Building
Secure and Reliable
Network Applications

Kenneth P. Birman

Department of Computer Science
Cornell University

Ithaca, New York 14853

Cover image: line drawing of the golden gate bridge looking towards San Francisco?

@ Copyright 1995, Kenneth P. Birman. All rights reserved. This document may not be copied, electronically or physically, in
whole or in part, or otherwise disseminated without the author’s prior written permission.

TRADEMARKS CITED IN THE TEXT

PREFACE AND ACKNOWLEDGEMENTS

INTRODUCTION

A USER’S GUIDE TO THIS BOOK

PART I: BASIC DISTRIBUTED COMPUTING TECHNOLOGIES

1. FUNDAMENTALS

1.1 Introduction

1.2 Components of a Reliable Distributed Computing System
1.2.1 Communications Technology
1.2.2 Basic transport and network services
1.2.3 Reliable transport software and communication support
1.2.4 "Middleware”: Software tools, utilities, and programming languages
1.2.5 Distributed computing environments
1.2.6 End-user applications

1.3 Critical Dependencies

1.4 Next Steps

1.5 Additional Reading

2. COMMUNICATION TECHNOLOGIES
2.1 Types of Communication Devices
2.2 Properties
2.3 Ethernet
2.4 FDDI
2.5 B-ISDN and the Intelligent Network
2.6 ATM
2.7 Cluster and Parallel Architectures
2.8 Next steps

2.9 Additional Reading

14

15

16

26

28

29
29
32
35
36
38
38
39
40
41
42

43

44
44
45
46
48
50
53
56
57

58

Chapterl: Fundamentals

3. BASIC COMMUNICATION SERVICES
3.1 Communications Standards
3.2 Addressing
3.3 Internet Protocols
3.3.1 Internet Protocol: IP layer
3.3.2 Transport Control Protocol: TCP
3.3.3 User Datagram Protocol: UDP
3.3.4 Internet Packet Multicast Protocol: IP Multicast
3.4 Routing
3.5 End-to-end Argument
3.6 O/S Architecture Issues, Buféring, Fragmentation
3.7 Xpress Transfer Protocol

3.8 Next Steps

3.9 Additional Reading

4. RPC AND THE CLIENT-SERVER MODEL

4.1 RPC Protocols and Concepts
4.2 Writing an RPC-based Client or Server Program
4.3 The RPC Binding Problem
4.4 Marshalling and Data Types
4.5 Associated Serces
4.5.1 Naming services
4.5.2 Time services
4.5.3 Security services
4.5.4 Threads packages
4.6 The RPC Protocol
4.7 Using RPC in Reliable Distributed Systems

4.8 Related Readings

5. STREAMS

5.1 Sliding Window Protocols
5.1.1 Error Correction
5.1.2 Flow Control
5.1.3 Dynamic Adjustment of Window Size

59
59
59
63
64
64
64
65
66
67
68
70
71

72

73
75
77
79
81
83
83
84
85
85
89
92

95

96

96
97
98
98

4 Kenneth P. Birman - Building Secure and Reliable Network Applications

5.1.4 Burst Transmission Concept 99
5.2 Negative-Acknowledgement Only 100
5.3 Reliability, Fault-tolerance, and Consistency in Streams 100
5.4 RPC over a Stream 102
5.5 Related Readings 102

6. CORBA AND OBJECT-ORIENTED ENVIRONMENTS 104
6.1 The ANSA Project 104
6.2 Beyond ANSA to CORBA 106
6.3 OLE-2 and Network OLE 107
6.4 The CORBA Reference Model 107
6.5 TINA 114
6.6 IDL and ODL 114
6.7 ORB 116
6.8 Naming Service 116
6.9 ENS 117
6.10 Life Cycle Service 118
6.11 Persistent Object Service 118
6.12 Transaction Service 118
6.13 Inter-Object Broker Protocol 118
6.14 Future CORBA Services 118
6.15 Properties of CORBA Solutions 119
6.16 Related Readings 120

7. CLIENT-SERVER COMPUTING 121
7.1 Stateless and Stateful Client-Server Interactions 121
7.2 Major Uses of the Client-Server Paradigm 121
7.3 Distributed File Systems 125

Chapterl: Fundamentals 5

7.4 Stateful File Servers 129
7.5 Distributed Database Systems 136
7.6 Applying Transactions to File Servers 141
7.7 Message Oriented Middleware 143
7.8 Related Topics 143

7.9 Related Readings 145

8. OPERATING SYSTEM SUPPORT FOR HIGH PERFORMANCE

COMMUNICATION 146
8.1 Lightweight RPC 147
8.2 Fbuf’'s and the xKernel Project 149
8.3 Active Messages 151
8.4 Beyond Active Messages: U-Net 153
8.5 Protocol Compilation Techniques 156
8.6 Related Readings 157

PART II: THE WORLD WIDE WEB 158

9. THE WORLD WIDE WEB 159
9.1 Related Readings 164

10. THE MAJOR WEB TECHNOLOGIES 165
10.1 Hyper-Text Markup Language (HTML) 166
10.2 Virtual Reality Markup Language (VRML) 166
10.3 Universal Resource Locators (URLS) 166
10.4 Hyper-Text Transport Protocol (HTTP) 167
10.5 Representations of Image Data 170
10.6 Authorization and Privacy Issues 171
10.7 Web Proxy Servers 174
10.8 Java, HotJava, and Agent Based Browsers 175

6 Kenneth P. Birman - Building Secure and Reliable Network Applications

10.9 GUI Builders and Other Distributed CASE Tools 179
10.10 Tacoma and the Agent Push Model 179
10.11 Web Search Engines and Web Crawlers 181
10.12 Important Web Servers 182
10.13 Future Challenges 182
10.14 Related Readings 184
11. RELATED INTERNET TECHNOLOGIES 185
11.1 File Transfer Tools 185
11.2 Electronic Mail 185
11.3 Network Bulletin Boards (newsgroups) 186
11.4 Message Oriented MiddleWare Systems (MOMS) 187
11.5 Message Bus Architectures 189
11.6 Internet Firewalls and Gateways 191
11.7 Related Readings 192
PART Ill: RELIABLE DISTRIBUTED COMPUTING 193
12. HOW AND WHY COMPUTER SYSTEMS FAIL 194
12.1 Hardware Reliability and Trends 194
12.2 Software Reliability and Trends 194
12.3 Other Sources of Downtime 196
12.4 Complexity 196
12.5 Detecting failures 197
12.6 Hostile Environments 198
12.7 Related Readings 199
13. GUARANTEEING BEHAVIOR IN DISTRIBUTED SYSTEMS 200
13.1 Consistent Distributed Behavior 200
13.2 Warning: Rough Road Ahead! 201

Chapterl: Fundamentals 7

13.3 Membership in a Distributed System 202
13.4 Time in Distributed Systems 203
13.5 Failure Models and Reliability Goals 208
13.6 Reliable Computing in a Static Membership Model 209
13.6.1 The Distributed Commit Problem 210
13.6.1.1 Two-Phase Commit 211
13.6.1.2 Three-Phase Commit 218
13.6.2 Reading and Updating Replicated Data with Crash Failures 221
13.7 Replicated Data with Non-Benign Failure Modes 223
13.8 Reliability in Asynchronous Environments 226
13.9 The Dynamic Group Membership Problem 231
13.10 The Group Membership Problem 235
13.10.1 Protocol used to track GMS Membership 239
13.10.2 GMS Protocol to Handle Client Add and Join Events 241
13.10.3 GMS Notifications With Bounded Delay 242
13.10.4 Extending the GMS to Allow Partition and Merge Events 244
13.11 Dynamic Process Groups and Group Communication 245
13.11.1 Group Communication Primitives 247
13.12 Delivery Ordering Options 249
13.12.1.1 Non-Uniform Failure-Atomic Group Multicast 253
13.12.1.2 Dynamically Uniform Failure-Atomic Group Multicast 255
13.12.2 Dynamic Process Groups 255
13.12.3 View-Synchronous Failure Atomicity 257
13.12.4 Summary of GMS Properties 259
13.12.5 Ordered Multicast 260
13.12.5.1 Fifo Order 260
13.12.5.2 Causal Order 261
13.12.5.2.1 Causal ordering with logical timestamps 262
13.12.5.2.2 Causal ordering with vector timestamps 263
13.12.5.2.3 Timestamp compression 265
13.12.5.2.4 Causal multicast and consistent cuts 266
13.12.5.2.5 Exploiting Topological Knowledge 268
13.12.5.3 Total Order 269
13.13 Communication From Non-Members to a Group 271
13.13.1 Scalability 273
13.14 Communication from a Group to a Non-Member 273
13.15 Summary 273
13.16 Related Readings 275
14. POINT-TO-POINT AND MULTIGROUP CONSIDERATIONS 276

8 Kenneth P. Birman - Building Secure and Reliable Network Applications

14.1 Causal Communication Outside of a Process Group
14.2 Extending Causal Order to Multigroup Settings
14.3 Extending Total Order to Multigroup Settings

14.4 Causal and Total Ordering Domains

14.5 Multicasts to Multiple Groups

14.6 Multigroup View Management Protocols

14.7 Related Reading

15. THE VIRTUALLY SYNCHRONOUS EXECUTION MODEL

15.1 Virtual Synchrony
15.2 Extended Virtual Synchrony

15.3 Virtually Synchronous Algorithms and Tools
15.3.1 Replicated Data and Synchronization
15.3.2 State transfer to a joining process
15.3.3 Load-Balancing
15.3.4 Primary-Backup Fault Tolerance
15.3.5 Coordinator-Cohort Fault-Tolerance

15.4 Related Readings

16. CONSISTENCY IN DISTRIBUTED SYSTEMS
16.1 Consistency in the Static and Dynamic Membership Models
16.2 General remarks Concerning Causal and Total Ordering
16.3 Summary and Conclusion

16.4 Related Reading

17. RETROFITTING RELIABILITY INTO COMPLEX SYSTEMS

17.1 Wrappers and Toolkits
17.1.1 Wrapper Technologies
17.1.1.1 Wrapping at Object Interfaces
17.1.1.2 Wrapping by Library Replacement
17.1.1.3 Wrapping by Object Code Editing
17.1.1.4 Wrapping With Interposition Agents and Buddy Processes
17.1.1.5 Wrapping Communication Infrastructures: Virtual Private Networks
17.1.1.6 Wrappers: Some Final Thoughts
17.1.2 Introducing Robustness in Wrapped Apgiicns
17.1.3 Toolkit Technologies

276
279
280
281
282
283

283

284
284
288

292
292
296

298
299
301

302

303
303
311
314

315

316

316
318
318
318
319
320
320
321
321
323

Chapterl: Fundamentals 9

17.1.4 Distributed Programming Languages 325
17.2 Wrapping a Simple RPC server 326
17.3 Wrapping a Web Server 327
17.4 Hardening Other Aspects of the Web 328
17.5 Unbreakable Stream Connections 332

17.5.1 Reliability Options for Stream Communication 333

17.5.2 An Unbreakable Stream That Mimics TCP 335

17.5.3 Non-Determinism and Its Consequences 336

17.5.4 Dealing With Arbitrary Non-Determinism 337

17.5.5 Replicating the IP Address 337

17.5.6 Maximizing Concurrency by Relaxing Multicast Ordering 338

17.5.7 State Transfer Issues 340

17.5.8 Discussion 340
17.6 Building a Replicated TCP Protocol Using a Toolkit 341
17.7 Reliable Distributed Shared Memory 342

17.7.1 The shared memory wrapper abstraction 342

17.7.2 Memory coherency options for distributed shared memory 344

17.7.3 False sharing 346

17.7.4 Demand paging and intelligent prefetching 346

17.7.5 Fault-tolerance issues 347

17.7.6 Security and protection considerations 347

17.7.7 Summary and discussion 348
17.8 Related Readings 348

18. RELIABLE DISTRIBUTED COMPUTING SYSTEMS 349
18.1 Architectural Considerations in Reliable Systems 349
18.2 Horus: A Flexible Group Communications System 351

18.2.1 A layered process group architecture 352
18.3 Protocol stacks 355
18.4 Using Horus to Build a Robust Groupware Application 356
18.5 Using Horus to Harden CORBA applications 359
18.6 Basic Performance of Horus 360
18.7 Masking the Overhead of Protocol Layering 362

18.7.1 Reducing Header Overhead 363

18.7.2 Eliminating Layered Protocol Processing Overhead 364

18.7.3 Message Packing 365

18.7.4 Performance of Horus with the Protocol Accelerator 365
18.8 Scalability 366

10 Kenneth P. Birman - Building Secure and Reliable Network Applications

18.9 Related Readings 368
19.SECURITY OPTIONS FOR DISTRIBUTED SETTINGS 370
19.1 Perimeter Defense Technologies 372
19.2 Access Control Technologies 374
19.3 Authentication Schemes and Kerberos 376
19.3.1 RSA and DES 376
19.3.2 Kerberos 377
19.3.3 ONC security and NFS 380
19.3.4 Fortezza 380
19.4 Availability and Security 382
19.5 Related Readings 383
20.CLOCK SYNCHRONIZATION AND SYNCHRONOUS SYSTEMS 384
20.1 Clock Synchronization 384
20.2 Timed-asynchronous Protocols 388
20.3 Adapting Virtual Synchrony for Real-Time Settings 395
20.4 Related Readings 398
21. TRANSACTIONAL SYSTEMS 399
21.1 Implementation of a Transactional Storage System 401
21.1.1 Write-ahead logging 401
21.1.2 Persistent data seen “through” an updates list 402
21.1.3 Non-distributed commit actions 403
21.2 Distributed Transactions and Multi-Phase Commit 404
21.3 Transactions on Replicated Data 404
21.4 Nested Transactions 405
21.4.1 Comments on the nested transaction model 407
21.5 Weak Consistency Models 410
21.5.1 Epsilon serializability 410
21.5.2 Weak and strong consistency in partitioned database systems 411
21.5.3 Transactions on multi-database systems 412
21.5.4 Linearizability 412
21.5.5 Transactions in Real-Time Systems 413
21.6 Advanced Replication Techniques 413

10

Chapterl: Fundamentals 11

21.7 Related Readings 416
22.PROBABILISTIC PROTOCOLS 417
22.1 Probabilistic Protocols 417
22.2 Other applications of gossip protocols 419
22.3 Hayden'’s pbcast primitive 419
22.3.1 Unordered pbcast protocol 420
22.3.2 Adding Total Ordering 421
22.3.3 Probabilistic Reliability and the Bimodal Delivery Distribution 422
22.3.4 An Extension to Pbcast 424
22.3.5 Evaluation and Scalability 424
22.3.5.1 Reliability 424
22.3.5.2 Message cost and fanout. 424
22.4 An Unscalable System Model 425
22.5 Replicated Data using Pbcast 425
22.5.1 Representation of replicated data 425
22.5.2 Update protocol 425
22.5.3 Read protocol 426
22.5.4 Locking protocol 426
22.6 Related Readings 427
23. DISTRIBUTED SYSTEM MANAGEMENT 428
23.1 A Relational System Model 428
23.2 Instrumentation Issues: Sensors, Actuators 430
23.3 Management Information Bases, SNMP and CMIP 430
23.3.1 Sensors and events 431
23.3.2 Actuators 434
23.4 Reactive control in Distributed Settings 435
23.5 Fault-tolerance by State Machine Replication 436
23.6 Visualization of Distributed System States 436
23.7 Correlated Events 437
23.8 Information Warfare and Defensive Tactics 437
23.9 Related Readings 441
24. CLUSTER COMPUTER ARCHITECTURES 442

11

12

24.1 Inside a High Availalility Cluster Product: The Stratus Radio

Kenneth P. Birman - Building Secure and Reliable Network Applications

24.2 Reliability Goals for Cluster Servers

24.3 Comparison with Fault-Tolerant Hardware

24.4 Protocol Optimizations

24.5 Cluster API Goals and Implementation

24.6 Related Readings

25. REASONING ABOUT DISTRIBUTED SYSTEMS

25.1 Dimensions of the Systems Validation Problem

25.2 Process and Message-Oriented Models

25.3 System Definition Languages

25.4 High Level Languages and Logics

26. OTHER DISTRIBUTED AND TRANSACTIONAL SYSTEMS

26.1 Related Work in Distributed Computing

26.1.1 Ameoba

26.1.2 Chorus

26.1.3 Delta-4

26.1.4 Harp

26.1.5 The Highly Available System (HAS)
26.1.6 The Isis Toolkit

26.1.7 Locus

26.1.8 Sender-Based Logging and Manetho
26.1.9 NavTech

26.1.10 Phoenix

26.1.11 Psync

26.1.12 Relacs

26.1.13 Rampart

26.1.14 RMP

26.1.15 StormCast

26.1.16 Totem

26.1.17 Transis

26.1.18 The V System

26.2 Systems That Implement Transactions

12

26.2.1 Argus
26.2.2 Arjuna
26.2.3 Avalon
26.2.4 Bayou
26.2.5 Camelot and Encina

443
445

447
448
449

450

451
451
454
457

458

461

461
461
461
462
462
463
463
464
464
465
465
465
465
466
466
466
467
468
468

469
469
470
470
470

471

Chapterl: Fundamentals

APPENDIX: PROBLEMS

BIBLIOGRAPHY

INDEX

13

472

482

505

13

14 Kenneth P. Birman - Building Secure and Reliable Network Applications

Trademarks Cited in the Text

Unix is a Trademark of Santa Cruz Operations, Inc. CORBA (Common Object Request Broker
Architecture) and OMG IDL are trademarks of the Object Management Group. ONC (Open Network
Computing), NFS (Network File System), Solaris, Solaris MC, XDR (External Data Representation), and
Java are trademarks of Sun Microsystems Inc. DCE is a trademark of the Open Software Foundation.
XTP (Xpress Transfer Protocol) is a trademark of the XTP Forum. RADIO is a trademark of Stratus
Computer Corporation. Isis Reliable Software Developer’s Kit, Isis Reliable Network File System, Isis
Reliable Message Bus and Isis for Databases are trademarks of Isis Distributed Computing Systems, Inc.
Orbix is a trademark of lona Technologies Ltd. Orbix+lsis is a joint trademark of lona and lIsis
Distributed Computing Systems, Inc. TIB (Teknekron Information Bus) and Subject Based Addressing
are trademarks of Teknekron Software Systems (although we use “subject based addressing” in a more
general sense in this text). Chorus is a trademark of Chorus Systemes Inc. Power Objects is a trademark
of Oracle Corporation. Netscape is a trademark of Netscape Communications. OLE, Windows, Windows
New Technology (Windows NT), and Windows 95 are trademarks of Microsoft Corporation. Lotus Notes

is a trademark of Lotus Computing Corporation. Purify is a trademark of Highland Software, Inc.
Proliant is a trademark of Compaq Computers In®AXClusters, DEC MessageQ, and DECsafe
Available Server Environment are trademarks of Digital Equipment Corporatt@Series and SP2 are
trademarks of International Business Machines. Power Builder is a trademark of PowerSoft Corporation.
Visual Basic is a trademark of Microsoft Corporation. Ethernet is a trademark of Xerox Corporation.

Other products and services mentioned in this document are covered by the trademarks, service marks, or
product names as designated by the companies that market those products. The author respectfully
acknowledges any such that may not have been included above.

14

Chapterl: Fundamentals 15

Preface and Acknowledgements

This book is dedicated to mymily, for their support and tolerance over the two-year period that it was
written. The author is grateful to so many individuals, for their technical assistance with aspects of the
development, that to try and list them one by one would certainly be to omit someone whose role was vital.
Instead, let me just thank my colleagues at Cornell, Isis Distributed Systems, and worldwide for their help
in this undertaking. | am also greatful to Paul Jones of Isis Distributed Systems and to Francois Barrault
and Yves Eychenne of Stratus France and lIsis Distributed Systems, France, for providing me with
resources needed to work on this book during a st that | spent in Paris, in fall of 1995 and spring

of 1996. Cindy Williams and Werner Vogels provided invaluable help in overcoming some of the details
of working at such a distance from home.

A number of reviewers provided feedback on early copies of this text, leading to (one hopes) considerable
improvement in the presentation. Thanks are due to: Marjan Bace, David Bdk&bert Cooper, Yves
Eychenne, Dalia Malki, Raghu Hudli, David Page, David Plainfosse, Henrijk Paszt, John Warne and
Werner Vogels. Raj Alur, lan Service and Mark Wood provided help in clarifying some thorny technical
questions, and are also gratefully acknowledged. Bruce Donald’'s emails on idiosyncracies of the Web
were extremely useful and had a surprisingly large impact on treatment of that topic in this text.

Much of the work reported here was made possible by grants from the U.S. Department of Defense
through its Advanced Research Projects Agency, DARPA (administered by the Office of Naval Research,
Rome Laboratories, and NASA), and by infrastructure grants from thgohal Science Foundation.
Grants from a number of corporations have also supported this work, including IBM Corporation, Isis
Distributed Systems Inc., Siemens Corporate Research (Munich and New Jersey), and GTE Corporation. |
wish to express my thanks to all of these agencies and corporations for their generosity.

The techniques, approaches, and opinions expressed here are my own, and may not represent positions of
the organizations and corporations that have supported this research.

15

16 Kenneth P. Birman - Building Secure and Reliable Network Applications

Introduction

Despite nearly twenty years of progress towards ubiquitous computer connectivity, distributed computing
systems have only recently emerged to play a serious role in industry and society. Perhapddhis exp
why so few distributed systems are reliable in the sense of tolerating failures automatically, guaranteeing
properties such as performance or response time, or offering security against intentional threats. In many
ways the engineering discipline of reliable distributed computing is still in its infancy.

One might be tempted to reason tautologically, concluding that reliability must not be all that
important in distributed systems (since otherwise, the pressure to make such systems reliable would long
since have become overwhelming). Yet, it seems more likely that we haveemdgtty begun to see the
sorts of distributed computing systems in which reliability is critical. To the extent that existing mission-
and even life-critical applications rely upon distributed software, the importance of reliability has perhaps
been viewed as a narrow, domain-specific issue. On the other hand, as distributed software is placed into
more and more critical applications, where safety or financial stability of large organizations depends
upon the reliable operation of complex distributed applications, the inevitable result will be growing
demand for technology developers to demonstrate the reliability of their distributed architectures and
solutions. It is time to tackle distributed systems reliability in a serious way. To fail to do so today is to
invite catastrophic computer-systems failures tomorrow.

At the time of this writing, the sudden emergence of the “World Wide Web” (variously called the
“Web”, the Infoomation Superhighway, the Global Information Infrastructure, the Internet, or just the
Net) is bringing this issue to the forefront. In many respects, the story of reliability in distributed systems
is today tied to the future of the Web and the technology base that has been used to develop it. It is
unlikely that any reader of this text is unfamiliar with the Web technology base, which has penetrated the
computing industry in record time. A basic premise of our study is that the Web will be a driver for
distributed computing, by creating a mass market around distributed computing. However, the term
“Web” is often used loosely: much of the public sees the Web as a sintjtg #rat encompasses all the
Internet technologies that exist today and that may be introduced in the future. Thus when we talk about
the Web, we are inevitably faced with a much broader family of communications technologies.

It is clear that some form of critical mass hacently been reached: distributed computing is
emerging from its specialized and very limited niche to become a mass-market commodity, something
that literally everyone depends upon, like a telephone or an automobile. The Web paradigm brings
together the key attributes of this new market in a single package: easily understandable graphical
displays, substantial content, unlimited information to draw upon, virtual worlds in which to wander and
work. But the Web is also stimulating growth in other types of distributed applications. In some
intangible way, the experience of the Web has caused modern society to suddenly notice the potential of
distributed computing.

Consider the implications of a societal transition whereby distributed computing has suddenly
become a mass market commodity. In the past, a mass-market item was something everyone “owned”.
With the Web, one suddenly sees a type of commodity that everyone “does”. For the most part, the
computers and networks were already in place. What has changed is the way that people see them and use
them. The paradigm of the Web is to connect useful things (and many useless things) to the network.
Communication and connectivity suddenly seem to be mandatory: no company can possibily risk arriving

16

Chapterl: Fundamentals 17

late for the Information Revolution. Increasingly, it makes sense to believe that if an applicatidme
put on the network, someone is thinking about doing so, and soon.

Whereas reliability and indeed distributed computing were slow to emerge prior to the
introduction of the Web, reliable distributed computing will becassary if networked solutions are to be
used safely for many of the applications that are envisioned. In the past, researchers in the field wondered
why the uptake of distributed computing had been so slow. Overnight, the question has become one of
understanding how the types of computing systems that run on the Internet and the Web, or that will be
accessed through it, can be made reliable enough for emerging critical uses.

If Web-like interfaces present medical status information and records to a doctor in a hospital, or
are used to control a power plant from a remote console, or to guide the decision making of major
corporations, reliability of those interfaces and applications will be absolutely critical to the users. Some
may have life-or-death implications: if that physician bases a split-second decision on invalid data, the
patient might die. Others may be critical to the efficient function of the organization that uses them: if a
bank mismanages risk because of an inaccurate picture of how its investments are allocated, the bank
could incur huge losses or even fail. In still other settings, reliability may emerge as a key determinant in
the marketplace: the more reliable product, at a comparable price, may simply displace the less reliable
one. Reliable distributed computing suddenly has broad relevance.

Throughout what follows, the term “distributed computing” is used to describe a type of computer
system that differs from what could be called a “network computing” system. The distinction illuminates
the basic issues with which we will be concerned.

As we use the term here, @mputer networks a communication technology supporting the
exchange of messages among computer programs executing on computational nodes. Computer networks
are data movers,providing capabilities for sending data from one location to another, dealing with
mobility and with changing topology, and automating the division of available bandwidth among
contending users. Computer networks have evolved over a twenty year period, and during the mid 1990’s
network connectivity between computer systems became pervasive. Network bandwidth has also increased
enormously, rising from hundreds of bytes per second in the early 1980’s to millions per second in the
mid 1990’s, with gigabit rates anticipated in the late 1990’s and beyond.

Network functionality evolved steadily during this period. Early use of networks was entirely for
file transfer, remote login and electronic mail or news. Over time, however, the expectations of users and
the tools available have changed. The network user in 1996 is likely to be familiar with interactive
network browsing tools such as Netscape’s browsing tool, which permits the user to wander within a huge
and interconnected network of multimedia information and documents. Tools such as these permit the
user to conceive of a computer workstation as a window into an immense world of informattessible
using a great variety of search tools, easy to display and print, and linked to other relevant material that
may be physically stored halfway around the world and geeasible at the click of a mouse.

Meanwhile, new types of networking hardware have emerged. The first generation of networks
was built using point-to-point connections; to present the illusion of full connectivity to users, the network
included a software layer for routing and connection management. Over time, these initial technologies
were largely replaced by high speed long distance lines that route through various hubs, coupled to local
area networks implemented using multiplecess technologies such as Ethernet and FDDI: hardware in
which a single “wire” has a large number of computers attached to it, supporting the abstraction of a

17

18 Kenneth P. Birman - Building Secure and Reliable Network Applications

shared message bus. At the time of this writing, a third generation of technologies is reaching the market,
such as ATM hardware capable of supporting gigabit communication rates over virtual circuits, mobile
connection technologies for the office that will allow computers to be moved without rewiring, and more
ambitious mobile computing devices that exploit the nationwide -cellular telephone grid for
communications support.

As recently as the earl¥990’s, computer bandwidth over wide-area links was limited for most
users. The average workstation had high spemgss to a local network, and perhaps the loca&ie
system was connected to the Internet, but individual users (especially those working from PC’s) rarely had
better than 1600 baud connections available for personal use of the Internet. This picture is changing
rapidly today: more and more users have relatively high speed modem connections to an Internet service
provider that offers megabyte-per-second connectivity to remote servers. With the emergence of ISDN
services to the home, the last link of the chain will suddenly catch up with the rest. Individual
connectivity has thus jumped from 1600 baud to perhaps 28,800 baud at the time of this writing, and may
jump to 1 Mbaud or more in the not distant future. Moreover, this bandwidth has finally reached the PC
community, which enormously outnumbers the workstation community.

It has been suggested that technology revolutions are often spurred by discontinuous, as opposed
to evolutionary, improvement in a key aspect of a technology. The bandwidth improvements we are now
experiencing are so disproportionate with respect to other performance changes (memory sizes, processor
speeds) as to fall squarely into the discontinuous end of the spectrum. The sudden connectivity available
to PC users is similarly disproportionate to anything in prior experience. The Web is perhaps just the first
of a new generation of communications-oriented technologies enabled by these sudden developments.

In particular, the key enablers for the Web were precisely the availability of adequate long-
distance communications bandwidth to sustain its programming model, coupled to the evolution of
computing systems supporting high performance graphical displays and sophisticated local applications
dedicated to the user. It is only recently that these pieces fell into place. Indeed, the Web emerged more
or less as early as it could possibly have done so, considering the state of the art in the various
technologies on which it depends. Thus while the Web is clearly a breakthrougthe “killer
application” of the Internetd it is also the most visible manifestation of a variety of underlying
developments that are also enabling other kinds of distributed applications. It makes sense to see the Web
as the tip of an iceberg: a paradigm for something much broader that is sweeping the entire computing
community.

As the trend towards better communication performance and lower latencies continues, it is
certain to fuel continued growth in distributed computing. In contrast to a computer network, a
distributed computing systenefers to computing systems and applications that cooperate to coordinate
actions at multiple locations in a network. Rather than adopting a perspective in which conventional (non-
distributed) application programs@ess data remotely over a network, a distributed system includes
multiple application programs that communicate over the network, but take actions at the multiple places
where the application runs. Despite the widespread availability of networking since early 1980, distributed
computing has only become common in the 1990’s. This lag reflects a fundamental issue: distributed
computing turns out to be much harder than non-distributed or network computing applications,
especially if reliability is a critical requirement.

Our treatment explores the technology of distributed computing with a particular bias: to
understand why the emerging generation of critical Internet and Web technologies is likely to require very

18

Chapterl: Fundamentals 19

high levels of reliability, and to explore the implications of this for distributed computing technologies. A

key issue is to gain some insight into the factors that make it so hard to develop distributed computing
systems that can be relied upon in critical settings, and and to understand can be done to simplify the task.
In other disciplines like civil engineering or electrical engineering, a substantial body of practical
development rules exists that the designer of a complex system can draw upon to simplify his task. It is
rarely necessary for the firm that builds a bridge to engage in theoretical analyses of stress or basic
properties of the materials used, because the theory in these areas was long-ago reduced to collections of
practical rules and formulae that the practitioner can treat as tools for solving practical problems.

This observation motivated the choice of the cover ofhek. The Golden Gate Bridge is a
marvel of civil engineering that reflects a very sophisticated understanding of the science of bridge-
building. Although located in a seismically active area, the bridge is believed capable of withstanding
even an extremely severe earthquake. It is routinely exposed to violent winter storms: it may sway but is
never seriously threatened. And yet the bridge is also esthetically pleasing: one of the truely beautiful
constructions of its era. Watching the sun set over the bridge from Berkeley, where | attended graduate
school, remains among the most memaorable experiences of my life. The bridge illustrates that beauty can
also be resilient: a fortunate development, since otherwise, the failure of the Tacoma Narrows bridge
might have ushered in a generation of bulky and overengineered bridges. The achievement of the Golden
Gate bridge illustrates that even when engineers are confronted with extremely demanding standards, it is
possible to achieve solutions that are elegant and lovely at the same time as they are resilient. This is only
possible, however, to the degree that there exists an engineering science of robust bridge building.

We can build distributed computing systems that are reliable in this sense, too. Such systems
would be secure, trustworthy, and would guarantee availability and consistency even when limited
numbers of failures occur. Hopefully, these limits can be selected to provide adequate reliability without
excessive cost. In this manner, just as the science of bridge-building has yielded elegant and robust
bridges, reliability need not compromise elegance and performance in distributed computing.

One could argue that in distributed computing, we are today building the software bridges of the
Information Superhighway. Yet in contrast to the disciplined engineering that enabled the Golden Gate
Bridge, as one explores the underlying technology of the Internet and the Web one discovers a disturbing
and pervasive inattention to issues of reliability. It is common to read that the Internet (developed
originally by the Defense Department’'s Advanced Research Projects Agency, ARPA) was built to
withstand a nuclear war. Today, we need to adopt a similar mindset as we extend these networks into
systems that must support tens or hundreds of millions of Web users, and a growing number of hackers
whose objectives vary from the annoying to the criminal. We will see that many of the fundamental
technologies of the Internet and Web fundamental assumptions that, although completely reasonable in
the early days of the Internet’'s development, have now started to limit scalability and reliability, and that
the infrastructure is consequently exhibiting troubling signs of stress.

One of the major challenges, of course, is that use of the Internet has begun to expand so rapidly
that the researchers most actively involved in extending its protocols and enhancing its capabilities are
forced to work incrementally: only limited changes to the technology base can be contemplated, and even
small upgrades can have very complex implications. Moreover, upgrading the technologies used in the
Internet is somewhat like changing the engines on an airplane while it is flying. Jointly, these issues limit
the ability of the Internet community to move to a more reliable, secure, and scalable architecture. They
create a background against which the goals of this textbook will not easily be achieved.

In early 1995, the author was invited by ARPA to participate in an unclassified study of the
survability of distributed systems. Participants included academic experts and invited experts familiar
with the state of the art in such areas as telecommunications, power systems management, and banking.

19

20 Kenneth P. Birman - Building Secure and Reliable Network Applications

This study was undertaken against a backdrop colored by the recentltdéioof the Federal Aviation

Agency, which launched a project in the late 1980’s and early 1990’s to develop a new generation of
highly reliable distributed air traffic control software. Late in 1994, after losing a huge sum of money and
essentially eliminating all distributed aspects of an architecture that was originally innovative precisely for

its distributed reliability features, a prototype of the proposed new system was finally delivered, but with
such limited functionality that planning on yet another new generation of software had to begin
immediately. Meanwhile, article after article in the national press reported on failures of air-traffic
control systems, many stemming from software problems, and several exposing airplanes and passengers
to extremely dangerous conditions. Such an situation can only inspire the utmost concern in regard to the
practical state of the art.

Although our study did not focus on the FAA's specific experience, the areas we did study are in
many ways equally critical. What we learned is that situation encountered byAthAks highly visible
project is occuring, to a greater or lesser degree, within all of these domains. The pattern is one in which
pressure to innovate and introduce new forms of products leads to the increasingly ambitious use of
distributed computing systems. These new systems rapidly become critical to the enterprise that
developed them: too many interlocked decisions must be made to permit such steps to be reversed.
Responding to the pressures of timetables and the need to demonstrate new functionality, engineers
inevitably postpone considerations of availability, security, consistency, system management, fault-
tolerancel what we call “reliability” in this textO until “late in the game,” only to find that it is then
very hard to retrofit the necessary technologies into what has become an enormously complex system. Yet,
when pressed on these issues, many engineers respond that they are merely following common practice:
that their systems use the “best generaligepted engineering practice” and are neither more nor less
robust than the other technologies used in the same settings.

Our group was very knowledgeable about the state of the art in research on reliability. So, we
often asked our experts whether the development teams in their area are aware of one result or another in
the field. What we learned was that research on reliability has often stopped too early to impact the
intended consumers of the technologies we developed. It is common for work on reliability to stop after a
paper or two and perhaps a splashy demonstration of how a technology can work. But such a proof of
concept often leaves open the question of how the reliability technology can interoperate with the software
development tools and environments that have become common in industry. This represents a serious
obstacle to the ultimate use of the technique, because commercial software devetmgssarily work
with commercial development products and seek to conform to industry standards.

This creates a quandry: one cannot expect a researcher to build a better version of a modern
operating system or communications architecture: such tasks are enormous and even very large companies
have difficulty successfully concluding them. So it is hardly surprising that research results are
demonstrated on a small scale. Thus, if industry is not eager to exploit the best ideas in an area like
reliability, there is no organization capable of accomplishing thaersary technology transition.

For example, we will look at an object-oriented technology called the Common Object Request
Broker Architecture, or CORBA, which has become extremely popular. CORBA is a structural
methodology: a set of rules for designing and building distributed systems so that they will be explicitly
described, easily managed, and so that components can be interconnected as easily as possible. One
would expect that researchers on security, fault-tolerance, consistency, and other properties would
embrace such architectures, because they are highly regular and designed to be extensible: adding a
reliability property to a CORBA application should be a very natural step. However, relatively few
researchers have looked at the specific issues that arise in adapting their results to a CORBA setting (we'll
hear about some of the ones that have). Meanwhile, the CORBA community has placed early emphasis
on performance and interoperability, while reliability issues have been dealt with primarily by individual

20

Chapterl: Fundamentals 21

vendors (although, again, we’ll hear about some products that represent exceptions to the rule). What is
troubling is the sense of “disconnection” between the reliability community and its most likely users, and
the implication that reliability is not accorded a very high value by the vendors of distributed systems
products today.

Our study contributed towards a decision by the DoD to expand its investment in research on
technologies for building practical, survivable, distributed systems. This DoD effort will focus both on
developing new technologies for implementing survivable systems, and on developing new approaches to
hardening systems built using conventional distributed programming methodologies, and it could make a
big difference. But one can also use the perspective gained through a study such as this one to look back
over the existing state of the art, asking to what degree the technologies we already have “in hand” can, in
fact, be applied to the critical computing systems that are already being developed.

As it happened, | started work on this book during the period when this DoD study was
underway, and the presentation that follows is strongly colored by the perspective that emerged from it.
Indeed, the study has considerably impacted my own research project. I've come to the personal
conclusion is that the situation could be much better if developers were simply to begin to think hard
about reliability, and had greater familiarity with the techniques at their disposal today. There may not be
any magic formulas that will effortlessly confer reliability upon a distributed system, but at the same time,
the technologies available to us are in many cases very powerful, and are frequently much more relevant
to even off the shelf solutions than is generally recognized. We need more research on the issue, but we
also need to try harder to incorporate what we already know how to do into the software development tools
and environments on which the majority of distributed computing applications are now based. This said,
it is also clear that researchers will need to start paying more attention to the issues that arise in moving
their ideas from the laboratory to the field.

Lest these comments seem to suggest that the solution is in hand, it must be understood that there
are intangible obstacles to reliability that seem very subtle and yet rather pervabioee, At was
commented that the Internet and Web is in some ways “fundamentally” unreliable, and that industry
routinely treats reliability as a secondary consideration, to be addressed only in mature products and
primarily in a “fire fighting” mode, for example after a popular technology is somehow compromised by
hackers in a visible way. Neither of these will be easy problems to fix, and they combine to have far-
reaching implications. Major standards have repeatedly defered consideration of reliability issues and
security until “future releases” of the standards documents or prototype platforms. The message sent to
developers is clear: should they wish to build a reliable distributed system, they will need to overcome
tremendous obstacles, both internal to their companies and in the search for enabling technologies, and
will find relatively little support from the vendors who sell standard computing platforms.

The picture is not uniformly grim, of course. The company | founded in 1988, Isis Distributed
Systems, is one of a handful of small technology sources that do offer reliability solutions, often capable of
being introduced very transparently into existing applications. (Isis nhow operates as a division of Stratus
Computers Inc., and my own role is limited to occassional consulting). Isis is quitesaful, as are
many of these companies, and it would be wrong to say that there is no interest in reliability. But these
isolated suacesses are in fact the small story. The big story is that reliability has yet to make much of a
dent on the distributed computing market.

The approach of this book is to treat distributed computing technology in a uniform way, looking
at the technologies used in developing Internet and Web applications, at emerging standards such as

21

22 Kenneth P. Birman - Building Secure and Reliable Network Applications

CORBA, and at the technologies available to us for building reliable solutions within these settings. Many
texts that set this goal would do so primarily through a treatment of the underlying theory, but our
approach here is much more pragmatic. By and large, we treat the theory as a source of background
information that one should be aware of, but not as the major objective. Our focus, rather, is to
understand how and why practical software tools for reliable distributed programming work, and to
understand how they can be brought to bear on the broad area of technology currently identified with the
Internet and the Web. By building up models of how distributed systems execute and using these to prove
properties of distributed communication protocols, we will show how computing systems of this sort can
be formalized and reasoned about, but the treatment is consistently drivenpmatiieal implications of

our results.

One of the most serious concerns about building reliable distributed systems stems from more
basic issues that would underly any form of software reliability. Through decades of experience, it has
become clear that software reliability igpeocess not aproperty. One can talk about design practices that
reduce errors, protocols that reconfigure systems to exclude faulty components, testing and quality
assurance methods that lead to increased confidence in the correctness of software, and basic design
techniques that tend to limit the impact of failures and prevent them from propagating. All of these
improve the reliability of a software system, and so presumably would also increase the reliability of a
distributed software system. Unfortunately, however, no degree of process ever leads to more than
empirical confidence in the reliability of a software system. Thus, even in the case of a non-distributed
system, it is hard to say “system X guarantees reliability property Y” in a rigorous way. This same
limitation extends to distributed settings, but is made even worse by the lack of a process comparable to
the one used in conventional systems. Significant advances are needed in the process of developing
reliable distributed computing systems, in the metrics by which we characterize reliability, the models we
use to predict their behavior in “new” configurations reflecting changing loads or failures, and in the
formal methods used to establish that a system satisfies its reliability goals.

primary

Figure I-1: An idealized client-server system with a backup server for increased availability. The clients ipteract
with the primary server; in an air-traffi@pplication, the server might provide information on the status of|air-
traffic sectors, and the clients may be air traffic controllerspessible for routing decisions. The primary kegps

the backup up to date so that if a failure occurs, the clients can switch to the backup and resume operation with
minimal disruption.

For certain types of applications, this creates a profound quandary. Consider the design of an air
traffic control software system, which (among other services) provides air traffic controllers with
information about the status of air traffic sectors (Figure 1-1). Web sophisticates may want to think of this
system as one that provides a web-like interface to a database of routing information maintained on a
server. Thus, the controller would be presented with a depiction of the air traffic situation, with push-
button style interfaces or other case-specific interfaces providing accessitioradnformation about

22

Chapterl: Fundamentals 23

flights, projected tragectories, possible options for rerouting a flight, and so forth. To the air traffic
controller these are the commands supported by the system; the web user might think of them as active
hyperlinks. Indeed, even if air traffic control systems are not typical of what the Web is likely to support,
other equally critical applications are already moving to the Web, using very much the same
“programming model.”

A controller who depends upon a system such as this needs an absolute assurance that if the
service reports that a sector is available and a plane can be routed into it, this information is correct and
that no other controller has been given the same information in regard to routing some other plane. An
optimization criteria for such a service would be that it minimize the frequency with which it reports a
sector as being occupied when it is actually free. A fault-tolerance goal would be that the service remain
operational despite limited numbers of failures of component programs, and perhaps that it perform self-
checking operations so as to take a component off-line if it somehow falls out of synchronization with
regard to the states of other components. Such goals would avoid scenarios such as the one illustrated in
Figure I-2, where the system state has become dangerously inconsistent as a result of a network failure
that fools some clients into thinking the primary has failed, and similarly fools the primary and backup
into mutually believing one-another to have crashed.

primary

Figure I-2: A scenario that will arise in Chapter 4, when we consider the use of a standard remote procedpre call
methodology to build a client-server architecture for dtical setting. In the case illustrated, some of the client
programs have become disconnected from the primary server, perhaps because of a transient network fajlure (one
that corrects itself after a brief period during which message loss rates are very high). In the resulting|system
configuration, the primary and backup servers each consider themselves to be “in charge” of the system as a
whole. There are two clients stilloonected to the primary (black), one to the backup (white), and ope is
completely disconnected (gray). Such a configuration exposes the application user to serious threats. Ip an air-
traffic control situation, it is easy to imagine that accidents could arise if such a situation arose and was
permitted to persist. Thgoal of this textbook is dual: to assist the reader in understanding why such situptions
are a genuine threat in modern computing systems, and to study the technical options for building better| systems
that can prevent such situations from arising. The techniques presented will sometimes have limitations, which
we will also work to quatify, and tounderstand any reliabty implications. While many modern distributed
systems have overlooked reliability issues, our working hypothesis will be that this situatienigireg rapidly
and that the developer of a distributed system has no choice but to confront these issues and begjn to use
technologies that respond to them.

Now, suppose that the techniques of th®k were used to construct such a service, using the
best available technological solutions, combined with rigorous formal specifications of the software
components involved, and the best possible quality process. Theoretical results assure us that
inconsistencies such as the one in Figure I-2 cannot arise. Years of testing might yield a very high degree
of confidence in the system, yet the service remains a large, complex software artifact. Even minor
changes to the system, to add a feature, correct a very simple bug, or to upgrade the operating system

23

24 Kenneth P. Birman - Building Secure and Reliable Network Applications

version or hardware, could introduce serious problems long after the system was put into production. The
question then becomes: can complex software systems ever be used in critical settings? If so, are
distributed systems somehow “worse”, or are the issues similar?

At the core of the material treated in tHi®ok is the considation seen in this question. There
may not be a single answer: distributed systems are suitable for some critical applications and ill-suited for
others. In effect, although one can build “reliable distributed software,” reliability has its limits and there
are problems that distributed software should probably not be used to solve. Even given an appropriate
technology, it is easy to build inappropriate solutions — and, conversely, even with an inadequate
technology, one can sometimes build critical services that are still useful in limited ways. The air traffic
example, described above, might or might not fall into the feasible category, depending onatitexide
specification of the system, the techniques used to implement the solution, and the overall process by
which the result is used and maintained.

Through the material in thibook, the developer will be guided to apprigte design decisions,
appropriate development methodologies, and to an understanding of the reliability limits on the solutions
that result from this process. No book can expect ttilirthe sense of responsibility that the reader may
need to draw upon in order to make such decisions wisely, but one hopes that computer systems engineers,
like bridge builders and designers of aircraft, are highly motivated to build the best and most reliable
systems possible. Given such a motivation, an appropriate development methodology, and appropriate
software tools, extremely reliable distributed software can be implemented and deployed even into critical
settings. We will see precisely how this can be done in the chapters that follow.

Perhaps this book can serve a second purpose in accomplishingni@rprone. Many highly
placed industry leaders have commented to me that until reliability is forced upon them, their companies
will nevertake the issues involved seriously. The investment needed is simply viewed as very large, and
likely to slow the frantic rate of progress on which computing as an industry has come to depend. |
believe that the tide is now turning in a way that will, in fact, force change, and that this text can
contribute to what will, over time, become an overwhelming priority for the industry.

Reliability is viewed as complex and costly, much as the phrase “robust bridge” conjures up a
vision of a massive, expensive, and ugly artifact. Yet, the Golden Gate Bridge is robust and is anything
but massive or ugly. To overcome this instinctive reaction, it will be necessary for the industry to come
to understand reliability as being compatible with performance, elegance, and mastetssu At the
same time, it will be important for pressure favoring reliability to grow, through demand by the consumers
for more reliable products. Jointly, such trends would create an incentive for reliable distributed software
engineering, while removing a disincentive.

As the general level of demonstrated knowledge concerning how to make systems reliable rises,
the expectation of society and government that vendors will employ such technologies is, in fact, likely to
rise. It will become harder and harder for corporations to cut corners by bringing an unreliable product to
market and yet advertising it as “fault-tolerant”, “secure”, or otherwise “reliable”. Today, these terms are
often used in advertising for products that are not reliable in any meaningful sense at all. One might
similarly claim that a building or a bridge was constructetidze code” in a fting where the building
code is completely ad-hoc. The situation changes considerably when the building code is made more
explicit and demanding, and bridges and buildings that satisify the standard have actually been built
successfully (and, perhaps, elegantly and without excessive added cost). In the first instance, a company
can easily cut corners; in the second, the risks of doing so are greatly increased.

24

Chapterl: Fundamentals 25

Moreover, at the time of this writing, vendors often seek to avoid software product liability using
complex contracts that stipulate the unsuitability of their products for critical uses, the near certainty that
their products will fail even if used correctly, and in which it is stressed that the customer accepts full
responsibility for the eventual use of the technology. It seems likely that as such contracts are put to the
test, many of them will be recognized as analogous to those used by a landlord who rents an dangerously
deteriorated apartment to a tenant, using a contract that warns of the possibility that the kitchen floor
could collapse without warning and that the building is a firetrap lacking adequate escape routes. A
landlord could certainly draft such a contract and a tenant might well sign it. But if the landlord fails to
maintain the building according to the general standards for a safe and secure dwelling, the courts would
still find the landlord liable if the floor indeed collapses. One cannot easily escape the generafijeal
standards for one’s domain of commercial activity.

By way of analogy, we may see growing pressure on vendors to recognize their fundamental
responsibilities to provide a technology base adequate to the actual uses of their technologies, like it or
not. Meanwhile, today a company that takes steps to provide reliability worries that in so doing, it may
have raised expectations impossibly high and hesqeosedtself to litigation if its products fail. As
reliability becomes more and more common, such a company will be protected by having used the best
available engineering practices to build the most reliable product that it was capable of producing. If such
a technology does fail, one at least knows that it was not the consequence of some outrageous form of
negligence. Viewed in these terms, many of the products on the market today are seriously deficient.
Rather than believing it safer to confront a reliability issue using the best practices available, many
companies feel that they run a lower risk by ignoring the issue and drafting evasive contracts that hold
themselves harmless in the event of accidents.

The challenge of reliability, in distributed computing, is perhaps the unavoidable challenge of the
coming decade, just as performance was the challenge of the past onecdpyirzg this chllenge, we
also gain new opportunities, new commercial markets, and help create a future in which technology is
used responsibly for the broad benefit of society. There will inevitably be real limits on the reliability of
the distributed systems we can build, and consequently there will be types of distributed computing
systems that should not be built because we cannot expect to make them adequately reliable. However, we
are far from those limits, and are in many circumstances deploying technologies known to be fragile in
ways that actively encourage their use in critical settings. Ignoring this issue, as occurs too often today, is
irresponsible and dangerous, and increasingly unacceptabl@biRy challenges us as a community: it
falls upon us now to respond.

25

26 Kenneth P. Birman - Building Secure and Reliable Network Applications

A User’s Guide to This Book

This book was witten with several types of readers in mind, and consequently weaves together
material that may be of greater interest to one type of reader with that aimed at another type of reader.

Practioners will find that the book has been constructed to be readable more or lesgialyguen
from start to finish. The first part of the book may well tafiliar material to many practitioners, but we
try to approach this a perspective of understanding reliability and consistency issues that arise even when
using the standard distributed systems technologies. We also look at the important roles of performance
and modularity in building distributed software that can be relied upon. The second part of the book,
which focuses on the Web, is of a similar character. Even if experts in this area may be surprised by some
of the subtle reliability and consistency issues associated with the Web, and may find the suggested
solutions useful in their work.

The third part of the book looks squarely afiability technologies. Here, a pragmatically-
oriented reader may want to skim through Chapters 13 through 16, which get into the details of some
fairly complex protocols and programming models. This material is included for thoroughness, and |
don't think it is exceptionally hard to understand. However, the developer of a reliable system doesn’t
necessarily need to know every detail of how the underlying protocols work, or how they are positioned
relative to some of the theoretical arguments of the decade! The remainder bbdkecan be read
without having worked through these chapters in any great detail. Chapters 17 and 18 look at the uses of
these “tools” through an approach based on what are called wrappers, however, and chapters 19-24 look
at some related issues concerning such topics as real-time systems, security, persistent data, and system
management. The content is practical and the material is intended to be of a hands-on nature. Thus, the
text is designed to be read more or less in order by this type of systems developer, with the exception of
those parts of Chapters 13 through 16 where the going gets a bit heavy.

Where possible, the text includes general background material: there is a section on ATM
networks, for example, that could be read independently of the remainder of the text, one on Corba, one
on message-oriented middleware, and so forth. As much as practical, | have tried to make these sections
free-standing and to index them properly, so that if one were worried about security exposures of the NFS
file system, for example, it would be easy to read about that specific topic without reading the entire book
as well. Hopefully, practitioners will find this text useful as a general reference for the technologies
covered, and not purely for its recommendations in the area of security and reliability.

Next, some comments directed towards other researchers and instructors who may read or chose
to teach from this text. | based the original outline of this treatment on a course that | have taught several
times at Cornell, to a mixture of 4'th year undergraduates, professional Master’s degree students, and 1'st
year Ph.D. students. To facilitate the development of course materials, | have placed my slides (created
using the Microsoft PowerPoint utility) on Cornell University's public file server, where they can be
retrieved using FTP. (Copy the files from ftp.cs.cornell.edu/pub/ken/slides). The text also includes a set
of problems that can be viewed either as thought-provoking exercizes for the professional who wishes to
test his or her own understanding of the material, or as the basis for possible homework and course
projects in a classroom setting.

Any course based on this text should adopt the same practical perspective as the text itself. |
suspect that some of my research colleagues will consider the treatment broad but somewhat superficial,

26

Chapterl: Fundamentals 27

this reflects a decision by the author to focus primarily on “systems” issues, rather than on theory or
exhaustive detail on any particular topic. In making this decision, compromises haddodptesl: when
teaching from this text, it may be necessary to also ask the students to read some of the more technically
complete papers that are cited in subsections of interest to the instructor, and to look in greater detail at
some of the systems that are are mentioned only briefly here. On the positive side, however, there are few,
if any, introductory distributed systems textbooks that try to provide a genuinely broad perspective on
issues in reliability. In the author’s experience, many students are interested in this kind of material
today, and having gained a general exposure, would then be motivated to attend a much more theoretical
course focused on fundamental issues in distributed systems theory. Thus, while this textbook may not be
sufficient in and of itself for launching a research effort in distributed computing, it could well serve as a
foundation for such an activity.

It should also be noted that, in my own experience, the book long for a tyjealeek semester.
Instructors who elect to teach from it should be selective about the material that will be covered,
particularly if they intend to treat chapters 13-17 in any detail. If one has the option of teaching over two
semesters, it might make sense to split the course into two parts and to include supplemental material on
the Web. | suspect that such a sequence would be very popular given the current interest in network
technology. At Cornell, for example, | tend to split this material into a more practical course that | teach
in the fall, aiming at our professional master’'s degree students, followed by a more probing advanced
graduate course that | or one of my colleagues teach in the spring, drawing primarily on the original
research papers associated with the topics we cover. This works well for us at Cornell, and the
organization and focus of tHevokmatch with such a sequence.

A final comment regarding references. To avoid encumbering the discussion with a high density
of references, the book cites relevant work the fiiste a reference to it arises in the text, or where the
discussion needs to point to a specific paper, but may not do so in subsequent references to the same work.
References are also collected at the end of each chapter into a short section on related readings. It is hard
to do adequate justice to such a large and dynamic area of research with any limited number of citations,
but every effort has been made to be fair and complete.

27

28 Kenneth P. Birman - Building Secure and Reliable Network Applications

Part I Basic Distributed Computing Technologies

Although our treatment is motivated by the emergence of the Global Information Superhighway and
the World Wide Web, this first part of the book focuses on the general technologies on which any
distributed computing system relies. We review basic communication options, and the basic software
tools that have emerged for exploiting them and for simplifying the development of distributed
applications. In the interests of generality, we cover more than just the specific technologies embodied
in the Web as it exists at the time of this writing, and in fact terminology and concepts specific to the
Web are not introduced until Part Il of the book. However, even in this first part, we do discuss some
of the most basic issues that arise in buildingliable distributed systems, and we begin to establish the
context within which reliability can be treated in a systematic manner.

28

Chapterl: Fundamentals 29

1. Fundamentals

1.1 Introduction

Reduced to the simplest termsdastributed computing systers a set of computer programs, executing

on one or more computers, and coordinating actions by exchamg@sgagesA computer networks a

collection of computers interconnected by hardware that directly supports message passing. Most
distributed computing systems operate over computer networks, although this is not always the case: one
can build a distributed computing system in which the components execute on a single multi-tasking
computer, and one can also build distributed computing systems in which information flows between the
components by means other than message passing. Moreover, as we will see in Chapter 24, there are new
kinds of parallel computers, called “clustered” servers, that have many attributes of distributed systems
despite appearing to the user as a single machine built using rack-mounted components.

We will use the ternprotocolin reference to an algorithm governing the exchange of messages,
by which a collection of processes coordinate their actions and communicate information among
themselves. Much as programis the set of instructions, and @ocessdenotes the execution of those
instructions, a protocol is a set of instructions governing the communication in a distributed program, and
a distributed computing system is the result of executing some collection of such protocols to coordinate
the actions of a collection of processes in a network.

This textbook is concerned witteliability in distributed computing systems. Reliability is a very
broad term that can have many meanings, including:

< Fault-tolerance:The ability of a distributed computing system to recover from component failures
without performing incorrect actions.

< High availability: In the context of a fault-tolerant distributed computing system, the ability of the
system to restore correct operation, permitting it to resume providing services during periods when
some components have failed. A highly available system may provided reduced service for short
periods of time while reconfiguring itself.

< Continuous availability. A highly available system with a very “small” recovery time, capable of
providing uninterrupted service to its users. The reliability properties of a continuously available
system are unaffected or only minimally affected by failures.

« Recoverability:Also in the context of a fault-tolerant distributed computing system, the ability of
failed components to restart themselves and rejoin the system, after the cause of failure has been
repaired.

< ConsistencyThe ability of the system to coordinate related actions by multiple components, often
in the presence of concurrency and failures. Consistency underlies the ability of a distributed
system to emulate a non-distributed system.

e Security: The ability of the system to protect data, services and resources against misuse by
unauthorized users.

e Privacy. The ability of the system to protect the identity and locations of its users from
unauthorized disclosure.

< Correct specificationThe assurance that the system solves the intended problem.

< Correct implementationThe assurance that the system correctly implements its specification.

29

30

Kenneth P. Birman - Building Secure and Reliable Network Applications

Predictable performanceThe guarantee that a distributed system achieves desired levels of
performance, for example data throughput from source to destination, latencies measured for
critical paths, requests processed per second, etc.

Timeliness:In systems subject to “real-time” constraints, the assurance that actions are taken
within the specified time bounds, or are performed with a desired degree of temporal
synchronization between the components.

Underlying many of these issues are questions of tolerating failures. Failure, too, can have many

meanings:

30

Halting failures: In this model, a process or computer either works correctly, or simply stops
executing and crashes without taking incorrect actions, as a result of failure. As the model is
normally specified, there is no way to detect that the process has halted except by timeout: it stops
sending “keep alive” messages or responding to “pinging” messages and hence other processes can
deduce that it has failed.

Fail-stop failures:These areccurately detectablbalting failures. In this model, processes fail by
halting. However, other processes that may be interacting with the faulty process also have a
completely accurate way to detect such failures. For example, a fail-stop environment might be
one in which timeouts can be used to monitor the status of processespdimgeout occurs unless

the process being monitored has actually crash@bviously, such a model may be unrealistically
optimistic, representing an idealized world in which the handling of failures is reduced to a pure
problem of how the system should react when a failure is sensed. If we solve problems with this
model, we then need to ask how to relate the solutions to the real world.

Send-omission failuresthese are failures to send a message that, according to the logic of the
distributed computing systems, should have been sent. Send-omission failures are commonly
caused by a lack of buffering space in the operating system or network interface, which can cause a
message to be discarded after the application program has sent it but before it leaves the sender’s
machine. Perhaps surprisingly, few operating systems report such events to the application.

Receive-omission failure§hese are similar to send-omission failures, but occur when a message
is lost near the destination process, often because of a lack of memory in which to buffer it or
because evidence of data corruption has been discovered.

Network failures: These occur when the network loses messages sent between certain pairs of
processes.

Network patrtitioning failures:These are a more severe form of network failure, in which the
network fragments into disconnected subnetworks, within which messages can be transmitted, but
between which messages are lost. When a failure of this sort is repaired, one talkmebging

the network partitions. Network partitioning failures are a common problem in modern distributed
systems, hence we will have a lot to say about them later in Part Ill of this text.

Timing failures:These occur when a temporal property of the system is violated, for example when

a clock on a computer exhibits a value that is unacceptably far from the values of other clocks, or
when an action is taken too soon or too late, or when a message is delayed by longer than the
maximum tolerable delay for a network connection.

Byzantine failures:This is a term that captures a wide variety of “other” faulty behaviors,
including data corruption, programs that fail to follow the correct protocol, and even malicious or
adversarial behaviors by programs that actively seek to force a system to violate its reliability
properties.

Chapterl: Fundamentals 31

An even more basic issue underlies all of these: the meaning of computation, and the model one

assumes for communication and coordination in a distributed system. Some examples of models include
these:

Real-world networksThese are composed of workstations, personal computers, and other sort of
computing devices interconnected by hardware. Properties of the hardware and software components
will often be known to the designer, such as speed, delay, and error frequencies for communication
devices, latencies for critical software and scheduling paths, throughput for data generated by the
system and data distribution patterns, speed of the computer hardware, accuracy of clocks, etc. This
information can be of tremendous value in designing solutions to problems that might be very hard —
or impossible — in a completely general sense.

A specific issue that will emerge as being particularly important when we consider guarantees of
behavior in Part Il of the text concerns the availability, or lack, of accurate temporal information.
Until the late 1980’s. the clocks built into workstations were notoriously inaccurate, exhibiting high
drift rates that had to be overcome with software protocols for clock resynchronization. There are
limits on the quality of synchronization possible in software, and this created a substantial body of
research and lead to a number of competing solutions. In the early 1990's, however, the advent of
satellite time sources as part of the global positioning sys@RS) changed the picture: for the price

of an inexpensive radio receiver, any computer couldiobaccurate temporal data, with resolution in

the sub-millisecond range. The degree to which GPS recievers actually replace quartz-based time
sources remains to be seen, however. Thus, real-world systems are notable (or notorious) in part for
having temporal information, but of potentially low quality.

Asynchronous computing systerstis is a very simple theoretical model used to approximate one
extreme sort of computer network. In this model, no assumptions can be made about the relative
speed of the communication system, processors and processes in the network. One message from a
process to a process may be delivered in zero time, while the next is delayed by a million years.
The asynchronous model reflects an assumption about time, but not failures: given an asynchronous
model, one can talk about protocols that tolerate message loss, protocols that overcome fail-stop
failures in asynchronous networks, etc. The main reason for using the model is to prove properties
about protocols for which one makes as few assumptions as possible. The model is very clean and
simple, and it lets us focus on fundamental properties of systems without cluttering up the analysis by
including a great number of practical considerations. If a problem can be solved in this model, it can
be solved at least as well in a more realistic one. On the other hand, the converse may not be true: we
may be able to do things in realistic systems by making use of features not available in the
asynchronous model, and in this way may be able to solve problems in real systems that are
“impossible” in ones that use the asynchronous model.

Synchronous computing systerhke the asynchronous systems, these represent an extreme end of
the spectrum. In the synchronous systems, there is a very strong notion of time that all processes in
the system share. One common formulation of the model can be thought of as having a system-wide
gong that sounds periodically; when the processes in the system hear the gong, they run one “round”
of a protocol, reading messages from one another, sending messages that will be delivered in the next
round, and so forth. And these messagkgaysare delivered to the application by the start of the

next round, or not at all.

Normally, the synchronous model also assumes bounds on communication latency between
processes, clock skew and precision, and other properties of the environment. As in the case of an
asynchronous model, the synchronous one takes an extreme point of view because this simplifies
reasoning about certain types of protocols. Real-world systems are not synchronous — it is impossible
to build a system in which actions are perfectly coordinated as this model assumes. However, if one
proves the impossibility of solving some problem in the synchronous model, or proves that some
problem requires at least a certain number of messages in this model, one has established a sort of
lower-bound. In a real-world system, things can only get worse, because we are limited to “weaker”

31

32 Kenneth P. Birman - Building Secure and Reliable Network Applications

assumptions. This makes the synchronous model a valuable tool for understanding how hard it will be
to solve certain problems.

e Parallel shared memory systermfsn important family of system are based on multiple processors that
share memory. Communication is by reading and writing shared memory locations. Clearly, the
shared memory model can be emulated using message passing, and can be used to implement
message communication. Nonetheless, because there are important examples of real computers that
implement this model, there is considerable theoretical interest in the mpedsk.Unfortunately,
although this model is very rich and a great deal is known about it, it would be beyond the scope of
this textbook taattempt to treat the model in any detail.

1.2 Components of a Reliable Distributed Computing System

Reliable distributed computing systems are assembled from basic building blocks. In the simplest terms,
these are just processes and messages, and if our interest was purely theoretical, it might be reasonable to
stop at that. On the other hand, if we wish to apply theoretical results in practical systems, we will need to
work from a fairly detailed “real” understanding of how practical systems actually work. In some ways,
this is unfortunate, because real systems often include mechanisms that are deficient in ways that seem
simple to fix, or inconsistent with one another, but have such a long history (or are so deeply embedded
into standards) that there may be no way to “improve” on the behavior in question. Yet, if we want to
actually build reliable distributed systems, it is unrealistic to insist that we will only do so in idealized
environments that support some form of theoretically motivated structure. The real world is heavily
committed to standards, and the task of translating our theoretical insights into practical tools that can
interplay with these standards is probably the most important challenge faced by the computer systems
engineer.

It is common to think of a distributed system as operating over a layered set of network services.
Each layer corresponds to a software abstraction or hardware feature, and maybe implemented in the
application program itself, in a library of procedures to which the program is linked, in the operating
system, or even in the hardware of the communications device. As an illustration, here is the layering of
the ISOOpen Systems Interconnection (O@ptocol model [Tan88,Com91,CS91,CS93,CDK94]:

* Application: This is the application program itself, up to the points at which it performs
communication operations.

« Presentation:This is the software associated with placing data into messages in a format that can be
interpreted by the destination process(es) to which the message will be sent, and for extracting data
from messages in the destination process.

e Session:This is the software associated with maintaining connections between pairs or sets of
processes. A session may have reliability properties and may require some form of initialization or
setup, depending on the specific setting with which the user is working. In the OSI model, any
reliability properties are implemented by the session software, and lower layers of the hierarchy are
permitted to be unreliable, e.g. by losing messages.

e Transport: The transport layer is responsible for breaking large messages into smaller packets that
respect size limits imposed by the network communication hardware. On the incoming side, the
transport layer reassembles these packets into messages, discarding packets that are identified as
duplicates, or messages for which some constituent packets were lost in transmission.

* Network: This is the layer of software concerned with routing and low-level flow control on networks
composed of multiple physical segments interconnected by what are called “bridges” and “gateways.”

« Data link: The data link layer is normally part of the hardware that implements a communication
device. This layer is responsible for sending and receiving packets, tizoagpackets destined for
the local machine and copying them in, discarding corrupted packets, and other “interface level”
aspects of communication.

32

Chapterl: Fundamentals 33

* Physical: The physical layer is concerned with representation of packets on the “wire”, e.g. the
hardware technology for transmitting individual bits and the protocol for gainéegss to the wire if
it is shared by multiple computers.

Application The program using the communication connection

Presentation | Software to encode application data into messages, and to decoeesption.

Session The logic associated with guaranteeing end-to-end properties such as reliability.
Transport Software concerned with fragmenting big messages into small packets

Network Routing functionality, usually limited to small or fixed-size packets

Data-link The protocol used to represent packets on the wire

Table 1: ISO Protocol Layers

It is useful to distinguish the types of guarantees provided by the various layers ashditor
endguarantees in the case of the session, presentation and application lapairatrtd-pointguarantees
for layers below these. The distinction is important in complex networks where a message may need to
traverse many links to reach its destination. In such settings, a point-to-point property is one that holds
only on a per-hop basis: for example, the data-link protocol is concerned with a single hop taken by the
message, but not with its overall route or the guarantees that the application may expect from the
communication link itself. The session, presentation and application layers, in contrast, impose a more
complex logical abstraction on the underlying network, with properties that hold between the end-points
of a communication link that may physically extend over a complex substructure. In Part Il of this
textbook we will concern ourselves with increasingly elaborate end-to-end properties, untilalg fin
extend these properties into an completely encompassing distributed communication abstraction that
embraces the distributed system as a whole and provides consistent behavior and guarantees throughout.
And, just as the I1SO layering builds its end-to-end abstractions over point-to-point ones, so will we need
to build these more sophisticated abstractions over what are ultimately point-to-point properties.

As seen in Figure 1-1, each layer is logically composed of transmission logic and the
corresponding reception logic. In practice, this often corresponds closely to the impdgiorerof the
architecture: for example, most session protocols operate by imposing a multiple session abstraction over a
shared (or “multiplexed”)link-level connection. The packets generated by the various higher level session
protocols can be conceived of as merging into a single stream of packets that are treated by the IP link
level as a single “customer” for its services. Nonetheless, one should not necessarily assume that the
implementation of a layered protocol architecture involves some sort of separate module for each layer. To
maximize performance, the functionality of a layered architecture is often compressed into a single piece
of software, and in some cases layers may be completely bypassed for types of messages where the layer
would take no action — for example, if a message is very small, the OSI transport layer wouldn’t need to
fragment it into multiple packets, and one could imagine an implementation of the OSI stack specialized
for small messages, that omits the transport layer. Indeed, the pros and cons of layered protocol
architecture have become a major topic of debate in recent years [CT87, AP93, KP®8, BD95].

33

34 Kenneth P. Birman - Building Secure and Reliable Network Applications

Although the OSI layering is probably the best known, the notion of layering communication
software is pervasive, and there are many other examples of layered architectures and layered software
systems. Later in this textbook we will see ways in which the OSI layering is outdated, because it doesn’t
directly address multi-participant communication sessions and doesn’t match very well with some new
types of communication hardware, such as asynchronous transfer-mode (ATM) switching systems. In
discussing this point we will see that more appropriate layered architectures can be constructed, although
they don’t match the OSI layering very closely. Thus, one can think of layering as a methodology, or
layering as a very specific thing, matched to the particular layers of the OSI hierarchy. The former
perspective is a popular one that is only gaining importance with the introduction of object-oriented
distributed computing environments, which have a natural form of layering associated with object classes
and subclasses. The later form of layering has probably become hopelessly incompatible with standard
practice by the time of this writing, although many companies and governments continue to “require” that
products comply with it.

Application (send-side) | t | Application (receive-side)
Presentation | 1 Presentation
Session ! 1 Session
Transport l 1 Transport
Network ! 1 Network
Data-link ! 1 Data-link
(hardware bit level) N (hardware bit level)

Figure 1-1: Data flow in an ISO protocol stack. Each sending layer is invoked by the layer above it and passes data
off to the layer below it, and conversely on the receive side. In a logical sense, however, each layer interacts with its
peer on the remote side of the connection. For example, the sender-side session layer may add a header to a message
that the receive-side session layer strips off.

Stepping back somewhat, it can be argued that a layered communication architecture is primarily
valuable as adescriptive abstraction- a model that captures the essential functionality of a real
communication system but doesn’t need to accurately reflect its implementation. The idea of abstracting
the behavior of a distributed system in order to concisely describe it or to reason about it is a very
important one. However, if the abstraction doesn’t accurately correspond to the implementation, this also
creates a number of problems for the system designer, who now has the obligation to develop a
specification and correctness proof for the abstraction, to implement, verify and test the corresponding
software, and to undertake an additional analysis that confirms that the abstraction accurately models the
implementation.

It is easy to see how this process can break down; for example, it is nearly inevitable that changes
to the implementation will have to be made long after a system has been deployed. If the development
process is genuinely this complex, it is likely that the analysis of overall correctness will not be repeated

34

Chapterl: Fundamentals 35

for every such change. Thus, from the perspective of a user, abstractions can be a two-edged sword. They
offer appealing and often simplified ways to deal with a complex system, but they can also be simplistic
or even incorrect. And this bears strongly on the overall theme of reliability. To some degree, the very
process of cleaning up a component of a system in order to describe it concisely can compromise the
reliability of a more complex system in which that component is used.

Throughout the remainder of thimok, we will often have recourse to models and abstractions,
in much more complex situations than the OSI layering. This will assist us in reasoning about and
comparing protocols, and in proving properties of complex distributed systems. At the same time,
however, we need to keep in mind that this whole approach demands a sort of “meta approach”, namely a
higher level of abstraction at which we can question the methodology itself, asking if the techniques by
which we create reliable systems are themselves a possible source of unreliability. When this proves to be
the case, we need to take the next step as well, asking what sorts of systematic remedies can be used to
fight these types of reliability problems.

Can “well structured” distributed computing systems be built that can tolerate the failures of their
own components? In layerings like the OSI one, this issue is not really addressed, which is one of the
reasons that the OSI layering won't work well for our purposes in this text. However, the question is
among the most important ones that will need to be resolved if we want to claim that we have arrived at a
workable methodology for engineering reliable distributed computing systems. A methodology, then,
must address descriptive and structural issues as well as practical ones such as the protocols used to
overcome a specific type of failure or to coordinate a specific type of interaction.

1.2.1 Communications Technology

The most basic communications technology in any distributed system is the hardware support for message
passing. Although there are some types of networks that offer special properties, most modern networks
are designed to transmit datapacketswith some fixed but small maximum size. Each packet consists of

a header which is a data structure containing information about the packet, its destination and route, etc.
It contains abody, which is the bytes that make up the content of the packet. And it may contediiea,

which is a second data structure that is physically transmitted after the header and body, and would
normally consist of a checksum for the packet that the hardware computes and appends to it as part of the
process of transmitting the packet.

When a user’'s message is transmitted over a network, the packets actually sent “on the wire” include

headers and trailers, and may have a fixed
maximum size. Large messages are sent as
User's Message multiple packets. For example, Figure 1-2
illustrates a message that has been fragmented
into three packets, each containing a header and
header data ‘ some part of the data from the original message.
Not all fragmentation schemes include trailers,
and in the figure no trailer is shown.

‘header data ‘

Modern communication hardware often
permits large numbers of computers to share a
single communication “fabric”. For this reason, it
is necessary to specify the address to which a
message should be transmitted. The hardware
used for communication therefore will normally
support some form oaddressing capability by

‘header data

Figure 1-2: Large messages are fragmented for
transmission

which the destination of a message can be

35

36 Kenneth P. Birman - Building Secure and Reliable Network Applications

identified. More important to most software developers, however, are addresses supported by the transport
services available on most operating systems. Thagieal addressesre a representation of location

within the network, and are used to route packets to their destinations. Each time a packet makes a “hop”
over a communications link, the sending computer is expected to copy the hardware address of the next
machine in the path into the outgoing packet. Within this textbook, we assume that each computer has a
logical address, but will have little to say about hardware addresses.

On the other hand, there are two hardware addressing features that have important implications
for higher level communication software. These are the ability of the hardwémeaolcastandmulticast
messages

A broadcast is a way of sending a message so that it will be delivered to all computers that it
reaches. This may not be all the computers in a network, because of the various factors that can cause a
receive omissiondilure to occur, but for many purposes, absolute reliability is not required. To send a
hardware broadcast, an application program generally places a special logical address in an outgoing
message that the operating system maps to the appropriate hardware address. The message will only reach
those machines connected to the hardware communications device on which the transmission occurs, so
the use of this feature requires some knowledge of network communications topology.

A multicast is a form of broadcast that communicates to a subset of the computers that are
attached to a communications network. To use a multicast, one normally starts by creating a new
“multicast group address” and installing it into the hardware interfaces associated with a communications
device. Multicast messages are then sent much as a broadcast would be, but arxeptgda at the
hardware level, at those interfaces that have been instructed to install the group address to which the
message is destined. Many network routing devices and protocols watch for multicast packets and will
forward them automatically, but this is rarely attempted for broadcast packets.

Chapter 2 discusses some of the most common forms of communication hardware in detail.

1.2.2 Basic transport and network services

The layer of software that runs over the communications layer is the one most distributed systems
programmers deal with. This layer hides the properties of the communications hardware from the
programmer. It provides the ability to send arteive messages that may be much larger than the ones
supported by the underlying hardware (although there is normally still a limit, so that the amount of
operating system buffering space needed for transport can be estimated and controlled). Th transport layer
also implements logical addressing capabilities by which every computer in a complex network can be
assigned a unique address, and can send and receive messages from every other computer.

Although many transport layers have been proposed, one set of standards has been adopted by
almost all vendors. This standard defines the so-called “Internet Protocol” or IP protocol suite, and
originated in a research network called thePMNET that was developed by the U.S. government in the
late 1970’s [Tan88,Com91,CDK94]. A competing standard was introduced by the ISO organization in
association with the OSI layering cited earlier, but has not gained the sort of ubiquitlegance of the
IP protocol suite, and there are additional proprietary standards that are widely used by individual vendors
or industry groups, but rarely seen outside their community. For example, most PC networks support a
protocol called NETBIOS, but this protocol is not common in any other type of computing environment.

36

Chapterl: Fundamentals

37

receive

application designer.

routed transport

Figure 1-3: The routing functionality of a modern transport protocol conceals the netwpkdgy from the

receive

receive

Transport services generally offer at least the features of the underlying communication
hardware. Thus, the most widely used communication services include a way to send a message to a
destination, to broadcast a message, and to multicast a message. Unlike the communications hardware
versions of these services, however, transport-layer interfaces tend to work with logical addresses and to
automatically route messages within complex environments that may mix multiple forms of
communication hardware, or include multiple communication subnetworks bridged by routing devices or

computers.

| 128.16.71.9 | 128.16.71.3 | 128.16.71.9

| 128.16.72.9 | 128.16.72.9 | 128.16.72.9

Figure 1-4: A typical network may have several interconne
subnetworks and a link to the internet

All of this is controlled using
routing tablesJike the one shown below.
A routing table is a data structure local
to each computer in a network — each
computer has one, but the contents will
generally not be identical from machine
to machine. The table is indexed by the
logical address of a destination
computer, and entries contain the
hardware device on which messages
should be transmitted (the “next hop” to
take). Distributed protocols for
dynamically maintaining routing tables
ctddave been studied for many years, and
seek to minimize the number of hops a

message heeds to take to reach its

destination but to also spread load evenly and route around failures or congested nodes. In practice,
however, static routing tables are probably more common: these are maintained by a system administrator
for the network and generally offer a single route from a source to each destination. Chapter 3 discusses
some of the most common transport services in more detail.

Destination Route Via

Forwarded By

Estimated distance

128.16.71.* Outgoing link 1 (direct)

1 hop

37

38 Kenneth P. Birman - Building Secure and Reliable Network Applications

128.16.72.* Outgoing link 2 128.16.70.1 2 hops
128.16.70.1 Outgoing link 2 (direct) 1 hop
*EEF Outgoing link 2 128.16.70.1 (infinite)

Figure 1-5: A sample routing table, such as might be the one used by computer 128.16.73.0 in Figure 1-4.

1.2.3 Reliable transport software and communication support

A limitation of the basic message passing services discussed in Section 1.2.2 is that they operate at the
level of individual messages, and provide no guarantees of reliability. Messages can be lost for many
reasons, including link failures, failures of intermediate machines on a complex multi-hop route, noise
that causes corruption of the data in a packet, lack of buffering space (the most common cause), and so
forth. For this reason, it is common to layer a reliability protocol over the message passing layer of a
distributed communication architecture. The result is callegliable communication channelThis layer

of software is the one that the OSI stack calls the “session layer”, and corresponds to the TCP protocol of
the Internet. UNIX programmers may be more familiar with the notion from their use of “pipes” and
“streams” [Rit84].

The protocol implementing a reliable communication channel will typically guarantee that lost
messages will be retransmitted and that out-of-order messages will be resequenced and delivered in the
order sent. Flow control and mechanisms that choke back the sender when data volume becomes excessive
are also common in protocols for reliable transport [Jac88]. Just as the lower layers can support one-to-
one, broadcast and multicast communication, these forms of destination addressing are also potentially
interesting in reliable transport layers. Moreover, some systems go further and introduce additional
reliability properties at this level, such as authentication (a trusted mechanism for verifying the identity of
the processes at the ends of a communication connection), or security (trusted mechanisms for concealing
the data transmitted over a channel from processes other than the intended destinations). In Chapter 3 we
will begin to discuss these options, as well as some very subtle issues concerned with how and when
connections report failure.

1.2.4 "Middleware”: Software tools, utilities, and programming languages

The most interesting issues that we will consider in this textbook are thés@ngeto programming
environments and tools that live in the middle, between the application program and the communications
infrastructure for basic message passing and support for reliable channels.

Examples of important middleware services include the naming service, the file system, the time
service, and the security “key” services used for authentication in distributed systems. We will be looking
at all of these in more detail below, but we review them briefly here for clarity.

A naming service is a collection of usecezssible directories that map from application names
(or other selection criteria)to network addresses of computers or programs. Name services can play many
roles in a distributed system, and represent an area of intense research interest and rapid evolution. When
we discuss naming, we'll see that the whole question of what a name “represents” is itself subject to
considerable debate, and raises important questions about notions of abstraction and services in distributed
computing environments. Reliability in a name service involves issues such as trust — can one trust the
name service to truthfully map a name to the correct network address? How can one know that the object

38

Chapterl: Fundamentals 39

at the end of an address is the same one that the name service was talking about? These are fascinating
issues, and we will have a lot to say about them later (see, for example, Section 7.2).

From the outset, though, the reader may want to consider that if an intruder breaks into a system
and is able to manipulate the mapping of names to network addresses, it will be possible to interpose all
sorts of “snooping” software components in the path of communication from an application to the services
it is using over the network. Such attacks are now common on the Internet and reflect a fundamental
issue, which is that most network reliability technologies tend to trust the lowest level mechanisms that
map from names to addresses and that route messages to the correct host when given a destination
address.

A time service is a mechanism for keeping the clocks on a set of computers closely synchronized
and close to “real time”. Time services work to overcome the inaccuracy of inexpensive clocks used on
many types of computers, and are important in applications that either coordinate actions using real-time,
or that make use of time for other purposes, such as to limit the lifetime of a cryptographic key or to
timestamp files when they are updated. Much can be said about time in a distributed system, and we will
spend a considerable portion of this textbook on issues that revolve around the whole notion of “before”
and “after” and their relation to intuitive notions of time in the real world. Clearly, the reliability of a time
service will have important implications for the reliability of applications that make use of time, so time
services and associated reliability properties will prove to be important in many parts of thisolext

Authentication services are, perhaps surprisingly, a new technology that is lacking in most
distributed computing environments. These services provide trustworthy mechanisms for determining
who sent a message, for making sure that the message can only be read by the intended destination, and
for restricting access to private data so that only authorized access can occur. Most modern computing
systems evolved from a period when access control was informal and based on a core principle of trust
among users. One of the really serious implications is that distributed systems that want to superimpose a
security or protection architecture on a heterogeneous environment must overcome a pervasive tendency to
accept requests without questioning them, to believe the user-idmafmn including in messages
without validating it, and to route messages wherever they may wish to go.

If banks worked this way, one could walk up to a teller in a bank that one had never visited
before and pass that person a piece of paper requesting a list of individuals that have accounts in the
branch. Upon studying the response and learning that “W. Gates” is listed, one could then fill out an
account balance request in the name of W. Gates, asking how much money is in that account. And after
this, one could withdraw some of that money, up to the bank’s policy limits. At no stage would one be
challenged: the identification on the various slips of paper would be trusted for each operation. Such a
world model may seem bizarrely trusting, but it is the model from which modern distributed computing
systems emerged.

1.2.5 Distributed computing environments

An important topic around which much of this book is oriented concerns the development of general
purpose tools from which specialized distributed systems can be constructed. Such tools can take many
forms, ranging from the purely conceptual — for example, a methodology or theory that offers useful
insight into the best way to solve a problem or that can help the developer confirm that a proposed
solution will have a desired property. A tool can offer practical help at a very low level, for example by
eliminating the relatively mechanical steps required to encode the arguments for a remote procedure call
into a message to the server that will perform the action. A tool can embody complex higher level
behavior, such as a protocol for performing some action or overcoming some class of errors. Tools can

39

40 Kenneth P. Birman - Building Secure and Reliable Network Applications

even go beyond this, taking the next step by offering mechanisms to control and manage software built
using other tools.

It has become popular to talk about distributed systems that supgisirtbuted operating
environments- well integrated collections of tools that can be used in conjunction with one another to
carry out potentially complex distributed programming tasks. Examples of distributed programming
environments are the Open Network Computing (ONC) environment of SUN Microsystems, The
Distributed Computing (DCE) of Open Software Foundation, the various CORBA-compliant
programming tools that have become popular among C++ programmers who work in distributed settings,
and the Isis Toolkit and the Horus system; these last two being systems developed by the author of this
text and his colleagues, which will be discussed in Chapter 18.

Distributed systems architectures undertake to step even beyond the notion of a distributed
computing environment. An architecture is a general set of design principles and implementation
standards by which a collection of “compliant” systems can be developed. In principle, multiple systems
that implement the same architecture will interoperate, so that if vendors implement competing solutions,
the resulting software can still be combined into a single system with components that might even be able
to communicate and cooperate with one another. The Common Request Broker, or CORBA, is probably
the best known distributed computing architecture; it is useful for building systems using an object-
oriented approach in which the systems are developed as modules that cooperate. Thus, CORBA is an
architecture, and the various CORBA-based products that comply with the architecture are distributed
computing environments.

1.2.6 End-user applications

One might expect that the “end of the line” for a layered distributed systems architecture would be the
application level, but this is notatessarily the case. A distributed application might also be some sort of
operating system service built over the communications tools that we have been discussing. For example,
the distributed file system is an application in the sense of the OSI layering, but the user of a computing
system might think of the file system as an operating system service over which applications can be
defined and executed. Within the OSI layering, then, an application is any free-standing solution to a
well defined problem that presents something other than a communications abstraction to its users. The
distributed file system is just one example among many. Others include message bus technologies,
distributed database systems, electronic mail, network bulletin boards, and the World-Wide-Web. In the
near future, computer supported collaborative work systems and multimedia digital library systems are
likely to emerge as further examples in this area.

A limitation of a layering like the OSI hierarchy is that it doesn’t really distinguish these sorts of
applications, which provide services to higher level distributed applications, from what might be called
end-user solutions, namely programs that operate over the communications layer to directly implement
commands for a human being. One would like to believe that there is much more structure to a
distributed air traffic control system than to a file transfer program, yet the OSI hierarchy views both as
examples of “applications.” We lack a good classification system for the various types of distributed
applications.

In fact, even complex distributed applications may merely be components of even larger-scale
distributed systems — one can easily imagine a distributed system that uses a distributed computing toolkit
to integrate an application that exploits distributed files with one that stores information into a distributed
database. In an air-traffic control environment, availability may be so critical that one is compelled to run
multiple copies of the software concurrently, with one version backing up the other. Here, the entire air
traffic control system is at one level a complex distributed application in its own right, but at a different

40

Chapterl: Fundamentals 41

“meta” level, is just a component of an over-arching reliability structure visible on a scale of hundreds of
computers located within multiple air traffic centers.

1.3 Critical Dependencies

One of the major challenges to building reliable distributed systems is that computer networks have
evolved to have a great many “dependencies” on a variety of technologies. Some of the major ones are
identified in Figure 1-6, however the set is growing steadily and this figure is emssarily complete.

Critical applications often introduce new servers and critical components not shown here, nor does the
figure treat dependencies on hardware components of the distributed infrastructure, such as the
communication network itself, power supply, or hardware routers. Moreover, the telecommunications
infrastructure underlying a typical network application is itself a complex network with many of the same
dependencies internal to itself, together with additional ones such as the databases used to resolve mobile
telephone numbers or to correctly account for use of network communication lines.

Fortunately, many of these services are fairly reliable, and one can plan around potential outages
of such critical services as the network information service. The key issue is to understand the technology
dependencies that can impact reliability issues for a specific application and to program solutions into the
network to detect and work around potential outages. In thidoekt we will be studying technical
options for taking such steps. The emergence of integrated environments for reliable distributed
computing will, however, require a substantial effort from the vendors offering the component
technologies: an approach in which reliability is left to the application inevitably overlooks the problems
that can be caused when such applications are forced to depend upon technologies that are themselves
unreliable for reasons beyond the control of the developer.

41

42 Kenneth P. Birman - Building Secure and Reliable Network Applications

Telecomm. Idrastructure
Internet routing

| Domain Name Service TCP/UDP Network Information Servicel

TCP failure reporting

IP broadastfunctions

| Clock Synchronization |
The Qperati stem
| Authorization Server | | S 9 5 |
| File servers |
| X11 dislay server | | F/S Cache Coherence | Locking serviceqlockd) |
| D/B Cache Coherence | Database serve |
ORB | ENS rlogin/|rcp / ftp Web | Search
telnet | uucp Server| Engine
IDL | Object Email | Net Public| Web
Factoryj “News” key DB|browse
Corba Swpport | [1P Technolagies Web Technologie |

Figure 1-6: Technologies on which a distributed application may "depend” in order to provide correct, reliable
behavior. The figure is organized so that dependencies are roughly from top to bottom (the lower technologies being
dependent upon the upper ones), although a detailed dependency graph would be quite complex. Failures|in any of
these technologies can result in visible application-level errors, inconsistency, security violations, denial of service,
or other problems. These technologies are also interdependent in complex and often unexpected ways. Fof example,
some types of UNIX workstations will hang (freeze) if the NIS (network information service) server hecomes
unavailable, even if there are duplicate NIS servers that remain operational. Moreover, such problems can impact
an application that has been running normally for an extended period and is not making any explicit new uge of the
server in question.

1.4 Next Steps

While distributed systems are certainly layered, Figure 1-6 makes it clear that one should question the
adequacy of any simple layering model for describing reliable distributed systems. We noted, for example,
that many governments have mandated the use of the ISO layering for description of distributed software.
Yet there are important reliability technologies that require structures inexpressible in this layering, and it

is unlikely that those governments intended to preclude the use of reliable technologies. More broadly, the
sorts of complex layerings that can result when tools are used to support applications that are in turn tools
for still higher level applications are not amenable to any simple description of this nature. Does this
mean that users should refuse the resulting complex software structures, because they cannot be described
in terms of the standard? Should they accept the perspective that software should be used but not
described, because the description methodologies seem to have lagged the state of the art? Or should
governments insist on new standards each time a new type of system finds it useful to step outside of the
standard?

Questions such as these may seem narrow and almost pointless, yet they point to a deep problem.
Certainly, if we are unable to even describe complex distributed systems in a uniform way, it will be very
difficult to develop a methodology within which one can reason about them and prove that they respect
desired properties. On the other hand, if a standard proves unwieldy and constraining, it will eventually
become difficult for systems to adhere to it.

42

Chapterl: Fundamentals 43

Perhaps for these reasons, there has been Ktknt work on layering in the precise sense of the
ISO hierarchy: most researchers view this as an unpromising direction. Instead, the notions of structure
and hierarchy seen in 1ISO have reemerged in much more general and flexible ways: the object class
hierarchies supported by technologies in the CORBA framework, the layered protocol stacks supported in
operating systems like UNIX or theKernel, or in systems such as Horus. We'll be reading about these
uses of hierarchy later in the téxiok, and the 1SO hierarchymains popular as a simple but widely
understood framework within which to discuss protocols.

1.5 Additional Reading

General discussion of network architectures and the ISO hierarchy: [Tan88, Com91, CS91, CS93,
ANSA9l1a, ANSA91b, ANSA89, CD90, CDK94, XTP95]. Pros and Cons of layered architectures:
[CT87, RST88, RST89, Ous90, AP93, KP93, KC94, BD95]. Reliable stream communication: [Rit84,
Jac88, Tan88, Com91, CS91, CS93, CDK94]. Failure Models and Classification: [Lam78b, Lam84,
Ske82b, FLP85, ST87, CD90, Mar90, Cri91a, CT91, CHT92, GR93, SM94].

43

44 Kenneth P. Birman - Building Secure and Reliable Network Applications

2. Communication Technologies

Historically, it has rarely beenatessary to understand details of the hardware components from which a
computing system was constructed if one merely wishes to develop software for it. The pressure to
standardize operating systems, and the presentation of devices within them, created a situation in which it
sufficed to understand the way that the operating system abstracted a device in order to use it correctly.

For example, there are a great many designs for computer disk storage units and the associated
device controllers. Each design offers its own advantages and disadvantages when compared with the
others, and any systems architect charged with selecting a data storage device would be wise to learn
about the state of the art before making a decision. Yet, from a software perspective, device attributes are
largely hidden. The developer normally considers a disk to be a device on which files can be stored,
having various layout parameters that can be tuned to optimize I/O performance, and characterized by a
set of speed and reliability properties. Developers of special classes of applications, such a multi-media
image servers, may prefer to work with a less abstracted software interface to the hardware, exploiting
otherwise hidden features at the cost of much greater software complexity. But for the normal user, one
disk is much like any other.

To a considerable extent, the same is true for computer networking hardware. There are a
number of major classes of communications devices, differing in speed, avegdatency, maximum
capacity (packets per second, bytes of data per second), support for special addressing modes, etc.
However, since most operating systems implement the lowest layers of the OSI hierarchy as part of the
device driver or communications abstraction of a system, applications can treat these devices
interchangeably. Indeed, it can be quite difficult to determine just what the communications topology of a
system actually is, because many operating systems lack services that would permit the user to query for
this information.

In the remainder of this chapter, we review communication hardware in very superficial terms,
giving just enough detail so that the reader should be familiar with technology names and properties, but
without getting into the level of technical issues that would be important in designing the network
topology for a demanding enterprise.

Throughout this chapter, the reader will notice that we use the packetto refer to the type of
messages that can be exchanged between communications devices. The distinction between a packet and a
messagethroughout this book, is that a message is a logical object generated by theatpplior
transmission to one or more destinations. A message may be quite large, and can easdytledimits
imposed by the operating system or the communications hardware. For transmission, messages are
therefore fragmented into one or more packets, if necessary. A packet, then, is a hardware level message
that often respects hardware-imposed size and format constraints, and may contain just a fragment of an
application-level message.

2.1 Types of Communication Devices

Communications devices can be coarsely partitioned into functional classes:

« Point to point:This is a class of devices implementing packet or data passing between two computers.
A good example is a pair of modems that communicate over a telephone wire. The Internet is

composed of point to point communications devices that form a wide-area architecture, to which
individual local-area networks are connected through “Internet Gateway” devices.

44

Chapter2: Communication Technologies 45

e Multiple access:This class of devices permit many computers to share a single communications
medium. For example, using the popukthernetarchitecture, a single coaxial cable can be used to
wire a floor of a building or some other moderately large area. Computers can be connected to this
cable by “tapping” into it, which involves inserting a special type of needle through the outer cover of
the coaxial conductor and into the signal conducting core. The device interfaces implement a protocol
in hardware to avoid collisions, which occur if several machines attempt to send packets at the same
time.

e Mesh, tree, and crossbar architectureBhis class of devices consists of point to point links that
connect the individual computer to some form of switching mechanism. Messages are typically very
small, and are routed at hardware link speeds through the switches and to their destinations.
Connections of this sort are most often used in parallel computers, but are also being adapted for very
high speed communication in clusters of more conventional computing nodes.

« ATM switchesAsynchronous Transfer Mode, or ATM, is an emerging standard for packet-switching
between computers, over communications links and switches of varied speeds and properties. ATM is
based on a star architecture, in which optical fibers connect individual computers to switches; these
behaving much like the communication buses seen in parallel computers. ATM is designed for very
high speed communications, including optical fiber that can operate at speeds of 2.5Gbits per second
or more. Even the first generation systems are extremely fast, giving performance of 155Mbits/second
for individual connections (“OC3” in the ATM terminology).

» Bridges:A bridge orrouter (we'll use the term bridge to avoid confusion with the notion of routing) is
a special-purpose communications computer that links multiple networking devices, by forwarding the
packets received on either device onto the other. Bridges introduce lateney, which is called a
“hop delay”, but normally operate as fast as the devices they interconnect. Bridges tend to lose packets
if a destination network is heavily loaded and data cannot be forwarded as fast ascieiiged from
the originating network. Bridges can be programmed to forward messages selectively; this is often
exploited to avoid a problem whereby the load on a network can grow without limit as the size of the
network is increased — the load on a bridged network is the sum of the load local to a segment, and the
load forwarded over the bridge, and can be much less than the sum of the loads on all segments.

2.2 Properties

Communications devices vary enormously in their properties, although this variability is often concealed
by the layers of systems software through which applications operate. In simple terms, communications
devices can be “rated” by a series of metrics:

« The maximum data throughput of the deviSpeed is normally measured in terms of the number of
bytes of data per second that can be transmitted. Vendors often quote figures in terms of bits per
second, referring to the performance seen “on the wire” as information is transmitted. In either case,
one should be aware that speed figures often do not include overhead such as start and stop bits,
headers and trailers, and mandatory dead-space between packets. These factors can greatly reduce the
effective performance of a device, making it difficult to obtain even as much as half of the maximum
theoretical performance from an application program. Indeed, it is not uncommon for the most easily
used communication primitives to offer performance that is an order of magnitude or more poorer than
that of the hardware! This often forces the application designer to chose between performance and
software complexity.

* The number of packets per second that can be 84any devices have a start-up overhead associated
with sending packets, and for some devices the sending interface must wait for access to the
communications medium. These factors combine to limit the number of packets per second that a
device can send, and when packets can be of variable size, can also imply that to achieve maximum
data throughput, the application must send large packets.

45

46 Kenneth P. Birman - Building Secure and Reliable Network Applications

* The end-to-end latency of the devidéis is a measure of how much time elapses from when a packet
starts to be transmitted and when it is first presented to ¢eeiving machine, and is gerdlly an
quoted as an average figure, that will actually vary depending on the degree to which the network is
loaded at the time a packet is transmitted.

e The reliability of the deviceAll commonly used communications hardware includes automatic
mechanisms for detection and rejection of corrupted data. These methods operate using checksums
(CRC computations) and are not infallible, but in practice it is normal to treat communications
hardware as failing only by packet loss. The reliability of a communications technology is a measure of
the percentage of packets that can be lost in the interface or on the wire, as an average. Average
reliability is often very high — not uncommonly, hardware approaches perfect reliability. However, it
should be kept in mind that an average loss rate may not apply in an exceptional situation, such as an
interface that is experiencing intermittent failures, a poorly connected ethernet tap, or a pattern of use
that stresses some sort of uncommon loss problem associated with a technology. From the perspective
of the builder of a reliable distributed system, these factors imply that a communications device should
be considered somewhat bimodal: having one reliability level in the normal case, but perhaps having a
second, much poorer reliability level, in exceptional cases that the system may need to tolerate or
reconfigure around.

e Security.This is a measure of the extent to which the device protects the contents of packets from
eavesdroppers. Some devices achieve very high levels of security in hardware; others are completely
open to eavesdropping and require that measures be taken in software if data security is desired.

* Privacy. This is a measure of the extent to which the device conceals the source and destination of
packets from eavesdroppers. Few devices offer privacy properties, and many security features are
applied only to the data portion of a packet, and hence offer little help if privacy is desired. However,
there are technologies for which privacy is a meaningful concept. For example, on an ethernet,
interfaces can be programmed to respond to a small set of addresses within a very large space of
potential addresses. This feature potentially allows the destination of a packet to be concealed from
listeners. On the other hand, the ethernet standard never permits the address of the sender to be
reprogrammed, and consequently will always reveal the address of the communications interface from
which a packet was sent.

2.3 Ethernet

At the time of this writing, ethernet is the most widely used communications technology for local-area
networks (networks within a limited physical region, such as a single floor of a building). Bridged
ethernets are the most common technology for networks within small enterprises, such as a large company
at a single site.

As summarized earlier, the basic technology underlying an ethernet is a shared coaxial cable, on
which signals are transmitted using a modulation technology similar to that of a radio. Packets have a
fixed maximum size of 1400 bytes, but the size can be varied as long as this limit iscesdex. In
practice, software that runs over Ethernet will often be limited to approximately 1024 bytes of “payload”
in each packet; the remaining 376 bytes are then available for headers, trailers, and data representation
information. The ethernet itself, however, treats the entire object as data. The specific encoding used to
represent packets will not be important to us here, but the basic idea is that each interface is structured
into a sending side, and a listening side, and the latter is continuously active.

To receive a message, the listening sidatsvuntil it senses a packet header. The incoming
packet is then copied to a memory buffer internal to the ethernet interface. To be accepted, a packet must
have a valid checksum, and must specify an destination address that the interface has been
preprogrammed to cgept. Specifially, each interface has some number of programmable address
registers, consisting of a “pattern mask” and a corresponding “value mask”, each 32-bits in length. The

46

Chapter2: Communication Technologies 47

pattern mask specifies bits within the destination address that must exactly match the corresponding bits
of the value mask. A pattern mask that selects for all bits of the address will require an exact match

between the packet and the value mask. A pattern mask that selects no bits will match every incoming
packet — an interface with such an address loaded is said todvenmiscuous mode

f host: ..., mask: _| A received packet is copied into
«— memory in the host computer, or
; discarded if no memory for an incoming

I nput buffer I IOUtDUt bufferl packet is available. The host is then

~ interrupted. Most ethernet interfaces
permit the host to enqueue at least two
. memory regions for incoming messages,
and some permit the host to chain a list
of memory regions. Most also permit
multiple (address,mask) pairs to be
loaded into the interface, often as many
Figure 2-1: Ethernet interface with one queued output buffer [anais 64.

three available input buffers. A table of up to 64 (host,mask) pairs
controls input selectivity.

To send a packet, the ethernet

interface waits for a pause between
packets — a time when its listening side is idle. It then transmits the packet, but also listens to its own
transmission. The idea is that if two ethernets both attempt to send at the same time, a collision will occur
and the messages will overwrite one another, causing a noise burst. The receive logic will either fail
immediately, or the checksum test will fail, since anything the interfaces read back in will be damaged by
the collision, and the sending logic will recognize that a problem has occurred. The hardware implements
an exponential back-offlgorithm, in which the sending side delays for a randomly selected period of time
within an interval that starts at a small value but doubles with eacbessive collision up to a maximum
upper value. Although the probability of a collision on a first attempt to send can be high when the
ethernet becomes loaded, exponential back-off has been shown to give very good avesagdehavior
with excellent fairness propertieBecause collisions are often detectable within a few bits after starting
to send, ethernets lose little data to collisions even under heavy load, and the back-off algorithm can be
shown to provide very uniform delays for access to the medium over very large numbers of senders and
very large excess loads.

As a general rule, although a single interface can send multiple packets, a small amount of dead
space will separate each packet in the stream, because a small amount of work by the operating system is
normally needed before eachcsessive packet can be transmitted, and because the ethernet hardware
logic requires a small amount of time to compare the checksum on the echo of the outgoing packet, and to
trigger an interrupt to the device driver, before starting to send a new packet. In contrast, when more than
one interface is used to send data, sequences of “back to back” packets can be generated, potentially
forcing the interface to accept several packets in a row alitost no delay between them. Obviously, this
can result in packet loss if the chain of memory for incoming messages is exhausted. However, precisely
because an ethernet is shared, the probability that any one interface will be the destination for any large
number of back-to-back packets is low. File system servers and bridges, which are more likely to receive

1 Developers of real-time computing systems, for settings such as process-control, have developed deterministic

back-off algorithms that have extremely predictable behavior under heavy load. In these approaches, the loaded
behavior of an ethernet is completely characterized -- provided, of course, that all interfaces use the same
algorithm.

47

48 Kenneth P. Birman - Building Secure and Reliable Network Applications

back-to-back packets, compensate for this by using long chains of buffers for incoming messages, and
implementing very lightweight logic for dealing witkeceived messages as quickly as possible.

An interesting feature of the ethernet is that it supports both broadcast and multicast in hardware.
The two features are implemented in the same way. Before any communication is undertaken, the ethernet
interface is preloaded with a special address — one that is the same on all machines within some set. Now,
if a packet that contains this address is transmitted, all machines in that setagille a copy, because all
of their interfaces will detect a match.

To support broadcast, a special address is agreed upon and installed on all interfaces in the entire
network, typically at the time the machine is fitgtoted. Broadcast packets will now be received by every
machine, offering a way to distribute the same data to a great many machines at very low cost. However,
one should keep in mind that each interface individually computes the checksum, and hence that some
interfaces may discard a packet as corrupted, while others accept it. Moreover, some machines may lack
input buffers and hence may be incapable of accepting packets that are correctly received by the interface.
Thus, ethernet broadcast can potentially send a single packet to all machines on a network, but in practice
the technology is not a reliable one.

Multicast uses precisely the same approach, except that a subset of machines pick a group
address that is unique within the network and install this into their interfaces. Messages destined to a
multicast address will becaepted (up to checksuraifures) by just these machines, and will be ignored by
others. The maximum number of multicast addresses that an interface can support varies from vendor to
vendor. As in the case of broadcast, hardware multicast is reasonably reliable but not absolutely so.

Earlier, we commented that even a very reliable communications device may exhibit modal
behavior whereby reliability can be much poorer for certain communication patterns. One example of this
problem is termed théroadcast- or multicast-storprand arises when broadcast or multicast is used by
multiple senders concurrently. In this situation, it becomes much more likely that a typical network
interface will actually need tocaept a series of back-to-back packets — with sufficiently many senders,
chains of arbitrary length can be triggered. The problem is that in this situation the probability that two
back to back messages are destined to the same machine, or set of machines, becomes much higher than
for a more typical point-to-point communication load. As a result, the interface may run out of buffers for
incoming packets and begin to drop them.

In a broadcast storm situation, packet loss rises to very high levels, because network interfaces
become chronically short of memory for incoming packets. The signature of a broadcast storm is that
heavy use of broadcast or multicast by multiple senders causes a dramatic increase in the packet loss rate
throughout the network. Notice that the problem will affect any machine that has been programmed to
accept incoming broadcasts, not just the machines that make meaningful use of the packets after they
arise. Fortunately, the problem is uncommon if just a single sender is initiating the broadcasts, because a
single sender will not generate back-to-back packets.

2.4 FDDI

FDDI is a muti-access communéation technology based upon a ring architecture, in which interfaces are
interconnected by shielded “twisted pair” wiring. An interface plays a dual role:

« As arepeater an FDDI interface receives messages from the interface to its left, accepts those
messages that match an incoming address pattern (similar to ethernet), andctiggnetaor not),

48

Chapter2: Communication Technologies 49

forwards the message to the interface on the right. Forwarding occurs bit by bit or in small blocks of
bits, so the delay associated with forwarding packets can be very low.

As atransmitter an FDDI interface wits until it has permission to initiate a packet, which occurs
when there is no other packet being forwarded, and then sends its packet to the interface on its right.
When the packet has completed its trip around the ring, the transnatieives it from the interface to

the left and deletes it. Status information is available in the packet trailer, and can be used to
immediately retransmit a packet that some intended destination was unahieeft Because of a
shortfall of memory or because it detected a checksum error.

49

50 Kenneth P. Birman - Building Secure and Reliable Network Applications

Finally, FDDI has a bilt-in fault-
tolerance feature: if a link fails,FDDI will
automatically reconfigure itself to route around it,
as illustrated in

Figure 2-2. In contrast, a severed
ethernet will either become inoperative, or will
partition into two or more segments that are
disconnected from one-another..

FDDI throughput (150Mbits/second) is
about 15 times greater than standard 10-Mbit
ethernet, although high speed 100-Mbit ethernet
Figure 2-2: An FDDI ring is able to heal itself if a link jnterfaces have recently been introduced that can
breaks; as seen in the lower example. approach FDDI performance. Latency for an

FDDI ring, in particular, is poorer than that of an
ethernet, because of the protocol used to wait for permission to send, and because of delays associated with
forwarding the packet around the ring. In complex environments, ethernets or FDDI rings may be broken
into segments, which are connected by some form of bridge or routing device; these environments have
latency and throughput properties that are more difficult to quantify, because the topology of the
interconnection path between a pair of computers can significantly impact the latency and throughput
properties of the link.

2.5 B-ISDN and the Intelligent Network

B-ISDN is a standard introduced by telecommunications switching companies for advanced telephone
services. ISDN stands for “integrated services digital network”, and is based on the idea of supporting a
communications system that mixes digital voice with other types of digital data, including video. The “B”
stands for broadband and is a reference to the underlying data links, which operate at the extremely high
speeds needed to handle these kinds of data.

50

Chapter2: Communication Technologies 51

Today, the telephone system is relatively inflexible: one can telephone from more or less any
telephone to any other, but the telephone numbers correspond to static locations. To the degree that
mobile telephones are used, one calls the mobile device using a scheme in which requests are rguted
through the home location; thus, were a traveller to attempt to use a cellular telephone in Japan {o
contact another cellular traveller in Japan, the phone call might require participation of their home
telephone companies in upstate New York.

In the future, however, a great variety of innovative new telephone-based communication services
will become available. These will include telecommunications services that mix various forms |of
media: voice, image, computer data, and abstract data types capable of performing computations |or
retrieving desired information. Mobility of users and services will greatly increase, as will the
sophistication of the routing mechanisms used to track down the entity to which a call should Qe
connected. Thus, our Japanese travellers will be connected through some direct service, and a ¢all
for a home-delivered pizza will be routed to a delivery truck in the neighborhood. Moreover
whereas contemporary telecommunications systems are very “different” from compute
communications architectures such as the World Wide Web, these will be increasingly integrated |n
the future and will eventually merge into a single infrastructure with the properties of both.

=

In many communities, ISDN will bring high bandwidth connections into the home, at reasonabl
cost. This development will revolutionize use of the Web, which is currently badwidth limited
“from the curb to the home” and hence only useable in limited ways from home computing
platforms.

D

High speed communication is already available in the workplace, however, and this trend is alreadly
creating innovative new businesses. It is widely expected that a boom in commerce associated With
the communications infrastructure will follow as it reaches the average household. For example, ope

can imagine small companies that offer customized services to a world-wide clientel over the

network, permitting entreprenurial activities that will tap into an immense new market. The
computer user of the future may well use the machine to shop in Paris, decorate his or her
apartment with original African art comissioned directly from the artist, and visit potential travel
destinations through the network before booking a hotel room. France’s experience with Minitel is
often cited as a sign that such a trend can succeed: the Web, with its richer user environment,|is
similar to Minitel but could reach a much larger community.

Of course, the promise of this new world comes with challenges. As we come to rely more and more
heavily on innovative communications technologies for day to day activities and these new forms|of
information-based work and commerce grow in importance, the reliability requirements placed or
the underlying technology infrastructure will also grow. Thus, there is a great potential for]
economic growth and increased personal freedom associated with the new communicatiopns
technologies, but also a hidden implication that the software implementing such systems be secure,
private, fault-tolerant, consistent in its behavior, and trustworthy.

These properties do not hold for many of the prototype systems that have so excited the public, and a
significant change in the mindset of the developers of such apipations will be needed before
reliability of this sort becomes routine. For example, fraudulent use of telephone systems has groyvn
with the introduction of new forms of flexibility in the system, and attacks of all forms on secure of
critical information-based applications have risen steadily in recent years. These range from
malicious or careless insiders whose actions disrupt critical systems, to aggressive attacks|by
hackers, terrorists, and other agents whose goal is to cause damage or to acquire secrets.

Figure 2-3: Challenges of an emerging information superhighway include providing guarantees of pfivacy,
availability, consistency, security, and trustworthiness in a walege of innovative applications. Prototypes of the

new services that may someday become critical often lack the sorts of gjuamgntees that will eventually e
required if these types of systems are to play the role that is envisioned by the public and governments.

51

52 Kenneth P. Birman - Building Secure and Reliable Network Applications

Layered over B-ISDN, which is an infrastructure standard, is the emeigietligent network
an elaborate software architecture for supporting next-generation telecommunications services. Such
services have been slower to emerge than had originally been predicted, and many companies have
become cautious in accessing intelligent network prospects for the near-term future. However, it may
simply be the case that the intelligent network has been harder to deploy than was originally predicted:
there are many signs that the long-predicted revolution in telecommunications is really happening today.

The B-ISDN architecture is elaborate, and the intelligent network is even more so. Our focus on
reliability of general distributed computing systems prevents us from discussing either in any detail here.
However, one interesting feature of B-ISDN merits mention. Although destination addresses in ISDN are
basically telephone numbers, ISDN interprets these in a very flexible manner that permits the architecture
to do far more than just creating connections between telephones and other paired devices. Instead, the
ISDN architecture revolves around the notion of an intelligent switching system: each packet follows a
route from the source through a series of switches to its destination. When this route is first established,
each switch maps the destination telephone number to an appropriate outgoing connection (to another
switch), to a local point of data delivery (if this switch serves the destination), os¢ovéce The decision
is made by looking up the telephone number in a database, using a software procedure that can be
reprogrammed to support very elaborate behaviors.

For example, suppose that a telephone company wanted to offer a special communications service
to computer vendors in some metropolitan area. This service would offer a single telephone number to
each vendor and would arrange to automatically route a call to the mobile telephone of the computer
repair person physically closest to the caller.

To implement this service using B-ISDN, the telephone company would make useatatzade it
already maintains, giving the locations of mobile telephone units. As a call is routed into a switch, the
company would sense that the destination is one of the special telephone numbers assigned to this new
service, and would invoke a database search algorithm programmed to lookup the physical address of the
caller, and then match this with the locations of service vehicles for the called organization to pick the
closest one, routing the call to the computer vendor’s switchboard if the lookup fails. Although timing
constraints for this process are demanding (actions are generally required within a small fraction of a
second), modern computers are becoming fast enough to work within these sorts of deadlines. And, one
can imagine a great number of other B-ISDN services, including message centers, automatic playback of
pre-recorded information, telephone numbers that automatically patch into various types of public or
private information bases, and so forth. The potential is huge.

B-ISDN is also illustrative of how advances in telecommunications switching technology are
creating new demands for reliable distributed software services. It is common to require that telephone
systems maintain extremely high levels of reliability — a typical requirement is that not more than one call
in 100,000 be dropped, and downtime for an entire switch may be limited to seconds per year or less —
switches are increasingly used to support critical services such as 911 emergency numbers and
communication between air traffic controllers and police vehicles. caller.

Reliability of this sort has many implications for developers of advanced switching systems. The
switches themselves must be paired, and protocols for doing so have been standardized as part of an
architecture called Signalling System 7 (SS7), which is gradually entering into world-wide use. The co-
processors on which intelligent services reside are often constructed using fault-tolerant computing
hardware. The software that implements the switching logic must be self-managing, fault-tolerant, and
capable of supporting on-line upgrades to new versions of applications and of the operating system itself.
And, because many services require some form of distributed database, such as the database of location
information that arose in the telephone dispatch exampbeey sets of coprocessors will often need to be

52

Chapter2: Communication Technologies 53

organized into distributed systems that manage dynamically changing replicated data and take actions in a
consistent but deceriized manner. For example, routing a call may require independent routing
decisions by the service programs associated with several switches, and these decisions need to be based
upon consistent data or the call will eventually be dropped, or will be handled incorrectly.

B-ISDN, then, and the intiigent network that it is intended to support, represent good examples
of settings where the technology of reliable distributed computing is required, and will have a major
impact on society as a whole. Given solutions to reliable distributed computing problems, a vast array of
useful telecommunication services will become available starting in the near future and continuing over
the decades to come. One can imagine a telecommunications infrastructure that is nearly ubiquitous and
elegantly integrated into the environment, providing information and services to users without the
constraints of telephones that are physically wired to the wall and computer terminals or televisions that
weigh many pounds and are physically attached to a company’s network. But the dark side of this vision is
that without adequate attention to reliability and security, this exciting new world will also be erratic and
failure-prone.

2.6 ATM

Asynchronous Transfer Moder ATM, is an emerging technology for routing small digital packets in
telecommunications networks. When used at high speeds, ATM networking is the “broadband” layer
underlying B-ISDN; thus, an article describing a B-ISDN service is quite likely téaliéng about an
application running on an ATM network that is designed using the B-ISDN architecture.

ATM technology is considered especially exciting both because of its extremely high bandwidth
and low latencies, and because this connection to B-ISDN represents a form of direct covergence between
the telecommunications infrastructure and the computer communications infrastructure. With ATM, for
the first time, computers are able to communicate directly over the data transport protocols used by the
telephone companies. Over time, ATM networks will be more and more integrated with the telephone
system, offering the possibility of new kinds of telecommunications applications that can draw
immediately upon the world-wide telephone network. Moreover, ATM opens the door for technology
migration from those who develop software for computer networks and distributed systems into the
telecommunications infrastructure and environment.

The packet switches and computer interfaces needed in support of ATM standards are being
deployed rapidly in industry and research settings, with performance expected to scale from rates
comparable to those of a fast ethernet for first-generation switches to gigabit rates in the late 1990’s and
beyond. ATM is defined as a routing protocol for very small packets, containing 48 bytes of payload data
with a 5-byte header. These packets traverse routes that must be pre-negotiated between the sender,
destination, and the switching network. The small size of the ATM packets leads some readers to assume
that ATM is not really “about” networking in the same sense as an ethernet, with its 1400-byte packets.
In fact, however, the application programmer normally would not need to know that messages are being
fragmented into such a small size, tending instead to think of ATM in terms of its speed and low latency.
Indeed, at the highest speeds, ATM cells can be thought of almost as if they were fat bits, or single words
of data being transferred over a backplane.

53

54 Kenneth P. Birman - Building

Secure and Reliable Network Applications

camere

video server

Figure 2-4: Client systems (gray ovals) connected to an A
switching network. The client machines could be PC's
workstations, but can also be devices, such as ATM f
grabbers, file servers, or video servers. Indeed, the very

speed of some types of data feeds may rule out any signi
processor intervention on the path from the device to
consuming application or display unit. Over time, software
ATM environments may be more and more split intd
“managerial and control” component that sets up circuits g
operates the application and a “data flow” component that ma
the actual data without direct program intevension. In cont
to a standard computer network, an ATM network can

ATM typically operates over
point-to-point fiber-optic cables, which
route through switches. Thus, a typical
ATM installation might resemble the one
shown in Figure 2-4. Notice that in this
figure, some devices are connected directly
to the ATM network itself and not handled
by any intermediary processors. The
rationale for such an architecture is that
ATM devices may eventually run at such
high data ratés(today, an “OC3” ATM
network operates at 155Mbits/second
(Mbps), and future “OC24" networks will
run at a staggering 1.2Gbps) that any type
MY software intervention on the path

%etween the data source and the data sink
aMould be out of the question. In such
r;gaerr]}vironments, application programs will
tH@ore and more be relegated to a
fopupervisory and control role, setting up the

links and turning the devices on and off,
ndout not accessing the data flowing through
vethe network in a direct way. Not shown
asire adaptors that might be used to interface
ban ATM directly to an ethernet or some

integrated directly into the networks used by the telephongther local area technology, but these are

companies themselves, offering a unique route towards eve

Nt4do available on the market today and will

convergence of distributed computing and telecommunicatior

S-play a big role in many furture ATM

installations. These devices allow an ATM
network to be attached to an ethernet, token ringFBDI network, with samless communication
through the various technologies. They should be common by late in the 1990’s.

The ATM header consists of a VCI (2 bytes, giving the virtual circuit id), a VPI (1 byte giving
the virtual path id), a flow-control data field for use in software, a packet type bit (normally used to
distinguish the first cell of a multi-cell transmission from the subordinate ones, for reasons that will
become clear momentarily), a cell “loss priority” field, and a 1-byte error-checking field that typically
contains a checksum for the header data. Of these, the VCI and the packet type (PTI) bit are the most
heavily used, and the ones we discuss further below. The VPI is intended for use when a number of
virtual circuits connect the same source and destination; it permits the switch to multiplex such
connections in a manner that consumes less resources than if the VCI's were used directly for this
purpose. However, most current ATM networks set this field to 0, and hence we will not discuss it further
here.

There are three stages to creating and using an ATM connection. First, the process initiating the
connection must construct a “route” from its local switch to the destination. Such a route consists of a
path of link addresses. For example, suppose that each ATM switch is aldegjot aip to 8 incoming
links and 8 outgoing links. The outgoing links can be numbered 0-7, and a path from any data source to

2 ATM data rates are typically quoted on the basis of the maximum that can be achieved through any single link.
However, the links multiplex through switches and when multiple users are simultaneously active, the maximum
individual performance may be less than the maximum performance for a single dedicated user. ATM bandwidth
allocation policies are an active topic of research.

54

Chapter2: Communication Technologies 55

any data sink can then be expressed as a series of 3-bit numbers, indexing each successive hop that the
path will take. Thus, a path written as 4.3.0.7.1.4 might describe a route through a series of 6 ATM
switches. Having constructed this path, a virtual circuit identifier is created and the ATM network is
asked to “open” a circuit with that identifier and path. The ATM switches, one by one, add the identifier

to a table of open identifiers and record the corresponding out-link to use for subsequent traffic. If a
bidirectional link is desired, the same path can be set up to operate in both directions. The method
generalizes to also include multicast and broadcast paths. The VCI, then, is the virtual circuit identifier
used during the open operation.

Having described this, however, it should be stressed that many early ATM applications depend
upon what are called “permanent virtual channels”, namely virtual channels that are preconfigured by a
systems administrator at the time the ATM is installed, and changed rarely (if ever) thereafter. Although
it is widely predictated that dynamically created channels will eventually dominate the use of ATM, it
may turn out that the complexity of opening channels and of ensuring that they are closed correctly when
an endpoint terminates its computation or fails will emerge as some form of obstacle that presents this
step from occuring.

In the second stage, the application program can send data over the link. Each outgoing message
is fragmented, by the ATM interface controller, into a series of ATM packets or “cells”. These cells are
prefixed with the circuit identifier that is being used (which is checked for security purposes), and the
cells then flow through the switching system to their destination. Most ATM devices will discard cells in
a random manner if a switch becomes overloaded, but there is a great deal of research underway on ATM
scheduling and a variety of so-callggality of serviceoptions will become available over time. These
might include guarantees of minimum bandwidth, priority for some circuits over others, or limits on the
rate at which cells will be dropped. Fields such as the packet type field and the cell loss priority field are
intended for use in this process.

It should be noted, however, that just as many early ATM installations use permanent virtual
circuits instead of supporting dynamically created circuits, many also treat the ATM as an ethernet
emulator, and employ a fixed bandwidth allocation corresponding roughly to what an ethernet might
offer. It is possible to adopt this approach because ATM switches can be placed into an emulation mode
in which they support broadcast, and early ATM software systems have taken advantage of this to layer
the TCP/IP protocols over ATM much as they are built over an ethernet. However, fixed bandwidth
allocation is inefficient, and treating an ATM as if it were an ethernet somewhat misses the point!
Looking to the future, most reseachers expect this emulation style of network to gradually give way to
direct use of the ATM itself, which can support packet-switched multicast and other types of
communication services. Over time, “value-added switching” is also likely to emerge as an important
area of competition between vendors; for example, one can easily imagine incorporating encryption and
filtering directly into ATM switches and in this way offering what are calledtual private network
services to users (Chapters 17 and 19).

The third stage of ATM connection management is concerned with closing a circuit and freeing
dynamically associated resources (mainly, table entries in the switches). This occurs when the circuit is
no longer needed. ATM systems that emulate IP networks or that use permanent virtual circuits are able
to skip this final stage, leaving a single set of connections continuously open, and perhaps dedicating
some part of the aggregate bandwidth of the switch to each such connection. As we evolve to more direct
use of ATM, one of the reliability issues that may arise will be that of detecting failures so that any ATM
circuits opened by a process that later crashed will be safely and automatically closed on its behalf.
Protection of the switching network against applications that erroneously (or maliciously) attempt to
monopolize resources by opening a great many virtual circuits will also need to be addressed in future
systems.

55

56 Kenneth P. Birman - Building Secure and Reliable Network Applications

ATM poses some challenging software issues. Communication at gigabit rates will require
substantial architectural evolution and may not be feasible over standard OSI-style protocol stacks,
because of the many layers of software and protocols that messages typically traverse in these
architectures. As noted above, ATM seems likely to require that video servers and disk data servers be
connected directly to the “wire”, because the overhead and latency associated with fetching data into a
processor’'s memory before transmitting it can seem very large at the extremes of performance for which
ATM is intended. These factors make it likely that although ATM will be usable in support of networks of
high performance workstations, the technology will really take off in settings that exploit novel computing
devices and new types of software architectures. These issues are already stimulating rexamination of
some of the most basic operating system structures, and when we look at high speed communication in
Chapter 8, many of the technologies considered turn out to have arisen as responses to this challenge.

Even layering the basic Internet protocols over ATM has turned out to be non-trivial. Although
it is easy to fragment an IP packet into ATM cells, and the emulation mode mentitiogd makes it
straightforward to emulate IP networking over ATM networks, traditional IP software will drop an entire
IP packet if any part of the data within it is corrupted. An ATM network that drops even a single cell per
IP packet would thus seem to have 0% reliability, even though close to 99% of the data might be getting
through reliably. This consideration has motivated ATM vendors to extend their hardware and software
to understand IP and to arrange to dadpof an IP packet if even a single cell of that packet must be
dropped, an example of a simple quality-of-service property. The result is that as the ATM network
becomes loaded and starts to shed load, it does so by beginning to drop entire IP packets, hopefully with
the result that other IP packets will get through unscathed. This leads us to the use of the packet type
identifier bit: the idea is that in a burst of packets, the first packet can be identified by setting this bit to O,
and subsequent “subordinate” packets identified by setting it to 1. If the ATM must drop a cell, it can
then drop all subsequent cells with the same VCI until one is encountered with the PTI bit set to 0, on the
theory that all of these cells will be discarded in any case upon reception, because of the prior lost cell.

Looking to the future, it should not be long before IP drivers or special ATM firmware is
developed that can buffer outgoing IP packets briefly in the controller of the sender and selectively solicit
retransmission of just the missing cells if the receiving controller notices that data is missing. One can
also imagine protocols whereby the sending ATM controller might compute and periodically transmit a
parity cell containing the exclusive-or of all the prior cells for an IP packet; such a parity cell could then
be used to reconstruct a single missing cell on the receiving siddit@of service options for video data
transmission using MPEG or JPEG may soon be introduced. Although these suggestions may sound
complex and costly, keep in mind that the end-to-end latencies of a typical ATM network are so small
(tens of microseconds) that it is entirely feasible to solicit the retransmission of a cell or two this even as
the data for the remainder of the packet flows through the network. With effort, such steps should
eventually lead to very reliable IP networking at ATM speeds. But the non-trivial aspects of this problem
also point to the general difficulty of what, at first glance, might have seemed to be a completely obvious
step to take. This is a pattern that we will often encounter throughout the remaindetobttie

2.7 Cluster and Parallel Architectures

Parallel supercomputer architectures, and their inexpensive and smaller-scale cousins, the cluster
computer systems, have a natural correspondence to distributed systems. Increasingly, all three classes of
systems are structured as collections of processors connected by high speed communications buses and
with message passing as the basic abstraction. In the case of cluster computing systems, these
communications buses are often based upon standard technologies such as fast ethernet or packet
switching similar to that used in ATM. However, there are significant differences too, both in terms of
scale and properties. These considerations makecissary to treat cluster and parallel computing as a
special case of distributed computing for which a humber of optimizations are possible, and where special

56

Chapter2: Communication Technologies 57

considerations are also needed in terms of the expected nature of application programs and their goals vis-
a-vis the platform.

In particular, cluster and parallel computing systems often have built-in management networks
that make it possible to detect failures extremely rapidly, and may have special purpose communication
architectures with extremely regular and predictable performance and reliability properties. The ability to
exploit these features in a software system creates the possibility that developers will be able to base their
work on the general-purpose mechanisms used in general distributed computing systems, but to optimize
them in ways that might greatly enhance their reliability or performance. For example, we will see that
the inability to accurately sense failures is one of the hardest problems to overcome in distributed systems:
certain types of network failures can create conditions indistinguishable from processor failure, and yet
may heal themselves after a brief period of disruption, leaving the processor healthy and able to
communicate again as if it had never been gone. Such problems do not arise in a cluster or parallel
architecture, where accurate failure detection can be “wired” to available hardware features of the
communications interconnect.

In this textbook, we will not consider cluster or p#lel systems until Chapter 24, at which time
we will ask how the special properties of such systems impacts the algorithmic and protocol issues that we
consider in the previous chapters. Although there are some important software systems for parallel
computing (PVM is the best known [GDBJ94]; MPI may eventually displace it [MPI96]), these are not
particularly focused on reliability issues, and hence will be viewed as being beyond the scope of the
current treatment.

2.8 Next steps

Few areas of technology development are as active as that involving basic communication technologies.
The coming decade should see the introduction of powerful wireless communication technologies for the
office, permitting workers to move computers and computing devices around a small space without the
rewiring that contemporary devices often require. Bandwidth delivered to the end-user can be expected to
continue to rise, although this will also require substantial changes in the software and hardware
architecture of computing devices, which currently limits the achievable bandwidth for traditional network
architectures. The emergence of exotic computing devices targetted to single applications should begin to
displace general computing systems from some of these very demanding settings.

Looking to the broader internet, as speeds are rising, so too is congestion and contention for
network resources. It is likely that virtual private networks, supported through a mixture of software and
hardware, will soon become available to organizations able to pay for dedicated bandwidth and guaranteed
latency. Such networks will need to combine strong security properties with new functionality, such as
conferencing and multicast support. Over time, it can be expected that these data oriented networks will
merge into the telecommunications “intelligent network” architecture, which provides support for voice,
video and other forms of media, and mobility. All of these features will present the distributed application
developer with new options, as well as new reliability challenges.

Reliability of the telecommunications architecture is already a concern, and that concern will
only grow as the public begins to insist on stronger guarantees of security and privacy. Today, the rush to
deploy new services and to demonstrate new communications capabilities has somewhat overshadowed
robustness issues of these sorts. One consequence, however, has been a rash of dramatic failures and
attacks on distributed applications and systems. Shortly after work orbtiois began, a telephone
“phreak” was arrested for reprogramming the telecommunications switch in his home city in ways that
gave him nearly complete control over the system, from the inside. He was found to have used his control
to misappropriate funds through electronic transfers, and the case is apparently not an isolated event.

57

58 Kenneth P. Birman - Building Secure and Reliable Network Applications

Meanwhile, new services such as “caller id” have turned out to have unexpected side-effects, such as
permitting companies to build databases of the telephone numbers of the individuals who contact them.
Not all of these individuals would have agreed to divulge their numbers.

Such events, understandably, have drawn considerable public attention and protest. As a
consequence, they contribute towards a mindset in which the reliability implications of technology
decisions are being given greater attention. Such the trend continue, it could eventually lead to wider use
of technologies that promote distributed computing reliability, security and privacy over the coming
decades.

2.9 Additional Reading

Addtional discussion of the topics covered in this chapter can be found in [Tan88, Com91, CS91,
CS93,CDK94]. An outstanding treatment of ATM is [HHS94].

58

Chapter3: BasicCommunication Services 59

3. Basic Communication Services

3.1 Communications Standards

A communications standard is a collection of specifications governing the types of messages that can be

sent in a system, the formats of message headers and trailers, the encoding rules for placing data into
messages, and the rules governing format and use of source and destination addresses. In addition to this,
a standard will normally specify a number of protocols that a provider should implement.

Examples of communications standards that are used widely, although not universally so, are:

e The Internet ProtocolsThese protocols originated in work done by the Defense Department Advanced
Research Projects Agency, or DARPA, in the 1970's, and have gradually grown into a wider scale
high performance network interconnecting millions of computers. The protocols employed in the
internet include IP, the basic packet protocol, and UDP, TCP and IP-multicast, each of which is a
higher level protocol layered over IP. With the emergence of the Web, the Internet has grown
explosively during the mid 1990’s.

* The Open Systems Interconnect Protoc®lsese protocols are similar to the internet protocol suite,
but employ standards and conventions that originated with the 1ISO organization.

« Proprietary standardsExamples include the Systems Network Architecture, developed by IBM in the
1970's and widely used for mainframe networks during the 1980’s, DECnet, developed at Digital
Equipment but discontinued in favor of open solutions in the 1990’s, Netware, Novell's widely popular
networking technology for PC-based client-server networks, and Banyan'’s Vines system, also intended
for PC’s used in client-server applications.

During the 1990’s, the emergence of “open systems”, namely systems in which computers from
different vendors and running independently developed software, has been an important trend. Open
systems favor standards, but also must support current practice, since vendors otherwise find it hard to
move their customer base to the standard. At the time of this writing, the trend clearly favors the Internet
protocol suite as the most widely supported communications standard, with the Novell protocols strongly
represented by force of market share. However, there protocol suites were designed long before the advent
of modern high speed communications devices, and the commercial pressure to develop and deploy new
kinds of distributed applications that exploit gigabit networks could force a rethinking of these standards.
Indeed, even as the Internet has become a “de facto” standard, it has turned out to have serious scaling
problems that may not be easy to fix in less than a few years (see Figure 3-1).

The remainder of this chapter focuses on the Internet protocol suite because this is the one used
by the Web. Details of how the suite is implemented can be found in [Com91,CS91,CS93].

3.2 Addressing

The addressingools in a distributed communication system provide unique identification for the source
and destination of a message, together with ways of mapping from symbolic names for resources and
services to the corresponding network address, and for obtaining the best route to use for sending
messages.

Addressing is normally standardized as part of the general communication specifications for
formatting data in messages, defining message headers, and communicating in a distributed environment.

59

60 Kenneth P. Birman - Building Secure and Reliable Network Applications

Within the Internet, several address formats are available, organized into “classes” aimed at
different styles of application. Each class of address is represented as a 32-bit number. Class A internet
addresses have a 7-bit network identifier and a 24-bit host-identifier, and are reserved for very large
networks. Class B addresses have 14 bits for the network identifier and 16 bits for the host-id, and class C
has 21 bits of network identifier and 8 bits for the host-id. These last two classes are the most commonly
used. Eventually, the space of internet addresses is likely to be exhausted, at which time a transition to an
extended IP address is planned; the extended format increases the size of addresses to 64 bits but does so
in a manner that provides backwards compatibility with existing 32-bit addresses. However, there are
many hard problems raised by such a transition and industry is clearly hesitant to embark on what will be
a hugely disruptive process.

Internet addresses have a standard ASCII representation, in which the bytes of the address are
printed as signed decimal numbers in a standardized order. For examplbpokisvas edited on host
gunnlod.cs.cornell.edu, which has internet address 128.84.218.58. This is a class B internet address, with
network address 42 and host-id 218.58. Network address 42 is assigned to Cornell University, as one of
several class B addresses used by the University. The 218.xxx addresses designate a segment of Cornell's
internal network, namely the ethernet to which my computer is attached. The number 58 was assigned
within the Computer Science Department to identify my host on this ethernet segment.

A class D internet address is intended for special uses: IP multicasting. These addresses are
allocated for use by applications that exploit IP multicast. Participants in the application join the multicast
group, and the internet routing protocols automatically reconfigure themselves to route messages to all
group members.

The string “gunnlod.cs.cornell.edu” is a symbolic name for IP address. The name consists of a
machine name (gunnlod, an obscure hero of Norse mythology) and a suffix (cs.cornell.edu) designating
the Computer Science Department at Cornell University, which is an educational institution in the United
States. The suffix is registered with a distributed service called the domain name senB®¢S owhich
supports a simple protocol for mapping from string names to IP network addresses.

Here's the mechanism used by the DNS when it is asked to map my host name to the appropriate
IP address for my machine. DNS has a top-level entry for “edu” but doesn’t have an Internet address for
this entry. However, DNS resolves cornell.edu to a gateway address for the Cornell domain, namely host
132.236.56.6. Finally, DNS has an even more precise address stored for cs.cornell.edu, namely
128.84.227.15 — a mail server and gateway machine in the Computer Science Department. All messages
to machines in the Computer Science Department pass through this machine, which intercepts and
discards messages to all but a select set of application programs.

DNS is itself structured as a hierarchical database of slowly changing information. It is
hierarchical in the sense that DNS servers form a tree, with each level providing addresses of objects in
the level below it, but alsgachingremote entries that are frequently used by local processes. Each DNS
entry tells how to map some form of ascii hostname to the corresponding IP machine address or, in the
case of commonly used services, how to find the service representative for a given host name.

Thus, DNS has an entry for the IP address of gunnlod.cs.cornell.edu (somewhere), and can track
it down using its resolution protocol. If the name is used rapidly, the information may become cached
local to the typical users and will resolve quickly; otherwise the protocol sends the request up the
hierarchy to a level at which DNS knows how to resolve some part of the name, and then back down the
hierarchy to a level that can fully resolve it. Similarly, DNS has a record telling how to find a mail
transfer agent running the SMTP protocol for gunnlod.cs.cornell.edu: this may not be the same machine
as gunnlod itself, but the resolution protocol is the same.

60

Chapter3: BasicCommunication Services 61

Internet Brownouts: Power Failures on the Data Superhighway?

Begining in late 1995, clear signs emerged that the Internet was beginning to overload. One reason
is that the “root” servers for the DNS architecture are experiencing exponential growth in the load
of DNS queries that require action by the top levels of the DNS hierarchy. A server that saw 10
queries per minute in 1993 was up to 250 queries per second in early 1995, and traffic was doubling
every three months. Such problems point to fundamental aspects of the Internet that were based on
assumptions of a fairly small and lightly loaded user population that repeatedly performed the same
sorts of operations. In this small world, it makes sense to use a single hierarchical DNS structure
with caching, because cache hits were possible for most data. In a network that suddenly has
millions of users, and that will eventually support billions of users, such design considerations must
be reconsidered: only a completely decentralized architecture can possibly scale to support a truely
universal and world-wide service.

These problems have visible but subtle impact on the internet user: they typically cause connections
to break, or alert boxes to appear on your Web browser warning you that the host possessing some
resource is “unavailable.” There is no obvious way to recognize that the problem is not one of local
overload or congestion, but in fact is an overloaded DNS server or one that has crashed at a major
Internet routing point. Unfortunately, such problems have become increasingly common: the
Internet is starting to experience brownouts. Indeed, the Internet became largely unavailable
because of failures of this nature for many hours during one crash in September of 1995, and this
was hardly an unusual event. As the data superhighway becomes increasingly critical, such
brownouts represent increasingly serious threats to reliability.

Conventional wisdom has it that the Internet does not follow the laws of physics, there is no limit to
how big, fast and dense the Internet can become. Like the hardware itself, which seems outmoded
almost before it reaches the market, we assume that the technology of the network is also speeding
up in ways that outrace demand. But the reality of the situation is that thesoftware architectureof
the Internet is in some basic waysot scalable. Short of redesigning these protocols, the Internet
won’'t keep up with growing demands. In some ways, it keady can't.

Several problems are identified as the most serious culprits at the time of this writing. Number one
in any ranking: the World Wide Web. The Web has taken over by storm, but it is inefficient in the
way it fetches documents. In particular, as we will see in Chapter 10, the HTTP protocol often
requires that large numbers of connections be created for typical document transfers, and these
connections (even for a single HTML document) can involve contacting many separate servers.
Potentially, each of these connection requests forces the root nodes of the DNS to respond to a query.
With millions of users “surfing the network”, DNS load is skyrocketing.

61

62 Kenneth P. Birman - Building Secure and Reliable Network Applications

Bandwidth requirements are also growing exponentially. Unfortunately, the communication
technology of the Internet is scaling more slowly than this. So overloaded connections, particularly
near “hot sites”, are a tremendous problem. A popular Web site may receive hundreds of requests
per second, and each request must be handleseparately. Even if the identical bits are being
transmitted concurrently to hundreds of users, each user is sent its own, private copy. And this
limitation means that as soon as a server becomes useful or interesting, it also becomes vastly
overloaded. Yet ven though identical bits are being sent to hundreds of thousands of destinations,
the protocols offer no obvious way to somehow multicast the desired data, in part because Web
browsers explicitly make a separate connection for each object fetched, and only specify the object
to send after the connection is in place. At the time of this writing, the best hope is that popular
documents can be cached with increasing efficiency in “web proxies”, but as we will see, doing so
also introduces tricky issues of reliability and consistency. Meawhile, the bandwidth issue is with

us to stay.

Internet routing is another area that hasn't scaled very well. In the early days of the Internet,
routing was a major area of research, and innovative protocols were used to route around areas of
congestion. But these protocols were eventually found to be consuming too much bandwidth and
imposing considerable overhead: early in the 1980’s, 30% of Internet packets were associated with
routing and load-balancing. A new generation of relatively static routing protocols was proposed at
that time, and remain in use today. But the assumptions underlying these “new” reflected a
network that, at the time, seemed “large” because it contained hundreds of nodes. A network of
tens of millions or billions of hodes poses problems that could never have been anticipated in 1985.
Now that we have such a network, even trying to understand its behavior is a major challenge.
Meanwhile, when routers fail (for reasons of hardware, software, or simply because of overload), the
network is tremendously disrupted.

The Internet Engineering Task Force (IETF), a governing body for the Internet and for Web
protocols, is working on this problems. This organization sets the standards for the network and has
the ability to legislate solutions. A variety of proposals are being considered: they include ways of
optimizing the Web protocol called HTTP, and other protocol optimizations.

Some service providers are urging the introduction of mechanisms that would charge users based on
the amount of data they transfer and thus discourage overuse (but one can immediately imagine the
parents of an enthusiastic 12-year old forced to sell their house to pay the monthly network bill).
There is considerable skepticism that such measures are practical. Bill Gates has suggested that in
this new world, one can easily charge for the “size of the on-ramp” (the bandwidth of one’s
connection), but not for the amount of information a user transfers, and early evidence supports his
perspective. In Gate’s view, this is simply a challenge of the new Internet market.

There is no clear solution to the Internet bandwidth problem. However, as we will see in the
textbook, there are some very powerful technologies that could begin to offer answers: coherent
replication and caching being the most obvious remedy for many of the problems cited above. The
financial motivations for being first to market with the solution are staggering, and history shows
that this is a strong incentive indeed.

Figure 3-1: The data superhighway is experiencing serious growing pains. Growth in load has vastly exceeded the
capacity of the protocols used in the Internet and World-Wide-Web. Issues of consistencyilityeliabd
availability in technologies such as the ones that support these applications are at the core of this textbook.

62

Chapter3: BasicCommunication Services 63

The internet address specifies a machine, but the identification of the specific application
program that will process the message is also important. For this purpose, internet addresses contain a
field called the port number, which is at present a 16-bit integer. A program that wishesdiver
messages must bind itself to a port number on the machine to which the messages will be sent. A
predefined list of port numbers is used by standard system services, and have values in the range 0-1023.
Symbolic names have been assigned to many of these predefined port numbers, and a table mapping from
names to port numbers is generally provided.

For example, messages sent to gunnlod.cs.cornell.edu that specify port 53 will be delivered to the
DNS server running on machine gunnlod, or discarded if the server isn’'t running. Email is sent using a
subsystem called SMTP, on port-number 25. Of course, if the appropriate service program isn’t running,
messages to a port will be silently discarded. Small port numbers are reserved for special services and are
often “trusted”, in the sense that it is assumed that only a legitimate SMTP agent will ever be connected to
port 25 on a machine. This form of trust depends upon the operating system, which decides whether or
not a program should be allowed to bind itself to a requested port.

Port numbers larger than 1024 are available for application programs. A program can request a
specific port, or allow the operating system to pick one randomly. Given a port number, a program can
register itself with the local network information service (NIS) program, giving a symbolic name for itself
and the port number that it is listening on. Or, it can send its port number to some other program, for
example by requesting a service and specifying the internet address and port number to which replies
should be transmitted.

The randomness of port selection is, perhaps unexpectedly, an important source of security in
many modern protocols. These protocols are poorly protected against intruders, who could attack the
application if they were able to guess the port numbers being used. By virtue of picking port numbers
randomly, the protocol assumes that the barrier against attack has been raised substantially, and hence
that it need only protect against accidental delivery of packets from other sources: presumably an
infrequent event, and one that is unlikely to involve packets that could be confused with the ones
legitimately used by the protocol on the port. Later, however, we will see that such assumptions may not
always be safe: modern network hackers may be able to steal port numbers out of IP packets; indeed, this
has become a serious enough problem so that proposals for encrypting packet headers are being
considered by the IETF.

Not all machines have identical byte orderings. For this reason, the internet protocol suite
specifies a standard byte order that must be used to represent addresses and port numbers. On a host that
does not use the same byte order as the standard requires, it is important to byte-swap these values before
sending a message, or after receiving one. Many jragning languages include communication libraries
with standard functions for this purpose.

Finally, notice that the network services information specifies a protocol to use when
communicating with a service — TCP, when communicating with the uucp service, UDP when
communication with the tftp service (a file transfer program), and so forth. Some services support
multiple options, such as the domain name service. As we discussed earlier, these names refer to protocols
in the internet protocol suite.

3.3 Internet Protocols

This section presents the three major components of the internet protocol suite: the IP protocol, on which
the others are based, and the TCP and UDP protocols, which are the ones normally employed by

63

64 Kenneth P. Birman - Building Secure and Reliable Network Applications

applications. We also discuss soneeent extentions to the IP protocol layer upport of IP multicast
protocols. There has been considerable discussion of security for the IP layer, but no single proposal has
gained wide acceptance as of tiirae of this writing, and we will say very little about this ongoing work

for reasons of brevity.

3.3.1 Internet Protocol: IP layer

The lowest layer of the internet protocol suite is a connectionless packet transport protocol called IP. IP is
responsible for unreliable transport of variable size packets (but with a fixed maximum size, normally
1400 bytes), from the sender’s machine to the destination machine. IP packets are required to conform to
a fixed format consisting of a variable-length packet header, a variable-length body, and an optional
trailer. The actual lengths of the header, body, and trailer are specified through length fields that are
located at fixed offsets into the header. An application that makes direct use of IP is expected to format its
packets according to this standard. However, direct use of IP is normally restricted because of security
issues raised by the prospect of applications that might exploit such a feature to “mimic” some standard
protocol, such as TCP, but do so in a non-standard way that could disrupt remote machines or create
security loopholes.

Implementations of IP normally provide routing functionality, using either a static or dynamic
routing architecture. The type of routing used will depend upon the complexity of the installation and its
configuration of of the internet software, and is a topic beyond the scope of tHi®ogxt

In 1995, IP was enhanced to provide a security architecture whereby packet payloads can be
encrypted to prevent intruders from determining packet contents, and providing options for signatures or
other authentication data in the packet trailer. Encryption of the packet header is also possible within
this standard, although use of this feature is possible only if the routing layers and IP software
implementation on all machines in the network agree upon the encryption method to use.

3.3.2 Transport Control Protocol: TCP

TCP is a name for the connection-oriented protocol within the internet protocol suite. TCP users start by
making a TCP connection, which is done by having one program set itself listen for and accept
incoming connections, while the othebnnectsto it. A TCP connection guarantees that data will be
delivered in the order sent, without loss or duplication, and will report an “end of file” if the process at
either end exits or closes the channel. TCP connections are byte-stream oriented: although the sending
program can send blocks of bytes, the underlying communication model views this communication as a
continuous sequence of bytes. TCP is thus permitted to lose the boundary information between messages,
so that what is logically a single message may be delivered in several smaller chunks, or delivered
together with fragments of a previous or subsequent message (always preserving the byte ordering,
however!). If very small messages are transmitted, TCP will delay them slightly to attempt to fill larger
packets for efficient transmission; the user must disable this behavior if immediate transmission is desired.

Applications that involve concurrent use of a TCP connection must interlock against the
possibility that multiple write operations will be done simultaneously on the same channel; if this occurs,
then data from different writers can be interleaved when the channel becomes full.

3.3.3 User Datagram Protocol: UDP
UDP is a message or “datagram” oriented protocol. With this protocol, the application sends messages

which are preserved in the form sent and delivered intact, or not at all, to the destination. No connection
is needed, and there are no guarantees that the message will get through, or that messages will be

64

Chapter3: BasicCommunication Services 65

delivered in any particular order, or even that duplicates will not arise. UDP imposes a size limit of 8k
bytes on each message: an application needing to send a large message must fragment it into 8k chunks.

Internally, UDP will normally fragment a message into smallexcps, which correspond to the
maximum sizeof an IP packet, and matches closely with the maximum size packet that an ethernet can
transmit in a single hardware packet. If a UDP packet exceeds the maximum IP packet size, the UDP
packet is sent as a series of smaller IP packets.g0eption, these are reassembled into a larger packet. If
any fragment is lost, the UDP packet will eventually be discarded.

The reader may wonder why this sort of two-level fragmentation scheme is used — why not
simply limit UDP to 1400 bytes, too? To understand this design, it is helpful to start with a measurement
of the cost associated with a communication system call. On a typical operating system, such an operation
has a minimum overhead of 20- to 50-thousand instructions, regardless of the size of the data object to be
transmitted. The idea, then, is to avoid repeatedly traversing long code paths within the operating system.
When an 8k-byte UDP packet is transmitted, the code to fragment it into smaller chunks executes “deep”
within the operating system. This can save 10’s of thousands of instructions.

One might also wonder why communication needs to be so expensive, in the first place. In fact,
this is a very interesting and rather current topic, particularly in light of recent work that has reduced the
cost of sending a message (on some platforms) to as little as 6 instructions. In this approach, which is
called Active MessagefECGS92, EBBV95], the operating system is kept completely off the message
path, and if one is willing to paya slightly higher price, a similar benefit is possible even in a more
standard communications architecture (see Section 8.3). Looking to the future, it is entirely plausible to
believe that commercial operating systems products offering comparably low latency and high throughput
will start to be available in the late 1990’s. However, the average operating system will certainly not
catch up with the leading edge approaches for many years. Thus, applications may have to continue to
live with huge and in fact unecessary overheads for the time being.

3.3.4 Internet Packet Multicast Protocol: IP Multicast

IP multicast is a relativelyecent addion to the Internet protocol suite [Der88,Der89,DC90]. With IP
multicast, UDP or IP messages can be transmitted to groups of destinations, as opposed to a single point to
point destination. The approach extends the multicast capabilities of the ethernet interface to work even in
complex networks with routing and bridges between ethernet segments.

IP multicast is a session-oriented protocol: some work is required before communication can
begin. The processes that will communicate must create an IP multicast address, which is a class-D
Internet address containing a multicast identifier in the lower 28 bits. These processes must also agree
upon a single port number that all will use for the communication session. As each process starts, it
installs IP address into its local system, using system calls that place the IP multicast address on the
ethernet interface(s) to which the machine is connected. The routing tables used by IP, discussed in more
detail below, are also updated to ensure that IP multicast packets will be forwarded to each destination and
network on which group members are found.

Once this setup has been done, an IP multicast is initiated by simply sending a UDP packet with
the IP multicast group address and port number in it. As this packet reaches a machine which is included
in the destination list, a copy is made and delivered to local applicatesesving on the port. If several
are bound to the same port on the same machine, a copy is made for each.

65

66 Kenneth P. Birman - Building Secure and Reliable Network Applications

Like UDP, IP multicast is an unreliable protocol: packets can be lost, duplicated or delivered out
of order, and not all members of a group will see the same pattern of loss and delivery. Thus, although one
can build reliable communication protocols over IP multicast, the protocol itself is inherently unreliable.

When used through the UDP interface, a UDP multicast facility is similar to a UDP datagram
facility, in that each packet can be as long as the maximum size of UDP transmissions, which is typically
8k. However, when sending an IP or UDP multicast, it is important to remember that the reliability
observed may vary from destination to destination. One machine et@&jve a packet that others drop
because of memory limitations or corruption caused by a weak signal on the communications medium,
and the loss of even a single fragment of a large UDP message will cause the entire message to be
dropped. Thus, one talks more commonly about IP multicast than UDP multicast, and it is uncommon for
applications to send very large messages using the UDP interface. Any application that uses this transport
protocol should carefully instrument loss rates, because the effective performance for small messages may
actually be better than for large ones due to this limitation.

3.4 Routing

Routingis the method by which a communication system computes the path by which packets will travel
from source to destination. A routed packet is said to take a serlegpgfas it is passed from machine to
machine. The algorithm used is generally as follows:

* An application program generates a packet, or a packet is read from a network interface.

* The packet destination is checked and, if it matches with any of the addresses that the machine
accepts, delivered ladly (one machine can have multiple addresses, a feature that is sometimes
exploited in networks with dual hardware for increased fault-tolerance).

* Thehop countof the message is incremented. If the message has a maximum hop count and would
exceed it, the message is discarded. The hop count is allgal ¢hetime to live or TTL, in some
protocols.

* For messages that do not have a local destination, or class-D multicast messages, the destination is
used to search the routing table. Each entry specifies an address, or a pattern covering a range of
addresses. An outgoing interface is computed for the message (a list of outgoing interfaces, if the
message is a class-D multicast). For a point-to-point message, if there are multiple possible routes,
the least costly route is employed. For this purpose, each route includes an estimated cost, in hops.

* The packet is transmitted on interfaces in this list, other than the one on which the packet was
received.

A number of methods have been developed for maintaining routing tables. The most common
approach is to usestatic routing In this approach, the routing table is maintained by system
administrators, and is never modified while the system is active.

Dynamic routingis a class of protocols by which machines can adjust their routing tables to
benefit from load changes, route around congestion and broken links, reconfigure to exploit links that
have recovered from failures. In the most common approaches, machines periodically distribute their
routing tables to nearest neighbors, or periodically broadcast their routing tables within the network as a
whole. For this latter case, a special address is used that causes the packet to be routed down every
possible interface in the network; a hop-count limit prevents such a packet from bouncing endlessly.

The introduction of IP multicast has resulted in a new class of routers that are static for most
purposes, but that maintain special dynamic routing policies for use when an IP multicast group spans

66

Chapter3: BasicCommunication Services 67

several segments of a routed local area network. In very large settings)uhisast routing daemooan

take advantage of thenulticast backboneor mbone network to provide group communication or
conferencing support to sets of participants working at physically remote locations. However, most use of
IP multicast is limited to local area networks at the time of this writing, and wide-area multicast remains a
somewhat speculative research topic.

3.5 End-to-end Argument

The reader may be curious about the following issue. The architecture described ahloite per
packets to be lost at each hop in the communication subsystem. If a packet takes many hops, the
probability of loss would seem likely to grow proportionately, causing the reliability of the network to drop
linearly with the diameter of the network. There is an alternative approach in which error correction
would be done hop by hop. Although packets could still be lost if an intermediate machine crashes, such
an approach would have loss rates that are greatly reduced, at some small but fixed background cost
(when we discuss the details of reliable communication protocols, we will see that the overhead need not
be very high). Why, then, do most systems favor an approach that seems likely to be much less reliable?

In a classic paper, Jerry Saltzer and others took up this issue in 1984 [SRC84]. This paper
compared “end to end” reliability protocols, which operate only between the source and destination of a
message, with “hop by hop” reliable protocols. They argued that even if reliability of a routed network is
improved by the use of hop-by-hop reliability protocols, it will still not be high enough to completely
overcome packet loss. Packets can still be corrupted by noise on the lines, machines can crash, and
dynamic routing changes can bounce a packet around until it is discarded. Moreover, they argue, the
measured average loss rates for lightly to moderately loaded networks are extremely low. True, routing
exposes a packet to repeated threats, but the overall reliability of a routed network will still be very high
on the average, with worst case behavior dominated by events like routing table updates and crashes that
hop-by-hop error correction would not overcome. From this the authors conclude that since hop-by-hop
reliability methods increase complexity and reduce performance, and yet must still be duplicated by end-
to-end reliability mechanisms, one might as well use a simpler and faster link-level communication
protocol. This is the “end to end argument” and has emerged as one of the defining principles governing
modern network design.

Saltzer’s paper revolves around a specific example, involving a file transfer protocol. The paper
makes the point that the analysis used is in many ways tied to the example and the actual reliability
properties of the communication lines in question. Moreover, Saltzer's interest was specifically in
reliability of the packet transport mechanism: failure rates and ordering. These points are important
because many authors have come to cite the end-to-end argument in a much more expansive way,
claiming that it is an absolute argument against putting any form of “property” or “guarantee” within the
communication subsystem. Later, we will be discussing protocols nbatito place properties and
guarantees into subsystems, as a way of providing system-wide properties that would not otherwise be
achievable. Thus, those who accept the “galized” end-to-end argument would tend to oppose the use
of these sorts of protocols on philisophical (one is tended to say “religious”) grounds.

A more mature view is that the end-to-end argument is one of those situations where one should
accept its point with a degree of skepticism. On the one hand, the end-to-end argument is clearly correct
in situations where an analysis comparable to Saltzer’s original one is possible. However, the end-to-end
argument cannot be applied blindly: there are situations in which low level properties are beneficial and
genuinely reduce complexity and cost in application software, and for these situations, an end-to-end
approach might be inappropriate, leading to more complex applications that are error prone or, in a
practical sense, impossible to construct.

67

68 Kenneth P. Birman - Building Secure and Reliable Network Applications

For example, in a network with high link-level loss rates, or one that is at serious risk of running
out of memory unless flow control is used link-to-link, an end-to-end approach may result in near-total
packet loss, while a scheme that corrects packet loss and does flow control at the link level could yield
acceptable performance. Thus, then, is a case in whattae€®’s analysis could be applied as he originally
formulated it, but would lead to a different conclusion. When we look at the reliability protocols
presented in the third part of this textbook, we will see thataierforms of consistent distributed
behavior (such as is needed in a fault-tolerant coherent caching scheme) depend upon system-wide
agreement that must be standardized and integrated with low-level failure reporting mechanisms.
Omitting such a mechanism from the transport layer merely forces the application programmer to build it
as part of the application; if the programming environment is intended to be general and extensible, this
may mean that one makes the mechanism part of the environment or gives up on it entirely. Thus, when
we look at distributed programming environments like the CORBA architecture, seen in Chapter 6, there
is in fact a basic design choice to be made: either such a function is made part of the architecture, or by
omitting it, no application can achieve this type of consistency in a general and interoperable way except
with respect to other applications implemented by the same development team. These examples illustrate
that, like many engineering arguments, the end-to-end approach is highly appropriate in certain
situations, but not uniformly so.

3.6 O/S Architecture Issues, Buffering, Fragmentation

We have reviewed most stages of the communication architecture that interconnects a sending application
to a receiving appliation. But what of the operating system software at the two ends?

The communications software of a typical operating system is modular, organized as a set of
components that subdivide the tasks associated with implementing the protocol stack or stacks in use by
application programs. One of these components idbtiféering subsystem, which maintains a collection
of kernel memory buffers that can be used to temporarily store incoming or outgoing messages. On most
UNIX systems, these are calledbufs and the total number available is a configuration parameter that
should be set when the system is built. Other operating systems allocate buffers dynamically, competing
with the disk 1/0O subsystem and other 1/0O subsystems for kernel memory. All operating systems share a
key property, however: the amount of buffering space available is limited.

The TCP and UDP protocols are implemented as software modules that include interfaces up to
the user, and down to the IP software layer. In a typical UNIX implementation, these protocols allocate
some amount of kernel memory space for each open communication “socket”, at the time the socket is
created. TCP, for example, allocates an 8-kbyte buffer, and UDP allocates two 8k-byte buffers, one for
transmission and one for reception (both can often be increasdfikbytes). The message to be
transmitted is copied into this buffer (in the case of TCP, this is done in chunkséssary). Fragments
are then generated by allocatingcsassive memory chunks for use by IP, copying the data to be sent into
them, prepending an IP header, and then passing them to the IP sending routine. Some operating systems
avoid one or more of these copying steps, but this can increase code complexity, and copying is
sufficiently fast that many operating systems simply copy the data for each message multiple times.
Finally, IP identifies the network interface to use by searching the routing table and queues the fragments
for transmission. As might be expected, incoming packets trace the reverse path.

An operating system can drop packets or messages for reasons unrelated to the hardware
corruption or duplication. In particular, an application that tries to send data as rapidly as possible, or a
machine that is presented with a high rate of incoming data packets, can exceed the amount of kernel
memory that can safely be allocated to any single application. Should this happen, it is common for
packets to be discarded until memory usage drops back below threshold. This can result in unexpected
patterns of message loss.

68

Chapter3: BasicCommunication Services 69

For example, consider an application program that simply tests packet loss rates. One might
expect that as the rate of transmission is gradually increased, from one packet per second to 10, then 100,
then 1000 the overall probability that a packet loss will occur would remain fairly constant, hence packet
loss will rise in direct proportion to the actual number of packets sent. Experiments that test this case,
running over UDP, reveal quite a different pattern, illustrated in Figure 3-2; the left graph is for a sender
and receiver on the same machine (the messages are neatygotth on the wire in this case), and the
right the case of a sender and receiver on identical machines connected by an ethernet.

As can be seen from
the figure, the packet loss rate,
as a percentage, is initially low
and constant: zero for the local

UDP packet loss case, and small for the remote
rates (Hunt thesis) case. As the transmission rate
rises, however, both rates rise.
Presumably, this reflects the
increased probability of
memory threshold effects in the

operating system. However, as
Figure 3-2: Packet loss rates for Unix over ethernet (the left graph is bas¢d e rate rises still further,

a purely local communication path, while the right one is from a distriblitegen gvior breaks down
case using two computers connected by a 10-Mbit ethernet). This datacé?npletely! For high rates of
based on a study reported as part of a doctoral dissertation by Guerney H smmunication one sees

bursty behavior in which some

groups of packets are delivered, and others are completely lost. Moreover, the aggregate throughput can be
quite low in these overloaded cases, and the operating system often reports no errors at all the sender and
destination — on the sending side, the loss occurs after UDP dteptaed a packet, when it is unable to
obtain memory for the IP fragments. On thexeiving side, the loss occurs when UDP packets turn out to

be missing fragments, or when the queue of incoming messages excedidstdtecapacity of the UDP
input buffer.

c
-]

The quantized scheduling algorithms used in multitasking operating systems like UNIX probably
accounts for the bursty aspect of the loss behavior. UNIX tends to schedule processes for long periods,
permitting the sender to send many packets during congestion periods, without allowiregeherr to
run to clear its input queue in the local case, or giving the interface time to transmitted an accumulated
backlog in the remote case. The effect is that once a loss starts to occur, many packets can be lost before
the system recovers. Interestingly, packets can also be delivered out of order when tests of this sort are
done, presumably reflecting some sort of stacking mechanisms deep within the operating system. Thus,
the same measurements might yield different results on other versions of UNIX or other operating
systems. However, with the exception of special purpose communication-oriented operating systems such
as QNX (a real-time system for embedded applications), one would expect a “similar” result for most of
the common platforms used in distributed settings today.

TCP behavior is much more reasonable for the same tests, but there are other types of tests for
which TCP can behave poorly. For example, if one processes makes a great number of TCP connections to
other processes, and then tries to transmit multicast messages on the resulting 1-many connections, the
measured throughput drops worse than linearly, as a function of the number of connections, for most
operating systems. Moreover, if groups of processes are created and TCP connections are opened between
them, pairwise, performance is often found to be extremely variable — latency and throughput figures can
vary wildly even for simple patterns of communications.

69

70 Kenneth P. Birman - Building Secure and Reliable Network Applications

UDP or IP multicast gives the same behavior as UDP. However, the user ofmulticast should also
keep in mind that many sources of packet loss can result in different patterns of reliability for different
recievers. Thus, one destination of a multicast transmission may experience high loss rates even if many
other destinationseceive all messages with no losseshit Problems such as this are potentially difficult
to detect and are very hard to deal with in software.

3.7 Xpress Transfer Protocol

Although widely available, TCP, UDP and IP are also limited in the functionality they provide and their
flexibility. This has motivated researchers to investigate new and more flexible protocol development
architectures that can co-exist with TCP/IP but support varying qualities of transport service that can be
matched closely to the special needs of demanding applications.

Prominent among such efforts is the Xpress Transfer Protocol (XTP), which is a toolkit of
mechanisms that can be exploited by users to customize data transfer protocols operating in a point to
point or multicast environment. All aspects of the the protocol are under control of the developer, who
sets option bits during individual packet exchanges to support a highly customizable suite of possible
comunication styles. References to this work include [SDW92,XTP95,DFW90].

XTP is a connection oriented protocol, but one in which the connection setup and closing
protocols can be varied depending on the needs of the application. A connection is identified by a 64-bit
key; 64-bit sequence numbers are used to identify bytes in transit. XTP does not define any addressing
scheme of its own, but is normally combined with IP addressing. An XTP protocol is defined as an
exchange of XTP messages. Using the XTP toolkit, a variety of options can be specified for each message
transmitted; the effect is to support a range of possible “qualities of service” for each communication
session. For example, an XTP protocol can be made to emulate UDP or TCP-style streams, to operate in
an unreliable source to destination mode, with selective retransmission based on negative
acknowledgements, or can even be asked to “go back” to a previous point in a transmission and to resume.
Both rate-based and windowing flow control mechanisms are available for each connection, although one
or both can be disabled if desired. The window size is configured by the user at the start of a connection,
but can later be varied while the connection is in use, and a $etfit parameters can be used to specify
requirements such as the maximum size of data segments that can be transmitted in each packet,
maximum or desired burst data rates, and so forth. Such parameters permit the development of general
purpose transfer protocols that can be configured at runtime to match the properties of the hardware
environment.

This flexibility is exploited in developing specialized transport protocols that may look like
highly optimized version of the standard ones, but that can also provide very unusual properties. For
example, one could develop a TCP-style of stream that will reliable provided that the packets sent arrive
“on time”, using a user-specific notion of time, but that drops packets if they timeout. Similarly, one can
develop protocols with out-of-band or other forms of priority-based services.

At the time of this writing, XTP was gaining significant support from industry leaders whose
future product lines potentially require flexibility from the network. Video servers, for example, are
poorly matched to the communication properties of TCP connections, hence companies that are investing
heavily in “video on demand” face the potential problem of having products that work well in the
laboratory but not in the field, because the protocol architecture connecting customer applications to the
server is inappropriate. Such companies are interested in developing proprietary data transport protocols
that would essentially extend their server products into the network itself, permitting fine-grained control
over the communication properties of the environment in which their servers operate, and overcoming
limitations of the more traditional but less flexible transport protocols.

70

Chapter3: BasicCommunication Services 71

In Chapters 13 through 16 we will be studying special purpose protocols designed for settings in
which reliability requires data replication or specialized performance guarantees. Although we will
generally present these protocols in the context of streams, UDP, or IP-multicast, it is likely that the future
will bring a considerably wider set of transport options that can be exploited in applications with these
sorts of requirements.

There is, however, a downside associated with the use of customized protocols based on
technologies such as XTP: they can create difficult management and monitoring problems, which will
often go well beyond those seen in standard environments where tools can be developed to monitor a
network and to display, in a well organized manner, the status of the network and applications. Such
tools benefit from being able to intercept network traffic and to associate the message sent with the
applications sending them. To the degree that technologies such as XTP lead to extremely specialized
patterns of communication that work well for individual applications, they may also reduce this desirable
form of regularity and hence impose obstacles to system control and management.

Broadly, one finds a tension within the networking community today. On the one side are
developers convinced that their special-purpose protocols eseseary if a diversity of communications
products and technologies are to be feasible over networks such as the Internet. In some sense this
community generalizes to also include the community that develops special purpose reliability protocols
and that may need to place “properties” within the network to support those protocols. On the other stand
the system administrators and managers, whose lives are already difficult, and who are extremely resistant
to technologies that might make this problem worse. Sympathizing with them are the performance
experts of the operating systems communications community: this group favors an end-to-end approach
because it greatly simplifies their task, and hence tends to oppose technologies such as XTP because they
result in irregular behaviors that are harder to optimize in the general case. For these researchers,
knowing more about the low level requirements (and keeping them as simple as possible) makes it more
practical to optimize the corresponding code paths for extremely high performance and low latency.

From a reliability perspective, one must sympathize with both points of view: thibdektwill
look at problems for which reliability requires high performance or other guarantees, and problems for
which reliability implies the need to monitor, control, or manage a complex environment. If there is a
single factor that prevents a protocol suite such as XTP from “sweeping the industry”, it seems likely to be
this. More likely, however, is an increasingly diverse collection of low-level protocols, creating ongoing
challenges for the community that must administer and monitor the networks in which those protocols are
used.

3.8 Next Steps

There is a sense in which it is not surprising that problems such as the performance anomalies cited in the
previous sections would be common on modern operating systems, because the communication subsystems
have rarely been designed or tuned to guarantee good performance for communication patterns such as
were used to produce Figure 3-2. As will be seen in the next few chapters, the most common
communication patterns are very regular ones that would not trigger the sorts of pathological behaviors
caused by memory resource limits and stressful communication loads.

However, given a situation in which most systems must in fact operate over protocols such as
TCP and UDP, these behaviors do create a context that should concern students of distributed systems
reliability. They suggest that even systems that behave well most of the time may break down
catastrophically because of something as simple as a slight increase in load. Software designed on the
assumption that message loss rates are low may, for reasons completely beyond the control of the
developer, encounter loss rates that are extremely high. All of this can lead the researcher to question the

71

72 Kenneth P. Birman - Building Secure and Reliable Network Applications

appropriateness of modern operating systems for reliable distributed applications. Alternative operating
systems architectures that offer more controlled degradation in the presence of excess load represent a
potentially important direction for investigation and discussion.

3.9 Additional Reading

On the Internet protocols: [Tan88, Com91, CS91, CS93, CDK94]. Performance issues for TCP and UDP:
[Com91, CS91, CS93, ALFxx, KP93, PP93, BMP94, Hun95]. IP Multicast: [FWB85, Dee88, Dee89,
DC90, Hun95]. Active Messages: [ECGS92, EBBV95]. End-to-end argument: [SRC84]. Xpress
Transfer Protocol: [SDW92, XTP95, DFW9Q].

72

Chapterd: RPC and the Client-Server Model 73

4. RPC and the Client-Server Model

The emergence of “real” distributed computing systems is often identified witblidat-server
paradigm, and a protocol callecemote procedure callhich is normally used in support of this
paradigm. The basic idea of a client-server system architecture involves a partitioning of the software in
an application into a set glerviceswhich provide a set of operations to their users, aleht programs
which implement applications and issue requests to services as needed to carry out the purposes of the
application. In this model, the application processes do not cooperate directly with one another, but
instead share data and coordinate actions by interacting with a common set of servers, and by the order in
which the application programs are executed.

There are a great number of client-server system structures in a typical distributed computing
environment. Some examples of servers include the following:

« File servers.These are programs (or, increasingly, combinations of special purpose hardware and
software) that manage disk storage units on which files systems reside. The operating system on a
workstation that ecesses a file server acts as the “client”, thus creating a two-level hierarchy: the
application processes talk to their local operating system. The operating system on the client
workstation functions as a single client of the file server, with which it communicates over the
network.

- Database serverd he client-server model operates in a similar way for database servers, except that it
is rare for the operating system to function as an intermediary in the manner that it does for a file
server. In a database application, there is usually a library of procedure calls with which the
application acesses the database, and this library plays the role of the client in a client-server
communications protocol to the database server.

« Network name serverdlame servers implement some form of map from a symbolic name or service
description to a corresponding value, such as an IP addresses and port number for a process capable of
providing a desired service.

« Network time serversThese are processes that control and adjust the clocks in a network, so that
clocks on different machines give consistent time values (values with limited divergence from one-
another. The server for a clock is the local interface by which an application obtains the time. The
clock service, in contrast, is the collection of clock servers and the protocols they use to maintain clock
synchronization.

« Network security serverddost commonly, these consist of a type of directory in which public keys are
stored, as well as a key generation service for creating new secure communication channels.

* Network mail and bulletin board server§hese are programs for sending, receiving and forwarding
email and messages to electronic bulletin boards. A typical client of such a server would be a program
that sends an electronic mail message, or that displays new messages to a human who is using a news-
reader interface.

« WWW serversAs we learned in the introduction, the World-Wide-Web is a large-scale distributed
document management system developed at CERN in the early 1990's and subsequently
commercialized. The Web stores hypertext documents, images, digital movies and other information
on web serversusing standardized formats that can be displayed through various browsing programs.
These systems present point-and-click interfaces to hypertext documents, retrieving documents using
web document locators from web servers, and then displaying them in a type-specific manner. A web
server is thus a type of enhanced file server on which the Web access protocelpmoeed.

73

74 Kenneth P. Birman - Building Secure and Reliable Network Applications

In most distributed systems, services can be instantiated multiple times. For example, a
distributed system can contain multiple file servers, or multiple name servers. We normally use the term
serviceto denote a set of servers. Thus, tlework file system serviaonsists of the network file servers
for a system, and theetwork information servicies a set of servers, provided on UNIX systems, that map
symbolic names to ascii strings encoding “values” or addresses. An important question to ask about a
distributed system concerns the binding of applications to servers.

We say that &inding occurs when a process that needs to talk to a distributed service becomes
associated with a specific server that will perform requests on its behalf. Various binding policies exist,
differing in how the server is selected. For an NFS distributed file system, binding is a function of the file
pathname being accessed — in this file system protocol, the servers all handle different files, so that the
pathname maps to a particular server that owns that file. A program using the UNIX network information
server normally starts by looking for a server on its own machine. If none is found, the program
broadcasts a request and binds to the first NIS that responds, the idea being that this NIS representative is
probably the least loaded and will give the best response times. (On the negative side, this approach can
reduce reliability: not only will a program now be dependent on availability of its file servers, but it may
be dependent on an additional process on some other machine, namely the NIS server to which it became
bound). The CICS database system is well known for its explicit load-balancing policies, which bind a
client program to a server in a way that attempts to give uniform responsiveness to all clients.

Algorithms for binding, and for dynamically rebinding, represent an important topic to which we
will return in Chapter 17, once we have the tools at our disposal to solve the problem in a concise way.

A distributed service may or may not empldgta replication whereby a service maintain more
than one copy of a single data item to permit local access #tpieulocations, or to increase availability
during periods when some server processes may have crashed. For example, most network file services
can support multiple file servers, but do not replicate any single file onto multiple servers. In this
approach, each file server handles a partition of the overall file system, and the partitions are disjoint from
one another. A file can be replicated, but only by giving each replica a different name, placing each
replica on an appropriate file server, and implementing hand-crafted protocols for keeping the replicas
coordinated. Replication, then, is an important issue in designing complex or highly available distributed
servers.

Cachingis a closely related issue. We say that a processhealseda data item if it maintains a
copy of that data item locally, for quickceess if the item is required again. Caching is widely used in file
systems and name services, and permits these types of systems to benefit from locality of reference. A
cache hitis said to occur when a request can be satisfied out of cache, avoiding the expenditure of
resources needed to satisfy the request from ghimary store or primary service The Web uses
document caching heavily, as a way to speed up access to frequently used documents.

Caching is similar to replication, except that cached copies of a data item are in some ways
second-class citizens. Generally, caching mechanisms recognize the possibility that the cache contents
may be stale, and include a policy for validating a cached data item before using it. Many caching
schemes go further, and include explicit mechanisms by which the primary store or service can invalidate
cached data items that are being updated, or refresh them explicitly. In situations where a cache is actively
refreshed, caching may be identical to replication — a special term for a particular style of replication.

However, “generally” does not imply that this is always the case. The Web, for example, has a
cache validation mechanism but does not actually require that web proxies validate cached documents
before providing them to the client; the reasoning is presumably that even if the document were validated
at the time of acess, nothing prevents it from changing immediately afterwards and hence being stale by

74

Chapterd: RPC and the Client-Server Model 75

the time the client display it, in any case. Thus a periodic refreshing scheme in which cached documents
are refreshed every half hour or so is in many ways equally reasonable. A caching policy is said to be
coherentif it guarantees that cached data is indistinguish to the user from the primary copy. The web
caching scheme is thus one that does not guarantee coherency of cached documents.

4.1 RPC Protocols and Concepts

The most common communication protocol for communication between the clients of a service and the
service itself isemote procedure callThe basic idea of an RPC originated in work by Nelson in the early
1980's [BN84]. Nelson worked in a group at Xerox Parc that was developing programming languages
and environments to simplify distributed computing. At that time, software for supporting file transfer,
remote login, electronic mail, and electronic bulletin boards had become common. Parc researchers,
however, and ambitious ideas for developing other sorts of distributed computing applications, with the
consequence that many researchers found themselves working with the lowest level message passing
primitives in the Parc distributed operating system, which was called Cedar.

Much like a more modern operating system, message communication in Cedar supported three
communication models:

* Unreliable datagram communication, in which messages could be lost with some (hopefully low)
probability;

¢ Broadcast communication, also through an unreliable datagram interface.

e Stream communication, in which an initial connection was required, after which data could be
transferred reliably.

Programmers found these interfaces hard to work with. Any time a prograseded to communicate

with a programs, it was necessary fgpo to determine the network addressspfencode its requests in a

way thats would understand, send off the request, and await a reply. Programmers soon discovered that
certain basic operations needed to be performed in almost any network application, and that each
developer was developing his or her own solutions to these standard problems. For example, some
programs used broadcasts to find a service with which they needed to communicate, others stored the
network address of services in files or hard-coded them into the application, and still others supported
directory programs with which services could register themselves, and supporting queries from other
programs at runtime. Not only was this situation confusing, it turned out to be hard to maintain the early
versions of Parc software: a small change to a service might “break” all sorts of applications that used it,
so that it became hard to introduce new versions of services and applications.

Surveying this situation, Bruce Nelson started by asking what sorts of interactions programs
really needed in distributed settings. He concluded that the problem was really no different from function
or procedure call in a non-distributed program that uses a presupplied library. That is, most distributed
computing applications would prefer to treat other programs with which they interact much as they treat
presupplied libraries, with well known, documented, procedural interfaces. Talking to another program
would then be as simple as invoking one of its proceduresermte procedure calRPC for short).

The idea of remote procedure call is compelling. If distributed computing can be transparently
mapped to a non-distributed computing model, all the technology of non-distributed programming could
be brought to bear on the problem. In some sense, we would already know how to design and reason about
distributed programs, how to show them to be correct, how to test and maintain and upgrade them, and all
sorts of preexisting software tools and utilities would be readily applicable to the problem.

75

76 Kenneth P. Birman - Building Secure and Reliable Network Applications

Unfortunately, the details of supporting remote procedure call turn out to be non-trivial, and
some aspects result in “visible” differences between remote and local procedure invocations. Although this
wasn't evident in the 1980's when RPC really took hold, the subsequent ten or fifteen years saw
considerable theoretical activity in distributed computing, out of which ultimately emerged a deep
understanding of how certain limitations on distributed computing are reflected irseimantics or
properties, of a remote procedure call. In some ways, this theoretical work finally lead to a major
breakthrough in the late 1980's and early 1990’s, when researchers learned how to create distributed
computing systems in which the semantics of RPC are precisely the same as for local procedure call
(LPC). In Part Il of this text, we will study the results and necessary technology underlying such a
solution, and will see how to apply it to RPC. We will also see, however, that such approaches involve
subtle tradeoffs between semantics of the RPC and performance that can be achieved, and that the faster
solutions also weaken semantics in fundamental ways. Such considerations ultimately lead to the insight
that RPC cannot be transparent, however much we might wish that this was not the case.

Making matters worse, during the same period of time a huge engineering push behind RPC
elevated it to the status of a standard — and this occuseddreit was understand how RPC could be
made to accurately mimic LPC. The result of this is that the standards for building RPC-based computing
environments (and to a large extent, the standards for object-based computing that followed RPC in the
early 1990's) embody a non-transparent and unreliable RPC model, and that this design decision is often
fundamental to the architecture in ways that the developers who formulated these architectures probably
did not appreciate. In the next chapter, when we study stream-based communication, we will see that the
same sort of premature standardization affected the standard streams technology, which as a result also
suffer from serious limitations that could have been avoided had the problem simply been better
understood at the time the standards were developed.

In the remainder of this chapter, we will focus on standard implementations of RPC. We will
look at the basic steps by which an program RPC is coded in a program, how that program is translated at
compile time, and how it becomes bound to a service when it is executed. Then, we will study the
encoding of data into messages and the protocols used for service invocation and to collect replies. Finally,
we will try to pin down a semantics for RPC: a set of statements that can be made about the guarantees of
this protocol, and that can be compared with the guarantees of LPC.

We do not, however, give detailed examples of the major RPC programming environments: DCE
and ONC. These technologies, which emerged in the mid 1980’s, represented proposals to standardize
distributed computing by introducing architectures within which the major components of a dtsributed
computing system would have well-specified interfaces and behaviors, and within which application
programs could interoperate using RPC by virtue of employing standard RPC interfaces. DCE, in
particular, has become relatively standard, and is available on many platforms today [DCE94]. However,
in the mid-1990’'s, a new generation of RPC-oriented technology emerged through the Object
Management Group, which set out to standardize object-oriented computing. In a short period of time,
the CORBA [OMG91] technologies defined by OMG swept past the RPC technologies, and for a text such
as the present one, it now makes more sense to focus on CORBA, which we discuss in Chapter 6.
CORBA has not so much changed the basic issues, as it has broadened the subject of discourse by
covering more kinds of system services than did previous RPC systems. Moreover, many CORBA systems
are implemented as a layer over DCE or ONC. Thus, although RPC environments are important, they are
more and more hidden from typical programmers and hence there is limited value in seeing examples of
how one would program applications using them directly.

Many industry analysis talk about CORBA implemented over DCE, meaning that they like the
service definitions and object orientation of CORBA, and that it makes sense to assume that these are
build using the service implementations standardized in DCE. In practice, however, CORBA makes as

76

Chapterd: RPC and the Client-Server Model 77

much sense on a DCE platform as on a non-DCE platform, hence it would be an exaggeration to claim
that CORBA on DCE is ae-factostandard today, as one sometimes reads in the popular press.

The use of RPC leads to interesting problems of reliability and fault-handling. As we will see, it
is not hard to make RPC work if most of the system is working well. When a system malfunctions,
however, RPC can fail in ways that leave the user with no information at all about what has occurred, and
with no apparent strategy for recovering from the situation.There is nothing new about the situations we
will be studying — indeed, for many years, it was simply assumed that RPC was subject to intrinsic
limitations, and that there being mbvious way to improve on the s#tion, there was no reason that RPC
shouldn’t reflect these limitations in its semantic model. As we advance throudiotike however, and it
becomes clear that theeee realistic alternatives that might be considered, this point of view becomes
increasingly open to question.

Indeed, it may now be time to develop a new set of standards for distributed computing. The
existing standards are flawed, and the failure of the standards community to repair these flaws has erected
an enormous barrier to the development of reliable distributed computing systems. In a technical sense,
these flaws are not tremendously hard to overcome — although the solutions would require some
reengineering of communication support for RPC in modern operating systems. In a practical sense,
however, one wonders if it will take a “Tacoma Narrows” event to create real industry interest in taking
such steps.

One could build an RPC environment that would have few, if any, user-visible incompatibilities
from a more fundamentally rigorous approach. The issue then is one of education — the communities that
control the standards need to understand the issue better, and need to understand the reasons that this
particular issue represents such a huge barrier to progress in distributed computing. And, the community
needs to recognize that the opportunity vastly outweighs the reengineering costs that would be required to
seize it. With this goal in mind, let's take a close look at RPC.

4.2 Writing an RPC-based Client or Server Program

The programmer of an RPC-based application employs what is callatbageneratioriool. Such a tool
is somewhat like a macro preprocessor: it transforms the user’s original program into a modified version,
which can be linked to an RPC runtime library.

From the point of view of the programmer, the server or client program looks much like any
other program. Normally, the program withport or exporta set of interface definitions, covering the
remote procedures that will be obtained from remote servers or offered to remote clients, respectively. A
server program will also have a “name” and a “version”, which are used to connect the client to the
server. Once coded, the program is compiled in two stages: first the stub generator is used to map the
original program into a standard program with added code to carry out the RPC, and then the standard
program is linked to the RPC runtime library for execution.

77

78 Kenneth P. Birman - Building Secure and Reliable Network Applications

RPC-based application or server programs are coded in a programming style very similar to a
non-distributed program written in C for UNIX: there is no explicit use of message passing. However,
there is an important aspect of RPC programming that differs from programming with local procedure
calls: the separation of the service interface definition, or¥|tom the code that implements it. In an
RPC application, a service is considered to have two parts. The interface definition specifies the way that
the service can be located (its name), the data types used in issuing requests to it, and the procedure calls
that it supports. Aversion numbers included to provide for evolution of the service over time — the idea
being that if a client is developed to use version 1.1 of a service, there should be a way to check for
compatibility if it turns out that version 1.0 or 2.3 is running when the client actually gets executed.

The basic actions of the RPC library were described earlier. In the case of a server program, the
library is responsible for registering the program with the RPC directory service program, which is
normally provided as part of the RPC runtime environment. An RPC client program will automatically
perform the tasks needed to connect query the directory to find this server and to connect to it, creating a
client-server binding. For each of the server operations it invokes, code will be executextdioall a
representation of the invocation into a message — that is, information about the way that the procedure was
called and values of the parameters that were passed. Code is included to send this message to the service,
and to collect a reply; on the server side, the stub generator creates code to read in such a message, invoke
the appropriate procedure with the arguments used by the remote caller, and to marshall the results for
transmission back to the caller. Issues such as user-id handling, security and privacy, and handling of
exceptions are often packaged as part of a solution. Finally, back on the caller side, the returning message
will be demarshalled and the result made to look like the result of a local procedure.

Although much of this mechanism is automatic and hidden from the programmer, RPC
programming differs from LPC programming in many ways. Most noticeable is that most RPC packages
limit the types of arguments that can be passed to a remote server, and some also limit the size (in bytes)
of the argument information. For example, suppose that a local procedure is written to search a list, and
an LPC is performed to invoke this procedure, passing a pointer to the head of the list as its argument.
One can ask whether this should work in an RPC environment — and if so, how it can be supported. If a
pointer to the head of the list is actually delivered to a remote program, that pointer will not make sense in
the remote address space where the operation will execute. So, it would be natural to propose that the
pointer be dereferenced, by copying the head of the list into the message. Remotely, a pointer to the copy
can be provided to the procedure. Clearly, however, this will only work if one chedkése pointers in
question — a problem because many programs that use pointers have some representation for an
uninitialized pointer, and the RPC stub generator may not know about this.

For example, in building a balanced tree, it is common to allocate nodes dynamically as items are
inserted. A node that has no descendents would still have left and right pointer fields, but these would be
initialized tonil and the procedure to search nodes would check fonithease before dereferencing these
pointers. Were an RPC marshalling procedure to automatically make a copy of a structure to send to the
remote server, it would need to realize that for this particular structure, a pointer valildaé a special
meaning and should not be “chased”.

® It is common to call the interface to a program its “IDL”, although IDL actually is a short-hand for Interface
Definition Language, which is the language used to write down the description of such an interface. Historically,
this seems to represent a small degree of resistance to the overuse of acronyms by the distributed systems
standardization community. Unfortunately, the resistance seems to have been short-lived: CORBA introduces at
least a dozen new 3-letter acronyms, “ATM” has swept the networking community, and 4- and 5-letter acronyms
(as the available 3-letter combinations are used up) seems certain to follow!

78

Chapterd: RPC and the Client-Server Model 79

The RPC programmer sees

issues such as these as a set of

|index: IookLp(“name”)| restrictions. Depending on the RPC
\ . package used, different approaches may
prog: 1234 be used to attack them. In many
func: lookup \ packages, pointers are simply not legal
arg: "name” as arguments to remote procedures. In
host det serve others, the user can control a copying
prog: 567 : mechanism to some degree, and in still
func: reply — fancier systems, the user must provide
arg:"17" general purpose structure traversal

procedures that will be used by the RPC
lindex = 17 | package to marshall arguments. Further
complications can arise if a remote
Figure 4-1: Remote procedure call involves creating a message tH#tocedure may modify some of its
can be sent to the remote server, which unpacks it, performs theguments. Again, the degree to which
operation, and sends back a message encoding the result. this is supported at all, and the degree to
which the programmer must get

involved, vary from package to package.

Perhaps ironically, RPC programmers tend to complain about this aspect of RPC no matter how
it is handled. If a system is highly restrictive, the programmer finds that remote procedure invocation is
annoying because one is constantly forced to work around the limitations of the invocation package. For
example, if an RPC package imposes a size limit on the arguments to a procedure, an application that
works perfectly well in most situations may suddenly fail because some dynamically defined object has
grown too large to be accepted as an RPC parameteldedly, what was a single RPC becomes a multi-

RPC protocol for passing the large object in chunks, and a perfectly satisfied programmer has developed
distinct second thoughts about the transparency of RPC. At the other extreme are programming languages
and RPC packages in which RPC is extremely transparent. These, however, often incur high overheads to
copy information in and out, and the programmer is likely to be very aware of these because of their cost
implications. For example, a loop that repeatedly invokes a procedure with one parameter changing and
others (including a pointer to some large object) may be quite inexpensive to invoke in the local case. But
if the large object will be copied to a remote program on every invocation, the same loop may cost a
fortune when coded as part of a distributed client-server application, forcing the program to be redesigned
to somehow pass the object to the remote server prior to the computational loop. These sorts of issues,
then, make programming with RPC quite different from programming with LPC.

RPC also introduces error cases that are not seen in LPC, and the programmer needs to deal with
these. An LPC would never fail with a “binding error”, or a “version mismatch” or a “timeout.” In the
case of RPC, all of these are possibilities — a binding error would arise if the server is not running when
the client is started. A version mismatch might occur if a client was compiled against version 1 of a
server, but the server has now been upgraded to version 2. A timeout could result from a server crash, or a
network problem, or even a problem on the client's computer. Many RPC applications would view these
sorts of problems as unrecoverable errors, but fault-tolerant systems will often have alternative sources for
critical services and will need to fail-over from a primary server to a backup. The code to do this is
potentially complex, and in most RPC environments, must be implemented by the application developer
on a case-by-case basis.

4.3 The RPC Binding Problem

The binding problem arises when an RPC client program needs to determine the network address of a
server capable of providing some service it requires. Binding can be approached from many perspectives,

79

80 Kenneth P. Birman - Building Secure and Reliable Network Applications

but the issue is simplified if issues associated withriame serviceised are treated separately, as we do
here.

Disregarding its interactions with the name service, a binding service is primarily a protocol by
which the RPC system verifies compatibility between the client and server and establishes any connections
needed for communication.

The compatibility problem is important in systems that will operate over long periods of time,
during which maintenance and the development of new versions of system components will inevitably
occur. Suppose that a client programvas developed and tested using serydyut that we now wish to
install a new version o, ¢, or both. Upgrades such as these create a substantial risk that some old copy of
c will find itself talking to a new copy 08, or vice versa. For example, in a network of workstations it may
be necessary to reloacnto the workstations one by one, and if some machines are down when the reload
occurs, an old copy daf could remain on its disk. Unlegsis upgraded as soon as the machine lmoted
— and this may or may not occur, depending on how the system is administered — one would finat an old
talking to an upgraded It is easy to identify other situations in which problems such as this could arise.

It would be desirable to be able to assume that all possible “versiorsafic could somehow
communicate with all other versions, but this is not often the case. Indeed, it is not necessarily even
desirable. Accordingly, most RPC environments support a concefrsion numbewhich is associated
with the server IDL. When a client program is compiled, the server IDL version is noted in software. This
permits the inclusion of the client’s version of the server interface directly in the call to the server. When
the match is not exact, the server could reject the request as being incompatible, perform some operation
to map the old-format request to a new-format request, or even preserve multiple copies of its
functionality, running the version matched to the caller.

Connection establishment is a relatively mechanical stage of binding. Depending on the type of
client-server communication protocol that will be used, messages may be transmitted using unreliable
datagrams or over reliable communication streams such as X.25 or TCP. Unreliable datagram connections
normally do not require any initial setup, but stream connections typically involve some form of open or
initialization operation. Having identified the server to which a request will be issued, the binding
mechanism would normally perform this open operation.

The binding mechanism is sometimes used to solve two additional problems. The first of these is
called the “factory” problem, and involves starting a server when a service has no currently operational
server. In this approach, the first phase of binding looks up the address of the server and learns that the
server is not currently operational (or, in the connection phase, a connection error is detected and from
this the binder deduces that the server has failed). The binder then issues a requastdry & which
the system designer has stored instructions for starting a server up when needed. After a suitable pause,
the binder cycles back through its first phase, which presumably succeeds.

The second additional problem arises in the converse situation, when the binder discovers
multiple servers that could potentially handle this client. The best policy to use in such situations depends
very much on the application. For some systems, a binder should always pick a server on the same
machine as the client, if possible, and should otherwise pick randomly. Other systems require some form
of load-balancing, while still others may implement affinity policy under which a certain server might
be especially well suited to handling a particular client for reasons such as the data it has cached in
memory, or the type of requests the client is expected to issue once binding has been completed.

80

Chapterd: RPC and the Client-Server Model 81

Binding is a relatively expensive operation. For example, in the DCE RPC environment, binding
can be more than 10 times as costly as RPC. However, since binding only occurs once for each client-
server pair, this high cost is not viewed as a major problem in typical distributed computing systems.

4.4 Marshalling and Data Types

The purpose of a data marshalling mechanism is to represent the caller’'s arguments in a way that can be
efficiently interpreted by a server program. In the most general cases, this mechanism deals with the
possibility that the computer on which the client is running uses a different data representation than the
computer on which the server is running.

Mashalling has been treated at varying levels of generality, and in fact there exists a standard,
ASN.1, for self-describing data objecia which a specific representation is recommended. In addition to
ASN.1, several major vendors have adopted data repasams of their own, such as SUN Microsystem’s
External Data Representation (XDR) format, which is used in the widely popular Network File System
(NFS) protocol.

The basic issues that arise in a data marshalling mechanism, then, are these. First, integer
representations vary for the most common CPU chips. On some chips the most significant byte of an
integer is also the low byte of the first word in memory, while on others the most significant byte is stored
in the high byte of the last word of the integer. These are called little-endian and big-endian
representations. At one point in the 1980’s, computers with other representations — other byte
permutations — were on the market, but at the time of this writing the author is not aware of any other
surviving formats.

A second representation issue concerns data alignment. Some computers require that data be
aligned on 32-bit or even 64-bit boundaries, while others may have weaker alignment rules, for example
by supporting data alignment on 16-bit boundaries. Unfortunately, such issues are extremely common.
Compilers know about these rules, hence the programmer is typically unaware of them. However, when a
message arrives from a remote machine that may be using some other alignment rule, the issues becomes
an important one. An attempt to fetch data directly from a message without attention to this issue could
result in some form of machine fault, or could result in retrieval of garbage. Thus, the data representation
used in messages must encode sufficient information to permit the destination computer to find the start of
object in the message, or the sender and destination must agree in advance on a packed representation that
will be used for messages “on the wire” even if the sender and destination themselves share the same
rules and differ from the standard. Needless to say, this is a topic capable of generating endless and
fascinating debate among computer vendors whose machines use different alignment or data
representations.

81

82 Kenneth P. Birman - Building Secure and Reliable Network Applications

A third issue arises from the

existence of multiple floating point
representations. Although there is an
253 | 021 311 120 IEEE standard floating point
representation, which has become widely
accepted, some computer vendors use
non-standard representations for which
conversion would be required, and even
within computers using the standard,
byte ordering issues can still arise.

120 | 311] 021 253

A forth issue concerns pointers.
When transmitting a complex structure

, o in which there are pointers, the
Figure 4-2: The same number (here, a 32-bit integer) may arshalling mechanism needs to either
represented very differently on different computer architectwresi nal that the user has requested
One role of the marshalling an demarshalling process is to madi 9 hi il | q h
data representations (here, by permuting the bytes) so that val ething illegal, o t_o somenhow
can be interpreted correctly upon reception. re_present_ these p0|r_\t§rs in a way that
will permit the receiving computer to

“fix” them upon reception of the request.
This is especially tricky in languages like LISP, which require pointers and hence cannot easily legislate
against them in RPC situations. On the other hand, passing pointers raises additional problems: should
the pointed-to object be included in the message, transferred only upon use (a “lazy” scheme), or handled
in some other way?

Finally, a marshalling mechanism may need to deal with incompatibilities in the basic data types
available on computers. For example, a pair of computers supporting 64-bit integers in hardware may
need to exchange messages containing 64-bit integer data. The marshalling scheme should therefore be
able to represent such integers. On the other hand, when this type of message is sent to a computer that
uses 32-hit integers the need arises to truncate the 64-bit quantities so that they will fit in the space
available, with an exception being generated if data would be lost by such a truncation. Yet, if the message
is merely being passed through some sort of intermediary, one would prefer that data not be truncated,
since precision would be lost. In the reverse direction, sign extension or padding may need to be
performed to convert a 32-bit quantity into an equivalent 64-bit quantity, but only if the data sent is a
signed integer. Thus, a completely general RPC package needs to put a considerable amount of
information into each packet, and may need to do quite a bit of work to represent data in a universal
manner. On the other hand, such an approach may be much more costly than one that supports only a
very limited set of possible representations, or that compiles the data marshalling and demarshalling
operations directly into inline code.

The approach taken to marshalling varies from RPC package to package. SUN’s XDR system is
extremely general, but requires the user to code marshalling procedures for data types other than the
standard base types of the system. With XDR, one can represent any desired data structure, even dealing
with pointers and complex padding rules. At the other end of the spectrum are marshalling procedures
that transmit data in the binary format used by the sender, are limited to only simple data types, and
perhaps do little more than compatibility checking on theeive side. Fially, schemes likeSDN.1 are
often used with RPC stub generators, which automatically marshall and demarshall data, but impose some
restrictions on the types of objects that can be transmitted.

As a general rule of thumb, users will want to be aware that the more general solutions to these
problems are also more costly. If the goal is extremely speed, it may make sense to design the application
itself to produce data in a form that is inexpensive to marshall and demarshall. The cost implications of

82

Chapterd: RPC and the Client-Server Model 83

failing to do so can be surprising, and in many cases, it is not even difficult to redesign an interface so that
RPC to it will be cheap.

4.5 Associated Services

No RPC system lives in isolation. As we will see below, RPC is often integrated with a security
mechanism, and because security keys (and some parts of the RPC protocol itself) use timestamps, with a
clock synchronization mechanism. For this reason, one often talks about distributed computing
“environments” that include tools for implementing client-server applications including an RPC
mechanism, security services and time services. Elaborate environments may go well beyond this,
including system instrumentation and management interfaces and tools, fault-tolerance tools, and so-
called Forth Generation Language (4GL) tools for building applications using graphical user interfaces
(GUI's). Such approaches can empower even unskilled users to develop sophisticated distributed
solutions. In this section we briefly review the most important of these services.

4.5.1 Naming services

A naming service maintains one or morappingsrom some form of name (normally symbolic) to some

form of value (normally, a network address). Naming services can operate in a very narrow, focused way —
for example, the Domain Naming Service of the TCP/IP protocol suite maps short service names, in ascii,
to IP addresses and port humbers, requiring exact matches. At the other extreme, one can talk about
extremely general naming services that are used for many sorts of data, allow complex pattern matching
on the name, and may return other types of data in addition to, or instead of, an address. One can even go
beyond this, to talk about secure naming services that can be trusted to only give out validated addresses
for services, very dynamic naming services that deal with applications like mobile computing systems in
which hosts have addresses that change constantly, and so forth.

In standard computer systems at the time of this writing, three naming services are widely
supported and used. Mentionebose, the Dmain Name ServiceNS) is the least functional but most
widely used. It responds to requests on a standard network port address, and for the “domain” in which it
is running can map short (8 character) strings to internet port numbers. DNS is normally used for static
services, which are always running when the system is operational and do not change port numbers at all.
For example, the email protocol uses DNS to find the remote mail daemon capabtepfiag incoming
email to a user on a remote system.

The Network Information Service (NIS), previously called Yellow Pages (YP), is considerably
more elaborate. NIS maintains a collection of maps, each of which has a symbolic name (e.g. “hosts”,
“services”, etc.) and maps ascii keywords to an ascii value string. NIS is used on UNIX systems to map
host names to internet addresses, service names to port numbers, etc. Although NIS does not support
pattern matching, there are ways for an application to fetch the entire NIS database, one line at a time,
and it is common to include multiple entries in an NIS database for a single host that is known by a set of
aliases. NIS is a distributed service that supports replication: the same data is normally available from any
of a set of servers, and a protocol is used to update the full set of servers if an entry changes. However,
NIS is not designed to support rapid updates: the assumption is that NIS data consists of mappings like
the map from host nhame to internet address, which change very rarely. A 12-hour delay before NIS
information is updated is not unreasonable given this model, hence the update problem is solved by
periodically refreshing the state of each NIS server by having it re-read the contents of a set of files in
which the mapping data is actually stored. As an example, NIS is often used to store password
information on UNIX systems.

83

84 Kenneth P. Birman - Building Secure and Reliable Network Applications

X.500 is an international standard that many expect will eventually replace NIS. This service,
which is designed for use by applications running the 1ISO standard remote procedure call interface and
ISDN.1 data encoding, operates much like an NIS server. No provision has been made in the standard for
replication or high performance update, but the interface does support some limited degree of pattern
matching. As might be expected from a standard of this sort, X.500 addresses a wide variety of issues,
including security and recommended interfaces. However, reliability issues associated with availability
and consistency of the X.500 service (i.e. when data is replicated) have not yet been tackled by the
standards organization.

Looking to the future, there is considerable interest in using X.500 to implement general purpose
White-Pages (WP) servers, which would be explicitly developed to support sophisticated pattern matching
on very elaborate databases with detailed information about abstract entities. Rapid update rates, fault-
tolerance features, and security are all being considered in these proposals. At the time of this writing, it
appears that the Web will require such services and hence that the work on universal resource naming for
use in the Web will be a major driving force for evolution in this overall area.

4.5.2 Time services

With the launch of the so-called Global Positioning System satellites, micro-second accuracy become
possible in workstations equipped with inexpensive radiceivers. Unfortunately, however, accurate
clocks remain a major problem in the most widely used computer workstations and network technologies.
We will have a great to say about this in Chapter 20, but some background may still be useful here.

At the time of this writing, the usual clock for a PC or workstation consists of a quartz-based chip
much like the one in a common wristwatch, accurate to within a few seconds per year. The initial value of
such a clock is either set by the vendor or by the user, when the computer is booted. As a result, in any
network of workstations, clock can give widely divergent readings and can drift with respect to one-
another at significant rates. For these reasons, there has been considerable study of algorithms for clock
synchronization, whereby the clocks on invidual machines can be adjusted to give behavior approximating
that of a shared global clock. In Chapter 20, we will discuss some of the algorithms that have been
proposed for this purpose, their ability to tolerate failures, and the analyses used to arrive at theoretical
limits on clock accuracy.

However, much of this work has a limited lifetime. GP&eivers can give extremely accurate
time, and GPS signals are transmitted frequently enough so that even inexpensive hardware can
potentially maintain time accurate to microseconds. By broadcasting GPS time values, this information
can be propagated within a network of computers, and although some accuracgssarily lost when
doing so, the resulting clocks are still accurate and comparable to within tens of microseconds. This
development can be expected to have a major impact on the way that distributed software is designed —
from a world of asynchronous communication and clocks that can be inaccurate by many times the
average message latency in the network, GPS based time could catapult us into a domain in which clock
resolutions considerably exceed the averigency between sending a message and when écisived.

Such developments make it very reasonable to talk about synchronous (time-based) styles of software
design and the use of time in algorithms of all sorts.

Even coarsely synchronized clocks can be of value in distributed software. For example, when
comparing versions of files, microsecond accuracy is not needed to decide if one version is more current
than another: accuracy of seconds or even tens of seconds may be adequate. Security systems often have a
notion of expiration associated with keys, but for these to be at risk of “attacks” an intruder would need a
way to set a clock back by days, not fractions of a second. And, although we will see that RPC protocols

84

Chapterd: RPC and the Client-Server Model 85

use time to detect and ignore very old, stale, messages, as in the case of a security mechanism a clock
would need to be extremely inaccurate for such a system to malfunction.

4.5.3 Security services

In the context of an RPC environment, security is usually concerned witlautteenticationproblem.

Briefly stated, this is the problem of providing applications with accurate information about the user-id on
behalf of which a request is being performed. Obviously, one would hope that the user-id is related in
some way to the user, although this is frequently the weak link in a security architecture. Given an
accurate source of user identifications, however, the basic idea is to avoid intrusions that can compromise
user-id security through break-ins on individual computers and even replacements of system components
on some machines with versions that have been compromised and hence could malfunction. As in the
case of clock services, we will looking more closely at security later in thddekt (Chapter 19) and

hence limit ourselves to a brief review here.

To accomplish authentication, a typical security mechanism (for example, the Kerberos security
architecture for DCE [SNS88, Sch94]) will request some form of password or one-time key from the user
at login time, and periodically thereafter, as keys expire on the basis of elapsed time. This information is
used to compute a form of secure user-identification that can be employed during connection
establishment. When a client binds to a server, the security mechanism authenticates both ends, and also
(at the option of the programmer) arranges for data to be encrypted on the wire, so that intruders who
witness messages being exchanged between the client and server have no way to decode the data
contained within them. (Unfortunately, however, this step is so costly that many applications disable
encryption and simply rely upon the security available from the initial connection setup). Notice that for
such a system to work correctly, there must be a way to “trust” the authentication server itself: the user
needs a way to confirm that it is actually talking to the authentication server, and to legitimate
representatives of the services it wishes to use. Give the anonymity of network communication, these are
potentially hard problems.

In Chapter 19, we will look closely at distributed security issues (for example, we will discuss
Kerberos in much more detail), and also at the relationship between security and other aspects of
reliability and availability — problems that are often viewed as mutually exclusive since one replicates
information to make it more available, but would tend to restrict and protect it to make it more secure. We
will also look at emerging techniques for protecting privacy, hamely the “true” user-id’s of programs
active in a network. Although the state of the art does not yet support construction of high performance,
secure, private applications, this should be technically feasible within the not-distant future. Of course,
technical feasibility does not imply that the technology will become widely practical and hence useful in
building reliable applications, but at least the steps needed to solve the problems are increasingly
understood.

4.5.4 Threads packages

Yet a fourth component of a typical RPC system is the lightweight threads package, which enables a
single program to handle multiple tasks at the same time. Although threads are a general concept and
indeed have rather little to do with communication per-se, they are often vieweka@ssary in
distributed computing systems because of the potential for deadlock if threaust aresent.

To understand this point, it is helpful to contrast three ways of designing a communication
system. A single-threaded message-based approach would correspond to a conventional style of
programming extended directly to message passing. The programmer would use system caidlie
andrecvfromas desired to send and receive messages. If there are several things happening at the same

85

86 Kenneth P. Birman - Building Secure and Reliable Network Applications

time in a program structured this way, however, the assoctaiekkeeping can be a headache (see Figure
4-3).

Threads offer a simple way to eliminate this problem: each thread executes concurrently with the
others, and each incoming request spawns a new thread to handle it. While an RPC is pending the thread
that issues it blocks (waits) in the procedure call that invoked the RPC. To the degree that there is any
bookkeeping to worry about, the associated state is represented directly in the local variables of this
procedure and in the call itself: when the reply is received, the procedure returns (the thread resumes
execution), and there is no need to track down information about why the call was being done: this is
“obvious” to the alling procedure. Of course, the developer does need to implement adequate
synchronization to avoid concurrency-related bugs, but in general this is not a hard thing to do. The
approach overcomes many forms of problems that are otherwise hard to address.

For example, consider a situation in which an RPC server is also the client of some other server,
which is in turn the client of still additional servers. It is entirely possible that a cycle could form, in
which RPCa by processx on processy leads to an RP® by y on z, and so forth, until finally some
process in the chain makes a request back to the original procdtthese calls were LPC calls, such a
sequence would simply be a form of recursion. For a single-threaded RPC system, hawealldre busy
performing RPCa and hence would be unresponsive, creating a deadlock. Alternativwelyld need to
somehow save the information associated with sending BRR@ile it is handling this new incoming
request. This is the bookkeeping problem aluded to above.

Yet a third option is known as “event dispatch” and is typical of windowing systems, in which
each action by the user (mouse motion or clicks, keyboard entries) results in delivery of an “event” record
to a central dispatching loop. The application program typically registers a set of procedure callbacks to
perform when events of interest are received: if the left mouse button is pressed, Iaftokeaitton().
Arguments to these callbacks tell the program exactly what occured: the cursor was at position 132,541
when the mouse button was pressed, this is inside such and such a window, etc. One can use the same
approach to handle event dispatch in message-based systems: incoming messages are treated as “events”
and result in callbacks to handler procedures.

The approaches can also be combined: event dispatch systems can, for example, fork a new
thread for each incoming message. In the most general approach, the callback is registered with some
indication of how it should be performed: by forking a thread, by direct procedure call, or perhaps even by
some other method, such as enqueuing the event on an event queue. This last approach is used in the
Horus system, which we will discuss in Chapter 18.

At the time of this writing, although this is not universally the case, many RPC systems are built
directly over a lightweight threads package. Each incoming RPC is handled by a new thread, eliminating
the risk of deadlock, but forcing the programmer to learn about lightweight threads, preemption, mutual
exclusion mechanisms, and other issues associated with concurrency. In this text, we will present some
protocols that in which processes are assumed to be multi-threaded, so that the initiator of a protocol can
also be a participant in it. However, we will not explicitly discuss thread packages or make use of any
special features of particular packages.

86

Chapterd: RPC and the Client-Server Model 87

Threads: A Personal Prospective

Speaking from personal experience, | have mixed feelings on the issue of threads. Early in my
career | worked with protocols implemented directly over a UDP datagram model. This turned ou
to be very difficult: such a system needs to keep track of protocol “state” in some form of table,
matching replies with requests, and is consequently hard to program. For example, suppose that a
distributed file server is designed to be single-threaded. Such a file server may handle m
applications at the same time, so it will need to send off one request, perhaps to read a file,
remain available for other requests, perhaps by some other application that wants to write a filg.
The information needed to keep track of the first request (the read that is pending) will have to b
recorded in some sort of pending activities table, and later matched with the incoming reply fro
the remote file system. Having implemented such an architecture once, | would not want to dol|it
again.

This motivated me to move to RPC-style protocols, using threads. We will be talking about the Isjs
Toolkit, which is a system that | implemented (with help from others!) in the mid 1980’s, and i
which lightweight threads were employed extensively. Many Isis users commented to me that they
had never used threads before working with Isis, and were surprised at how much the approagh
simplified things. This is certainly the case: in a threaded system, the procedure handling the
“read” would simply block waiting for the reply, while other procedures can be executed to handl
other requests. The necessary bookkeeping is implicit: the blocked procedure has a local state
consisting of its calling stack, local variables, and so forth. Thus there is no need to constantly
update a table of pending activities.

Of course, threads are also a potential source of insidious programming bugs. In Isis, the benefits|of
threads certainly outweighed the problems associated with them, but it also is clear that this model

requires a degree of programming sophistication that goes somewhat beyond standard single-
threaded programming. It took me at least a year to get in the habit of thinking through the
potential reentrancy and ordering issues associated with concurrency and to become comfortable

with the various styles of locking needed to overcome these problems. Many users report the same
experience. Isis, however, is perhaps an unusually challenging case because the order in which
events happened is very important in this system, for reasons that we will study in Part 1l of th
textbook.

In more recent work, | have teamed up with Robbert Van Renesse, who is the primary author of th
Horus system (we discuss this in considerable detail in Chapter 18). Horus, like Isis, was initially
designed to u