
Monolith Development History for Microservices
Identification: a Comparative Analysis

João Pedro de Oliveira Estudante Lourenço

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. António Manuel Ferreira Rito da Silva

Examination Committee

Chairperson: Prof. Nuno Miguel Carvalho dos Santos
Supervisor: Prof. António Manuel Ferreira Rito da Silva

Member of the Committee: Prof. Olaf Zimmermann

October 2022

Acknowledgments

This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) through projects

UIDB/50021/2020 (INESC-ID) and PTDC/CCI-COM/2156/2021 (DACOMICO).

I would like to express my gratitude to my supervisor, professor António Rito Silva. Without his

ideas, attention to detail, and unwavering support and dedication ever since our first meeting, this thesis

wouldn’t exist.

Thanks should also go to Caniné, Gonçalo, and André, who were my partners in crime for many

projects and classes, but above all, who were great supportive friends and always there when needed.

Many thanks to my family, who has always supported me in every step of my personal and academi-

cal journey, and made sure my university experience was as stress free as possible.

Lastly, a special thanks to Lara, who has always listened to my rants about computers and work

despite not understanding much, and who could always cheer me up even when far.

i

Abstract

Recent research has proposed different approaches on the automated identification of candidate

microservices on monolith systems, which vary on the monolith representation, similarity criteria, and

quality metrics used. On the other hand, they are generally limited in the number of codebases and

decompositions evaluated, and few comparisons between approaches exist. Considering the emerging

trend in software engineering in techniques based on the analysis of codebases’ evolution, we com-

pare a representation based on the monolith code structure, in particular the sequences of accesses

to domain entities, with representations based on the monolith development history (file changes and

changes authorship). From the analysis on a total of 468k decompositions of 28 codebases, using five

quality metrics that evaluate modularity, minimization of the number of transactions per functionality, and

reduction of teams and communication, we conclude that the best decompositions on each metric were

made by combining data from the sequences of accesses and the development history representations.

We also found that the changes authorship representation of codebases with many authors achieves

comparable or better results than the sequence of accesses representation of codebases with few au-

thors with respect to minimization of the number of transactions per functionality and the reduction of

teams. This allows the usage of a collection technique that is easier to apply, as it is independent of the

language or framework chosen for the monolith.

Keywords

Monolith; Microservices; Microservices Identification; Architecture Migration; Repository Mining

iii

Resumo

Nos últimos tempos, têem sido propostas várias abordagens distintas com vista à automatização da

identificação de candidatos para microserviços de sistemas monolı́ticos, variando na representação do

monólito considerada, critérios de similaridade usados, e métricas de qualidade aplicadas. No entanto,

estas abordagens geralmente são limitadas no número de projectos e decomposições avaliados, e

existem poucas comparações feitas entre abordagens. Tendo em conta a tendência emergente em

engenharia de software do uso de técnicas baseadas na análise da evolução do código de um projecto,

nós comparamos uma representação baseada nas sequências de acessos, em particular a entidades

de domı́nios, com representações baseadas na história de desenvolvimento do monólito (alterações

de ficheiros e autoria de alterações). Através da análise de 468k decomposições de 28 projectos, e

usando cinco métricas de qualidade que avaliam modularidade, minimização do número de transações

por funcionalidade, e redução das equipas e comunicação, concluı́mos que as melhores decomposições

de cada métrica foram conseguidas através da mistura de dados da representação de sequências de

acessos e da história de desenvolvimento. Também descobrimos que a representação da autoria de

alterações em projectos com um número elevado de autores consegue obter resultados comparáveis

ou melhores à representação da sequência de acessos em projectos com poucos autores, no que diz

respeito à minimização do número de transações por funcionalidade e na redução do tamanho das

equipas. Isto permite a utilização de uma técnica de colecção que tem uma aplicação mais abrangente,

dado que é independente da linguagem ou framework escolhido para o monólito.

Palavras Chave

Monólito; Microserviços; Identificação de Microserviços; Mineração de repositórios; Migração de Ar-

quitetura

v

Contents

1 Introduction 1

1.1 Problem . 3

1.2 Contribution and research questions . 4

1.3 Outline . 5

2 Background 7

2.1 Similarity Measures . 9

2.2 Quality metrics . 11

2.2.1 Complexity . 11

2.2.2 Uniform Complexity . 12

2.2.3 Cohesion and coupling . 13

2.2.4 Team size reduction . 13

2.2.5 Combined . 14

3 Related Work 15

3.1 Monolith Decomposition Techniques . 17

3.1.1 Overview . 17

3.1.2 Using development history . 18

3.2 Comparison of Techniques . 20

3.3 Research Gap . 21

3.4 Usage of commit logs for software engineering research 21

4 Implementation 23

4.1 Overview . 25

4.2 Data Collection . 26

4.3 Data Cleaning . 28

4.4 Coupling Computation . 29

4.5 Performing a decomposition . 29

4.6 Mono2Micro improvements . 31

vii

5 Evaluation 33

5.1 Codebase selection and characterization . 36

5.2 Results . 38

5.2.1 Uniform complexity . 39

5.2.2 Cohesion . 42

5.2.3 Coupling . 45

5.2.4 Team size reduction ratio . 48

5.2.5 Combined . 51

5.3 Evaluation conclusions . 54

5.4 Threats to validity . 55

6 Conclusion 57

viii

Acronyms

tsr team size reduction

ix

1
Introduction

Contents

1.1 Problem . 3

1.2 Contribution and research questions . 4

1.3 Outline . 5

1

2

In 2014, Lewis and Fowler [1] described microservices, a new architectural style, which was applied

at Amazon and Netflix [2]. In such systems, instead of a single unit (a ”monolith”) being responsible for

handling all the business logic with a single database, sets of functionalities that implement the logic

execute separately in independent services. This brings plenty of advantages, like increased developer

productivity, scalability, reliability, maintainability, separation of concerns, and ease of deployment [3].

As such, migrating a monolithic application to a microservice architecture is appealing, and different

automated approaches have been proposed [4–6].

These approaches tend to follow a common procedure: (1) collect data; (2) generate a representa-

tion of the monolith; (3) define one or more similarity measures for the monolith’s elements based on

some criteria, and use them to cluster the collected data and generate a decomposition based on the

representation and the measures; (4) evaluate the decomposition using one or more quality metrics.

However, the techniques at each step vary: as an example, the data collection can be based on the

monolith’s specifications [5], code static analysis [7], system execution analysis [8, 9], development his-

tory [10–13], among others. The monolith representation can be based on a graph [10,12], a tree [11], or

a sequence of accesses [7]. Multiple criteria can used to identify the services of the decomposition [5],

like modularity [10], minimization of the number of distributed transactions per functionality [14], or even

the reduction of each service’s team size [13]. The evaluation metrics also vary significantly [15].

The benefits of a microservice migration come at a cost, namely in terms of performance and com-

plexity with the management of transactions. When migrating from a monolith to microservices, func-

tionalities with ACID properties (Atomicity, Consistency, Isolation, Durability) may be separated. This

requires the introduction of checks to ensure that the whole functionality has successfully ran across all

microservices, as well as the possibility to roll-back data in case it hasn’t. The migration itself also often

requires expert architects and tends to be done manually [16], which is tedious and prone to errors and

biases. To tackle the problem of microservice identification, the Mono2Micro tool was developed [17,18].

The tool analyzes a codebase and identifies services based on transactional contexts. This way, it re-

duces the complexity associated with a migration by keeping in the same microservice the entities that

are accessed with the same functionalities, in order to minimize the number of transactions required to

implement a functionality.

1.1 Problem

There has been research on the comparison of the use of code static analysis and system execu-

tion analysis data collection techniques [19], on development history and lexical monolith’s representa-

tions [13], and on modularity, team size, and number of transactions criteria [7, 13]. However, this is

limited on the number of possible combinations, and so, more research has to be done. In particular,

3

due to the emerging trend in software engineering in techniques based on the analysis of codebases’

development history [20], it became especially interesting to compare approaches that use the monolith

code structure, in particular the sequences of accesses to domain entities, which is one the monolith

representations more often used, e.g. [21], with representations based on the monolith development his-

tory. The latter simplify the collection step, because they are independent of the programming language

and technology used in the monolith implementation.

1.2 Contribution and research questions

Considering the lack of in-depth comparisons between a development history monolith representation

and others, in terms of number of codebases and decompositions, as well as no data regarding how this

representation behaves in terms of reducing the complexity of a migration, we intend to respond to the

following general research question:

• RQ1: How do monolith microservices identification approaches that use the monolith development

history based representations perform when compared with approaches that use the monolith

functionalities sequences of accesses representation?

To answer RQ1, we started by developing a script capable of parsing a monolith’s development his-

tory efficiently. We then extended the Mono2Micro monolith decomposition tool so that it was capable of

creating decompositions using the data from this new representation, and return quality metrics for each

decomposition. The decompositions are then evaluated in great detail in a reproducible fashion using

R, according to the criteria of modularity, minimization of the number of transactions per functionality,

and reduction of teams and communication, where metrics are used for the assessment. A total of 28

monolith codebases are used for the empirical study.

We leverage the Mono2Micro tool and contribute with:

• The possibility for the tool to decompose monoliths using data from its development history;

• Various significant performance improvements of the tool, by adding parallelization and memoiza-

tion;

• The collected data from all codebases;

• All the python and bash code used to collect data, with instructions on how to run it, available in

Mono2Micro’s repository1;

• A reproducible evaluation package, meant to verify the generation of the same plots and obtained

values, which is also available in Mono2Micro’s repository2;
1Commit Collection @ socialsoftware/mono2micro
2Reproducible package @ socialsoftware/mono2micro

4

https://github.com/socialsoftware/mono2micro/tree/master/collectors/commit-collection
https://github.com/socialsoftware/mono2micro/tree/master/data/commit/reproducible-evaluation

• A comprehensive comparison between the quality metrics of different representations.

1.3 Outline

This chapter presented the context of our work, and the rest of the thesis is structured as follows:

• Chapter 2 describes the similarity measures and the quality metrics we consider.

• Chapter 3 offers an overview of related research work, the existing research gap that we attempt

to close, and how we can leverage the existing work to improve our solution.

• Chapter 4 has detailed descriptions and examples of how we implemented our data collection, and

how it is used to suggest decompositions of monolith systems. It also describes the improvements

made to the Mono2Micro tool.

• Chapter 5 contains a detailed analysis of each quality metric, evaluating the obtained values when

considering decompositions from different monolith representations.

• Chapter 6 summarizes the main results and proposes topics for future research.

5

6

2
Background

Contents

2.1 Similarity Measures . 9

2.2 Quality metrics . 11

7

8

We leverage on previous work to compare the use of the different monolith representation models

for the identification of microservices in monolith systems: (1) the sequence of accesses [7], and (2)

code evolution [13]. While the former representation is one of the most widely used by different ap-

proaches, the later seems promising in terms of the new trends on code repositories mining and the

relative independence of programming languages and software frameworks used.

The use of sequences of accesses to represent a monolith requires the identification of its set of

functionalities, F , and the accessed domain entities, E. For each functionality f ∈ F there is a callgraph,

f.graph that captures the sequences of accesses done to the domain entities. Each access, a ∈ A, is

a pair (e,m), where e ∈ E and m ∈ {r, w}. Given an entity e ∈ E, e.funct(m) denotes the set of

functionalities that have an access in the entity according to access mode m; if m is omitted, then it can

be any type of access. Note that this representation can be obtained either through a static analysis or

a system execution analysis of the monolith.

On the other hand, the use of the development history monolith representation requires the identifi-

cation of its set of commits, C, where each commit, c ∈ C, contains the set of files, c.files ∈ Fl that

where changed together, where Fl represents the set of all files in the codebase. Additionally, a commit

c ∈ C author, c.author ∈ Au, belongs to the set Au of codebase developers. Given a file f ∈ Fl,

f.authors denote the set of authors that have a commit in the file. Finally, a commit c ∈ C also contains

the time when it occurred, c.time.

A decomposition is a partition of the monolith domain entities. A decomposition d ∈ D, where D

represents the set of all decompositions, is a set of clusters, d.clusters ∈ 2E , of the monolith domain

entities. Therefore, ∀cli,cli∈d.clusterscli ∩ cli = ∅ and
⋃

cl∈d.clusters cl = E. Note that for decompositions

generated using the development history representation, it is necessary, in some part of the processing

pipeline, to filter the files that correspond to the domain entities.

2.1 Similarity Measures

A decomposition generation is driven by similarity measures between representation elements, which

can be domain entities or files. The smaller the distance between them, the higher is the likelihood they

belong to the same microservice.

The similarity measures for the sequence of accesses representation are defined over the relation

between the functionalities and the entities they access, such that the number of distributed transactions

per functionality is minimized. Each measure is a value between 0 and 1, where 1 represents very high

similarity, and 0 represents no similarity at all.

• Access measure - The access similarity of two entities ei, ej ∈ E depends on the likelihood of

9

functionalities accessing (by reading or writing) both ei and ej :

smaccess(ei, ej) =
#(ei.funct ∩ ej .funct)

#ei.funct
(2.1)

• Read measure - The read similarity of ei, ej ∈ E depends on the likelihood of functionalities reading

both ei and ej :

smread(ei, ej) =
#(ei.funct(r) ∩ ej .funct(r))

#ei.funct(r)
(2.2)

• Write measure - The write similarity of ei, ej ∈ E depends on the likelihood of functionalities writing

both ei and ej :

smwrite(ei, ej) =
#(ei.funct(w) ∩ ej .funct(w))

#ei.funct(w)
(2.3)

• Sequence measure - The sequence similarity of ei, ej ∈ E depends on the number of consecutive

accesses to both entities across all functionalities:

smsequence(ei, ej) =
sumPairs(ei, ej)

maxPairs
(2.4)

where sumPairs represents number the consecutive occurrence of accesses to the entities, and

maxPairs the maximum of all sums of pairs.

For the development history based representations, the similarity measures are defined on the co-

occurrences of changes between two files, and the common authorship of files changes.

The first measure, smcommit, follows the principle that files that were changed together more often

are likely to stay in the same cluster. This makes it easier to reason about changes, as they are confined

to a set of related files in the same service. The measure of files fi, fj ∈ Fl can be defined as:

smcommit(fi, fj) =
#{c ∈ C : fi, fj ∈ c.files}
#{c ∈ C : fi ∈ c.files}

(2.5)

The second measure, smauthor, follows the principle that communication overhead should be re-

duced in a microservice architecture, and as such, developers should be separated in teams where

they focus on a reduced number of different services. Therefore, files that were changed by the same

developers should stay in the same cluster, which is what the measure captures for files fi, fj ∈ Fl:

smauthor(fi, fj) =
#(fi.authors ∩ fj .authors)

#fi.authors
(2.6)

10

Figure 2.1: Example of a simple monolith sequences of accesses representation, and a decomposition on the right
where each entity was assigned to a single cluster. Both the representation and the decomposition are
illustrative and serve just as an example.

2.2 Quality metrics

To evaluate a certain decomposition, several quality metrics are defined, each focusing on a particular

quality of the decomposition like modularity, migration effort or team reduction size.

2.2.1 Complexity

The complexity of the decomposition is informally defined as the effort required to perform the decom-

position, due to the intermediate states that are naturally introduced, as described by the concept of

Saga [22,23] for the implementation of distributed transactions with eventual consistency [24].

Formally, the complexity of a decomposition is based on the sum of the complexity of all function-

alities. The complexity of each functionality is based on the sum of the complexity of all of its local

transactions. Each local transaction LT :

• is a subgraph of the functionality call graph;

• contains only accesses in a single cluster of the decomposition.

• contains all consecutive accesses to the same cluster.

The complexity of each local transaction is equal to the number of other functionalities that read

or write entities that are written or read, respectively, by the local transaction. Repeated accesses of

the same mode to the same domain entity are removed, and only one access is considered. If a read

access occurs after a write, only the write access is considered. As an example, Figure 2.1 contains

three functionalities with several accesses, and three total entities each in its own cluster. The complexity

of each functionality is calculated like so:

11

• Functionality A has four local transactions, and five accesses (the colors represent accesses be-

longing to the same local transaction). The first LT is a write to Entity 1, and Functionality C

performs a read to this entity at least once, so the complexity of this first LT is 1. The second LT

is a read to Entity 2, and Functionality B performs a write to Entity 2, so the complexity is 1. The

third LT has a read and a write to Entity 1, and Functionality C has a read to entity 1 which is

different than a write, so the complexity is 1. Finally, the last LT has a read to Entity 2, and Func-

tionality B writes Entity 2, so the complexity is also 1. At the end, the complexity of Functionality A

is 4 (sum of all LT).

• Functionality B has two LT . The first one, with two accesses, a read and a write, has complexity

1: no other functionality writes Entity 2, but Functionality A reads Entity 2. The second Lt also has

complexity 1, because Functionality C reads Entity 8. The complexity of Functionality B is 2.

• Functionality C has three LT . Two of them read Entity 1, and only Functionality A writes Entity 1,

so these two each have complexity of 1. The other LT reads Entity 8, and Functionality B writes

Entity 8, so its complexity is 1. In total, the complexity of Functionality C is 3.

The sum of the complexity of all functionalities is 9, which is divided by the number of functionalities

to obtain the complexity of the decomposition: 9/3 = 3. The value of the complexity metric [18] increases

with the number of intermediate states created by the distributed transactions, because they have to be

considered in the implementation of the functionalities business logic, due to the lack of isolation.

2.2.2 Uniform Complexity

As seen before, the complexity of a decomposition is an absolute value, varying between 0 and a

number dependent on the codebase. This particularity makes it hard to compare the complexities of

decompositions from different codebases.

The uniform complexity is a metric based on the complexity, and is computed by dividing the com-

plexity of a decomposition by the maximum possible complexity that a given codebase can have:

uniform complexity(d) =
complexity(d)

max complexity(codebase)
(2.7)

This maximum value is achieved when there are as many clusters as domain entities.

The metric varies between 0 and 1, making it suitable for comparing different decompositions and

codebases.

12

2.2.3 Cohesion and coupling

The cohesion indicates the percentage of entities of a microservice accessed whenever there is an

access per functionality, and so it varies between 0 and 1. If the cohesion of a decomposition is 1, then

each functionality that accesses the cluster, accesses all its entities, so it strongly follows the Single

Responsibility Principle [25]. It is defined as:

cohesion(c) =

∑
f∈funct(c)

#{e∈c.e:e∈Gf .A.e}
#c.e

#funct(c)
(2.8)

where funct(c) is the set of functionalities that access cluster c; Gf .A.e is the set of entities that are

accessed by functionality f ; c.e is the set of entities of cluster c. The cohesion of a decomposition is the

average of the cohesion of all clusters.

Coupling is a metric applied to two microservices, and describes the percentage of entities that a

service exposes to the other. The coupling of a decomposition corresponds to the average coupling

among all pairs of microservices. A coupling of 1 means that all services expose entities to all other

services, which is a very high inter-service dependency and an undesirable trait. It is defined as:

coupling(ci, cj) =
#{e ∈ cj : ∃ri∈RI(ci,cj)e=ri[2].e}

#cj .e
(2.9)

where RI(ci, cj) is the set of remote invocations from cluster ci to cj . A remote invocation occurs

when in a functionality’s sequence of accesses there are two subsequent accesses, where their entities

belong to different clusters.

2.2.4 Team size reduction

The team size reduction (tsr) indicates if the average team size is reduced in the migration, by comparing

the average number of authors per microservice to the total number of authors [13]. A tsr of 1 would

indicate no reduction in team size, as all services have the same number of authors that the original

monolith had. On the other hand, a tsr close to 0 would indicate an excellent team division after the

migration. It is defined as:

tsr(d) =

∑#d.c
i=0 d.ci.developers

#d.c

M.developers
(2.10)

We divide the total number of developers of all decomposition d’s clusters ci, by the number of

clusters, to get the average number of contributors per microservice in the decomposition d. This is then

divided by the number of unique developers in the monolith.

13

2.2.5 Combined

Finally, a combined metric is used to sum up the results of all other metrics. It is a number between 0

and 1, where 0 is a perfect decomposition in all metrics, and 1 is the worst decomposition possible in

all metrics. Considering that it is not possible to maximize all quality metrics of a system, this metric

represents the trade-offs made. It is defined as:

combined(d) =
uniform complexity(d) + coupling(d) + tsr(d)− cohesion(d) + 1

4
(2.11)

14

3
Related Work

Contents

3.1 Monolith Decomposition Techniques . 17

3.2 Comparison of Techniques . 20

3.3 Research Gap . 21

3.4 Usage of commit logs for software engineering research 21

15

16

3.1 Monolith Decomposition Techniques

3.1.1 Overview

Different approaches exist to decompose a monolith system into a service-oriented architecture, with

various input sources, final service granularity, and applicabilities. A recent overview was done in [4],

where four main categories are highlighted:

Meta-data aided approaches. These make use of various representations of code, and not the code

itself, to suggest decompositions. In [26], it is suggested a manual conceptual approach that makes use

of use-cases, security, and scalability requirements to partition a monolith. The authors in [27] make

semantic evaluations on a monolith’s OpenAPI specification, and suggest a decomposition of interfaces

based on the similarity of terms in the specification’s descriptions. They then evaluate the decomposi-

tions based on granularity, cohesion, and coupling. Service Cutter, presented in [5], is a very thorough

tool making use of 16 different coupling criteria to drive decompositions. Different criteria require different

inputs, which could be use cases, entity relationships models described in UML, the entities themselves,

and so on. Finally, in [13], they extract information from a monolith’s development history (stored in a

version control system), and extract logical, authors, and lexical relationships between classes.

Static code analysis aided approaches. The focus here is on the code itself, from which a repre-

sentation is generated and a decomposition is made. In [28], they parse the annotations in classes

of Java Enterprise Edition applications to identify domain entities and their types. They are then orga-

nized into an Abstract Syntax Tree according to their relationships, and a clustering algorithm extracts

microservices suggestions. In [29], the authors extract the dependencies between business functions,

databases, and facades, and build a dependency graph based on the relationships between these ele-

ments. The microservices suggestions are done through manual code inspection. In both cases, entities

play a central role in the whole process.

Workload-data aided approaches. The execution process is analysed to extract relationships, and

then a decomposition is derived. Only one approach is described in this category [30], where the

execution logs of a web application are parsed and pages that have higher workloads are candidates to

be split into microservices.

Dynamic microservice composition approaches. These approaches keep generating a decomposi-

tion until achieving a stable and desirable state. In [9], the authors reason that it’s not possible to fully

capture the expected behaviour and granularity of microservices at design time. Therefore, they cre-

ate architectural elements with variable boundaries, that get changed according to the behaviour when

executing the monolith. In [8], the authors extract features (chunks of functionalities that implement

some business logic) and register their usage and performance during the execution of the system. A

genetic algorithm reorganizes features in different microservices according to the observed usage and

17

performance, so that the cohesion is maximized and the coupling is minimized.

In short, the approaches suggest the usage of different information sources to represent the mono-

lith, depending on whether they focus on its structure [5, 26–29], behaviour [8, 9, 30], or development

process [13]. Additionally, different decomposition criteria are used, like modularity [5, 9, 13, 26–29],

performance [8,30], team size [13], and security/usage requirements [5,26].

3.1.2 Using development history

As the present work aims to compare the usage of commits as a means to identify services with another

approach, we will explore what has been done in the literature in this regard.

In [13], a model for microservice extraction using the software change history of a monolith is pre-

sented. An initial data collection phase consists of parsing the history and extracting all the class files

and which other files they changed with, as well as which authors changed each file. Then, a graph is

created where the names of the files are the nodes, and the edges indicate the existence of coupling

between files. A higher weight in the edge indicates a higher similarity. Three strategies to quantify the

similarity of files are suggested:

1. Logical Coupling is based on the assumption that software elements that change together do so

for the same reason, and so should be placed in the same microservice. The more often a pair of

files changes together, the stronger is the similarity;

2. Semantic Coupling is based on a rationale that states that each microservice should match a

context from the problem domain. To achieve this, classes that contain code about the same

domain model entities should belong to the same microservice. NLP techniques are applied to

find the degree of similarity between classes;

3. Contributor coupling follows from the microservice principle of cross-functional teams, centered

around domain and business capabilities. To implement this strategy, all change events that mod-

ified a given class are first found. Then, the set of all authors that contributed to those events

are computed. The weight of an edge is given by the cardinality of the intersection of the sets of

developers that worked on the vertices of that edge.

The authors combine these strategies through a pondered sum, which allows them to define a higher

importance to one or more strategy. However, they use absolute values, so the lower and higher bound

of the possible values for each strategy may be very different. This would require a more manual process

of fine tuning each weight, whereas we opted to normalize our similarity measures which makes applying

weights and summing measures trivial. They also evaluated their approach on decompositions made

always with four clusters and with the same weights for each similarity measure. In our approach, we

18

evaluate decompositions between three and ten clusters (depending on the codebase), and vary the

weights of all measures between 0 and 100, in steps of 10. Different evaluation metrics are used, and

we opted to use the team size reduction ratio metric in our own work, as it helps us answer our research

question.

The combined usage of static, semantic, and history information to decompose a monolith into mi-

croservices was explored in [12]. The authors start by performing static code analysis by iterating over

all classes and methods, and registering instantiations and method calls. Both of these result in an edge

in a graph, where each class is a node. Three similarity measures are used:

1. Response for a class (RFCα) describes a ratio of the utilization between two classes through

method calls. The higher the ratio, the more similar the classes are;

2. Semantic coupling. This measure and computation is very similar to the one in [13], with a slight

difference of adding Latent semantic indexing (LSI) to the NLP techniques;

3. Evolutionary coupling. With the same reasoning as the logical coupling from [13], they parse all

logs and identify, for each pair of classes (c1, c2), the percentage of their overlap in the software

development cycle - that is, the percentage of all commits that changed c1 that also changed c2.

The semantic and evolutionary measures are combined with the response for a class measure to

define the edges’ weights. Since both the semantic and evolutionary measures could theoretically be

applied to pairs of classes that have no relationship in the code, a higher importance is attributed to

the static code analysis - it is considered the source of truth for the relationships between classes. Our

approach does not take this into account.

In [11], a mixed approach between static analysis and the software change history is proposed, and

implemented with a tool. Similarly to [12], the authors evaluate method calls to define initial services.

Each service is a tree of method calls, starting at the controller and ending at a domain entity. Based

on the number of classes, methods, and commits in common, pairs of services with a similarity value

greater than an initially defined threshold are merged, either into a new microservice, or into an existing

one if it contains any of the two services. The combined usage of software change history and static

analysis was also explored in [10]. The authors’ process first extracts evolutionary coupling by detecting

changes between commits while being consistent on files renames and moves - something that we

also took care of handling in our solution. Evolutionary coupling exists if there are co-changes where

two software artifacts change frequently. Then, it extracts static coupling by parsing Abstract Syntax

Trees. Static coupling exists if there is inheritance, method calls, or aggregation between two classes. A

software relation graph is built by connecting vertices (classes or interfaces) according to the existence

of static and/or evolutionary coupling between them.

From this analysis, we conclude that:

19

• The idea that software elements that change together do so for the same reason, and so should

be placed in the same microservice, is shared by all of these authors [10–13] at some level.

Quantifying the number of commits in common between the elements is also a transversal trend,

with satisfying results. As such, we adapt the logical coupling measure from [13] and use it in

our work. The contributor coupling (from the same work) is interesting, as it captures a dimension

from the repository that the remaining authors ignore. Therefore, we also adapt this measure in

our work.

• All works follow the decomposition process of collecting data, building a monolith representation,

defining the similarities between elements, applying a clustering algorithm, and evaluating the

decomposition. We follow the same process, although we use a hierarchical clustering algorithm

that is not used in the discussed works.

• The evaluation metrics are all different, and they capture different aspects of the decomposition. It’s

not practical to implement all of the suggested metrics in our evaluation, so we chose just the team

size reduction ratio metric from [13] as it provides a good team perspective on our decompositions.

3.2 Comparison of Techniques

Some research has been done on the comparison of different data collection and decomposition strate-

gies. In [19], the authors compare which of two data collection approaches, static code analysis or

dynamic analysis, generate better decompositions when considering a criteria of reducing the number

of distributed transactions. An evaluation was performed on two systems, and it was found that no

approach outperforms the other, but the dynamic analysis required more effort. In [7], sequences of ac-

cesses to domain entities were statically collected, and four different similarity measures were defined,

all driven by the goal to reduce the number of distributed transactions. The measures covered different

types of accesses, like writes, reads, writes or reads, and sequences. By analysing decompositions

from 121 codebases, it was found that there isn’t a single measure or combination of measures that

yields better results, in terms of the migration’s complexity. In [13], which was already covered more in

depth earlier, the authors compare their three similarity measures, based on lexical analysis, information

about the contributors that changed each file and information on which files change together most often.

It was found that any combination of the three measures had good results, with the contributor measure

displaying more dispersion. Although the description of their approach is not as developed as the one

in [11], the authors in [10] conducted an empirical evaluation on using just static analysis, just change

history, and both techniques together. They found that using both techniques provided better results

than just each one individually, because each of them is able to find relationships between classes that

the other cannot. However, they tested their approach on just two Java codebases, and evaluated it by

20

comparing the generated decompositions with an expert one. We use 28 codebases and over 400.000

decompositions, and have an automated approach to the evaluation, so our results should be more

generalizable.

Evaluating the effect of multiple viewpoints on the quality of a microservice decomposition was the

work performed in [31]. The starting intuition would be that the more viewpoints are considered, the

better, as more information is available to make a decision on how to partition the monolith. To confirm

this, the author developed a Python tool that extracted static, dynamic, and semantic dependencies of

seven Python projects, represented them on a graph, and applied a clustering algorithm to find highly

connected and loosely coupled clusters. It was found that the static and dynamic decompositions were

more loosely coupled but less functionally cohesive than semantic decompositions, and including se-

mantic information in the analysis decreases the structural modularity quality of the decomposition.

Combining static and dynamic information produced better decompositions rather than using just static

or just dynamic information. This shows that there is not, necessarily, a consistent increase or decrease

in the considered metrics when multiple views of the system are incorporated. In this work, we perform

similar comparisons between a monolith representation based on the sequences of accesses to domain

entities (obtained via static code analysis) and a representation based on file changes and file authors.

However, we consider not just the modularity but also the transactional contexts and the reduction of

team sizes, and we compare more codebases and decompositions.

3.3 Research Gap

There is still a lack of understanding on how different approaches compare in terms of the results they

produce, and the existing comparisons generally use a small number of codebases and/or decomposi-

tions. Our work focuses on comparing the access sequence and the development history based repre-

sentations, using four similarity measures based on sequences of accesses from [7], and two measures

similar to the logical coupling and contributor coupling from [13]. The results are evaluated using quality

metrics for modularity, complexity and team size, on a large number of codebases and decompositions.

3.4 Usage of commit logs for software engineering research

Investigating how the data from commit logs is used for different goals than our own can provide insights

into improving our solution.

In [32] it is proposed an approach that, when developers are editing a file, recommends other files

that may also need edits. This is done by analyzing which files have frequently changed together in

the past (using a version control system), and applying a frequent pattern mining algorithm to them.

21

For a better analysis, they consider not only files that were committed together, but also files that were

committed by the same author in a short period of time, as they most likely refer to the same task.

Finally, they also filter commits with too many files changed, as these commits usually don’t refer to a

single task and so aren’t relevant for recommendations.

A frequent pattern mining algorithm is also used in [33]. The knowledge of files frequently changed

together (called ”change sets”) is used to uncover ”traceability between source code and other artifacts”,

like documentation. They also use heuristics like changes in a small period of time (”time-interval”),

changes by the same author (”committer”), and a mix of both (”time-interval + committer”) to group

change sets that probably refer to the same task/change.

These two works apply the notion that ”files that change together should stay together”. However,

they go further than that by using heuristics to filter commits, like considering commits in a short pe-

riod of time as one single commit and discarding commits with too many files. The goal is to capture

human behaviour in their analysis and consider relationships that are not explicit. Despite the lack of

a comparison of their results with and without the heuristics, we opted to also implement them in our

solution.

22

4
Implementation

Contents

4.1 Overview . 25

4.2 Data Collection . 26

4.3 Data Cleaning . 28

4.4 Coupling Computation . 29

4.5 Performing a decomposition . 29

4.6 Mono2Micro improvements . 31

23

24

The investigation in this work required the development of a data collection prototype, and the mod-

ification of the Mono2Micro tool to support our two new similarity measures. The main focus of this

chapter will be on how the prototype was implemented, as it is what influences the decompositions the

most.

We opted to perform the data collection using Python due to its suitability as a scripting language

and simplicity, and the existence of several easy to use libraries to interact with GitHub repositories.

Ultimately, these libraries were prohibitively slow for our use case (and this is discussed in further sec-

tions), but we still used Python due to the remaining reasons and the familiarity of the authors with the

language.

4.1 Overview

The sequences of accesses monolith representation, that we leverage to perform comparisons, is de-

scribed in depth in [7]. This representation is obtained by using Spoon, a Java source code analyser.

They identify controllers and domain entities in Spring-Boot monoliths, and parse method calls in each

controller to obtain the types of accesses made to the domain entities. From this analysis results a JSON

file containing the controllers (functionalities) as keys, and the accesses to entities that the controller can

perform as values.

On the other hand, the development history based representation is obtained by parsing the output

of the git log shell command with Python, and applying several processing techniques to ensure that

data related to renamed or deleted files is accurate. The representation consists of two JSON files: one

with the monolith’s files as keys and the number of times each file changed with others as values, named

file changes representation; and another with the files as keys and the authors that changed each file as

values, named changes authorship representation. The combination of both of these representations is

a development history based representation.

Then, we compute the similarity based on the monolith’s representations - similarity between domain

entities for the sequences of accesses and between files for development history. These are used by a

hierarchical clustering algorithm to generate the decomposition.

Mono2Micro then computes the complexity, cohesion, coupling, and team size reduction ratio for a

large number of decompositions, obtained by varying the weights and the number of clusters.

Figure 4.1 contains the overview of the processing pipeline necessary to create a decomposition of

a monolith. It includes a detailed view of the data collection steps, and a higher-level overview of the

decomposition steps. Note that for the generation of the similarity matrix (step 4.2), the data from the

sequences of accesses is also used. This data is obtained from a separate data collection process.

25

Figure 4.1: Pipeline for generating a decomposition of a single monolith system, using data extracted from the
development history and data from sequences of accesses. The numbering on the different scripts/pro-
cesses is referenced throughout the section.

4.2 Data Collection

As mentioned before, there are useful packages that offer good abstractions to interact with a Git repos-

itory, like GitPython1 and PyDriller [34], but they were very slow in certain tasks. For example, using

PyDriller to extract the files that changed in all commits of a large codebase (with over 25k commits)

could take up to 3 hours on a laptop equipped with an SSD and an Intel Core i5 7200U. As this is a

core task of our investigation, this performance made development incredibly difficult. Luckily, the fix is

simple: we use Python to run and capture the output of a shell script. This brought down the execution

time of that task applied to a large codebase to around 10 seconds: a 99.99% reduction.

The collection starts with a git log shell command:

1 git log --reverse --name-status --find-renames

2 --pretty=format:"commit %H %ct %ce"

This tells Git to return all commits in chronological order, by displaying the names and statuses of

changed files, detecting and reporting renames of files, and displaying the literal string ”commit”, followed

by the commit hash (%H), the commit time formatted as the UNIX timestamp (%ct), and the commit

author’s e-mail (%ce). Figure 4.2 contains a partial output of the script applied to the Quizzes Tutor2

codebase. On the first line, you can see the string ”commit”, followed by the hash, the commit time, and

1https://github.com/gitpython-developers/GitPython
2https://github.com/socialsoftware/quizzes-tutor

26

https://github.com/gitpython-developers/GitPython
https://github.com/socialsoftware/quizzes-tutor

Figure 4.2: Example of the output from the commit data extraction script.

the author’s e-mail. This is followed by one line for each of the files changed in this particular commit.

The line contains the status, which can be A (Added), D (Deleted), M (Modified), or R (Renamed), as

well as the file’s name. R is followed by a number between 50 and 100 that represents the similarity

between the file in the last commit and the file in the current commit, and the line also contains the new

name.

It’s important to touch on the topic of lines related to renames. Git does not have a concept of file

renames, because Git only tracks changes and not files. If we were to remove the --find-renames

flag from our command, and there was no configuration telling Git to detect renames, it would report a

rename as an add/delete pair. For example, in figure 4.2, the file frontend/src/view/QuizView.vue

was renamed to frontend/src/view/user/QuizView.vue - it moved to a new folder. Without rename

detection, we would have a line saying that the latter file was added, and the former was deleted. But

we are interested in evaluating how files relate to each other - and indeed, the new file is 95% similar

to the previous one (seen by the R095 status on the left), so they are pretty much the same file with

a slight change (in this case, in imports). For the purposes of our analysis, this is the same file, and

relationships with the previous name should be assumed to also apply to the new name. To ensure that

as many renames as possible are detected, we change Git’s configuration right before the script runs

with the following line: git config diff.renameLimit 999999 . The rename limit is then reverted at

the end of the script’s execution with git config --unset diff.renameLimit .

The output of this command is stored in a temporary file, which is used as input to the following awk

script:

1 $1 == "commit" {commit = $2; time = $3; author = $4}

2 $1 == "A" {printf "%s;ADDED; ;%s;%s;%s\n", commit, $2, time, author}

3 $1 == "M" {printf "%s;MODIFIED; ;%s;%s;%s\n", commit, $2, time, author }

4 $1 == "D" {printf "%s;DELETED; ;%s;%s;%s\n", commit, $2, time, author }

5 match($1,"R[0-9][0-9][0-9]") {printf

6 "%s;RENAMED;%s;%s;%s;%s\n", commit, $2, $3, time, author}

27

Figure 4.3: The head of the history dataframe of the quizzes-tutor codebase.

Each commit’s log information is processed by this script, which converts it to a csv-like format. This

way, we can build a script in Python to read the data into a dataframe for further processing. A dataframe

is a data structure that can be seen as a very efficient table, with rows and columns, and is provided by

the Pandas package. We use it extensively in our implementation, as we manage to hit up to 10x faster

data processing speeds in further steps compared to native Python lists and dictionaries.

A final grep command filters out any file that does not end in .java. This is easily configured, making

the data collection part independent of the language used in the monolith.

4.3 Data Cleaning

At this point, the data from the logs is not yet ready to be used. There are two situations regarding files

getting renamed and files getting deleted that require special care.

If a file is renamed from A.java to B.java, and no care is taken, the final decomposition would

contain both files because there have been changes to both files (before and after the rename) in the

history. This is incorrect because A.java no longer exists. But since it is the same file as B.java, we

replace all instances of A.java with B.java (step 2.1). A similar strategy is followed by Mazlami in [13].

Files may be deleted at timestamp X but then appear as added or modified in timestamp X + Y ,

either by getting merged from another branch or by being re-added. If this happens, we don’t want to

delete those files: there is relevant information after their supposed deletion, and they still exist in the

current snapshot of the repo. So, we delete any occurences of files that show up at least once with a

DELETED status, but only if they don’t show up at a later timestamp with a different status (step 2.2).

Finally, just like in [32], we discard any commits with more than 100 modified files for the purposes

of data analysis - but not for the purpose of identifying renames and deletes. The reasoning is that

these types of commits are usually associated with refactor operations, where a large batch of files is

renamed, deleted, or otherwise changed. But if we were to completely ignore these commits when

identifying renames and deletes, we would be throwing out key moments in history that help us in this

task.

At the end of this process, we have a dataframe containing one row for each file change. The first few

rows of the quizzes-tutor codebase can be found in figure 4.3. For every file that was Added, Modified, or

28

Renamed, there’s a row in the dataframe containing the commit hash where it appeared, the type of the

change, the previous filename (if the change is a Rename), the filename, the timestamp of the change

and the change’s author. With this, we have every information we need to compute the similarities

between files/entities.

4.4 Coupling Computation

The goal is to convert the history dataframe obtained before into a JSON structure that states which files

have been modified together, and another JSON that states which authors have modified a given file.

These are the monolith representations used afterwards to generate a decomposition.

Grouping commits is the first step towards this goal. Different works mention bundling together

commits performed by the same author in a short timeframe [13,32,33]. The reasoning for this is that it’s

likely that all those commits relate to the same task, so they should be considered as just one commit.

We opted to also follow this reasoning, and consider all sequential commits made by the same author in

the period of one hour as just one commit. Then, for each commit, we generate permutations of size 2

of all files that were modified in that commit. For each of these pairs, a JSON structure is updated with

new coupling counts, and another JSON structure is updated with authors.

Figure 4.4 illustrates how this structure is updated and how it looks like in a simple situation with two

commits. For each file found in the file changes representation, we can very simply query how many

times it changed with other files, as well as the number of commits it appeared in, which is all the data

we need to compute the commit similarity measure during the decomposition phase.

4.5 Performing a decomposition

Decomposing a monolith into microservices is done with an automated tool and follows a similar proce-

dure as to what is described in the literature, applying the similarity measures in equations (2.1) to (2.4).

In what concerns the similarity measures in equations (2.5) and (2.6), only the files corresponding to

domain entities are automatically selected from the monolith’s data representations.

The decomposition process is to first build a similarity matrix, and then apply a clustering algorithm

to it. The similarity matrix contains one line and one column for each of the domain entities we want

to consider. Each entry in the matrix contains a number that represents how similar the two entities

are, and combines both the data from the file changes representation and the authorship representation

according to a certain weight. We can choose a value between 0 and 100 for the weight, as long as the

sum of weights equals 100.

For example, following the earlier example, A.java has changed two times with B.java, and these

29

A.java, B.java, C.java

Alice

A.java, B.java

Bob

{
A.java: {

B.java: 1,
C.java: 1,
total_commits: 1,

},
B.java: {

A.java: 1,
C.java: 1,
total_commits: 1,

},
C.java: {

B.java: 1,
A.java: 1,
total_commits: 1,

}
}

{
A.java: {

B.java: 2,
C.java: 1,
total_commits: 2,

},
B.java: {

A.java: 2,
C.java: 1,
total_commits: 2,

},
C.java: {

B.java: 1,
A.java: 1,
total_commits: 1,

}
}

Data Structures

{
A.java: [Alice]
B.java: [Alice]
C.java: [Alice]

}

Data Structures

{
A.java: [Alice, Bob]
B.java: [Alice, Bob]
C.java: [Alice]

}

Commit
Data

Author
Data

Commits

Figure 4.4: How the structures containing the commit and author data look like, and how they change when a new
commit is parsed. The change from the first to the second commit is highlighted in green.

files have two authors in common. Both were also modified in two commits, and by two authors in

total. This means their similarity in both cases is 1. As such, if we attribute equal weights (0.5) to both

representations, the entry (A.java, B.java) has the value 1× 0.5 + 1× 0.5 = 1 - they are fully similar. A

similar logic applied to the rest of the pairs results in matrix 4.1.

A.java B.java C.java[]
A.java 1 1 0.5
B.java 1 1 0.5
C.java 1 1 1

(4.1)

We then apply a hierarchical clustering algorithm to this matrix using the SciPy Python library [35],

and perform a cut with a certain number N . This results in a decomposition of the monolith’s domain

entities into N microservices, each one containing at least one entity. Pairs of entities that have higher

values in the matrix will generally be placed in the same microservice.

With this strategy, it’s easy to perform decompositions that also take into account data from the static

analysis. Recall from chapter 2 that 4 different measures from the static analysis exist. Since both our

measures and these static measures vary between 0 and 1, we can perform a pondered sum of their

values, and the final similarity of any two entities will also vary between 0 and 1. The ability to do this

serves as the basis for the evaluation and comparisons made in chapter 5.

30

4.6 Mono2Micro improvements

Several changes were implemented in Mono2Micro that greatly improved its performance.

The first change has to do with parallelization at the complexity computation level. This computation

requires iterating over all functionalities and local transactions multiple times. However, it is not neces-

sary to know the complexity of functionality #N to compute the complexity of functionality #N + 1. As

such, whenever an iteration over all functionalities or local transactions was performed, it was replaced

by Java’s parallel streams. To sum the values, synchronization on a single cumulative variable was

added.

The analyser is a part of Mono2Micro responsible for (1) the generation of all decompositions of a

codebase, and (2) the computation of the quality metrics for each decomposition. (1) is implemented in

Python, and was parallelized due to similar reasons as above: each decomposition is independent of

other decompositions, so several decompositions can be generated at the same time. This was achieved

with the multiprocessing library. (2) is also highly parellelizable, as each cluster is independent. We

first convert each decomposition into an object, and then added parallel streams when iterating over

all generated decompositions. We then maintain a synchronized structure to store the metrics of each

decomposition. An important finding was that many decompositions were exactly the same even with

different weights. Therefore, before computing the metrics of a new decomposition, we check if it is

equal to a previously computed one (same number of clusters, and the same entities in the same clus-

ters). If it is, we fetch its quality metrics’ values and set them as the quality metrics’ values of the new

decomposition. In essence, we built a cache of decompositions, which achieves hit rates between 67%

and 99%, depending on the number of entities of the codebase.

31

32

5
Evaluation

Contents

5.1 Codebase selection and characterization . 36

5.2 Results . 38

5.3 Evaluation conclusions . 54

5.4 Threats to validity . 55

33

34

The research goal of this thesis, as stated in the introduction, is the following:

How do monolith microservices identification approaches that use the monolith development

history based representations perform when compared with approaches that use the monolith

functionalities sequences of accesses representation?

To address this research question, we generate a large set of decompositions and analyse how the

decomposition qualities vary depending on different monolith representations and similarity measures.

Whenever we create a decomposition, we choose the weights to attribute to our similarity measures.

If we choose 0 as the weight for the commit and the author similarity, then the decomposition is created

using only data from the sequences of accesses representation. On the other hand, if we choose 0

as the weight for all four sequences of accesses measures (access, read, write, sequence), then the

decomposition is created using only data from the development history based representations. In the

remaining combinations, the decompositions are created with data from both sources. By filtering the

results of all generated decompositions, we can obtain five distinct groups of decompositions based

on the weights used to create them: only data from the file changes representation; only data from the

changes authorship representation; only data from the sequences of accesses representation; only data

from the file changes representation and changes authorship; data from all representations. This allows

us to then compare the groups’ quality metrics and draw conclusions.

The comparisons will first be made by evaluating the median and the dispersion of each quality

metric in each of these five groups, which gives us an overview of how, on average, each representation

behaves. We also evaluate the median values of the metrics in the case of the best decompositions -

that is, the decomposition of each codebase with the best value for each metric. This gives us a different

perspective by focusing on which group performs best when the ideal weights for the similarity measures

are found. Finally, we assess if our findings hold when we compare codebases with more commits and

authors than the mean with codebases with less commits and authors than the mean. This is done by

considering the best decompositions, as it gives greater strength to our findings.

The comparisons are, initially, done visually through the analysis of boxplots. Whenever it’s not

visually obvious that there is a large difference between groups, and considering that there are different

amounts of decompositions in each group and the quality metric values don’t follow a normal distribution,

we use a Welch T-test with the following hypotheses:

• H0 - There are no significant differences between the mean ${QUALITY METRIC} of ${GROUP}

decompositions and ${OTHER GROUP}.

• H1 - The mean ${QUALITY METRIC} of ${GROUP} decompositions is greater than ${OTHER

GROUP}.

35

5.1 Codebase selection and characterization

The sequences of accesses monolith representation we are comparing was developed in [7]. In that

work, a total of 121 codebases using the Hibernate ORM were selected, according to the following

procedure:

1. Get all GitHub repositories that list the Spring Data JPA library as a dependency;

2. Filter out repositories that did not contain at least 5 files whose name ended in Controller.java,

and at least 5 files whose name did not contain Dao or Repository.

3. The remaining repositories were ordered by the number of GitHub stars, and 118 codebases were

manually selected. Repositories from lessons or tutorials, and repositories that did not use just

Spring Data JPA were disregarded.

The authors from [7] made available a .zip file with the source code of all codebases, as well as the

collected sequences of accesses. This data was gathered in 2020, and most of the codebases have

maintained an active development cycle since then. As such, the collected data might not be entirely

accurate to the present day version of the codebase, so we cannot just clone the codebase at the latest

commit and collect data related to the development history. Therefore, for the sake of our comparisons

being as accurate as possible, we filter the codebases made available according to the following criteria:

1. We can only know the latest commit of each codebase if a .git subdirectory is available. There-

fore, we filter out all folders that do not contain this directory.

2. As we are looking for an active development history, we filter out all codebases with less than

100 commits and less than 2 authors. The shell command git rev-list --count HEAD lists the

number of commits reachable from the HEAD commit, and corresponds to the number of commits

displayed in the GitHub page of the repository. The number of authors is obtained with the com-

mand git log --pretty='%ae' | sort | uniq | wc -l, which lists all author’s emails from all

commits, sorts them, removes duplicated ones, and then returns just the number of authors.

3. We manually discarded a few codebases that did not follow assumed conventions, like the file

of an entity having the same name as the entity. For example, a BookDepository class in a

Bookdepository.java.

After this filtering, we ended up keeping a total of 28 codebases. Figure 5.1 displays the number

of functionalities as a function of domain entities, as well as the number of authors as a function of

commits, and the number of entities as a function of commits. Although the number of functionalities

tends to increase as more entities exist, there isn’t such a clear relationship between the number of

authors and the commits of a codebase, as well as the number of commits and the number of entities.

36

Figure 5.1: Plots showcasing some relationships of codebases’ features: commit, authors, entities, and functional-
ities.

Overall, the average number of commits is ∼ 3578, with a standard deviation of ∼ 8373. Considering

this, we can say that we have a somewhat diverse distribution of number of commits, which helps our

conclusions be more generally applicable. For future reproducibility of our work, table 5.1 contains the

name of the codebases used, their repository url, and the hash of the latest commit we are considering.

37

Table 5.1: Information about the considered codebases.

Codebase name URL (github.com) HEAD commit hash

Acme-Champions Agusnez/D05-Acme-Champions 1f903258
APMHome devhotmail/APMHome fe087f78
Axon-trader AxonFramework/Axon-trader 1e987bb1
blended-workflow socialsoftware/blended-workflow 53082487
cloudstreetmarket.com alex-bretet/cloudstreetmarket.com 76de2e0d
cloudunit Treeptik/cloudunit 5079ab85
echo cardinal76/echo ac40d97e
edition socialsoftware/edition 1b2a2b0c
ExtremeWorld pengchao1989/ExtremeWorld 34d34542
FengHuang TimYi/FengHuang 17acbe8a
fenixedu-academic FenixEdu/fenixedu-academic 47eb18f8
hexie linknabor/hexie c1d9a85a
irida phac-nml/irida b1ea3274
jewelry masanchezr/jewelry 9dbe6cb8
keta-custom ketayao/keta-custom ef8bc0b9
luna huacha/luna ab42988e
market-manage JoleneOL/market-manage 0f3baa4f
quizzes-tutor socialsoftware/quizzes-tutor 6dcf6684
reddit-app Baeldung/reddit-app c7af951a
ruanfan phyche/ruanfan ba6e9f45
Skoolie Kaydub00/Skoolie 8336599f
SoloMusic jualopmun/SoloMusic 2cf3b54d
splunkwithaws vinothkrishna15/splunkwithaws 52759335
spring-cloud-gray SpringCloud/spring-cloud-gray 17cdbd1f
spring-framework-petclinic spring-petclinic/spring-framework-petclinic 50a219c7
TwitterAutomationWebApp brianmarey/TwitterAutomationWebApp dd739539
webofneeds researchstudio-sat/webofneeds 8fa92d0c
xs2a adorsys/xs2a d0642091

5.2 Results

For each codebase, we create decompositions with 3 to 10 clusters, according to the number of entities

it contains: 3 ≤ n entities < 10 = 3 clusters; 10 < n entities < 20 = 3, 4, and 5 clusters; n entities ≥

20 = 3 to 10 clusters. For each number of clusters, we generate decompositions with varying weights

on the six measures: from 0 to 100, with increments of 10. The distribution of the number of generated

decompositions can be found in Table 5.2.

Table 5.2: The number of generated decompositions across all codebases.

#Entities #Clusters #Codebases #Decompositions

3 to 9 3 4 11982
10 to 19 3 to 5 8 72072
20+ 3 to 10 16 384384

Total 28 468438

38

5.2.1 Uniform complexity

Figure 5.2: Median uniform complexity of the codebases, per number of clusters and per representation.

We start the analysis of the uniform complexity by comparing the values of all codebases per cluster.

From a visual inspection of Figure 5.2, it looks like the changes authorship and the file changes

representations generate decompositions with higher complexity than the sequence of accesses repre-

sentation, in all clusters. To confirm this, we apply a Welch T-Test with the following hypotheses:

• H0 - There are no significant differences between the median uniform complexity of file changes

decompositions and sequences of accesses.

• H1 - The median uniform complexity of file changes decompositions is greater than sequences of

accesses.

We only obtain a p-value < 0.05 in the case of 10 clusters, so we can only state with confidence that

the median uniform complexity of the file changes decompositions is greater in the case of 10 clusters.

Performing a similar test with the authorship representation instead of the file changes representation

leads us to a similar conclusion for the case of 4 and 5 clusters (p-values of 0.039 and 0.023, respec-

tively).

The development history representation presents a statistically significant higher median complex-

ity than the sequences of accesses and the file changes, in all clusters. The combined development

history and sequences is also statistically significantly higher than the sequences of accesses. All of

39

this indicates that the usage of any development history based representation, generally, generates

decompositions with worse complexity than those using the sequences of accesses.

Figure 5.3: Median uniform complexity of each representation’s best uniform complexity decompositions.

The previous analysis showed that, on average, the sequences of accesses representation is better

in terms of complexity. However, when selecting the best decomposition of each codebase for each

number of clusters, we find that 92.95% of decompositions contain data from a development history

representation. This indicates that a detailed analysis on the best decompositions should be made to

verify if the same results are obtained.

Figure 5.3 displays the median uniform complexity of the best decompositions (in terms of complex-

ity) of each representation. What we find is that in this case, the development history and sequences

representation is the best, as all other representations have statistically significant greater median. In

the case of the development history and sequences representation, 85.9% of the decompositions have

a weight in the author measure smaller than 25%. This means that data from the changes authorship

representation is generally not given much importance in the best decompositions of the development

history and sequences representation. Considering that we cannot state that the development history

representation by itself displays higher median than the changes authorship representation, but it does

display higher median than the file changes representation, the presence of authorship data seems to

often generate decompositions with worse uniform complexity, even in the case of the best decomposi-

tions.

40

Figure 5.4: Comparison between the uniform complexity of codebases with a large number of commits with code-
bases with a small number of commits, and codebases with a large number of authors with a small
number of authors. Only the best decompositions were considered.

From the analysis of the best decompositions, we found that combining the sequence of accesses

representation with the development history based representation yielded the best results. We also

found that the presence of authorship data tended to be detrimental to the complexity value. We con-

sidered all codebases, but some codebases have a much larger number of commits and/or authors

than the mean. Do the same conclusions as before follow when comparing these large codebases with

codebases with less commits and/or authors than the mean?

Figure 5.4 displays the median uniform complexity of these two groups of codebases. We can say

with statistical significance that the median uniform complexity of small codebases in the number of

authors is greater than that of large codebases in the number of authors, when comparing the authorship

representation for both cases (p-value: 0). We can also state that there are no significant differences

between the median uniform complexity of the authorship representation in large codebases to the

median uniform complexity of the sequences representation in small codebases, whereas there is a

difference if we compare these two representations in small codebases. This is a surprising result, as

it suggests the effectiveness of the authorship representation, when compared with sequences, if more

authors are present.

In the case of large and small codebases in the number of commits, we cannot state with confidence

that there are significant differences between both types of codebases. We find very large quartiles in

the boxplots of the development history based decompositions, which means that the uniform complexity

41

obtained is very dependent on the codebase itself.

To summarize: on average, the sequences of accesses representation is better in terms of com-

plexity than any development history based representation; when considering the best decompositions,

combining the sequence of accesses representation with the development history representation yields

better results, and authorship data worsens the results; codebases with more authors than the mean

display better complexity than codebases with less authors than the mean, in the authorship representa-

tion, and this representation in large codebases is comparable to the sequences of accesses in smaller

codebases.

5.2.2 Cohesion

Figure 5.5: Median cohesion of the codebases, per number of clusters and per representation.

In terms of cohesion, we can visually see in Figure 5.5 that the sequences representation is very similar

to the combined development history and sequences. We can confirm this via a Welch T-test with the

following hypotheses:

• H0 - There are no significant differences between the median cohesion of sequences of accesses

decompositions and the development history and sequences.

• H1 - The median complexity of the development history and sequences decompositions is greater

than the sequences of accesses.

42

We obtain a p-value < 0.05 in the case of 3 and 4 clusters only, so we can only reject H0 in these

two instances. This means that in the majority of clusters, we cannot say that the development his-

tory and sequences has better (higher) cohesion than the sequences. We do find, however, that the

changes authorship representation has statistically significant higher cohesion than the sequences and

the development history and sequences representations, for all clusters except 5. Finally, we cannot

confidently state that the file changes has greater median than any other representation, suggesting

that it is comparable to them in this metric.

Figure 5.6: Median cohesion of each representation’s best cohesion decompositions.

On average, the previous analysis showed that all representations (other than the changes author-

ship) are more or less comparable. Following the reasoning from the uniform complexity analysis, we

looked at the best decompositions of each codebase and number of clusters, and found that 80.77%

have some data from development history based representations. Therefore, it also makes sense to in-

vestigate these decompositions in terms of cohesion. The median values for the various representations

are displayed in Figure 5.6.

We find with statistical significance that the best decompositions of the development history and se-

quences representation have the best values in this metric. We can confidently say that the sequences of

accesses is also higher than the three development history based representations. Therefore, combin-

ing both data from the development history and data from the sequences of accesses yields best results

than just using one of the representations, although the median differences between representations are

not as extreme as in the case of uniform complexity.

43

Figure 5.7: Comparison between the cohesion of codebases with a large number of commits with codebases with
a small number of commits, and codebases with a large number of authors with a small number of
authors. Only the best decompositions were considered.

Given the poorer performance of the file changes and the changes authorship representations in

the best decompositions for all codebases, we now evaluate if there are significant differences between

codebases with more commits and/or authors than the mean and codebases with less commits and/or

authors than the mean. Figure 5.7 visualizes the median values of the cohesion, for these two groups,

and for each representation.

We can confidently state that the median cohesion of small codebases in the number of commits, in

the case of the authorship representation, is greater than the large codebases in the number of commits

for the same representation. For the file changes, development history, and development history and se-

quences, we cannot state that smaller codebases in the number of commits have greater cohesion than

the large, and for the sequences of accesses representation, we cannot state that the large codebases

display higher median than the smaller.

In the case of codebases with many and few authors, we reach the exact same conclusions. Consid-

ering this, the presence of more authors or more commits does not significantly improve cohesion, but

less authors seems to generate better decompositions when using the authorship representation. We

also find that, both in the case of commits and authors comparisons:

• Comparing the representations of larger codebases, the development history and sequences rep-

resentation has a statistically significant greater median cohesion than the development history

based representations;

44

• The development history and sequences representation of larger codebases has statistically signif-

icant greater median than all other representations of smaller codebases, except the development

history and sequences.

This leads us to conclude that combining development history data of large codebases with the

sequences of accesses leads to better or comparable results to combining development history data of

smaller codebases with sequences of accesses. Just like in the case of uniform complexity, we also see

this representation as the best overall.

To summarize: on average, all representations (other than the changes authorship) are more or less

comparable; the combined sequence of accesses and development history representation is better than

all other representations in the case of the best decompositions; this representation is better in large

codebases than in smaller codebases; large codebases, both in number of commits and number of

authors, are not better than smaller codebases: smaller codebases in the number of authors display

better cohesion in the authorship representation.

5.2.3 Coupling

Figure 5.8: Median coupling of the codebases, per number of clusters and per representation.

Although the coupling looks similar across all representations (see Figure 5.8), with some variations for

some clusters, an analysis with statistical tests reveals that:

45

• The development history and sequences representation median is higher than the sequences, for

all clusters;

• The development history is also higher than the sequences, for all clusters, and is higher than the

development history and sequences.

For the remaining combinations of representations, we cannot confidently state than any of them is

higher than other consistently. As such, the sequences representation is better than any development

history based decomposition for coupling.

Figure 5.9: Median coupling of each representation’s best coupling decompositions.

Similarly to the previous metrics, 95.51% of the best decompositions in terms of coupling are ob-

tained using the development history and sequences of accesses representation. This warrants in-

vestigating the best decompositions of each representation, to evaluate how they compare. A visual

comparison is present in Figure 5.9.

We find that just like the previous metrics, the combination of development history and the sequences

of accesses generates the best values, as we always obtain a p-value of 0 when testing if any other

representation has higher median. Although we can state, through statistical tests, that the sequences

of accesses representation has a higher median value than the development history and sequences

representation, we cannot state that it has a higher value than the remaining representations, which does

mean that the inclusion of development history data makes the already good sequences of accesses

representation even better.

46

Figure 5.10: Comparison between the coupling of codebases with a large number of commits with codebases with
a small number of commits, and codebases with a large number of authors with a small number of
authors. Only the best decompositions were considered.

Since we were not able to state the existence of significant differences between the file changes,

changes authorship, and development history representations, it is worth exploring if the presence of

more or less commits and/or authors yields different conclusions.

In the case of large and small codebases in the the number of authors, we find that the obtained

values in the files and authorship representations are very similar for both categories of codebases,

visually (Figure 5.10) and with statistical significance, but the smaller codebases display worse values

in the development history, sequences, and the development history and sequences representations.

For large and small codebases in the number of commits, we cannot confidently state that the larger

codebases have greater median than the smaller.

To summarize: on average, the sequences of accesses representation performs better than the

remaining representations; the best decompositions made with the development history and sequences

of accesses representation are better than any other representation; smaller codebases in the number of

authors are worse for some representations, but no differences were found between larger and smaller

codebases in the number of commits.

47

5.2.4 Team size reduction ratio

Figure 5.11: Median tsr of the codebases, per number of clusters and per representation.

In this metric, we find more consistent results across all clusters, which can be seen in Figure 5.11.

Similarly to the cohesion, including data from the changes authorship representation produces better

results than not including it. The changes authorship representation is significantly similar to the devel-

opment history based representation, indicating that the usage of authorship data has a great influence

when combined with the file changes data. As this metric evaluates the reduction in team size per mi-

croservice, when compared with the monolith’s original team, it makes sense that decompositions made

with author data perform better. However, it’s interesting to see that the decompositions made with the

sequences of accesses representation, despite having no data regarding authors, display an acceptable

median value under 0.5, and the quartiles in decompositions with 6 or more clusters are all under 0.5 as

well.

48

Figure 5.12: Median tsr of each representation’s best tsr decompositions.

In total, 95.51% of the best decompositions in terms of tsr were achieved with the development

history and sequences representation, which is an indication that, once again, we should compare the

remaining representations in this context.

We cannot state that the development history representation has a higher median than the develop-

ment history and sequence of accesses representation, highlighting that there is little benefit to include

the sequences of accesses. Indeed, around 74% of the best development history and sequences of

accesses decompositions have a sum of weights for the author and commit similarity measures greater

than 50.

We can state that the authorship representation has higher median than the development history

and sequences representation, but cannot state that it is higher for any other representation. We also

cannot state that the file changes representation has higher median than the sequences of accesses,

but it does have higher median than the remaining representations.

All in all, the development history and sequences representation is still the best, as all other repre-

sentations are significantly higher. The sequences of accesses representation, despite having no author

data, still displays comparable results to the authorship representation, which has only author data.

49

Figure 5.13: Comparison between the team size reduction of codebases with a large number of commits with
codebases with a small number of commits, and codebases with a large number of authors with a
small number of authors. Only the best decompositions were considered.

Considering that we cannot state the existence of differences between the changes authorship and

the sequences of accesses representations, it is worth checking if the presence of more authors changes

this.

Comparing large and small codebases in the number of authors, we can say that the tsr of the

smaller codebases in the number of authors is higher, and therefore worse, than the large ones in all

representations. Statistical tests reveal that there are no significant differences between the authorship,

development history, and the combined development history and sequences representations for the

small codebases, highlighting the effect that the changes authorship data has in these representations.

Similarly to the uniform complexity, the development history based representations of large codebases

perform better than the sequence of accesses of small codebases, whereas they perform worse in

the case of smaller codebases, so the presence of more authors does change the conclusions of the

previous analysis of the best decompositions.

Large codebases in the number of commits also display improved tsr median values across all rep-

resentations, when compared with small codebases in the number of commits.

To summarize: on average, decompositions which include changes authorship data perform better

than those that don’t; in the best decompositions, the development history and sequences of accesses

representation does not present siginificant differences to the development history representation, and

the sequences of accesses representation is not significantly different from the authorship representa-

50

tion, despite having no author data; the presence of more commits and/or more authors significantly

improves this metric in all representations.

5.2.5 Combined

Figure 5.14: Median combined of the codebases, per number of clusters and per representation.

This metric offers an overview of all metrics and the trade-offs made in the decomposition, by combining

the previous metrics into a single value. There is not a single type of representation that can be said to

be the best for all clusters and metrics - from what we’ve covered so far, some representations excel at

some metrics more than others. Therefore, it is natural that most decompositions display median values

in each type of representation of around 0.4, with quartiles going up to 0.5. This can be seen in Figure

5.14.

51

Figure 5.15: Median combined of each representation’s best combined decompositions.

Since we cannot state that, on average, a single representation is better than the others, we can look

at the best decompositions (in Figure 5.15) to get another perspective.

The analysis of this plot confirms the analysis of the previous metrics: the best decompositions of

the development history and sequences representation are the best across all metrics, as all others

representations display statistically significant higher values. The sequences representation, due to the

better values in uniform complexity, cohesion, and coupling, is also good, as it has a higher median than

the development history and sequences representation, but the other representations have a higher

median the the sequences of accesses. Between the file changes, authorship, and development history

representations, we cannot state that any of them is higher than another, which highlights the better

performance of some representations in some metrics, but worse performance in others.

52

Figure 5.16: Comparison between the combined of codebases with a large number of commits with codebases
with a small number of commits, and codebases with a large number of authors with a small number
of authors. Only the best decompositions were considered.

Considering the similarity between the file changes, changes authorship, and development history

representations, we can try to find if there are any differences when considering large and small code-

bases in the number of commits and/or authors. Figure 5.16 contains a visualization of this comparison.

The good performance of the larger codebases in the number of authors for previous metrics explains

the improvement of the combined metric, as the representations of smaller codebases have statistically

significant greater median values than the large codebases. For the case of commits, we cannot state

that the smaller codebases display larger values in any representations, which means that overall, the

quality of codebases with more commits is comparable to the quality of codebases with less commits.

To summarize: on average, we cannot state that any representation is better than others; the de-

velopment history and sequences of accesses is the best representation when analyzing the best de-

compositions, which is expected considering that this representation was consistently the best in the

previous metrics; large codebases in the number of authors are better than smaller, whilst no significant

differences were found betweeen large codebases in the number of commits and small codebases in

the number of commits.

53

5.3 Evaluation conclusions

We were able to properly compare the various representations in previous sections, through visual

analysis and statistical analysis. The median quality metrics values across all codebases and clusters

provided us with an overview of the most common scenario. But this is a limited view, as it does not fully

represent what happens if an ideal decomposition is found. To fix that, we also analyzed the best decom-

positions of each metric and representation, where often different results were obtained. Additionally,

we often could not find significant differences between the development history based representations,

so we separated the best decompositions according to the number of commits and authors of their

codebases, which gave us better insights in some situations.

This whole analysis provided us with several conclusions that allow us to answer the research ques-

tion of this thesis, focused around how the sequences of accesses representation compares with devel-

opment history based representations:

• On average, the sequence of accesses representation is better in the case of complexity and

coupling. For cohesion, no significant differences were found between representations, with the

exception of the changes authorship representation, which performs better than all others. Rep-

resentations with change authorship data, like the changes authorship, development history, and

development history and sequences, perform better than the sequence of accesses for tsr, al-

though we have to highlight the still acceptable performance of the latter. These trade-offs are

captured by the combined metric and confirmed through statistical tests, as we cannot state that

any representation is better than the others at any number of clusters.

• When looking at the best decompositions, the combined development history and sequence of

accesses representation yielded the best values for all metrics. A notable exception is in the tsr

metric, where we could not state with statistical significance that this representation is better than

the development history representation. Nevertheless, these conclusions give support to the no-

tion that the presence of more data from different sources improves results. However, considering

that this does not happen when looking at the vast majority of decompositions, it means that ob-

taining good results when using data from the development history is very dependent on choosing

the ideal weights when creating the decomposition.

• Through the comparison between large and small codebases in the number of commits and/or

authors, we cannot state that the complexity of the changes authorship representation of large

codebases in the number of authors is higher than the sequences of accesses representation of

small codebases in the number of authors. Regarding cohesion and coupling, we found that the

presence of more commits or authors does not improve results. On the other hand, more commits

54

or authors does significantly improve the tsr values, as any representation of larger codebases has

a better median than the sequences of accesses representation of smaller codebases.

5.4 Threats to validity

Out of all decompositions, we find that 0.37% were made exclusively with data from the development

history, and 9.52% exclusively with data from the sequences of accesses. The remaining 90.11% were

made with combined data. This is a consequence of using four measures related to the sequences of

accesses, but only two related to the development history. To ensure this does not affect our findings, we

opted to use a statistical test that performs well even comparing groups with different sample sizes, and

do not rely only on boxplots to draw conclusions. Additionally, note that these differences only applied

for the first analysis, where we consider to all the decompositions, which was rather inconclusive. For all

the other analyses, the best decompositions were chosen and so, we have only one decomposition per

representation and number of clusters.

Not all repositories have a clean and linear history, with some presenting many branches, refactors,

and merges. This affects the detection and processing of deletes and renames, which makes devel-

opment history based decompositions less efficient. Nevertheless, we obtained good results for the

development history representations.

We found that sometimes, files presented an ADD or MODIFY change event after a DELETE event. In

some situations, this means we could be considering two distinct files as the same one, if they happened

to have the same filename and one of them was deleted before the other was added. However, in all

cases we found, the files still existed in the latest repository snapshot and did correspond to the same

file that was deleted. Considering that this situation is unlikely, and the existence of a DELETE event after

an ADD or MODIFY change event usually occurs due to merges, we opted to still consider these files in

our analysis, and we don’t discard them.

Our data collection approach was to gather data about all .java files across all commits, and then

discard non domain entities files only in the decomposition phase. An alternative would be to filter all

commits and select those where only domain entities were changed. Our approach is richer, as we have

more data available and are not deleting potentially useful relationships between files.

We adapted the logical coupling and the contributor coupling measures from [13], by considering a

fraction rather than an absolute value. This was made to facilitate the integration of other measures

without much experimentation on the ideal weights that would be required if absolute values were con-

sidered.

55

56

6
Conclusion

57

58

As the development of a monolith system progresses, it tends to get more complex, and introducing

new features and bug fixes becomes harder. An architecture based on microservices allows for better

scaling, so a migration from a monolith to this architecture brings plenty of advantages. To help with the

migration, various automated approaches with different strengths, inputs, and evaluation metrics have

been proposed, but they were generally tested on a reduced number of codebases and there is a lack

of research on the comparison of different approaches.

In this work, we evaluated a total of 468k decompositions of 28 codebases, and compared their qual-

ity according to 5 metrics when created with different monolith representations: file changes, changes

authorship, development history (which combines the previous two), sequences of accesses, and a

combined development history and sequences of accesses.

On average, according to our quality metrics, development history based representations are not

better than a sequences of accesses representation. With respect to the best decompositions according

to each metric, the vast majority of them (over 80%) were generated with the combined development

history and sequences of accesses representation. This means that even if this combination does not

produce the best results on average, when compared with other representations, it is very likely that the

best weights configuration for a given metric considers both representations. Interestingly, we also found

that codebases with a high number of authors present better decompositions, with the authorship rep-

resentation of larger codebases achieving comparable results to the sequences of accesses of smaller

codebases. On the other hand, the number of commits does not have a significant impact on the quality

of the generated decompositions.

Following the results obtained and what we learned, we propose for future work including more

data related to repositories to evaluate similarities, like branches, GitHub Pull Requests, GitHub Issues;

exploring the effect of different clustering algorithms on the decompositions; adding more codebases to

further confirm our results.

59

60

Bibliography

[1] J. Lewis and M. Fowler, “Microservices: a definition of this new architectural term,” MartinFowler.

com, vol. 25, pp. 14–26, 2014.

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1, pp. 116–116, 2015.

[3] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic Mapping Study in Microservice Architecture,” in

2016 IEEE 9th International Conference on Service-Oriented Computing and Applications (SOCA).

Macau, China: IEEE, Nov. 2016, pp. 44–51.

[4] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From monolith to microservices: A classifi-

cation of refactoring approaches,” in Software Engineering Aspects of Continuous Development and

New Paradigms of Software Production and Deployment, J.-M. Bruel, M. Mazzara, and B. Meyer,

Eds. Cham: Springer International Publishing, 2019, pp. 128–141.

[5] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic approach

to service decomposition,” in Service-Oriented and Cloud Computing, M. Aiello, E. B. Johnsen,

S. Dustdar, and I. Georgievski, Eds. Cham: Springer International Publishing, 2016, pp. 185–200.

[6] M. Abdellatif, A. Shatnawi, H. Mili, N. Moha, G. E. Boussaidi, G. Hecht, J. Privat, and Y.-G.

Guéhéneuc, “A taxonomy of service identification approaches for legacy software systems

modernization,” Journal of Systems and Software, vol. 173, p. 110868, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121220302582

[7] S. Santos and A. R. Silva, “Microservices identification in monolith systems: Functionality redesign

complexity and evaluation of similarity measures,” Journal of Web Engineering, Aug. 2022.

[Online]. Available: https://doi.org/10.13052/jwe1540-9589.2158

[8] S. Klock, J. M. E. M. van der Werf, J. P. Guelen, and S. Jansen, “Workload-based clustering of

coherent feature sets in microservice architectures,” in 2017 IEEE International Conference on

Software Architecture (ICSA), 2017, pp. 11–20.

61

https://www.sciencedirect.com/science/article/pii/S0164121220302582
https://doi.org/10.13052/jwe1540-9589.2158

[9] S. Hassan, N. Ali, and R. Bahsoon, “Microservice ambients: An architectural meta-modelling

approach for microservice granularity,” in 2017 IEEE International Conference on Software

Architecture (ICSA). IEEE, Apr. 2017. [Online]. Available: https://doi.org/10.1109/icsa.2017.32

[10] S. Eski and F. Buzluca, “An automatic extraction approach: transition to microservices architecture

from monolithic application,” in Proceedings of the 19th International Conference on Agile Software

Development: Companion. Porto Portugal: ACM, May 2018, pp. 1–6.

[11] A. Santos and H. Paula, “Microservice decomposition and evaluation using dependency graph and

silhouette coefficient,” in 15th Brazilian Symposium on Software Components, Architectures, and

Reuse. Joinville Brazil: ACM, Sep. 2021, pp. 51–60.

[12] J. Löhnertz and A.-M. Oprescu, “Steinmetz: Toward Automatic Decomposition of Monolithic Soft-

ware Into Microservices,” in Proceedings of the 13th Seminar Series on Advanced Techniques &

Tools for Software Evolution, Amsterdam, The Netherlands, July 1-2, 2020 (due to COVID-19: vir-

tual event), ser. CEUR Workshop Proceedings, E. Constantinou, Ed., vol. 2754. CEUR-WS.org,

2020.

[13] G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from Monolithic Software Architec-

tures,” in 2017 IEEE International Conference on Web Services (ICWS). Honolulu, HI, USA: IEEE,

Jun. 2017, pp. 524–531.

[14] L. Nunes, N. Santos, and A. Rito Silva, “From a monolith to a microservices architecture: An

approach based on transactional contexts,” in Software Architecture, T. Bures, L. Duchien, and

P. Inverardi, Eds. Cham: Springer International Publishing, 2019, pp. 37–52.

[15] J. Bogner, S. Wagner, and A. Zimmermann, “Automatically measuring the maintainability of service-

and microservice-based systems: A literature review,” in Proceedings of the 27th International

Workshop on Software Measurement and 12th International Conference on Software Process and

Product Measurement, ser. IWSM Mensura ’17. New York, NY, USA: Association for Computing

Machinery, 2017, p. 107–115. [Online]. Available: https://doi.org/10.1145/3143434.3143443

[16] G. Kecskemeti, A. C. Marosi, and A. Kertesz, “The ENTICE approach to decompose monolithic

services into microservices,” in 2016 International Conference on High Performance Computing &

Simulation (HPCS). Innsbruck, Austria: IEEE, Jul. 2016, pp. 591–596.

[17] L. Nunes, N. Santos, and A. Rito Silva, “From a Monolith to a Microservices Architecture: An

Approach Based on Transactional Contexts,” in Software Architecture, T. Bures, L. Duchien, and

P. Inverardi, Eds. Cham: Springer International Publishing, 2019, vol. 11681, pp. 37–52, series

Title: Lecture Notes in Computer Science.

62

https://doi.org/10.1109/icsa.2017.32
https://doi.org/10.1145/3143434.3143443

[18] N. Santos and A. Rito Silva, “A Complexity Metric for Microservices Architecture Migration,” in 2020

IEEE International Conference on Software Architecture (ICSA). Salvador, Brazil: IEEE, Mar.

2020, pp. 169–178.

[19] B. Andrade, S. Santos, and A. R. Silva, “From monolith to microservices: Static and dynamic

analysis comparison,” 2022. [Online]. Available: https://arxiv.org/abs/2204.11844

[20] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian, “An in-depth

study of the promises and perils of mining github,” Empirical Software Engineering, vol. 21, p.

2035–2071, 2016.

[21] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, “Service candidate identification from mono-

lithic systems based on execution traces,” IEEE Transactions on Software Engineering, vol. 47,

no. 5, pp. 987–1007, 2021.

[22] H. Garcia-Molina and K. Salem, “Sagas,” SIGMOD Rec., vol. 16, no. 3, p. 249–259, Dec. 1987.

[Online]. Available: https://doi.org/10.1145/38714.38742

[23] C. Richardson, Microservices Patterns: With examples in Java. Manning, 2018. [Online].

Available: https://books.google.pt/books?id=UeK1swEACAAJ

[24] M. Shapiro and B. Kemme, Eventual Consistency. Boston, MA: Springer US, 2009, pp.

1071–1072. [Online]. Available: https://doi.org/10.1007/978-0-387-39940-9{ }1366

[25] R. C. Martin, Agile software development, principles, patterns, and practices, ser. Alan Apt series.

Upper Saddle River, NJ: Pearson, Oct. 2005.

[26] M. Ahmadvand and A. Ibrahim, “Requirements reconciliation for scalable and secure microservice

(de)composition,” in 2016 IEEE 24th International Requirements Engineering Conference

Workshops (REW). IEEE, Sep. 2016. [Online]. Available: https://doi.org/10.1109/rew.2016.026

[27] L. Baresi, M. Garriga, and A. D. Renzis, “Microservices identification through interface analysis,”

in Service-Oriented and Cloud Computing. Springer International Publishing, 2017, pp. 19–33.

[Online]. Available: https://doi.org/10.1007/978-3-319-67262-5 2

[28] D. Escobar, D. Cardenas, R. Amarillo, E. Castro, K. Garces, C. Parra, and R. Casallas,

“Towards the understanding and evolution of monolithic applications as microservices,” in 2016

XLII Latin American Computing Conference (CLEI). IEEE, Oct. 2016. [Online]. Available:

https://doi.org/10.1109/clei.2016.7833410

[29] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for extracting microservices from

monolithic enterprise systems,” 2016. [Online]. Available: https://arxiv.org/abs/1605.03175

63

https://arxiv.org/abs/2204.11844
https://doi.org/10.1145/38714.38742
https://books.google.pt/books?id=UeK1swEACAAJ
https://doi.org/10.1007/978-0-387-39940-9{_}1366
https://doi.org/10.1109/rew.2016.026
https://doi.org/10.1007/978-3-319-67262-5_2
https://doi.org/10.1109/clei.2016.7833410
https://arxiv.org/abs/1605.03175

[30] O. Mustafa, J. M. Gómez, M. Hamed, and H. Pargmann, “GranMicro: A black-box

based approach for optimizing microservices based applications,” in Progress in IS.

Springer International Publishing, Aug. 2017, pp. 283–294. [Online]. Available: https:

//doi.org/10.1007/978-3-319-65687-8 25

[31] L. v. Asseldonk, “From a Monolith to Microservices: the Effect of Multi-view Clustering,” M, Utrecht

University, 2021. [Online]. Available: https://studenttheses.uu.nl/handle/20.500.12932/148

[32] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source code changes by mining change

history,” IEEE Transactions on Software Engineering, vol. 30, no. 9, pp. 574–586, Sep. 2004.

[33] H. Kagdi, J. Maletic, and B. Sharif, “Mining software repositories for traceability links,” in 15th IEEE

International Conference on Program Comprehension (ICPC ’07). Banff, Alberta, BC: IEEE, Jun.

2007, pp. 145–154.

[34] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python framework for mining software

repositories,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering -

ESEC/FSE 2018. New York, New York, USA: ACM Press, 2018, pp. 908–911. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=3236024.3264598

[35] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. May-

orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,

J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp.

261–272, 2020.

64

https://doi.org/10.1007/978-3-319-65687-8_25
https://doi.org/10.1007/978-3-319-65687-8_25
https://studenttheses.uu.nl/handle/20.500.12932/148
http://dl.acm.org/citation.cfm?doid=3236024.3264598

65

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Contents
	1 Introduction
	1.1 Problem
	1.2 Contribution and research questions
	1.3 Outline

	2 Background
	2.1 Similarity Measures
	2.2 Quality metrics
	2.2.1 Complexity
	2.2.2 Uniform Complexity
	2.2.3 Cohesion and coupling
	2.2.4 Team size reduction
	2.2.5 Combined

	3 Related Work
	3.1 Monolith Decomposition Techniques
	3.1.1 Overview
	3.1.2 Using development history

	3.2 Comparison of Techniques
	3.3 Research Gap
	3.4 Usage of commit logs for software engineering research

	4 Implementation
	4.1 Overview
	4.2 Data Collection
	4.3 Data Cleaning
	4.4 Coupling Computation
	4.5 Performing a decomposition
	4.6 Mono2Micro improvements

	5 Evaluation
	5.1 Codebase selection and characterization
	5.2 Results
	5.2.1 Uniform complexity
	5.2.2 Cohesion
	5.2.3 Coupling
	5.2.4 Team size reduction ratio
	5.2.5 Combined

	5.3 Evaluation conclusions
	5.4 Threats to validity

	6 Conclusion

