 5 evaluates and compares the new approaches with previous work, and finally,

Chapter 6 consists of the conclusions of this work.
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Since the emergence of microservices architectures, migrating monoliths to these architectures has

been an increasingly active topic [2].

There are approaches [4–6] that use the monolith functionalities sequences of accesses to the

monolith domain entities to feed an aggregation algorithm that proposes candidate decomposition for

microservices. These approaches can use static analysis of the monolith code, e.g. [4], or dynamic

execution of the monolith to collect the sequences of accesses. In [7] it is compared the use of static

and dynamic collection in several monolith systems. They conclude that, while in static analysis the

data collection needs to be adapted to each programming language or framework, which requires tool

adaption effort for each new programming language of full-stack technology, in a dynamic collection of

data shown to have worse coverage, though generating a huge amount of data. Based on these results,

our research intends to explore the use of lexical analysis, a form of static analysis that requires less

effort because it is more language and technology independent.

On the other hand, several approaches for the identification of microservices and other usecases for

code aggregation use lexical analysis.

Hammad and Banat [8] propose a technique that utilizes the K-Means clustering algorithm [9] to

group a set of classes into packages, where the similarity measure presented consists of how many

relevant tokens two classes have in common.

Their methodology consists of the following phases:

1. Tokenization: Where all tokens are extracted based on the operators of the programming lan-

guage.

2. Extraction of Identifiers: Filter reserved words (get, set, i, j, etc.), digits, and operators to keep

only the relevant tokens such as the names of used libraries, attributes, variables, and methods.

3. Generation of Term Matrix: Generate a matrix of Token / Class, in which the cell value depends

on the existence of the token (1 if exists else 0).

4. Clustering: K-Means clustering with k set to 5 where the distance is the percentage of tokens the

classes have in common with each other.

The results of this method are related to the size of each package, packages with a large number

of classes have better chances to be automatically grouped, while small packages are generally poorly

grouped, also this approach didn’t achieve good results in terms of modularity, because the tokens must

be identical in order to find a similarity between two parts of the code, which ignores all words that belong

to the same semantic or lexical field.

Mazlami et al. [10] present three formal coupling strategies to generate a weighted graph from the

meta-information of a monolithic codebase.

7



Their approach starts by extracting all the class files that constitute the monolith, the developers’

team, and the history of modifications (commits) to the project from the version control system used to

implement the given codebase.

Then, the extracted information is used to build a graph where the vertices represent classes, and

the edges result from a weight function. They present three different weight functions, where each one

is a different strategy to represent how strong the coupling between the two classes is.

1. Logical Coupling Strategy: Consists of assigning a weight of one to edges between classes that

belong to the same modification, or otherwise a weight of zero.

2. Semantic Coupling Strategy: Couples classes that contain the same tokens, and to each edge

assign a weight that depends on how many tokens they have in common and their frequency.

3. Contributor Coupling Strategy: The weight of each edge is determined by the developers who

modified the two classes that are connected by that edge.

Finally, the generated graph is cut into subgraphs using the Minimum Spanning Tree (Minimum Span-

ning Tree (MST)) clustering algorithm, where each one of them is a set of classes that represent a

microservice.

The Semantic Coupling Strategy follows the same logic of the previously mentioned approach [8],

based on coupling two classes containing the same tokens but considering each one’s frequency. Al-

though this strategy presents a worse execution time when compared with their other approaches, this

one show better results in what concerns the team size reduction and the average domain redundancy.

Brito et al. [11] use topic modeling to identify services according to domain terms (words with higher

probabilities indicate a possible good topic).

In the first part of their approach, all the relevant tokens and structural dependencies are extracted

from the Abstract Syntax Tree of the Monolith source code. They also refer that this step could be easier

with a pure Natural Language Processor (NLP), but the results would be worse.

Next, they use Latent Dirichlet Allocation (LDA), a generative probabilistic unsupervised model, to

categorize documents by topics. In this context, a document represents a class as a collection of words,

and these words are the respective lexical items that compose variables and methods names used in

each class source file.

Then, they create an edge-weighted graph G by combining the structural dependencies and topic

distribution. The vertices of G correspond to each class/module, and each edge shows how strong the

association is based on the topic distribution.

Finally, the Louvain clustering algorithm is used to group the classes/modules in order to define the

microservices.

8



This topic modeling approach is also agnostic of the development stack, but the results depend on an

optimal lexical token extraction, using specific parsers for each language to extract and process the ASTs

as input to the model, which means increasing its complexity. As a result of their work, the model shows

good cohesion values of the identified microservices with the trade-off of generating a high number of

clusters in order to achieve good values in a metric that evaluates whether microservices follow the

Single Responsibility principle [12].

Nowadays, there are not many approaches besides clustering when it comes to machine learning

techniques to decompose monolith applications into microservices. However, the use of NLPs has been

increasing due to their significant progress in performing lexical analyses, making the Data Collection

phase easier and more generic.

Ma et al. [13] propose a solution based on Word2Vec [14], a widely-used machine learning method

in natural language processing, to match existing microservices to new requirements. Their approach

only works for applications where scenarios are written in a common language describing the features

of the target system and that already follow a microservices architecture since their goal is to discover

where to place new requirements.

During the data collection phase, they gather and preprocess the OpenAPI Specifications (OAS 1)

and the documents containing the scenarios written in Gherkin syntax. After some data preparation

techniques, the pre-trained Word2Vec model is used to construct the corresponding BDD vectors of

each scenario.

These vectors are then used to calculate the similarity between scenarios and each microservice. If

the similarity score is bigger than a given threshold, the respective microservice is qualified as one of the

candidates for that requirement. And finally, these candidates are arranged according to their scores.

Leveraging on the Word2Vec [14] work, Alon et al. [1] created Code2Vec, a neural network model

trained to represent methods as fixed-length numerical vectors, also called code embeddings.

Al-Debagy and Martinek [3] propose an approach to decompose a monolith application into microser-

vices using Code2Vec [1] to extract the methods’ code embeddings.

First, they extract all the methods, and the respective code, from the monolith application and convert

them into code embeddings, snippets of code characterized as a vector-based representation, using the

Code2Vec model.

Using these vectors, they define a class embedding as the aggregation of its methods’ embeddings.

After testing, they found that the mean is the most suitable aggregation function to define a class em-

bedding.

Finally, they have each class represented as a vector and by using a clustering algorithm they identify

the microservices candidates, a group of semantically similar classes together.

1https://swagger.io/
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The results of this novel approach show high cohesion values since all the semantically similar

classes are grouped in a microservice, making this solution achieve even better results than the other

approaches considered in their evaluation.

Overall, although there is some work on the use of Code2Vec for the identification of microservices

in a monolith, it does not follow an approach where the data collected from the monolith is based on

the functionalities accesses to domain entities. Additionally, there is a lack of studies that compare the

approaches for a large number of codebases, using different quality metrics.

There are other approaches that associate Machine Learning (ML) techniques to the logs of the

monolith execution. Taibi and Systä [15] approach the decomposition problem based on runtime be-

havior instead of static dependencies, identifying microservices candidates based on process mining

performed on log files collected with Elastic search2. These log files record the user activities conducted

from the user interface, the access to any system entry point, and information about each class and

method visited. With this approach, not only does it help the architect to obtain decompositions with

a low level of coupling, but it can also identify which services are used the most, a piece of important

information for the decomposition process.

2https://www.elastic.co/
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After keeping up with both types of code analysis (static and dynamic) and exploring machine learn-

ing techniques to automate the monolith decomposition process, we choose to follow a static and lexical

analysis recurring to a machine learning model (Code2Vec [1]) that vectorizes code snippets. With this

model, we apply different similarity metrics to cluster domain entities and functionalities based on their

respective vectors. The distance between these vectors represents how close two pieces of code are

lexically and semantically.

3.1 Code2Vec

Code2Vec [1] is a neural network model trained to represent methods as fixed-length numerical vec-

tors, also called code embeddings. In machine learning, an embedding is a low-dimensional vector

that represents high-dimensional data preserving the most information possible. Although the model is

designed for method naming, the learned code embeddings can be used for several other applications.

The first stage of Code2Vec consists of transforming a code snippet into abstract syntax tree (AST)

paths since it improves scalability while training the model avoiding the costs of learning the language

syntax itself.

Figure 3.1: Extraction of the AST paths from Code2Vec paper [1] example.

Following the extraction of the AST paths (Figure 3.1), each path is mapped into a three-value tuple

composed of the path’s start node, intermediate expressions, and the final node. Then, each part of the

tuple is converted to a real-valued representation, creating a three-dimension numerical vector known

as a context vector acting as input to the path-attention network.

A neural attention network architecture is used to overcome the data sparsity problem of similar meth-

ods having different ASTs paths. With this attention mechanism, the model also learns the importance

of each path, applying higher weights to the most important ones.

By applying the learned weights and the hyperbolic tangent function on the input vectors (Figure 3.2)

the code embedding is computed using the attention weights to calculate a weighted average of all the
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Figure 3.2: Path context vector representation from Code2Vec paper [1].

combined context vectors.

3.2 Data Collection

The first step of this approach consists of extracting all the necessary information from the monolith

codebase and preparing it. This is done using the JavaParser library1, which is a popular static analysis

tool used to parse and modify java code by generating an interactive abstract syntax tree and providing

a symbol resolution module. JavaParser also provides a type resolution module (symbol-solver) that can

combine different type solvers to increase the capability of solving complex references like superclass

methods.

The relevant type solvers for this work are the JavaParserTypeSolver, which given the source folder

of the codebase, looks for the java files inferring its types and packages, and the ReflectionTypeSolver,

which recognizes the Java language base types like java.lang.Object. There is also a JarTypeSolver

that can be useful for codebases with embedded jar modules.

For the data collection, we explore all the codebase files, recurring to the JavaParser type solvers.

For each java file, our parser starts by identifying the package, the class/interface name, the annotations,

and all the present methods as well as checking if the class extends another.

Every time the parser founds a new method, its respective body is converted into a code embedding

by the Code2Vec model, which we save along with the method signature. Also, inside each method body,

the parser looks for all methods invocations’ and tries to solve their signature using the type solvers. If

1https://javaparser.org/
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the invoked method belongs to external libraries of the codebase, those invocations are discarded.

Since the evaluation is applied to monoliths implemented using Spring-Boot and an Object-Relational

Mapper (Object-Relational Mapper (ORM)) each code embedding is characterized in terms of Spring-

Boot architectural elements: Controller, Entity, Service, Repository, and Configuration classes. This

categorization is used to verify whether some parts of the monolith code can provide more accurate

results, and to identify the starting point of each functionality (Controller) and what are the monolith

persistent domain entities (Entity).

3.3 Functionality Vectorization Strategies

We propose various functionality vectorization strategies to represent a functionality as an embedding by

using the functionality call graph, or the functionality sequence of accesses to domain entities. The pur-

pose of these strategies is to represent each microservice as a set of functionalities and thus understand

which functionalities should be implemented in the same microservice.

Figure 3.3: Extraction of a functionality call graph vector

Figure 3.3 presents the Functionality Vectorization by Call Graph (Functionality Vectorization by

Call Graph (FVCG)) strategy, which represents each functionality as the call graph of its methods invo-

cations, where the first method is the (Spring-Boot) controller where the functionality starts executing.

By traversing a method call graph it is possible to reach loops, so to overcome this problem, a maximum

depth parameter on the call graph is considered to compute the vector.

After discovering all the methods and the respective code embeddings, represented in Figure 3.3

by the mv vectors, that belong to the call graph of a functionality for a given depth, we apply the mean

weighted function to those embeddings in order to achieve the functionality representing embedding.
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The method annotations are used to infer each method type.

The following weights for method types are considered:

• wc: The controllers weight;

• ws: The services weight;

• we: The entities weight;

• wi: The remaining methods (e.g., auxiliary or unclassified methods) weight, which will be referred

as intermediate.

The weights are positive values that should sum 100 (wc + ws + we + wi = 100).

cgv(f) =

∑
mv∈f.cg(d).C wc ×mv +

∑
mv∈f.cg(d).S ws ×mv +

∑
mv∈f.cg(d).I wi ×mv +

∑
mv∈f.cg(d).E we ×mv∑

mv∈f.cg(d).C wc +
∑

mv∈f.cg(d).S ws +
∑

mv∈f.cg(d).I wi +
∑

mv∈f.cg(d).E we

(3.1)

The vector is computed according to equation 3.1, where f.cg(d) denotes the functionality (f ) call

graph, generated with depth d, due to possible recursive invocations, and .C, .S, .I, .E, denote, the

call graph nodes that are of type, respectively, controller, service, intermediate and entity. Note that,

additionally to the weight parameters, d parameter on the call graph depth determines the number of

method vectors to consider. The purpose of these parameters is to study their impact on the quality of

the result, and how they affect the evaluation metrics results. This study will help to understand the level

of computational effort required in the construction of the vectors. For instance, if vectors computed

using low depth provide good results, it will significantly reduce the computational effort. On the other

hand, if the weights are irrelevant, the data collector will not need to recognize the type of each method,

being a positive aspect to make the collector framework and architecture agnostic.

Figure 3.4: Extraction of a functionality sequence of accesses vector

Figure 3.4 presents the Functionality Vectorization by Sequences of Accesses (Functionality

Vectorization by Sequences of Accesses (FVSA)) strategy, which represents each functionality as the

sequence of its accesses to domain entities, where read accesses are distinguished from write ac-

cesses. It uses the sequences of accesses done by a functionality, and associates to each access the

embedded vector of the accesses entity, ev. The entity embedded vector is computed by first identifying

all the methods related to each entity, and then calculating the mean of that method’s embeddings.
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In order to represent entities as the mean of its methods’ embeddings, the empty classes wouldn’t

have any embedding, but actually, this type of classes extends some other class or use annotations to

generate their methods in compile time. This problem makes this solution not compatible with libraries

like Lombok2. To mitigate this problem, we include inheritance in each class embedding by using all the

top hierarchy classes’ methods in the aggregation function.

sav(f) =

∑
ev∈f.sa.R wr × ev +

∑
ev∈f.sa.W ww × ev∑

ev∈f.sa.R wr +
∑

ev∈f.sa.W ww
(3.2)

Having functionality sequences of accesses and the entities’ embeddings, the functionality embed-

ding is the weighted average of the entities’ embeddings of all the entities possibly accessed during the

functionality execution, as presented in equation 3.2. In the equation, the entities read by functionality

f in its sequence of accesses are denoted by f.sa.R, while f.sa.W denotes the entities written. The

parameters wr and ww, represent, respectively, the weight associated with the type of access. The

weight values are positive and should sum to 100. Note that, as in the previous vectorization, the pa-

rameters will be used to assess the impact of distinguishing reads from write accesses in the quality of

the decomposition.

3.4 Strategy Comparison

The strategy by Al-Debagy and Martinek [3] represents a microservice as a set of classes. They use

class vectorization (Class Vectorization (CV)), where each class has an embedding calculated as the

mean of its methods embeddings, a method already applied in the FVSA strategy.

Nevertheless, there are approaches where microservices are represented by monolith domain enti-

ties, instead of their classes, to highlight that the main aspect of a microservice is the independence of

its database from other microservices databases. Therefore, we use another strategy adapted from the

CV strategy in which, rather than representing a microservice as a set of classes, it is represented as a

set of entities. The Entity Vectorization (Entity Vectorization (EV)) strategy only considers the classes

in CV strategy which are entities.

There are four similarity measures based on the sequences of access [16]. They aggregate the

monolith domain entities which are accessed by the same functionalities. The main idea behind these

measures is that in a microservices architecture it is necessary to minimize the number of distributed

transactions. Therefore, by having all the domain entities that are accessed by a functionality in the

same cluster, the functionality can execute as a single transaction. These similarity measures represent

the distance between two domain entities by using the sequences of accesses strategy (Sequences

2https://projectlombok.org/
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of Accesses (SA)) of the functionalities that access them. Therefore, each of the similarity measures

between entities ei and ej are defined as the following:

1. Access: Given a set of functionalities that access, both read or write, entity ei, is the percentage

of those who also access entity ej .

2. Read : Given a set of functionalities that read entity ei, is the percentage of those who also read

entity ej .

3. Write: Given a set of functionalities that write entity ei, is the percentage of those who also write

entity ej .

4. Sequence: The percentage of the number of consecutive accesses to ei and ej entities over the

maximum number of consecutive accesses for two domain entities.

Note that these measures, except the sequence, are not symmetric.

The SA strategy uses the four similarity measures by assigning weights to each one of them, such

that their sum should be 100.

The strategies produce three different types of decompositions. SA and EV strategies generate

clusters of entities, FVCG and FVSA strategies clusters of functionalities, and the CV strategy clusters

of classes. Therefore, to compare the results, it is necessary to convert a decomposition type into the

other. Since the metrics to be used in the evaluation are defined for decompositions of clusters of domain

entities, the decompositions are converted into decompositions with clusters of entities.

To convert a cluster of classes into an entity’s clusters, it is only necessary to remove all the non-entity

classes from the clusters, which can lead to empty clusters and so we discard those clusters.

The functionalities clusters are converted into clusters of entities by counting the functionalities entity

accesses present in each cluster. This is, for each domain entity’s access by a functionality of a given

cluster, the probability of that entity belonging to that respective cluster increases. Then, for each domain

entity, we look for the cluster that accesses it the most to assign the entity to that respective cluster.

Afterward, since this conversion may also result in empty clusters, those are discarded.
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4.1 Mono2Micro Structure

The proposed solution was implemented on top of the Mono2Micro tool architecture, which is composed

of a set of static and dynamic collectors, a user-friendly interface, a Spring Boot1 Server, and a Fast

API2 Server.

The collectors are responsible for collecting all the necessary data, either with static or dynamic

analysis, from a given codebase used to identify possible decompositions. Then, the collected data is

used to register a new codebase in the system, where this step is already done in the user interface,

which requests the Spring Boot Server to persist the codebase in the file system.

Once a codebase is created it’s possible to create a dendrogram that represents the distances be-

tween the monolith elements to be considered in the decomposition. For this operation, the Spring Boot

Server connects with the Fast API Server to request the creation of the dendrogram.

With the codebase represented as a dendrogram, it becomes possible to cut it in order to generate a

candidate decomposition of the codebase into microservices, where each microservice is represented

as a set of entities.

For analyzing each decomposition, the user interface provides functionalities to visualize and manip-

ulate that data. It is possible to visualize each decomposition from different views, retrieve the metrics

values of the decomposition under analysis, and perform several operations over the decomposition, like

merging, splitting, or transferring entities between clusters.

The Mono2Micro tool also provides a microservice analysis feature to compare two different can-

didate decompositions, a refactorization tool that automatically computes microservice saga orchestra-

tions, and an analyzer module that can be used to explore all the variable parameters from a strategy in

order to find which parameters result in better decompositions.

4.2 Architecture Design

Figure 4.1 represents a partial architecture of the Mono2Micro tool with only the relevant components

for this work and the updates that had to be made.

To integrate the proposed solution into the Mono2Micro tool, it was necessary to create a new col-

lector called javaparser-callgraph, to perform a static analysis over a given codebase. In addition to this

collector, the spoon-callgraph collector present in the tool was also used to extract the sequences of

accesses to domain entities from a codebase.

The proposed strategies logic was implemented in the Spring Boot Server, and it was also necessary

to extend the Fast API Server because the new strategies generate functionalities’ clusters instead of

1https://spring.io/
2https://fastapi.tiangolo.com/
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Figure 4.1: Partial architecture of Mono2Micro with the relevant components for this work.

entities’ clusters.

Since the Code2Vec model has a similar technology stack as the Fast API Server, the programming

language, and some libraries, it was decided to put the model into this server, exposing its functionality

as a new endpoint.

4.2.1 Data Extraction

The first step of the implementation is to extract all the information from a codebase, necessary to

execute the decomposition strategies. For each codebase, it is necessary to generate two files, one with

the sequences of accesses to the domain entities, and another with all the categorized methods of the

codebase and their embeddings.

The sequences of accesses to the entities are extracted through the spoon-callgraph, an existing

collector in the Mono2Micro tool developed in previous work. To extract the code embeddings it was

necessary to create a new parser, called javaparser-callgraph.

The javaparser-callgraph represents each codebase as a set of methods (Figure 4.2), grouped by

packages and classes, that are represented with their signature, which contains the name of the method

and its parameters. Besides the signature, each method is also represented by its type, a list of all

methods invoked there, and a numerical vector generated by the Code2Vec model to represent that
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Figure 4.2: Representation of a codebase during the methods extraction with javaparser-callgraph

method.

Given the path for the codebase to analyze, the collector starts to search every file with the .java

extension. Then, for each file, using the StaticJavaParser of the JavaParser library, the collector

searches for the package, and the class declarations to retrieve the package name, the class name, the

class annotations, and the extended superclass if any.

With the class annotations from the Spring Framework, it’s possible to infer the class type, which can

be cataloged as Controller, Service, Entity, Repository, or Configuration.

Next, the collector looks for methods and constructors declarations present in the class, again using

the StaticJavaParser, to retrieve each method signature, the body, the method annotations, and the

method call expressions.

The method annotations are used to infer if the presented method is a Controller method, by checking

if the method has any of the Spring Framework Controller annotations.

The body of the methods is used to invoke the Code2Vec model service present in the Fast API

Server, which generates the respective code vector for that code snippet.

Finally, to infer the methods signature, class, and package of the invoked methods through the

method call expressions, it’s necessary to use the JavaParser library type solvers to infer from each

class and package the invoked methods belong to. The chosen type solver for this was the CombinedTypeSolver,

which can aggregate multiple type solvers, making it possible to use the ReflectionTypeSolver, which

uses the java reflection properties, and the JavaParserTypeSolver, which operates through the AST of

the codebase, together to make a better type resolution.

For the constructor methods, the process was practically the same, with just the nuance that the

Code2Vec doesn’t accept constructor-like methods. To overcome this issue, the constructors were

converted into regular methods by adding the void data type before the constructor name and replacing

the super token inside the body with just sup, such that it can be accepted by the Code2Vec model java

parser.
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4.2.2 Code2Vec Integration

To integrate the Code2Vec model with the Fast API server, the source code available on their website3

was downloaded, from which it was necessary to adapt the InteractivePredictor class, which was

prepared to run the model through the terminal input.

Additionally, it was created a controller file exposing the /predict endpoint via the Fast API router

and then registering the new route on the main file of the Fast API server. This endpoint receives the

body of the method to be vectorized and returns the code vector extracted from the InteractivePredictor

class prediction results.

Also, inside the Code2Vec source code, there is an Extractor class, which is responsible for parsing

the given code snippet into the AST paths, which can be changed to support other language parsers.

Following the instructions file of the Code2Vec repository, it’s possible to find a variety of trained

models ready to configure from which we need to choose and download. For this work, it was decided

to use the released trained model4 by the largest dataset, because this dataset contains a total of 9500

top-starred Java projects from GitHub and about 16 million examples of code snippets. The Code2Vec

also provides the possibility of downloading a dataset and training the model from scratch.

4.2.3 Codebase Manager

The Codebase Manager, which is located inside the Spring Boot Server, is responsible for the creation,

persistence, and management of all codebases related data inside the file system. The process of

creating a codebase consists of the user submission of the sequence of accesses, and the code em-

beddings files along with the name of the codebase. During this process, data from both submitted

files are matched to complement the code embeddings entities identification, since the spoon-callgraph

parser does a more detailed entity identification.

4.2.4 FVCG Strategy

To implement the FVCG strategy, it was first created a new service on the Spring Boot Server to generate

dendrograms of functionalities with this strategy similarity function. The service starts by loading the

selected codebase from the Codebase Manager and then generates all functionalities vectors from the

call graph methods.

To generate these vectors, the code embeddings are loaded from the codebase, and then the ser-

vice goes through every package and its classes looking for the methods identified as controllers, that

represent the starting point of each functionality, as can be seen in the attached function A.1.

3https://code2vec.org/
4https://code2vec.s3.amazonaws.com/model/java-large-released-model.tar.gz
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A recursive function A.2 was built to sum all the vectors from the controller’s callgraph multiplied by

the user requested weight parameters in order to compute the functionality vector from each controller.

The base case of the recursive function is when the depth achieves a value of zero, or when it

reaches a leave of the callgraph tree, and so there are no more call methods to analyze. Otherwise, the

function just keeps computing the invoked methods vectors and summing the used weights so that in the

end it is possible to divide the sum of all weighted vectors by the sum of the weights as in equation 3.1.

4.2.5 FVSA Strategy

To implement the FVSA strategy, it was also created a new service on the Spring Boot Server to generate

dendrograms of functionalities with this strategy similarity function. The service starts by loading the

selected codebase from the Codebase Manager and then generates all functionalities vectors from the

functionalities represented as a sequence of accesses, also called entities’ traces, as can be seen in the

attached function A.3.

To generate these vectors, the code embeddings are loaded from the codebase, and then the service

goes through every package looking for the entities’ classes. Every time an entity class is found, its

vectorization process begins (A.5), which consists of retrieving all the code vectors from the hierarchy

ascended classes’ methods and from the respective class methods, and then is calculated the mean

vector of the collected vectors to define the entity vector.

With all entity vectors computed, the service iterates over the sequence of accesses list, where each

sequence of accesses represents a functionality. Then, the accesses present in each sequence of

accesses are used to compute the respective functionality vector. Each access consists of the entity

that was accessed and the type of access (read or write). To calculate the vector of each functionality all

the vectors of the accessed entities are used, where each vector is multiplied by the requested weight

assigned through the type of access. Then, the weighted mean of these vectors is used to define the

functionality vector like in equation 3.2.

4.2.6 CV Strategy

To implement the CV strategy, a new service on the Spring Boot Server was created to generate den-

drograms of classes with this strategy similarity function. The service starts by loading the selected

codebase from the Codebase Manager and then generates all classes vectors by a class vectorization

process that relies on each class methods vectors, as can be seen in the attached function A.6.

To generate the class vectors, the code embeddings are loaded from the codebase, and then the

service goes through every package in order to vectorize all classes. For each class, the vectorization

process (A.5) uses the same vectorization function as the FVSA when vectorizing its entities. All the
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code vectors from the ascended hierarchy classes are grouped with the class methods from the class to

vectorize, and the mean of all of these vectors is calculated to represent the class vector.

4.2.7 EV Strategy

To implement the EV strategy, a new service on the Spring Boot Server was created to generate den-

drograms of entities with this strategy similarity function. The service starts by loading the selected

codebase from the Codebase Manager and then generates all entities vectors by the same class vec-

torization process as the CV strategy, as can be seen in the attached function A.7.

4.2.8 Dendrogram Creation

Figure 4.3: Example of a dendrogram created by the FVCG strategy over the quizzes-tutor5codebase.

After computing all functionality/classes/entities vectors, depending on the used strategy, these vec-

tors are written in a temporary file, and the Spring Boot Server requests the Fast API Server to create a

dendrogram 4.3 using the distance between the vectors as the similarity measure.

4.2.9 Decomposition Process

With the dendrogram generated, it is possible to experiment various cuts in order to generate possible

decompositions.

5https://quizzes-tutor.tecnico.ulisboa.pt/
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Figure 4.4: Cluster view example of a decomposition performed by cutting the previous dendrogram 4.3

When making a cut in the functionality dendrogram, functionality clusters are generated, but as the

Mono2Micro tool works with entity clusters, it is necessary to transform functionality clusters into entity

clusters.

This transformation process is done in the Fast API Server, where the sequences of accesses to

the entities of each functionality are used to identify for each entity which is the functionality that does

more accesses. To do so, the number of times each entity is accessed by each feature is calculated,

which then serves to assign that entity to the cluster where the functionality is located. Because of this

transformation process, some functionality clusters may become empty, when there is no entity assigned

to a cluster as shown in figure 4.4.

4.2.10 Analyzer

This module, present on the Spring Boot Server, has been modified to support all the strategies men-

tioned above, where it generates all the possible combinations of parameters for each one, and gen-

erates the respective dendrograms and decompositions using the Fast API Server. For each decom-

position generated, the metrics mentioned in the evaluation section 5 are calculated, which is done by

Spring Boot Server.
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To evaluate the research questions, we compare the Code2Vec decompositions generated using the

Code2Vec similarity measures built on the monolith functionalities with the decompositions generated

using sequences of access, as in [16], the decompositions generated using vectors for classes built

with Code2Vec, as in [3], and the decompositions that only consider vectors for entities, which is a

sub-category of the previous strategy.

5.1 Decomposition Generation

To evaluate the strategies it is necessary to generate a significant number of decompositions, varying

the number of clusters and the strategies weights. In terms of the number of clusters, for codebases

up to 10 entities, a maximum of 3 microservices are generated, between 10 and 20 a maximum of 5

microservices, and for more than 20 the maximum number of microservices is 10.

We start at a minimum of 3 microservices and generate all possible decompositions by varying each

strategy’s parameters using a step of one until reaching the maximum number of microservices. Since

the strategies that don’t represent a microservice by a set of entities may result in empty clusters, the

real number of clusters of the generated decompositions is smaller than the requested one. To overcome

this issue, we continue to increase the requested number of microservices and generate the respective

decompositions until we achieve one that results in a number of clusters bigger than the maximum value.

The number of decompositions generated for each strategy depends on the number of its parameters

since we explore all the possible combinations. For the weight parameters, we need to create all the

combinations where the sum of the weights equals 100, using intervals of 10. In the FVCG strategy, we

decided to vary the depth parameter from 1 to 6.

The Hierarchical Clustering algorithm is applied to the strategies vectors and distances, using the

euclidean distance. A dendrogram is generated, which is cut to generate decompositions with different

numbers of clusters. Since the hierarchical clustering algorithm supports different types of linkage crite-

ria to determine the distances of the clusters, they are used as variations in the evaluation. The three

criteria considered are:

• Single-linkage clustering: Distance between the closest entities of the measured clusters.

• Complete-linkage clustering: Distance between the furthest entities of the measured clusters.

• Average-linkage clustering: Average of the distances between each entity of one cluster and the

entities of the other.

This linkage type parameter will also be varied during the generation of decompositions.
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5.2 Evaluation Metrics

Three metrics are used to evaluate the quality of a generated decomposition: coupling, cohesion, and

complexity.

5.2.1 Cohesion Metric

The cohesion measures the single responsibility principle [12]. The cohesion of a decomposition is

computed using the cohesion of each one of its clusters. The cluster cohesion is percentage of the

cluster’s entities accessed by the respective functionalities. Therefore, a cluster has high cohesion if the

accesses done by functionalities interact with all the entities in the cluster. And so, it has low cohesion

if each functionality, that access the cluster, only accesses a small subset of the cluster entities. In a

formal notation:

cohesion(c) =

∑
f∈funct(c)

#{e∈c.entities:e∈Gf .accesses.entities}
#c.entities

#funct(c)
(5.1)

where the functionalities of the cluster c are denoted as funct(c), the cluster’s entities are denoted

as c.entities, and Gf .accesses.entities represents the entities accessed by feature f , extracted from

the feature call graph Gf . Then, the overall decomposition cohesion is the aggregation of all clusters’

cohesions using the mean function.

5.2.2 Coupling Metric

The coupling reflects the interdependence between microservices. This is measured by the percentage

of entities a cluster has to know of another. A cluster knows the entity of another cluster if there is a

functionality that immediately after accessing an entity in the first cluster accesses an entity in the second

cluster. Note that coupling is not a symmetric property because it depends on the order of accesses.

On the other hand, it differs from cohesion because only the pairs of accesses where two clusters are

involved are relevant. The coupling of a decomposition is the average of the coupling between all pairs of

the decomposition cluster. The previous work defines how coupled two clusters ci and cj are, using the

percentage of the cj cluster’s entities that ci needs to access to perform its features, which is denoted

as:

coupling(ci, cj) =
#{e ∈ cj : ∃ri∈RI(ci,cj)e = ri[2].e}

#cj .e
(5.2)

with RI(ci, cj) being the remote invocations from ci to cj .

The resulting coupling value for each cluster c is the average of the coupling itself with every other

cluster c′:
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coupling(c) =

∑
c′∈D,c′ ̸=c coupling(c, c

′)

#(D.clusters)− 1
(5.3)

being D the system decomposition. And, the coupling of the decomposition consists on also the average

of all the clusters’ coupling values.

5.2.3 Complexity Metric

Predict how much effort is present in each feature migration. The migrated features become a collection

of local transactions (LT ) within a cluster and may require remote invocations (RI) to other clusters,

resulting in distributed transactions.

The complexity of a feature f is defined as:

complexity(f,D) =
∑

lt∈partition(Gf ,D)

complexity(lt,D) (5.4)

where the partition(Gf , D) returns a set of local transactions LT and remote invocations RI given the

call graph Gf of the feature and a decomposition D.

Complexity measures the effort required to migrate a functionality from a monolith to a microservices

architecture [16]. This complexity results from the need to introduce a set of distributed transactions to

implement the functionality. Since the distributed transactions execution needs to be implemented using

eventual consistency, due to scalability [17], it is necessary to change the business logic to consider

intermediate states of the domain entities, which is a consequence of the lack of isolation. Therefore,

the complexity depends on the number of distributed transactions required to implement a functionality,

and the number of intermediate states they introduce. The former is calculated by how many times the

functionality sequence of accesses is split between clusters, each split is a distributed transaction. The

latter is calculated by identifying the read and write accesses done by the distributed transactions. The

complexity of a decomposition is the sum of the decomposition of the complexity of the functionalities.

The complexity of a local transaction lt is determined by the number of distributed functionalities

that access relevant domain entities with the inverted access mode made by the local transaction. The

inverted access mode of a read is a write access and vice versa.

complexity(lt,D) = #∪ai∈prune(lt)

{fi ̸= lt.f : dist(fi, D) ∧ a−1
i ∈ prune(fi, D)}

(5.5)

given the decomposition D, a function dist(f,D) that identifies distributed functionalities, ai−1 denotes

the inverted access mode, and a prune function that filters the relevant domain accesses by removing
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repeated accesses, and read accesses that happen after a write within the same local transaction.

5.2.4 Combined Metric

An additional metric is built using the three metrics to evaluate which decompositions have a better bal-

ance between them, as presented in equation 5.6. Note that, the complexity is divided by the maximum

complexity of all decomposition to obtain a value between 0 and 1, this is called uniform complexity.

combined(d) =
1 + complexity(d)

max complexity(D) + coupling(d)− cohesion(d)

3
(5.6)

5.3 Codebase Sample

To gather the codebases sample for this experiment, a list of GitHub repositories that depend on the

Spring Data JPA library1 was filtered to exclude codebases with less than five domain entities and

controller classes. After that, the remaining codebases were sorted by the number of GitHub stars and

manually selected from the top in order to keep the sample quite diverse in terms of codebase sizes.

From these codebases we still had to exclude a few due to the dependence on libraries that generate

methods from annotations on compile time, making these methods not available for a static analysis.

The selection process led to a relatively large number of monolith codebases (85), with an average

number of code lines around 25 thousand and a standard deviation of 33 thousand lines of code, indicat-

ing a high variation of the codebases size. Also, it is possible to observe the distribution of the number

of controllers and domain entities in figure 5.1.

5.4 Statistical Analysis

To validate the research questions we start to compare the strategies for the cohesion, coupling, com-

plexity, and combined metrics, using decompositions for the 85 codebases chosen for different numbers

of clusters. To measure whether the differences in the results of the strategies are statistically significant,

we apply Welch’s t-test [18].

Welch’s t-test [18] is a two-sample location test used in statistics to test the hypothesis that two

populations have equal means and it is more reliable when the two samples have unequal variances

and possibly unequal sample sizes, which is the case. The hypotheses of the Welch’s t-test are the

following:

• H0: µ1 = µ2, the samples have equal means;

1https://github.com/spring-projects/spring-data-jpa/network/dependents

34

https://github.com/spring-projects/spring-data-jpa/network/dependents


Figure 5.1: Representation of the 85 codebases used in the evaluation.

• H1: µ1 ̸= µ2, the samples have distinct means.

To reject or accept the presented null hypotheses, we use a significance level of 0.05.

In addition, we also analyze each proposed strategy individually to study the impact of the strategy

parameters on metrics values. To do so, we run regressions for each type of parameter applying the

ordinary least squares (Ordinary Least Squares (OLS)) method to choose the regression parameters,

βi and cons of the equation 5.7.

metric(d) =
∑

i∈parameters

βi × wi + cons (5.7)

To test these regressions, we also use a significance level of 0.05 to accept or reject the following

hypotheses:

• H0: βi = 0 ∀i ∈ ]0,#parameters], the evaluation metrics does not have any relation with the

parameters under analysis;

• H1: βi ̸= 0 ∃i ∈ ]0,#parameters], the evaluation metrics are at least affected by one of the

parameters under analysis.
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For the feature vectorization strategies, since they use parameter weights, it will be necessary to

study the problem of multicollinearity, since the weights depend on each other by adding up to 100. To

overcome this problem, we repeat the regression analysis without one of the dependent parameters,

and by doing this for each parameter we can retrieve better coefficient values. During the evaluation,

the parameters of the clustering algorithm will also be considered as parameters of the strategies to

understand the impact of the linkage criteria.

5.5 Results

To answer the research questions, we went through all the generated decompositions to calculate the

respective values for cohesion, coupling, complexity, and combined metrics. With these values, it’s pos-

sible to compare the strategies and look for any correlation between the proposed strategies’ parameters

and the metrics values. Figure 5.2 presents the results.

((a)) Uniform complexity ((b)) Coupling

((c)) Cohesion ((d)) Combined

Figure 5.2: Evaluation Metrics applied to the 85 codebases

Two strategies can be compared at the level of each metric alone, or in general through the combined
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metric. A good strategy generates decompositions with low values of coupling and complexity, but with

high values of cohesion. When comparing strategies with the combined metric, the best decompositions

are the ones with lower values because the metric itself uses the coupling, complexity, and symmetric

value of cohesion.

We start by comparing the results for strategies FVSA and FVCG. For complexity, the Welch’s t-test

rejects the hypothesis of having the same mean values except when the number of clusters is 9 and

10, and through Figure 5.2(a) it is possible to notice that most of the FVCG strategy values are most of

the times lower than those of the FVSA, since the median is lower. Thus, it can be concluded that the

decompositions generated by the FVCG strategy are in general less complex than those generated by

the FVSA strategy.

Considering coupling, the hypothesis of having the same median values in each number of clusters

is also rejected by Welch’s t-test. From Figure 5.2(b) it is possible to observe that the coupling values

for the FVCG strategy are lower than those of the FVSA strategy.

As for cohesion, (Figure 5.2(c)), the FVSA seems to obtain best results than FVCG since Welch’s

t-test rejects the hypothesis of having the same cohesion mean values and most of those results are

higher than the ones generated by the FVCG.

In addition to these metrics, it is interesting to analyze the combined metric in figure Figure 5.2(d)

that represents the balance between the previous ones. Welch’s t-test only accepts the hypothesis of

both strategies have the same mean when the number of clusters is 6 and 9, and as the values of the

FVCG strategies are lower than the ones of FVSA, the FVCG achieve the best-balanced results.

Table 5.1: Average number of decompositions and duration of each strategy when generating all decompositions
by permuting each strategy parameters

CV FVCG FVSA SA EV
#Decompositions Mean 71 131168 503 1514 17
Performance Time Mean (s) 62 2830 350 39 32

Since each strategy generated a different number of decompositions (table 5.1) derived from the

number of parameters and from the conversion of functionalities’ clusters to entities’ clusters, it was de-

cided to perform a second analysis in which only the best decompositions of each codebase are used for

every strategy and number of clusters. This way, the same number of decompositions are considered for

each strategy. Additionally, and as is shown in Table 5.1, the number of decompositions associated with

strategy FVCG is significantly larger, which has an impact on the performance. Therefore, it is relevant

to understand which parameters can be discarded, if any, to minimize the number of decompositions

that need to be generated.

By decreasing the number of decompositions, the results’ dispersion of the strategies that generated

a higher number of decompositions decreased substantially along with the number of outliers, as shown
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in Figure 5.3.

((a)) Uniform complexity ((b)) Coupling

((c)) Cohesion ((d)) Combined

Figure 5.3: Evaluation Metrics applied to the best decompositions of the 85 codebases for each metric

By using only the best decompositions for each codebase, the results of the functionality vectorization

strategies improved significantly. For complexity, Welch’s t-test accepts the hypothesis that they have the

same mean when the number of clusters is 3 and 5. Regarding cohesion, coupling, and the combined

metrics, the t-test continues to reject the hypothesis for any number of clusters. Overall, when looking at

figure 5.3, the FVCG strategy distinguishes itself from the FVSA by having better results for cohesion,

coupling, complexity, and so for the combined metric. Also, the FVCG strategy proves to be more

interesting because it does not require such an in-depth analysis of the code as the FVSA strategy, and

is more independent of the technology stack.
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5.5.1 Does the use of Code2Vec with the functionality perspective provides bet-

ter results than sequences of accesses?

To answer the first research question, the proposed strategies that rely on feature vectorization and

the Code2Vec model (FVSA, FVCG) are compared with the SA strategy, which clusters entities by

their access sequences. By comparing the FVSA strategy with SA, it will be possible to conclude the

impact of the Code2Vec model on the sequence of entity accesses. And the comparison of FVCG and

SA strategies will indicate if only the use of Code2Vec can achieve better results than a very detailed

analysis used in the SA strategy.

In terms of complexity, Welch’s t-test only accepts the hypothesis of two strategies having the same

mean values when comparing the FVSA and SA strategies and the number of clusters is 4 or 5. In all

other cases, including the FVCG strategy, as shown in Figure 5.3(a), most of the values of the proposed

strategies are lower than those of the SA strategy, which leads to the conclusion that using the Code2Vec

model with a functionality perspective generates less complex decompositions.

Regarding coupling, Figure 5.3(b) the FVSA and the SA strategy have very similar results which can

be validated with the results of Welch’s t-test, that accepts the hypothesis that the strategies have the

same average coupling values for every number of clusters except for 3 and 5. The FVCG strategy

obtains better results than the SA strategy since the Welch’s t-test rejects that both strategies have the

same mean for every number of clusters and the majority of the FVCG coupling results are lower than

the ones of the SA strategy.

When it comes to the cohesiveness of the proposed strategies 5.3(c), the values are better compared

to the SA strategy. Welch’s t-test rejects all the hypotheses that the FVCG and the FVSA strategies have

the same mean cohesion values when compared to the SA strategy. This implies that the decomposi-

tions generated by the Code2Vec proposed strategies have highly cohesive microservices.

Overall, when applying the combined metric (Figure 5.3(d)) to these strategies, the results of Welch’s

t-test also reject the hypothesis that the strategies have the same mean values for every comparison

between the proposed strategies (FVCG and FVSA) and the SA strategy. With these results, it’s possible

to conclude that the appliance of the Code2Vec model with a functionality perspective to the sequence

of accesses analysis improves the results, but when using just the functionalities vectorization without

the sequence of accesses it’s possible to achieve even better results.

5.5.2 Does the application of the functionality perspective provides better re-

sults than Al-Debagy and Martinek’s class perpective?

To answer the second research question, the proposed strategies (FVSA, FVCG) are compared with the

CV strategy, proposed by Al-Debagy and Martinek, and the EV strategy, which is an adaptation of the
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CV.

Calculating Welch’s t-test between the proposed strategies and the CV strategy it’s possible to reject

the hypothesis of having the same complexity, cohesion, coupling, and combined means for every num-

ber of clusters. These results show that these strategies are quite different as can be seen in figure 5.3

and that the results of the CV strategy are a lot worst for every metric than the ones of the FVCG and

FVSA strategies.

Figure 5.4: Class dendrogram of the quizzes-tutor codebase using the CV strategy.

The results of the CV strategy derive from clustering the vectorized classes, which leads to them

being grouped by the various class types (Domain entities, Service, Controller, Configuration) as it’s

possible to observe in figure 5.4. Thus, when class clusters are converted to entity clusters, most of the

domain entities are grouped in the same cluster leading to decompositions with several microservices

with only one entity.

Trying to avoid this behavior, the EV strategy was implemented, which only considers classes that

represent domain entities. But, this strategy ended up getting the same results as the CV strategy, since

Welch’s t-test accepts that it has the same average across all strategies and for all numbers of clusters,

which led to Welch’s t-test also rejecting the hypothesis that this strategy has the same means as the

proposed strategies across all metrics and for all numbers of clusters.
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This evaluation shows that the use of Code2Vec with a class perspective generates worse decom-

positions, since the class vectors are heavily influenced by each class type because of its respective

lexical tokens, but could be a good approach to cluster classes into packages to organize the code by

classes types like in [8].

5.5.3 Does the input parameters of the proposed strategies impact the results

of the evaluation metrics?

To answer the third research question we will analyze the parameters of each of the proposed strategies.

Starting with the FVCG strategy, there are six parameters to analyze, the maximum depth (d) the

call graph is explored, the four weights to control which method types are more relevant, and the linkage

type used in the clustering algorithm.

Figure 5.5: Regression of the depth parameter per the combined metric values.

Welch’s t-test between a depth of 1 and a depth of 2 shows that there is a significant difference

between the results presented in figure 5.5, and so depth 1 provides worse results than greater depths.

But, when calculating an OLS regression for the depths greater than 1, allows us to reject the hypotheses

that by increasing the depth more than 2 better results are obtained because the p-value is smaller than

the significance level.

Therefore, it’s impossible to conclude, for depths greater than 1, that any given depth is better than

another. Since smaller depths require less computation, it’s possible to rely just on a depth of two, in
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which only the controller method input method of the functionality (controller) and the methods it invokes

there are used.

This leads us to conclude that when using a lexical approach, only the first methods of each func-

tionality are needed since they present most of the lexical tokens present in the entire functionality call

graph.

Table 5.2: Regresssion coefficients of the method types weights with the combined metric

Weight Without wc Without we Without ws Without wi

Controllers (wc) - -5.9e-05 0.0004 3.5e-05
Entities (we) 5.9e-05 - 0.0004 9.4e-05
Services (ws) -0.0004 -0.0004 - -0.0003
Intermediate (wi) -3.5e-05 -9.4e-05 0.0003 -

The regression between the method types’ weights and the combined metric rejects the hypothesis

that a different combination of the method types’ weights affects the evaluation metric results since the

p-value is less than the significance level.

Since the weights depend on each other, in a regression covering all four weight parameters it was

noticed a multicollinearity problem. To overcome this problem, four additional regressions were made,

each one without one of the weights. Although the new coefficients had much more reliable values as

shown in the table 5.2, they also lead to the rejection of the above-mentioned hypothesis.

Figure 5.6: FVCG Comparison of the best decompositions combined metric results when the weights are equally
distributed versus the best decompositions when using all possible weights distributions.

As it’s not possible to find a perfect combination of method types’ weights, an additional analysis of
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the best decompositions for each codebase and number of clusters was made to understand if the use

of the same weights for all method types can achieve good results as all possible weights combinations

(Figure 5.6). But, Welch’s t-test results rejected the hypothesis that the combined metric mean values

of the same weights and mixed weights have distinct values, and the results obtained by mixing all the

weights possibilities achieve better results when looking for the best decompositions.

Figure 5.7: Regression of the Linkage Type parameter per the FVCG combined metric values.

Regarding the linkage criteria, to understand the impact of the cluster algorithm parameter over the

combined results, it was used a depth of two when comparing the best results for each linkage type

(average, simple, complete).

By comparing the different linkage types for each number of clusters(Figure 5.7), Welch’s t-test allows

us to state that the results of both three linkage types have the same means of the combined metric, with

just two exceptions where the number of clusters is 6 and 7 when comparing the single type versus the

complete linkage type, but even those p-values are very close to the significance level. This indicates,

that the choice of the linkage type is relevant when clustering the functionality vectors generated with

the FVCG strategy.

For the FVSA strategy, there are only three parameters to analyze, the two types of accesses’ weights

(write, and read), and also the linkage type.

The regression between the accesses types’ weights and the combined metric allows us to reject

the hypothesis that a different combination of the accesses types’ weights affects the evaluation metric

results since the p-value is less than the significance level. Once again, as these weights depend on
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Table 5.3: Regresssion coefficients of the accesses types weights with the combined metric

Weight Without wr Without ww

Read Access (wr) - 0.0001
Write Access (ww) 0.0001 -

each other, to avoid the problem of multicollinearity, two regressions were made separately (5.3), one

with just the weights of read accesses, and one with the weights of write accesses. Both regressions

reject the hypothesis that the weights have any statistically significant impact on the combined metric

results.

Figure 5.8: Regression of the Linkage Type parameter per the FVSA combined metric values.

When it comes to the linkage criteria, Welch’s t-test rejects the hypothesis that the single type has

the same mean as the average type for all cluster sizes except for 3. It accepts the hypothesis that the

complete and average types when the number of clusters is 5, 7, 8, 9, and 10, which indicates that for

these two linkage types the results obtained are very similar but worst than the single linkage type, which

is the one that obtains, in general, the best results for the FVSA strategy.

5.6 Lessons Learned

In summary, what is possible to learn from this work is the following:

• It is possible to perform a lexical analysis of the AST with a neural network model and obtain
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better results than a complex static analysis that captures the functionalities sequences of access

to domain entities.

• Adding a neural network model to the static analysis of entity accesses (FVSA strategy) improves

its results.

• Classes vectorization is shown to lead to decompositions where the classes are grouped by their

type.

• The FVCG strategy is shown to provide the best results, when compared with the sequence of

accesses strategy, and only using a depth of 2.

5.7 Threats to Validity

The FVCG strategy was only implemented to support java codebases, but since it is possible to change

Code2Vec to accept more languages, it can be easily generalizable, just by creating a new parser for

each language.

Due to the selection codebases selection process, we believe that the 85 selected codebases are

representative of monolith systems. Although all codebases use the Spring framework, it does not bias

the results, because these frameworks apply the same architectural patterns.

There may be some correlation between coupling and complexity metrics, so the results of the pro-

posed new combined metric may be biased. Nevertheless, the results still promising when analyzing

each metric separately.

The conversion of functionality clusters to entity clusters may bias the results. However, the strategies

that applied this conversion have shown better results.
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As the majority of monolith decomposition approaches perform a static analysis of the source code

followed by a clustering algorithm, this work aimed to simplify and generalize this process by recurring

to a lexical analysis independent of the technology stack.

The Code2Vec model was used to understand that a simple lexical analysis strategy can overcome

in terms of complexity, coupling, and cohesion, a more complex analysis that has to extract all function-

alities domain entities accesses sequences.

Analyzing monoliths as a set of functionalities was shown to provide better results than the monolith

class vectorization strategy, which led to clusters of classes of the same type.

We conclude that the FVCG strategy, which only relies on the call graph for functionality vectorization,

provides the best results. Additionally, it is possible to reduce the number of parameter combinations to

choose the best decomposition by only using depth 2 of the call graph generation.

As an additional contribution, all the code of this work is available in this branch 1 of the Mono2Micro

GitHub repository.

6.1 Future Work

Due to the results of this work, it would be interesting to explore the following topics for future work:

• Explore the FVCG strategy weight parameters with a Gradient boosting technique to infer in what

circumstances a certain weight combination is better than another.

• Experiment a new decomposition approach, which only focuses on the vectorization of the con-

troller method vector and the respective Data Transfer Object (DTO) classes, to confirm whether it

is possible to use only the contracts from each functionality to generate a good decomposition.

1https://github.com/socialsoftware/mono2micro/tree/feature/code2vec
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Listing A.1: FVCG strategy Function

1 public void fvcgStrategy(

2 FvcgRequestDTO requestParameters,

3 List<Package> packages

4 ) {

5 for (Package pkg : packages) {

6 for (Class cls : pkg.getClasses() {

7 for (Method method : cls.getMethods()) {

8 if (method.getType() == CONTROLLER TYPE) {

9 Acumulator acumulator = getMethodCallsVectors(

10 requestParameters,

11 packages,

12 method,

13 requestParameters.getDepth()

14 );

15

16 List<Double> functionalityVector = vectorDivision(

17 acumulator.getVector(),

18 acumulator.getWeights()

19 );

20

21 saveFunctionalityVector(

22 method.getSignature(),

23 functionalityVector

24 );

25 }

26 }

27 }

28 }

29 }
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Listing A.2: GetMethodCallsVectors Recursion Function

1 public Acumulator getMethodCallsVectors(

2 FvcgRequestDTO requestParameters,

3 List<Package> packages,

4 Method method,

5 int depth

6 ) {

7 int weights = GetMethodWeightByType(

8 requestParameters,

9 method.getType(),

10 method.getClassType()

11 );

12 ArrayList<Double> vector = vectorMultiplication(

13 method.getCodeVector(),

14 weights

15 );

16 if (depth == 0 | | method.getMethodCalls().length() == 0) {

17 return new Acumulator(vector, weights);

18 }

19 for (MethodCall methodCall : method.getMethodCalls()) {

20 Method invokedMethod = searchInvokedMethodBySignature(

21 packages,

22 methodCall.getPackageName(),

23 methodCall.getClassName(),

24 methodCall.getSignature()

25 );

26 Acumulator acumulator = getMethodCallsVectors(

27 requestParameters,

28 packages,

29 invokedMethod,

30 depth - 1

31 );

32 vectorSum(vector, acumulator.getVector());

33 weights += acumulator.getWeight();

34 }

35 return new Acumulator(vector, weights);

36 }
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Listing A.3: FVSA strategy Function

1 public void fvsaStrategy(

2 FvsaRequestDTO requestParameters,

3 List<Package> packages,

4 List<SequenceOfAccesses> sequenceOfAccessesList

5 ) {

6 for (Package pkg : packages) {

7 for (Class cls : pkg.getClasses() {

8 if (cls.getType() == ENTITY TYPE) {

9 List<Double> entityVector = classVectorization(cls, packages);

10 saveEntityVector(cls.getName(), entityVector.getMeanVector());

11 }

12 }

13 }

14 for (SequenceOfAccesses sequenceOfAccesses : sequenceOfAccessesList) {

15 int weightSum = 0;

16 Vector functionalityVector = new Vector();

17 for (EntityAccess access : sequenceOfAccesses.getEntitiesAccesses()) {

18 int weight = access.getType() == READ TYPE ?

19 requestParameters.getReadWeight() :

20 requestParameters.getWriteWeight();

21 List<Double> entityVector = getEntityVector(access.getEntityName());

22 entityVector = vectorMultiplication(entityVector, weight);

23 weightSum += weight;

24 functionalityVector.addVector(entity vector);

25 }

26 functionalityVector = vectorMultiplication(

27 functionalityVector,

28 weightSum

29 );

30 saveFunctionalityVector(

31 functionalityTrace.getFunctionalityName(),

32 functionalityVector

33 );

34 }

35 }
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Listing A.4: GetAscendedClassesMethodsCodeVectors Function

1 public Vector getAscendedClassesMethodsCodeVectors(

2 List<Package> packages,

3 Vector classVector,

4 String superClassName

5 ) {

6 if (superClassName.isEmpty()) {

7 return classVector;

8 }

9 Class cls = findClassByQualifiedName(superClassName);

10 for (List<Double> methodCodeVector : getClassMethodsCodeVectors(cls)) {

11 classVector.addVector(methodCodeVector);

12 }

13 return getAscendedClassesMethodsCodeVectors(

14 packages,

15 classVector,

16 cls.getSuperClassName()

17 );

18 }

Listing A.5: Class Vectorization Function

1 public List<Double> classVectorization(

2 Class cls,

3 List<Package> packages,

4 ) {

5 Vector classVector = new Vector();

6 classVector = getAscendedClassesMethodsCodeVectors(

7 packages,

8 classVector,

9 cls.getSuperClassName()

10 );

11 for (Method method : cls.getMethods()) {

12 classVector.addVector(method.getCodeVector());

13 }

14 return classVector.getMeanVector();

15 }
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Listing A.6: CV strategy Function

1 public void cvStrategy(List<Package> packages) {

2 for (Package pkg : packages) {

3 for (Class cls : pkg.getClasses() {

4 List<Double> classVector = classVectorization(cls, packages);

5 saveClassVector(cls.getName(), classVector.getMeanVector());

6 }

7 }

8 }

Listing A.7: EV strategy Function

1 public void evStrategy(List<Package> packages) {

2 for (Package pkg : packages) {

3 for (Class cls : pkg.getClasses() {

4 if (cls.getType() == ENTITY TYPE) {

5 List<Double> entityVector = classVectorization(cls, packages);

6 saveEntityVector(cls.getName(), entityVector.getMeanVector());

7 }

8 }

9 }

10 }
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