
Monolith Microservices Identification:
An Extensible Multiple Strategy Tool

Telmo Domingues Lopes

Thesis to obtain the Master of Science Degree in

Engenharia Informática e de Computadores

Supervisor: Prof. António Rito Silva

Examination Committee

Chairperson: Prof. Pedro Miguel dos Santos Alves Madeira Adão
Supervisor: Prof. António Rito Silva

Member of the Committee: Prof. Filipe Alexandre Pais de Figueiredo Correia

October 2022

This work was created using LATEX typesetting language
in the Overleaf environment (www.overleaf.com).

Acknowledgments

I would like to start by deeply thanking my parents for all their support and love during these years.

Without them, my academic life would not be possible. Secondly, I would like to thank my family for

being united in supporting me even when I was distant from them.

I would also like to thank my friends who have been with me through the good and troubling times,

even during isolation, especially André Francisco. I also need to thank my colleagues that helped me

during my years at university, namely José Miguel, my partner in war during the darkest hours.

Finally, I also need to acknowledge my dissertation supervisor Prof. António Rito Silva, for guiding

me during the development of this tool since the beginning and for all his availability and commitment.

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO).

i

Abstract

Several approaches have been proposed for the automatic identification of microservices in monolith

systems. These approaches follow different strategies, from how they collect the monolith data, to the

algorithms they apply for the identification, as well as the visualization of the candidate microservices.

On the other hand, it seems that there is not a clear winning strategy. Therefore, more experimentation

and comparison between approaches is required. However, there is no environment that facilitates it

while providing assessment tools, since the experimentation and comparison is not the priority. This

paper proposes an extensible multiple strategy tool, designed upon the specification of a microservices

identification pipeline, in order to promote the comparison of decomposition approaches and help future

investigators in the assessment of the qualities of new decomposition approaches. It supports several

extension points that can easily be adapted according to a strategy. The tool is evaluated through the

integration of two strategies, during which the focus will be on extensibility, pluggability and performance.

Keywords

Monolith decomposition strategies, microservices, experimentation environment, metrics.

iii

Resumo

Ao longo dos os anos, múltiplas abordagens foram propostas para a automação da identificação de

microserviços em monólitos. Cada uma destas abordagens seguem diferentes estratégias, desde o

modo como os dados do monólito são coletados, ao algoritmo usado na identificação, tal como o

método de visualização dos microserviços. Por outro lado, parece não haver uma estratégia clara-

mente superior, levando à experimentação e comparação entre estratégias. No entanto, não existe

nenhuma ferramenta que facilite tais testes e que contenha também mecanismos de avaliação, já que

durante o desenvolvimento deste tipo de ferramentas, essas propriedades não são prioritárias. Este

artigo propõe uma ferramenta extensı́vel com capacidade para múltiplas estratégias de decomposição,

desenhada a partir de uma sequência de etapas de identificação de microserviços de modo a promover

a comparação de abordagens de decomposição e ajudar futuros investigadores na avaliação das qual-

idades de novas abordagens. Esta sequência de etapas suporta múltiplos pontos de extensão que

conseguem ser facilmente adaptados de acordo com a estratégia escolhida. A ferramenta é avaliada

com a integração de duas novas estratégias, onde é dado especial foco à extensibilidade, facilidade na

adição de funcionalidade e desempenho da ferramenta.

Palavras Chave

Estratégias de decomposição de monólitos, microserviços, ambiente experimental, métricas.

v

Contents

1 Introduction 1

1.1 Problem . 2

1.2 Research Question . 3

1.3 Approach . 3

1.4 Organization of the Document . 4

2 Related Work 5

2.1 Stages . 6

2.1.1 Collection . 6

2.1.2 Decomposition Generation . 7

2.1.3 Quality Assessment and Comparison . 8

2.1.4 Visualization . 8

2.1.5 Editing and Modelling . 9

2.2 Existing Tools . 9

2.2.1 Summary . 9

2.2.2 Mono2Micro . 11

2.2.3 MonoBreaker . 11

2.2.4 IBM Mono2Micro . 12

2.2.5 Visualization Tool . 12

2.2.6 Process Mining Decomposition Framework . 13

2.2.7 Service Cutter . 13

2.2.8 Microservice Extraction . 14

2.3 Variety of Approaches . 14

3 Tool Design 16

3.1 Pipeline . 17

3.1.1 Collection . 17

3.1.2 Decomposition Generation . 18

3.1.3 Visualization . 19

vii

3.1.4 Quality Assessment and Comparison . 19

3.1.5 Editing and Modelling . 20

3.2 Extension Points . 21

3.3 Design . 23

3.4 Additional Features . 25

4 Usage 26

4.1 Choose Strategy . 27

4.2 Decomposition Generation . 28

4.3 Visualization . 30

4.4 Comparison Tool . 34

4.5 Decomposition Recommendation . 36

5 Evaluation 37

5.1 Previous Framework . 38

5.2 Current Framework . 38

5.3 Extensibility . 39

5.4 Pluggability . 42

5.5 Performance . 43

6 Conclusion 49

6.1 Conclusion . 50

6.2 System Limitations . 50

6.3 Future Work . 51

Bibliography 51

7 Appendix 56

7.1 Strategy Selection . 57

7.2 Create Decompositions . 61

7.2.1 Similarity Generation . 62

7.2.2 Decomposition Generation . 68

viii

List of Figures

3.1 Pipeline stages: processes and products . 17

3.2 Decomposition Generation Stage . 18

3.3 Visualization Stage . 19

3.4 Quality Assessment and Comparison Stage . 19

3.5 Editing and Modelling Stage . 20

3.6 Extension Points In the Pipeline . 21

3.7 Design Structure . 23

3.8 Domain Structure . 24

3.9 Additional Features . 25

4.1 Codebase Creation . 27

4.2 Add Representations . 27

4.3 Generate Strategy . 28

4.4 Generate Similarity . 29

4.5 Generate Decomposition . 29

4.6 Decomposition View with Metrics . 30

4.7 Only Show Neighbours Operation and Speed Dial . 31

4.8 Entity Menus . 32

4.9 Different Edge Menus . 33

4.10 Search Tool . 33

4.11 Additional Operations . 34

4.12 MoJoFM in Comparison Table . 35

4.13 Statistics in Comparison Table . 35

4.14 Recommendation . 36

5.1 Previous Tool Framework . 38

5.2 Tool Framework . 39

ix

5.3 Decomposition Generation Extension . 40

5.4 Decomposition Extension . 41

5.5 Implementation of Additional Features . 42

x

List of Tables

2.1 Decomposition Tools Comparison . 10

5.1 Single Decomposition Generation . 44

5.2 Multiple Decomposition Generations in Same Codebase 44

5.3 Clusters View Booting Time . 45

5.4 Clusters View Booting Time With Saved Positions . 45

5.5 Merge Operation and Clusters Redraw Time . 46

5.6 Number of Clusters Comparison . 47

5.7 Repository View Booting Time . 48

5.8 Expand All in Accesses View . 48

xi

xii

Listings

7.1 Codebase Class . 57

7.2 Codebase Creation Service . 58

7.3 Strategy Class . 58

7.4 Strategy Creation Service . 59

7.5 Abstract Representation . 60

7.6 Representation Factory . 61

7.7 Similarity Creation Service . 62

7.8 Similarity Factory . 62

7.9 Similarity Extension . 63

7.10 Similarity Matrix Generation . 64

7.11 Abstract Weights . 65

7.12 Repository Weights . 66

7.13 Extension of Similarity Forms . 67

7.14 Create Decomposition Service . 68

7.15 Decomposition Request . 68

7.16 SciPy Clustering Service . 69

7.17 Abstract Decomposition . 70

7.18 Extension of Decomposition . 70

7.19 Metric Extension Example . 71

xiii

xiv

Acronyms

DTO Data Transfer Object

UI User Interface

xv

xvi

1
Introduction

Contents

1.1 Problem . 2

1.2 Research Question . 3

1.3 Approach . 3

1.4 Organization of the Document . 4

1

Although monolithic applications simplify the implementation of the application business logic be-

cause of the existence of a shared domain model that is managed by a single transactional system [1],

it also impairs the application’s independent scalability of the business functionality and it does not pro-

mote development into the small agile teams. Therefore, development and deployment slows down,

agile development approaches become impractical, and the transition to newer technologies becomes

harder, making the monolith increasingly more outdated.

To address this problem, the microservice architecture is being adopted [2, 3]. As a result, there

has been an increasing number of monolith applications that are being migrated to the microservices

architecture [4]. However, one of the most difficult problems of these migrations is the identification of

the microservices that should decompose the monolith [5].

1.1 Problem

Several approaches have been proposed to the identification of microservices in a monolith [5]. They

vary in terms of the data they collect from the monolith, as well as how that data is processed. For

instance, some microservice identification approaches do a static analysis of the monolith codebase,

e.g. [6, 7]. This typically does not require any additional work other than the execution of a collection

tool. The same cannot be said from a dynamic analysis, which involves a more elaborated setup, with

the instrumentation and execution of code [8, 9]. Other approaches avoid this entirely and go for a high

level model of the monolith, e.g. [10,11].

On the other hand, when considering the produced decompositions of some approaches, they are

composed of clusters that contain the monolith’s classes or persistent domain entities for the candi-

date microservices, e.g. [6, 7, 11], while others consider clusters composed of the monolith’s business

functions, e.g. [12, 13]. The priority of grouping between elements also highly varies. While some

approaches try to minimize the number of distributed transactions [7], others group according to the

semantic similarity or the common authors in the development history [14,15].

There is also the question of which clustering algorithms to use. Since there is a large variety

to choose from and while some let the architect pick the number of microservices to decompose to

(which is the case for hierarchical clustering algorithms), others do not (some of the community finding

algorithms). This does not necessarily mean that one approach is better than the other, since in some

cases, the architect might prefer a recommendation on the number of clusters.

So, the problem that now emerges with the constant increase of new microservices identification

approaches is that there is no easy way of assessing and comparing each decompositions’ qualities

and approaches, since they are encapsulated into their specific implementation. In the development

of new microservice identification approaches, the comparison is left as an afterthought (usually as

2

an external procedure), since it is in fact not the main focus in the development of these approaches,

e.g. [16,17], and thus not prioritizing flexibility and extensibility. For instance, they support a single type

of data describing the monolith, a specific microservice identification algorithm, others contain specific

metrics to evaluate the quality of the candidate decompositions while others do not focus on metrics

usage, etc.. Even when using approaches that provide a visualization of the decomposition, some of

them provide further tools to customize the decomposition while others do not.

1.2 Research Question

Considering the previous problem, we can now take a broader view of the available approaches and see

that a common processing pipeline is present, according to the following stages:

1. collection of the monolith data;

2. generate candidate decompositions;

3. assess the candidate decompositions’ qualities and compare between candidate decompositions;

4. visualize a candidate decomposition;

5. edit/model a candidate decomposition.

Having the pipeline in mind, the following research question is proposed:

• RQ: Is it possible to design and implement a tool that provides an experimentation environment for

multiple strategies that identify microservices in monolith systems?

To answer this question, the pipeline needs to be integrated in a microservice identification tool and

tested by introducing new microservice identification approaches.

1.3 Approach

In this thesis, we describe the work done on the extension of the Mono2Micro tool1, in order to incorpo-

rate the different stages of the microservices identification pipeline, increasing its flexibility to support a

wider range of microservices identification approaches.

The goal is to provide an experimental environment that developers and researchers can use and

extend to analyse monolith’s decompositions according to different approaches. Therefore, we describe

the refactoring of Mono2Micro to support different approaches while achieving the following qualities:

1https://github.com/socialsoftware/mono2micro/tree/telmo-lopes-thesis

3

https://github.com/socialsoftware/mono2micro/tree/telmo-lopes-thesis

• Pluggability: Easy modification of the microservices identification pipeline to support new stages;

• Extensibility: The ability of easily adapting the existing stages of the microservices identification

pipeline.

Additionally, the tool should provide an acceptable performance when an architect is interacting with

it to experiment candidate decompositions of the monolith, even in the case of the analysis of large

monolith systems.

The refactoring is driven by the design of each of the stages of the microservices’ identification

pipeline and by the definition of their extension points. A modular approach is used to decouple the

stages and isolate the extension points.

The tool is evaluated to assess whether it achieves each one of the following qualities:

• Pluggability: Impact and effort of the addition of a stage;

• Extensibility: Impact and effort of adapting an existing stage;

• Performance: The operation latency while the architect is interacting with the tool.

The refactorization of Mono2Micro enabled an experimentation environment for researchers and

architects, where different approaches to the identification of microservices can be easily integrated and

the candidate decompositions compared, while also providing guided modelling capabilities.

1.4 Organization of the Document

Chapter 2 starts by describing the most common stages of a microservices identification pipeline. Then,

it takes a closer look at how these stages are reflected in some existing tools. Chapter 3 further analyses

the stages of this pipeline and goes onto discussing their extension points and design. After that, it

discusses the introduction of some additional features, which serve as a test for the pluggability. With the

tool’s design defined, an example of the tool’s usage is show in Chapter 4, where some of the extension

points as well as additional features can be seen in practice. After considering the tool’s usage, the

implementation is evaluated in Chapter 5 according to the three qualities, pluggability, extensibility and

performance, where pluggability and extensibility relate to the discussed information in the tool’s design

and the performance to the usage. Chapter 6 concludes this thesis and reasons about some of the

improvement points as well as the future work in the extension of the tool. Finally in the Appendix,

we take a closer look at the implementation of the tool. Its consultation is recommended after reading

Chapter 4, to better understand some of the tools’ behavior.

4

2
Related Work

Contents

2.1 Stages . 6

2.2 Existing Tools . 9

2.3 Variety of Approaches . 14

5

Over the years, researchers have been proposing new approaches to identify microservices in a

monolith. With the analysis of these approaches, it was concluded that amongst multiple tools, five

stages were most frequently used, with some of them already investigated [5]. We will take a closer look

to these five stages, which will then be mapped to the researched tools.

2.1 Stages

This section contains five subsections, which correspond to the most common five stages of the mi-

croservices identification pipeline. They will be described in the order they are usually met when gener-

ating, analysing and modifying decompositions.

2.1.1 Collection

The first stage is responsible for the collection of data to represent the monolith. The type of information

can range from artifacts present in the source and runtime behaviour up to high-level abstractions such

as business process models and use cases.

• Source Code [7,18,19]: Used to extract artifacts such as dependencies between elements, extract

reusable services and map source code to other artifacts;

• Database [20]: Artifacts such as database contents, schemas and transactions provide relevant

information about the services that manage the persistent data of the system;

• Log Traces [8, 21]: Depict the dynamic behaviour of systems. This is done by extracting runtime

artifacts of the executions of the systems. This can either be done manually, or most commonly,

by instrumenting the source code;

• User Interactions [19]: Capture the relation between users and system’s functionalities through

the user-interface inputs. Knowledge about the underlying business logic can also be extracted

from its user interfaces;

• Business Process Model [22]: Describe the sets of activities and tasks that accomplish an orga-

nizational goal at a high-level of abstraction;

• Use Case [23]: They depict functional requirements and sequences of actions that can be used for

service identification. This is done by helping the identification of the interactions between users

and systems, at a high-level of abstraction, in order to achieve goals;

• Activity Diagram [18]: Describe steps involved in task execution. Frequently mapped to other

approaches (such as Use Case) or used alongside other approaches;

6

• Data Flow Diagram [24]: Graphically represents functional dependencies based on the source

code of software systems. Gather coarse-grained processes to form a service;

• State Machine Diagram [25]: Represents the dynamic view of a system by describing the different

states that entities can have. Impractical for large systems;

• Ontology [26]: Structured set of terms representing semantics of a domain, whether through the

metadata or elements of a knowledge domain. Ontologies are mapped to source code in order to

identify candidate services;

• Human Expertise [18,27,28]: Manual parameter tuning for service identification algorithms, defi-

nition of data flow diagrams to then identify candidate services, manual analysis;

• Documentation [29]: Documentation for the system at different levels of abstraction, usually points

to key functionalities, providing hints for service identification;

• Process Mining [30]: Based on an extended version of log traces, containing information from

the user (such as a click in a user interface), or from an entry point (such as an API), up to the

database accesses, until the results are returned back to the client.

2.1.2 Decomposition Generation

Once the collection of the monolith data is done, follows the generation of the candidate decompositions.

This is done by applying identification techniques [5] to the monolith data:

• Wrapping [13]: Encapsulates the legacy system with a service layer without changing its imple-

mentation by providing access to the legacy system only through a service encapsulation layer

that only exposes the functionalities desired by the software architect;

• Genetic Algorithm [18, 28]: Meta-heuristic for solving optimization problems based on ”natural

selection”. Relies on the calculation of a fitness function to reach an optimal solution. This method

can then be used to find a decomposition considered an optimal solution by the fitness function;

• Formal concept analysis [20]: Data analysis’ method where implicit relationships are derived

between objects in a formal way. A formal concept is defined as a grouping of all the elements that

share a common set of properties. Rely on ontologies;

• Clustering [7,31]: Partition data into clusters that share common properties. The clusters are built

based on the internal homogeneity of their elements and the external separation between them.

7

2.1.3 Quality Assessment and Comparison

After identifying multiple decompositions, follows the assessment of said decompositions through the

use of qualities, represented by metrics that can be divided into four major groups:

• Coupling [32]: Dependency level among services. The encapsulation of the services should be

prioritized to reduce the impact of the changes to other services;

• Cohesion [33]: Measures the strength of the relationship between programming entities imple-

menting the functionality provided by the service;

• Size [34]: Multiple metrics are based on the size of certain components such as, for example,

services. A balance must be found since a larger size makes it harder to maintain e.g. [10];

• Complexity [34]: The amount and variety of internal work done by a service as well as the degree

of interaction with other services. The higher the complexity is, the harder the maintainability.

If no metrics are provided, it usually requires the architect’s careful analysis of the dependencies

found in the gathered information. In works like IBM’s Mono2Micro [35] and Visualization Tool [36],

some metrics are referred but not integrated in the tool for instant analysis. They are usually used a

posteriori to compare with other solutions from another tools.

2.1.4 Visualization

To better reason about the decompositions, different ways of visualizing the information about said de-

compositions have been proposed:

• Cluster graph [7,10]: Usually represents a view of the microservices, each represented by a cluster

node. The nodes connect through edges and represent the dependencies between microservices;

• Class/entity graph [16, 17, 36]: Each node represents a class and is connected to other classes

through an edge, which represents the dependencies between them. Each node has some visual

element related to him that indicates the microservice he belongs to;

• Sequence of accesses: Represents the sequence of accesses made through each microservice in

order to accomplish a task. It is therefore more focused around the sequence of accesses and less

on the microservices. Some representations are based on the static analysis of the source code

e.g. [37, 38] by presenting the sequence of local transactions made to each microservice, while

others are based on the dynamic analysis through log traces e.g. [30, 39], where the accesses to

classes and methods are the main focus.

8

2.1.5 Editing and Modelling

Even though visualizations provide a closer look at the interaction between components, they leave

room for improvement, since most often than not, decompositions can be improved or they do not meet

the architects’ expectations. With this, comes the editing and modelling of the decomposition through

operations:

• Create a new microservice [36];

• Move selected class into another microservice [36];

• Clone the selected class into all the microservices that communicate with the class [36];

• Split a microservice by moving selected entities into a new microservice [7];

• Transfer the selected entities of a service into another microservice [7];

• Merge microservices into one single microservice [7];

• Duplicate classes or methods into another microservice [30];

• Filter from the visualization [39];

• Search elements in the visualization [39].

2.2 Existing Tools

Each tool presented next is divided into five points, those points corresponding to the most frequent

five stages previously identified in the microservices decomposition pipeline. The tools analysed were

Mono2Micro [7,21,37,38,40], MonoBreaker [16], IBM’s Mono2Micro [17,35,41], Visualization Tool [36],

Process Mining Decomposition Framework [30] Service Cutter [10] and Microservice Extraction [14,15].

2.2.1 Summary

A recap of the following analysed tools and their key differences are presented in table Table 2.1.

9

Table 2.1: Decomposition Tools Comparison

Tools Collection Decomposition
Generation

Quality Assessment
and Comparison Visualization Editing and

Modelling

Mono2Micro

Domain entities and
Functionalities call

graph (static)

Trace logs (dynamic)

Hierarchical clustering
algorithm (groups
domain entities to

minimize the number of
distributed transactions

per functionality)

Cohesion,
complexity, size,
coupling metrics.

Decompositions
detailed comparison

Visual representation
of cluster coupling

Graph with clusters
as nodes and

invocations between
clusters as edges

Functionality
call graph

Merge, split clusters
Transfer entities
between clusters
Rename cluster

Redesign
functionalities’

transaction sequence

MonoBreaker

Database models,
their relations and

accesses points (view)
(static)

Trace logs (dynamic)

Community detection
algorithm (groups
views/endpoints
and database

models based on
their coupling)

Visual representation
of coupling between

views and
database models

Graph with views
and database

models as nodes
and dependencies
(coupling weight)

as edge

Not discussed

IBM Mono2Micro

Metadata extractor
collects classes and

classes’ dependencies
in source code (static)

Trace logs (dynamic)

Hierarchical clustering
algorithm (groups by
class relations from

execution traces while
accounting for meta-
data dependencies)

Coupling, cohesion
size, complexity

metrics (not integrated)

Visual representation
of class coupling

Graph with
classes as
nodes and

dependencies
(call relations)

as edges

Transfer class
Split cluster

Visualization Tool

Compacted calling
context tree, relates
function calls and
filters library calls

(dynamic)

k-means++ clustering
(groups classes

by content similarity)
Calling context tree
clustering (groups

classes by commu-
nication reduction)

Decompositions
Comparison

(not integrated)

Visual representation
of class coupling

Graph with
classes as nodes

and function
calls as edges

Split cluster
Transfer class
Clone class

Process Mining
Decomposition

Framework Trace logs (dynamic)

Manual grouping
(groups classes,

methods and
database tables

by analysing
processes’

execution traces)

Coupling and
size metrics

Process view of
microservices
coordination

including accessed
classes, methods

and database
accesses

Merge/split
processes’s sub-paths

by leaving/cloning
class or method into

same/different
microservice
respectively

Service Cutter

Machine-readable
representation

artifacts describing
intermediate stages of
analysis and design

Community detection
algorithm (groups by

dependencies
according to a set

of criteria)

Visual representation
of nanoentities

exposed and shared
between services

Nodes as
nanoentities
and services

Edges as
dependencies

Edit decomposition
by changing

grouping priorities i.e.
clustering algorithm
and coupling criteria

Microservice
Extraction

Collects repository
data, mainly class

files, change history
and developers

responsible
for modifications

Minimum spanning tree
based graph clustering:

Logical (groups by
chronological similarity)

Semantic (groups by
content’s similarity)

Contributor (groups
considering number of

contributors in common)

Complexity
and size metrics
(not integrated)

Visual representation
of class and

cluster coupling

Graph with clusters
and classes as nodes

(clusters can be
expanded) and
dependencies

as edges

Not discussed

10

2.2.2 Mono2Micro

1. Collects the domain entities’ call graph per functionality by doing a static analysis of the source

code and generate a similarity matrix describing the domain entities’ distance between each

other [7]. On a related work [21], dynamic analysis is also used, to log the trace of a function-

ality;

2. Create a dendrogram describing the cophenetic distance between domain entities and generate

candidate decompositions with a clustering algorithm by applying a cut to said dendrogram. The

domain entities are grouped by minimizing the number of distributed transactions per functionality;

3. Compare decompositions based on cohesion, coupling, size and complexity [40] metrics. Other

methods include the visual representation of cluster coupling and the detailed comparison of de-

compositions (with tools such as MoJo [42]);

4. Visualize the relations between the clusters as a graph, where the nodes are clusters and the

edges represent the invocations between clusters. Also possible to visualize the functionality ac-

cess sequence through the clusters [37,38];

5. Apply operations to the decomposition’s clusters and functionalities through the visualizations, trig-

gering metrics’ recalculation and the graphs’ modification. The operations include merge clusters,

split clusters, transfer entities between clusters, rename clusters and redesign the functionalities’

transaction sequence.

2.2.3 MonoBreaker

1. Extracts static information regarding database models, their relations and how they are accessed,

then use dynamic analysis to extract the class files, methods used as the ”entrypoint” of the system,

the models used and queries made, in order to update the static analysis’ weight;

2. Creates an undirected weighted edge graph based on the static and dynamic information collected

and finds a decomposition by applying a community detection algorithm. Repeatedly remove

edges from the graph, defining multiple decompositions in the process. This results in grouping

the database models and access points based on their coupling;

3. No metrics are used but conclusions can be obtained from the visual representation of coupling

between views and database models. There is also information about the multiple steps of the

community detection algorithm that can be analysed;

4. Visualize in a graph the access points and database models as nodes and their dependencies as

edges (based on the coupling weight);

11

5. Not the focus of this project, although it is mentioned that small edits can be made to the graph

through the visualization tool, although not intended as a decomposition modelling tool.

2.2.4 IBM Mono2Micro

1. A metadata extractor collects information about classes and classes’ dependencies in a static

analysis of the source code, then collects information from a dynamic analysis by running user

scenarios. For the dynamic analysis to happen, the source code is instrumented to create trace

logs about the user scenarios;

2. Finds a candidate decomposition using an AI-based partition recommender that applies temporo-

spatial clustering on execution traces (hierarchical clustering algorithm alongside temporal rela-

tions between classes). It then uses the classes’ dependencies obtained in a static analysis to

ensure if certain partitions need to be merged. Classes are placed in the same partition according

to a similarity score;

3. Comparison through the analysis of the coupling between classes in the view. Coupling, cohesion,

complexity and size metrics are mentioned but not integrated in the tool;

4. Visualize the recommended partitions, where the classes identified during user scenarios repre-

sent the nodes and the runtime call relations between classes represents the edges;

5. Graph’s customization is available alongside with the visualization. Classes not detected with the

user scenarios can now be added to certain partitions. Operations such as transfer class and split

cluster are present.

2.2.5 Visualization Tool

1. Uses function’s relations to build a compacted calling context tree (filters out library calls). The

dependencies are obtained from the instrumented source code. Multiple profilers are suggested

to provide the instrumentation of the source code based on a dynamic analysis;

2. Suggests two approaches to find candidate decomposition, first by semantic-based clustering,

which groups classes based on the similarity of their contents using a k-means++ algorithm, and

the second approach, based on the calling context tree, by reducing the amount of communication

between classes, using a calling context tree-based clustering;

3. Comparison through the analysis of the coupling between classes in the view. Decomposition

comparison measure (used to compare with expert decomposition) mentioned but not integrated

in the tool;

12

4. Graph visualization obtained from the calling context tree, represents the classes as nodes with

their color corresponding to the cluster they belong to, and the function calls as the edges. Also

allows the visualization of the source code when selecting the respective class;

5. Graph’s customization is available alongside with the visualization. Operations change the decom-

position’s structure and dependencies between clusters. Operations such as split cluster, transfer

class and clone class are present.

2.2.6 Process Mining Decomposition Framework

1. Collects log traces based on a dynamic analysis from the interaction with the user interface or

from any entry point of the system. The information collected is related to each class and method

traversed, with information about the entry and exit of functions as well as database accesses and

timestamps. Achieved by instrumenting the source code;

2. With the log traces extracted, the business processes mined in the log traces are graphically

represented by showing each class and database table used in the business processes connected

by arrows. Circular dependencies between classes need to be removed and once that is achieved,

the decomposition is found by visually inspecting said execution paths and manually grouping the

classes in order to define the services. Both the removal of circular dependencies and the class

grouping is based on human expertise, although it is mentioned that it can be automated;

3. The architect is helped in assessing the quality of the decomposition with the use of coupling and

size metrics;

4. The only visualization available is by analysing the execution path accessing each class, method

and database, represented by a node. The visualization is represented in a graph where the edges

represent the frequency of the calls between the respective nodes;

5. During the usage of the view, the architect can merge the processes’ subpaths by leaving the

classes or methods into the same microservice, as well as split the processes’ subpaths by cloning

the classes or methods into a different microservice.

2.2.7 Service Cutter

1. Collects machine-readable representation artifacts describing intermediate stages of analysis and

design, ranging from entity-relationship modules to domain-driven design entities and use cases;

2. With the collected system specification artifacts, a graph is produced, relating nanoentities. A

community detection algorithm is then applied to group according to a set of criteria;

13

3. The architect assesses the qualities of the decomposition based on the analysis of the visual

representation of nanoentities exposed and shared between services;

4. Graph representation of each service and its respective nanoentities connected by an edge. De-

pendencies between services also connected by an edge;

5. In the visualization, the grouping priorities can be changed in order to represent a new decom-

position. Some of the operations can alter the community detection algorithm and the coupling

criteria.

2.2.8 Microservice Extraction

1. Clones the projects’ repository and then proceeds to collect data such as class files, the history of

changes in a file and the developers responsible for said modifications;

2. Three decomposition methods are available, all based on a minimum spanning tree-based graph

clustering. The first method groups classes by their chronological similarity, which means two

classes are more likely to get grouped if modified at the same time. The second method groups by

semantic similarity, which works by analysing its contents such as the names of each class. The

third method groups based on the number of contributors in common;

3. The architect can assess the cluster and class coupling from its visual representation. Complexity

and size metrics were also mentioned but not fully integrated in the tool;

4. Visualization of a graph with clusters and classes as nodes and dependencies as edges. The

visualization is also able of expanding the clusters into its respective classes;

5. Not the focus of this project;

2.3 Variety of Approaches

Considering the previously identified stages and the corresponding tools, one can notice the divergence

between methodologies and some of the most common strategies of each stage.

When looking at the collection stage, the most common approaches consist either in the analysis

of the code structure (static analysis) or the analysis of the sequence of accesses during execution

(dynamic analysis). Some less common cases also use information present in the project’s repository,

such as the change history.

As for the decomposition generation, even though multiple identification techniques were mentioned,

clustering is the most predominant technique when automating the decomposition generation in a tool.

14

In clustering, the elements of the monolith are grouped based on an aggregation criteria. However, the

application of each criteria can differ substantially with the use of different clustering algorithms.

With the generation of the candidate decompositions, the architect needs now to assess their quali-

ties and compare them. To achieve this, metrics can be used. However, the majority of tools do not focus

on their direct integration into the pipeline. They are usually kept as an afterthought, used as a compar-

ison mechanism against other tools. In some less common cases, mechanisms are even provided to

compare decompositions inside the same tool.

As a more detailed and fine-grained alternative, the architect can instead rely on the careful analysis

provided by the visualizations. They contain a depiction of the dependencies between the elements of a

monolith. The granularity of the visualization can also vary, since some tools use, for example, classes

as their nodes, while others take a more coarse-grained approach, focusing on the clusters.

Both options provide their advantages, one being more detailed while the other being easier to un-

derstand, respectively. They also vary according to the elements in focus, which in turn reflects the

collected information (clusters, entities, methods, etc.). Another approach, which is usually related with

dynamic analysis, is by representing the sequence of accesses. Because of this, there is a trade-off

between focusing on the elements/clusters or the functionalities.

Finally, the editing and modelling describes which operations can be done on a decomposition, for

instance, splitting and merging clusters, or transfer a class/entity between clusters. These operations

depend on the visualization and provide further control to the architect.

As it can be noted, there is a wide range of approaches to accomplish each stage, but there is a

noticeable pipeline common to all tools. The hassle appears when trying to compare different approach-

es/tools and their respective decompositions. Each tool uses different metrics or none at all, some focus

on the entities, classes or clusters while others focus on the execution traces or call graphs.

Therefore, the goal is to design a tool to support different approaches and that can be adapted or

extended to incorporate new ones. In such a tool, the existing stages could be extended with new ap-

proaches and new stages could be added, creating an experimentation environment for the comparison

of different approaches.

15

3
Tool Design

Contents

3.1 Pipeline . 17

3.2 Extension Points . 21

3.3 Design . 23

3.4 Additional Features . 25

16

In the following sections, we will firstly identify the main stages of the microservice decomposition

pipeline. Once that is done, the identification of the extension points is made and the tool’s design

presented. With the conclusions of said sections serving as a foundation, some additional features will

be presented.

3.1 Pipeline

To define an extensible microservice decomposition tool, first we need to understand its pipeline, each

process, their requirements and products. This analysis follows the sequence presented in Figure 3.1.

Monolith
Representation Decompositions Collection Decomposition

Generation

Quality
Assessment

and Comparison

Visualization
Editing

and
Modelling

Graphs

Measures

Graphs

Figure 3.1: Pipeline stages: processes and products

3.1.1 Collection

The Collection stage is responsible for the generation of the Monolith Representations. Although its

integration in the pipeline is possible and more practical to the architect, since a large variety of data

collection tools as well as execution’s tracing tools exist for different languages, it is more reasonable to

not completely integrate this stage in the tool.

This comes with the advantage of the variety of information that can be used as input to the decom-

position generator. Some of the examples are the monolith’s persistent domain entities, the monolith

functionalities’ sequence of accesses and the relations between entities that were modified together.

One should also notice that even though some collectors do not require the execution of the monolith,

which is the case when performing a static collection of the source code, other collectors, such as

execution’s tracing tools, that require the dynamic collection of information, usually need the previous

instrumentation of the source code as well as its execution. Other methods such as the mining of the

project’s repository also have other prerequisites.

Because of this external requirements, the integration of the collector directly in the pipeline is further

complicated and ends up limiting in the amount of versatility possible. By using a decoupled approach,

the developer can freely use the collector of his choice without worrying with the possible structural

impact to other available collectors or their mismatching requirements. With this in mind, the collectors’

responsibility now solely becomes producing the Monolith Representation, which will be used as the

input for the Decomposition Generation.

17

3.1.2 Decomposition Generation

Monolith
Representation Decompositions Decomposition

Generation

Figure 3.2: Decomposition Generation Stage

Following the collection of the Monolith Representation in the Collection stage, comes the Decom-

position Generation stage. In this stage, the Decomposition will be generated based on the Monolith

Representation, which contains the monolith elements as well as the relations between them. Amongst

the most common monolith elements, we have classes, domain entities and methods. As for the rela-

tions between elements, they can be collected from different sources, such as sequence of accesses,

source code, repository information, between others.

For the Decomposition to be generated, a decomposition algorithm is used, grouping the monolith’s

elements according to a certain criteria. A wide range of algorithms can be used, but hierarchical

clustering and community detection algorithms are still amongst the most common. Although, as it was

noticed in the Existing Tools section, other algorithms can be used, such as k-means++ and minimum

spanning tree clustering.

As for the grouping criteria, it dictates how the clustering of the monolith elements should be prior-

itized. This is done by calculating the similarity level between monolith elements and heavily relies on

the extracted Monolith Representation. Some of the criteria are recognized quite easily, such as when

grouping by semantic similarity, which usually focuses on the class, attribute and method’s names, or

when analysing the similarities in code evolution, which usually involves finding similarities in the mod-

ification of the project along multiple commits, or similarities in the authors, grouping based on who

modified said monolith elements.

Other criteria are harder to recognize, such as the criteria based on the monolith’s static struc-

ture, which try to maximize modularity, and criteria based on the monolith’s functionalities’ sequence

of accesses, reducing the amount of remote communication between microservices or the number of

distributed transactions required to implement a functionality.

By the end of this stage, the generated Decomposition can proceed to two different stages. The first

stage, the Quality Assessment and Comparison stage, intended to be evaluated by metrics or compared

to another produced decompositions, or the second stage, the Visualization stage, where the architect

can visualize the decomposition in order to understand the dependencies between monolith elements in

finer detail. We will first take a closer look to the Visualization stage.

18

3.1.3 Visualization

Graphs Visualization Decompositions

Figure 3.3: Visualization Stage

With the Decomposition generated during the Decomposition Generation stage, follows its analysis.

In the Visualization stage, this Decomposition is used to create a view. Since the goal of decomposing

a monolith is to, in fact, group its elements, by providing a graph containing the dependencies between

said elements, the architect can focus on the finer details of its decomposition while also having into

account a large number of elements.

With that said, multiple views are possible, but among the most common are views that focus on

the clusters, classes, domain entities and methods. These are represented as nodes while the edges

represent their dependencies. The dependencies can usually be related to the criteria used during the

Decomposition Generation stage.

Another type of view also common focuses on the monolith’s functionalities and how they are mapped

to the decomposition. In this case, nodes usually represent the clusters, classes, domain entities and

methods accessed while the edges represent the sequence of accesses.

Because of the attention to finer details in this stage, it is not difficult to imagine seeing this tool

being used as a comparison mechanism. This is indeed a viable option and used in the majority of tools

reviewed in the Existing Tools section. This will be further discussed in the next section.

3.1.4 Quality Assessment and Comparison

Decompositions Measures

Quality
Assessment

and Comparison

Graphs Graphs

Figure 3.4: Quality Assessment and Comparison Stage

In the Quality Assessment and Comparison stage, the Decomposition generated during the Decom-

position Generation stage is used as input to this stage. Here, the Decomposition is analysed in order

to assess its qualities as well as compared against other Decompositions.

Starting with the assessment of its qualities, the candidate Decomposition is assessed with the use of

metrics. These metrics denote certain qualities of the Decomposition, although not all Decompositions

19

might be able to use the same metrics. The large majority of metrics belong to four groups, coupling,

cohesion, size and complexity.

As for the comparison between Decompositions, there are techniques that can be used to observe

how different two Decompositions are, such as MoJoFM [42], that calculates the minimum number of

operations necessary to transform a Decomposition into another. Other techniques such as showing

how different the same cluster is in both Decompositions, in terms of the monolith elements belonging

to said cluster, can also be used. Also, in cases where Decompositions use the same metrics, they can

be used to directly compare them, based on their qualities.

With that said, there is still the visual-oriented approach. With the use of graphical depictions of

the Decomposition, which are usually found in the Visualization stage, the architect is provided with the

dependencies between clusters or monolith elements. Some representations provide node highlight-

ing [36], corresponding to the cluster they belong to, while others represent the amount of dependencies

between two components by the thickness of the edge or the similarity between components by how

distanced they are. So, by using different sizes, colors and distances, one can have an accurate visual

representation of the Decomposition’s quality.

With that said, when analysing two graphical representations of two different Decompositions, one

can assess in which Decomposition the dependencies between clusters or monolith elements are han-

dled better, or the trade-offs between both solutions. The downside to this method is the level of attention

required to analyse both Decompositions in such a fine-detailed way.

3.1.5 Editing and Modelling

Editing
and

Modelling
Graphs Graphs

Figure 3.5: Editing and Modelling Stage

Once the architect carefully analyses the candidate Decomposition in the Visualization stage, it is to

be expected that he will require further modifications, since, most often than not, the best grouping re-

sults, according to a criteria, do not correspond to the demands of the architect or the real-life limitations

of the system. Because of this, the Editing and Modelling stage is introduced, which is aggregated to the

graphs of the Visualization stage, since it eases the interaction between multiple elements and creates

feedback cycles between the architect, his desired modification and the resulting graph.

So, by using operations, the architect changes the Decompositions’ structure and the metrics are

recalculated alongside this change, in order to update the architect about the current Decomposition’s

qualities. The available operations are deeply related to the component in focus on the view.

In views of clusters, the most common operations usually involve the splitting and merging of clusters

20

or the transfer of elements. In views focused on the functionalities’ accesses, common operations involve

the modification in the elements’ sequence of accesses.

3.2 Extension Points

Grouping
Criterias

Decomposition
Algorithms

Metrics
Calculation

Decompositions
Comparison

Views

Collection Decomposition
Generation Visualization

Quality
Assessment

and Comparison

Editing
and

Modelling

Operations

Collection
Tools

Monolith
Representations

Figure 3.6: Extension Points In the Pipeline

With the microservice identification pipeline defined, follows a closer look at the variation points in

the pipeline. In this section, the extension points of the pipeline will be identified and discussed, while

aiming to improve the tool’s extensibility and adaptability. The order in Figure 3.6 will be followed.

Starting by considering the Collection stage, there are two main implications during its extension.

The first one being the extension of collectors and the second being the extension of the monolith’s

representation collected. As it was already identified, because of the external nature of collectors, a large

variety of collectors can be used, but it isn’t without implications. When choosing a collector, one must

guarantee that the produced output is recognized as one of the supported monolith’s representations.

A monoliths’ representation is an abstraction needed when dealing with data collection, since mi-

croservices identification approaches can use a variety of sources. As an example, one can use two

different collectors, each one extracting data from a different source but still produce the same repre-

sentation. This is indeed the case when extracting the call graph’s sequence, which is done with a static

analysis, and when extracting the sequence of accesses, done in a dynamic collection [21].

Some examples of monolith representations are the sequence of accesses, the relations between

files and the relations between developers and files in a repository. With this abstraction, the Collec-

tion stage can be decoupled from the Decomposition Generation stage, which will not need additional

modifications as long as the format produced by the collector is accepted by the tool.

Now considering the Decomposition Generation stage, as it was already pointed out, different types

of criteria exist, which makes them an extension point. Since the criteria uses the monolith’s repre-

sentation to dictate how the clustering should be prioritized, there is a dependency between these two

extension points (this dependency being the agreement of the monolith’s representation format). As for

the decomposition algorithms, due to the variety of algorithms used to aggregate monolith’s elements

based on their relations, said algorithms also need to be considered an extension point.

21

Therefore, there is also dependency between the criteria and the decomposition algorithm in use,

since an algorithm may require a particular codification of the criteria. For instance, an hierarchical

clustering algorithm requires a similarity matrix as input, which implements a criteria.

As for the Visualization stage, the views available to a Decomposition depend on the type of infor-

mation a Decomposition is composed of. For instance, one Decomposition can have a view composed

of classes while other Decomposition a view composed of domain entities. For this reason, the Visual-

ization stage can be extended with new views.

It should also be noted that one Decomposition type can have multiple views to its disposal. For

example, the majority of Decomposition types should have at its disposal at least two views, one focusing

on the clusters of the Decomposition while other focusing on the elements.

In the Quality Assessment and Comparison stage, there are two extension points, the metrics and

the Decomposition comparisons. As previously pointed out, not all Decompositions might be able to

use the same metrics. For this reason, metrics should be considered an extension point and should

be shared whenever possible, for direct quality comparison between Decompositions. Because of this,

there is also a dependency between each Decomposition type and metric.

As for the Decomposition comparison, the same logic is applied. Multiple approaches to Decom-

position comparison are possible and because of it, should be considered an extension point. Some

Decomposition comparison approaches also depend on the Decomposition types being compared.

Finally, in the Editing and Modelling stage, we have the Operations extension point. As previously

mentioned, the available Operations depend on the type of Decomposition being analysed, which makes

the Operation an extension point, required when adding new operations.

The extension of an operation can happen even when considering the same type of operation. If we

take as an example the merge operation and two decompositions, where one Decomposition supports

the duplication of elements while the other does not, the logic involved in the union of clusters will be

different, since, as an example, the same element should not be placed twice in the same cluster.

22

3.3 Design

read
writeExternal

Collectors

read

Representation

write

Similarity
Generator

Similarity

read

writeAggregation
Algoritm

write

write

Collection Representations Decomposition
Generation

Decomposition

Decompositions

Editing and
Modelling

write readOperation

Quality Assessment
and Comparison

read Metrics
Calculator

read Comparison
Tool

writeread View

Visualization

Graph

Graphs

Measures

Metrics

MojoFM

Accuracy, etc...

Figure 3.7: Design Structure

In this section we will present the design structure proposed for a microservice identification tool.

Figure 3.7 represents this design structure. As previously mentioned, the collectors in the Collection

stage are implemented as external modules (independent tools), since there is a large variety of data

collection tools as well as execution tracing tools available. Because of this, collectors are decoupled

from the tool and to integrate their output in the pipeline, the output needs to be produced according to

a certain format, established by a Representation.

Therefore, there are two extension points, one associated with the collection, which is accomplished

by external tools (represented by the External Collectors extension point) and the other being the file

format (represented by the Representation extension point). Due to the JSON metaformat, new monolith

representations can be easily added and new collectors integrated, but the constraint between these two

extension points, the agreement in the file format, needs to be met.

The Representation files (consider now Figure 3.8) are stored inside the context of a Codebase

entity, which denotes the monolith. Each Codebase can contain several representations.

The Decomposition Generation stage (Figure 3.7) is implemented by two modules and a file. The

modules implement two extension points, those being the Similarity Generator for the criteria and the

Aggregation Algorithm for the decomposition algorithm. They are decoupled through a Similarity file.

Extending one of these two modules allows for the use of more criteria and algorithms.

The Similarity Generator module is responsible for creating the Similarity file, which requires that

he reads and recognizes the monolith representations, given by Representation, to produce it. The

Similarity file contains the similarity level (according to a criteria) between the monolith elements.

With the Similarity file generated, the Aggregation Algorithm can now use the similarity level between

elements to produce the Decomposition. Much like the External Collectors and Similarity Generators, the

23

Similarity Generators need to agree on the format required by the Aggregation Algorithm, which means

producing the correct Similarity. Not all Similarity Generators are intended to work with all Aggregation

Algorithms, which further increases the necessity of using Similarities for decoupling the modules.

Codebase

Representation Strategy

Decomposition

1..*1..* Cluster Metrics

Similarity

1

0..*
1..*

1..*

1
1..*

1

0..*

0..*

1

0..*1

1

0..*

1

0..*

Element

Figure 3.8: Domain Structure

The Strategy, represented in Figure 3.8, aggregates the implementation of several extension points

by determining the type of decomposition to be generated and the monolith representation files required

by the aggregation algorithm to generate the decomposition. Note that a strategy can have several

Similarity files, since it is possible to combine different criteria to be fed into the algorithm. Additionally,

it must also be highlighted that a Similarity file may require multiple Representations to be produced by

the Similarity Generator.

Now taking a closer inspection to Figure 3.8, some details about the Codebase should be considered.

As it was said, the Codebse denotes the monolith and when using multiple Strategies, it is sometimes

possible that two different Strategies share some of the Representations. This avoids duplicating Rep-

resentations, since they are shared inside the context of a Codebase. It should also be noted that once

a Decomposition is produced, both the Strategy and the Similarity are related to said Decomposition.

Proceeding to the Decompositions stage, the Decomposition file decouples the Decomposition Gen-

eration stage from the other stages. Is is also an extension point, since several Decomposition imple-

mentations are allowed. The Aggregation Algorithm is responsible for filling the Decomposition with its

Clusters and Elements, which are itself also extensible. For example, a type of Cluster might support

duplication of elements while the other does not. As for the Elements, some might be classes and

other domain entities. With this established, it is now only necessary that the consumers (the metrics,

visualization and editing tools) comply with the generated Decomposition.

The Decomposition and its properties are presented by views, qualified by metrics, compared to

other Decompositions and modified by operations. Since these functionalities are heavily dependent on

the type of Decomposition, they are also extensible. They are represented in Figure 3.7 by the View,

Metrics Calculator, Comparison Tool and Operation module, respectively.

24

3.4 Additional Features

With the design defined, it is now possible to consider its pluggability by integrating additional features

in the tool. This features will be discussed according to Figure 3.9.

Functionality
Refactor

read Representation
(json)

write

Similarity
Generator

Similarity

read

writeAggregation
Algoritm Decomposition

execute

execute

execute

write

Decomposition
Recommender

Decomposition
Recommendation

(json)

read

write

Functionality Refactor
Recommendations

(json)

write write
Operation Log

read

undo/redo History
Logger

Metrics
Calculator

Figure 3.9: Additional Features

The Decomposition Recommender recommends decompositions based on their quality metrics. It

invokes the Similarity Generator, Aggregation Algorithm and Metrics Calculator modules multiple times

to generate the Decomposition Recommendation file, which aggregates the decompositions’ metadata

and their respective metrics. The architect can consult the results by ordering the decompositions ac-

cording to their metrics. Not represented in Figure 3.9, a View module is also added to present the

recommendations. The tool’s design facilitates the addition of this feature.

The Functionality Refactor [37] uses as input a Decomposition. It implements an algorithm that gen-

erates refactorizations of the functionalities with low complexity values. This feature is also completely

decoupled from the core design, depending only on the Decomposition’s file format. This is because not

all Decompositions contain information related to the monolith’s functionalities.

During the Editing and Modelling stage refactorization, an History Logger was introduced, capable of

undoing and redoing previous operations. Whenever an Operation is executed that modifies the Decom-

position, the Operation’s metadata is saved in a Log. When an undo is requested, the History Logger

analyses the current history to find the operation in question to then generate its opposite operation and

apply it to the decomposition. The redo is not as complex, since it only analyses the current history to

find the operation in question and then apply it once again to the decomposition. Just like the previous

additions, this new feature is easily integrated in the design core.

25

4
Usage

Contents

4.1 Choose Strategy . 27

4.2 Decomposition Generation . 28

4.3 Visualization . 30

4.4 Comparison Tool . 34

4.5 Decomposition Recommendation . 36

26

In this chapter, we demonstrate the typical usage of this tool, according to the pipeline. First, we

take a look at how to choose the strategy, then we produce a decomposition. Since there are two ways

of producing a decomposition, either by choosing the weights or by recommendation, we take a look at

both methods. Afterwards, the interaction with the view is shown. Through these views, the architect

can inspect the decomposition and experiment with the impact of possible changes.

4.1 Choose Strategy

Before choosing the strategy, one must first create the context of the codebase being analysed. Because

of this, the architect starts by creating a codebase. This can be seen in Figure 4.1.

Figure 4.1: Codebase Creation

Once it is created, the architect proceeds to add the desired representations to include in the decom-

position. To do this, the architect needs to click on Manage Codebase.

(a) Main
Menu

(b) Adding Representations (c) Representations Added

Figure 4.2: Add Representations

27

In this menu, corresponding to Figure 4.2(a), the architect will be presented with the Representations’

Files added and Strategies generated. Since it is empty on creation, the architect starts by adding

representations, which opens the window represented in Figure 4.2(b). In here, the architect selects the

desired representation and adds its files, which once submitted, we can see its results on Figure 4.2(c).

(a) Strategy Options (b) Created Strategy

Figure 4.3: Generate Strategy

With the representations added, the architect can now generate its desired strategy. Once the ”+”

button is clicked, the strategy options appear, as presented in Figure 4.3(a). Three things should be

kept in mind from this menu. First, since only one clustering algorithm exists, only one appears, and

only one can be selected. It is possible to add multiple representations, but since only one was added

(Accesses Based representation), only one appears. Third, each algorithm can only deal with certain

representations, so, it might happen that the codebase has all available representations but only one

appears, along with a specific clustering algorithm. With that said, the architect has now two options,

Manual Setup (see Section 4.2) or Recommendation (see Section 4.5).

4.2 Decomposition Generation

When manually creating the similarity, the previous choice of strategy needs to be accounted for. Since

the strategy requested the SciPy1 clustering algorithm as well as an accesses-based representation,

the information requested will be accordingly to said choices. In Figure 4.4(a) we can see part of the

requested information, connected to the representations used, as well as the weights of the criteria.

Once the architect fills the requirements, the similarity can be generated. The result of this generation is

shown in Figure 4.4(b).

1https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html

28

(a) Similarity Options Example (b) New Similarity

Figure 4.4: Generate Similarity

To conclude, we have the decomposition generation. It is accessed by clicking in Decomposition

Generation, which will make the menu in Figure 4.5(a) appear. In this menu, the architect specifies

information about the generated decomposition. In this case, the height of the cut or the number of

clusters. It should be kept in mind that certain algorithms do not allow this precise behavior, for example,

generating only with a certain amount of clusters. Because of this, both the similarity generation as well

as the decomposition generation might require adding new information requests in the User Interface

(UI). Form here, the architect can click in View Accesses to open the view in Section 4.3.

(a) Decomposition Options (b) New Decomposition

Figure 4.5: Generate Decomposition

29

4.3 Visualization

Figure 4.6: Decomposition View with Metrics

Figure 4.6 presents a decomposition graph based on accesses, composed of five clusters, where

the rectangles represent the clusters and the ellipses represent the entities. Starting by the clusters,

their vertical size is proportional to the number of entities it contains. Each cluster has its own color

associated with it, which is picked randomly during the graph construction, although it is always different

from the colors of the other clusters. Now focusing on the nodes, they inherit the color of its cluster and

do not change the vertical size, since all entities have the same weight. As for the edges, their thickness

30

indicates the number of functionalities accessing both nodes, while its length represents the average

cophenetic distance between the nodes. The cophenetic distance is obtained during the production of

the dendrogram image. Their color is associated to one of the connected nodes.

Next, lets look at the menu above View. This menu contains some of the available operations for

clusters. There are operations that change the decomposition, like Merge that merges two clusters,

Split that lets the architect choose the entities to be extracted to another cluster, as well as Transfer

Entities and Rename Cluster. All of this operations require the invocation of the backend and modify

the persistent data. Other operations, such as Expand Cluster and Only Show Neighbours, only affect

the view. Expand Cluster, when requested, updates the view to show each entity inside the selected

cluster. This operation was applied to the three expanded clusters in the Figure. As for Only Show

Neighbours, it isolates all the nodes and edges not directly related to the selected node. We can see

this in Figure 4.7. To revert this, the Show All operation is used.

Figure 4.7: Only Show Neighbours Operation and Speed Dial

31

Another operation to have into account is Toggle Physics. Since the graph generation tool contains

a physics model, it might be useful to deactivate it, so that nodes can be freely moved. Otherwise, the

similarity distances are prioritized. The Restore Graph Positions operation will be discussed later.

Going back to Figure 4.6, there is a table below the graph, which presents the clusters’ metrics. When

the decomposition is modified, the table is also updated accordingly. This table can be accessed through

the circle with the ”+” (speed dial), by clicking in Go to Metrics, as shown in Figure 4.7. This circle has

other operations available, such as the undo/redo of operations, change to the functionality view and

searching for a component. The undo/redo operation is part of the implementation of the aforementioned

History Logger (see Section 3.4). Every time the decomposition is modified, the persistent data in the

backend is updated, and with it, the operation’s metadata is added into a log. When calling undo, based

on said metadata, the decomposition is reverted to the state before the operation was applied. The

inverse logic is applied with the redo. In both cases, undo and redo, the view is updated.

(a) Entity Informations

(b) Related Functionalities (c) Related Clusters

Figure 4.8: Entity Menus

32

Another thing to keep in mind is that entities, clusters and edges can be double clicked to obtain

further informations. For example, when clicking in an entity, the menu in Figure 4.8(a) appears. Then

the architect can select to go to the menu in Figures 4.8(b) and 4.8(c). Also, when clicking in an edge, the

information varies according to the connected nodes. We can see this effect in Figures 4.9(a) to 4.9(c).

(a) Between Cluster and Entity (b) Between Clusters

(c) Between Entities

Figure 4.9: Different Edge Menus

As for the search tool, it is implemented with a fuzzy-search finder, and in the accesses view, it lets

the architect search for entities, clusters and functionalities. Once the architect selects the desired item,

the view focuses on the element like with the operation shown in Figure 4.7.

Figure 4.10: Search Tool

Before concluding this view, there are some additional features that should be considered. As it

shown in Figure 4.11, there is a Snapshot Decomposition feature. Once requested, a copy of this

33

decomposition is done. This is useful when editing a decomposition without risking loosing it. It can also

be combined with the undo/redo to save the progress, undo multiple steps and try other decomposition

tactic. Another important feature is Save Graph Positions. With it, the architect can save the current

positions of the clusters, entities and edges. The positions are associated with the operations’ log, so

if an undo is done, the previously saved positions will be restored. Also, if the architect does not like

the current presentation of the components, the previous positions can always be restored with the

Restore Graph Positions operation. The positions are also restored when reopening the view and

can sometimes reopen faster when dealing with larger codebases (discussed in Section 5.5).

Figure 4.11: Additional Operations

4.4 Comparison Tool

According to what was discussed in Quality Assessment and Comparison 3.1.4, we provide some default

comparison measures in the tool. In Figures 4.12 and 4.13 the comparisons are being made between

two decompositions from different strategies, one with information about its accesses and another with

information about its accesses as well as the authors and commits made in the codebase’s repository.

While the properties presented in Figure 4.12 are obtained from the execution of MoJoFM [42], which

accesses each decomposition’s clusters to compare them, in Figure 4.13 the properties are compared

side to side, based on already obtained values, such as metrics and cluster sizes. If the compared

decompositions don’t contain the same metrics, which is the case for TSR, then Not Present replaces it.

34

Figure 4.12: MoJoFM in Comparison Table

Figure 4.13: Statistics in Comparison Table

35

4.5 Decomposition Recommendation

This functionality is part of one of the previously mentioned additional features (see Section 3.4). It

helps the architect reason about multiple decompositions according to the chosen strategy. It works

by attributing different weights to the available aggregation criteria (the number of criteria may vary)

and then creates multiple decompositions based on the similarity level, given by said criteria. Once the

decompositions are created, their metrics are calculated and saved in a list. The decompositions are not

persistently saved, since the architect usually only wants a small selection of decompositions, according

to his requirements. It would also take a bigger impact on performance, which needs to be minimized in

this feature, since a large number of calculations is made and the architect is actively waiting for more

results. In Figure 4.14 we can see the implementation of this feature.

Each line corresponds to a decomposition, while the columns with Weight correspond to the weights

of the criteria (from Access Weight to Sequence Weight) and the columns from Complexity to Perfor-

mance correspond to the metrics obtained from said decomposition. As we can see, there are multiple

ways of filtering and ordering the columns. In this case, the decompositions with five clusters and the

smallest possible complexity (ordered by complexity) were chosen. The first and third decompositions

were selected by the architect to be created and persistently saved.

It should be noted that when the architect requests the recommendation of multiple decompositions,

while they are being generated, the architect can already analyse some of the obtained results.

Figure 4.14: Recommendation

36

5
Evaluation

Contents

5.1 Previous Framework . 38

5.2 Current Framework . 38

5.3 Extensibility . 39

5.4 Pluggability . 42

5.5 Performance . 43

37

The evaluation is focused on the three identified qualities: pluggability, extensibility, and performance.

But before analysing each one of the qualities, we describe the previous object-oriented framework

implementing the design, as well as the current framework.

5.1 Previous Framework

Codebase

Similarity
Matrix

0..*
1

Decomposition

0..*
1

Cluster

0..*
1

Entity

0..*
1

SciPy
Clustering

Metric
Value

0..*1

Figure 5.1: Previous Tool Framework

The previous framework (represented in Figure 5.1), presents the main classes that support the

Mono2Micro’s microservices identification approach. The Codebase class encapsulates the context

of each monolith, while the Similarity Matrix class is responsible for creating the similarity between

elements. From there, the SciPy Clustering uses the information obtained in the Similarity Matrix class to

create a Decomposition, which in turn contains, Metric Values, Clusters and Entities. Since Mono2Micro

was not designed to allow for extensibility and pluggability, no extension points were available and the

addition of new features implied a strong coupling to the current structure.

5.2 Current Framework

Figure 5.2 presents the classes implementing the current design of the tool, emphasizing the main ab-

stract classes that support the pipeline stages, their pluggability and extensibility. The Representation

abstract class decouples the collection and decomposition generation stages, while allowing the exten-

sibility of different monolith representations. In the previous framework, Representations was not yet

present, as this information was attached to the Codebase class and did not allow for extension.

38

Codebase

Strategy

0..*

1

<<Abstract>>
Decomposition

<<Abstract>>
Representation

0..*

1

<<Abstract>>
Similarity

0..*

1

<<Abstract>>
Element

Metric
Value

<<Abstract>>
Metric

0..*
1

<<Abstract>>
Representation
Information

0..*1 0..*
1

<<Abstract>>
Cluster

0..*
1

0..*
1

<<Abstract>>
Clustering

0..*

1

Figure 5.2: Tool Framework

Similarly, the Decomposition abstract class decouples the decomposition generation stage from other

downstream stages, while allowing the extensibility of different types of decomposition through the ab-

stract classes Representation Information, Cluster and Element. The abstract classes Similarity and

Clustering support the decomposition generation stage, the abstract class Representation Information

the visualization, editing and modelling stages, and the Metric abstract class the quality assessment

stage. It is recommended that this figure is revisited when analysing Figures 5.3 to 5.5, which will focus

on certain components of the tool’s framework.

Comparing to the previous framework, Strategy was introduced to choose the microservice decom-

position approach and Similarity as well as Clustering were refactored from Similarity Matrix and SciPy

Clustering, respectively, to allow for their extension. As for Decomposition, it was also adapted to provide

extensibility by introducing Representation Information and refactoring Cluster and Entity from their pre-

vious implementation, Cluster and Element, respectively. The contents of Representation Information

were previously attached to Decomposition. Finally, the metric values were previously obtained from

multiple metric’s calculations that were highly coupled and with the refactorization, a modular approach

was taken and each metric’s calculations extracted into its own class.

5.3 Extensibility

To assess the tool’s extensibility, we discuss how the tool’s object-oriented framework is extended,

through the extension points, to support the different approaches. As already stated in Section 3.1.1,

collectors are not integrated in the tool, since they are specific for each type of collection and cannot

39

be generalized, but the Representation abstract class allows their integration into the pipeline. Overall,

two concrete approaches have been implemented to answer RQ (see Section 1.2), resulting from the

sequence of accesses [7] and the development history [43], but, whenever relevant, the support of other

approaches is referred. While in the sequence of accesses, the codebase is collected to obtain the

call graph’s sequence of accesses, in the development history, the codebase is collected to obtain the

relations between the entities and the authors that modified them, as well as the relations between the

entities, based on the number of commits in common between each pair.

<<Abstract>>
Similarity

Similarity Matrix
SciPy

Similarity
Matrix

<<Abstract>>
Weights

0..*
1

Dendrogram

1
1

Accesses
Weights

Repository
Weights

1 1

<<Abstract>>
Representation

Commit
Representation

Accesses
Representation

<<Abstract>>
Clustering

SciPy
Clustering

<<Abstract>>
Decomposition

0..*
1

Author
Representation

...

Figure 5.3: Decomposition Generation Extension

Figure 5.3 shows the extensions for the decomposition generation stage. The abstract classes Rep-

resentation and Decomposition are, respectively, the input and output of the stage. Representation

has several extensions, Accesses Representation [7], Author Representation and Commit Representa-

tion [43], which are supported by a JSON format, simplifying their integration with the decomposition

generation stage. Inside this stage, two extension points, the criteria and algorithm, are supported by

the abstract classes Clustering, Similarity and Weights.

The diagram illustrates that, actually, there is a single extension of Clustering, SciPy Clustering,

which is responsible for the decomposition algorithm that generates the Partition Decomposition, an

extension of Decomposition (which can be seen in Figure 5.4).

Since a single decomposition algorithm was implemented, there is a single subclass of Similarity

(Similarity Matrix SciPy), which supports the algorithm’s input format, a Similarity Matrix. The Similarity

40

Matrix decouples the criteria (which are represented by the Weights) from the algorithm. Therefore, if

a new algorithm is added, it is only necessary to define a new Similarity subclass, keeping the Weights

(criteria) subclasses. On the other hand, adding a new representation only requires defining a new

Weights subclass, while keeping the algorithm and similarity. As for the Dendrogram, it is one of the

specific properties provided by the SciPy clustering algorithm.

<<Abstract>>
Decomposition

Partition
Decomposition

<<Abstract>>
Representation

Information

0..* 1

Accesses
Information

Repository
Information

<<Abstract>>
Metric

Metric
Value

0..*1

TSR MetricCoupling ...

Figure 5.4: Decomposition Extension

Figure 5.4 shows part of the extensions for the decomposition’s downstream stages. The Decompo-

sition abstract class has a single subclass, which is related to the decomposition algorithm, in this case,

it is a partition, where an element belongs to a single cluster. If other types of decompositions are to be

considered, new subclasses should be defined.

The Representation Information subclass is extended with the set of representations used in the

decomposition generation. This information allows the adaptation of the visualization, assessment and

editing and modeling extension points. In what concerns visualization, the views depend on the type of

information to present. Two extensions of views were done, one based on the sequence of accesses

and the other based on the development history.

While in the view based on the sequence of accesses, the edges and displayed information depend

on the functionalities that belong to the Accesses Information, in the view based on the development

history, the edges and displayed information is related to the commits and authors in common, which

belong to the Repository Information. The usage of the view based on the accesses can be seen in

Section 4.3. Both views follow the Observer pattern.

Considering the assessment of the decomposition’s qualities, new subclasses of Metric can be de-

fined, depending on Representation Information. For instance, while Coupling, Cohesion, Complexity

and Performance require the sequence of accesses (present in Accesses Information), TSR Metric

(Team Size Reduction) [43] requires the development history (present in Repository Information). The

support of the editing and modelling extension is shown in the next section.

41

5.4 Pluggability

The tool’s pluggability focuses on how new stages can be added, which was exercised by the support of

the aforementioned additional features (see Section 3.4) and shown in Figure 5.5.

Strategy

<<Abstract>>
Decomposition

0..*

1

0..1

1

<<Abstract>>
Operation0..*1

0..*

1

2

<<Abstract>>
Clustering

<<Abstract>>
Similarity

0..* 1
0..*1

Form Cluster
Operation

Form Cluster
Partition Op.

...Merge
Operation

Merge
Partition Op.

Transfer
Operation

Transfer
Partition Op.

Functionality
Refactor

Tool

Comparison
Tool

Recommender

History

Figure 5.5: Implementation of Additional Features

The Recommender, Comparison Tool and Functionality Refactorization Tool features are imple-

mented as external tools that use some of the tool’s modules. Starting by the Recommender, it uses

a brute force algorithm that generates a large number of decompositions to assess them. Its usage

can be seen in Section 4.5. Only one extension of the Recommender was done (thus not mentioned

in Figure 5.5), called Recommend Matrix SciPy, which uses the Similarity Matrix and SciPy Clustering

classes to produce Partition Decompositions. Even with the addition of new Representations about the

development history, no additional extensions of Recommender were needed, since Recommend Matrix

SciPy is able of producing Partition Decompositions, independently of the representations available. As

an additional note, although not evaluated, the Recommender is prepared for extension. Each extension

should only depend on the Similarity, Clustering and Decomposition used.

As for the Functionality Refactor Tool, it uses a Decomposition and its Accesses Information to rec-

ommend functionality refactorizations [37] that reduce the decomposition’s complexity. This feature is

implemented in an external Docker container and only depends on the Decomposition’s structure.

Although not considered an additional feature, the Comparison Tool (see its usage in Section 4.4)

was obtained by modifying an existing functionality that calculated the MoJoFM [42] values between

two decompositions. It is prepared for extension, although not tested, but by default, it compares two

decompositions even when they are not of the same type, since all decompositions contain Clusters with

42

Elements, which are the requirements for MoJoFM. Other comparisons varying on the decompositions

used can be added, making this tool dependent on Decomposition.

Finally, the remaining additional feature, the History Logger feature (see Sections 3.4 and 4.3), rep-

resented by History in Figure 5.5. Its addition in the tool was fairly easy, only requiring the creation of an

History instance in the Decomposition setup.

As for the Operations, they are responsible for the editing and modelling stage and even though

operations were already available (Transfer, Merge, Split and Rename), they were not implemented

in an object-oriented approach, only the operation’s metadata was sent to the backend (the cluster’s

names, the affected entities, etc.) which did not allow for its extension and so the Operation class and

respective subtypes were introduced, along with History, by implementing the Command pattern with

its execute (also redo) and undo actions. An extension of Operation was also added, the Form Cluster

Operation. Since the view now contained entities (see Chapter 4), it was sometimes useful to form a

cluster by selecting the desired entities and clusters.

Also, Operations are dependent on Decomposition. This is because the behavior of the operation

can vary according to the decomposition’s components. For example, the merge operation behavior

depends whether or not an element can be in several clusters. They also depend on the Representa-

tion Informations of the Decomposition, since each subclass of an operation might do some additional

processing, depending on the present Representation Informations.

Therefore, when a new Representation Information is added, it is sometimes necessary to modify

each of the operation’s subclasses to handle it, since it might contain information that can be indirectly

affected (such as the functionalities with Accesses Information), whereas, if a new extension of Decom-

position is added, the definition of new subclasses is implied for each of the operations.

Since each Operation is responsible for its undo/redo, History is not affected. As a matter of fact,

History does not have any kind of knowledge about the specific types of Operation stored in its log.

Although not represented in Figure 5.5, History has one extension, PositionHistory, which also saves

the positions of the components in the graph (related to Save Graph Positions, see Section 4.3). The

positions are saved in a log that corresponds to the operations’ log.

5.5 Performance

The development of this project implied the refactorization and expansion of the previous Mono2Micro’s

design. With the refactorization, there were also trade-offs between performance and better code struc-

ture. To mitigate some of the performance losses, optimizations were introduced.

Starting with the decomposition generation, the performance can be observed in Table 5.1. This test

was made by comparing the creation of a decomposition with 5 clusters and using a strategy based

43

Table 5.1: Single Decomposition Generation

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS
Fenix

Academic
Functionalities 133 104 225 278 863

Entities 29 49 92 123 487
Previous
Version 46 1435 62 151 9111

Current
Version 139 2033 232 362 12649

on the sequence of accesses, since the previous version of Mono2Micro only supported sequences of

accesses. The measures were done by averaging the time (in milliseconds) of 5 executions once the

time stabilized (avoiding initial longer executions), and with each codebase empty. As we can see, when

comparing both versions, the previous version can be considerably faster. This is mainly due to the

refactorization of the metrics. The previous metrics calculations were united, which allowed to share

some of the performance-heavy calculations, but at the cost of sacrificing extensibility, as it did not allow

for the extension of the metrics.

Table 5.2: Multiple Decomposition Generations in Same Codebase

Number of Decomposition
Generations in Codebase (N) 1 5 10 15 20

Time Taken After
N Generations 9111 9604 10992 12834 14973

However, the same cannot be said about the decomposition generation time when generating multi-

ple decompositions in the same codebase, as it can be seen in Table 5.2. Since the current version uses

a database instead of the file system previously used for storage, the performance is maintained. The

database model is also much more partitioned, usually having a collection per each tool’s component.

This tests were done by decomposing the Fenix Academic codebase by the number of times indicated

in the table and with the time taken in milliseconds. Although the performance hit is quite significant

here, it is nowhere near as critical in the majority of codebases, since they present smaller codebase

sizes, and thus requiring more decompositions to have a significant impact.

Now taking a closer look at the visualization stage, once refactored and extended, became concern-

ing performance-wise. Because of it, optimizations were introduced to improve the architect’s experience

when interacting with the tool. The first example we have of this can be seen in Table 5.3. It shows the

loading time of a candidate decomposition view in milliseconds (average time of 5 executions). As

discussed, the refactorization introduced the Element class, for the cluster’s elements, to improve the

extensibility. Along with this, the elements also became nodes in the view, reducing the performance.

When first introduced in the view, a built-in clustering feature of the graph tool was used to generate

44

Table 5.3: Clusters View Booting Time

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS
Fenix

Academic
Functionalities 133 104 225 278 863

Entities 29 49 92 123 487
Previous
Version 29 1920 42 67 1370

Refactored
Version 329 2473 641 844 13621

Optimized
Version 192 179 182 283 4503

the clusters, which easily grouped the elements of the graph into their respective cluster. However this

feature was very slow during graph construction and updates. So to improve it, two actions were taken.

The first was to remove the built-in clustering feature and replace it with an implementation specific

to these needs. Booting (and updating) times got significantly better, as shown in Table 5.3 when com-

paring the Refactored Version and the Optimized Version. The second action was the introduction of

an optimization, which calculated the edges’ properties in the backend, instead of in the frontend. In

the majority of codebases, there were slight performance improvements, since most of the time is taken

producing the graph. However, in Blended Workflow we can see that the time in the Optimized Version

is significantly quicker than in the Previous Version. Even though it only has 104 functionalities, they are

the longest (with more accesses) of all codebases, which significantly worsened the performance when

processing them in the frontend. Nevertheless, Fenix Academic, which contains much more entities and

functionalities, continues to perform worse than the Previous Version.

Table 5.4: Clusters View Booting Time With Saved Positions

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS
Fenix

Academic
Functionalities 133 104 225 278 863

Entities 29 49 92 123 487
Optimized

Version 192 179 182 283 4503

Saved Positions
Version 195 185 175 233 1353

This was the best trade-off obtained, between the quantity of information provided and the perfor-

mance hit. Although with the addition of the History Log feature, further improvements were made, since

now the positions of the graph could be saved. In Table 5.4 we can see the performance when booting

from a decomposition with saved graph positions. The average of 5 executions was again made, count-

ing the time in milliseconds until the graph was fully booted. While in the first three codebases, the times

were really close, sometimes better, sometimes worse, the difference was negligible or non existent.

45

With Splunk AWS the times were consistently better, but still not significant. Once in Fenix Academic,

the difference was significant and improved to the point of equaling the Previous version from Table 5.3.

Of course, for this to happen, it requires that the graph is fully booted once, to save said positions.

Now focusing on the operations, in Table 5.5, we can see the performance of the same merge

operation across the three previously mentioned versions, done to the same decomposition and to the

same clusters. This times were also an average of 5 executions.

Table 5.5: Merge Operation and Clusters Redraw Time

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS
Fenix

Academic
Functionalities 133 104 225 278 863

Entities 29 49 92 123 487
Previous
Version 55 3740 74 171 4264

Refactored
Version 180 4805 308 900 14795

Optimized
Version 100 88 148 168 1688

Multiple conclusions can be taken from this table. Starting by analysing between the Previous Ver-

sion and the Refactored Version, one can notice the increase in processing time in Blended Workflow

and Fenix Academic. This is caused by the recalculation of metrics, which mainly affects these two

codebases. In decompositions with accesses, the functionalities change according to the clusters, since

their sequence of local transactions is affected correspondingly. So once an operation is requested in

these versions, all functionalities were invalidated and reconstructed to then recalculate the metrics.

Since these two codebases contain the longest (Blended Workflow) or many (Fenix Academic) func-

tionalities, there is a quite noticeable spike in processing time. In Refactored Version, the performance is

even further aggravated since, as it was previously noticed, the metrics calculation became slower with

the refactorization and after each operation, the view had to be redrawn accordingly, which was also

already concluded that it takes more time.

To solve this, several optimizations were introduced. In the Current Version, instead of eagerly

recalculating the metrics, a lazy approach was taken. A new flag was introduced in the decompositions

to invalidate them. So, once an operation is requested, instead of reconstructing the functionalities and

recalculating the metrics, solely the affected functionalities (which correspond to the ones that interact

with the affected nodes) are removed and the decomposition invalidated. Once the architect requests

any information related to the functionalities or metrics, they are updated and the flag removed.

This makes it so that the response is quickly returned, but another optimization was made in the fron-

tend. During the time waiting for the response, the frontend prepares the redraw of the view according

to the requested operation, instead of waiting for the clusters and entities to then redraw the view. In this

46

case, three outcomes are possible:

1. The operation can fail in the backend and once the frontend finishes preparing the redraw, the

frontend aborts the update of the view;

2. The backend operation can finish faster than the frontend preparing the redraw, in which case,

once the frontend finishes preparing the redraw, the view is updated;

3. The frontend finishes first and waits for the response of the backend to then update the view.

The second outcome can be quite noticeable in the Fenix Academic codebase, since it contains the

largest amount of entities, which difficults edge processing. The remaining operations follow the same

logic as the merge operation since their procedure is the same, while the Optimized Version avoids

eager calculations, the other versions prioritize them.

Table 5.6: Number of Clusters Comparison

Number of
Clusters 4 6 8 10 12

ACME
Champions

Previous
Version (ms) 31 54 54 59 65

Current
Version (ms) 124 142 142 149 158

Blended
Workflow

Previous
Version (ms) 1273 1411 1599 1750 1927

Current
Version (ms) 2049 2381 2207 2398 2403

hexie
Previous

Version (ms) 56 62 64 69 73

Current
Version (ms) 207 227 232 231 225

Splunk
AWS

Previous
Version (ms) 110 133 174 237 199

Current
Version (ms) 357 386 429 402 421

Fenix
Academic

Previous
Version (ms) 8916 9593 12442 13941 13135

Current
Version (ms) 12736 13437 16647 16993 17694

Now let’s take a look at the time taken when creating decompositions with different numbers of

clusters, which can be analysed in Table 5.6. Once again, each time was taken from an average of

5 executions. As a general rule, with the increase of the number of clusters, there is an increase in

processing time. These times heavily depend on the functionalities and how they process their local

transactions graph. With the increase in the number of clusters, more local transactions will be made.

Now let’s take a look at some of the performance values of the new view, focused on the development

history, the repository view, represented in Table 5.7. The tests were also made with decompositions

47

Table 5.7: Repository View Booting Time

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS
Fenix

Academic
Entities 29 49 92 123 487

Optimized
Version 152 167 146 197 1904

Saved Positions
Version 168 178 162 185 846

of 5 clusters and each time (milliseconds) is an average of 5 executions. In general, we can see that

the performance values obtained are significantly better than when using accesses. This is due to the

amount of information that needs to be processed in each of the views, as in the repository view, it is

much inferior. It can also be concluded that the Save Graph Positions feature does not improve or impact

the time for smaller codebases, while in Fenix Academic, it considerably reduces the processing time.

Overall, during the usage of the repository view, the processing times are quite small, even with larger

codebases, which can be considered irrelevant.

But even with all these optimizations, a troubling notes performance-wise needs to be addressed,

related with the views. When visualizing graphs with the majority of nodes being elements, it is to be

expected that the number of edges also increases compared to a view with a majority of nodes being

clusters. With a view such as the accesses view, which usually has nearly an edge per each pair of

entities, the performance significantly worsens. We can see this in Table 5.8. This table shows the

average time to expand all clusters into its respective nodes, along with the number of edges, once all

clusters are expanded. It is a very demanding operation since, once expanded, all nodes and edges

need to be recalculated. This table presents the average of 5 executions of this operation, except

for the Fenix Academic Cold Start, which is only executed once, with a newly created decomposition.

While in the majority of codebases it is acceptable, once considering Fenix Academic, the time taken

drastically changes. Unfortunately, no optimization cannot significantly improve the performance, other

than removing edges. Also, when the architect is working with the tool, he usually does not want such

a broader perspective with, 41725 edges and 487 nodes. Usually he will either only have part of the

clusters expanded or use the Only Show Neighbours operation, which mitigates this problem.

Table 5.8: Expand All in Accesses View

Codebases ACME
Champions

Blended
Workflow hexie Splunk

AWS

Fenix
Academic
Repository

Fenix
Academic
Accesses

Fenix
Academic
Cold Start

Nodes 29 49 92 123 487 487 487
Edges 355 1143 915 2353 13948 41725 41725

Optimized
Version 32 68 55 117 2310 6920 37563

48

6
Conclusion

Contents

6.1 Conclusion . 50

6.2 System Limitations . 50

6.3 Future Work . 51

49

6.1 Conclusion

Although there is large number of strategies for microservices identification, there is also a lack of tools

that facilitate and promote the experimentation and comparison. Because of this, such a tool would

help software architects on the identification of what could be the best candidate decomposition or the

trade-offs between different decompositions.

After analysing the existing approaches and their tools, we propose a microservices identification

pipeline and identify the relevant variations that an extensible multiple strategy tool should have. Ad-

ditionally, an object-oriented framework is proposed, which decouples the identification pipeline stages

and supports several extension points, providing the qualities of pluggability and extensibility.

The solution allows for different types of monolith collectors, different criteria for the definition of

similarity measures between the monolith elements, several algorithms for the decomposition of the

monolith into microservices, different visualizations of the candidate decompositions, their assessment

through metrics, and comparison.

The tool is evaluated through the integration of two identification strategies, one based on the mono-

lith’s sequences of accesses and another on the codebase repository history. These integrations led

to the extension of the representations, criteria, representations’ information, metrics, operations and

views, as well as the introduction of new features to prove its pluggability.

Amongst the most important we have a Recommendation tool, helping the architect choosing the

candidate decomposition, based on metrics, and a History Log tool, capable of undoing and redoing

modifications, which when paired with the new snapshot operation, further incentivize the modification

of the decomposition. For a more careful review of the implementation, consulting Chapter 7 is advised.

6.2 System Limitations

As mentioned at the end of Section 5.5, there are still some operations with a long waiting time, mainly

due to the amount of information that needs to be processed to generate the graph. Although some

workarounds, such as removing some of the edges or further code optimization could improve perfor-

mance, the problem still remains when generating large dense graphs with the current graph generation

tool. As it stands, Mono2Micro is also targeted to be used alongside JavaScript-based modules, which

does not help when trying to use other external graph visualization tools, although workarounds, such

as exporting files, would be possible.

As for the suggested pipeline, there is also the possibility that some of the approaches do not per-

fectly fit with the defined stages. This is the case when considering the Process Mining Decomposition

Framework [30] tool. Although it is referred in this work that an algorithm can be used to provide the

decomposition, the implementation described involves the manual building of the decomposition by the

50

grouping and splitting of elements, which would require a visualization stage as an alternative for the

decomposition generation stage. The best solution would be to not implement the clustering algorithm

and leave it to the editing and modelling stage, where the architect to manually make the decomposition.

As it is expected, this is not the desired behaviour to have with the tool, but still possible. Just like in this

example, there will always be some exceptions.

6.3 Future Work

Because of the nature of this project, which involves a lot of experimentation with the structure, as well as

different features, some of the extension points were not tested to its full potential. This is the case with

the similarities and the clustering algorithms. Considering that no additional clustering algorithm was

added and it requires specific format of the similarity, neither were introduced. However, their addition

should be straightforward, especially if considering that the outputted decomposition is of the same type

as the Partition Decomposition. Nevertheless, it requires further experimentation.

The same goes for the extension of Decomposition. An interesting research would be the introduction

of a DuplicationDecomposition, which allowed the duplication of elements across clusters, with newly

introduced metrics. This also involves the implementation of new operation behaviors and possibly a

new visualization.

Using other visualization tools would also be an interesting approach, having into account what was

discussed in Section 6.2. Along with a new visualization tool, other views could be considered, for

example, an improved version of the functionality view currently, present in Mono2Micro.

New comparison tools like MoJoFM would also be a relevant addition to the tool, especially those

that do not take the decomposition type into account.

The introduction of an advanced History feature, which could be able of visualizing all the modifica-

tions done to a decomposition as a tree, branching when doing an operation after a certain amount of

undo operations.

51

Bibliography

[1] D. Haywood, “In defense of the monolith,” Microservices vs. Monoliths - The Reality Beyond the

Hype, 2017. [Online]. Available: https://www.infoq.com/minibooks/emag-microservices-monoliths/

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[3] C. Richardson, Microservices Patterns: With examples in Java. Manning, 2018. [Online].

Available: https://books.google.pt/books?id=UeK1swEACAAJ

[4] ——, “Developing transactional microservices using aggregates, event sourcing and cqrs,”

Microservices vs. Monoliths - The Reality Beyond the Hype, 2017. [Online]. Available:

https://www.infoq.com/minibooks/emag-microservices-monoliths/

[5] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi, G. Hecht, J. Privat, and Y.-G.

Guéhéneuc, “A taxonomy of service identification approaches for legacy software systems

modernization,” Journal of Systems and Software, vol. 173, p. 110868, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121220302582

[6] A. Selmadji, A.-D. Seriai, H. L. Bouziane, C. Dony, and R. O. Mahamane, “Re-architecting oo

software into microservices,” in European Conference on Service-Oriented and Cloud Computing.

Springer, 2018, pp. 65–73.

[7] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a microservices architecture: An

approach based on transactional contexts,” in Software Architecture, T. Bures, L. Duchien, and

P. Inverardi, Eds. Cham: Springer International Publishing, 2019, pp. 37–52.

[8] A. Fuhr, T. Horn, and V. Riediger, “Using dynamic analysis and clustering for implementing services

by reusing legacy code,” in 2011 18th Working Conference on Reverse Engineering. IEEE, 2011,

pp. 275–279.

[9] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service candidate identification from mono-

lithic systems based on execution traces,” IEEE Transactions on Software Engineering, vol. 47,

no. 5, pp. 987–1007, 2021.

52

https://www.infoq.com/minibooks/emag-microservices-monoliths/
https://books.google.pt/books?id=UeK1swEACAAJ
https://www.infoq.com/minibooks/emag-microservices-monoliths/
https://www.sciencedirect.com/science/article/pii/S0164121220302582

[10] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic approach

to service decomposition,” in European Conference on Service-Oriented and Cloud Computing.

Springer, 2016, pp. 185–200.

[11] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying microservices using functional decom-

position,” in International Symposium on Dependable Software Engineering: Theories, Tools, and

Applications. Springer, 2018, pp. 50–65.

[12] Z. Zhang, R. Liu, and H. Yang, “Service identification and packaging in service oriented reengineer-

ing.” in SEKE, vol. 5. Citeseer, 2005, pp. 620–625.

[13] D. Saha, “Service mining from legacy database applications,” in 2015 IEEE International Confer-

ence on Web Services. IEEE, 2015, pp. 448–455.

[14] G. Mazlami, “Algorithmic extraction of microservices from monolithic code bases,” Master’s thesis,

University of Zurich, February 2017.

[15] G. Mazlami, J. Cito, and P. Leitner, “Extraction of microservices from monolithic software architec-

tures,” in 2017 IEEE International Conference on Web Services (ICWS). IEEE, 2017, pp. 524–531.

[16] T. C. Matias, “Streamlined refactoring of modern web frameworks to microservices,” Master’s thesis,

Faculdade de Engenharia Universidade do Porto, July 2019.

[17] A. K. Kalia, J. Xiao, R. Krishna, S. Sinha, M. Vukovic, and D. Banerjee, “Mono2micro: A

practical and effective tool for decomposing monolithic java applications to microservices,” in

Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2021. New

York, NY, USA: Association for Computing Machinery, 2021, p. 1214–1224. [Online]. Available:

https://doi.org/10.1145/3468264.3473915

[18] H. Jain, H. Zhao, and N. R. Chinta, “A spanning tree based approach to identifying web services,”

International Journal of Web Services Research (IJWSR), vol. 1, no. 1, pp. 1–20, 2004.

[19] L. Baresi, M. Garriga, and A. D. Renzis, “Microservices identification through interface analysis,” in

European Conference on Service-Oriented and Cloud Computing. Springer, 2017, pp. 19–33.

[20] C. Del Grosso, M. Di Penta, and I. G.-R. de Guzman, “An approach for mining services in database

oriented applications,” in 11th European Conference on Software Maintenance and Reengineering

(CSMR’07). IEEE, 2007, pp. 287–296.

[21] B. Andrade, S. Santos, and A. R. Silva, “From monolith to microservices: Static and dynamic

analysis comparison,” 2022. [Online]. Available: https://arxiv.org/abs/2204.11844

53

https://doi.org/10.1145/3468264.3473915
https://arxiv.org/abs/2204.11844

[22] M. Daoud, A. E. Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. E. Fazziki, “Automatic mi-

croservices identification from a set of business processes,” in Smart Applications and Data Anal-

ysis, M. Hamlich, L. Bellatreche, A. Mondal, and C. Ordonez, Eds. Cham: Springer International

Publishing, 2020, pp. 299–315.

[23] A. Vemulapalli and N. Subramanian, “Transforming functional requirements from uml into bpel to

efficiently develop soa-based systems,” in OTM Confederated International Conferences” On the

Move to Meaningful Internet Systems”. Springer, 2009, pp. 337–349.

[24] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan, “A dataflow-driven

approach to identifying microservices from monolithic applications,” Journal of Systems and

Software, vol. 157, p. 110380, 2019. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0164121219301475

[25] M. Aggarwal and S. Sabharwal, “Test case generation from uml state machine diagram: A survey,”

in 2012 Third International Conference on Computer and Communication Technology. IEEE, 2012,

pp. 133–140.

[26] S. Bechhofer, M. T. Özsu, and L. Liu, “Owl: Web ontology language,” in {Encyclopedia of Database

Systems}. Springer Nature, 2009.

[27] M. Nakamur, H. Igaki, T. Kimura, and K. Matsumoto, “Identifying services in procedural programs

for migrating legacy system to service oriented architecture,” in Implementation and Integration of

Information Systems in the Service Sector. IGI Global, 2013, pp. 237–255.

[28] M. J. Amiri, S. Parsa, and A. M. Lajevardi, “Multifaceted service identification: process, requirement

and data,” Computer Science and Information Systems, vol. 13, no. 2, pp. 335–358, 2016.

[29] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation: The state

of the practice,” IEEE software, vol. 20, no. 6, pp. 35–39, 2003.

[30] D. Taibi and K. Systä, “From monolithic systems to microservices: A decomposition framework

based on process mining,” 05 2019.

[31] A. A. C. D. Alwis, A. Barros, C. Fidge, and A. Polyvyanyy, “Discovering microservices in enter-

prise systems using a business object containment heuristic,” in OTM Confederated International

Conferences” On the Move to Meaningful Internet Systems”. Springer, 2018, pp. 60–79.

[32] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling metrics for predicting maintainabil-

ity in service-oriented designs,” in 2007 Australian Software Engineering Conference (ASWEC’07).

IEEE, 2007, pp. 329–340.

54

https://www.sciencedirect.com/science/article/pii/S0164121219301475
https://www.sciencedirect.com/science/article/pii/S0164121219301475

[33] M. Abdelkader, M. Malki, and S. M. Benslimane, “A heuristic approach to locate candidate web

service in legacy software,” International journal of computer applications in technology, vol. 47, no.

2-3, pp. 152–161, 2013.

[34] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability of service-

and microservice-based systems: a literature review,” in Proceedings of the 27th International

Workshop on Software Measurement and 12th International Conference on Software Process and

Product Measurement, 2017, pp. 107–115.

[35] A. K. Kalia, J. Xiao, C. Lin, S. Sinha, J. Rofrano, M. Vukovic, and D. Banerjee, “Mono2micro: an

ai-based toolchain for evolving monolithic enterprise applications to a microservice architecture,” in

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2020, pp. 1606–1610.

[36] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii, “Visualization tool for designing microservices with

the monolith-first approach,” in 2018 IEEE Working Conference on Software Visualization (VIS-

SOFT), 2018, pp. 32–42.

[37] J. Correia and A. Rito Silva, “Identification of monolith functionality refactorings for microservices

migration.” Softw Pract Exper, pp. 1–20, 2022.

[38] S. Santos and A. R. Silva, “Microservices identification in monolith systems: Functionality redesign

complexity and evaluation of similarity measures,” Journal of Web Engineering, Aug. 2022.

[Online]. Available: https://doi.org/10.13052/jwe1540-9589.2158

[39] J. Marshall and G. Kotonya, “A runtime visualizer for microservices,” in 2021 IEEE International

Conference on Service-Oriented System Engineering (SOSE). IEEE, 2021, pp. 72–80.

[40] N. Santos and A. Rito Silva, “A complexity metric for microservices architecture migration,” in 2020

IEEE International Conference on Software Architecture (ICSA), 2020, pp. 169–178.

[41] L. Theivendra, “Transform monolithic java applications into microservices with the

power of ai,” Dec 2020. [Online]. Available: https://developer.ibm.com/tutorials/

transform-monolithic-java-applications-into-microservices-with-the-power-of-ai/

[42] Z. Wen and V. Tzerpos, “An effectiveness measure for software clustering algorithms,” in Proceed-

ings. 12th IEEE International Workshop on Program Comprehension, 2004. IEEE, 2004, pp.

194–203.

[43] J. Lourenço, “Monolith development history for microservices identification: a comparative analysis,”

Master’s thesis, Instituto Superior Técnico, University of Lisbon, 2022.

55

https://doi.org/10.13052/jwe1540-9589.2158
https://developer.ibm.com/tutorials/transform-monolithic-java-applications-into-microservices-with-the-power-of-ai/
https://developer.ibm.com/tutorials/transform-monolithic-java-applications-into-microservices-with-the-power-of-ai/

7
Appendix

56

In this appendix we focus with further detail on the implementation of some of the components

in the domain structure and how they are managed across the Docker containers. Mono2Micro con-

tains five Docker1 containers. One of the containers is composed of MongoDB2, a document-oriented

NoSQL database, responsible for the storage and management of the monoliths’ data. To analyse the

databases’ contents, a container with Mongo Express3 is used, although other tools could be used for

this purpose. The backend container is written in Java and it uses Spring-Boot4, which also has inte-

gration with MongoDB. Since many clustering algorithms are implemented in Python, a container with

FastAPI5 is used to easily create services and execute said algorithms. The functionality refactorization

tool [37] is also present in another container, written in Go and implemented to be used with decompo-

sitions containing information about the monolith’s functionalities. Finally, the frontend is implemented

with ReactJS6 and Bootstrap7. To generate the graphs, vis.js8 is used, but other tools are possible.

7.1 Strategy Selection

Before generating a decomposition, one first needs to import the codebase’s representation, as in Fig-

ure 3.7, and choose what type of decomposition the architect wants. Because of this, the first step is to

create a codebase. As mentioned, the codebase denotes the monolith and stores the representations.

@Document("codebase")

public class Codebase {

@Id

private String name;

@DBRef(lazy = true)

private List <Representation > representations;

@DBRef(lazy = true)

private List <Strategy > strategies;

private List <String > representationInfoTypes;

...

}

Listing 7.1: Codebase Class

1https://www.docker.com/
2https://www.mongodb.com/
3http://mongodb-tools.com/tool/mongo-express/
4https://spring.io/projects/spring-boot/
5https://fastapi.tiangolo.com/
6https://reactjs.org/
7https://getbootstrap.com/
8https://visjs.org/

57

In Listing 7.1 we can observe the Codebase class. The @Document("codebase") annotation is used

to define Codebase as a domain object persisted by MongoDB, while the @Id annotation defines name

as its unique identifier. Finally, the @DBRef(lazy = true) annotation dictates that, when fetching a

Codebase, the representations and strategies should not be immediately fetched. As we can see,

Codebase is composed of Representations and Strategies and when creating a new codebase, only

the name is initialized. This is done in Listing 7.2, where the service responsible for the codebase cre-

ation invokes codebaseRepository to persistently save the codebase in the database. The annotation

@Autowired is used to inject a dependency, in this case, CodebaseRepository, while the annotation

@Service is used to define a service, which is automatically instantiated when depending on it.

@Service

public class CodebaseService {

@Autowired

CodebaseRepository codebaseRepository;

public void createCodebase(String codebaseName) {

if (codebaseRepository.existsByName(codebaseName))

throw new KeyAlreadyExistsException ();

codebaseRepository.save(new Codebase(codebaseName));

}

...

}

Listing 7.2: Codebase Creation Service

Once the codebase is initialized, follows the creation of the strategy. The strategy is defined by the

desired clustering algorithm (algorithmType), the representation’s information to include in the decom-

position (representationInfoTypes), its similarities, its decompositions and recommendations, as

shown in Listing 7.3. As of now, two representationInfoTypes exist, one based on the accesses and

another based on the change history. They can both be added to the same decomposition.

@Document("strategy")

public class Strategy {

@Id

private String name;

private String algorithmType;

@DBRef

58

private Codebase codebase;

@DBRef(lazy = true)

private List <Decomposition > decompositions = new ArrayList <>();

@DBRef(lazy = true)

private List <Similarity > similarities = new ArrayList <>();

@DBRef(lazy = true)

private List <Recommendation > recommendations = new ArrayList <>();

private List <String > representationInfoTypes;

...

}

Listing 7.3: Strategy Class

To create the strategy, the architect needs to load the desired representation information (one or

more) and their respective files, then once loaded, the clustering algorithm needs to be chosen. This is

done in several forms that appear in the UI (see Section 4.1). Now in the backend, Listing 7.4 shows

the strategy service responsible for the creation of a strategy. As we can see, to create the strategy,

its necessary to verify that no identical strategy exists, since if it does, then there is no need to gen-

erate it. If the condition is not met, then the strategy is created by saving the algorithmType and

representationTypes.

Although not present in this code, it should be noted that this operation can only be executed if the

required representation information has already been loaded to the codebase. Another implementation

detail should be pointed out. If another strategy already requires part of the representation files, then

they will not be requested to be added. In fact, a strategy can be created entirely without adding any

representation information or files, if they already exist.

@Service

public class StrategyService {

... // Dependency injection

public void createStrategy(

String codebaseName ,

String algorithmType ,

List <String > representationTypes) {

Codebase codebase = codebaseRepository.findByName(codebaseName);

for (Strategy strategy : codebase.getStrategies ())

if (strategy.getAlgorithmType (). equals(algorithmType) &&

strategy.getRepresentationInfoTypes (). size() == representationTypes.size() &&

strategy.getRepresentationInfoTypes (). containsAll(representationTypes))

59

return;

Strategy strategy = new Strategy(codebase , algorithmType , representationTypes);

... // Persistently saves strategy

}

...

}

Listing 7.4: Strategy Creation Service

To support the representations’ extension, only new subclasses of representations need to be intro-

duced. The codebase and strategy are not affected with this extension. To introduce a new represen-

tation, the abstract class Representation (Listing 7.5) needs to be extended and an entry added to its

respective factory (Listing 7.6). Some of the representations might need some additional processing,

which is done in the init method, when created. The getType method is implemented in each extension

of Representation and corresponds to the type requested in the factory (Listing 7.6). This procedure

with the getType and factory is frequently used with classes intended to be extended.

public abstract class Representation {

@Id

protected String name;

@DBRef(lazy = true)

protected Codebase codebase;

public abstract String init(

Codebase codebase ,

byte[] representationFile) throws Exception;

public abstract String getType ();

...

}

Listing 7.5: Abstract Representation

As it stands, four representation types are possible, as shown in Listing 7.6. Corresponding to the

presented order, the AccessesRepresentation contains the information about the functionality accesses

(or call graph), the IDToEntityRepresentation maps the IDs of the monolith’s domain entities to their

name, the AuthorRepresentation maps the domain entities to the authors that modified them and the

60

CommitRepresentation maps the number of commits in common between each pair of domain entities.

Both the AuthorRepresentation and CommitRepresentation were added with the extension. In the

frontend, a class (in TypeScript9), respective to each specific representation, needs to be created and

added to a factory, like in the backend. The render of each representation is implemented in this class.

public class RepresentationFactory {

public static Representation getRepresentation(String representationType) {

switch (representationType) {

case ACCESSES:

return new AccessesRepresentation ();

case ID_TO_ENTITY:

return new IDToEntityRepresentation ();

case AUTHOR:

return new AuthorRepresentation ();

case COMMIT:

return new CommitRepresentation ();

default:

throw new RuntimeException (...);

}

}

}

Listing 7.6: Representation Factory

After this, the architect generates the decompositions, based on the chosen strategy. The architect

has two alternatives, either requesting recommendations of decompositions or generating them manu-

ally. We will take a closer look at the manual approach in the following section.

7.2 Create Decompositions

In Section 7.1 it was shown how the selection of the strategy is made. With that serving as a foundation,

we will now go through the creation of a decomposition, but before doing this, the architect first needs to

generate the similarity (see Figure 3.7). This section will be divided into these two stages.

9https://www.typescriptlang.org/

61

7.2.1 Similarity Generation

The information that will be requested in the UI about the similarity will vary according to the chosen

strategy, but once submitted, the Data Transfer Object (DTO) of the similarity request will be sent to the

service responsible for the creation of the similarities.

@Service

public class SimilarityService {

...

public void createSimilarity(SimilarityDto similarityDto) throws Exception {

Strategy strategy = strategyRepository

.findByName(similarityDto.getStrategyName ());

if (strategy.getSimilarities (). stream ()

.anyMatch(similarity -> similarity.equalsDto(similarityDto)))

return;

Similarity similarity = SimilarityFactory

.getSimilarity(strategy , similarityDto);

similarity.generate ();

similarityRepository.save(similarity);

strategyRepository.save(strategy);

}

...

}

Listing 7.7: Similarity Creation Service

Listing 7.7 shows how the procedure is done. First, it is verified if the similarity already exists in

the context of the current strategy. This is done by comparing the received DTO with the information

present in the existing similarities of this strategy. This avoids the duplication of similarities, which is

unnecessary. If this condition is not met, the factory will then create the specific type of similarity,

required by the clustering algorithm. This factory is represented in Listing 7.8.

public class SimilarityFactory {

62

public static Similarity getSimilarity(SimilarityDto similarityDto) {

if (similarityDto == null)

return null;

switch (similarityDto.getType ()) {

case SIMILARITY_MATRIX_SCIPY:

return new SimilarityMatrixSciPy(

(SimilarityMatrixSciPyDto) similarityDto);

default:

throw new RuntimeException (...);

}

}

public static Similarity getSimilarity(

Strategy strategy ,

SimilarityDto similarityDto

) {

Similarity similarity = getSimilarity(similarityDto);

... // Setup name and associate strategy to similarity

return similarity;

}

}

Listing 7.8: Similarity Factory

Three strategies are available and all use the same similarity, which contains a Similarity Matrix

as the format of the criteria. This similarity is intended to be used by the SciPy hierarchical clustering

algorithm, thus also containing an additional parameter linkageType, which can be seen in Listing 7.9,

representing this extension of Similarity.

@Document("similarity")

public class SimilarityMatrixSciPy extends Similarity {

// Used during Similarity Generation

private String profile;

private int tracesMaxLimit;

private Constants.TraceType traceType;

// Used in Clustering Algorithm

private String linkageType;

private SimilarityMatrix similarityMatrix;

63

// Dendrogram created in the Python services

private Dendrogram dendrogram;

...

@Override

public void generate () throws Exception {

...

this.similarityMatrix.generate (...);

this.dendrogram = new Dendrogram(

getName(), similarityMatrix.getName(), getLinkageType ());

}

public Clustering getClustering () { return new SciPyClustering (); }

}

Listing 7.9: Similarity Extension

With the similarity created, follows the generation of the similarities between elements, in this case,

the Similarity Matrix. This is done in method generate (called in Listing 7.7 and corresponds to

the method in Listing 7.9) and fills the Similarity Matrix with the similarity levels between domain

entities by calling the generate method of Similarity Matrix. With the Similarity Matrix created,

it can now produce the Dendrogram, which solely contains an image of said dendrogram and requires

an invocation to SciPy to generate it. This dendrogram can be seen in Figures 4.4(b) and 4.5(a).

In Listing 7.10 we can see the generate method of the SimilarityMatrix and the introduction of

the Weights class. In this method, an empty ”raw” matrix is created and for each Weights, the method

fillMatrix is called, which fills the ”raw” matrix with the correct similarity values according to several

criterias. With the ”raw” matrix filled, the method getSimilarityMatrixAsJSON is called, which produces

the final matrix that will be saved.

The term ”raw” matrix is used because when creating a matrix, the architect might want to combine

multiple criteria (see Section 3.3). What this in fact implies is that there is one matrix per criteria. The

”raw” matrix is a matrix with a size of matrixsize = elements2length · criterialength, which, for all intents

and purposes, equals the creation of one matrix per criteria.

public class SimilarityMatrix {

public String name;

private List <Weights > weightsList;

...

public void generate (...,

Similarity similarity ,

64

Set <Short > elements

) throws Exception {

float [][][] rawMatrix = getEmptyRawMatrix(

elements.size(), getTotalNumberOfWeights ());

...

int fillFromIndex = 0;

for (Weights weights : getWeightsList ()) {

weights.fillMatrix (..., similarity , rawMatrix , elements , fillFromIndex);

fillFromIndex += weights.getNumberOfWeights ();

}

JSONObject matrixJSON = getSimilarityMatrixAsJSON(

elements , rawMatrix , getWeightsAsArray ());

... // Save similarity matrix JSON

}

...

}

Listing 7.10: Similarity Matrix Generation

So, when executing fillMatrix, what in fact being done, is filling the corresponding matrix of each

criteria. Keep in mind that each Weight class contains the weight of at least one criteria and is respon-

sible for filling the matrices of the criteria that belong to it.

Let’s now look at the Weights class. When the architect requests the generation of the similarities in

the UI, a form will be requested, asking for the weights of the required criteria (see Figure 4.4(a)). This

is valid for the three strategies available, but each one asks for different criteria.

So, once the form is filled and sent, their corresponding Weights object in the backend needs to be

instantiated. This is done in the lines with the @Json annotation, shown in Listing 7.11. They define

which subclass of Weights should be instantiated, based on the information sent from the frontend in

JSON. This requires that each JSON object (representing a Weights object) contains a parameter type,

to make sure the correct instance of Weights is created.

@JsonTypeInfo(use = JsonTypeInfo.Id.NAME , property = "type")

@JsonSubTypes ({

@JsonSubTypes.Type(value = AccessesWeights.class , name = ACCESSES_WEIGHTS),

@JsonSubTypes.Type(value = RepositoryWeights.class , name = REPOSITORY_WEIGHTS),

})

public abstract class Weights {

public abstract String getType ();

65

public abstract int getNumberOfWeights ();

public abstract float [] getWeights ();

public abstract List <String > getWeightsNames ();

...

}

Listing 7.11: Abstract Weights

The AccessesWeights contains four criteria, those being the similarity according to the reads, the

writes, by the accesses (considered similar when accessed together) and by the sequence (considered

similar when accessed in the same sequence), while the RepositoryWeights contains two criteria, those

being the similarity according to the authors and the similarity according to the commits.

public class RepositoryWeights extends Weights {

private float authorMetricWeight;

private float commitMetricWeight;

...

@Override

public float [] getWeights () {

return new float []{ authorMetricWeight , commitMetricWeight };

}

@Override

public void fillMatrix (..., float [][][] rawMatrix ,

Set <Short > elements , int fillFromIndex) {

// Fills raw matrix from "fillFromIndex" to "fillFromIndex" + 2

}

...

}

Listing 7.12: Repository Weights

Part of the Repository Weights class can be seen in Listing 7.12. It contains two attributes, the

weights of the criteria, given by authorMetricWeight and commitMetricWeight. As mentioned, when

calling fillMatrix, the Weights class will fill the spaces in the matrix corresponding to its criteria.

In this case, since it contains two criteria, for each pair of entities, two spaces of the matrix will be

filled by RepositoryWeigths. The same logic is applied to AccessesWeights but with the four weights

previously mentioned. During the execution of fillMatrix, the necessary representations are consulted

to calculate the similarity level. Once the ”raw” matrix is filled, the final matrix is created by summing the

66

multiplication of each matrix by its weight. So, the final similarity level between two domain entities e1

and e2 is given by the following formula:

matrixfinal[e1][e2] =

weights.length−1∑
i=0

matrixraw[e1][e2][i] · weights[i]

The getWeightsAsArray method in Listing 7.10 represents the weights array mentioned in the for-

mula above and it is constructed by calling the method getWeights from each Weights class. It should

be noted that the sum of all weights needs to be equal to 100%.

So, to recap, two extensions are possible when considering what was discussed. The first exten-

sion is by introducing another Similarity, which once added, will need another entry in the factory

represented in Listing 7.8, and the second extension, by introducing another Weights class. This avoids

defining another type of SimilarityMatrix, while also allowing the combination of criterias, even though

they are isolated in each Weights class.

return (<div style ={{ paddingLeft: "2rem" }}>

...

{strategy.algorithmType === "SciPy Clustering" &&

<SimilarityMatrixSciPyForm

codebaseName ={ codebaseName}

strategy ={ strategy}

setUpdateStrategies ={ setUpdateStrategies}

/>

}

{similarities.length !== 0 && renderSimilarities ()}

...

</div >);

Listing 7.13: Extension of Similarity Forms

In the frontend, some additions are required when applying extensions. If another Similarity is to

be added, then its corresponding form in the frontend also needs to be added. In Listing 7.13 we can see

the current form, SimilarityMatrixSciPyForm, being associated to its respective clustering algorithm.

Inside it, the necessary weights are requested according to the chosen strategy. Also, for each new type

of Similarity and Weights, a TypeScript object needs to be created and its entry added to the factory.

These objects are used when sending information between the backend and frontend in DTOs.

67

7.2.2 Decomposition Generation

Keeping in mind what was discussed in Section 7.2.1 and serving as a foundation to this subsection,

now we go through the generation of a decomposition. At this moment in time, the architect has already

generated its similarity and will now make a request to create a decomposition.

@Service

public class DecompositionService {

...

public void createDecomposition(DecompositionRequest request) {

Similarity similarity = similarityRepository

.findByName(request.getSimilarityName ());

Clustering clustering = similarity.getClustering ();

Decomposition decomposition = clustering

.generateDecomposition(similarity , request);

setupDecomposition(decomposition);

}

public void setupDecomposition(Decomposition decomposition) throws Exception {

decomposition.setup ();

decomposition.calculateMetrics ();

... // Persistently save decomposition , similarity and strategy

}

...

}

Listing 7.14: Create Decomposition Service

The architect might be asked, for example, for the number of clusters to be produced (see Fig-

ure 4.5(a)), and once the request is sent, it is received in the service shown in Listing 7.14 and con-

verted to its specific implementation, much like the Weights in Listing 7.11. To differentiate the type of

decomposition request, a parameter type (expected to be related to the clustering algorithm in use) is

required. The request of extension should not need to contain more information other than the required

by the clustering algorithm. The only extension of DecompositionRequest is given by SciPyRequestDto

in Listing 7.15, that contains information about the cut to be done by the SciPy clustering algorithm.

public class SciPyRequestDto extends DecompositionRequest {

private String cutType;

private float cutValue;

68

...

}

Listing 7.15: Decomposition Request

Focusing again on Listing 7.14, since the similarity is generated to provide the input to a cluster-

ing algorithm, then each subclass of Similarity must also know the algorithm to use (in the case of

analysis, SimilarityMatrixSciPy for the SciPyClustering, see Listing 7.9).

So, once the clustering algorithm is obtaied in Listing 7.14, the clustering algorithm uses the require-

ment in the request to create the decomposition. The generateDecomposition method needs to be

implemented by all classes responsible for clustering (requirement from the extension point of clustering

algorithm). As it stands, only one approach is possible, which is the SciPy clustering algorithm. Just like

SciPy, many clustering algorithms are implemented in Python, which is the reason for creating a service

to facilitate the addition of other clustering algorithms. The backend invokes the service and sends the

similarity matrix file name, as well as the cut information.

@scipyRouter.get("/scipy /{ similarityMatrixName }/{ linkageType}" +

"/{ cutType }/{ cutValue }/ createDecomposition")

async def createDecomposition(similarityMatrixName ,

linkageType , cutType , cutValue):

return createDecompositionScipy(similarityMatrixName ,

linkageType , cutType , float(cutValue))

Listing 7.16: SciPy Clustering Service

So, once the cut is made, the clustering algorithm creates the subclass of Decomposition he is

prepared to produce and fills it with clusters and elements. The Decomposition class is represented

in Listing 7.17 and by taking a closer look, we can see that there a map of clusters. We can also

see that each decomposition contains a map of metrics. This map connects the metric type to its

metric value. Object is used since a metric might assume different types, such as Integer, Double or

String and since it is only consulted on the frontend, it is more practical using it as Object. There is

also a representationInfos list. This list is associated to the strategy chosen. Instead of duplicating

large quantities of code in each extension of a decomposition, the specific information and methods

associated to the representations are stored inside a RepresentationInfo object.

Other important attributes are outdated and history attributes, which are part of optimizations dis-

cussed in Section 5.5, when referring the lazy approach to updating, and the History Log feature dis-

cussed in Section 5.4, respectively.

69

public abstract class Decomposition {

@Id

String name;

String type;

boolean expert;

boolean outdated;

Map <String , Object > metrics = new HashMap <>();

Map <String , Cluster > clusters = new HashMap <>();

@DBRef(lazy = true)

Strategy strategy;

@DBRef

Similarity similarity;

@DBRef

History history;

List <RepresentationInfo > representationInfos = new ArrayList <>();

public abstract void setup () throws Exception;

public abstract void update () throws Exception;

public abstract void calculateMetrics ();

public abstract void renameCluster(RenameOperation operation);

... // also contains more operations , other than rename

}

Listing 7.17: Abstract Decomposition

Let us go back to Listing 7.14. Once generateDecomposition is completed, setupDecomposition re-

mains, which will invoke the setup and calculateMetrics methods. Each extension of Decomposition

needs to implement this two methods (see Listing 7.17). In Listing 7.18 we can see its implementation

in PartitionDecomposition.

@Document("decomposition")

public class PartitionsDecomposition extends Decomposition {

...

@Override

public void calculateMetrics () {

this.representationInfos.stream ()

.map(RepresentationInfo :: getDecompositionMetrics)

.flatMap(Collection :: stream). forEach(metric ->

this.metrics.put(metric.getType(), metric.calculateMetric(this)));

70

}

@Override

public void setup () throws Exception {

List <RepresentationInfo > representationInfos = RepresentationInfoFactory

.getRepresentationInfosFromType(getStrategy (). getRepresentationInfoTypes ());

for (RepresentationInfo representationInfo : representationInfos)

representationInfo.setup(this);

this.history = new PositionHistory(this);

}

@Override

public void update () throws Exception {

for (RepresentationInfo representationInfo : representationInfos)

representationInfo.update(this);

}

...

}

Listing 7.18: Extension of Decomposition

Looking at the setup method, we can see that the list of RepresentationInfo is created according to

the list of representationInfoTypes of the strategy. Once it is created, each RepresentationInfo also

invokes setup. Two extensions of RepresentationInfo are available. One related to the accesses while

the other is related to the information extracted from the repository, each with the name AccessesInfo

and RepositoryInfo respectively. In the case of AccessesInfo, in its setup, the functionalities need

to be created, while on RepositoryInfo, the information about the authors and commits needs to be

extracted from the representation files.

With this done, the metrics can finally be calculated. Each RepresentationInfo has some metrics

associated to it, so once the method getDecompositionMetrics is called, a list of DecompositionMetric

(which extends from Metric) is returned. DecompositionMetric is an intermediate extension of Metric

since we have other components with their own metrics, for example, the functionalities’ redesigns. So,

extending DecompositionMetric we have, for example CohesionMetric and CouplingMetric.

public class TSRMetric extends DecompositionMetric {

@Override

public String getType () {

return TSR;

71

}

@Override

public Double calculateMetric(Decomposition decomposition) {

...

}

}

Listing 7.19: Metric Extension Example

In Listing 7.19 we can see the extension TSRMetric, a metric that uses RepositoryInformation to

calculate the metric value. The calculation of the metric value is done in the method calculateMetric.

72

	Titlepage
	Acknowledgments
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms

	1 Introduction
	1.1 Problem
	1.2 Research Question
	1.3 Approach
	1.4 Organization of the Document

	2 Related Work
	2.1 Stages
	2.1.1 Collection
	2.1.2 Decomposition Generation
	2.1.3 Quality Assessment and Comparison
	2.1.4 Visualization
	2.1.5 Editing and Modelling

	2.2 Existing Tools
	2.2.1 Summary
	2.2.2 Mono2Micro
	2.2.3 MonoBreaker
	2.2.4 IBM Mono2Micro
	2.2.5 Visualization Tool
	2.2.6 Process Mining Decomposition Framework
	2.2.7 Service Cutter
	2.2.8 Microservice Extraction

	2.3 Variety of Approaches

	3 Tool Design
	3.1 Pipeline
	3.1.1 Collection
	3.1.2 Decomposition Generation
	3.1.3 Visualization
	3.1.4 Quality Assessment and Comparison
	3.1.5 Editing and Modelling

	3.2 Extension Points
	3.3 Design
	3.4 Additional Features

	4 Usage
	4.1 Choose Strategy
	4.2 Decomposition Generation
	4.3 Visualization
	4.4 Comparison Tool
	4.5 Decomposition Recommendation

	5 Evaluation
	5.1 Previous Framework
	5.2 Current Framework
	5.3 Extensibility
	5.4 Pluggability
	5.5 Performance

	6 Conclusion
	6.1 Conclusion
	6.2 System Limitations
	6.3 Future Work
	Bibliography

	Bibliography
	Appendix

	7 Appendix
	7.1 Strategy Selection
	7.2 Create Decompositions
	7.2.1 Similarity Generation
	7.2.2 Decomposition Generation

