
Building
Secure and Reliable

Network Applications

Kenneth P. Birman

Department of Computer Science

Cornell University

Ithaca, New York 14853

Cover image: line drawing of the golden gate bridge looking towards San Francisco?

@ Copyright 1995, Kenneth P. Birman. All rights reserved. This document may not be copied, electronically or physically, in
whole or in part, or otherwise disseminated without the author’s prior written permission.

TRADEMARKS CITED IN THE TEXT 14

PREFACE AND ACKNOWLEDGEMENTS 15

INTRODUCTION 16

A USER’S GUIDE TO THIS BOOK 26

PART I: BASIC DISTRIBUTED COMPUTING TECHNOLOGIES 28

1. FUNDAMENTALS 29

1.1 Introduction 29

1.2 Components of a Reliable Distributed Computing System 32
1.2.1 Communications Technology 35
1.2.2 Basic transport and network services 36
1.2.3 Reliable transport software and communication support 38
1.2.4 “Middleware”: Software tools, utilities, and programming languages 38
1.2.5 Distributed computing environments 39
1.2.6 End-user applications 40

1.3 Critical Dependencies 41

1.4 Next Steps 42

1.5 Additional Reading 43

2. COMMUNICATION TECHNOLOGIES 44

2.1 Types of Communication Devices 44

2.2 Properties 45

2.3 Ethernet 46

2.4 FDDI 48

2.5 B-ISDN and the Intelligent Network 50

2.6 ATM 53

2.7 Cluster and Parallel Architectures 56

2.8 Next steps 57

2.9 Additional Reading 58

Chapter1: Fundamentals 3

3

3. BASIC COMMUNICATION SERVICES 59

3.1 Communications Standards 59

3.2 Addressing 59

3.3 Internet Protocols 63
3.3.1 Internet Protocol: IP layer 64
3.3.2 Transport Control Protocol: TCP 64
3.3.3 User Datagram Protocol: UDP 64
3.3.4 Internet Packet Multicast Protocol: IP Multicast 65

3.4 Routing 66

3.5 End-to-end Argument 67

3.6 O/S Architecture Issues, Buffering, Fragmentation 68

3.7 Xpress Transfer Protocol 70

3.8 Next Steps 71

3.9 Additional Reading 72

4. RPC AND THE CLIENT-SERVER MODEL 73

4.1 RPC Protocols and Concepts 75

4.2 Writing an RPC-based Client or Server Program 77

4.3 The RPC Binding Problem 79

4.4 Marshalling and Data Types 81

4.5 Associated Services 83
4.5.1 Naming services 83
4.5.2 Time services 84
4.5.3 Security services 85
4.5.4 Threads packages 85

4.6 The RPC Protocol 89

4.7 Using RPC in Reliable Distributed Systems 92

4.8 Related Readings 95

5. STREAMS 96

5.1 Sliding Window Protocols 96
5.1.1 Error Correction 97
5.1.2 Flow Control 98
5.1.3 Dynamic Adjustment of Window Size 98

Kenneth P. Birman - Building Secure and Reliable Network Applications4

4

5.1.4 Burst Transmission Concept 99

5.2 Negative-Acknowledgement Only 100

5.3 Reliability, Fault-tolerance, and Consistency in Streams 100

5.4 RPC over a Stream 102

5.5 Related Readings 102

6. CORBA AND OBJECT-ORIENTED ENVIRONMENTS 104

6.1 The ANSA Project 104

6.2 Beyond ANSA to CORBA 106

6.3 OLE-2 and Network OLE 107

6.4 The CORBA Reference Model 107

6.5 TINA 114

6.6 IDL and ODL 114

6.7 ORB 116

6.8 Naming Service 116

6.9 ENS 117

6.10 Life Cycle Service 118

6.11 Persistent Object Service 118

6.12 Transaction Service 118

6.13 Inter-Object Broker Protocol 118

6.14 Future CORBA Services 118

6.15 Properties of CORBA Solutions 119

6.16 Related Readings 120

7. CLIENT-SERVER COMPUTING 121

7.1 Stateless and Stateful Client-Server Interactions 121

7.2 Major Uses of the Client-Server Paradigm 121

7.3 Distributed File Systems 125

Chapter1: Fundamentals 5

5

7.4 Stateful File Servers 129

7.5 Distributed Database Systems 136

7.6 Applying Transactions to File Servers 141

7.7 Message Oriented Middleware 143

7.8 Related Topics 143

7.9 Related Readings 145

8. OPERATING SYSTEM SUPPORT FOR HIGH PERFORMANCE
COMMUNICATION 146

8.1 Lightweight RPC 147

8.2 Fbuf’s and the xKernel Project 149

8.3 Active Messages 151

8.4 Beyond Active Messages: U-Net 153

8.5 Protocol Compilation Techniques 156

8.6 Related Readings 157

PART II: THE WORLD WIDE WEB 158

9. THE WORLD WIDE WEB 159

9.1 Related Readings 164

10. THE MAJOR WEB TECHNOLOGIES 165

10.1 Hyper-Text Markup Language (HTML) 166

10.2 Virtual Reality Markup Language (VRML) 166

10.3 Universal Resource Locators (URLs) 166

10.4 Hyper-Text Transport Protocol (HTTP) 167

10.5 Representations of Image Data 170

10.6 Authorization and Privacy Issues 171

10.7 Web Proxy Servers 174

10.8 Java, HotJava, and Agent Based Browsers 175

Kenneth P. Birman - Building Secure and Reliable Network Applications6

6

10.9 GUI Builders and Other Distributed CASE Tools 179

10.10 Tacoma and the Agent Push Model 179

10.11 Web Search Engines and Web Crawlers 181

10.12 Important Web Servers 182

10.13 Future Challenges 182

10.14 Related Readings 184

11. RELATED INTERNET TECHNOLOGIES 185

11.1 File Transfer Tools 185

11.2 Electronic Mail 185

11.3 Network Bulletin Boards (newsgroups) 186

11.4 Message Oriented MiddleWare Systems (MOMS) 187

11.5 Message Bus Architectures 189

11.6 Internet Firewalls and Gateways 191

11.7 Related Readings 192

PART III: RELIABLE DISTRIBUTED COMPUTING 193

12. HOW AND WHY COMPUTER SYSTEMS FAIL 194

12.1 Hardware Reliability and Trends 194

12.2 Software Reliability and Trends 194

12.3 Other Sources of Downtime 196

12.4 Complexity 196

12.5 Detecting failures 197

12.6 Hostile Environments 198

12.7 Related Readings 199

13. GUARANTEEING BEHAVIOR IN DISTRIBUTED SYSTEMS 200

13.1 Consistent Distributed Behavior 200

13.2 Warning: Rough Road Ahead! 201

Chapter1: Fundamentals 7

7

13.3 Membership in a Distributed System 202

13.4 Time in Distributed Systems 203

13.5 Failure Models and Reliability Goals 208

13.6 Reliable Computing in a Static Membership Model 209
13.6.1 The Distributed Commit Problem 210
13.6.1.1 Two-Phase Commit 211
13.6.1.2 Three-Phase Commit 218
13.6.2 Reading and Updating Replicated Data with Crash Failures 221

13.7 Replicated Data with Non-Benign Failure Modes 223

13.8 Reliability in Asynchronous Environments 226

13.9 The Dynamic Group Membership Problem 231

13.10 The Group Membership Problem 235
13.10.1 Protocol used to track GMS Membership 239
13.10.2 GMS Protocol to Handle Client Add and Join Events 241
13.10.3 GMS Notifications With Bounded Delay 242
13.10.4 Extending the GMS to Allow Partition and Merge Events 244

13.11 Dynamic Process Groups and Group Communication 245
13.11.1 Group Communication Primitives 247

13.12 Delivery Ordering Options 249
13.12.1.1 Non-Uniform Failure-Atomic Group Multicast 253
13.12.1.2 Dynamically Uniform Failure-Atomic Group Multicast 255
13.12.2 Dynamic Process Groups 255
13.12.3 View-Synchronous Failure Atomicity 257
13.12.4 Summary of GMS Properties 259
13.12.5 Ordered Multicast 260
13.12.5.1 Fifo Order 260
13.12.5.2 Causal Order 261
13.12.5.2.1 Causal ordering with logical timestamps 262
13.12.5.2.2 Causal ordering with vector timestamps 263
13.12.5.2.3 Timestamp compression 265
13.12.5.2.4 Causal multicast and consistent cuts 266
13.12.5.2.5 Exploiting Topological Knowledge 268
13.12.5.3 Total Order 269

13.13 Communication From Non-Members to a Group 271
13.13.1 Scalability 273

13.14 Communication from a Group to a Non-Member 273

13.15 Summary 273

13.16 Related Readings 275

14. POINT-TO-POINT AND MULTIGROUP CONSIDERATIONS 276

Kenneth P. Birman - Building Secure and Reliable Network Applications8

8

14.1 Causal Communication Outside of a Process Group 276

14.2 Extending Causal Order to Multigroup Settings 279

14.3 Extending Total Order to Multigroup Settings 280

14.4 Causal and Total Ordering Domains 281

14.5 Multicasts to Multiple Groups 282

14.6 Multigroup View Management Protocols 283

14.7 Related Reading 283

15. THE VIRTUALLY SYNCHRONOUS EXECUTION MODEL 284

15.1 Virtual Synchrony 284

15.2 Extended Virtual Synchrony 288

15.3 Virtually Synchronous Algorithms and Tools 292
15.3.1 Replicated Data and Synchronization 292
15.3.2 State transfer to a joining process 296
15.3.3 Load-Balancing 298
15.3.4 Primary-Backup Fault Tolerance 299
15.3.5 Coordinator-Cohort Fault-Tolerance 301

15.4 Related Readings 302

16. CONSISTENCY IN DISTRIBUTED SYSTEMS 303

16.1 Consistency in the Static and Dynamic Membership Models 303

16.2 General remarks Concerning Causal and Total Ordering 311

16.3 Summary and Conclusion 314

16.4 Related Reading 315

17. RETROFITTING RELIABILITY INTO COMPLEX SYSTEMS 316

17.1 Wrappers and Toolkits 316
17.1.1 Wrapper Technologies 318
17.1.1.1 Wrapping at Object Interfaces 318
17.1.1.2 Wrapping by Library Replacement 318
17.1.1.3 Wrapping by Object Code Editing 319
17.1.1.4 Wrapping With Interposition Agents and Buddy Processes 320
17.1.1.5 Wrapping Communication Infrastructures: Virtual Private Networks 320
17.1.1.6 Wrappers: Some Final Thoughts 321
17.1.2 Introducing Robustness in Wrapped Applications 321
17.1.3 Toolkit Technologies 323

Chapter1: Fundamentals 9

9

17.1.4 Distributed Programming Languages 325

17.2 Wrapping a Simple RPC server 326

17.3 Wrapping a Web Server 327

17.4 Hardening Other Aspects of the Web 328

17.5 Unbreakable Stream Connections 332
17.5.1 Reliability Options for Stream Communication 333
17.5.2 An Unbreakable Stream That Mimics TCP 335
17.5.3 Non-Determinism and Its Consequences 336
17.5.4 Dealing With Arbitrary Non-Determinism 337
17.5.5 Replicating the IP Address 337
17.5.6 Maximizing Concurrency by Relaxing Multicast Ordering 338
17.5.7 State Transfer Issues 340
17.5.8 Discussion 340

17.6 Building a Replicated TCP Protocol Using a Toolkit 341

17.7 Reliable Distributed Shared Memory 342
17.7.1 The shared memory wrapper abstraction 342
17.7.2 Memory coherency options for distributed shared memory 344
17.7.3 False sharing 346
17.7.4 Demand paging and intelligent prefetching 346
17.7.5 Fault-tolerance issues 347
17.7.6 Security and protection considerations 347
17.7.7 Summary and discussion 348

17.8 Related Readings 348

18. RELIABLE DISTRIBUTED COMPUTING SYSTEMS 349

18.1 Architectural Considerations in Reliable Systems 349

18.2 Horus: A Flexible Group Communications System 351
18.2.1 A layered process group architecture 352

18.3 Protocol stacks 355

18.4 Using Horus to Build a Robust Groupware Application 356

18.5 Using Horus to Harden CORBA applications 359

18.6 Basic Performance of Horus 360

18.7 Masking the Overhead of Protocol Layering 362
18.7.1 Reducing Header Overhead 363
18.7.2 Eliminating Layered Protocol Processing Overhead 364
18.7.3 Message Packing 365
18.7.4 Performance of Horus with the Protocol Accelerator 365

18.8 Scalability 366

Kenneth P. Birman - Building Secure and Reliable Network Applications10

10

18.9 Related Readings 368

19. SECURITY OPTIONS FOR DISTRIBUTED SETTINGS 370

19.1 Perimeter Defense Technologies 372

19.2 Access Control Technologies 374

19.3 Authentication Schemes and Kerberos 376
19.3.1 RSA and DES 376
19.3.2 Kerberos 377
19.3.3 ONC security and NFS 380
19.3.4 Fortezza 380

19.4 Availability and Security 382

19.5 Related Readings 383

20. CLOCK SYNCHRONIZATION AND SYNCHRONOUS SYSTEMS 384

20.1 Clock Synchronization 384

20.2 Timed-asynchronous Protocols 388

20.3 Adapting Virtual Synchrony for Real-Time Settings 395

20.4 Related Readings 398

21. TRANSACTIONAL SYSTEMS 399

21.1 Implementation of a Transactional Storage System 401
21.1.1 Write-ahead logging 401
21.1.2 Persistent data seen “through” an updates list 402
21.1.3 Non-distributed commit actions 403

21.2 Distributed Transactions and Multi-Phase Commit 404

21.3 Transactions on Replicated Data 404

21.4 Nested Transactions 405
21.4.1 Comments on the nested transaction model 407

21.5 Weak Consistency Models 410
21.5.1 Epsilon serializability 410
21.5.2 Weak and strong consistency in partitioned database systems 411
21.5.3 Transactions on multi-database systems 412
21.5.4 Linearizability 412
21.5.5 Transactions in Real-Time Systems 413

21.6 Advanced Replication Techniques 413

Chapter1: Fundamentals 11

11

21.7 Related Readings 416

22. PROBABILISTIC PROTOCOLS 417

22.1 Probabilistic Protocols 417

22.2 Other applications of gossip protocols 419

22.3 Hayden’s pbcast primitive 419
22.3.1 Unordered pbcast protocol 420
22.3.2 Adding Total Ordering 421
22.3.3 Probabilistic Reliability and the Bimodal Delivery Distribution 422
22.3.4 An Extension to Pbcast 424
22.3.5 Evaluation and Scalability 424
22.3.5.1 Reliability 424
22.3.5.2 Message cost and fanout. 424

22.4 An Unscalable System Model 425

22.5 Replicated Data using Pbcast 425
22.5.1 Representation of replicated data 425
22.5.2 Update protocol 425
22.5.3 Read protocol 426
22.5.4 Locking protocol 426

22.6 Related Readings 427

23. DISTRIBUTED SYSTEM MANAGEMENT 428

23.1 A Relational System Model 428

23.2 Instrumentation Issues: Sensors, Actuators 430

23.3 Management Information Bases, SNMP and CMIP 430
23.3.1 Sensors and events 431
23.3.2 Actuators 434

23.4 Reactive control in Distributed Settings 435

23.5 Fault-tolerance by State Machine Replication 436

23.6 Visualization of Distributed System States 436

23.7 Correlated Events 437

23.8 Information Warfare and Defensive Tactics 437

23.9 Related Readings 441

24. CLUSTER COMPUTER ARCHITECTURES 442

Kenneth P. Birman - Building Secure and Reliable Network Applications12

12

24.1 Inside a High Availability Cluster Product: The Stratus Radio 443

24.2 Reliability Goals for Cluster Servers 445

24.3 Comparison with Fault-Tolerant Hardware 447

24.4 Protocol Optimizations 448

24.5 Cluster API Goals and Implementation 449

24.6 Related Readings 450

25. REASONING ABOUT DISTRIBUTED SYSTEMS 451

25.1 Dimensions of the Systems Validation Problem 451

25.2 Process and Message-Oriented Models 454

25.3 System Definition Languages 457

25.4 High Level Languages and Logics 458

26. OTHER DISTRIBUTED AND TRANSACTIONAL SYSTEMS 461

26.1 Related Work in Distributed Computing 461
26.1.1 Ameoba 461
26.1.2 Chorus 461
26.1.3 Delta-4 462
26.1.4 Harp 462
26.1.5 The Highly Available System (HAS) 463
26.1.6 The Isis Toolkit 463
26.1.7 Locus 464
26.1.8 Sender-Based Logging and Manetho 464
26.1.9 NavTech 465
26.1.10 Phoenix 465
26.1.11 Psync 465
26.1.12 Relacs 465
26.1.13 Rampart 466
26.1.14 RMP 466
26.1.15 StormCast 466
26.1.16 Totem 467
26.1.17 Transis 468
26.1.18 The V System 468

26.2 Systems That Implement Transactions 469
26.2.1 Argus 469
26.2.2 Arjuna 470
26.2.3 Avalon 470
26.2.4 Bayou 470
26.2.5 Camelot and Encina 471

Chapter1: Fundamentals 13

13

APPENDIX: PROBLEMS 472

BIBLIOGRAPHY 482

INDEX 505

Kenneth P. Birman - Building Secure and Reliable Network Applications14

14

Trademarks Cited in the Text

Unix is a Trademark of Santa Cruz Operations, Inc. CORBA (Common Object Request Broker
Architecture) and OMG IDL are trademarks of the Object Management Group. ONC (Open Network
Computing), NFS (Network File System), Solaris, Solaris MC, XDR (External Data Representation), and
Java are trademarks of Sun Microsystems Inc. DCE is a trademark of the Open Software Foundation.
XTP (Xpress Transfer Protocol) is a trademark of the XTP Forum. RADIO is a trademark of Stratus
Computer Corporation. Isis Reliable Software Developer’s Kit, Isis Reliable Network File System, Isis
Reliable Message Bus and Isis for Databases are trademarks of Isis Distributed Computing Systems, Inc.
Orbix is a trademark of Iona Technologies Ltd. Orbix+Isis is a joint trademark of Iona and Isis
Distributed Computing Systems, Inc. TIB (Teknekron Information Bus) and Subject Based Addressing
are trademarks of Teknekron Software Systems (although we use “subject based addressing” in a more
general sense in this text). Chorus is a trademark of Chorus Systemes Inc. Power Objects is a trademark
of Oracle Corporation. Netscape is a trademark of Netscape Communications. OLE, Windows, Windows
New Technology (Windows NT), and Windows 95 are trademarks of Microsoft Corporation. Lotus Notes
is a trademark of Lotus Computing Corporation. Purify is a trademark of Highland Software, Inc.
Proliant is a trademark of Compaq Computers Inc.VAXClusters, DEC MessageQ, and DECsafe
Available Server Environment are trademarks of Digital Equipment Corporation.MQSeries and SP2 are
trademarks of International Business Machines. Power Builder is a trademark of PowerSoft Corporation.
Visual Basic is a trademark of Microsoft Corporation. Ethernet is a trademark of Xerox Corporation.

Other products and services mentioned in this document are covered by the trademarks, service marks, or
product names as designated by the companies that market those products. The author respectfully
acknowledges any such that may not have been included above.

Chapter1: Fundamentals 15

15

Preface and Acknowledgements

This book is dedicated to my family, for their support and tolerance over the two-year period that it was
written. The author is grateful to so many individuals, for their technical assistance with aspects of the
development, that to try and list them one by one would certainly be to omit someone whose role was vital.
Instead, let me just thank my colleagues at Cornell, Isis Distributed Systems, and worldwide for their help
in this undertaking. I am also greatful to Paul Jones of Isis Distributed Systems and to Francois Barrault
and Yves Eychenne of Stratus France and Isis Distributed Systems, France, for providing me with
resources needed to work on this book during a sabbatical that I spent in Paris, in fall of 1995 and spring
of 1996. Cindy Williams and Werner Vogels provided invaluable help in overcoming some of the details
of working at such a distance from home.

A number of reviewers provided feedback on early copies of this text, leading to (one hopes) considerable
improvement in the presentation. Thanks are due to: Marjan Bace, David Bakken,Robert Cooper, Yves
Eychenne, Dalia Malki, Raghu Hudli, David Page, David Plainfosse, Henrijk Paszt, John Warne and
Werner Vogels. Raj Alur, Ian Service and Mark Wood provided help in clarifying some thorny technical
questions, and are also gratefully acknowledged. Bruce Donald’s emails on idiosyncracies of the Web
were extremely useful and had a surprisingly large impact on treatment of that topic in this text.

Much of the work reported here was made possible by grants from the U.S. Department of Defense
through its Advanced Research Projects Agency, DARPA (administered by the Office of Naval Research,
Rome Laboratories, and NASA), and by infrastructure grants from the National Science Foundation.
Grants from a number of corporations have also supported this work, including IBM Corporation, Isis
Distributed Systems Inc., Siemens Corporate Research (Munich and New Jersey), and GTE Corporation. I
wish to express my thanks to all of these agencies and corporations for their generosity.

The techniques, approaches, and opinions expressed here are my own, and may not represent positions of
the organizations and corporations that have supported this research.

Kenneth P. Birman - Building Secure and Reliable Network Applications16

16

Introduction

Despite nearly twenty years of progress towards ubiquitous computer connectivity, distributed computing
systems have only recently emerged to play a serious role in industry and society. Perhaps this explains
why so few distributed systems are reliable in the sense of tolerating failures automatically, guaranteeing
properties such as performance or response time, or offering security against intentional threats. In many
ways the engineering discipline of reliable distributed computing is still in its infancy.

One might be tempted to reason tautologically, concluding that reliability must not be all that
important in distributed systems (since otherwise, the pressure to make such systems reliable would long
since have become overwhelming). Yet, it seems more likely that we have only recently begun to see the
sorts of distributed computing systems in which reliability is critical. To the extent that existing mission-
and even life-critical applications rely upon distributed software, the importance of reliability has perhaps
been viewed as a narrow, domain-specific issue. On the other hand, as distributed software is placed into
more and more critical applications, where safety or financial stability of large organizations depends
upon the reliable operation of complex distributed applications, the inevitable result will be growing
demand for technology developers to demonstrate the reliability of their distributed architectures and
solutions. It is time to tackle distributed systems reliability in a serious way. To fail to do so today is to
invite catastrophic computer-systems failures tomorrow.

At the time of this writing, the sudden emergence of the “World Wide Web” (variously called the
“Web”, the Information Superhighway, the Global Information Infrastructure, the Internet, or just the
Net) is bringing this issue to the forefront. In many respects, the story of reliability in distributed systems
is today tied to the future of the Web and the technology base that has been used to develop it. It is
unlikely that any reader of this text is unfamiliar with the Web technology base, which has penetrated the
computing industry in record time. A basic premise of our study is that the Web will be a driver for
distributed computing, by creating a mass market around distributed computing. However, the term
“Web” is often used loosely: much of the public sees the Web as a single entity that encompasses all the
Internet technologies that exist today and that may be introduced in the future. Thus when we talk about
the Web, we are inevitably faced with a much broader family of communications technologies.

It is clear that some form of critical mass has recently been reached: distributed computing is
emerging from its specialized and very limited niche to become a mass-market commodity, something
that literally everyone depends upon, like a telephone or an automobile. The Web paradigm brings
together the key attributes of this new market in a single package: easily understandable graphical
displays, substantial content, unlimited information to draw upon, virtual worlds in which to wander and
work. But the Web is also stimulating growth in other types of distributed applications. In some
intangible way, the experience of the Web has caused modern society to suddenly notice the potential of
distributed computing.

Consider the implications of a societal transition whereby distributed computing has suddenly
become a mass market commodity. In the past, a mass-market item was something everyone “owned”.
With the Web, one suddenly sees a type of commodity that everyone “does”. For the most part, the
computers and networks were already in place. What has changed is the way that people see them and use
them. The paradigm of the Web is to connect useful things (and many useless things) to the network.
Communication and connectivity suddenly seem to be mandatory: no company can possibily risk arriving

Chapter1: Fundamentals 17

17

late for the Information Revolution. Increasingly, it makes sense to believe that if an applicationcan be
put on the network, someone is thinking about doing so, and soon.

Whereas reliability and indeed distributed computing were slow to emerge prior to the
introduction of the Web, reliable distributed computing will be necessary if networked solutions are to be
used safely for many of the applications that are envisioned. In the past, researchers in the field wondered
why the uptake of distributed computing had been so slow. Overnight, the question has become one of
understanding how the types of computing systems that run on the Internet and the Web, or that will be
accessed through it, can be made reliable enough for emerging critical uses.

If Web-like interfaces present medical status information and records to a doctor in a hospital, or
are used to control a power plant from a remote console, or to guide the decision making of major
corporations, reliability of those interfaces and applications will be absolutely critical to the users. Some
may have life-or-death implications: if that physician bases a split-second decision on invalid data, the
patient might die. Others may be critical to the efficient function of the organization that uses them: if a
bank mismanages risk because of an inaccurate picture of how its investments are allocated, the bank
could incur huge losses or even fail. In still other settings, reliability may emerge as a key determinant in
the marketplace: the more reliable product, at a comparable price, may simply displace the less reliable
one. Reliable distributed computing suddenly has broad relevance.

•

Throughout what follows, the term “distributed computing” is used to describe a type of computer
system that differs from what could be called a “network computing” system. The distinction illuminates
the basic issues with which we will be concerned.

As we use the term here, acomputer networkis a communication technology supporting the
exchange of messages among computer programs executing on computational nodes. Computer networks
are data movers,providing capabilities for sending data from one location to another, dealing with
mobility and with changing topology, and automating the division of available bandwidth among
contending users. Computer networks have evolved over a twenty year period, and during the mid 1990’s
network connectivity between computer systems became pervasive. Network bandwidth has also increased
enormously, rising from hundreds of bytes per second in the early 1980’s to millions per second in the
mid 1990’s, with gigabit rates anticipated in the late 1990’s and beyond.

Network functionality evolved steadily during this period. Early use of networks was entirely for
file transfer, remote login and electronic mail or news. Over time, however, the expectations of users and
the tools available have changed. The network user in 1996 is likely to be familiar with interactive
network browsing tools such as Netscape’s browsing tool, which permits the user to wander within a huge
and interconnected network of multimedia information and documents. Tools such as these permit the
user to conceive of a computer workstation as a window into an immense world of information, accessible
using a great variety of search tools, easy to display and print, and linked to other relevant material that
may be physically stored halfway around the world and yet accessible at the click of a mouse.

Meanwhile, new types of networking hardware have emerged. The first generation of networks
was built using point-to-point connections; to present the illusion of full connectivity to users, the network
included a software layer for routing and connection management. Over time, these initial technologies
were largely replaced by high speed long distance lines that route through various hubs, coupled to local
area networks implemented using multiple access technologies such as Ethernet and FDDI: hardware in
which a single “wire” has a large number of computers attached to it, supporting the abstraction of a

Kenneth P. Birman - Building Secure and Reliable Network Applications18

18

shared message bus. At the time of this writing, a third generation of technologies is reaching the market,
such as ATM hardware capable of supporting gigabit communication rates over virtual circuits, mobile
connection technologies for the office that will allow computers to be moved without rewiring, and more
ambitious mobile computing devices that exploit the nationwide cellular telephone grid for
communications support.

As recently as the early1990’s, computer bandwidth over wide-area links was limited for most
users. The average workstation had high speed access to a local network, and perhaps the local email
system was connected to the Internet, but individual users (especially those working from PC’s) rarely had
better than 1600 baud connections available for personal use of the Internet. This picture is changing
rapidly today: more and more users have relatively high speed modem connections to an Internet service
provider that offers megabyte-per-second connectivity to remote servers. With the emergence of ISDN
services to the home, the last link of the chain will suddenly catch up with the rest. Individual
connectivity has thus jumped from 1600 baud to perhaps 28,800 baud at the time of this writing, and may
jump to 1 Mbaud or more in the not distant future. Moreover, this bandwidth has finally reached the PC
community, which enormously outnumbers the workstation community.

It has been suggested that technology revolutions are often spurred by discontinuous, as opposed
to evolutionary, improvement in a key aspect of a technology. The bandwidth improvements we are now
experiencing are so disproportionate with respect to other performance changes (memory sizes, processor
speeds) as to fall squarely into the discontinuous end of the spectrum. The sudden connectivity available
to PC users is similarly disproportionate to anything in prior experience. The Web is perhaps just the first
of a new generation of communications-oriented technologies enabled by these sudden developments.

In particular, the key enablers for the Web were precisely the availability of adequate long-
distance communications bandwidth to sustain its programming model, coupled to the evolution of
computing systems supporting high performance graphical displays and sophisticated local applications
dedicated to the user. It is only recently that these pieces fell into place. Indeed, the Web emerged more
or less as early as it could possibly have done so, considering the state of the art in the various
technologies on which it depends. Thus while the Web is clearly a breakthrough the “killer
application” of the Internet it is also the most visible manifestation of a variety of underlying
developments that are also enabling other kinds of distributed applications. It makes sense to see the Web
as the tip of an iceberg: a paradigm for something much broader that is sweeping the entire computing
community.

•

As the trend towards better communication performance and lower latencies continues, it is
certain to fuel continued growth in distributed computing. In contrast to a computer network, a
distributed computing systemrefers to computing systems and applications that cooperate to coordinate
actions at multiple locations in a network. Rather than adopting a perspective in which conventional (non-
distributed) application programs access data remotely over a network, a distributed system includes
multiple application programs that communicate over the network, but take actions at the multiple places
where the application runs. Despite the widespread availability of networking since early 1980, distributed
computing has only become common in the 1990’s. This lag reflects a fundamental issue: distributed
computing turns out to be much harder than non-distributed or network computing applications,
especially if reliability is a critical requirement.

Our treatment explores the technology of distributed computing with a particular bias: to
understand why the emerging generation of critical Internet and Web technologies is likely to require very

Chapter1: Fundamentals 19

19

high levels of reliability, and to explore the implications of this for distributed computing technologies. A
key issue is to gain some insight into the factors that make it so hard to develop distributed computing
systems that can be relied upon in critical settings, and and to understand can be done to simplify the task.
In other disciplines like civil engineering or electrical engineering, a substantial body of practical
development rules exists that the designer of a complex system can draw upon to simplify his task. It is
rarely necessary for the firm that builds a bridge to engage in theoretical analyses of stress or basic
properties of the materials used, because the theory in these areas was long-ago reduced to collections of
practical rules and formulae that the practitioner can treat as tools for solving practical problems.

This observation motivated the choice of the cover of thebook. The Golden Gate Bridge is a
marvel of civil engineering that reflects a very sophisticated understanding of the science of bridge-
building. Although located in a seismically active area, the bridge is believed capable of withstanding
even an extremely severe earthquake. It is routinely exposed to violent winter storms: it may sway but is
never seriously threatened. And yet the bridge is also esthetically pleasing: one of the truely beautiful
constructions of its era. Watching the sun set over the bridge from Berkeley, where I attended graduate
school, remains among the most memorable experiences of my life. The bridge illustrates that beauty can
also be resilient: a fortunate development, since otherwise, the failure of the Tacoma Narrows bridge
might have ushered in a generation of bulky and overengineered bridges. The achievement of the Golden
Gate bridge illustrates that even when engineers are confronted with extremely demanding standards, it is
possible to achieve solutions that are elegant and lovely at the same time as they are resilient. This is only
possible, however, to the degree that there exists an engineering science of robust bridge building.

We can build distributed computing systems that are reliable in this sense, too. Such systems
would be secure, trustworthy, and would guarantee availability and consistency even when limited
numbers of failures occur. Hopefully, these limits can be selected to provide adequate reliability without
excessive cost. In this manner, just as the science of bridge-building has yielded elegant and robust
bridges, reliability need not compromise elegance and performance in distributed computing.

One could argue that in distributed computing, we are today building the software bridges of the
Information Superhighway. Yet in contrast to the disciplined engineering that enabled the Golden Gate
Bridge, as one explores the underlying technology of the Internet and the Web one discovers a disturbing
and pervasive inattention to issues of reliability. It is common to read that the Internet (developed
originally by the Defense Department’s Advanced Research Projects Agency, ARPA) was built to
withstand a nuclear war. Today, we need to adopt a similar mindset as we extend these networks into
systems that must support tens or hundreds of millions of Web users, and a growing number of hackers
whose objectives vary from the annoying to the criminal. We will see that many of the fundamental
technologies of the Internet and Web fundamental assumptions that, although completely reasonable in
the early days of the Internet’s development, have now started to limit scalability and reliability, and that
the infrastructure is consequently exhibiting troubling signs of stress.

One of the major challenges, of course, is that use of the Internet has begun to expand so rapidly
that the researchers most actively involved in extending its protocols and enhancing its capabilities are
forced to work incrementally: only limited changes to the technology base can be contemplated, and even
small upgrades can have very complex implications. Moreover, upgrading the technologies used in the
Internet is somewhat like changing the engines on an airplane while it is flying. Jointly, these issues limit
the ability of the Internet community to move to a more reliable, secure, and scalable architecture. They
create a background against which the goals of this textbook will not easily be achieved.

In early 1995, the author was invited by ARPA to participate in an unclassified study of the
survability of distributed systems. Participants included academic experts and invited experts familiar
with the state of the art in such areas as telecommunications, power systems management, and banking.

Kenneth P. Birman - Building Secure and Reliable Network Applications20

20

This study was undertaken against a backdrop colored by the recent difficulties of the Federal Aviation
Agency, which launched a project in the late 1980’s and early 1990’s to develop a new generation of
highly reliable distributed air traffic control software. Late in 1994, after losing a huge sum of money and
essentially eliminating all distributed aspects of an architecture that was originally innovative precisely for
its distributed reliability features, a prototype of the proposed new system was finally delivered, but with
such limited functionality that planning on yet another new generation of software had to begin
immediately. Meanwhile, article after article in the national press reported on failures of air-traffic
control systems, many stemming from software problems, and several exposing airplanes and passengers
to extremely dangerous conditions. Such an situation can only inspire the utmost concern in regard to the
practical state of the art.

Although our study did not focus on the FAA’s specific experience, the areas we did study are in
many ways equally critical. What we learned is that situation encountered by theFAA’s highly visible
project is occuring, to a greater or lesser degree, within all of these domains. The pattern is one in which
pressure to innovate and introduce new forms of products leads to the increasingly ambitious use of
distributed computing systems. These new systems rapidly become critical to the enterprise that
developed them: too many interlocked decisions must be made to permit such steps to be reversed.
Responding to the pressures of timetables and the need to demonstrate new functionality, engineers
inevitably postpone considerations of availability, security, consistency, system management, fault-
tolerance what we call “reliability” in this text until “late in the game,” only to find that it is then
very hard to retrofit the necessary technologies into what has become an enormously complex system. Yet,
when pressed on these issues, many engineers respond that they are merely following common practice:
that their systems use the “best generally accepted engineering practice” and are neither more nor less
robust than the other technologies used in the same settings.

Our group was very knowledgeable about the state of the art in research on reliability. So, we
often asked our experts whether the development teams in their area are aware of one result or another in
the field. What we learned was that research on reliability has often stopped too early to impact the
intended consumers of the technologies we developed. It is common for work on reliability to stop after a
paper or two and perhaps a splashy demonstration of how a technology can work. But such a proof of
concept often leaves open the question of how the reliability technology can interoperate with the software
development tools and environments that have become common in industry. This represents a serious
obstacle to the ultimate use of the technique, because commercial software developers necessarily work
with commercial development products and seek to conform to industry standards.

This creates a quandry: one cannot expect a researcher to build a better version of a modern
operating system or communications architecture: such tasks are enormous and even very large companies
have difficulty successfully concluding them. So it is hardly surprising that research results are
demonstrated on a small scale. Thus, if industry is not eager to exploit the best ideas in an area like
reliability, there is no organization capable of accomplishing the necessary technology transition.

For example, we will look at an object-oriented technology called the Common Object Request
Broker Architecture, or CORBA, which has become extremely popular. CORBA is a structural
methodology: a set of rules for designing and building distributed systems so that they will be explicitly
described, easily managed, and so that components can be interconnected as easily as possible. One
would expect that researchers on security, fault-tolerance, consistency, and other properties would
embrace such architectures, because they are highly regular and designed to be extensible: adding a
reliability property to a CORBA application should be a very natural step. However, relatively few
researchers have looked at the specific issues that arise in adapting their results to a CORBA setting (we’ll
hear about some of the ones that have). Meanwhile, the CORBA community has placed early emphasis
on performance and interoperability, while reliability issues have been dealt with primarily by individual

Chapter1: Fundamentals 21

21

vendors (although, again, we’ll hear about some products that represent exceptions to the rule). What is
troubling is the sense of “disconnection” between the reliability community and its most likely users, and
the implication that reliability is not accorded a very high value by the vendors of distributed systems
products today.

Our study contributed towards a decision by the DoD to expand its investment in research on
technologies for building practical, survivable, distributed systems. This DoD effort will focus both on
developing new technologies for implementing survivable systems, and on developing new approaches to
hardening systems built using conventional distributed programming methodologies, and it could make a
big difference. But one can also use the perspective gained through a study such as this one to look back
over the existing state of the art, asking to what degree the technologies we already have “in hand” can, in
fact, be applied to the critical computing systems that are already being developed.

As it happened, I started work on this book during the period when this DoD study was
underway, and the presentation that follows is strongly colored by the perspective that emerged from it.
Indeed, the study has considerably impacted my own research project. I’ve come to the personal
conclusion is that the situation could be much better if developers were simply to begin to think hard
about reliability, and had greater familiarity with the techniques at their disposal today. There may not be
any magic formulas that will effortlessly confer reliability upon a distributed system, but at the same time,
the technologies available to us are in many cases very powerful, and are frequently much more relevant
to even off the shelf solutions than is generally recognized. We need more research on the issue, but we
also need to try harder to incorporate what we already know how to do into the software development tools
and environments on which the majority of distributed computing applications are now based. This said,
it is also clear that researchers will need to start paying more attention to the issues that arise in moving
their ideas from the laboratory to the field.

Lest these comments seem to suggest that the solution is in hand, it must be understood that there
are intangible obstacles to reliability that seem very subtle and yet rather pervasive. Above, it was
commented that the Internet and Web is in some ways “fundamentally” unreliable, and that industry
routinely treats reliability as a secondary consideration, to be addressed only in mature products and
primarily in a “fire fighting” mode, for example after a popular technology is somehow compromised by
hackers in a visible way. Neither of these will be easy problems to fix, and they combine to have far-
reaching implications. Major standards have repeatedly defered consideration of reliability issues and
security until “future releases” of the standards documents or prototype platforms. The message sent to
developers is clear: should they wish to build a reliable distributed system, they will need to overcome
tremendous obstacles, both internal to their companies and in the search for enabling technologies, and
will find relatively little support from the vendors who sell standard computing platforms.

The picture is not uniformly grim, of course. The company I founded in 1988, Isis Distributed
Systems, is one of a handful of small technology sources that do offer reliability solutions, often capable of
being introduced very transparently into existing applications. (Isis now operates as a division of Stratus
Computers Inc., and my own role is limited to occassional consulting). Isis is quite successful, as are
many of these companies, and it would be wrong to say that there is no interest in reliability. But these
isolated successes are in fact the small story. The big story is that reliability has yet to make much of a
dent on the distributed computing market.

•

The approach of this book is to treat distributed computing technology in a uniform way, looking
at the technologies used in developing Internet and Web applications, at emerging standards such as

Kenneth P. Birman - Building Secure and Reliable Network Applications22

22

CORBA, and at the technologies available to us for building reliable solutions within these settings. Many
texts that set this goal would do so primarily through a treatment of the underlying theory, but our
approach here is much more pragmatic. By and large, we treat the theory as a source of background
information that one should be aware of, but not as the major objective. Our focus, rather, is to
understand how and why practical software tools for reliable distributed programming work, and to
understand how they can be brought to bear on the broad area of technology currently identified with the
Internet and the Web. By building up models of how distributed systems execute and using these to prove
properties of distributed communication protocols, we will show how computing systems of this sort can
be formalized and reasoned about, but the treatment is consistently driven by thepractical implications of
our results.

One of the most serious concerns about building reliable distributed systems stems from more
basic issues that would underly any form of software reliability. Through decades of experience, it has
become clear that software reliability is aprocess, not aproperty. One can talk about design practices that
reduce errors, protocols that reconfigure systems to exclude faulty components, testing and quality
assurance methods that lead to increased confidence in the correctness of software, and basic design
techniques that tend to limit the impact of failures and prevent them from propagating. All of these
improve the reliability of a software system, and so presumably would also increase the reliability of a
distributed software system. Unfortunately, however, no degree of process ever leads to more than
empirical confidence in the reliability of a software system. Thus, even in the case of a non-distributed
system, it is hard to say “system X guarantees reliability property Y” in a rigorous way. This same
limitation extends to distributed settings, but is made even worse by the lack of a process comparable to
the one used in conventional systems. Significant advances are needed in the process of developing
reliable distributed computing systems, in the metrics by which we characterize reliability, the models we
use to predict their behavior in “new” configurations reflecting changing loads or failures, and in the
formal methods used to establish that a system satisfies its reliability goals.

For certain types of applications, this creates a profound quandary. Consider the design of an air
traffic control software system, which (among other services) provides air traffic controllers with
information about the status of air traffic sectors (Figure I-1). Web sophisticates may want to think of this
system as one that provides a web-like interface to a database of routing information maintained on a
server. Thus, the controller would be presented with a depiction of the air traffic situation, with push-
button style interfaces or other case-specific interfaces providing access to additional information about

primary

backup

client

client

client

client

Figure I-1: An idealized client-server system with a backup server for increased availability. The clients interact
with the primary server; in an air-trafficapplication, the server might provide information on the status of air-
traffic sectors, and the clients may be air traffic controllers responsible for routing decisions. The primary keeps
the backup up to date so that if a failure occurs, the clients can switch to the backup and resume operation with
minimal disruption.

Chapter1: Fundamentals 23

23

flights, projected tragectories, possible options for rerouting a flight, and so forth. To the air traffic
controller these are the commands supported by the system; the web user might think of them as active
hyperlinks. Indeed, even if air traffic control systems are not typical of what the Web is likely to support,
other equally critical applications are already moving to the Web, using very much the same
“programming model.”

A controller who depends upon a system such as this needs an absolute assurance that if the
service reports that a sector is available and a plane can be routed into it, this information is correct and
that no other controller has been given the same information in regard to routing some other plane. An
optimization criteria for such a service would be that it minimize the frequency with which it reports a
sector as being occupied when it is actually free. A fault-tolerance goal would be that the service remain
operational despite limited numbers of failures of component programs, and perhaps that it perform self-
checking operations so as to take a component off-line if it somehow falls out of synchronization with
regard to the states of other components. Such goals would avoid scenarios such as the one illustrated in
Figure I-2, where the system state has become dangerously inconsistent as a result of a network failure
that fools some clients into thinking the primary has failed, and similarly fools the primary and backup
into mutually believing one-another to have crashed.

Now, suppose that the techniques of thisbook were used to construct such a service, using the
best available technological solutions, combined with rigorous formal specifications of the software
components involved, and the best possible quality process. Theoretical results assure us that
inconsistencies such as the one in Figure I-2 cannot arise. Years of testing might yield a very high degree
of confidence in the system, yet the service remains a large, complex software artifact. Even minor
changes to the system, to add a feature, correct a very simple bug, or to upgrade the operating system

primary

backup

client

client

client

client

Figure I-2: A scenario that will arise in Chapter 4, when we consider the use of a standard remote procedure call
methodology to build a client-server architecture for a critical setting. In the case illustrated, some of the client
programs have become disconnected from the primary server, perhaps because of a transient network failure (one
that corrects itself after a brief period during which message loss rates are very high). In the resulting system
configuration, the primary and backup servers each consider themselves to be “in charge” of the system as a
whole. There are two clients still connected to the primary (black), one to the backup (white), and one is
completely disconnected (gray). Such a configuration exposes the application user to serious threats. In an air-
traffic control situation, it is easy to imagine that accidents could arise if such a situation arose and was
permitted to persist. Thegoal of this textbook is dual: to assist the reader in understanding why such situations
are a genuine threat in modern computing systems, and to study the technical options for building better systems
that can prevent such situations from arising. The techniques presented will sometimes have limitations, which
we will also work to quantify, and tounderstand any reliability implications. While many modern distributed
systems have overlooked reliability issues, our working hypothesis will be that this situation is changing rapidly,
and that the developer of a distributed system has no choice but to confront these issues and begin to use
technologies that respond to them.

Kenneth P. Birman - Building Secure and Reliable Network Applications24

24

version or hardware, could introduce serious problems long after the system was put into production. The
question then becomes: can complex software systems ever be used in critical settings? If so, are
distributed systems somehow “worse”, or are the issues similar?

At the core of the material treated in thisbook is the consideration seen in this question. There
may not be a single answer: distributed systems are suitable for some critical applications and ill-suited for
others. In effect, although one can build “reliable distributed software,” reliability has its limits and there
are problems that distributed software should probably not be used to solve. Even given an appropriate
technology, it is easy to build inappropriate solutions – and, conversely, even with an inadequate
technology, one can sometimes build critical services that are still useful in limited ways. The air traffic
example, described above, might or might not fall into the feasible category, depending on the detailed
specification of the system, the techniques used to implement the solution, and the overall process by
which the result is used and maintained.

Through the material in thisbook, the developer will be guided to appropriate design decisions,
appropriate development methodologies, and to an understanding of the reliability limits on the solutions
that result from this process. No book can expect to instill the sense of responsibility that the reader may
need to draw upon in order to make such decisions wisely, but one hopes that computer systems engineers,
like bridge builders and designers of aircraft, are highly motivated to build the best and most reliable
systems possible. Given such a motivation, an appropriate development methodology, and appropriate
software tools, extremely reliable distributed software can be implemented and deployed even into critical
settings. We will see precisely how this can be done in the chapters that follow.

•

Perhaps this book can serve a second purpose in accomplishing its primary one. Many highly
placed industry leaders have commented to me that until reliability is forced upon them, their companies
will nevertake the issues involved seriously. The investment needed is simply viewed as very large, and
likely to slow the frantic rate of progress on which computing as an industry has come to depend. I
believe that the tide is now turning in a way that will, in fact, force change, and that this text can
contribute to what will, over time, become an overwhelming priority for the industry.

Reliability is viewed as complex and costly, much as the phrase “robust bridge” conjures up a
vision of a massive, expensive, and ugly artifact. Yet, the Golden Gate Bridge is robust and is anything
but massive or ugly. To overcome this instinctive reaction, it will be necessary for the industry to come
to understand reliability as being compatible with performance, elegance, and market success. At the
same time, it will be important for pressure favoring reliability to grow, through demand by the consumers
for more reliable products. Jointly, such trends would create an incentive for reliable distributed software
engineering, while removing a disincentive.

As the general level of demonstrated knowledge concerning how to make systems reliable rises,
the expectation of society and government that vendors will employ such technologies is, in fact, likely to
rise. It will become harder and harder for corporations to cut corners by bringing an unreliable product to
market and yet advertising it as “fault-tolerant”, “secure”, or otherwise “reliable”. Today, these terms are
often used in advertising for products that are not reliable in any meaningful sense at all. One might
similarly claim that a building or a bridge was constructed “above code” in a setting where the building
code is completely ad-hoc. The situation changes considerably when the building code is made more
explicit and demanding, and bridges and buildings that satisify the standard have actually been built
successfully (and, perhaps, elegantly and without excessive added cost). In the first instance, a company
can easily cut corners; in the second, the risks of doing so are greatly increased.

Chapter1: Fundamentals 25

25

Moreover, at the time of this writing, vendors often seek to avoid software product liability using
complex contracts that stipulate the unsuitability of their products for critical uses, the near certainty that
their products will fail even if used correctly, and in which it is stressed that the customer accepts full
responsibility for the eventual use of the technology. It seems likely that as such contracts are put to the
test, many of them will be recognized as analogous to those used by a landlord who rents an dangerously
deteriorated apartment to a tenant, using a contract that warns of the possibility that the kitchen floor
could collapse without warning and that the building is a firetrap lacking adequate escape routes. A
landlord could certainly draft such a contract and a tenant might well sign it. But if the landlord fails to
maintain the building according to the general standards for a safe and secure dwelling, the courts would
still find the landlord liable if the floor indeed collapses. One cannot easily escape the generally accepted
standards for one’s domain of commercial activity.

By way of analogy, we may see growing pressure on vendors to recognize their fundamental
responsibilities to provide a technology base adequate to the actual uses of their technologies, like it or
not. Meanwhile, today a company that takes steps to provide reliability worries that in so doing, it may
have raised expectations impossibly high and henceexposeditself to litigation if its products fail. As
reliability becomes more and more common, such a company will be protected by having used the best
available engineering practices to build the most reliable product that it was capable of producing. If such
a technology does fail, one at least knows that it was not the consequence of some outrageous form of
negligence. Viewed in these terms, many of the products on the market today are seriously deficient.
Rather than believing it safer to confront a reliability issue using the best practices available, many
companies feel that they run a lower risk by ignoring the issue and drafting evasive contracts that hold
themselves harmless in the event of accidents.

The challenge of reliability, in distributed computing, is perhaps the unavoidable challenge of the
coming decade, just as performance was the challenge of the past one. By accepting this challenge, we
also gain new opportunities, new commercial markets, and help create a future in which technology is
used responsibly for the broad benefit of society. There will inevitably be real limits on the reliability of
the distributed systems we can build, and consequently there will be types of distributed computing
systems that should not be built because we cannot expect to make them adequately reliable. However, we
are far from those limits, and are in many circumstances deploying technologies known to be fragile in
ways that actively encourage their use in critical settings. Ignoring this issue, as occurs too often today, is
irresponsible and dangerous, and increasingly unacceptable. Reliability challenges us as a community: it
falls upon us now to respond.

Kenneth P. Birman - Building Secure and Reliable Network Applications26

26

A User’s Guide to This Book

This book was written with several types of readers in mind, and consequently weaves together
material that may be of greater interest to one type of reader with that aimed at another type of reader.

Practioners will find that the book has been constructed to be readable more or less sequentially
from start to finish. The first part of the book may well be familiar material to many practitioners, but we
try to approach this a perspective of understanding reliability and consistency issues that arise even when
using the standard distributed systems technologies. We also look at the important roles of performance
and modularity in building distributed software that can be relied upon. The second part of the book,
which focuses on the Web, is of a similar character. Even if experts in this area may be surprised by some
of the subtle reliability and consistency issues associated with the Web, and may find the suggested
solutions useful in their work.

The third part of the book looks squarely at reliability technologies. Here, a pragmatically-
oriented reader may want to skim through Chapters 13 through 16, which get into the details of some
fairly complex protocols and programming models. This material is included for thoroughness, and I
don’t think it is exceptionally hard to understand. However, the developer of a reliable system doesn’t
necessarily need to know every detail of how the underlying protocols work, or how they are positioned
relative to some of the theoretical arguments of the decade! The remainder of thebook can be read
without having worked through these chapters in any great detail. Chapters 17 and 18 look at the uses of
these “tools” through an approach based on what are called wrappers, however, and chapters 19-24 look
at some related issues concerning such topics as real-time systems, security, persistent data, and system
management. The content is practical and the material is intended to be of a hands-on nature. Thus, the
text is designed to be read more or less in order by this type of systems developer, with the exception of
those parts of Chapters 13 through 16 where the going gets a bit heavy.

Where possible, the text includes general background material: there is a section on ATM
networks, for example, that could be read independently of the remainder of the text, one on Corba, one
on message-oriented middleware, and so forth. As much as practical, I have tried to make these sections
free-standing and to index them properly, so that if one were worried about security exposures of the NFS
file system, for example, it would be easy to read about that specific topic without reading the entire book
as well. Hopefully, practitioners will find this text useful as a general reference for the technologies
covered, and not purely for its recommendations in the area of security and reliability.

Next, some comments directed towards other researchers and instructors who may read or chose
to teach from this text. I based the original outline of this treatment on a course that I have taught several
times at Cornell, to a mixture of 4’th year undergraduates, professional Master’s degree students, and 1’st
year Ph.D. students. To facilitate the development of course materials, I have placed my slides (created
using the Microsoft PowerPoint utility) on Cornell University’s public file server, where they can be
retrieved using FTP. (Copy the files from ftp.cs.cornell.edu/pub/ken/slides). The text also includes a set
of problems that can be viewed either as thought-provoking exercizes for the professional who wishes to
test his or her own understanding of the material, or as the basis for possible homework and course
projects in a classroom setting.

Any course based on this text should adopt the same practical perspective as the text itself. I
suspect that some of my research colleagues will consider the treatment broad but somewhat superficial;

Chapter1: Fundamentals 27

27

this reflects a decision by the author to focus primarily on “systems” issues, rather than on theory or
exhaustive detail on any particular topic. In making this decision, compromises had to be accepted: when
teaching from this text, it may be necessary to also ask the students to read some of the more technically
complete papers that are cited in subsections of interest to the instructor, and to look in greater detail at
some of the systems that are are mentioned only briefly here. On the positive side, however, there are few,
if any, introductory distributed systems textbooks that try to provide a genuinely broad perspective on
issues in reliability. In the author’s experience, many students are interested in this kind of material
today, and having gained a general exposure, would then be motivated to attend a much more theoretical
course focused on fundamental issues in distributed systems theory. Thus, while this textbook may not be
sufficient in and of itself for launching a research effort in distributed computing, it could well serve as a
foundation for such an activity.

It should also be noted that, in my own experience, the book long for a typical12-week semester.
Instructors who elect to teach from it should be selective about the material that will be covered,
particularly if they intend to treat chapters 13-17 in any detail. If one has the option of teaching over two
semesters, it might make sense to split the course into two parts and to include supplemental material on
the Web. I suspect that such a sequence would be very popular given the current interest in network
technology. At Cornell, for example, I tend to split this material into a more practical course that I teach
in the fall, aiming at our professional master’s degree students, followed by a more probing advanced
graduate course that I or one of my colleagues teach in the spring, drawing primarily on the original
research papers associated with the topics we cover. This works well for us at Cornell, and the
organization and focus of thebookmatch with such a sequence.

A final comment regarding references. To avoid encumbering the discussion with a high density
of references, the book cites relevant work the firsttime a reference to it arises in the text, or where the
discussion needs to point to a specific paper, but may not do so in subsequent references to the same work.
References are also collected at the end of each chapter into a short section on related readings. It is hard
to do adequate justice to such a large and dynamic area of research with any limited number of citations,
but every effort has been made to be fair and complete.

Kenneth P. Birman - Building Secure and Reliable Network Applications28

28

Part I: Basic Distributed Computing Technologies

Although our treatment is motivated by the emergence of the Global Information Superhighway and
the World Wide Web, this first part of the book focuses on the general technologies on which any
distributed computing system relies. We review basic communication options, and the basic software
tools that have emerged for exploiting them and for simplifying the development of distributed
applications. In the interests of generality, we cover more than just the specific technologies embodied
in the Web as it exists at the time of this writing, and in fact terminology and concepts specific to the
Web are not introduced until Part II of the book. However, even in this first part, we do discuss some
of the most basic issues that arise in building reliable distributed systems, and we begin to establish the
context within which reliability can be treated in a systematic manner.

Chapter1: Fundamentals 29

29

1. Fundamentals

1.1 Introduction

Reduced to the simplest terms, adistributed computing systemis a set of computer programs, executing
on one or more computers, and coordinating actions by exchangingmessages. A computer networkis a
collection of computers interconnected by hardware that directly supports message passing. Most
distributed computing systems operate over computer networks, although this is not always the case: one
can build a distributed computing system in which the components execute on a single multi-tasking
computer, and one can also build distributed computing systems in which information flows between the
components by means other than message passing. Moreover, as we will see in Chapter 24, there are new
kinds of parallel computers, called “clustered” servers, that have many attributes of distributed systems
despite appearing to the user as a single machine built using rack-mounted components.

We will use the termprotocol in reference to an algorithm governing the exchange of messages,
by which a collection of processes coordinate their actions and communicate information among
themselves. Much as aprogram is the set of instructions, and aprocessdenotes the execution of those
instructions, a protocol is a set of instructions governing the communication in a distributed program, and
a distributed computing system is the result of executing some collection of such protocols to coordinate
the actions of a collection of processes in a network.

This textbook is concerned withreliability in distributed computing systems. Reliability is a very
broad term that can have many meanings, including:

• Fault-tolerance:The ability of a distributed computing system to recover from component failures
without performing incorrect actions.

• High availability: In the context of a fault-tolerant distributed computing system, the ability of the
system to restore correct operation, permitting it to resume providing services during periods when
some components have failed. A highly available system may provided reduced service for short
periods of time while reconfiguring itself.

• Continuous availability. A highly available system with a very “small” recovery time, capable of
providing uninterrupted service to its users. The reliability properties of a continuously available
system are unaffected or only minimally affected by failures.

• Recoverability:Also in the context of a fault-tolerant distributed computing system, the ability of
failed components to restart themselves and rejoin the system, after the cause of failure has been
repaired.

• Consistency:The ability of the system to coordinate related actions by multiple components, often
in the presence of concurrency and failures. Consistency underlies the ability of a distributed
system to emulate a non-distributed system.

• Security: The ability of the system to protect data, services and resources against misuse by
unauthorized users.

• Privacy. The ability of the system to protect the identity and locations of its users from
unauthorized disclosure.

• Correct specification:The assurance that the system solves the intended problem.

• Correct implementation:The assurance that the system correctly implements its specification.

Kenneth P. Birman - Building Secure and Reliable Network Applications30

30

• Predictable performance:The guarantee that a distributed system achieves desired levels of
performance, for example data throughput from source to destination, latencies measured for
critical paths, requests processed per second, etc.

• Timeliness:In systems subject to “real-time” constraints, the assurance that actions are taken
within the specified time bounds, or are performed with a desired degree of temporal
synchronization between the components.

Underlying many of these issues are questions of tolerating failures. Failure, too, can have many
meanings:

• Halting failures: In this model, a process or computer either works correctly, or simply stops
executing and crashes without taking incorrect actions, as a result of failure. As the model is
normally specified, there is no way to detect that the process has halted except by timeout: it stops
sending “keep alive” messages or responding to “pinging” messages and hence other processes can
deduce that it has failed.

• Fail-stop failures:These areaccurately detectablehalting failures. In this model, processes fail by
halting. However, other processes that may be interacting with the faulty process also have a
completely accurate way to detect such failures. For example, a fail-stop environment might be
one in which timeouts can be used to monitor the status of processes, andno timeout occurs unless
the process being monitored has actually crashed. Obviously, such a model may be unrealistically
optimistic, representing an idealized world in which the handling of failures is reduced to a pure
problem of how the system should react when a failure is sensed. If we solve problems with this
model, we then need to ask how to relate the solutions to the real world.

• Send-omission failures:These are failures to send a message that, according to the logic of the
distributed computing systems, should have been sent. Send-omission failures are commonly
caused by a lack of buffering space in the operating system or network interface, which can cause a
message to be discarded after the application program has sent it but before it leaves the sender’s
machine. Perhaps surprisingly, few operating systems report such events to the application.

• Receive-omission failures:These are similar to send-omission failures, but occur when a message
is lost near the destination process, often because of a lack of memory in which to buffer it or
because evidence of data corruption has been discovered.

• Network failures:These occur when the network loses messages sent between certain pairs of
processes.

• Network partitioning failures:These are a more severe form of network failure, in which the
network fragments into disconnected subnetworks, within which messages can be transmitted, but
between which messages are lost. When a failure of this sort is repaired, one talks aboutmerging
the network partitions. Network partitioning failures are a common problem in modern distributed
systems, hence we will have a lot to say about them later in Part III of this text.

• Timing failures:These occur when a temporal property of the system is violated, for example when
a clock on a computer exhibits a value that is unacceptably far from the values of other clocks, or
when an action is taken too soon or too late, or when a message is delayed by longer than the
maximum tolerable delay for a network connection.

• Byzantine failures:This is a term that captures a wide variety of “other” faulty behaviors,
including data corruption, programs that fail to follow the correct protocol, and even malicious or
adversarial behaviors by programs that actively seek to force a system to violate its reliability
properties.

Chapter1: Fundamentals 31

31

An even more basic issue underlies all of these: the meaning of computation, and the model one
assumes for communication and coordination in a distributed system. Some examples of models include
these:

• Real-world networks:These are composed of workstations, personal computers, and other sort of
computing devices interconnected by hardware. Properties of the hardware and software components
will often be known to the designer, such as speed, delay, and error frequencies for communication
devices, latencies for critical software and scheduling paths, throughput for data generated by the
system and data distribution patterns, speed of the computer hardware, accuracy of clocks, etc. This
information can be of tremendous value in designing solutions to problems that might be very hard –
or impossible – in a completely general sense.

 A specific issue that will emerge as being particularly important when we consider guarantees of
behavior in Part III of the text concerns the availability, or lack, of accurate temporal information.
Until the late 1980’s. the clocks built into workstations were notoriously inaccurate, exhibiting high
drift rates that had to be overcome with software protocols for clock resynchronization. There are
limits on the quality of synchronization possible in software, and this created a substantial body of
research and lead to a number of competing solutions. In the early 1990’s, however, the advent of
satellite time sources as part of the global positioning system (GPS) changed the picture: for the price
of an inexpensive radio receiver, any computer could obtain accurate temporal data, with resolution in
the sub-millisecond range. The degree to which GPS recievers actually replace quartz-based time
sources remains to be seen, however. Thus, real-world systems are notable (or notorious) in part for
having temporal information, but of potentially low quality.

• Asynchronous computing systems:This is a very simple theoretical model used to approximate one
extreme sort of computer network. In this model, no assumptions can be made about the relative
speed of the communication system, processors and processes in the network. One message from a
processp to a processq may be delivered in zero time, while the next is delayed by a million years.
The asynchronous model reflects an assumption about time, but not failures: given an asynchronous
model, one can talk about protocols that tolerate message loss, protocols that overcome fail-stop
failures in asynchronous networks, etc. The main reason for using the model is to prove properties
about protocols for which one makes as few assumptions as possible. The model is very clean and
simple, and it lets us focus on fundamental properties of systems without cluttering up the analysis by
including a great number of practical considerations. If a problem can be solved in this model, it can
be solved at least as well in a more realistic one. On the other hand, the converse may not be true: we
may be able to do things in realistic systems by making use of features not available in the
asynchronous model, and in this way may be able to solve problems in real systems that are
“impossible” in ones that use the asynchronous model.

• Synchronous computing systems:Like the asynchronous systems, these represent an extreme end of
the spectrum. In the synchronous systems, there is a very strong notion of time that all processes in
the system share. One common formulation of the model can be thought of as having a system-wide
gong that sounds periodically; when the processes in the system hear the gong, they run one “round”
of a protocol, reading messages from one another, sending messages that will be delivered in the next
round, and so forth. And these messagesalwaysare delivered to the application by the start of the
next round, or not at all.

 Normally, the synchronous model also assumes bounds on communication latency between
processes, clock skew and precision, and other properties of the environment. As in the case of an
asynchronous model, the synchronous one takes an extreme point of view because this simplifies
reasoning about certain types of protocols. Real-world systems are not synchronous – it is impossible
to build a system in which actions are perfectly coordinated as this model assumes. However, if one
proves the impossibility of solving some problem in the synchronous model, or proves that some
problem requires at least a certain number of messages in this model, one has established a sort of
lower-bound. In a real-world system, things can only get worse, because we are limited to “weaker”

Kenneth P. Birman - Building Secure and Reliable Network Applications32

32

assumptions. This makes the synchronous model a valuable tool for understanding how hard it will be
to solve certain problems.

• Parallel shared memory systems:An important family of system are based on multiple processors that
share memory. Communication is by reading and writing shared memory locations. Clearly, the
shared memory model can be emulated using message passing, and can be used to implement
message communication. Nonetheless, because there are important examples of real computers that
implement this model, there is considerable theoretical interest in the modelper-se.Unfortunately,
although this model is very rich and a great deal is known about it, it would be beyond the scope of
this textbook toattempt to treat the model in any detail.

1.2 Components of a Reliable Distributed Computing System

Reliable distributed computing systems are assembled from basic building blocks. In the simplest terms,
these are just processes and messages, and if our interest was purely theoretical, it might be reasonable to
stop at that. On the other hand, if we wish to apply theoretical results in practical systems, we will need to
work from a fairly detailed “real” understanding of how practical systems actually work. In some ways,
this is unfortunate, because real systems often include mechanisms that are deficient in ways that seem
simple to fix, or inconsistent with one another, but have such a long history (or are so deeply embedded
into standards) that there may be no way to “improve” on the behavior in question. Yet, if we want to
actually build reliable distributed systems, it is unrealistic to insist that we will only do so in idealized
environments that support some form of theoretically motivated structure. The real world is heavily
committed to standards, and the task of translating our theoretical insights into practical tools that can
interplay with these standards is probably the most important challenge faced by the computer systems
engineer.

It is common to think of a distributed system as operating over a layered set of network services.
Each layer corresponds to a software abstraction or hardware feature, and maybe implemented in the
application program itself, in a library of procedures to which the program is linked, in the operating
system, or even in the hardware of the communications device. As an illustration, here is the layering of
the ISOOpen Systems Interconnection (OSI)protocol model [Tan88,Com91,CS91,CS93,CDK94]:

• Application: This is the application program itself, up to the points at which it performs
communication operations.

• Presentation:This is the software associated with placing data into messages in a format that can be
interpreted by the destination process(es) to which the message will be sent, and for extracting data
from messages in the destination process.

• Session:This is the software associated with maintaining connections between pairs or sets of
processes. A session may have reliability properties and may require some form of initialization or
setup, depending on the specific setting with which the user is working. In the OSI model, any
reliability properties are implemented by the session software, and lower layers of the hierarchy are
permitted to be unreliable, e.g. by losing messages.

• Transport: The transport layer is responsible for breaking large messages into smaller packets that
respect size limits imposed by the network communication hardware. On the incoming side, the
transport layer reassembles these packets into messages, discarding packets that are identified as
duplicates, or messages for which some constituent packets were lost in transmission.

• Network:This is the layer of software concerned with routing and low-level flow control on networks
composed of multiple physical segments interconnected by what are called “bridges” and “gateways.”

• Data link: The data link layer is normally part of the hardware that implements a communication
device. This layer is responsible for sending and receiving packets, recognizing packets destined for
the local machine and copying them in, discarding corrupted packets, and other “interface level”
aspects of communication.

Chapter1: Fundamentals 33

33

• Physical: The physical layer is concerned with representation of packets on the “wire”, e.g. the
hardware technology for transmitting individual bits and the protocol for gaining access to the wire if
it is shared by multiple computers.

Application The program using the communication connection

Presentation Software to encode application data into messages, and to decode on reception.

Session The logic associated with guaranteeing end-to-end properties such as reliability.

Transport Software concerned with fragmenting big messages into small packets

Network Routing functionality, usually limited to small or fixed-size packets

Data-link The protocol used to represent packets on the wire

Table 1: ISO Protocol Layers

It is useful to distinguish the types of guarantees provided by the various layers as beingend-to-
endguarantees in the case of the session, presentation and application layer andpoint-to-pointguarantees
for layers below these. The distinction is important in complex networks where a message may need to
traverse many links to reach its destination. In such settings, a point-to-point property is one that holds
only on a per-hop basis: for example, the data-link protocol is concerned with a single hop taken by the
message, but not with its overall route or the guarantees that the application may expect from the
communication link itself. The session, presentation and application layers, in contrast, impose a more
complex logical abstraction on the underlying network, with properties that hold between the end-points
of a communication link that may physically extend over a complex substructure. In Part III of this
textbook we will concern ourselves with increasingly elaborate end-to-end properties, until we finally
extend these properties into an completely encompassing distributed communication abstraction that
embraces the distributed system as a whole and provides consistent behavior and guarantees throughout.
And, just as the ISO layering builds its end-to-end abstractions over point-to-point ones, so will we need
to build these more sophisticated abstractions over what are ultimately point-to-point properties.

As seen in Figure 1-1, each layer is logically composed of transmission logic and the
corresponding reception logic. In practice, this often corresponds closely to the implementation of the
architecture: for example, most session protocols operate by imposing a multiple session abstraction over a
shared (or “multiplexed”)link-level connection. The packets generated by the various higher level session
protocols can be conceived of as merging into a single stream of packets that are treated by the IP link
level as a single “customer” for its services. Nonetheless, one should not necessarily assume that the
implementation of a layered protocol architecture involves some sort of separate module for each layer. To
maximize performance, the functionality of a layered architecture is often compressed into a single piece
of software, and in some cases layers may be completely bypassed for types of messages where the layer
would take no action – for example, if a message is very small, the OSI transport layer wouldn’t need to
fragment it into multiple packets, and one could imagine an implementation of the OSI stack specialized
for small messages, that omits the transport layer. Indeed, the pros and cons of layered protocol
architecture have become a major topic of debate in recent years [CT87, AP93, KP93, KC94, BD95].

Kenneth P. Birman - Building Secure and Reliable Network Applications34

34

Although the OSI layering is probably the best known, the notion of layering communication
software is pervasive, and there are many other examples of layered architectures and layered software
systems. Later in this textbook we will see ways in which the OSI layering is outdated, because it doesn’t
directly address multi-participant communication sessions and doesn’t match very well with some new
types of communication hardware, such as asynchronous transfer-mode (ATM) switching systems. In
discussing this point we will see that more appropriate layered architectures can be constructed, although
they don’t match the OSI layering very closely. Thus, one can think of layering as a methodology, or
layering as a very specific thing, matched to the particular layers of the OSI hierarchy. The former
perspective is a popular one that is only gaining importance with the introduction of object-oriented
distributed computing environments, which have a natural form of layering associated with object classes
and subclasses. The later form of layering has probably become hopelessly incompatible with standard
practice by the time of this writing, although many companies and governments continue to “require” that
products comply with it.

Application (send-side) ↓↓↓↓ ↑↑↑↑ Application (receive-side)

Presentation ↓↓↓↓ ↑↑↑↑ Presentation

Session ↓↓↓↓ ↑↑↑↑ Session

Transport ↓↓↓↓ ↑↑↑↑ Transport

Network ↓↓↓↓ ↑↑↑↑ Network

Data-link ↓↓↓↓ ↑↑↑↑ Data-link

(hardware bit level) →→→→ (hardware bit level)

Figure 1-1: Data flow in an ISO protocol stack. Each sending layer is invoked by the layer above it and passes data
off to the layer below it, and conversely on the receive side. In a logical sense, however, each layer interacts with its
peer on the remote side of the connection. For example, the sender-side session layer may add a header to a message
that the receive-side session layer strips off.

Stepping back somewhat, it can be argued that a layered communication architecture is primarily
valuable as adescriptive abstraction– a model that captures the essential functionality of a real
communication system but doesn’t need to accurately reflect its implementation. The idea of abstracting
the behavior of a distributed system in order to concisely describe it or to reason about it is a very
important one. However, if the abstraction doesn’t accurately correspond to the implementation, this also
creates a number of problems for the system designer, who now has the obligation to develop a
specification and correctness proof for the abstraction, to implement, verify and test the corresponding
software, and to undertake an additional analysis that confirms that the abstraction accurately models the
implementation.

It is easy to see how this process can break down; for example, it is nearly inevitable that changes
to the implementation will have to be made long after a system has been deployed. If the development
process is genuinely this complex, it is likely that the analysis of overall correctness will not be repeated

Chapter1: Fundamentals 35

35

for every such change. Thus, from the perspective of a user, abstractions can be a two-edged sword. They
offer appealing and often simplified ways to deal with a complex system, but they can also be simplistic
or even incorrect. And this bears strongly on the overall theme of reliability. To some degree, the very
process of cleaning up a component of a system in order to describe it concisely can compromise the
reliability of a more complex system in which that component is used.

Throughout the remainder of thisbook, we will often have recourse to models and abstractions,
in much more complex situations than the OSI layering. This will assist us in reasoning about and
comparing protocols, and in proving properties of complex distributed systems. At the same time,
however, we need to keep in mind that this whole approach demands a sort of “meta approach”, namely a
higher level of abstraction at which we can question the methodology itself, asking if the techniques by
which we create reliable systems are themselves a possible source of unreliability. When this proves to be
the case, we need to take the next step as well, asking what sorts of systematic remedies can be used to
fight these types of reliability problems.

Can “well structured” distributed computing systems be built that can tolerate the failures of their
own components? In layerings like the OSI one, this issue is not really addressed, which is one of the
reasons that the OSI layering won’t work well for our purposes in this text. However, the question is
among the most important ones that will need to be resolved if we want to claim that we have arrived at a
workable methodology for engineering reliable distributed computing systems. A methodology, then,
must address descriptive and structural issues as well as practical ones such as the protocols used to
overcome a specific type of failure or to coordinate a specific type of interaction.

1.2.1 Communications Technology

The most basic communications technology in any distributed system is the hardware support for message
passing. Although there are some types of networks that offer special properties, most modern networks
are designed to transmit data inpacketswith some fixed but small maximum size. Each packet consists of
a header, which is a data structure containing information about the packet, its destination and route, etc.
It contains abody, which is the bytes that make up the content of the packet. And it may contain atrailer,
which is a second data structure that is physically transmitted after the header and body, and would
normally consist of a checksum for the packet that the hardware computes and appends to it as part of the
process of transmitting the packet.

When a user’s message is transmitted over a network, the packets actually sent ‘‘on the wire’’ include
headers and trailers, and may have a fixed
maximum size. Large messages are sent as
multiple packets. For example, Figure 1-2
illustrates a message that has been fragmented
into three packets, each containing a header and
some part of the data from the original message.
Not all fragmentation schemes include trailers,
and in the figure no trailer is shown.

Modern communication hardware often
permits large numbers of computers to share a
single communication “fabric”. For this reason, it
is necessary to specify the address to which a
message should be transmitted. The hardware
used for communication therefore will normally
support some form ofaddressing capability, by
which the destination of a message can be

User’s Message

header data

header data

header data

Figure 1-2: Large messages are fragmented for
transmission

Kenneth P. Birman - Building Secure and Reliable Network Applications36

36

identified. More important to most software developers, however, are addresses supported by the transport
services available on most operating systems. Theselogical addressesare a representation of location
within the network, and are used to route packets to their destinations. Each time a packet makes a “hop”
over a communications link, the sending computer is expected to copy the hardware address of the next
machine in the path into the outgoing packet. Within this textbook, we assume that each computer has a
logical address, but will have little to say about hardware addresses.

On the other hand, there are two hardware addressing features that have important implications
for higher level communication software. These are the ability of the hardware tobroadcastandmulticast
messages

A broadcast is a way of sending a message so that it will be delivered to all computers that it
reaches. This may not be all the computers in a network, because of the various factors that can cause a
receive omission failure to occur, but for many purposes, absolute reliability is not required. To send a
hardware broadcast, an application program generally places a special logical address in an outgoing
message that the operating system maps to the appropriate hardware address. The message will only reach
those machines connected to the hardware communications device on which the transmission occurs, so
the use of this feature requires some knowledge of network communications topology.

A multicast is a form of broadcast that communicates to a subset of the computers that are
attached to a communications network. To use a multicast, one normally starts by creating a new
“multicast group address” and installing it into the hardware interfaces associated with a communications
device. Multicast messages are then sent much as a broadcast would be, but are only accepted, at the
hardware level, at those interfaces that have been instructed to install the group address to which the
message is destined. Many network routing devices and protocols watch for multicast packets and will
forward them automatically, but this is rarely attempted for broadcast packets.

Chapter 2 discusses some of the most common forms of communication hardware in detail.

1.2.2 Basic transport and network services

The layer of software that runs over the communications layer is the one most distributed systems
programmers deal with. This layer hides the properties of the communications hardware from the
programmer. It provides the ability to send and receive messages that may be much larger than the ones
supported by the underlying hardware (although there is normally still a limit, so that the amount of
operating system buffering space needed for transport can be estimated and controlled). Th transport layer
also implements logical addressing capabilities by which every computer in a complex network can be
assigned a unique address, and can send and receive messages from every other computer.

Although many transport layers have been proposed, one set of standards has been adopted by
almost all vendors. This standard defines the so-called “Internet Protocol” or IP protocol suite, and
originated in a research network called the ARPANET that was developed by the U.S. government in the
late 1970’s [Tan88,Com91,CDK94]. A competing standard was introduced by the ISO organization in
association with the OSI layering cited earlier, but has not gained the sort of ubiquitous acceptance of the
IP protocol suite, and there are additional proprietary standards that are widely used by individual vendors
or industry groups, but rarely seen outside their community. For example, most PC networks support a
protocol called NETBIOS, but this protocol is not common in any other type of computing environment.

Chapter1: Fundamentals 37

37

Transport services generally offer at least the features of the underlying communication
hardware. Thus, the most widely used communication services include a way to send a message to a
destination, to broadcast a message, and to multicast a message. Unlike the communications hardware
versions of these services, however, transport-layer interfaces tend to work with logical addresses and to
automatically route messages within complex environments that may mix multiple forms of
communication hardware, or include multiple communication subnetworks bridged by routing devices or
computers.

All of this is controlled using
routing tables,like the one shown below.
A routing table is a data structure local
to each computer in a network – each
computer has one, but the contents will
generally not be identical from machine
to machine. The table is indexed by the
logical address of a destination
computer, and entries contain the
hardware device on which messages
should be transmitted (the “next hop” to
take). Distributed protocols for
dynamically maintaining routing tables
have been studied for many years, and
seek to minimize the number of hops a
message needs to take to reach its

destination but to also spread load evenly and route around failures or congested nodes. In practice,
however, static routing tables are probably more common: these are maintained by a system administrator
for the network and generally offer a single route from a source to each destination. Chapter 3 discusses
some of the most common transport services in more detail.

Destination Route Via Forwarded By Estimated distance

128.16.71.* Outgoing link 1 (direct) 1 hop

sender

receiversender

receiver

sender

receiver

routed transport

Figure 1-3: The routing functionality of a modern transport protocol conceals the network topology from the
application designer.

128.16.72.3128.16.72.1 128.16.72.2

128.16.71.2128.16.71.1 128.16.71.3

128.16.70.1

128.16.73.0

Figure 1-4: A typical network may have several interconnected
subnetworks and a link to the internet

Kenneth P. Birman - Building Secure and Reliable Network Applications38

38

128.16.72.* Outgoing link 2 128.16.70.1 2 hops

128.16.70.1 Outgoing link 2 (direct) 1 hop

..*.* Outgoing link 2 128.16.70.1 (infinite)

Figure 1-5: A sample routing table, such as might be the one used by computer 128.16.73.0 in Figure 1-4.

1.2.3 Reliable transport software and communication support

A limitation of the basic message passing services discussed in Section 1.2.2 is that they operate at the
level of individual messages, and provide no guarantees of reliability. Messages can be lost for many
reasons, including link failures, failures of intermediate machines on a complex multi-hop route, noise
that causes corruption of the data in a packet, lack of buffering space (the most common cause), and so
forth. For this reason, it is common to layer a reliability protocol over the message passing layer of a
distributed communication architecture. The result is called areliable communication channel. This layer
of software is the one that the OSI stack calls the “session layer”, and corresponds to the TCP protocol of
the Internet. UNIX programmers may be more familiar with the notion from their use of “pipes” and
“streams” [Rit84].

The protocol implementing a reliable communication channel will typically guarantee that lost
messages will be retransmitted and that out-of-order messages will be resequenced and delivered in the
order sent. Flow control and mechanisms that choke back the sender when data volume becomes excessive
are also common in protocols for reliable transport [Jac88]. Just as the lower layers can support one-to-
one, broadcast and multicast communication, these forms of destination addressing are also potentially
interesting in reliable transport layers. Moreover, some systems go further and introduce additional
reliability properties at this level, such as authentication (a trusted mechanism for verifying the identity of
the processes at the ends of a communication connection), or security (trusted mechanisms for concealing
the data transmitted over a channel from processes other than the intended destinations). In Chapter 3 we
will begin to discuss these options, as well as some very subtle issues concerned with how and when
connections report failure.

1.2.4 “Middleware”: Software tools, utilities, and programming languages

The most interesting issues that we will consider in this textbook are those relating to programming
environments and tools that live in the middle, between the application program and the communications
infrastructure for basic message passing and support for reliable channels.

Examples of important middleware services include the naming service, the file system, the time
service, and the security “key” services used for authentication in distributed systems. We will be looking
at all of these in more detail below, but we review them briefly here for clarity.

A naming service is a collection of user-accessible directories that map from application names
(or other selection criteria)to network addresses of computers or programs. Name services can play many
roles in a distributed system, and represent an area of intense research interest and rapid evolution. When
we discuss naming, we’ll see that the whole question of what a name “represents” is itself subject to
considerable debate, and raises important questions about notions of abstraction and services in distributed
computing environments. Reliability in a name service involves issues such as trust – can one trust the
name service to truthfully map a name to the correct network address? How can one know that the object

Chapter1: Fundamentals 39

39

at the end of an address is the same one that the name service was talking about? These are fascinating
issues, and we will have a lot to say about them later (see, for example, Section 7.2).

From the outset, though, the reader may want to consider that if an intruder breaks into a system
and is able to manipulate the mapping of names to network addresses, it will be possible to interpose all
sorts of “snooping” software components in the path of communication from an application to the services
it is using over the network. Such attacks are now common on the Internet and reflect a fundamental
issue, which is that most network reliability technologies tend to trust the lowest level mechanisms that
map from names to addresses and that route messages to the correct host when given a destination
address.

A time service is a mechanism for keeping the clocks on a set of computers closely synchronized
and close to “real time”. Time services work to overcome the inaccuracy of inexpensive clocks used on
many types of computers, and are important in applications that either coordinate actions using real-time,
or that make use of time for other purposes, such as to limit the lifetime of a cryptographic key or to
timestamp files when they are updated. Much can be said about time in a distributed system, and we will
spend a considerable portion of this textbook on issues that revolve around the whole notion of “before”
and “after” and their relation to intuitive notions of time in the real world. Clearly, the reliability of a time
service will have important implications for the reliability of applications that make use of time, so time
services and associated reliability properties will prove to be important in many parts of this textbook.

Authentication services are, perhaps surprisingly, a new technology that is lacking in most
distributed computing environments. These services provide trustworthy mechanisms for determining
who sent a message, for making sure that the message can only be read by the intended destination, and
for restricting access to private data so that only authorized access can occur. Most modern computing
systems evolved from a period when access control was informal and based on a core principle of trust
among users. One of the really serious implications is that distributed systems that want to superimpose a
security or protection architecture on a heterogeneous environment must overcome a pervasive tendency to
accept requests without questioning them, to believe the user-id information including in messages
without validating it, and to route messages wherever they may wish to go.

If banks worked this way, one could walk up to a teller in a bank that one had never visited
before and pass that person a piece of paper requesting a list of individuals that have accounts in the
branch. Upon studying the response and learning that “W. Gates” is listed, one could then fill out an
account balance request in the name of W. Gates, asking how much money is in that account. And after
this, one could withdraw some of that money, up to the bank’s policy limits. At no stage would one be
challenged: the identification on the various slips of paper would be trusted for each operation. Such a
world model may seem bizarrely trusting, but it is the model from which modern distributed computing
systems emerged.

1.2.5 Distributed computing environments

An important topic around which much of this book is oriented concerns the development of general
purpose tools from which specialized distributed systems can be constructed. Such tools can take many
forms, ranging from the purely conceptual – for example, a methodology or theory that offers useful
insight into the best way to solve a problem or that can help the developer confirm that a proposed
solution will have a desired property. A tool can offer practical help at a very low level, for example by
eliminating the relatively mechanical steps required to encode the arguments for a remote procedure call
into a message to the server that will perform the action. A tool can embody complex higher level
behavior, such as a protocol for performing some action or overcoming some class of errors. Tools can

Kenneth P. Birman - Building Secure and Reliable Network Applications40

40

even go beyond this, taking the next step by offering mechanisms to control and manage software built
using other tools.

It has become popular to talk about distributed systems that supportdistributed operating
environments– well integrated collections of tools that can be used in conjunction with one another to
carry out potentially complex distributed programming tasks. Examples of distributed programming
environments are the Open Network Computing (ONC) environment of SUN Microsystems, The
Distributed Computing (DCE) of Open Software Foundation, the various CORBA-compliant
programming tools that have become popular among C++ programmers who work in distributed settings,
and the Isis Toolkit and the Horus system; these last two being systems developed by the author of this
text and his colleagues, which will be discussed in Chapter 18.

Distributed systems architectures undertake to step even beyond the notion of a distributed
computing environment. An architecture is a general set of design principles and implementation
standards by which a collection of “compliant” systems can be developed. In principle, multiple systems
that implement the same architecture will interoperate, so that if vendors implement competing solutions,
the resulting software can still be combined into a single system with components that might even be able
to communicate and cooperate with one another. The Common Request Broker, or CORBA, is probably
the best known distributed computing architecture; it is useful for building systems using an object-
oriented approach in which the systems are developed as modules that cooperate. Thus, CORBA is an
architecture, and the various CORBA-based products that comply with the architecture are distributed
computing environments.

1.2.6 End-user applications

One might expect that the “end of the line” for a layered distributed systems architecture would be the
application level, but this is not necessarily the case. A distributed application might also be some sort of
operating system service built over the communications tools that we have been discussing. For example,
the distributed file system is an application in the sense of the OSI layering, but the user of a computing
system might think of the file system as an operating system service over which applications can be
defined and executed. Within the OSI layering, then, an application is any free-standing solution to a
well defined problem that presents something other than a communications abstraction to its users. The
distributed file system is just one example among many. Others include message bus technologies,
distributed database systems, electronic mail, network bulletin boards, and the World-Wide-Web. In the
near future, computer supported collaborative work systems and multimedia digital library systems are
likely to emerge as further examples in this area.

A limitation of a layering like the OSI hierarchy is that it doesn’t really distinguish these sorts of
applications, which provide services to higher level distributed applications, from what might be called
end-user solutions, namely programs that operate over the communications layer to directly implement
commands for a human being. One would like to believe that there is much more structure to a
distributed air traffic control system than to a file transfer program, yet the OSI hierarchy views both as
examples of ‘‘applications.’’ We lack a good classification system for the various types of distributed
applications.

In fact, even complex distributed applications may merely be components of even larger-scale
distributed systems – one can easily imagine a distributed system that uses a distributed computing toolkit
to integrate an application that exploits distributed files with one that stores information into a distributed
database. In an air-traffic control environment, availability may be so critical that one is compelled to run
multiple copies of the software concurrently, with one version backing up the other. Here, the entire air
traffic control system is at one level a complex distributed application in its own right, but at a different

Chapter1: Fundamentals 41

41

‘‘meta’’ level, is just a component of an over-arching reliability structure visible on a scale of hundreds of
computers located within multiple air traffic centers.

1.3 Critical Dependencies
One of the major challenges to building reliable distributed systems is that computer networks have
evolved to have a great many “dependencies” on a variety of technologies. Some of the major ones are
identified in Figure 1-6, however the set is growing steadily and this figure is not necessarily complete.
Critical applications often introduce new servers and critical components not shown here, nor does the
figure treat dependencies on hardware components of the distributed infrastructure, such as the
communication network itself, power supply, or hardware routers. Moreover, the telecommunications
infrastructure underlying a typical network application is itself a complex network with many of the same
dependencies internal to itself, together with additional ones such as the databases used to resolve mobile
telephone numbers or to correctly account for use of network communication lines.

Fortunately, many of these services are fairly reliable, and one can plan around potential outages
of such critical services as the network information service. The key issue is to understand the technology
dependencies that can impact reliability issues for a specific application and to program solutions into the
network to detect and work around potential outages. In this textbook we will be studying technical
options for taking such steps. The emergence of integrated environments for reliable distributed
computing will, however, require a substantial effort from the vendors offering the component
technologies: an approach in which reliability is left to the application inevitably overlooks the problems
that can be caused when such applications are forced to depend upon technologies that are themselves
unreliable for reasons beyond the control of the developer.

Kenneth P. Birman - Building Secure and Reliable Network Applications42

42

1.4 Next Steps

While distributed systems are certainly layered, Figure 1-6 makes it clear that one should question the
adequacy of any simple layering model for describing reliable distributed systems. We noted, for example,
that many governments have mandated the use of the ISO layering for description of distributed software.
Yet there are important reliability technologies that require structures inexpressible in this layering, and it
is unlikely that those governments intended to preclude the use of reliable technologies. More broadly, the
sorts of complex layerings that can result when tools are used to support applications that are in turn tools
for still higher level applications are not amenable to any simple description of this nature. Does this
mean that users should refuse the resulting complex software structures, because they cannot be described
in terms of the standard? Should they accept the perspective that software should be used but not
described, because the description methodologies seem to have lagged the state of the art? Or should
governments insist on new standards each time a new type of system finds it useful to step outside of the
standard?

Questions such as these may seem narrow and almost pointless, yet they point to a deep problem.
Certainly, if we are unable to even describe complex distributed systems in a uniform way, it will be very
difficult to develop a methodology within which one can reason about them and prove that they respect
desired properties. On the other hand, if a standard proves unwieldy and constraining, it will eventually
become difficult for systems to adhere to it.

Web Technologies

Web
Server

Public
key DB

Search
Engine

Web
browser

Telecomm. Infrastructure

Internet routing

TCP/UDPDomain Name Service Network Information Service

Clock Synchronization

Authorization Server
The Operating System

TCP failure reporting

X11 display server

IP broadastfunctions

IP Technologies

rlogin /
telnet

Email

rcp / ftp
uucp

Net
“News”

File servers

Database servers

Locking services(lockd)F/S Cache Coherence

D/B Cache Coherence

Corba Support

ORB

IDL

ENS

Object
Factory

Figure 1-6: Technologies on which a distributed application may "depend" in order to provide correct, reliable
behavior. The figure is organized so that dependencies are roughly from top to bottom (the lower technologies being
dependent upon the upper ones), although a detailed dependency graph would be quite complex. Failures in any of
these technologies can result in visible application-level errors, inconsistency, security violations, denial of service,
or other problems. These technologies are also interdependent in complex and often unexpected ways. For example,
some types of UNIX workstations will hang (freeze) if the NIS (network information service) server becomes
unavailable, even if there are duplicate NIS servers that remain operational. Moreover, such problems can impact
an application that has been running normally for an extended period and is not making any explicit new use of the
server in question.

Chapter1: Fundamentals 43

43

Perhaps for these reasons, there has been little recent work on layering in the precise sense of the
ISO hierarchy: most researchers view this as an unpromising direction. Instead, the notions of structure
and hierarchy seen in ISO have reemerged in much more general and flexible ways: the object class
hierarchies supported by technologies in the CORBA framework, the layered protocol stacks supported in
operating systems like UNIX or thex-Kernel, or in systems such as Horus. We’ll be reading about these
uses of hierarchy later in the textbook, and the ISO hierarchy remains popular as a simple but widely
understood framework within which to discuss protocols.

1.5 Additional Reading
General discussion of network architectures and the ISO hierarchy: [Tan88, Com91, CS91, CS93,
ANSA91a, ANSA91b, ANSA89, CD90, CDK94, XTP95]. Pros and Cons of layered architectures:
[CT87, RST88, RST89, Ous90, AP93, KP93, KC94, BD95]. Reliable stream communication: [Rit84,
Jac88, Tan88, Com91, CS91, CS93, CDK94]. Failure Models and Classification: [Lam78b, Lam84,
Ske82b, FLP85, ST87, CD90, Mar90, Cri91a, CT91, CHT92, GR93, SM94].

Kenneth P. Birman - Building Secure and Reliable Network Applications44

44

2. Communication Technologies
Historically, it has rarely been necessary to understand details of the hardware components from which a
computing system was constructed if one merely wishes to develop software for it. The pressure to
standardize operating systems, and the presentation of devices within them, created a situation in which it
sufficed to understand the way that the operating system abstracted a device in order to use it correctly.

For example, there are a great many designs for computer disk storage units and the associated
device controllers. Each design offers its own advantages and disadvantages when compared with the
others, and any systems architect charged with selecting a data storage device would be wise to learn
about the state of the art before making a decision. Yet, from a software perspective, device attributes are
largely hidden. The developer normally considers a disk to be a device on which files can be stored,
having various layout parameters that can be tuned to optimize I/O performance, and characterized by a
set of speed and reliability properties. Developers of special classes of applications, such a multi-media
image servers, may prefer to work with a less abstracted software interface to the hardware, exploiting
otherwise hidden features at the cost of much greater software complexity. But for the normal user, one
disk is much like any other.

To a considerable extent, the same is true for computer networking hardware. There are a
number of major classes of communications devices, differing in speed, average accesslatency, maximum
capacity (packets per second, bytes of data per second), support for special addressing modes, etc.
However, since most operating systems implement the lowest layers of the OSI hierarchy as part of the
device driver or communications abstraction of a system, applications can treat these devices
interchangeably. Indeed, it can be quite difficult to determine just what the communications topology of a
system actually is, because many operating systems lack services that would permit the user to query for
this information.

In the remainder of this chapter, we review communication hardware in very superficial terms,
giving just enough detail so that the reader should be familiar with technology names and properties, but
without getting into the level of technical issues that would be important in designing the network
topology for a demanding enterprise.

Throughout this chapter, the reader will notice that we use the termpacketto refer to the type of
messages that can be exchanged between communications devices. The distinction between a packet and a
message, throughout this book, is that a message is a logical object generated by the application for
transmission to one or more destinations. A message may be quite large, and can easily exceed thelimits
imposed by the operating system or the communications hardware. For transmission, messages are
therefore fragmented into one or more packets, if necessary. A packet, then, is a hardware level message
that often respects hardware-imposed size and format constraints, and may contain just a fragment of an
application-level message.

2.1 Types of Communication Devices

Communications devices can be coarsely partitioned into functional classes:

• Point to point:This is a class of devices implementing packet or data passing between two computers.
A good example is a pair of modems that communicate over a telephone wire. The Internet is
composed of point to point communications devices that form a wide-area architecture, to which
individual local-area networks are connected through “Internet Gateway” devices.

Chapter2: Communication Technologies 45

45

• Multiple access:This class of devices permit many computers to share a single communications
medium. For example, using the popularethernetarchitecture, a single coaxial cable can be used to
wire a floor of a building or some other moderately large area. Computers can be connected to this
cable by “tapping” into it, which involves inserting a special type of needle through the outer cover of
the coaxial conductor and into the signal conducting core. The device interfaces implement a protocol
in hardware to avoid collisions, which occur if several machines attempt to send packets at the same
time.

• Mesh, tree, and crossbar architectures:This class of devices consists of point to point links that
connect the individual computer to some form of switching mechanism. Messages are typically very
small, and are routed at hardware link speeds through the switches and to their destinations.
Connections of this sort are most often used in parallel computers, but are also being adapted for very
high speed communication in clusters of more conventional computing nodes.

• ATM switches:Asynchronous Transfer Mode, or ATM, is an emerging standard for packet-switching
between computers, over communications links and switches of varied speeds and properties. ATM is
based on a star architecture, in which optical fibers connect individual computers to switches; these
behaving much like the communication buses seen in parallel computers. ATM is designed for very
high speed communications, including optical fiber that can operate at speeds of 2.5Gbits per second
or more. Even the first generation systems are extremely fast, giving performance of 155Mbits/second
for individual connections (“OC3” in the ATM terminology).

• Bridges:A bridge orrouter (we’ll use the term bridge to avoid confusion with the notion of routing) is
a special-purpose communications computer that links multiple networking devices, by forwarding the
packets received on either device onto the other. Bridges introduce somelatency, which is called a
“hop delay”, but normally operate as fast as the devices they interconnect. Bridges tend to lose packets
if a destination network is heavily loaded and data cannot be forwarded as fast as it is received from
the originating network. Bridges can be programmed to forward messages selectively; this is often
exploited to avoid a problem whereby the load on a network can grow without limit as the size of the
network is increased – the load on a bridged network is the sum of the load local to a segment, and the
load forwarded over the bridge, and can be much less than the sum of the loads on all segments.

2.2 Properties
Communications devices vary enormously in their properties, although this variability is often concealed
by the layers of systems software through which applications operate. In simple terms, communications
devices can be “rated” by a series of metrics:

• The maximum data throughput of the device.Speed is normally measured in terms of the number of
bytes of data per second that can be transmitted. Vendors often quote figures in terms of bits per
second, referring to the performance seen “on the wire” as information is transmitted. In either case,
one should be aware that speed figures often do not include overhead such as start and stop bits,
headers and trailers, and mandatory dead-space between packets. These factors can greatly reduce the
effective performance of a device, making it difficult to obtain even as much as half of the maximum
theoretical performance from an application program. Indeed, it is not uncommon for the most easily
used communication primitives to offer performance that is an order of magnitude or more poorer than
that of the hardware! This often forces the application designer to chose between performance and
software complexity.

• The number of packets per second that can be sent.Many devices have a start-up overhead associated
with sending packets, and for some devices the sending interface must wait for access to the
communications medium. These factors combine to limit the number of packets per second that a
device can send, and when packets can be of variable size, can also imply that to achieve maximum
data throughput, the application must send large packets.

Kenneth P. Birman - Building Secure and Reliable Network Applications46

46

• The end-to-end latency of the device.This is a measure of how much time elapses from when a packet
starts to be transmitted and when it is first presented to the receiving machine, and is generally an
quoted as an average figure, that will actually vary depending on the degree to which the network is
loaded at the time a packet is transmitted.

• The reliability of the device.All commonly used communications hardware includes automatic
mechanisms for detection and rejection of corrupted data. These methods operate using checksums
(CRC computations) and are not infallible, but in practice it is normal to treat communications
hardware as failing only by packet loss. The reliability of a communications technology is a measure of
the percentage of packets that can be lost in the interface or on the wire, as an average. Average
reliability is often very high – not uncommonly, hardware approaches perfect reliability. However, it
should be kept in mind that an average loss rate may not apply in an exceptional situation, such as an
interface that is experiencing intermittent failures, a poorly connected ethernet tap, or a pattern of use
that stresses some sort of uncommon loss problem associated with a technology. From the perspective
of the builder of a reliable distributed system, these factors imply that a communications device should
be considered somewhat bimodal: having one reliability level in the normal case, but perhaps having a
second, much poorer reliability level, in exceptional cases that the system may need to tolerate or
reconfigure around.

• Security.This is a measure of the extent to which the device protects the contents of packets from
eavesdroppers. Some devices achieve very high levels of security in hardware; others are completely
open to eavesdropping and require that measures be taken in software if data security is desired.

• Privacy. This is a measure of the extent to which the device conceals the source and destination of
packets from eavesdroppers. Few devices offer privacy properties, and many security features are
applied only to the data portion of a packet, and hence offer little help if privacy is desired. However,
there are technologies for which privacy is a meaningful concept. For example, on an ethernet,
interfaces can be programmed to respond to a small set of addresses within a very large space of
potential addresses. This feature potentially allows the destination of a packet to be concealed from
listeners. On the other hand, the ethernet standard never permits the address of the sender to be
reprogrammed, and consequently will always reveal the address of the communications interface from
which a packet was sent.

2.3 Ethernet

At the time of this writing, ethernet is the most widely used communications technology for local-area
networks (networks within a limited physical region, such as a single floor of a building). Bridged
ethernets are the most common technology for networks within small enterprises, such as a large company
at a single site.

As summarized earlier, the basic technology underlying an ethernet is a shared coaxial cable, on
which signals are transmitted using a modulation technology similar to that of a radio. Packets have a
fixed maximum size of 1400 bytes, but the size can be varied as long as this limit is not exceeded. In
practice, software that runs over Ethernet will often be limited to approximately 1024 bytes of “payload”
in each packet; the remaining 376 bytes are then available for headers, trailers, and data representation
information. The ethernet itself, however, treats the entire object as data. The specific encoding used to
represent packets will not be important to us here, but the basic idea is that each interface is structured
into a sending side, and a listening side, and the latter is continuously active.

To receive a message, the listening side waits until it senses a packet header. The incoming
packet is then copied to a memory buffer internal to the ethernet interface. To be accepted, a packet must
have a valid checksum, and must specify an destination address that the interface has been
preprogrammed to accept. Specifically, each interface has some number of programmable address
registers, consisting of a “pattern mask” and a corresponding “value mask”, each 32-bits in length. The

Chapter2: Communication Technologies 47

47

pattern mask specifies bits within the destination address that must exactly match the corresponding bits
of the value mask. A pattern mask that selects for all bits of the address will require an exact match
between the packet and the value mask. A pattern mask that selects no bits will match every incoming
packet – an interface with such an address loaded is said to be inpromiscuous mode.

A received packet is copied into
memory in the host computer, or
discarded if no memory for an incoming
packet is available. The host is then
interrupted. Most ethernet interfaces
permit the host to enqueue at least two
memory regions for incoming messages,
and some permit the host to chain a list
of memory regions. Most also permit
multiple (address,mask) pairs to be
loaded into the interface, often as many
as 64.

To send a packet, the ethernet
interface waits for a pause between

packets – a time when its listening side is idle. It then transmits the packet, but also listens to its own
transmission. The idea is that if two ethernets both attempt to send at the same time, a collision will occur
and the messages will overwrite one another, causing a noise burst. The receive logic will either fail
immediately, or the checksum test will fail, since anything the interfaces read back in will be damaged by
the collision, and the sending logic will recognize that a problem has occurred. The hardware implements
anexponential back-offalgorithm, in which the sending side delays for a randomly selected period of time
within an interval that starts at a small value but doubles with each successive collision up to a maximum
upper value. Although the probability of a collision on a first attempt to send can be high when the
ethernet becomes loaded, exponential back-off has been shown to give very good average access behavior
with excellent fairness properties1. Because collisions are often detectable within a few bits after starting
to send, ethernets lose little data to collisions even under heavy load, and the back-off algorithm can be
shown to provide very uniform delays for access to the medium over very large numbers of senders and
very large excess loads.

As a general rule, although a single interface can send multiple packets, a small amount of dead
space will separate each packet in the stream, because a small amount of work by the operating system is
normally needed before each successive packet can be transmitted, and because the ethernet hardware
logic requires a small amount of time to compare the checksum on the echo of the outgoing packet, and to
trigger an interrupt to the device driver, before starting to send a new packet. In contrast, when more than
one interface is used to send data, sequences of “back to back” packets can be generated, potentially
forcing the interface to accept several packets in a row withalmost no delay between them. Obviously, this
can result in packet loss if the chain of memory for incoming messages is exhausted. However, precisely
because an ethernet is shared, the probability that any one interface will be the destination for any large
number of back-to-back packets is low. File system servers and bridges, which are more likely to receive

1 Developers of real-time computing systems, for settings such as process-control, have developed deterministic
back-off algorithms that have extremely predictable behavior under heavy load. In these approaches, the loaded
behavior of an ethernet is completely characterized -- provided, of course, that all interfaces use the same
algorithm.

host:, mask:

input buffer

input buffer

input buffer

output buffer

Figure 2-1: Ethernet interface with one queued output buffer and
three available input buffers. A table of up to 64 (host,mask) pairs
controls input selectivity.

Kenneth P. Birman - Building Secure and Reliable Network Applications48

48

back-to-back packets, compensate for this by using long chains of buffers for incoming messages, and
implementing very lightweight logic for dealing with received messages as quickly as possible.

An interesting feature of the ethernet is that it supports both broadcast and multicast in hardware.
The two features are implemented in the same way. Before any communication is undertaken, the ethernet
interface is preloaded with a special address – one that is the same on all machines within some set. Now,
if a packet that contains this address is transmitted, all machines in that set will receive a copy, because all
of their interfaces will detect a match.

To support broadcast, a special address is agreed upon and installed on all interfaces in the entire
network, typically at the time the machine is firstbooted. Broadcast packets will now be received by every
machine, offering a way to distribute the same data to a great many machines at very low cost. However,
one should keep in mind that each interface individually computes the checksum, and hence that some
interfaces may discard a packet as corrupted, while others accept it. Moreover, some machines may lack
input buffers and hence may be incapable of accepting packets that are correctly received by the interface.
Thus, ethernet broadcast can potentially send a single packet to all machines on a network, but in practice
the technology is not a reliable one.

Multicast uses precisely the same approach, except that a subset of machines pick a group
address that is unique within the network and install this into their interfaces. Messages destined to a
multicast address will be accepted (up to checksum failures) by just these machines, and will be ignored by
others. The maximum number of multicast addresses that an interface can support varies from vendor to
vendor. As in the case of broadcast, hardware multicast is reasonably reliable but not absolutely so.

Earlier, we commented that even a very reliable communications device may exhibit modal
behavior whereby reliability can be much poorer for certain communication patterns. One example of this
problem is termed thebroadcast- or multicast-storm, and arises when broadcast or multicast is used by
multiple senders concurrently. In this situation, it becomes much more likely that a typical network
interface will actually need to accept a series of back-to-back packets – with sufficiently many senders,
chains of arbitrary length can be triggered. The problem is that in this situation the probability that two
back to back messages are destined to the same machine, or set of machines, becomes much higher than
for a more typical point-to-point communication load. As a result, the interface may run out of buffers for
incoming packets and begin to drop them.

In a broadcast storm situation, packet loss rises to very high levels, because network interfaces
become chronically short of memory for incoming packets. The signature of a broadcast storm is that
heavy use of broadcast or multicast by multiple senders causes a dramatic increase in the packet loss rate
throughout the network. Notice that the problem will affect any machine that has been programmed to
accept incoming broadcasts, not just the machines that make meaningful use of the packets after they
arise. Fortunately, the problem is uncommon if just a single sender is initiating the broadcasts, because a
single sender will not generate back-to-back packets.

2.4 FDDI

FDDI is a multi-access communication technology based upon a ring architecture, in which interfaces are
interconnected by shielded “twisted pair” wiring. An interface plays a dual role:

• As a repeater, an FDDI interface receives messages from the interface to its left, accepts those
messages that match an incoming address pattern (similar to ethernet), and then (accepted or not),

Chapter2: Communication Technologies 49

49

forwards the message to the interface on the right. Forwarding occurs bit by bit or in small blocks of
bits, so the delay associated with forwarding packets can be very low.

• As a transmitter, an FDDI interface waits until it has permission to initiate a packet, which occurs
when there is no other packet being forwarded, and then sends its packet to the interface on its right.
When the packet has completed its trip around the ring, the transmitter receives it from the interface to
the left and deletes it. Status information is available in the packet trailer, and can be used to
immediately retransmit a packet that some intended destination was unable to accept because of a
shortfall of memory or because it detected a checksum error.

Kenneth P. Birman - Building Secure and Reliable Network Applications50

50

Finally, FDDI has a built-in fault-
tolerance feature: if a link fails,FDDI will
automatically reconfigure itself to route around it,
as illustrated in

Figure 2-2. In contrast, a severed
ethernet will either become inoperative, or will
partition into two or more segments that are
disconnected from one-another..

FDDI throughput (150Mbits/second) is
about 15 times greater than standard 10-Mbit
ethernet, although high speed 100-Mbit ethernet
interfaces have recently been introduced that can
approach FDDI performance. Latency for an
FDDI ring, in particular, is poorer than that of an

ethernet, because of the protocol used to wait for permission to send, and because of delays associated with
forwarding the packet around the ring. In complex environments, ethernets or FDDI rings may be broken
into segments, which are connected by some form of bridge or routing device; these environments have
latency and throughput properties that are more difficult to quantify, because the topology of the
interconnection path between a pair of computers can significantly impact the latency and throughput
properties of the link.

2.5 B-ISDN and the Intelligent Network

B-ISDN is a standard introduced by telecommunications switching companies for advanced telephone
services. ISDN stands for “integrated services digital network”, and is based on the idea of supporting a
communications system that mixes digital voice with other types of digital data, including video. The “B”
stands for broadband and is a reference to the underlying data links, which operate at the extremely high
speeds needed to handle these kinds of data.

p s trq

p s trq

Figure 2-2: An FDDI ring is able to heal itself if a link
breaks; as seen in the lower example.

Chapter2: Communication Technologies 51

51

Today, the telephone system is relatively inflexible: one can telephone from more or less any
telephone to any other, but the telephone numbers correspond to static locations. To the degree that
mobile telephones are used, one calls the mobile device using a scheme in which requests are routed
through the home location; thus, were a traveller to attempt to use a cellular telephone in Japan to
contact another cellular traveller in Japan, the phone call might require participation of their home
telephone companies in upstate New York.

In the future, however, a great variety of innovative new telephone-based communication services
will become available. These will include telecommunications services that mix various forms of
media: voice, image, computer data, and abstract data types capable of performing computations or
retrieving desired information. Mobility of users and services will greatly increase, as will the
sophistication of the routing mechanisms used to track down the entity to which a call should be
connected. Thus, our Japanese travellers will be connected through some direct service, and a call
for a home-delivered pizza will be routed to a delivery truck in the neighborhood. Moreover,
whereas contemporary telecommunications systems are very “different” from computer
communications architectures such as the World Wide Web, these will be increasingly integrated in
the future and will eventually merge into a single infrastructure with the properties of both.

In many communities, ISDN will bring high bandwidth connections into the home, at reasonable
cost. This development will revolutionize use of the Web, which is currently bandwidth limited
“from the curb to the home” and hence only useable in limited ways from home computing
platforms.

High speed communication is already available in the workplace, however, and this trend is already
creating innovative new businesses. It is widely expected that a boom in commerce associated with
the communications infrastructure will follow as it reaches the average household. For example, one
can imagine small companies that offer customized services to a world-wide clientel over the
network, permitting entreprenurial activities that will tap into an immense new market. The
computer user of the future may well use the machine to shop in Paris, decorate his or her
apartment with original African art comissioned directly from the artist, and visit potential travel
destinations through the network before booking a hotel room. France’s experience with Minitel is
often cited as a sign that such a trend can succeed: the Web, with its richer user environment, is
similar to Minitel but could reach a much larger community.

Of course, the promise of this new world comes with challenges. As we come to rely more and more
heavily on innovative communications technologies for day to day activities and these new forms of
information-based work and commerce grow in importance, the reliability requirements placed on
the underlying technology infrastructure will also grow. Thus, there is a great potential for
economic growth and increased personal freedom associated with the new communications
technologies, but also a hidden implication that the software implementing such systems be secure,
private, fault-tolerant, consistent in its behavior, and trustworthy.

These properties do not hold for many of the prototype systems that have so excited the public, and a
significant change in the mindset of the developers of such applications will be needed before
reliability of this sort becomes routine. For example, fraudulent use of telephone systems has grown
with the introduction of new forms of flexibility in the system, and attacks of all forms on secure or
critical information-based applications have risen steadily in recent years. These range from
malicious or careless insiders whose actions disrupt critical systems, to aggressive attacks by
hackers, terrorists, and other agents whose goal is to cause damage or to acquire secrets.

Figure 2-3: Challenges of an emerging information superhighway include providing guarantees of privacy,
availability, consistency, security, and trustworthiness in a wide range of innovative applications. Prototypes of the
new services that may someday become critical often lack the sorts of strongguarantees that will eventually be
required if these types of systems are to play the role that is envisioned by the public and governments.

Kenneth P. Birman - Building Secure and Reliable Network Applications52

52

Layered over B-ISDN, which is an infrastructure standard, is the emergingintelligent network,
an elaborate software architecture for supporting next-generation telecommunications services. Such
services have been slower to emerge than had originally been predicted, and many companies have
become cautious in accessing intelligent network prospects for the near-term future. However, it may
simply be the case that the intelligent network has been harder to deploy than was originally predicted:
there are many signs that the long-predicted revolution in telecommunications is really happening today.

The B-ISDN architecture is elaborate, and the intelligent network is even more so. Our focus on
reliability of general distributed computing systems prevents us from discussing either in any detail here.
However, one interesting feature of B-ISDN merits mention. Although destination addresses in ISDN are
basically telephone numbers, ISDN interprets these in a very flexible manner that permits the architecture
to do far more than just creating connections between telephones and other paired devices. Instead, the
ISDN architecture revolves around the notion of an intelligent switching system: each packet follows a
route from the source through a series of switches to its destination. When this route is first established,
each switch maps the destination telephone number to an appropriate outgoing connection (to another
switch), to a local point of data delivery (if this switch serves the destination), or to aservice. The decision
is made by looking up the telephone number in a database, using a software procedure that can be
reprogrammed to support very elaborate behaviors.

For example, suppose that a telephone company wanted to offer a special communications service
to computer vendors in some metropolitan area. This service would offer a single telephone number to
each vendor and would arrange to automatically route a call to the mobile telephone of the computer
repair person physically closest to the caller.

To implement this service using B-ISDN, the telephone company would make use of a database it
already maintains, giving the locations of mobile telephone units. As a call is routed into a switch, the
company would sense that the destination is one of the special telephone numbers assigned to this new
service, and would invoke a database search algorithm programmed to lookup the physical address of the
caller, and then match this with the locations of service vehicles for the called organization to pick the
closest one, routing the call to the computer vendor’s switchboard if the lookup fails. Although timing
constraints for this process are demanding (actions are generally required within a small fraction of a
second), modern computers are becoming fast enough to work within these sorts of deadlines. And, one
can imagine a great number of other B-ISDN services, including message centers, automatic playback of
pre-recorded information, telephone numbers that automatically patch into various types of public or
private information bases, and so forth. The potential is huge.

B-ISDN is also illustrative of how advances in telecommunications switching technology are
creating new demands for reliable distributed software services. It is common to require that telephone
systems maintain extremely high levels of reliability – a typical requirement is that not more than one call
in 100,000 be dropped, and downtime for an entire switch may be limited to seconds per year or less –
switches are increasingly used to support critical services such as 911 emergency numbers and
communication between air traffic controllers and police vehicles. caller.

Reliability of this sort has many implications for developers of advanced switching systems. The
switches themselves must be paired, and protocols for doing so have been standardized as part of an
architecture called Signalling System 7 (SS7), which is gradually entering into world-wide use. The co-
processors on which intelligent services reside are often constructed using fault-tolerant computing
hardware. The software that implements the switching logic must be self-managing, fault-tolerant, and
capable of supporting on-line upgrades to new versions of applications and of the operating system itself.
And, because many services require some form of distributed database, such as the database of location
information that arose in the telephone dispatch example above, sets of coprocessors will often need to be

Chapter2: Communication Technologies 53

53

organized into distributed systems that manage dynamically changing replicated data and take actions in a
consistent but decentralized manner. For example, routing a call may require independent routing
decisions by the service programs associated with several switches, and these decisions need to be based
upon consistent data or the call will eventually be dropped, or will be handled incorrectly.

B-ISDN, then, and the intelligent network that it is intended to support, represent good examples
of settings where the technology of reliable distributed computing is required, and will have a major
impact on society as a whole. Given solutions to reliable distributed computing problems, a vast array of
useful telecommunication services will become available starting in the near future and continuing over
the decades to come. One can imagine a telecommunications infrastructure that is nearly ubiquitous and
elegantly integrated into the environment, providing information and services to users without the
constraints of telephones that are physically wired to the wall and computer terminals or televisions that
weigh many pounds and are physically attached to a company’s network. But the dark side of this vision is
that without adequate attention to reliability and security, this exciting new world will also be erratic and
failure-prone.

2.6 ATM
Asynchronous Transfer Mode, or ATM, is an emerging technology for routing small digital packets in
telecommunications networks. When used at high speeds, ATM networking is the “broadband” layer
underlying B-ISDN; thus, an article describing a B-ISDN service is quite likely to betalking about an
application running on an ATM network that is designed using the B-ISDN architecture.

ATM technology is considered especially exciting both because of its extremely high bandwidth
and low latencies, and because this connection to B-ISDN represents a form of direct covergence between
the telecommunications infrastructure and the computer communications infrastructure. With ATM, for
the first time, computers are able to communicate directly over the data transport protocols used by the
telephone companies. Over time, ATM networks will be more and more integrated with the telephone
system, offering the possibility of new kinds of telecommunications applications that can draw
immediately upon the world-wide telephone network. Moreover, ATM opens the door for technology
migration from those who develop software for computer networks and distributed systems into the
telecommunications infrastructure and environment.

The packet switches and computer interfaces needed in support of ATM standards are being
deployed rapidly in industry and research settings, with performance expected to scale from rates
comparable to those of a fast ethernet for first-generation switches to gigabit rates in the late 1990’s and
beyond. ATM is defined as a routing protocol for very small packets, containing 48 bytes of payload data
with a 5-byte header. These packets traverse routes that must be pre-negotiated between the sender,
destination, and the switching network. The small size of the ATM packets leads some readers to assume
that ATM is not really “about” networking in the same sense as an ethernet, with its 1400-byte packets.
In fact, however, the application programmer normally would not need to know that messages are being
fragmented into such a small size, tending instead to think of ATM in terms of its speed and low latency.
Indeed, at the highest speeds, ATM cells can be thought of almost as if they were fat bits, or single words
of data being transferred over a backplane.

Kenneth P. Birman - Building Secure and Reliable Network Applications54

54

ATM typically operates over
point-to-point fiber-optic cables, which
route through switches. Thus, a typical
ATM installation might resemble the one
shown in Figure 2-4. Notice that in this
figure, some devices are connected directly
to the ATM network itself and not handled
by any intermediary processors. The
rationale for such an architecture is that
ATM devices may eventually run at such
high data rates2 (today, an “OC3” ATM
network operates at 155Mbits/second
(Mbps), and future “OC24” networks will
run at a staggering 1.2Gbps) that any type
of software intervention on the path
between the data source and the data sink
would be out of the question. In such
environments, application programs will
more and more be relegated to a
supervisory and control role, setting up the
links and turning the devices on and off,
but not accessing the data flowing through
the network in a direct way. Not shown
are adaptors that might be used to interface
an ATM directly to an ethernet or some
other local area technology, but these are
also available on the market today and will
play a big role in many furture ATM
installations. These devices allow an ATM

network to be attached to an ethernet, token ring, orFDDI network, with seamless communication
through the various technologies. They should be common by late in the 1990’s.

The ATM header consists of a VCI (2 bytes, giving the virtual circuit id), a VPI (1 byte giving
the virtual path id), a flow-control data field for use in software, a packet type bit (normally used to
distinguish the first cell of a multi-cell transmission from the subordinate ones, for reasons that will
become clear momentarily), a cell “loss priority” field, and a 1-byte error-checking field that typically
contains a checksum for the header data. Of these, the VCI and the packet type (PTI) bit are the most
heavily used, and the ones we discuss further below. The VPI is intended for use when a number of
virtual circuits connect the same source and destination; it permits the switch to multiplex such
connections in a manner that consumes less resources than if the VCI’s were used directly for this
purpose. However, most current ATM networks set this field to 0, and hence we will not discuss it further
here.

There are three stages to creating and using an ATM connection. First, the process initiating the
connection must construct a “route” from its local switch to the destination. Such a route consists of a
path of link addresses. For example, suppose that each ATM switch is able to accept up to 8 incoming
links and 8 outgoing links. The outgoing links can be numbered 0-7, and a path from any data source to

2 ATM data rates are typically quoted on the basis of the maximum that can be achieved through any single link.
However, the links multiplex through switches and when multiple users are simultaneously active, the maximum
individual performance may be less than the maximum performance for a single dedicated user. ATM bandwidth
allocation policies are an active topic of research.

switch

switch
switch

switch switch

camera

video server

Figure 2-4: Client systems (gray ovals) connected to an ATM
switching network. The client machines could be PC’s or
workstations, but can also be devices, such as ATM frame
grabbers, file servers, or video servers. Indeed, the very high
speed of some types of data feeds may rule out any significant
processor intervention on the path from the device to the
consuming application or display unit. Over time, software for
ATM environments may be more and more split into a
“managerial and control” component that sets up circuits and
operates the application and a “data flow” component that moves
the actual data without direct program intevension. In contrast
to a standard computer network, an ATM network can be
integrated directly into the networks used by the telephone
companies themselves, offering a unique route towards eventual
convergence of distributed computing and telecommunications.

Chapter2: Communication Technologies 55

55

any data sink can then be expressed as a series of 3-bit numbers, indexing each successive hop that the
path will take. Thus, a path written as 4.3.0.7.1.4 might describe a route through a series of 6 ATM
switches. Having constructed this path, a virtual circuit identifier is created and the ATM network is
asked to “open” a circuit with that identifier and path. The ATM switches, one by one, add the identifier
to a table of open identifiers and record the corresponding out-link to use for subsequent traffic. If a
bidirectional link is desired, the same path can be set up to operate in both directions. The method
generalizes to also include multicast and broadcast paths. The VCI, then, is the virtual circuit identifier
used during the open operation.

Having described this, however, it should be stressed that many early ATM applications depend
upon what are called “permanent virtual channels”, namely virtual channels that are preconfigured by a
systems administrator at the time the ATM is installed, and changed rarely (if ever) thereafter. Although
it is widely predictated that dynamically created channels will eventually dominate the use of ATM, it
may turn out that the complexity of opening channels and of ensuring that they are closed correctly when
an endpoint terminates its computation or fails will emerge as some form of obstacle that presents this
step from occuring.

In the second stage, the application program can send data over the link. Each outgoing message
is fragmented, by the ATM interface controller, into a series of ATM packets or “cells”. These cells are
prefixed with the circuit identifier that is being used (which is checked for security purposes), and the
cells then flow through the switching system to their destination. Most ATM devices will discard cells in
a random manner if a switch becomes overloaded, but there is a great deal of research underway on ATM
scheduling and a variety of so-calledquality of serviceoptions will become available over time. These
might include guarantees of minimum bandwidth, priority for some circuits over others, or limits on the
rate at which cells will be dropped. Fields such as the packet type field and the cell loss priority field are
intended for use in this process.

It should be noted, however, that just as many early ATM installations use permanent virtual
circuits instead of supporting dynamically created circuits, many also treat the ATM as an ethernet
emulator, and employ a fixed bandwidth allocation corresponding roughly to what an ethernet might
offer. It is possible to adopt this approach because ATM switches can be placed into an emulation mode
in which they support broadcast, and early ATM software systems have taken advantage of this to layer
the TCP/IP protocols over ATM much as they are built over an ethernet. However, fixed bandwidth
allocation is inefficient, and treating an ATM as if it were an ethernet somewhat misses the point!
Looking to the future, most reseachers expect this emulation style of network to gradually give way to
direct use of the ATM itself, which can support packet-switched multicast and other types of
communication services. Over time, “value-added switching” is also likely to emerge as an important
area of competition between vendors; for example, one can easily imagine incorporating encryption and
filtering directly into ATM switches and in this way offering what are calledvirtual private network
services to users (Chapters 17 and 19).

The third stage of ATM connection management is concerned with closing a circuit and freeing
dynamically associated resources (mainly, table entries in the switches). This occurs when the circuit is
no longer needed. ATM systems that emulate IP networks or that use permanent virtual circuits are able
to skip this final stage, leaving a single set of connections continuously open, and perhaps dedicating
some part of the aggregate bandwidth of the switch to each such connection. As we evolve to more direct
use of ATM, one of the reliability issues that may arise will be that of detecting failures so that any ATM
circuits opened by a process that later crashed will be safely and automatically closed on its behalf.
Protection of the switching network against applications that erroneously (or maliciously) attempt to
monopolize resources by opening a great many virtual circuits will also need to be addressed in future
systems.

Kenneth P. Birman - Building Secure and Reliable Network Applications56

56

ATM poses some challenging software issues. Communication at gigabit rates will require
substantial architectural evolution and may not be feasible over standard OSI-style protocol stacks,
because of the many layers of software and protocols that messages typically traverse in these
architectures. As noted above, ATM seems likely to require that video servers and disk data servers be
connected directly to the “wire”, because the overhead and latency associated with fetching data into a
processor’s memory before transmitting it can seem very large at the extremes of performance for which
ATM is intended. These factors make it likely that although ATM will be usable in support of networks of
high performance workstations, the technology will really take off in settings that exploit novel computing
devices and new types of software architectures. These issues are already stimulating rexamination of
some of the most basic operating system structures, and when we look at high speed communication in
Chapter 8, many of the technologies considered turn out to have arisen as responses to this challenge.

Even layering the basic Internet protocols over ATM has turned out to be non-trivial. Although
it is easy to fragment an IP packet into ATM cells, and the emulation mode mentioned above makes it
straightforward to emulate IP networking over ATM networks, traditional IP software will drop an entire
IP packet if any part of the data within it is corrupted. An ATM network that drops even a single cell per
IP packet would thus seem to have 0% reliability, even though close to 99% of the data might be getting
through reliably. This consideration has motivated ATM vendors to extend their hardware and software
to understand IP and to arrange to dropall of an IP packet if even a single cell of that packet must be
dropped, an example of a simple quality-of-service property. The result is that as the ATM network
becomes loaded and starts to shed load, it does so by beginning to drop entire IP packets, hopefully with
the result that other IP packets will get through unscathed. This leads us to the use of the packet type
identifier bit: the idea is that in a burst of packets, the first packet can be identified by setting this bit to 0,
and subsequent “subordinate” packets identified by setting it to 1. If the ATM must drop a cell, it can
then drop all subsequent cells with the same VCI until one is encountered with the PTI bit set to 0, on the
theory that all of these cells will be discarded in any case upon reception, because of the prior lost cell.

Looking to the future, it should not be long before IP drivers or special ATM firmware is
developed that can buffer outgoing IP packets briefly in the controller of the sender and selectively solicit
retransmission of just the missing cells if the receiving controller notices that data is missing. One can
also imagine protocols whereby the sending ATM controller might compute and periodically transmit a
parity cell containing the exclusive-or of all the prior cells for an IP packet; such a parity cell could then
be used to reconstruct a single missing cell on the receiving side. Quality of service options for video data
transmission using MPEG or JPEG may soon be introduced. Although these suggestions may sound
complex and costly, keep in mind that the end-to-end latencies of a typical ATM network are so small
(tens of microseconds) that it is entirely feasible to solicit the retransmission of a cell or two this even as
the data for the remainder of the packet flows through the network. With effort, such steps should
eventually lead to very reliable IP networking at ATM speeds. But the non-trivial aspects of this problem
also point to the general difficulty of what, at first glance, might have seemed to be a completely obvious
step to take. This is a pattern that we will often encounter throughout the remainder of thebook!

2.7 Cluster and Parallel Architectures
Parallel supercomputer architectures, and their inexpensive and smaller-scale cousins, the cluster
computer systems, have a natural correspondence to distributed systems. Increasingly, all three classes of
systems are structured as collections of processors connected by high speed communications buses and
with message passing as the basic abstraction. In the case of cluster computing systems, these
communications buses are often based upon standard technologies such as fast ethernet or packet
switching similar to that used in ATM. However, there are significant differences too, both in terms of
scale and properties. These considerations make it necessary to treat cluster and parallel computing as a
special case of distributed computing for which a number of optimizations are possible, and where special

Chapter2: Communication Technologies 57

57

considerations are also needed in terms of the expected nature of application programs and their goals vis-
a-vis the platform.

In particular, cluster and parallel computing systems often have built-in management networks
that make it possible to detect failures extremely rapidly, and may have special purpose communication
architectures with extremely regular and predictable performance and reliability properties. The ability to
exploit these features in a software system creates the possibility that developers will be able to base their
work on the general-purpose mechanisms used in general distributed computing systems, but to optimize
them in ways that might greatly enhance their reliability or performance. For example, we will see that
the inability to accurately sense failures is one of the hardest problems to overcome in distributed systems:
certain types of network failures can create conditions indistinguishable from processor failure, and yet
may heal themselves after a brief period of disruption, leaving the processor healthy and able to
communicate again as if it had never been gone. Such problems do not arise in a cluster or parallel
architecture, where accurate failure detection can be “wired” to available hardware features of the
communications interconnect.

In this textbook, we will not consider cluster or parallel systems until Chapter 24, at which time
we will ask how the special properties of such systems impacts the algorithmic and protocol issues that we
consider in the previous chapters. Although there are some important software systems for parallel
computing (PVM is the best known [GDBJ94]; MPI may eventually displace it [MPI96]), these are not
particularly focused on reliability issues, and hence will be viewed as being beyond the scope of the
current treatment.

2.8 Next steps

Few areas of technology development are as active as that involving basic communication technologies.
The coming decade should see the introduction of powerful wireless communication technologies for the
office, permitting workers to move computers and computing devices around a small space without the
rewiring that contemporary devices often require. Bandwidth delivered to the end-user can be expected to
continue to rise, although this will also require substantial changes in the software and hardware
architecture of computing devices, which currently limits the achievable bandwidth for traditional network
architectures. The emergence of exotic computing devices targetted to single applications should begin to
displace general computing systems from some of these very demanding settings.

Looking to the broader internet, as speeds are rising, so too is congestion and contention for
network resources. It is likely that virtual private networks, supported through a mixture of software and
hardware, will soon become available to organizations able to pay for dedicated bandwidth and guaranteed
latency. Such networks will need to combine strong security properties with new functionality, such as
conferencing and multicast support. Over time, it can be expected that these data oriented networks will
merge into the telecommunications “intelligent network” architecture, which provides support for voice,
video and other forms of media, and mobility. All of these features will present the distributed application
developer with new options, as well as new reliability challenges.

Reliability of the telecommunications architecture is already a concern, and that concern will
only grow as the public begins to insist on stronger guarantees of security and privacy. Today, the rush to
deploy new services and to demonstrate new communications capabilities has somewhat overshadowed
robustness issues of these sorts. One consequence, however, has been a rash of dramatic failures and
attacks on distributed applications and systems. Shortly after work on thisbook began, a telephone
“phreak” was arrested for reprogramming the telecommunications switch in his home city in ways that
gave him nearly complete control over the system, from the inside. He was found to have used his control
to misappropriate funds through electronic transfers, and the case is apparently not an isolated event.

Kenneth P. Birman - Building Secure and Reliable Network Applications58

58

Meanwhile, new services such as “caller id” have turned out to have unexpected side-effects, such as
permitting companies to build databases of the telephone numbers of the individuals who contact them.
Not all of these individuals would have agreed to divulge their numbers.

Such events, understandably, have drawn considerable public attention and protest. As a
consequence, they contribute towards a mindset in which the reliability implications of technology
decisions are being given greater attention. Such the trend continue, it could eventually lead to wider use
of technologies that promote distributed computing reliability, security and privacy over the coming
decades.

2.9 Additional Reading
Addtional discussion of the topics covered in this chapter can be found in [Tan88, Com91, CS91,
CS93,CDK94]. An outstanding treatment of ATM is [HHS94].

Chapter3: BasicCommunication Services 59

59

3. Basic Communication Services

3.1 Communications Standards

A communications standard is a collection of specifications governing the types of messages that can be
sent in a system, the formats of message headers and trailers, the encoding rules for placing data into
messages, and the rules governing format and use of source and destination addresses. In addition to this,
a standard will normally specify a number of protocols that a provider should implement.

Examples of communications standards that are used widely, although not universally so, are:

• The Internet Protocols.These protocols originated in work done by the Defense Department Advanced
Research Projects Agency, or DARPA, in the 1970’s, and have gradually grown into a wider scale
high performance network interconnecting millions of computers. The protocols employed in the
internet include IP, the basic packet protocol, and UDP, TCP and IP-multicast, each of which is a
higher level protocol layered over IP. With the emergence of the Web, the Internet has grown
explosively during the mid 1990’s.

• The Open Systems Interconnect Protocols.These protocols are similar to the internet protocol suite,
but employ standards and conventions that originated with the ISO organization.

• Proprietary standards.Examples include the Systems Network Architecture, developed by IBM in the
1970’s and widely used for mainframe networks during the 1980’s, DECnet, developed at Digital
Equipment but discontinued in favor of open solutions in the 1990’s, Netware, Novell’s widely popular
networking technology for PC-based client-server networks, and Banyan’s Vines system, also intended
for PC’s used in client-server applications.

During the 1990’s, the emergence of “open systems”, namely systems in which computers from
different vendors and running independently developed software, has been an important trend. Open
systems favor standards, but also must support current practice, since vendors otherwise find it hard to
move their customer base to the standard. At the time of this writing, the trend clearly favors the Internet
protocol suite as the most widely supported communications standard, with the Novell protocols strongly
represented by force of market share. However, there protocol suites were designed long before the advent
of modern high speed communications devices, and the commercial pressure to develop and deploy new
kinds of distributed applications that exploit gigabit networks could force a rethinking of these standards.
Indeed, even as the Internet has become a “de facto” standard, it has turned out to have serious scaling
problems that may not be easy to fix in less than a few years (see Figure 3-1).

The remainder of this chapter focuses on the Internet protocol suite because this is the one used
by the Web. Details of how the suite is implemented can be found in [Com91,CS91,CS93].

3.2 Addressing

The addressingtools in a distributed communication system provide unique identification for the source
and destination of a message, together with ways of mapping from symbolic names for resources and
services to the corresponding network address, and for obtaining the best route to use for sending
messages.

Addressing is normally standardized as part of the general communication specifications for
formatting data in messages, defining message headers, and communicating in a distributed environment.

Kenneth P. Birman - Building Secure and Reliable Network Applications60

60

Within the Internet, several address formats are available, organized into “classes” aimed at
different styles of application. Each class of address is represented as a 32-bit number. Class A internet
addresses have a 7-bit network identifier and a 24-bit host-identifier, and are reserved for very large
networks. Class B addresses have 14 bits for the network identifier and 16 bits for the host-id, and class C
has 21 bits of network identifier and 8 bits for the host-id. These last two classes are the most commonly
used. Eventually, the space of internet addresses is likely to be exhausted, at which time a transition to an
extended IP address is planned; the extended format increases the size of addresses to 64 bits but does so
in a manner that provides backwards compatibility with existing 32-bit addresses. However, there are
many hard problems raised by such a transition and industry is clearly hesitant to embark on what will be
a hugely disruptive process.

Internet addresses have a standard ASCII representation, in which the bytes of the address are
printed as signed decimal numbers in a standardized order. For example, thisbook was edited on host
gunnlod.cs.cornell.edu, which has internet address 128.84.218.58. This is a class B internet address, with
network address 42 and host-id 218.58. Network address 42 is assigned to Cornell University, as one of
several class B addresses used by the University. The 218.xxx addresses designate a segment of Cornell’s
internal network, namely the ethernet to which my computer is attached. The number 58 was assigned
within the Computer Science Department to identify my host on this ethernet segment.

A class D internet address is intended for special uses: IP multicasting. These addresses are
allocated for use by applications that exploit IP multicast. Participants in the application join the multicast
group, and the internet routing protocols automatically reconfigure themselves to route messages to all
group members.

The string “gunnlod.cs.cornell.edu” is a symbolic name for IP address. The name consists of a
machine name (gunnlod, an obscure hero of Norse mythology) and a suffix (cs.cornell.edu) designating
the Computer Science Department at Cornell University, which is an educational institution in the United
States. The suffix is registered with a distributed service called the domain name service, orDNS, which
supports a simple protocol for mapping from string names to IP network addresses.

Here’s the mechanism used by the DNS when it is asked to map my host name to the appropriate
IP address for my machine. DNS has a top-level entry for “edu” but doesn’t have an Internet address for
this entry. However, DNS resolves cornell.edu to a gateway address for the Cornell domain, namely host
132.236.56.6. Finally, DNS has an even more precise address stored for cs.cornell.edu, namely
128.84.227.15 – a mail server and gateway machine in the Computer Science Department. All messages
to machines in the Computer Science Department pass through this machine, which intercepts and
discards messages to all but a select set of application programs.

DNS is itself structured as a hierarchical database of slowly changing information. It is
hierarchical in the sense that DNS servers form a tree, with each level providing addresses of objects in
the level below it, but alsocachingremote entries that are frequently used by local processes. Each DNS
entry tells how to map some form of ascii hostname to the corresponding IP machine address or, in the
case of commonly used services, how to find the service representative for a given host name.

Thus, DNS has an entry for the IP address of gunnlod.cs.cornell.edu (somewhere), and can track
it down using its resolution protocol. If the name is used rapidly, the information may become cached
local to the typical users and will resolve quickly; otherwise the protocol sends the request up the
hierarchy to a level at which DNS knows how to resolve some part of the name, and then back down the
hierarchy to a level that can fully resolve it. Similarly, DNS has a record telling how to find a mail
transfer agent running the SMTP protocol for gunnlod.cs.cornell.edu: this may not be the same machine
as gunnlod itself, but the resolution protocol is the same.

Chapter3: BasicCommunication Services 61

61

Internet Brownouts: Power Failures on the Data Superhighway?

Begining in late 1995, clear signs emerged that the Internet was beginning to overload. One reason
is that the “root” servers for the DNS architecture are experiencing exponential growth in the load
of DNS queries that require action by the top levels of the DNS hierarchy. A server that saw 10
queries per minute in 1993 was up to 250 queries per second in early 1995, and traffic was doubling
every three months. Such problems point to fundamental aspects of the Internet that were based on
assumptions of a fairly small and lightly loaded user population that repeatedly performed the same
sorts of operations. In this small world, it makes sense to use a single hierarchical DNS structure
with caching, because cache hits were possible for most data. In a network that suddenly has
millions of users, and that will eventually support billions of users, such design considerations must
be reconsidered: only a completely decentralized architecture can possibly scale to support a truely
universal and world-wide service.

These problems have visible but subtle impact on the internet user: they typically cause connections
to break, or alert boxes to appear on your Web browser warning you that the host possessing some
resource is “unavailable.” There is no obvious way to recognize that the problem is not one of local
overload or congestion, but in fact is an overloaded DNS server or one that has crashed at a major
Internet routing point. Unfortunately, such problems have become increasingly common: the
Internet is starting to experience brownouts. Indeed, the Internet became largely unavailable
because of failures of this nature for many hours during one crash in September of 1995, and this
was hardly an unusual event. As the data superhighway becomes increasingly critical, such
brownouts represent increasingly serious threats to reliability.

Conventional wisdom has it that the Internet does not follow the laws of physics, there is no limit to
how big, fast and dense the Internet can become. Like the hardware itself, which seems outmoded
almost before it reaches the market, we assume that the technology of the network is also speeding
up in ways that outrace demand. But the reality of the situation is that thesoftware architectureof
the Internet is in some basic waysnot scalable. Short of redesigning these protocols, the Internet
won’t keep up with growing demands. In some ways, it already can’t.

Several problems are identified as the most serious culprits at the time of this writing. Number one
in any ranking: the World Wide Web. The Web has taken over by storm, but it is inefficient in the
way it fetches documents. In particular, as we will see in Chapter 10, the HTTP protocol often
requires that large numbers of connections be created for typical document transfers, and these
connections (even for a single HTML document) can involve contacting many separate servers.
Potentially, each of these connection requests forces the root nodes of the DNS to respond to a query.
With millions of users “surfing the network”, DNS load is skyrocketing.

Kenneth P. Birman - Building Secure and Reliable Network Applications62

62

Bandwidth requirements are also growing exponentially. Unfortunately, the communication
technology of the Internet is scaling more slowly than this. So overloaded connections, particularly
near “hot sites”, are a tremendous problem. A popular Web site may receive hundreds of requests
per second, and each request must be handledseparately. Even if the identical bits are being
transmitted concurrently to hundreds of users, each user is sent its own, private copy. And this
limitation means that as soon as a server becomes useful or interesting, it also becomes vastly
overloaded. Yet ven though identical bits are being sent to hundreds of thousands of destinations,
the protocols offer no obvious way to somehow multicast the desired data, in part because Web
browsers explicitly make a separate connection for each object fetched, and only specify the object
to send after the connection is in place. At the time of this writing, the best hope is that popular
documents can be cached with increasing efficiency in “web proxies”, but as we will see, doing so
also introduces tricky issues of reliability and consistency. Meanwhile, the bandwidth issue is with
us to stay.

Internet routing is another area that hasn’t scaled very well. In the early days of the Internet,
routing was a major area of research, and innovative protocols were used to route around areas of
congestion. But these protocols were eventually found to be consuming too much bandwidth and
imposing considerable overhead: early in the 1980’s, 30% of Internet packets were associated with
routing and load-balancing. A new generation of relatively static routing protocols was proposed at
that time, and remain in use today. But the assumptions underlying these “new” reflected a
network that, at the time, seemed “large” because it contained hundreds of nodes. A network of
tens of millions or billions of nodes poses problems that could never have been anticipated in 1985.
Now that we have such a network, even trying to understand its behavior is a major challenge.
Meanwhile, when routers fail (for reasons of hardware, software, or simply because of overload), the
network is tremendously disrupted.

The Internet Engineering Task Force (IETF), a governing body for the Internet and for Web
protocols, is working on this problems. This organization sets the standards for the network and has
the ability to legislate solutions. A variety of proposals are being considered: they include ways of
optimizing the Web protocol called HTTP, and other protocol optimizations.

Some service providers are urging the introduction of mechanisms that would charge users based on
the amount of data they transfer and thus discourage overuse (but one can immediately imagine the
parents of an enthusiastic 12-year old forced to sell their house to pay the monthly network bill).
There is considerable skepticism that such measures are practical. Bill Gates has suggested that in
this new world, one can easily charge for the “size of the on-ramp” (the bandwidth of one’s
connection), but not for the amount of information a user transfers, and early evidence supports his
perspective. In Gate’s view, this is simply a challenge of the new Internet market.

There is no clear solution to the Internet bandwidth problem. However, as we will see in the
textbook, there are some very powerful technologies that could begin to offer answers: coherent
replication and caching being the most obvious remedy for many of the problems cited above. The
financial motivations for being first to market with the solution are staggering, and history shows
that this is a strong incentive indeed.

Figure 3-1: The data superhighway is experiencing serious growing pains. Growth in load has vastly exceeded the
capacity of the protocols used in the Internet and World-Wide-Web. Issues of consistency, reliability, and
availability in technologies such as the ones that support these applications are at the core of this textbook.

Chapter3: BasicCommunication Services 63

63

The internet address specifies a machine, but the identification of the specific application
program that will process the message is also important. For this purpose, internet addresses contain a
field called the port number, which is at present a 16-bit integer. A program that wishes to receive
messages must bind itself to a port number on the machine to which the messages will be sent. A
predefined list of port numbers is used by standard system services, and have values in the range 0-1023.
Symbolic names have been assigned to many of these predefined port numbers, and a table mapping from
names to port numbers is generally provided.

For example, messages sent to gunnlod.cs.cornell.edu that specify port 53 will be delivered to the
DNS server running on machine gunnlod, or discarded if the server isn’t running. Email is sent using a
subsystem called SMTP, on port-number 25. Of course, if the appropriate service program isn’t running,
messages to a port will be silently discarded. Small port numbers are reserved for special services and are
often “trusted”, in the sense that it is assumed that only a legitimate SMTP agent will ever be connected to
port 25 on a machine. This form of trust depends upon the operating system, which decides whether or
not a program should be allowed to bind itself to a requested port.

Port numbers larger than 1024 are available for application programs. A program can request a
specific port, or allow the operating system to pick one randomly. Given a port number, a program can
register itself with the local network information service (NIS) program, giving a symbolic name for itself
and the port number that it is listening on. Or, it can send its port number to some other program, for
example by requesting a service and specifying the internet address and port number to which replies
should be transmitted.

The randomness of port selection is, perhaps unexpectedly, an important source of security in
many modern protocols. These protocols are poorly protected against intruders, who could attack the
application if they were able to guess the port numbers being used. By virtue of picking port numbers
randomly, the protocol assumes that the barrier against attack has been raised substantially, and hence
that it need only protect against accidental delivery of packets from other sources: presumably an
infrequent event, and one that is unlikely to involve packets that could be confused with the ones
legitimately used by the protocol on the port. Later, however, we will see that such assumptions may not
always be safe: modern network hackers may be able to steal port numbers out of IP packets; indeed, this
has become a serious enough problem so that proposals for encrypting packet headers are being
considered by the IETF.

Not all machines have identical byte orderings. For this reason, the internet protocol suite
specifies a standard byte order that must be used to represent addresses and port numbers. On a host that
does not use the same byte order as the standard requires, it is important to byte-swap these values before
sending a message, or after receiving one. Many programming languages include communication libraries
with standard functions for this purpose.

Finally, notice that the network services information specifies a protocol to use when
communicating with a service – TCP, when communicating with the uucp service, UDP when
communication with the tftp service (a file transfer program), and so forth. Some services support
multiple options, such as the domain name service. As we discussed earlier, these names refer to protocols
in the internet protocol suite.

3.3 Internet Protocols
This section presents the three major components of the internet protocol suite: the IP protocol, on which
the others are based, and the TCP and UDP protocols, which are the ones normally employed by

Kenneth P. Birman - Building Secure and Reliable Network Applications64

64

applications. We also discuss some recent extentions to the IP protocol layer in support of IP multicast
protocols. There has been considerable discussion of security for the IP layer, but no single proposal has
gained wide acceptance as of thetime of this writing, and we will say very little about this ongoing work
for reasons of brevity.

3.3.1 Internet Protocol: IP layer
The lowest layer of the internet protocol suite is a connectionless packet transport protocol called IP. IP is
responsible for unreliable transport of variable size packets (but with a fixed maximum size, normally
1400 bytes), from the sender’s machine to the destination machine. IP packets are required to conform to
a fixed format consisting of a variable-length packet header, a variable-length body, and an optional
trailer. The actual lengths of the header, body, and trailer are specified through length fields that are
located at fixed offsets into the header. An application that makes direct use of IP is expected to format its
packets according to this standard. However, direct use of IP is normally restricted because of security
issues raised by the prospect of applications that might exploit such a feature to “mimic” some standard
protocol, such as TCP, but do so in a non-standard way that could disrupt remote machines or create
security loopholes.

Implementations of IP normally provide routing functionality, using either a static or dynamic
routing architecture. The type of routing used will depend upon the complexity of the installation and its
configuration of of the internet software, and is a topic beyond the scope of this textbook.

In 1995, IP was enhanced to provide a security architecture whereby packet payloads can be
encrypted to prevent intruders from determining packet contents, and providing options for signatures or
other authentication data in the packet trailer. Encryption of the packet header is also possible within
this standard, although use of this feature is possible only if the routing layers and IP software
implementation on all machines in the network agree upon the encryption method to use.

3.3.2 Transport Control Protocol: TCP

TCP is a name for the connection-oriented protocol within the internet protocol suite. TCP users start by
making a TCP connection, which is done by having one program set itself up tolisten for and accept
incoming connections, while the otherconnectsto it. A TCP connection guarantees that data will be
delivered in the order sent, without loss or duplication, and will report an “end of file” if the process at
either end exits or closes the channel. TCP connections are byte-stream oriented: although the sending
program can send blocks of bytes, the underlying communication model views this communication as a
continuous sequence of bytes. TCP is thus permitted to lose the boundary information between messages,
so that what is logically a single message may be delivered in several smaller chunks, or delivered
together with fragments of a previous or subsequent message (always preserving the byte ordering,
however!). If very small messages are transmitted, TCP will delay them slightly to attempt to fill larger
packets for efficient transmission; the user must disable this behavior if immediate transmission is desired.

Applications that involve concurrent use of a TCP connection must interlock against the
possibility that multiple write operations will be done simultaneously on the same channel; if this occurs,
then data from different writers can be interleaved when the channel becomes full.

3.3.3 User Datagram Protocol: UDP

UDP is a message or “datagram” oriented protocol. With this protocol, the application sends messages
which are preserved in the form sent and delivered intact, or not at all, to the destination. No connection
is needed, and there are no guarantees that the message will get through, or that messages will be

Chapter3: BasicCommunication Services 65

65

delivered in any particular order, or even that duplicates will not arise. UDP imposes a size limit of 8k
bytes on each message: an application needing to send a large message must fragment it into 8k chunks.

Internally, UDP will normally fragment a message into smaller pieces, which correspond to the
maximum sizeof an IP packet, and matches closely with the maximum size packet that an ethernet can
transmit in a single hardware packet. If a UDP packet exceeds the maximum IP packet size, the UDP
packet is sent as a series of smaller IP packets. On reception, these are reassembled into a larger packet. If
any fragment is lost, the UDP packet will eventually be discarded.

The reader may wonder why this sort of two-level fragmentation scheme is used – why not
simply limit UDP to 1400 bytes, too? To understand this design, it is helpful to start with a measurement
of the cost associated with a communication system call. On a typical operating system, such an operation
has a minimum overhead of 20- to 50-thousand instructions, regardless of the size of the data object to be
transmitted. The idea, then, is to avoid repeatedly traversing long code paths within the operating system.
When an 8k-byte UDP packet is transmitted, the code to fragment it into smaller chunks executes “deep”
within the operating system. This can save 10’s of thousands of instructions.

One might also wonder why communication needs to be so expensive, in the first place. In fact,
this is a very interesting and rather current topic, particularly in light of recent work that has reduced the
cost of sending a message (on some platforms) to as little as 6 instructions. In this approach, which is
called Active Messages[ECGS92, EBBV95], the operating system is kept completely off the message
path, and if one is willing to paya slightly higher price, a similar benefit is possible even in a more
standard communications architecture (see Section 8.3). Looking to the future, it is entirely plausible to
believe that commercial operating systems products offering comparably low latency and high throughput
will start to be available in the late 1990’s. However, the average operating system will certainly not
catch up with the leading edge approaches for many years. Thus, applications may have to continue to
live with huge and in fact unecessary overheads for the time being.

3.3.4 Internet Packet Multicast Protocol: IP Multicast

IP multicast is a relatively recent addition to the Internet protocol suite [Der88,Der89,DC90]. With IP
multicast, UDP or IP messages can be transmitted to groups of destinations, as opposed to a single point to
point destination. The approach extends the multicast capabilities of the ethernet interface to work even in
complex networks with routing and bridges between ethernet segments.

IP multicast is a session-oriented protocol: some work is required before communication can
begin. The processes that will communicate must create an IP multicast address, which is a class-D
Internet address containing a multicast identifier in the lower 28 bits. These processes must also agree
upon a single port number that all will use for the communication session. As each process starts, it
installs IP address into its local system, using system calls that place the IP multicast address on the
ethernet interface(s) to which the machine is connected. The routing tables used by IP, discussed in more
detail below, are also updated to ensure that IP multicast packets will be forwarded to each destination and
network on which group members are found.

Once this setup has been done, an IP multicast is initiated by simply sending a UDP packet with
the IP multicast group address and port number in it. As this packet reaches a machine which is included
in the destination list, a copy is made and delivered to local applications receiving on the port. If several
are bound to the same port on the same machine, a copy is made for each.

Kenneth P. Birman - Building Secure and Reliable Network Applications66

66

Like UDP, IP multicast is an unreliable protocol: packets can be lost, duplicated or delivered out
of order, and not all members of a group will see the same pattern of loss and delivery. Thus, although one
can build reliable communication protocols over IP multicast, the protocol itself is inherently unreliable.

When used through the UDP interface, a UDP multicast facility is similar to a UDP datagram
facility, in that each packet can be as long as the maximum size of UDP transmissions, which is typically
8k. However, when sending an IP or UDP multicast, it is important to remember that the reliability
observed may vary from destination to destination. One machine may receive a packet that others drop
because of memory limitations or corruption caused by a weak signal on the communications medium,
and the loss of even a single fragment of a large UDP message will cause the entire message to be
dropped. Thus, one talks more commonly about IP multicast than UDP multicast, and it is uncommon for
applications to send very large messages using the UDP interface. Any application that uses this transport
protocol should carefully instrument loss rates, because the effective performance for small messages may
actually be better than for large ones due to this limitation.

3.4 Routing

Routingis the method by which a communication system computes the path by which packets will travel
from source to destination. A routed packet is said to take a series ofhops, as it is passed from machine to
machine. The algorithm used is generally as follows:

• An application program generates a packet, or a packet is read from a network interface.

• The packet destination is checked and, if it matches with any of the addresses that the machine
accepts, delivered locally (one machine can have multiple addresses, a feature that is sometimes
exploited in networks with dual hardware for increased fault-tolerance).

• Thehop countof the message is incremented. If the message has a maximum hop count and would
exceed it, the message is discarded. The hop count is also called thetime to live, or TTL, in some
protocols.

• For messages that do not have a local destination, or class-D multicast messages, the destination is
used to search the routing table. Each entry specifies an address, or a pattern covering a range of
addresses. An outgoing interface is computed for the message (a list of outgoing interfaces, if the
message is a class-D multicast). For a point-to-point message, if there are multiple possible routes,
the least costly route is employed. For this purpose, each route includes an estimated cost, in hops.

• The packet is transmitted on interfaces in this list, other than the one on which the packet was
received.

A number of methods have been developed for maintaining routing tables. The most common
approach is to usestatic routing. In this approach, the routing table is maintained by system
administrators, and is never modified while the system is active.

Dynamic routingis a class of protocols by which machines can adjust their routing tables to
benefit from load changes, route around congestion and broken links, reconfigure to exploit links that
have recovered from failures. In the most common approaches, machines periodically distribute their
routing tables to nearest neighbors, or periodically broadcast their routing tables within the network as a
whole. For this latter case, a special address is used that causes the packet to be routed down every
possible interface in the network; a hop-count limit prevents such a packet from bouncing endlessly.

The introduction of IP multicast has resulted in a new class of routers that are static for most
purposes, but that maintain special dynamic routing policies for use when an IP multicast group spans

Chapter3: BasicCommunication Services 67

67

several segments of a routed local area network. In very large settings, thismulticast routing daemoncan
take advantage of themulticast backboneor mbone network to provide group communication or
conferencing support to sets of participants working at physically remote locations. However, most use of
IP multicast is limited to local area networks at the time of this writing, and wide-area multicast remains a
somewhat speculative research topic.

3.5 End-to-end Argument

The reader may be curious about the following issue. The architecture described above permits
packets to be lost at each hop in the communication subsystem. If a packet takes many hops, the
probability of loss would seem likely to grow proportionately, causing the reliability of the network to drop
linearly with the diameter of the network. There is an alternative approach in which error correction
would be done hop by hop. Although packets could still be lost if an intermediate machine crashes, such
an approach would have loss rates that are greatly reduced, at some small but fixed background cost
(when we discuss the details of reliable communication protocols, we will see that the overhead need not
be very high). Why, then, do most systems favor an approach that seems likely to be much less reliable?

In a classic paper, Jerry Saltzer and others took up this issue in 1984 [SRC84]. This paper
compared “end to end” reliability protocols, which operate only between the source and destination of a
message, with “hop by hop” reliable protocols. They argued that even if reliability of a routed network is
improved by the use of hop-by-hop reliability protocols, it will still not be high enough to completely
overcome packet loss. Packets can still be corrupted by noise on the lines, machines can crash, and
dynamic routing changes can bounce a packet around until it is discarded. Moreover, they argue, the
measured average loss rates for lightly to moderately loaded networks are extremely low. True, routing
exposes a packet to repeated threats, but the overall reliability of a routed network will still be very high
on the average, with worst case behavior dominated by events like routing table updates and crashes that
hop-by-hop error correction would not overcome. From this the authors conclude that since hop-by-hop
reliability methods increase complexity and reduce performance, and yet must still be duplicated by end-
to-end reliability mechanisms, one might as well use a simpler and faster link-level communication
protocol. This is the “end to end argument” and has emerged as one of the defining principles governing
modern network design.

Saltzer’s paper revolves around a specific example, involving a file transfer protocol. The paper
makes the point that the analysis used is in many ways tied to the example and the actual reliability
properties of the communication lines in question. Moreover, Saltzer’s interest was specifically in
reliability of the packet transport mechanism: failure rates and ordering. These points are important
because many authors have come to cite the end-to-end argument in a much more expansive way,
claiming that it is an absolute argument against putting any form of “property” or “guarantee” within the
communication subsystem. Later, we will be discussing protocols thatneed to place properties and
guarantees into subsystems, as a way of providing system-wide properties that would not otherwise be
achievable. Thus, those who accept the “generalized” end-to-end argument would tend to oppose the use
of these sorts of protocols on philisophical (one is tended to say “religious”) grounds.

A more mature view is that the end-to-end argument is one of those situations where one should
accept its point with a degree of skepticism. On the one hand, the end-to-end argument is clearly correct
in situations where an analysis comparable to Saltzer’s original one is possible. However, the end-to-end
argument cannot be applied blindly: there are situations in which low level properties are beneficial and
genuinely reduce complexity and cost in application software, and for these situations, an end-to-end
approach might be inappropriate, leading to more complex applications that are error prone or, in a
practical sense, impossible to construct.

Kenneth P. Birman - Building Secure and Reliable Network Applications68

68

For example, in a network with high link-level loss rates, or one that is at serious risk of running
out of memory unless flow control is used link-to-link, an end-to-end approach may result in near-total
packet loss, while a scheme that corrects packet loss and does flow control at the link level could yield
acceptable performance. Thus, then, is a case in which Saltzer’s analysis could be applied as he originally
formulated it, but would lead to a different conclusion. When we look at the reliability protocols
presented in the third part of this textbook, we will see that certain forms of consistent distributed
behavior (such as is needed in a fault-tolerant coherent caching scheme) depend upon system-wide
agreement that must be standardized and integrated with low-level failure reporting mechanisms.
Omitting such a mechanism from the transport layer merely forces the application programmer to build it
as part of the application; if the programming environment is intended to be general and extensible, this
may mean that one makes the mechanism part of the environment or gives up on it entirely. Thus, when
we look at distributed programming environments like the CORBA architecture, seen in Chapter 6, there
is in fact a basic design choice to be made: either such a function is made part of the architecture, or by
omitting it, no application can achieve this type of consistency in a general and interoperable way except
with respect to other applications implemented by the same development team. These examples illustrate
that, like many engineering arguments, the end-to-end approach is highly appropriate in certain
situations, but not uniformly so.

3.6 O/S Architecture Issues, Buffering, Fragmentation

We have reviewed most stages of the communication architecture that interconnects a sending application
to a receiving application. But what of the operating system software at the two ends?

The communications software of a typical operating system is modular, organized as a set of
components that subdivide the tasks associated with implementing the protocol stack or stacks in use by
application programs. One of these components is thebufferingsubsystem, which maintains a collection
of kernel memory buffers that can be used to temporarily store incoming or outgoing messages. On most
UNIX systems, these are calledmbufs, and the total number available is a configuration parameter that
should be set when the system is built. Other operating systems allocate buffers dynamically, competing
with the disk I/O subsystem and other I/O subsystems for kernel memory. All operating systems share a
key property, however: the amount of buffering space available is limited.

The TCP and UDP protocols are implemented as software modules that include interfaces up to
the user, and down to the IP software layer. In a typical UNIX implementation, these protocols allocate
some amount of kernel memory space for each open communication “socket”, at the time the socket is
created. TCP, for example, allocates an 8-kbyte buffer, and UDP allocates two 8k-byte buffers, one for
transmission and one for reception (both can often be increased to64kbytes). The message to be
transmitted is copied into this buffer (in the case of TCP, this is done in chunks if necessary). Fragments
are then generated by allocating successive memory chunks for use by IP, copying the data to be sent into
them, prepending an IP header, and then passing them to the IP sending routine. Some operating systems
avoid one or more of these copying steps, but this can increase code complexity, and copying is
sufficiently fast that many operating systems simply copy the data for each message multiple times.
Finally, IP identifies the network interface to use by searching the routing table and queues the fragments
for transmission. As might be expected, incoming packets trace the reverse path.

An operating system can drop packets or messages for reasons unrelated to the hardware
corruption or duplication. In particular, an application that tries to send data as rapidly as possible, or a
machine that is presented with a high rate of incoming data packets, can exceed the amount of kernel
memory that can safely be allocated to any single application. Should this happen, it is common for
packets to be discarded until memory usage drops back below threshold. This can result in unexpected
patterns of message loss.

Chapter3: BasicCommunication Services 69

69

For example, consider an application program that simply tests packet loss rates. One might
expect that as the rate of transmission is gradually increased, from one packet per second to 10, then 100,
then 1000 the overall probability that a packet loss will occur would remain fairly constant, hence packet
loss will rise in direct proportion to the actual number of packets sent. Experiments that test this case,
running over UDP, reveal quite a different pattern, illustrated in Figure 3-2; the left graph is for a sender
and receiver on the same machine (the messages are never actually put on the wire in this case), and the
right the case of a sender and receiver on identical machines connected by an ethernet.

As can be seen from
the figure, the packet loss rate,
as a percentage, is initially low
and constant: zero for the local
case, and small for the remote
case. As the transmission rate
rises, however, both rates rise.
Presumably, this reflects the
increased probability of
memory threshold effects in the
operating system. However, as
the rate rises still further,
behavior breaks down
completely! For high rates of
communication, one sees
bursty behavior in which some

groups of packets are delivered, and others are completely lost. Moreover, the aggregate throughput can be
quite low in these overloaded cases, and the operating system often reports no errors at all the sender and
destination – on the sending side, the loss occurs after UDP has accepted a packet, when it is unable to
obtain memory for the IP fragments. On the receiving side, the loss occurs when UDP packets turn out to
be missing fragments, or when the queue of incoming messages exceeds thelimited capacity of the UDP
input buffer.

The quantized scheduling algorithms used in multitasking operating systems like UNIX probably
accounts for the bursty aspect of the loss behavior. UNIX tends to schedule processes for long periods,
permitting the sender to send many packets during congestion periods, without allowing the receiver to
run to clear its input queue in the local case, or giving the interface time to transmitted an accumulated
backlog in the remote case. The effect is that once a loss starts to occur, many packets can be lost before
the system recovers. Interestingly, packets can also be delivered out of order when tests of this sort are
done, presumably reflecting some sort of stacking mechanisms deep within the operating system. Thus,
the same measurements might yield different results on other versions of UNIX or other operating
systems. However, with the exception of special purpose communication-oriented operating systems such
as QNX (a real-time system for embedded applications), one would expect a “similar” result for most of
the common platforms used in distributed settings today.

TCP behavior is much more reasonable for the same tests, but there are other types of tests for
which TCP can behave poorly. For example, if one processes makes a great number of TCP connections to
other processes, and then tries to transmit multicast messages on the resulting 1-many connections, the
measured throughput drops worse than linearly, as a function of the number of connections, for most
operating systems. Moreover, if groups of processes are created and TCP connections are opened between
them, pairwise, performance is often found to be extremely variable – latency and throughput figures can
vary wildly even for simple patterns of communications.

UDP packet loss
rates (Hunt thesis)

Figure 3-2: Packet loss rates for Unix over ethernet (the left graph is based on
a purely local communication path, while the right one is from a distributed
case using two computers connected by a 10-Mbit ethernet). This data is
based on a study reported as part of a doctoral dissertation by Guerney Hunt.

Kenneth P. Birman - Building Secure and Reliable Network Applications70

70

UDP or IP multicast gives the same behavior as UDP. However, the user ofmulticast should also
keep in mind that many sources of packet loss can result in different patterns of reliability for different
recievers. Thus, one destination of a multicast transmission may experience high loss rates even if many
other destinations receive all messages with no losses atall. Problems such as this are potentially difficult
to detect and are very hard to deal with in software.

3.7 Xpress Transfer Protocol
Although widely available, TCP, UDP and IP are also limited in the functionality they provide and their
flexibility. This has motivated researchers to investigate new and more flexible protocol development
architectures that can co-exist with TCP/IP but support varying qualities of transport service that can be
matched closely to the special needs of demanding applications.

Prominent among such efforts is the Xpress Transfer Protocol (XTP), which is a toolkit of
mechanisms that can be exploited by users to customize data transfer protocols operating in a point to
point or multicast environment. All aspects of the the protocol are under control of the developer, who
sets option bits during individual packet exchanges to support a highly customizable suite of possible
comunication styles. References to this work include [SDW92,XTP95,DFW90].

XTP is a connection oriented protocol, but one in which the connection setup and closing
protocols can be varied depending on the needs of the application. A connection is identified by a 64-bit
key; 64-bit sequence numbers are used to identify bytes in transit. XTP does not define any addressing
scheme of its own, but is normally combined with IP addressing. An XTP protocol is defined as an
exchange of XTP messages. Using the XTP toolkit, a variety of options can be specified for each message
transmitted; the effect is to support a range of possible “qualities of service” for each communication
session. For example, an XTP protocol can be made to emulate UDP or TCP-style streams, to operate in
an unreliable source to destination mode, with selective retransmission based on negative
acknowledgements, or can even be asked to “go back” to a previous point in a transmission and to resume.
Both rate-based and windowing flow control mechanisms are available for each connection, although one
or both can be disabled if desired. The window size is configured by the user at the start of a connection,
but can later be varied while the connection is in use, and a set oftraffic parameters can be used to specify
requirements such as the maximum size of data segments that can be transmitted in each packet,
maximum or desired burst data rates, and so forth. Such parameters permit the development of general
purpose transfer protocols that can be configured at runtime to match the properties of the hardware
environment.

This flexibility is exploited in developing specialized transport protocols that may look like
highly optimized version of the standard ones, but that can also provide very unusual properties. For
example, one could develop a TCP-style of stream that will reliable provided that the packets sent arrive
“on time”, using a user-specific notion of time, but that drops packets if they timeout. Similarly, one can
develop protocols with out-of-band or other forms of priority-based services.

At the time of this writing, XTP was gaining significant support from industry leaders whose
future product lines potentially require flexibility from the network. Video servers, for example, are
poorly matched to the communication properties of TCP connections, hence companies that are investing
heavily in “video on demand” face the potential problem of having products that work well in the
laboratory but not in the field, because the protocol architecture connecting customer applications to the
server is inappropriate. Such companies are interested in developing proprietary data transport protocols
that would essentially extend their server products into the network itself, permitting fine-grained control
over the communication properties of the environment in which their servers operate, and overcoming
limitations of the more traditional but less flexible transport protocols.

Chapter3: BasicCommunication Services 71

71

In Chapters 13 through 16 we will be studying special purpose protocols designed for settings in
which reliability requires data replication or specialized performance guarantees. Although we will
generally present these protocols in the context of streams, UDP, or IP-multicast, it is likely that the future
will bring a considerably wider set of transport options that can be exploited in applications with these
sorts of requirements.

There is, however, a downside associated with the use of customized protocols based on
technologies such as XTP: they can create difficult management and monitoring problems, which will
often go well beyond those seen in standard environments where tools can be developed to monitor a
network and to display, in a well organized manner, the status of the network and applications. Such
tools benefit from being able to intercept network traffic and to associate the message sent with the
applications sending them. To the degree that technologies such as XTP lead to extremely specialized
patterns of communication that work well for individual applications, they may also reduce this desirable
form of regularity and hence impose obstacles to system control and management.

Broadly, one finds a tension within the networking community today. On the one side are
developers convinced that their special-purpose protocols are necessary if a diversity of communications
products and technologies are to be feasible over networks such as the Internet. In some sense this
community generalizes to also include the community that develops special purpose reliability protocols
and that may need to place “properties” within the network to support those protocols. On the other stand
the system administrators and managers, whose lives are already difficult, and who are extremely resistant
to technologies that might make this problem worse. Sympathizing with them are the performance
experts of the operating systems communications community: this group favors an end-to-end approach
because it greatly simplifies their task, and hence tends to oppose technologies such as XTP because they
result in irregular behaviors that are harder to optimize in the general case. For these researchers,
knowing more about the low level requirements (and keeping them as simple as possible) makes it more
practical to optimize the corresponding code paths for extremely high performance and low latency.

From a reliability perspective, one must sympathize with both points of view: this textbook will
look at problems for which reliability requires high performance or other guarantees, and problems for
which reliability implies the need to monitor, control, or manage a complex environment. If there is a
single factor that prevents a protocol suite such as XTP from “sweeping the industry”, it seems likely to be
this. More likely, however, is an increasingly diverse collection of low-level protocols, creating ongoing
challenges for the community that must administer and monitor the networks in which those protocols are
used.

3.8 Next Steps

There is a sense in which it is not surprising that problems such as the performance anomalies cited in the
previous sections would be common on modern operating systems, because the communication subsystems
have rarely been designed or tuned to guarantee good performance for communication patterns such as
were used to produce Figure 3-2. As will be seen in the next few chapters, the most common
communication patterns are very regular ones that would not trigger the sorts of pathological behaviors
caused by memory resource limits and stressful communication loads.

However, given a situation in which most systems must in fact operate over protocols such as
TCP and UDP, these behaviors do create a context that should concern students of distributed systems
reliability. They suggest that even systems that behave well most of the time may break down
catastrophically because of something as simple as a slight increase in load. Software designed on the
assumption that message loss rates are low may, for reasons completely beyond the control of the
developer, encounter loss rates that are extremely high. All of this can lead the researcher to question the

Kenneth P. Birman - Building Secure and Reliable Network Applications72

72

appropriateness of modern operating systems for reliable distributed applications. Alternative operating
systems architectures that offer more controlled degradation in the presence of excess load represent a
potentially important direction for investigation and discussion.

3.9 Additional Reading
On the Internet protocols: [Tan88, Com91, CS91, CS93, CDK94]. Performance issues for TCP and UDP:
[Com91, CS91, CS93, ALFxx, KP93, PP93, BMP94, Hun95]. IP Multicast: [FWB85, Dee88, Dee89,
DC90, Hun95]. Active Messages: [ECGS92, EBBV95]. End-to-end argument: [SRC84]. Xpress
Transfer Protocol: [SDW92, XTP95, DFW90].

Chapter4: RPC and the Client-Server Model 73

73

4. RPC and the Client-Server Model

The emergence of “real” distributed computing systems is often identified with theclient-server
paradigm, and a protocol calledremote procedure callwhich is normally used in support of this
paradigm. The basic idea of a client-server system architecture involves a partitioning of the software in
an application into a set ofservices, which provide a set of operations to their users, andclient programs,
which implement applications and issue requests to services as needed to carry out the purposes of the
application. In this model, the application processes do not cooperate directly with one another, but
instead share data and coordinate actions by interacting with a common set of servers, and by the order in
which the application programs are executed.

There are a great number of client-server system structures in a typical distributed computing
environment. Some examples of servers include the following:

• File servers.These are programs (or, increasingly, combinations of special purpose hardware and
software) that manage disk storage units on which files systems reside. The operating system on a
workstation that accesses a file server acts as the “client”, thus creating a two-level hierarchy: the
application processes talk to their local operating system. The operating system on the client
workstation functions as a single client of the file server, with which it communicates over the
network.

• Database servers.The client-server model operates in a similar way for database servers, except that it
is rare for the operating system to function as an intermediary in the manner that it does for a file
server. In a database application, there is usually a library of procedure calls with which the
application accesses the database, and this library plays the role of the client in a client-server
communications protocol to the database server.

• Network name servers.Name servers implement some form of map from a symbolic name or service
description to a corresponding value, such as an IP addresses and port number for a process capable of
providing a desired service.

• Network time servers.These are processes that control and adjust the clocks in a network, so that
clocks on different machines give consistent time values (values with limited divergence from one-
another. The server for a clock is the local interface by which an application obtains the time. The
clock service, in contrast, is the collection of clock servers and the protocols they use to maintain clock
synchronization.

• Network security servers.Most commonly, these consist of a type of directory in which public keys are
stored, as well as a key generation service for creating new secure communication channels.

• Network mail and bulletin board servers.These are programs for sending, receiving and forwarding
email and messages to electronic bulletin boards. A typical client of such a server would be a program
that sends an electronic mail message, or that displays new messages to a human who is using a news-
reader interface.

• WWW servers.As we learned in the introduction, the World-Wide-Web is a large-scale distributed
document management system developed at CERN in the early 1990’s and subsequently
commercialized. The Web stores hypertext documents, images, digital movies and other information
on web servers, using standardized formats that can be displayed through various browsing programs.
These systems present point-and-click interfaces to hypertext documents, retrieving documents using
web document locators from web servers, and then displaying them in a type-specific manner. A web
server is thus a type of enhanced file server on which the Web access protocols are supported.

Kenneth P. Birman - Building Secure and Reliable Network Applications74

74

In most distributed systems, services can be instantiated multiple times. For example, a
distributed system can contain multiple file servers, or multiple name servers. We normally use the term
serviceto denote a set of servers. Thus, thenetwork file system serviceconsists of the network file servers
for a system, and thenetwork information serviceis a set of servers, provided on UNIX systems, that map
symbolic names to ascii strings encoding “values” or addresses. An important question to ask about a
distributed system concerns the binding of applications to servers.

We say that abinding occurs when a process that needs to talk to a distributed service becomes
associated with a specific server that will perform requests on its behalf. Various binding policies exist,
differing in how the server is selected. For an NFS distributed file system, binding is a function of the file
pathname being accessed – in this file system protocol, the servers all handle different files, so that the
pathname maps to a particular server that owns that file. A program using the UNIX network information
server normally starts by looking for a server on its own machine. If none is found, the program
broadcasts a request and binds to the first NIS that responds, the idea being that this NIS representative is
probably the least loaded and will give the best response times. (On the negative side, this approach can
reduce reliability: not only will a program now be dependent on availability of its file servers, but it may
be dependent on an additional process on some other machine, namely the NIS server to which it became
bound). The CICS database system is well known for its explicit load-balancing policies, which bind a
client program to a server in a way that attempts to give uniform responsiveness to all clients.

Algorithms for binding, and for dynamically rebinding, represent an important topic to which we
will return in Chapter 17, once we have the tools at our disposal to solve the problem in a concise way.

A distributed service may or may not employdata replication, whereby a service maintain more
than one copy of a single data item to permit local access at multiple locations, or to increase availability
during periods when some server processes may have crashed. For example, most network file services
can support multiple file servers, but do not replicate any single file onto multiple servers. In this
approach, each file server handles a partition of the overall file system, and the partitions are disjoint from
one another. A file can be replicated, but only by giving each replica a different name, placing each
replica on an appropriate file server, and implementing hand-crafted protocols for keeping the replicas
coordinated. Replication, then, is an important issue in designing complex or highly available distributed
servers.

Cachingis a closely related issue. We say that a process hascacheda data item if it maintains a
copy of that data item locally, for quick access if the item is required again. Caching is widely used in file
systems and name services, and permits these types of systems to benefit from locality of reference. A
cache hit is said to occur when a request can be satisfied out of cache, avoiding the expenditure of
resources needed to satisfy the request from theprimary store or primary service. The Web uses
document caching heavily, as a way to speed up access to frequently used documents.

Caching is similar to replication, except that cached copies of a data item are in some ways
second-class citizens. Generally, caching mechanisms recognize the possibility that the cache contents
may be stale, and include a policy for validating a cached data item before using it. Many caching
schemes go further, and include explicit mechanisms by which the primary store or service can invalidate
cached data items that are being updated, or refresh them explicitly. In situations where a cache is actively
refreshed, caching may be identical to replication – a special term for a particular style of replication.

However, “generally” does not imply that this is always the case. The Web, for example, has a
cache validation mechanism but does not actually require that web proxies validate cached documents
before providing them to the client; the reasoning is presumably that even if the document were validated
at the time of access, nothing prevents it from changing immediately afterwards and hence being stale by

Chapter4: RPC and the Client-Server Model 75

75

the time the client display it, in any case. Thus a periodic refreshing scheme in which cached documents
are refreshed every half hour or so is in many ways equally reasonable. A caching policy is said to be
coherentif it guarantees that cached data is indistinguish to the user from the primary copy. The web
caching scheme is thus one that does not guarantee coherency of cached documents.

4.1 RPC Protocols and Concepts

The most common communication protocol for communication between the clients of a service and the
service itself isremote procedure call. The basic idea of an RPC originated in work by Nelson in the early
1980’s [BN84]. Nelson worked in a group at Xerox Parc that was developing programming languages
and environments to simplify distributed computing. At that time, software for supporting file transfer,
remote login, electronic mail, and electronic bulletin boards had become common. Parc researchers,
however, and ambitious ideas for developing other sorts of distributed computing applications, with the
consequence that many researchers found themselves working with the lowest level message passing
primitives in the Parc distributed operating system, which was called Cedar.

Much like a more modern operating system, message communication in Cedar supported three
communication models:

• Unreliable datagram communication, in which messages could be lost with some (hopefully low)
probability;

• Broadcast communication, also through an unreliable datagram interface.

• Stream communication, in which an initial connection was required, after which data could be
transferred reliably.

Programmers found these interfaces hard to work with. Any time a programp needed to communicate
with a programs, it was necessary forp to determine the network address ofs, encode its requests in a
way thats would understand, send off the request, and await a reply. Programmers soon discovered that
certain basic operations needed to be performed in almost any network application, and that each
developer was developing his or her own solutions to these standard problems. For example, some
programs used broadcasts to find a service with which they needed to communicate, others stored the
network address of services in files or hard-coded them into the application, and still others supported
directory programs with which services could register themselves, and supporting queries from other
programs at runtime. Not only was this situation confusing, it turned out to be hard to maintain the early
versions of Parc software: a small change to a service might “break” all sorts of applications that used it,
so that it became hard to introduce new versions of services and applications.

Surveying this situation, Bruce Nelson started by asking what sorts of interactions programs
really needed in distributed settings. He concluded that the problem was really no different from function
or procedure call in a non-distributed program that uses a presupplied library. That is, most distributed
computing applications would prefer to treat other programs with which they interact much as they treat
presupplied libraries, with well known, documented, procedural interfaces. Talking to another program
would then be as simple as invoking one of its procedures – aremote procedure call(RPC for short).

The idea of remote procedure call is compelling. If distributed computing can be transparently
mapped to a non-distributed computing model, all the technology of non-distributed programming could
be brought to bear on the problem. In some sense, we would already know how to design and reason about
distributed programs, how to show them to be correct, how to test and maintain and upgrade them, and all
sorts of preexisting software tools and utilities would be readily applicable to the problem.

Kenneth P. Birman - Building Secure and Reliable Network Applications76

76

Unfortunately, the details of supporting remote procedure call turn out to be non-trivial, and
some aspects result in “visible” differences between remote and local procedure invocations. Although this
wasn’t evident in the 1980’s when RPC really took hold, the subsequent ten or fifteen years saw
considerable theoretical activity in distributed computing, out of which ultimately emerged a deep
understanding of how certain limitations on distributed computing are reflected in thesemantics, or
properties, of a remote procedure call. In some ways, this theoretical work finally lead to a major
breakthrough in the late 1980’s and early 1990’s, when researchers learned how to create distributed
computing systems in which the semantics of RPC are precisely the same as for local procedure call
(LPC). In Part III of this text, we will study the results and necessary technology underlying such a
solution, and will see how to apply it to RPC. We will also see, however, that such approaches involve
subtle tradeoffs between semantics of the RPC and performance that can be achieved, and that the faster
solutions also weaken semantics in fundamental ways. Such considerations ultimately lead to the insight
that RPC cannot be transparent, however much we might wish that this was not the case.

Making matters worse, during the same period of time a huge engineering push behind RPC
elevated it to the status of a standard – and this occurredbefore it was understand how RPC could be
made to accurately mimic LPC. The result of this is that the standards for building RPC-based computing
environments (and to a large extent, the standards for object-based computing that followed RPC in the
early 1990’s) embody a non-transparent and unreliable RPC model, and that this design decision is often
fundamental to the architecture in ways that the developers who formulated these architectures probably
did not appreciate. In the next chapter, when we study stream-based communication, we will see that the
same sort of premature standardization affected the standard streams technology, which as a result also
suffer from serious limitations that could have been avoided had the problem simply been better
understood at the time the standards were developed.

In the remainder of this chapter, we will focus on standard implementations of RPC. We will
look at the basic steps by which an program RPC is coded in a program, how that program is translated at
compile time, and how it becomes bound to a service when it is executed. Then, we will study the
encoding of data into messages and the protocols used for service invocation and to collect replies. Finally,
we will try to pin down a semantics for RPC: a set of statements that can be made about the guarantees of
this protocol, and that can be compared with the guarantees of LPC.

We do not, however, give detailed examples of the major RPC programming environments: DCE
and ONC. These technologies, which emerged in the mid 1980’s, represented proposals to standardize
distributed computing by introducing architectures within which the major components of a dtsributed
computing system would have well-specified interfaces and behaviors, and within which application
programs could interoperate using RPC by virtue of employing standard RPC interfaces. DCE, in
particular, has become relatively standard, and is available on many platforms today [DCE94]. However,
in the mid-1990’s, a new generation of RPC-oriented technology emerged through the Object
Management Group, which set out to standardize object-oriented computing. In a short period of time,
the CORBA [OMG91] technologies defined by OMG swept past the RPC technologies, and for a text such
as the present one, it now makes more sense to focus on CORBA, which we discuss in Chapter 6.
CORBA has not so much changed the basic issues, as it has broadened the subject of discourse by
covering more kinds of system services than did previous RPC systems. Moreover, many CORBA systems
are implemented as a layer over DCE or ONC. Thus, although RPC environments are important, they are
more and more hidden from typical programmers and hence there is limited value in seeing examples of
how one would program applications using them directly.

Many industry analysis talk about CORBA implemented over DCE, meaning that they like the
service definitions and object orientation of CORBA, and that it makes sense to assume that these are
build using the service implementations standardized in DCE. In practice, however, CORBA makes as

Chapter4: RPC and the Client-Server Model 77

77

much sense on a DCE platform as on a non-DCE platform, hence it would be an exaggeration to claim
that CORBA on DCE is ade-factostandard today, as one sometimes reads in the popular press.

The use of RPC leads to interesting problems of reliability and fault-handling. As we will see, it
is not hard to make RPC work if most of the system is working well. When a system malfunctions,
however, RPC can fail in ways that leave the user with no information at all about what has occurred, and
with no apparent strategy for recovering from the situation.There is nothing new about the situations we
will be studying – indeed, for many years, it was simply assumed that RPC was subject to intrinsic
limitations, and that there being noobvious way to improve on the situation, there was no reason that RPC
shouldn’t reflect these limitations in its semantic model. As we advance through thebook, however, and it
becomes clear that thereare realistic alternatives that might be considered, this point of view becomes
increasingly open to question.

Indeed, it may now be time to develop a new set of standards for distributed computing. The
existing standards are flawed, and the failure of the standards community to repair these flaws has erected
an enormous barrier to the development of reliable distributed computing systems. In a technical sense,
these flaws are not tremendously hard to overcome – although the solutions would require some
reengineering of communication support for RPC in modern operating systems. In a practical sense,
however, one wonders if it will take a “Tacoma Narrows” event to create real industry interest in taking
such steps.

One could build an RPC environment that would have few, if any, user-visible incompatibilities
from a more fundamentally rigorous approach. The issue then is one of education – the communities that
control the standards need to understand the issue better, and need to understand the reasons that this
particular issue represents such a huge barrier to progress in distributed computing. And, the community
needs to recognize that the opportunity vastly outweighs the reengineering costs that would be required to
seize it. With this goal in mind, let’s take a close look at RPC.

4.2 Writing an RPC-based Client or Server Program

The programmer of an RPC-based application employs what is called astub generationtool. Such a tool
is somewhat like a macro preprocessor: it transforms the user’s original program into a modified version,
which can be linked to an RPC runtime library.

From the point of view of the programmer, the server or client program looks much like any
other program. Normally, the program willimport or export a set of interface definitions, covering the
remote procedures that will be obtained from remote servers or offered to remote clients, respectively. A
server program will also have a “name” and a “version”, which are used to connect the client to the
server. Once coded, the program is compiled in two stages: first the stub generator is used to map the
original program into a standard program with added code to carry out the RPC, and then the standard
program is linked to the RPC runtime library for execution.

Kenneth P. Birman - Building Secure and Reliable Network Applications78

78

RPC-based application or server programs are coded in a programming style very similar to a
non-distributed program written in C for UNIX: there is no explicit use of message passing. However,
there is an important aspect of RPC programming that differs from programming with local procedure
calls: the separation of the service interface definition, or IDL3, from the code that implements it. In an
RPC application, a service is considered to have two parts. The interface definition specifies the way that
the service can be located (its name), the data types used in issuing requests to it, and the procedure calls
that it supports. Aversion numberis included to provide for evolution of the service over time – the idea
being that if a client is developed to use version 1.1 of a service, there should be a way to check for
compatibility if it turns out that version 1.0 or 2.3 is running when the client actually gets executed.

The basic actions of the RPC library were described earlier. In the case of a server program, the
library is responsible for registering the program with the RPC directory service program, which is
normally provided as part of the RPC runtime environment. An RPC client program will automatically
perform the tasks needed to connect query the directory to find this server and to connect to it, creating a
client-server binding. For each of the server operations it invokes, code will be executed tomarshall a
representation of the invocation into a message – that is, information about the way that the procedure was
called and values of the parameters that were passed. Code is included to send this message to the service,
and to collect a reply; on the server side, the stub generator creates code to read in such a message, invoke
the appropriate procedure with the arguments used by the remote caller, and to marshall the results for
transmission back to the caller. Issues such as user-id handling, security and privacy, and handling of
exceptions are often packaged as part of a solution. Finally, back on the caller side, the returning message
will be demarshalled and the result made to look like the result of a local procedure.

Although much of this mechanism is automatic and hidden from the programmer, RPC
programming differs from LPC programming in many ways. Most noticeable is that most RPC packages
limit the types of arguments that can be passed to a remote server, and some also limit the size (in bytes)
of the argument information. For example, suppose that a local procedure is written to search a list, and
an LPC is performed to invoke this procedure, passing a pointer to the head of the list as its argument.
One can ask whether this should work in an RPC environment – and if so, how it can be supported. If a
pointer to the head of the list is actually delivered to a remote program, that pointer will not make sense in
the remote address space where the operation will execute. So, it would be natural to propose that the
pointer be dereferenced, by copying the head of the list into the message. Remotely, a pointer to the copy
can be provided to the procedure. Clearly, however, this will only work if one chasesall the pointers in
question – a problem because many programs that use pointers have some representation for an
uninitialized pointer, and the RPC stub generator may not know about this.

For example, in building a balanced tree, it is common to allocate nodes dynamically as items are
inserted. A node that has no descendents would still have left and right pointer fields, but these would be
initialized tonil and the procedure to search nodes would check for thenil case before dereferencing these
pointers. Were an RPC marshalling procedure to automatically make a copy of a structure to send to the
remote server, it would need to realize that for this particular structure, a pointer value ofnil has a special
meaning and should not be “chased”.

3 It is common to call the interface to a program its “IDL”, although IDL actually is a short-hand for Interface
Definition Language, which is the language used to write down the description of such an interface. Historically,
this seems to represent a small degree of resistance to the overuse of acronyms by the distributed systems
standardization community. Unfortunately, the resistance seems to have been short-lived: CORBA introduces at
least a dozen new 3-letter acronyms, “ATM” has swept the networking community, and 4- and 5-letter acronyms
(as the available 3-letter combinations are used up) seems certain to follow!

Chapter4: RPC and the Client-Server Model 79

79

The RPC programmer sees
issues such as these as a set of
restrictions. Depending on the RPC
package used, different approaches may
be used to attack them. In many
packages, pointers are simply not legal
as arguments to remote procedures. In
others, the user can control a copying
mechanism to some degree, and in still
fancier systems, the user must provide
general purpose structure traversal
procedures that will be used by the RPC
package to marshall arguments. Further
complications can arise if a remote
procedure may modify some of its
arguments. Again, the degree to which
this is supported at all, and the degree to
which the programmer must get

involved, vary from package to package.

Perhaps ironically, RPC programmers tend to complain about this aspect of RPC no matter how
it is handled. If a system is highly restrictive, the programmer finds that remote procedure invocation is
annoying because one is constantly forced to work around the limitations of the invocation package. For
example, if an RPC package imposes a size limit on the arguments to a procedure, an application that
works perfectly well in most situations may suddenly fail because some dynamically defined object has
grown too large to be accepted as an RPC parameter. Suddenly, what was a single RPC becomes a multi-
RPC protocol for passing the large object in chunks, and a perfectly satisfied programmer has developed
distinct second thoughts about the transparency of RPC. At the other extreme are programming languages
and RPC packages in which RPC is extremely transparent. These, however, often incur high overheads to
copy information in and out, and the programmer is likely to be very aware of these because of their cost
implications. For example, a loop that repeatedly invokes a procedure with one parameter changing and
others (including a pointer to some large object) may be quite inexpensive to invoke in the local case. But
if the large object will be copied to a remote program on every invocation, the same loop may cost a
fortune when coded as part of a distributed client-server application, forcing the program to be redesigned
to somehow pass the object to the remote server prior to the computational loop. These sorts of issues,
then, make programming with RPC quite different from programming with LPC.

RPC also introduces error cases that are not seen in LPC, and the programmer needs to deal with
these. An LPC would never fail with a “binding error”, or a “version mismatch” or a “timeout.” In the
case of RPC, all of these are possibilities – a binding error would arise if the server is not running when
the client is started. A version mismatch might occur if a client was compiled against version 1 of a
server, but the server has now been upgraded to version 2. A timeout could result from a server crash, or a
network problem, or even a problem on the client’s computer. Many RPC applications would view these
sorts of problems as unrecoverable errors, but fault-tolerant systems will often have alternative sources for
critical services and will need to fail-over from a primary server to a backup. The code to do this is
potentially complex, and in most RPC environments, must be implemented by the application developer
on a case-by-case basis.

4.3 The RPC Binding Problem

The binding problem arises when an RPC client program needs to determine the network address of a
server capable of providing some service it requires. Binding can be approached from many perspectives,

index = lookup(“name”)

host: abc
prog: 1234
func: lookup
arg: “name”

host: def
prog: 567
func: reply
arg: “17”

index = 17

server

Figure 4-1: Remote procedure call involves creating a message that
can be sent to the remote server, which unpacks it, performs the
operation, and sends back a message encoding the result.

Kenneth P. Birman - Building Secure and Reliable Network Applications80

80

but the issue is simplified if issues associated with thename serviceused are treated separately, as we do
here.

Disregarding its interactions with the name service, a binding service is primarily a protocol by
which the RPC system verifies compatibility between the client and server and establishes any connections
needed for communication.

The compatibility problem is important in systems that will operate over long periods of time,
during which maintenance and the development of new versions of system components will inevitably
occur. Suppose that a client programc was developed and tested using servers, but that we now wish to
install a new version ofs, c, or both. Upgrades such as these create a substantial risk that some old copy of
c will find itself talking to a new copy ofs, or vice versa. For example, in a network of workstations it may
be necessary to reloadc onto the workstations one by one, and if some machines are down when the reload
occurs, an old copy ofc could remain on its disk. Unlessc is upgraded as soon as the machine is rebooted
– and this may or may not occur, depending on how the system is administered – one would find an oldc
talking to an upgradeds. It is easy to identify other situations in which problems such as this could arise.

It would be desirable to be able to assume that all possible “versions” ofs andc could somehow
communicate with all other versions, but this is not often the case. Indeed, it is not necessarily even
desirable. Accordingly, most RPC environments support a concept ofversion numberwhich is associated
with the server IDL. When a client program is compiled, the server IDL version is noted in software. This
permits the inclusion of the client’s version of the server interface directly in the call to the server. When
the match is not exact, the server could reject the request as being incompatible, perform some operation
to map the old-format request to a new-format request, or even preserve multiple copies of its
functionality, running the version matched to the caller.

Connection establishment is a relatively mechanical stage of binding. Depending on the type of
client-server communication protocol that will be used, messages may be transmitted using unreliable
datagrams or over reliable communication streams such as X.25 or TCP. Unreliable datagram connections
normally do not require any initial setup, but stream connections typically involve some form of open or
initialization operation. Having identified the server to which a request will be issued, the binding
mechanism would normally perform this open operation.

The binding mechanism is sometimes used to solve two additional problems. The first of these is
called the “factory” problem, and involves starting a server when a service has no currently operational
server. In this approach, the first phase of binding looks up the address of the server and learns that the
server is not currently operational (or, in the connection phase, a connection error is detected and from
this the binder deduces that the server has failed). The binder then issues a request to afactory in which
the system designer has stored instructions for starting a server up when needed. After a suitable pause,
the binder cycles back through its first phase, which presumably succeeds.

The second additional problem arises in the converse situation, when the binder discovers
multiple servers that could potentially handle this client. The best policy to use in such situations depends
very much on the application. For some systems, a binder should always pick a server on the same
machine as the client, if possible, and should otherwise pick randomly. Other systems require some form
of load-balancing, while still others may implement anaffinity policy under which a certain server might
be especially well suited to handling a particular client for reasons such as the data it has cached in
memory, or the type of requests the client is expected to issue once binding has been completed.

Chapter4: RPC and the Client-Server Model 81

81

Binding is a relatively expensive operation. For example, in the DCE RPC environment, binding
can be more than 10 times as costly as RPC. However, since binding only occurs once for each client-
server pair, this high cost is not viewed as a major problem in typical distributed computing systems.

4.4 Marshalling and Data Types

The purpose of a data marshalling mechanism is to represent the caller’s arguments in a way that can be
efficiently interpreted by a server program. In the most general cases, this mechanism deals with the
possibility that the computer on which the client is running uses a different data representation than the
computer on which the server is running.

Mashalling has been treated at varying levels of generality, and in fact there exists a standard,
ASN.1, for self-describing data objectsin which a specific representation is recommended. In addition to
ASN.1, several major vendors have adopted data representations of their own, such as SUN Microsystem’s
External Data Representation (XDR) format, which is used in the widely popular Network File System
(NFS) protocol.

The basic issues that arise in a data marshalling mechanism, then, are these. First, integer
representations vary for the most common CPU chips. On some chips the most significant byte of an
integer is also the low byte of the first word in memory, while on others the most significant byte is stored
in the high byte of the last word of the integer. These are called little-endian and big-endian
representations. At one point in the 1980’s, computers with other representations – other byte
permutations – were on the market, but at the time of this writing the author is not aware of any other
surviving formats.

A second representation issue concerns data alignment. Some computers require that data be
aligned on 32-bit or even 64-bit boundaries, while others may have weaker alignment rules, for example
by supporting data alignment on 16-bit boundaries. Unfortunately, such issues are extremely common.
Compilers know about these rules, hence the programmer is typically unaware of them. However, when a
message arrives from a remote machine that may be using some other alignment rule, the issues becomes
an important one. An attempt to fetch data directly from a message without attention to this issue could
result in some form of machine fault, or could result in retrieval of garbage. Thus, the data representation
used in messages must encode sufficient information to permit the destination computer to find the start of
object in the message, or the sender and destination must agree in advance on a packed representation that
will be used for messages “on the wire” even if the sender and destination themselves share the same
rules and differ from the standard. Needless to say, this is a topic capable of generating endless and
fascinating debate among computer vendors whose machines use different alignment or data
representations.

Kenneth P. Birman - Building Secure and Reliable Network Applications82

82

A third issue arises from the
existence of multiple floating point
representations. Although there is an
IEEE standard floating point
representation, which has become widely
accepted, some computer vendors use
non-standard representations for which
conversion would be required, and even
within computers using the standard,
byte ordering issues can still arise.

A forth issue concerns pointers.
When transmitting a complex structure
in which there are pointers, the
marshalling mechanism needs to either
signal that the user has requested
something illegal, or to somehow
represent these pointers in a way that
will permit the receiving computer to
“fix” them upon reception of the request.

This is especially tricky in languages like LISP, which require pointers and hence cannot easily legislate
against them in RPC situations. On the other hand, passing pointers raises additional problems: should
the pointed-to object be included in the message, transferred only upon use (a “lazy” scheme), or handled
in some other way?

Finally, a marshalling mechanism may need to deal with incompatibilities in the basic data types
available on computers. For example, a pair of computers supporting 64-bit integers in hardware may
need to exchange messages containing 64-bit integer data. The marshalling scheme should therefore be
able to represent such integers. On the other hand, when this type of message is sent to a computer that
uses 32-bit integers the need arises to truncate the 64-bit quantities so that they will fit in the space
available, with an exception being generated if data would be lost by such a truncation. Yet, if the message
is merely being passed through some sort of intermediary, one would prefer that data not be truncated,
since precision would be lost. In the reverse direction, sign extension or padding may need to be
performed to convert a 32-bit quantity into an equivalent 64-bit quantity, but only if the data sent is a
signed integer. Thus, a completely general RPC package needs to put a considerable amount of
information into each packet, and may need to do quite a bit of work to represent data in a universal
manner. On the other hand, such an approach may be much more costly than one that supports only a
very limited set of possible representations, or that compiles the data marshalling and demarshalling
operations directly into inline code.

The approach taken to marshalling varies from RPC package to package. SUN’s XDR system is
extremely general, but requires the user to code marshalling procedures for data types other than the
standard base types of the system. With XDR, one can represent any desired data structure, even dealing
with pointers and complex padding rules. At the other end of the spectrum are marshalling procedures
that transmit data in the binary format used by the sender, are limited to only simple data types, and
perhaps do little more than compatibility checking on the receive side. Finally, schemes like ISDN.1 are
often used with RPC stub generators, which automatically marshall and demarshall data, but impose some
restrictions on the types of objects that can be transmitted.

As a general rule of thumb, users will want to be aware that the more general solutions to these
problems are also more costly. If the goal is extremely speed, it may make sense to design the application
itself to produce data in a form that is inexpensive to marshall and demarshall. The cost implications of

253 021 311 120

120 311 021 253

Figure 4-2: The same number (here, a 32-bit integer) may be
represented very differently on different computer architectures.
One role of the marshalling an demarshalling process is to modify
data representations (here, by permuting the bytes) so that values
can be interpreted correctly upon reception.

Chapter4: RPC and the Client-Server Model 83

83

failing to do so can be surprising, and in many cases, it is not even difficult to redesign an interface so that
RPC to it will be cheap.

4.5 Associated Services

No RPC system lives in isolation. As we will see below, RPC is often integrated with a security
mechanism, and because security keys (and some parts of the RPC protocol itself) use timestamps, with a
clock synchronization mechanism. For this reason, one often talks about distributed computing
“environments” that include tools for implementing client-server applications including an RPC
mechanism, security services and time services. Elaborate environments may go well beyond this,
including system instrumentation and management interfaces and tools, fault-tolerance tools, and so-
called Forth Generation Language (4GL) tools for building applications using graphical user interfaces
(GUI’s). Such approaches can empower even unskilled users to develop sophisticated distributed
solutions. In this section we briefly review the most important of these services.

4.5.1 Naming services

A naming service maintains one or moremappingsfrom some form of name (normally symbolic) to some
form of value (normally, a network address). Naming services can operate in a very narrow, focused way –
for example, the Domain Naming Service of the TCP/IP protocol suite maps short service names, in ascii,
to IP addresses and port numbers, requiring exact matches. At the other extreme, one can talk about
extremely general naming services that are used for many sorts of data, allow complex pattern matching
on the name, and may return other types of data in addition to, or instead of, an address. One can even go
beyond this, to talk about secure naming services that can be trusted to only give out validated addresses
for services, very dynamic naming services that deal with applications like mobile computing systems in
which hosts have addresses that change constantly, and so forth.

In standard computer systems at the time of this writing, three naming services are widely
supported and used. Mentioned above, the Domain Name Service (DNS) is the least functional but most
widely used. It responds to requests on a standard network port address, and for the “domain” in which it
is running can map short (8 character) strings to internet port numbers. DNS is normally used for static
services, which are always running when the system is operational and do not change port numbers at all.
For example, the email protocol uses DNS to find the remote mail daemon capable of accepting incoming
email to a user on a remote system.

The Network Information Service (NIS), previously called Yellow Pages (YP), is considerably
more elaborate. NIS maintains a collection of maps, each of which has a symbolic name (e.g. “hosts”,
“services”, etc.) and maps ascii keywords to an ascii value string. NIS is used on UNIX systems to map
host names to internet addresses, service names to port numbers, etc. Although NIS does not support
pattern matching, there are ways for an application to fetch the entire NIS database, one line at a time,
and it is common to include multiple entries in an NIS database for a single host that is known by a set of
aliases. NIS is a distributed service that supports replication: the same data is normally available from any
of a set of servers, and a protocol is used to update the full set of servers if an entry changes. However,
NIS is not designed to support rapid updates: the assumption is that NIS data consists of mappings like
the map from host name to internet address, which change very rarely. A 12-hour delay before NIS
information is updated is not unreasonable given this model, hence the update problem is solved by
periodically refreshing the state of each NIS server by having it re-read the contents of a set of files in
which the mapping data is actually stored. As an example, NIS is often used to store password
information on UNIX systems.

Kenneth P. Birman - Building Secure and Reliable Network Applications84

84

X.500 is an international standard that many expect will eventually replace NIS. This service,
which is designed for use by applications running the ISO standard remote procedure call interface and
ISDN.1 data encoding, operates much like an NIS server. No provision has been made in the standard for
replication or high performance update, but the interface does support some limited degree of pattern
matching. As might be expected from a standard of this sort, X.500 addresses a wide variety of issues,
including security and recommended interfaces. However, reliability issues associated with availability
and consistency of the X.500 service (i.e. when data is replicated) have not yet been tackled by the
standards organization.

Looking to the future, there is considerable interest in using X.500 to implement general purpose
White-Pages (WP) servers, which would be explicitly developed to support sophisticated pattern matching
on very elaborate databases with detailed information about abstract entities. Rapid update rates, fault-
tolerance features, and security are all being considered in these proposals. At the time of this writing, it
appears that the Web will require such services and hence that the work on universal resource naming for
use in the Web will be a major driving force for evolution in this overall area.

4.5.2 Time services

With the launch of the so-called Global Positioning System satellites, micro-second accuracy become
possible in workstations equipped with inexpensive radio receivers. Unfortunately, however, accurate
clocks remain a major problem in the most widely used computer workstations and network technologies.
We will have a great to say about this in Chapter 20, but some background may still be useful here.

At the time of this writing, the usual clock for a PC or workstation consists of a quartz-based chip
much like the one in a common wristwatch, accurate to within a few seconds per year. The initial value of
such a clock is either set by the vendor or by the user, when the computer is booted. As a result, in any
network of workstations, clock can give widely divergent readings and can drift with respect to one-
another at significant rates. For these reasons, there has been considerable study of algorithms for clock
synchronization, whereby the clocks on invidual machines can be adjusted to give behavior approximating
that of a shared global clock. In Chapter 20, we will discuss some of the algorithms that have been
proposed for this purpose, their ability to tolerate failures, and the analyses used to arrive at theoretical
limits on clock accuracy.

However, much of this work has a limited lifetime. GPS receivers can give extremely accurate
time, and GPS signals are transmitted frequently enough so that even inexpensive hardware can
potentially maintain time accurate to microseconds. By broadcasting GPS time values, this information
can be propagated within a network of computers, and although some accuracy is necessarily lost when
doing so, the resulting clocks are still accurate and comparable to within tens of microseconds. This
development can be expected to have a major impact on the way that distributed software is designed –
from a world of asynchronous communication and clocks that can be inaccurate by many times the
average message latency in the network, GPS based time could catapult us into a domain in which clock
resolutions considerably exceed the averagelatency between sending a message and when it is received.
Such developments make it very reasonable to talk about synchronous (time-based) styles of software
design and the use of time in algorithms of all sorts.

Even coarsely synchronized clocks can be of value in distributed software. For example, when
comparing versions of files, microsecond accuracy is not needed to decide if one version is more current
than another: accuracy of seconds or even tens of seconds may be adequate. Security systems often have a
notion of expiration associated with keys, but for these to be at risk of “attacks” an intruder would need a
way to set a clock back by days, not fractions of a second. And, although we will see that RPC protocols

Chapter4: RPC and the Client-Server Model 85

85

use time to detect and ignore very old, stale, messages, as in the case of a security mechanism a clock
would need to be extremely inaccurate for such a system to malfunction.

4.5.3 Security services

In the context of an RPC environment, security is usually concerned with theauthenticationproblem.
Briefly stated, this is the problem of providing applications with accurate information about the user-id on
behalf of which a request is being performed. Obviously, one would hope that the user-id is related in
some way to the user, although this is frequently the weak link in a security architecture. Given an
accurate source of user identifications, however, the basic idea is to avoid intrusions that can compromise
user-id security through break-ins on individual computers and even replacements of system components
on some machines with versions that have been compromised and hence could malfunction. As in the
case of clock services, we will looking more closely at security later in the textbook (Chapter 19) and
hence limit ourselves to a brief review here.

To accomplish authentication, a typical security mechanism (for example, the Kerberos security
architecture for DCE [SNS88, Sch94]) will request some form of password or one-time key from the user
at login time, and periodically thereafter, as keys expire on the basis of elapsed time. This information is
used to compute a form of secure user-identification that can be employed during connection
establishment. When a client binds to a server, the security mechanism authenticates both ends, and also
(at the option of the programmer) arranges for data to be encrypted on the wire, so that intruders who
witness messages being exchanged between the client and server have no way to decode the data
contained within them. (Unfortunately, however, this step is so costly that many applications disable
encryption and simply rely upon the security available from the initial connection setup). Notice that for
such a system to work correctly, there must be a way to “trust” the authentication server itself: the user
needs a way to confirm that it is actually talking to the authentication server, and to legitimate
representatives of the services it wishes to use. Give the anonymity of network communication, these are
potentially hard problems.

In Chapter 19, we will look closely at distributed security issues (for example, we will discuss
Kerberos in much more detail), and also at the relationship between security and other aspects of
reliability and availability – problems that are often viewed as mutually exclusive since one replicates
information to make it more available, but would tend to restrict and protect it to make it more secure. We
will also look at emerging techniques for protecting privacy, namely the “true” user-id’s of programs
active in a network. Although the state of the art does not yet support construction of high performance,
secure, private applications, this should be technically feasible within the not-distant future. Of course,
technical feasibility does not imply that the technology will become widely practical and hence useful in
building reliable applications, but at least the steps needed to solve the problems are increasingly
understood.

4.5.4 Threads packages

Yet a fourth component of a typical RPC system is the lightweight threads package, which enables a
single program to handle multiple tasks at the same time. Although threads are a general concept and
indeed have rather little to do with communication per-se, they are often viewed as necessary in
distributed computing systems because of the potential for deadlock if threads arenot present.

To understand this point, it is helpful to contrast three ways of designing a communication
system. A single-threaded message-based approach would correspond to a conventional style of
programming extended directly to message passing. The programmer would use system calls likesendto
and recvfromas desired to send and receive messages. If there are several things happening at the same

Kenneth P. Birman - Building Secure and Reliable Network Applications86

86

time in a program structured this way, however, the associatedbookkeeping can be a headache (see Figure
4-3).

Threads offer a simple way to eliminate this problem: each thread executes concurrently with the
others, and each incoming request spawns a new thread to handle it. While an RPC is pending the thread
that issues it blocks (waits) in the procedure call that invoked the RPC. To the degree that there is any
bookkeeping to worry about, the associated state is represented directly in the local variables of this
procedure and in the call itself: when the reply is received, the procedure returns (the thread resumes
execution), and there is no need to track down information about why the call was being done: this is
“obvious” to the calling procedure. Of course, the developer does need to implement adequate
synchronization to avoid concurrency-related bugs, but in general this is not a hard thing to do. The
approach overcomes many forms of problems that are otherwise hard to address.

For example, consider a situation in which an RPC server is also the client of some other server,
which is in turn the client of still additional servers. It is entirely possible that a cycle could form, in
which RPCa by processx on processy leads to an RPCb by y on z, and so forth, until finally some
process in the chain makes a request back to the original process,x. If these calls were LPC calls, such a
sequence would simply be a form of recursion. For a single-threaded RPC system, however,x will be busy
performing RPCa and hence would be unresponsive, creating a deadlock. Alternatively,x would need to
somehow save the information associated with sending RPCa while it is handling this new incoming
request. This is the bookkeeping problem aluded to above.

Yet a third option is known as “event dispatch” and is typical of windowing systems, in which
each action by the user (mouse motion or clicks, keyboard entries) results in delivery of an “event” record
to a central dispatching loop. The application program typically registers a set of procedure callbacks to
perform when events of interest are received: if the left mouse button is pressed, invokeleft_button().
Arguments to these callbacks tell the program exactly what occured: the cursor was at position 132,541
when the mouse button was pressed, this is inside such and such a window, etc. One can use the same
approach to handle event dispatch in message-based systems: incoming messages are treated as “events”
and result in callbacks to handler procedures.

The approaches can also be combined: event dispatch systems can, for example, fork a new
thread for each incoming message. In the most general approach, the callback is registered with some
indication of how it should be performed: by forking a thread, by direct procedure call, or perhaps even by
some other method, such as enqueuing the event on an event queue. This last approach is used in the
Horus system, which we will discuss in Chapter 18.

At the time of this writing, although this is not universally the case, many RPC systems are built
directly over a lightweight threads package. Each incoming RPC is handled by a new thread, eliminating
the risk of deadlock, but forcing the programmer to learn about lightweight threads, preemption, mutual
exclusion mechanisms, and other issues associated with concurrency. In this text, we will present some
protocols that in which processes are assumed to be multi-threaded, so that the initiator of a protocol can
also be a participant in it. However, we will not explicitly discuss thread packages or make use of any
special features of particular packages.

Chapter4: RPC and the Client-Server Model 87

87

Threads: A Personal Prospective

Speaking from personal experience, I have mixed feelings on the issue of threads. Early in my
career I worked with protocols implemented directly over a UDP datagram model. This turned out
to be very difficult: such a system needs to keep track of protocol “state” in some form of table,
matching replies with requests, and is consequently hard to program. For example, suppose that a
distributed file server is designed to be single-threaded. Such a file server may handle many
applications at the same time, so it will need to send off one request, perhaps to read a file, but
remain available for other requests, perhaps by some other application that wants to write a file.
The information needed to keep track of the first request (the read that is pending) will have to be
recorded in some sort of pending activities table, and later matched with the incoming reply from
the remote file system. Having implemented such an architecture once, I would not want to do it
again.

This motivated me to move to RPC-style protocols, using threads. We will be talking about the Isis
Toolkit, which is a system that I implemented (with help from others!) in the mid 1980’s, and in
which lightweight threads were employed extensively. Many Isis users commented to me that they
had never used threads before working with Isis, and were surprised at how much the approach
simplified things. This is certainly the case: in a threaded system, the procedure handling the
“read” would simply block waiting for the reply, while other procedures can be executed to handle
other requests. The necessary bookkeeping is implicit: the blocked procedure has a local state
consisting of its calling stack, local variables, and so forth. Thus there is no need to constantly
update a table of pending activities.

Of course, threads are also a potential source of insidious programming bugs. In Isis, the benefits of
threads certainly outweighed the problems associated with them, but it also is clear that this model
requires a degree of programming sophistication that goes somewhat beyond standard single-
threaded programming. It took me at least a year to get in the habit of thinking through the
potential reentrancy and ordering issues associated with concurrency and to become comfortable
with the various styles of locking needed to overcome these problems. Many users report the same
experience. Isis, however, is perhaps an unusually challenging case because the order in which
events happened is very important in this system, for reasons that we will study in Part III of the
textbook.

In more recent work, I have teamed up with Robbert Van Renesse, who is the primary author of the
Horus system (we discuss this in considerable detail in Chapter 18). Horus, like Isis, was initially
designed to use threads and is extremely sensitive to event ordering. But when testing very
demanding application, Robbert found that threads were a serious a source of overhead and “code
bloat”: overhead because a stack for a thread consumes 16k bytes or more of space, which is a lot of
space in a system that can handle tens of thousands of messages per second, and excess code because
of the necessary synchronization. Yet, as in the case of Isis, Horus sometimes needs threads: they
often make it easy to do things that would be very hard to express in a non-threaded way.

Robbert eventually extended Horus to use an event-dispatch model much more like the one in
Windows NT, which offers threads as an option over a basic event dispatch mechanism. This step,
which substantially simplified many parts of Horus, left me convinced that supporting threads over
an event dispatch architecture is the right way to go. For cases in which a thread is needed, it is
absolutely vital that they be available. However, threads bring a considerable amount of baggage,
which may be unecessary in many settings. An event dispatch style of system gives the developer
freedom to make this choice and has a “default” behavior that is lightweight and fast. On the other
hand, I am still convinced that event dispatch systems that lack the option of forking a thread when
one is desired are often unwieldy and very difficult to use; this approach should be avoided.

Figure 4-3: Rather than chosing between threads and event-dispatch, an approach that supports threads as an
option over event dispatch offers more flexibility to the developer.

Kenneth P. Birman - Building Secure and Reliable Network Applications88

88

Chapter4: RPC and the Client-Server Model 89

89

The use of threads in this manner remains debatable. UNIX programs have heavily favored this
approach, and the UNIX community generally understands the issues that must be addressed and
minimizes their difficulty. Indeed, with experience, threaded programming is not all that hard. One
merely needs to get in the habit of enforcing necessary synchronization using appropriate interlocks.
However, the PC community tends to work with an event-based model that lacks threads, in which the
application is visualized as a dispatcher for incoming events and all callbacks are by procedure invocation.
Thus, the PC community has its own style of programming, and it is largely non-threaded. Windows NT
further complicates this picture: it supports threads, and yet uses an event-oriented style of displatching
throughout the operating system; if a user wants to create a thread to handle an event, this is easily done
but not “forced” upon the programmer.

4.6 The RPC Protocol

The discussion up to this point has focused on client/server computing and RPC from the perspective of
the user. A remote procedure callprotocol is concerned with the actual mechanism by which the client
process issues a request to a server, and by which the reply is transmitted back from the server to the
client. We now look at this protocol in more detail.

Abstractly, the remote procedure call problem, which an RPC protocol undertakes to solve,
consists of emulating LPC using message passing. LPC has a number of “properties” – a single procedure
invocation results in exactly one execution of the procedure body, the result returned is reliably delivered
to the invoker, and exceptions are raised if (and only if) an error occurs.

Given a completely reliable communication environment, which never loses, duplicates, or
reorders messages, and given client and server processes that never fail, RPC would be trivial to solve.
The sender would merely package the invocation into one or more messages, and transmit these to the
server. The server would unpack the data into local variables, perform the desired operation, and send
back the result (or an indication of any exception that occurred) in a reply message. The challenge, then,
is created by failures.

Were it not for the possibility of process and machine crashes, an RPC protocol capable of
overcoming limited levels of message loss, disorder and even duplication would be easy to develop (Figure
4-4). For each process to which it issues requests, a client process maintains a message sequence number.
Each message transmitted carries a unique sequence number, and (in most RPC protocols) a time stamp
from a global clock – one that returns roughly the same value throughout the network, up to clock
synchronization limits. This information can be used by the server to detect very old or duplicate copies of
messages, which are discarded, and to identify received messages using what are called acknowledgment
protocol-messages.

The basic idea, then, is that the client process transmits its request and, until acknowledgments
have been received, continues to retransmit the same messages periodically. The server collects messages
and, when the full request has been received, performs the appropriate procedure invocation. When it
transmits its reply, the same sort of reliable communication protocol is used. Often, the acknowledgement
is delayed briefly in the hope that the reply will be sent soon, and can be used in place of a separate
acknowledgement.

Kenneth P. Birman - Building Secure and Reliable Network Applications90

90

A number of important
optimizations have been proposed by
developers of RPC-oriented distributed
computing environments. For example,
if one request will require the
transmission of multiple messages,
because the request is large, it is
common to inhibit the sending of
acknowledgments during the
transmission of the burst of messages. In
this case, anegative acknowledgementis
sent if the receiver detects a missing
packet; a single ack confirms reception
of the entire burst when all packets have
been successfully received (Figure4-5).
Similarly, it is common to delay the
transmission of acknowledgment packets

in the hope that the reply message itself can be transmitted instead of an acknowledgment:obviously, the
receipt of a reply implies that the corresponding request was delivered and executed.

Process and machine failures,
unfortunately, render this very simple
approach inadequate. The essential
problem is that because communication
is over unreliable networking
technologies, when a process is unable to
communicate with some other process,
there is no way to determine whether the
problem is a network failure, a machine
failure, or both (if a process fails but the
machine remains operational the
operating system will often provide some
status information, permitting this one
case to be accurately sensed).

When an RPC protocol fails by
timing out, but the client or server (or both) remains operational, it is impossible to know what has
occurred. Perhaps the request was never received, perhaps it was received and executed but the reply was
lost, and perhaps the client or server crashed while the protocol was executing. This creates a substantial
challenge for the application programmer who wishes to build an application that will operate reliably
despite failures of some of the services upon which it depends.

A related problem concerns the issue of what are calledexactly once semantics.When a
programmer employs LPC, the invoked procedure will be executed exactly once for each invocation. In
the case of RPC, however, it is not evident that this problem can be solved. Consider a processc that
issues an RPC to a service offered by processs. Depending upon the assumptions we make, it may be very
difficult even to guarantee thats performs this requestat mostonce. (Obviously, the possibility of a failure
precludes a solution in whichs would perform the operation exactly once).

To understand the origin of the problem, consider the possible behaviors of an arbitrary
communication network. Messages can be lost in transmission, and as we have seen this can prevent
processc from accurately detecting failures of processs. But, the network might also misbehave by

client server

ack

reply

ack

request

Figure 4-4: Simple RPC interaction, showing packets that contain
data (dark) and acknowledgements (light)

client server

ack

reply

request burst

Figure 4-5: RPC using a burst protocol; here the reply is sent soon
enough so that an ack to the burst is not needed.

Chapter4: RPC and the Client-Server Model 91

91

delivering a message after an unreasonably long delay. For example, suppose that a network router device
fails by jamming up in such a manner that until the device is serviced, the software within it will simply
wait for the hardware to be fixed. Obviously, there is no reason to simply assume that routers won’t
behave this way, and in fact it is known that some routers definitely could behave this way. Moreover, one
can imagine a type of attack upon a network in which an intruder records messages for future replay.

One could thus imagine a situation in which processs performs a request fromc, but then is
presented with the same request after a very long delay (Figure 4-6). How can processs recognize this as a
duplicate of the earlier request?

Depending upon the specific
protocol used, an RPC package can use a
variety of barriers to protect itself against
replays of long-delayed messages. For
example, the package might check
timestamps in the incoming messages,
rejecting any that are very old. Such an
approach, however, presumes that clocks
are synchronized to a reasonable degree
and that there is no danger that a
message will be replayed with a modified
timestamp – an action that might be well
within the capabilities of a sophisticated
intruder. The server could use a connect-
based binding to its clients, but this
merely pushes the same problem into the
software used to implement network

connections – and as we shall see shortly, the same issues arise and remain just as intractable at that level
of a system. The server might maintain a list of currently valid users, and could insist that each message
be identified by a monotonically increasing sequence number – but a replay could, at least theoretically,
reexecute the original binding protocol.

Analyses such as these lead us to two possible conclusions. One view of the matter is that an RPC
protocol should take reasonable precautions against replay but not be designed to protect against extreme
situations such as replay attacks. In this approach, an RPC protocol might claim to guaranteeat most once
semantics, meaning that provided that the clock synchronization protocol has not been compromised or
some sort of active attack been mounted upon the system, each operation will result in either a single
procedure invocation or, if a communication or process failure occurs, in no invocation. An RPC protocol
can similarly guaranteeat least once semantics,meaning that if the client system remains operational
indefinitely, the operation will be performed at least once but perhaps more than once. Notice that both
types of semantics come with caveats: conditions (hopefully very unlikely ones) under which the property
would still not be guaranteed. In practice, most RPC environments guarantee a weak form of at most once
semantics: only a mixture of an extended network outage and a clock failure could cause such systems to
deliver a message twice, and this is not a very likely problem.

A different approach, also reasonable, is to assume a very adversarial environment and protect
the server against outright attacks that could attempt to manipulate the clock, modify messages, and
otherwise interfere with the system. Security architectures for RPC applications commonly start with this
sort of extreme position, although it is also common to weaken the degree of protection to obtain some
performance benefits within less hostile subsets of the overall computing system. We will return to this
issue and discuss it in some detail in Chapter 19.

client server

ack

reply

request

replayed request

forgets
request

Figure 4-6: If an old request is replayed, perhaps because of a
transient failure in the network, a server may have difficulty
protecting itself against the risk of re-executing the operation.

Kenneth P. Birman - Building Secure and Reliable Network Applications92

92

4.7 Using RPC in Reliable Distributed Systems

The uncertainty associated with RPC failure notification and the weak RPC invocation semantics seen on
some system pose a challenge to the developer of a reliable distributed application.

A reliable application would typically need multiple sources of critical services, so that if one
server is unresponsive or faulty the application can re-issue its requests to another server. If the server
behaves as a “read only” information source, this may be an easy problem to solve. However, as soon as
the server is asked to deal with dynamically changing information, even if the changes are infrequent
compared to the rate of queries, a number of difficult consistency and fault-tolerance issues arise. Even
questions as simple as load balancing, so that each server in a service spanning multiple machines will do
a roughly equal share of the request processing load, can be very difficult to solve or reason about.

For example, suppose that an application will use a primary-backup style of fault-tolerance, and
the requests performed by the server affect its state. The basic idea is that an application should connect
itself to the primary, obtaining services from that process as long as it is operational. If the primary fails,
the application will “fail over” to the backup. Such a configuration of processes is illustrated in Figure 4-
7. Notice that the figure includes multiple client processes, since such a service might well be used by
many client applications at the same time.

Consider now the design of a protocol by which the client can issue an RPC to the primary-
backup pair such that if the primary performs the operation, the backup learns of the associated state
change. In principle, this may seem simple: the client would RPC to the server, which would compute the
response and then RPC to the backup, sending it the request it performed, the associated state change, and
the reply being returned to the client. Then the primary would return the reply, as show in Figure 4-8.

primary

backup

client

client

client

client

Figure 4-7: Idealized primary-backup server configuration. Clients interact with the primary and the primary
keeps the backup current.

Chapter4: RPC and the Client-Server Model 93

93

This simple protocol is, however, easily seen to be flawed if the sorts of problems we discussed in
the previous section might occur while it was running [BG95]. Take the issue of timeout. In this solution,
two RPC’s occur, one nested within the other. Either of these, or both, could fail by timeout, in which case
there is no way to know with certainty what state the system was left in. If, for example, the client sees a
timeout failure, there are quite a few possible explanations: the request may have been lost, the reply may
have been lost, and either the primary or the primary and the backup may have crashed. Failover to the
backup would only be appropriate if the primary is indeed faulty, but there is no accurate way to determine
if this is the case, except by waiting for the primary to recover from the failure – not a very “available”
approach.

The matter is further complicated by the presence of more than one client. One could easily
imagine that different clients could observe different and completely uncorrelated outcomes for requests
issued simultaneously but during a period of transient network or computer failures. Thus, one client
might see a request performed successfully by the primary, another might conclude that the primary is
apparently faulty and try to communicate with the backup, and yet a third may have timed out both on the
primaryand the backup! We use the terminconsistentin conjunction with this sort of uncoordinated and
potentially incorrect behavior. An RPC system clearly is not able to guarantee the consistency of the
environment, at least when the sorts of protocols discussed above are employed, and hence reliable
programming with RPC is limited to very simple applications.

client backup

confirm

request duplicate

reply

primary

Figure 4-8: Simplistic RPC protocol implementing primary-backup replication.

Kenneth P. Birman - Building Secure and Reliable Network Applications94

94

The line between “easily” solved RPC applications and very difficult ones is not a very clear one.
For example, one major type of file server accessible over the network is accessed by an RPC protocol with
very weak semantics, which can be visible to users. Yet this protocol, called the NFS (Network File
System) protocol, is widely popular and has the status of a standard, because it is easy to implement and
widely available on most vendor computing systems. NFS is discussed in some detail in Section 7.3 and so
we will be very brief here.

One example of a way in which NFS behavior reflects an underlying RPC issues arises when
creating a file. NFS documentation specifies that the file creation operation should return the error code
EEXISTS if a file already exists at the time the create operation is issued. However, there is also a case in
which NFS can return error EEXISTS even though the file did not exist when the create was issued. This
occurs when the create RPC times out, but the request was in fact delivered to the server and was
performed successfully. NFS automatically reissues requests that fail by timing out and will retry the
create operation, which now attempts to re-execute the request and fails because the file is now present. In
effect, NFS is unable to ensure at most once execution of the request, and hence can give an incorrect
return code. Were NFS implemented using LPC (as in the “LFS” or “local file system”), this behavior
would not be possible.

NFS illustrates one approach to dealing with inconsistent behavior in an RPC system. By
weakening the semantics presented to the user or application program, NFS is able to provide acceptable
behavior despite RPC semantics that create considerable uncertainty when an error is reported. In effect,
the erroneous behavior is simply redefined to be a “feature” of the protocol.

A second broad approach that will interest us here involves the use of agreement protocols by
which the components of a distributed system maintain consensus on the status (operational or failed) of
one another. A rigorous derivation of the obligations upon such consensus protocols, the limitations on
this approach, and the efficient implementation of solutions will be topics of chapters later in this textbook
(Section 13.3). Briefly, however, the idea is that any majority of the system can be empowered to “vote”
that a minority (often, just a single component) be excluded on the basis of apparently faulty behavior.

primary

backup

client

client

client

client

Figure 4-9: RPC timeouts can create inconsistent states, such as this one, in which two clients are connected to the
primary, one to the backup, and one is disconnected from the service. Moreover, the primary and backup have
become disconnected from one another each considers the other faulty. In practice, such problems are easily
provoked by transient network failures. They can result in serious application-level errors. For example, if the
clients are air traffic controllers and the servers advise them on the safety of air traffic routing changes, this
scenario could lead two controllers to route different planes into the same sector of the airspace! Understanding
that such problems represent serious threats to reliability and exploring solutions to them are the majorgoals of
this textbook.

Chapter4: RPC and the Client-Server Model 95

95

Such a component is cut off from the majority group: if it is not really faulty, or if the failure is a transient
condition that corrects itself, the component will be prevented from interacting with the majority system
processes, and will eventually detect that it has been dropped. It can then execute a rejoin protocol, if
desired, after which it will be allowed back into the system.

With this approach, failure becomes an abstract event – true failures can trigger this type of
event, but because the system membership is a self-maintained property of the system, the inability to
accurately detect failures need not be reflected through inconsistent behavior. Instead, a conservative
detection scheme can be used, which will always detect true failures while making errors infrequently, in a
sense we will make precise in Section 13.9.

By connecting an RPC protocol to a group membership protocol that runs such a failure
consensus algorithm, a system can resolve one important aspect of the RPC error reporting problems
discussed above. The RPC system will still be unable to accurately detect failures, hence it will be at risk
of incorrectly reporting operational components as having failed. However, the behavior will now be
consistent throughout the system: if componenta observes the failure of componentb, than componentc
will also observe the failure ofb, unlessc is also determined to be faulty. In some sense, this approach
eliminates the notion of failure entirely, replacing it with an event that might be called “exclusion from
membership in the system.” Indeed, in the case whereb is actually experiencing a transient problem, the
resulting execution is much like being exiled from one’s country, or like being shunned:b is prevented
from communicating with other members of the system and learns this. Conversely, the notion of a
majority allows the operational part of the system to initiate actions on behalf of the full membership in
the system. “The system” now becomes identified with a rigorous concept: the output of the system
membership protocol, which can itself be defined formally and reasoned about using formal tools.

As we move beyond RPC to consider more complex distributed programming paradigms, we will
see that this sort of consistency is often required in non-trivial distributed applications. Indeed, there
appears to be a dividing line between the distributed applications that give non-trivial coordinated
behavior at multiple locations, and those that operate as completely decoupled interacting components,
with purely local correctness criteria. The former type of system requires the type of consistency we have
encountered in this simple case of RPC error reporting. The latter type of system can manage with error
detection based upon timeouts – but is potentially unsuitable for supporting any form of consistent
behavior.

4.8 Related Readings
A tremendous amount has been written about client-server computing, and several pages of references
could easily have been included here. Good introductions into the literature, including more detailed
discussions of DCE and ASN.1, can be found in [BN84, Tan88, CS93, CDK94]. On RPC performance,
the “classic” reference is [SB89]. Critiques of the RPC paradigm appear in [TR88, BR94]. On the
problem of inconsistent failure detection with RPC: [BG95]. Other relevant publications include
[BCLF94, BCLF95, BD95, BKT90, BM90, BN84, Bro94, EBBV95, EKO95, GA91, HP94, Jac88, Jac90,
MRTR90, Ras86, SB89, TL93]. A good reference to DCE is [DCE94] and to OLE-2 is [Bro94].
Kerberos is discussed in [SNS88, BM90, Sch94].

Kenneth P. Birman - Building Secure and Reliable Network Applications96

96

5. Streams
In Section 1.2 we introduced the idea of a reliable communications channel, or stream, that could
overcome message loss and out-of-order delivery in communication sessions between a source and
destination process. In this chapter we briefly discuss the mechanisms used to implement the streams
abstraction [Rit84], including the basic sliding window numbering scheme, flow control and error
correction mechanisms. We describe the most common performance optimizations, which are based on
dynamic adjustments of window size and transmission of short packet bursts. Finally, we look more
closely at the reliability properties of a sliding window protocol, including the consistency of fault-
notification. Recall that the inconsistency of fault-notification represented a drawback to using RPC
protocols in reliable distributed applications. Here, we’ll ask two sorts of questions about stream
reliability: how streams themselves behave, and how an RPC protocol operating over a stream can be
expected to behave.

5.1 Sliding Window Protocols
The basic mechanism underlying most streams protocols is based on a data structure called a sliding
window. More specifically, a typical bidirectional stream requires two sliding windows, one for each
direction. Moreover, each window is duplicated on the sending and receiving sides. A window has
limited size, and is usually organized a list of window slots, each having a fixed maximum size.

For example, the TCP protocol normally operates over the IP protocol. It uses slots limited by
the IP packet size (1400 bytes), each divided between a TCP header and a payload portion. The size of a
TCP window can vary dynamically, and the default values are often adjusted by the vendor to optimize
performance on their platform.

A sliding window protocol treats the data communication from sender to destination as a
continuous stream of bytes. (The same approach can be applied to messages, too, but this is less common
and in any case, doesn’t change the protocol in a significant way). The window looks into this stream and
represents the portion of the stream that is actively being transmitted at a given point in time. Bytes that
have already passed through the window have been received and delivered; they can be discarded by the
sender. A sliding window protocol is illustrated in Figure 5-1.

Here we see a window of size w
which is full on the sender side. Only
some of the contents have been
successfully received, however; in
particular, mk and mk-1 have yet to be
received. The acknowledgement formk-

w+1 and those bytes still in the window
are in transit; the protocol will be
operating on them to overcome packet
loss, duplication, and out-of-order
delivery. As we will can see here, the
sender’s window can lag behind the
receivers window, so the receiver will
often have “holes” in the window
representing bytes that have not yet been

received indeed, that may not yet have been sent.

mk mk-1 ... mk-w+1

- - ... mk-w+1

sender window

receiver window

transmitted data
ack/nack

Figure 5-1: Sliding window protocol

Chapter5: Streams 97

97

In the window illustrated by Figure 5-1, the sender’s window is full. If an attempt is made to
transmit additional data, the sender process would be “blocked” waiting until the window drains. This
data is delayed on the sender side, and may wait quite a while before being sent.

Each slot in the window has some form of sequence number and length. For TCP, byte numbers
are used for the sequence number. Typically, these numbers can wrap (cycle), but only after a very long
period of time. For example, the sequence number 0 could be reused after the TCP channel has
transmitted a great deal of data. Because of this, a sliding window has some potential to be confused by
very old duplicate packets, but the probability of this happening (except through an intruder who is
intentially attacking the system) is extremely small.

For example, many readers may have had the experience of using thetelnetprogram to connect
to a remote computer over a network. Telnet operates over TCP, and you can sometimes see the effect of
this queuing. Start a very large listening in your telnet window, and then try to interrupt it. Often, many
pages will scroll past before the interrupt signal breaks through! What you are seeing here is the backlog
of data that was already queued up to be transmitted at the time the interrupt signal was received. This
data was written by the program that creates listings to your remote terminal, though a TCP connection.
The listing program is much faster than TCP, hence it rapidly overflows the sliding window and builds a
backlog of bytes. The amount of backlog, like the size of the TCP window, is variable from platform to
platform, but 8k bytes is typical. Finally, when this amount of data has piled up, the next attempt to write
to the TCP connection will block, delaying the listing generation program. The interrupt signal kills the
program while it is in this state, but the 8k or so of queued data, plus any data that was in the window,

will still be transmitted to your terminal.4

5.1.1 Error Correction
The most important role for a sliding window protocol is to overcome packet loss, duplication and out of
order delivery. This is done by using the receive-side window to reorder incoming data.

As noted earlier, each outgoing packet is labeled with a sequence number. The sender transmits
the packet, then sets a timer for retransmission if an acknowledgement is not received within some period
of time. Upon reception, a packet isslotted into the appropriate place in the window, or discarded as a
duplicate if it repeats some packet already in the window or has a sequence number too small for the
window. The sender-side queueing mechanism ensures that a packet sequence number will not be too
large, since such a packet would not be transmitted.

The receiver now sends an acknowledgement for the packet (even if it was aduplicate), and also
may send a negative acknowledgement for missing data, it if is clear that some data has been dropped.

In bidirectional communication, it may be possible to send acknowledgement and negative
acknowledgement information on packets being sent in the other direction. Such “piggybacking” is
desirable, when practical, because of the high overhead associated with sending a packet. Sending fewer
packets, even if the packets would have been very small ones, is extremely beneficial for performance of a

4. Some computers also clear any backlog of data to the terminal when you cause a keyboard interrupt. Thus, if you
strike interrupt several times in a row, you may be able to avoid seeing all of this data print; each interrupt will
clear several thousand bytes of data queued for output. This can create the impression that the first interrupt
didn’t actually kill the remote program, and that several attempts were required before the program received the
signal. In fact, the first interrupt you entered is always the one that kills the program, and the slow response time
is merely a reflection of the huge amounts of data that the system has buffered in the connection from the remote
program to your terminal!

Kenneth P. Birman - Building Secure and Reliable Network Applications98

98

distributed application. Slightly longer packets, in fact, will often have essentially identical cost to shorter
ones: the overhead of sending a packet ofany size is considerably larger than the cost of sending a few
more bytes. Thus, a piggybacked acknowledgement may be essentially free, in terms of the broader cost of
communication within a system.

Streams normally implement some form of keep-alive messages, so that the sender and receiver
can monitor one-another’s health. If a long period passes with no activity on the channel, a process can
timeout and close the channel, pronouncing its remote counterpart “faulty”. As discussed in earlier
chapters, such a timer-based failure detection mechanism can never guarantee accuracy, since
communication problems will also trigger the channel shutdown protocol. However, this mechanism is
part of the standard stream implementations.

5.1.2 Flow Control
A second role for the sliding window protocol is to match the speed of data generation and the speed of
data consumption. With a little luck, the sender and receiver may be able to run continuously, getting the
same throughput as if there were no channel between them at all. Latency, of course, may be higher than
if the sender was directly connected to the receiver, but many applications are insensitive to latency. For
example, a file transfer program is sensitive to latency when a request is issued to transfer a file for the
first time. Once a file transfer is underway, however, throughput of the channel is the only relevant
metric, and if the throughput is higher than the rate with which the receiver can consume the data, the
“cost” of remote file access may seem very small, or negligible.

The way that this rate matching occurs is by allowing more than one packet to be in the sliding
window at a time. For example, the window illustrated in Figure 5-1 is shown withw slots, all filled. In
such a situation one might seew packets all on the wire at the same time. It is more likely, however, that
some of this data will have already been received and that the acknowledgements are still in transit back
to the sender. Thus, if the rate of data generated by the sender is close to that of the receiver, and if the
window is large enough to contain the amount of data the sender can generate in a typical round-trip
latency, the sender and the receiver may remain continously active.

Of course, there are many applications in which the sender and receiver operate at different rates.
If the receiver is faster, the receive window willalmost always be empty, hence the sender will never delay
before sending data. If the sender is faster, some mechanism is needed to slow it down. To this end, it is
not uncommon to associate what is called ahigh-water/low-waterthreshold with a sliding window.

The high-water threshold is the capacity of the window; when this threshold is reached, any
attempt to send additional data will block. The low-water threshold is a point below which the window
must drain before such a blocked sender is permitted to resume transmission. The idea of such a scheme
is to avoid paying the overhead of rescheduling the sender if it would block immediately. For example,
suppose that the window has capacity 8kb. By setting the low-water threshold to 2kb, the sender would
sleep until there is space for 6kb of new data before resuming communication. This would avoid a type of
thrashing in which the sender might be rescheduled when the window contains some very small amount
of space, which the sender would immediately overflow. The number 8kb, incidentally, is a typical
default for streaming protocols in operating systems for personal computers and workstations; higher
performance systems often use a default of 64kb, which is also a hard limit for standard implementations
of TCP.

5.1.3 Dynamic Adjustment of Window Size
Suppose that the sender and receiver operate at nearly the same rates, but that the window is too small to
permit the sender and receiver rates tomatch. This would occur if the sender generates data fast enough

Chapter5: Streams 99

99

to completely fill the window before a message can travel round-trip to the receiver and back. In such a
situation, the sender will repeatedly block much as if the receiver was slower than it. The receiver,
however, will almost always have an empty window and will be active only in brief bursts. Clearly, the
system will now incur substantial idle time for both sender and receiver, and will exhibit relatively low
utilization of the network. The need to avoid this scenario has motivated the development of a number of
mechanisms to dynamically grow the sender window.

On the other side of the coin, there are many potential problems if the window is permitted to
become too large. Such a window will consume scarce kernel memory resources, reducing the memory
available for other purposes such as buffering incoming packets as they are received off the network,
caching disk and virtual memory blocks, and managing windows associated with other connections.
Many of these situations are manifested by increased rates of low-level packet loss, which occurs when the
lowest level transport protocols are unable to find temporary buffering space for received packets.

The most widely used dynamic adjustment mechanism was proposed by Van Jacobson in a Ph.D.
thesis completed at Stanford University in 1988 [Jac88]. Jacobson’s algorithm is based on a exponential
growth in the window size when it appears to be too small, i.e. by doubling, and a linear backoff when the
window appears to be too large. The former condition is detected when the sender’s outgoing window is
determined to be full, and yet only a single packet at a time is acknowledged, namely the one with the
smallest slot number. The later condition is detected when high rates of retransmission occur.
Exponential growth means that the number of window slots is increased by doubling, up to some pre-
arranged upper limit. Linear backoff means that the window size is reduced by decrementing the number
of slots on the sender’s side. Under conditions where these changes are not made too frequently, they
have been demonstrated to maintain a window size close to the optimal.

5.1.4 Burst Transmission Concept
When the performance of a sliding window protocol is studied closely, one finds that the window size is
not the only performance limiting factor. The frequency of acknowledgements and retransmissions is also
very important and must be kept to a minimum: both types of packets are purely overhead. As noted
earlier, acknowledgements are often piggybacked on other outgoing traffic, but this optimization can only
be exploited in situations where there actually are outgoing packets. Thus, the method is useful primarily
in applications that exhibit a uniform, bidirectional flow of data. A separate mechanism is needed to deal
with the case of messages that flow primarily in a single direction.

When the window size is small and the packets transmitted are fairly large, it is generally
difficult to avoid acknowledgements of every packet. However, transmission of data inburstscan be a
useful tactic in sliding window protocols that have relatively large numbers of slots and send relatively
small packets [BN84]. In a burst transmission scheme, the sender attempts to schedule transmissions in
bursts of several packets that are sent successively, with little or no delay between them. The sender then
pauses before sending more data. The receiver uses the complementary algorithm, delaying its
acknowledgements for a period of time in the hope of being able to acknowledge a burst of packets with a
single message. A common variation upon this scheme uses aburst bit to indicate that a packet will be
closely followed by some other packet; such schemes are also sometimes known as usingpacket trains.
The last packet in the burst or train is recognizable as such because its burst bit is clear, and flushes the
acknowledgement back to the sender.

The biggest benefits of a burst transmission algorithm are seen in settings where very few
instructions are needed to transmit a message, and in which the sender and receiver are closely rate-
matched. In such a setting, protocol designers strive to achieve a sort of perfect synchronization in which
the transmission of data in the outgoing direction is precisely matched to a minimal flow of
acknowledgements back to the sender. Tactics such as these are often needed to squeeze the maximum

Kenneth P. Birman - Building Secure and Reliable Network Applications100

100

benefit out of a very high performance interconnect, such as the message bus of a parallel supercomputer.
However, they work well only if the communication activity is in nearly complete control of the sender
and receiving machine, if message transmissionlatencies (and the variation in message latencies) are
known and small, and if the error rate is extremely low.

5.2 Negative-Acknowledgement Only
As communication bandwidths have risen, the effective bandwidth lost to acknowledgements can become
a performance-limiting factor.This trend has lead to the development of what are callednegative
acknowledgementprotocols, in which packets are numbered in a traditional way, but are not actually
acknowledged upon reception. The sender uses a rate-based flow control method tolimit the volume of
outgoing data to a level the receiver is believed capable of accepting. The receiver, however, uses a
traditional windowing method to reorder incoming messages, delete duplicates, and uses negative
acknowledgement messages to solicit retransmission of any missing packets.

The exponential increase/linear backoff flow control algorithm is often combined with a negative
acknowledgement scheme to maximize performance. In this approach, which we first saw in conjunction
with variable window-size adjustments, the sender increases the rate of transmission until the frequency of
lost packets that must be retransmitted exceeds some threshold. The sender then backs off, reducing its
rate steadily until the sender’s rate and the receiver’s rate are approximately matched, which is detected
when the frequency of negative acknowledgements drops below some second (lower) threshold.

5.3 Reliability, Fault-tolerance, and Consistency in Streams
It is common for programming manuals and vendor product literature to characterize streaming protocols
as “reliable”, since they overcome packet loss. Scrutinized closely, however, it is surprisingly difficult to
identify ways in which these protocols really guarantee reliability of a sort that could be depended upon in
higher level applications [BG95]. Similar to the situation for a remote procedure call, a stream depends
on timeouts and retransmissions to deal with communication errors, and reports a failure (breaking the
stream) when the frequency of such events exceeds some threshold. For example, if the communication
line connecting two machines is temporarily disrupted, the stream connections between them will begin to
break. They will not, however, break in a coordinated manner. Quite the contrary, each stream will break
on its own, after a delay that can vary widely depending on how active the stream was immediately before
the communication problem occurred: a stream that was recently active will remain open for a longer
period of time, while a stream that was inactive for a period of time before communication was disrupted
will be closer to its timeout and hence will break sooner. It is common to see an interval of as much as
several minutes between the fastest detection of a communication failure and the slowest.

The problem that this creates is that many application programs interpret a broken stream to
imply the failure of the program at the other end. Indeed, if a program fails, the streams to it will break
eventually; in some situations this occurs within milliseconds (i.e. if the operating system senses the
failure and closes the stream explicitly). Thus, some applications trigger failure recovery actions in
situations that can also be the result of mundane communication outages that are rapidly repaired. Such
applications may be left in an inconsistent state. Moreover, the long delays between when the earliest
“broken channel” occurs and when the last one occurs can create synchronization problems, whereby one
part of an application starts to reconfigure to recover from the failure while other parts are still waiting for
the failed component to respond. Such skewed executions stress the application and can reveal otherwise
hidden bugs, and may also have puzzling effects from the perspective of a user, who may see a screen that
is partially updated and partially frozen in an old state, perhaps for an extended period of time.

As an example, consider the client-server structure shown below, in which a client program
maintains streams to two server programs. One server is the primary: it responds to requests in the

Chapter5: Streams 101

101

normal mode of operation. The second is the backup, and takes over only if the primary crashes. Streams
are used to link these programs with one-another. The precise replication and fault-tolerance mechanism
used is not important for the point we wish to make; later in the text (Section 15.3.4) we will see how
primary-backup problems such as this can be solved.

Notice that the stream connecting the client to the server has broken. How should the client
interpret this scenario? One possibility is that the
primary server has actually failed; if so, the
connection between the primary server and the
backup will eventually break too (although it may
take some time before this occurs), in which case
the backup will eventually take over the role of
the primary and service to the client will be
restored. A second possibility is that the client
itself has failed, or is on a computer that has lost
its communications connectivity to the outside
world. In this case the client will eventually shut
down, or will see its backup connection break too.
Again, this may take some time to occur. Yet a
third possibility is that the connection was lost as
a consequence of a transient communication
problem. In this case the client should reconnect
to the server, which will have seen the

complementary situation and eventually have concluded that the client has failed.

The problem is that in this last situation, the reliability properties of the stream have basically
been lost. The stream was designed to overcome packet loss and communication disruptions, but in the
scenario illustrated by the figure, it has done neither of those things. On the contrary, the inconsistent
behavior of the separate streams present has turned out tocausea reliability problem. Data in the channel
from the client to the server may have reached it, or it may have been lost when the connection was
severed. Data from the server to the client may similarly have been lost. Thus, the client and the server
must implement some protocol at the application level that will handle retransmission of requests that
could have been dropped when a channel broke, and that will resolicit any data that the server may have
been sending, supressing duplicate data that the client has already seen. In effect, a client that will need
to reconnect to a server in a situation such as this must implement a mechanism similar to the sliding
window protocol used in the stream itself! It treats the connection much like a UDP connection: relatively
reliable, but in the limit, not trustworthy. These sorts of problems should make the developer very
cautious as to the reliability properties of streams.

In some ways, the inconsistency of the scenario illustrated by Figure 5-2 is even more troubling.
As noted above, many applications treat the notification that a stream has broken as evidence that the
endpoint has failed. In the illustrated setting, this creates a situation in which all three participants have
differing, inconsistent, views of the system membership. Imagine now that the same sort of problem
occured in a very large system, with hundreds of component programs, some of which might even have
multiple connections between one-another. The lack of coordination between streams means that these
can break in almost arbitrary ways (for example, one of two connections between a pair of programs can
break, while the other connection remains established), and that almost any imaginable “membership
view” can arise. Such a prospect makes it extremely difficult to use streams as a building block in
applications intended to be extremely reliable.

The success stories for such an approach arealmost entirely associated with settings in which the
communications hardware is extremely reliable, so that the failure detection used to implement the

client

backup

server
broken

Figure 5-2: Inconsistently broken streams

Kenneth P. Birman - Building Secure and Reliable Network Applications102

102

streams protocols is actually reasonably accurate, or in which one can easily give up on a transfer, as in
the case of the Web (which is built over stream-style protocols, but can always abort a request just by
closing its stream connections). Unfortunately, not many local area networks can claim to offer the
extreme levels of reliability required for this assumption to accurately approximate the hardware, and this
is almost never the case in wide-area networks. And not many applications can get away with just telling
the user that the “remote server is not responding or has failed.” Thus, streams must be used with the
utmost care in constructing reliable distributed applications.

In Chapter 13, we will discuss an approach to handling failure detection that could overcome this
limitation. The idea is to introduce a protocol by which the computers in the network maintain agreement
on system membership, triggering actions such as breaking a stream connection only if the agreement
protocol has terminated and the full membership of the computer system agrees that the endpoint has
failed, or at least will be treated as faulty. The approach is known to be practical and is well understood
both from a theoretical perspective and in terms of the software needed to support it. Unfortunately,
however, the standard streams implementations are based upon widely accepted specifications that
mandatethe use of timeout for failure detection. Thus, the streams implementations available from
modern computer vendors will not become consistent in their failure reporting any time soon. Only a
widespread call for consistency could possibly lead to revision of such major standards as the ones that
specify how the TCP or ISO streams protocol should be implemented.

5.4 RPC over a Stream

It is increasingly common to run RPC protocols over stream protocols such as TCP, to simplify
the implementation of the RPC interaction itself. In this approach, the RPC subsystem establishes a
stream connection to the remote server and places it into an urgent transmission mode, whereby outgoing
data is immediately transmitted to the destination. The reliability mechanisms built into the TCP protocol
now subsume the need for the RPC protocol to implement any form of acknowledgement or
retransmission policy of its own. In the simplest cases, this reduces RPC to a straightforward request-
response protocol. When several threads multiplex the same TCP stream, sending RPC’s over it
concurrently, a small amount of additional code is needed to provide locking (so that data from different
RPC requests is not written concurrently to the stream, which could interleave it in some undesired
manner), and to demultiplex replies as they are returned from the server to the client.

It is important to appreciate that the reliability associated with a stream protocol will not
normally improve (or even change) the reliability semantics of an RPC protocol superimposed upon it. As
we saw above, a stream protocol can report a broken connection under the same conditions where an RPC
protocol would fail by timing out, and the underlying stream-oriented acknowledgement and
retransmission protocol will not affect these semantics in any useful way. The major advantage of
running RPC over a stream is that by doing so, the amount of operating system software needed in support
of communication is reduced: having implemented flow control and reliability mechanisms for the stream
subsystem, RPC becomes just another application-level use of the resulting operating system abstraction.
Such an approach permits the operating system designer to optimize the performance of the stream in
ways that might not be possible if the operating system itself were commonly confronted with outgoing
packets that originate along different computational paths.

5.5 Related Readings
The best general references are the textbooks by Coulouriset. al., Tanenbaum and Comer: [CDK94,
Tan88, Com91, CS93]. On the inconsistency of failure detection in streams: [BG95]. There has been a
considerable amount of recent work on optimizing streams protocols (particularly TCP) for high
performance network hardware. An analysis of TCP costs, somewhat along the lines of the RPC cost

Chapter5: Streams 103

103

analysis in [SB89], can be found in [CJRS89]. Work on performance optimization of TCP includes
[Jac88, Jac90, Kay94, KP93]. A summary of other relevant papers can be found in [Com91, Ten90,
BD95]. Other papers included in the biliography of this text include [BMP94, Com91, CS93, CT87,
DP93, EBBV95, FJML95, Jac88, Jac90, KC93, KP94, MRTR90, PHMA89, RAAB88a, RAAB88b,
RST88, RST89, SDW92, Tan88, CDK94].

Kenneth P. Birman - Building Secure and Reliable Network Applications104

104

6. CORBA and Object-Oriented Environments
With the emergence of object-oriented programming languages, such as Modula and C++, came a
recognition that object-orientation could play a role similar to that of the OSI hierarchy, but for complex
distributed systems. In this view, one would describe a computing system in terms of the set of objects
from which it was assembled, together with the rules by which these objects interact with one another.
Object oriented system design became a major subject for research, with many of the key ideas pulled
together for the first time by a British research effort, called the Advanced Network Systems Architecture
group, or ANSA. In this chapter, we will briefly discuss ANSA, and then focus on a more recent standard,
called CORBA, which draws on some of the ideas introduced byANSA, and has emerged as a widely
accepted standard for objected oriented distributed computing.

6.1 The ANSA Project
The ANSA project, headed by Andrew Herbert, was the first systematic attempt to develop technology for
modelling complex distributed systems [ANSA89, ANSA91a, ANSA91b]. ANSA stands for the
“Advanced Network Systems Architecture”, and was intended as a technology base for writing down the
structure of a complex application or system and then translating the resulting description into a working
version of that system in a process of stepwise refinement.

Abstractly, ANSA consists of a set of “models” that deal with various aspects of distributed
systems design and representation problem. The “enterprise” model is concerned with the overall
functions and roles of the organizational structure within which the problem at hand is to be solved. For
example, an air-traffic control system would be an application within the air-traffic control organization,
an “enterprise”. The “information” model represents the flow of information within the enterprise; in an
air-traffic application this model might describe flight-control status records, radar inputs, radio
communication to and from pilots, and so forth. The “computation” model is a framework of
programming structures and program development tools that are made available to developers. The
model deals with such issues as modularity of the application itself, invocation of operations, paramter
passing, configuration, concurrency and synchronization, replication, and the extension of existing
languages to support distributed computing. The “engineering” and “technology” models reduce these
abstractions to practice, poviding the implementation of theANSA abstractions and mapping these to the
underlying runtime environment and its associated technologies.

In practical terms, most users viewed ANSA as a a set of rules for system design, whereby system
components could be described as “objects” with published interfaces. An application with appropriate
permissions could obtain a “handle” on the object and invoke its methods using the procedures and
functions defined in this interface. The ANSA environment would automatically and transparently deal
with such issues as fetching objects from storage, launching programs when a new instance of an object
was requested, implementing the object invocation protocols, etc. Moreover,ANSA explicitly included
features for overcoming failures of various kinds, using transactional techniques drawn from the database
community and process group techniques in which sets of objects are used to implement a single highly
available distributed service. We will consider both types of technology in considerable detail in Part III
of the text, hence we will not do so here.

Chapter6: CORBA and Object-Oriented Environments 105

105

ANSA treated the objects that implement a system as the concrete realization of the “enterprise
computing model” and the “enterprise information model.” These models captured the essense of of the
application as a whole, treating it as a single abstraction even if the distributed system as implemented
necessarily contained many components. Thus, the enterprise computing model might support the
abstraction of a collision avoidance strategy for use by the air-traffic control enterprise as a whole, and the
enterprise data model might define the standard data objects used in support of this service. The actual
implementation of the service would be reached by a series of refinements in which increasing levels of
detail are added to this basic set of definitions. Thus, one passes from the abstraction of a collision
avoidance strategy to the more concrete concept of a collision avoidance subsystem located at each of a set
of primary sites and linked to one-another to coordinate their actions, and from this notion to one with
further refinements that define the standard services composing the collision avoidance system as used on
a single air-traffic control workstation, and then still further to a description of how those services could
be implemented.

In very concrete terms, the ANSA approach required the designer to write down the sort of
knowlege of distributed system structure that, for many systems, is implicit but never encoded in a
machine-readable form. The argument was that by writing down these system descriptions, a better
system would emerge: one in which the rationale for the structure used was self-documenting, in which
detailed information would be preserved about the design choices and objectives that the system carries
out, and in this manner the mechanisms for future evolution could be made a part of the system itself.
Such a design promotes extensibility and interoperability, and offers a path to system management and
control. Moreover, ANSA designs were expressed in terms of objects, whose locations could be anywhere
in the network (Figure 6-1), with actual issues of location entering only the design was further elaborated,
or in specific situations where location of an object might matter (Figure 6-2). This type of object-
oriented, location-transparent design has proved very popular with distributed systems designers.

Figure 6-1: Distributed objects abstraction. Objects are linked by object references and the distributed nature of
the environment is hidden from users. Access is uniform even if objects are implemented to have special properties
or internal structure, such as replication for increased availability or transactional support for persistence.
Objects can be implemented in different programming languages but this is invisible to users

Kenneth P. Birman - Building Secure and Reliable Network Applications106

106

6.2 Beyond ANSA to CORBA
While the ANSA technologyper sehas not gained a wide following, these ideas have had a huge impact
on the view of system design and function adopted by modern developers. In particular, as the initial
stages of the ANSA project ended, a new project was started by a consortium of computer vendors. Called
the Common Object Request Broker Architecture, CORBA undertakes to advance standards permiting
interoperation between complex object-oriented systems potentially built by diverse vendors [OMG91].

Although CORBA undoubtedly drew on the ANSA work, the architecture represents a consensus
developed within an industry standards organization called the Object Management Group, orOMG, and
differs from the ANSA architecture in many respects. The mission of OMG was to develop architecture
standards promoting interoperability between systems developed using object-oriented technologies. In
some ways, this represents a less ambitious objective than the task with whichANSA was charged, since
ANSA set out both to develop anall-encompassing architectural vision for building enterprise-wide
distributed computing systems, and to encorporate reliability technologies into its solutions. However, as
CORBA has evolved, it has begun to tackle many of the same issues. Moreover, CORBA reaches well
beyond ANSA by defining a very large collection of what are called “services”, which are CORBA-based
subsystems that have responsibility for specific tasks, such as storing objects or providing reliability, and
that have specific interfaces. ANSA began to take on this problemlate in the project and did not go as far
as CORBA.

At the time of this writing, CORBA was basically a framework for building DCE-like computing
environments, but with the priviso that different vendors might offer their own CORBA solutions with
differing properties. In principle, adherence to the CORBA guidelines should permit such solutions to
interoperate e.g. a distributed system programmed using a CORBA product from Hewlett Packard
should be useful from within an application developed using CORBA products from SUN Microsystems,
IBM, or some other CORBA-compliant vendor. Interoperability of this sort, however, is planned for late
in 1996, and hence there has been little experience with this specific feature.

Figure 6-2: In practice, the objects in a distributed system execute on machines or reside in storage servers. The
runtime environment works to conceal movement of objects from location to location, activation of servers when
they are initially referenced after having been passively stored, fault-tolerance issues, garbage collection, and
other issues that span multiple objects or sites.

Chapter6: CORBA and Object-Oriented Environments 107

107

6.3 OLE-2 and Network OLE
As this book was bring written Microsoft Corporation had just launched a major drive to extend its
proprietary object-oriented computing standard, OLE-2, into a distributed object-oriented standard aimed
squarely at the internet. The network OLE-2 specification, when it emerges, is likely to have at least as
big an impact on the community of PC users as Corba is having on the UNIX community. However, until
the standard is actually released, it is impossible to comment upon it. Experts with whom the author has
spoken predict that network OLE will be generally similar to Corba, but with a set of system services more
closely parallel to the ones offered by Microsoft in its major network products: NT/Server and
NT/Exchange. Presumably, these would include integrated messaging, email, and conferencing tools,
system-wide security through encryption technologies, and comprehensive support for communicating
using multi-media objects. One can only speculate as to more advanced features, such as the group
computing technologies and reliability treated in Part III of this text.

6.4 The CORBA Reference Model
The key to understanding the structure of a CORBA environment is the Reference Model [OMG91],
which consists of a set of components that a CORBA platform should typically provide. These
components are fully described by the CORBA architecture, but only to the level of interfaces used by
application developers and functionality. Individual vendors are responsible for deciding how to
implement these interfaces and how to obtain the best possible performance; moreover, individual
products may offer solutions that differ in offering optional properties such as security, high availability,
or special guarantees of behavior that go beyond the basics required by the model.

At a minimum, a CORBA implementation must supply anObject Request Broker, or ORB,
which is responsible for matching a requestor with an object that will perform its request, using the object
reference to locate an appropriate target object. The implementation will also contain translation
programs, responsible for mapping implementations of system components (and their IDL’s) to programs
that can be linked with a runtime library and executed. A set ofObject Servicesprovide the basic
functionality needed to create and use objects: these include such functions as creating, deleting, copying,
or moving objects, giving them names that other objects can use to bind to them, and providing security.
An interesting service about which we will have more to say below is theEvent Noticication Serviceor
ENS: this allows a program to register its interest in a class of events. All events in that class are then
reported to the program. It thus represents a communication technology different from the usual RPC-
style or stream-style of connection. A set ofCommon Faciitiescontains a collection of standardized
applications that most CORBA implementations are expected to support, but that are ultimately optional:
these include, for example, standards for system management and for electronic mail that may contain
objects. And finally, of course, there areApplication Objectsdeveloped by the CORBA user to solve a
particular problem.

Kenneth P. Birman - Building Secure and Reliable Network Applications108

108

In many respects the Object Request Broker is the core of a CORBA implementation. Similar to
the function of a communications network or switching system, the ORB is responsible for delivering
object invocations that originate in a client program to the appropriate server program, and routing the
reply back to the client. The ability to invoke an object, of course, does not imply that the object that was
invoked is being used correctly, has a consistent state, or is even the most appropriate object for the
application to use. These broader properties fall back upon the basic technologies of distributed
computing that are the general topic of this textbook; as we will see, CORBA is a way oftalking about
solutions but nota specific set of prebuilt solutions.Indeed, one could say that because CORBA worries
about syntax but not semantics, the technology is largely superficial: a veneer around a set of technologies.
However, this particular veneer is an important and sophisticated one, and also creates a context within
which a principled and standardized approach to distributed systems reliability becomes possible.

For many users, object-oriented computing means programming in C++, although SmallTalk and
Ada are also object-oriented languages, and one can develop object-interfaces to other languages like
Fortran and Cobol. Nonetheless, C++ is the most widely used language, and is the one we focus on in the
examples presented in the remainder of this chapter. Our examples are drawn directly from the
“programmer’s guide” for Orbix, an extremely popular CORBA technology at the time of this writing.

An example of a CORBA
object interface, coded in the
Orbix interface defintion language
(IDL), is shown in Figure 6-4.
This interface publishes the
services available from a “grid”
server, which is intended to
manage two-dimensional tables
such as are used in spread-sheets
or relational databases. The
server exports two read-only
values, width and height, which
can be used to query the size of a
grid object. There are also two
operations which can be

reference

reference

reference DII

interface
instance

instance

instanceinterfacestub

stub interface

ORB

Figure 6-3: The conceptual architecture of CORBA uses an object request broker as an intermediary that directs
object invocations to the appropriate object instances. There are two cases of invocations: the static one, which we
focus on in the text, and the dynamic invocation interface (DII), which is more complex to use and hence not
discussed here. (Source: Shapiro)

// grid server example for Orbix
// IDL -- in file grid.idl
interface grid {

readonly attribute short height;
readonly attribute short width;

void set(in short n, in short m, in long value);
void get(in short n, in short m);

};

Figure 6-4: IDL interface to a server for a "grid" object coded in Orbix, a
popular CORBA-compliant technology.

Chapter6: CORBA and Object-Oriented Environments 109

109

performed upon the object: “set”, which sets the value of an element, and “get” which fetches the value.
Set is of type “void”, meaning that it does not return a result; get, on the other hand, returns a long
integer.

To build a grid server, the user would need to write a C++ program that implements this
interface. To do this, the IDL compiler is first used to transform the IDL file into a standard C++ header
file in which Orbix defines the information it will need to implement remote invocations on behalf of the
client. The IDL compiler also produces two forms of “stub” files, one of which implements the client side
of the “get” and “set” operations; the other implements the “server” side. These stub files must be
compiled and linked to the respective programs.

If one were to look at the contents of the header file produced for the grid IDL file, one would
discover that “width” and “height” have been transformed into functions. That is, when the C++
programmer references an attribute of a grid object, a function call will actually occur into the client-side
stub procedures, which can perform an RPC to the grid server to obtain the current value of the attribute.

We say RPC here, but in fact a feature of CORBA is that it provides very efficient support for
invocations of local objects, which are defined in the same address space as the invoking program. The
significance of this is that although the CORBA IDL shown could be used to access a remote server that
handles one or more grid objects, it can also be used to communicate to a completely local instantiation of
a grid object, contained entirely in the address space of the calling program. Indeed, the concept goes
even further: in Orbix+Isis, a variation of Orbix, the grid server could be replicated using an object group
for high availability. And in the most general case, the grid object’s clients could be implemented by a
server running under some other CORBA-based environment, such as IBM’s DSOM product, HP’s
DOMF, SUN’s DOE, Digital Equipment’s ObjectBroker, or other object-oriented environments with
which CORBA can communicate using an “adapter”, such as Microsoft’s OLE. CORBA implementations
thus have the property that object location, the technology or programming language used to build an
object, and even the ORB under which it is running can be almost completely transparent to the user.

Node 1 Node 2

serverproxyclient

function
call

function
return

function call
forwarded by proxy

return value
forwarded to proxy

server

Figure 6-5: Orbix conceals the location of objects by converting remote operations into operations on local
proxy objects, mediated by stubs. However, remote access is not completely transparent in standard CORBA
applications if an application is designed for reliability. For example, error conditions differ for local and
remote objects. Such issues can be concealed by integrating a reliability technology into the CORBA
environment, but transparent reliability is not a standard part of CORBA, and solutions vary widely from vendor
to vendor.

Kenneth P. Birman - Building Secure and Reliable Network Applications110

110

What exactly would a grid server look like? If we are working in C++, grid would be a C++
program that includes an “implementation class” for grid objects. Such a class is illustrated in Figure 6-6,
again drawing on Orbix as a source for our example. The “Environment” parameter is used for error
handling with the client. The BOAImpl extention (“gridBOAImpl”) designates that this is a Basic Object
Adaptor Implementation for the “grid” interface. Figure 6-7 shows the code that might be used to
implement this abstract data type.

Finally, our server needs an enclosing framework: the program itself that will execute this code.
The code in Figure 6-8 provides this; it implements a single grid object and declares itself to be ready to
accept object invocations. The grid object is not named in this example, although it could have been, and
indeed the server could be designed to create and destroy grid objects dynamically at runtime.

// C++ code fragment for grid implementation class
#include “grid.hh” // generated from IDL

class grid_i: public gridBOAImpl {
short m_height;
short m_width;
long **m_a;

public:
grid_i(short h, short w); // Constructor
virtual ~grid_i(); // Destructor
virtual short width(CORBA::Environment &);
virtual short height(CORBA::Environment &);
virtual void set(short n, short m, long value,

CORBA::Environment &);
virtual long get(short n, short m,

CORBA::Environment &);
};

Figure 6-6: Orbix example of a grid implementation class corresponding to grid IDL.

Chapter6: CORBA and Object-Oriented Environments 111

111

The user can now declare to Orbix that the grid server is available by giving it a name and
storing the binary of the server in a file, the pathname of which is also provided to Orbix. The Orbix “life
cycle service” will automatically start the grid server if an attempt is made to access it when it is not
running.

// Implementation of grid class
#include “grid_i.h”

grid_i::grid_i(short h, short w) {
m_height = h;
m_width = w;
m_a = new long* [h];
for (int i = 0; i < h; i++)

m_a[i] = new long [w];
}
grid_i::~grid_i() {

for (int i = 0; i < m_height; i++)
delete[] m_a[i];

delete[] m_a;
}
short grid_i::width(CORBA::Environment &) {

return m_width;
}
short grid_i::height(CORBA::Environment &) {

return m_height;
}
void grid_i::set(short n, short m, long value, CORBA::Environment &) {

m_a[n][m] = value;
}
void grid_i::get(short n, short m, CORBA::Environment &) {

return m_a[n][m];
}

Figure 6-7: Server code to implement the grid_i class in Orbix.

#include “grid_i.h”
#include <iostream.h>

void main() {
grid_i myGrid(100,100);
// Orbix objects can be named but this is not
// needed for this example
CORBA::Orbix.impl_is_ready();
cout <<“server terminating” << endl;

}

Figure 6-8: Enclosing program to declare a grid object and accept requests upon it.

Kenneth P. Birman - Building Secure and Reliable Network Applications112

112

CORBA supports several notions of reliability. One is concerned with recovering from failures,
for example when invoking a remote server. A second reliability mechanism is provided for purposes of
reliable interactions with persistent objects, and is based upon what is called a “transactional”
architecture. We discuss transactions elsewhere in this text and will not digress onto that subject at this
time. However, the basic purpose of a transactional architecture is to provide a way for applications to
perform operations on complex persistent data structures without interfering with other concurrently
active but independent operations, and in a manner that will leave the structure intact even if the
application program or server fails while it is running. Unfortunately, as we will see in Chapter 21,
transactions are primarily useful in applications that are structured as database systems on which
programs operate using read and update requests. Such structures are important in distributed systems,
but there are many distributed applications that match the model poorly, and for them, transactional
reliability is not a good approach.

#include “grid.hh”
#include <iostream.h>

void main() {
grid *p;

p = grid::_bind(“:gridSrv”);
cout << “height is “ << p->height() << endl;
cout << “width is “ << p->width() << endl;
p->set(2, 4, 123);
cout << “grid(2, 4) is “ << p->get(2, 4) << endl;
p->release();

}

Figure 6-9: Client program for the grid object; assumes that the grid was "registered" under the server name
"gridSrv". This example lacks error handling; an elaborated version with error handling appears in Figure 6-10.

Chapter6: CORBA and Object-Oriented Environments 113

113

Outside of its transactional mechanisms, however, CORBA offers relatively little help to the
programmer. For example, Orbix can be notified that a server application can be run on one of a number
of machines. When a client application attempts to use the remote application, Orbix will automatically
attempt to bind to each machine in turn, selecting at random the first machine which confirms that the
server application is operational. However, Orbix does not provide any form of automatic mechanisms
for recovering from the failure of such a server after the binding is completed. The reason for this is that
a client process that is already communicating with a server may have a complex state that reflects
information specific to that server, such as cached records with record identifiers that came from the
server, or other forms of data that differ in specific ways even among servers that are, broadly speaking,
able to provide the same functionality. To rebind the client to a new server, one would somehow need to
refresh, rebuild, or roll back this server-dependent state. And doing so is potentially very hard; at a
minimum, considerable detailed knowledge of the application will be required.

The same problems can also arise in the server itself. For example, consider a financial trading
service, in which the prices of various stocks are presented, and which is extremely dynamic due to
rapidly changing market data. The server may need to have some form of setup that it uses to establish a
client profile, and may have an internal state that reflects the events that have occured since the client first
bound to it. Even if some other copy of the server is available and can provide the same services, there
could be a substantial time lag when rebinding and there may be a noticable discontinuity if the new
server, lacking this “state of the session”, starts its financial computations from the current stream of

#include “grid.hh”
#include <iostream.h>

void main() {
grid *p;

TRY {
p = grid::_bind(“:gridSrv”);

}
CATCHANY {

cerr << “bind to object failed” << endl;
cerror << “Fatal exception “ << IT_X << endl;
exit(1);

}
TRY {

cout << “height is “ << p->height() << endl;
}
CATCHANY {

cerr << “call to height failed” << endl;
cerror << “Fatal exception “ << IT_X << endl;
exit(1);

}
... etc ...

}

Figure 6-10: Illustration of Orbix error handling facility. Macros are used to catch errors; if one occurs, the
error can be caught and potentially worked around. Notice that each remote operation can potentially fail, hence
exception handling would normally be more standardized. A handler for a high availability application would
operate by rebinding to some other server capable of providing the same functionality. This can be concealed
from the user, which is the approach used in systems like Orbix+Isis or Electra, a CORBA technology layered over
the Horus distributed system.

Kenneth P. Birman - Building Secure and Reliable Network Applications114

114

incoming data. Such events will not be transparent to the client using the server and it is unrealistic to try
and hide them.

The integration of of a wider spectrum of reliability enhancing technologies with CORBA
represents an important area for research and commercial development, particularly if reliability is taken
in the broad sense of security, fault-tolerance, availability, and so forth. High performance, commercially
appealing products will be needed that demonstrate the effectiveness of the architectural features that
result: when we discuss transactions on distributed objects, for example, we will see that merely
supporting transactions through an architecture is not likely to make users happy. Even the execution of
transactions on objects raises deeper issues that would need to be resolved for such a technology to be
accepted as a genuinely valid reliability enhancing tool. For example, the correct handling of a
transactional request by a non-transactional service is unspecified in the architecture.

More broadly, CORBA can be viewed as the ISO hierarchy for object oriented distributed
computing: it provides us with a framework within which such systems can be described and offers ways
to interconnect components without regard for the programming language or vendor technologies used in
developing them. Exploiting this to achieve critical reliability in distributed settings, however, stands as a
more basic technical challenge that CORBA does not directly address. CORBA tells us how to structure
and present these technologies, but not how to build them.

In Chapters 13-18 we will discuss process group computing and associated technologies. The
Orbix product is unusual in supporting a reliability technology, Orbix+Isis [O+I95], based on process
groups, and that overcomes these problems. Such a technology is a form of replication service, but the
particular one used to implement Orbix+Isis is extremely sophisticated in comparison to the most
elementary forms of replication service, and the CORBA specifications for this area remain very tentative.
Thus, Orbix+Isis represents a good response to these reliability concerns, but the response is specific to
Orbix and may not correspond to a broader CORBA response to the issues that arise. We will be studying
these issues in more detail later, and hence will not present the features of Orbix+Isis here.

6.5 TINA
TINA-C is the “Telecommunications Information Network Architecture Consortium”, and is an
organization of major telecommunications services providers that set out to look atANSA and CORBA-
like issues from a uniquely telecommunications perspective [TINA96]. At the time of this writing, TINA
was in the process of specifying a CORBA-based architecture with extensions to deal with issues of
realtime communication, reliability, and security, and with standard telecommunications-oriented services
that go beyond the basic list of CORBA services implemented by typical CORBA-compatible products.
The TINA varient of CORBA is expected by many to have a dramatic impact on the telecommunications
industry. Specific products aimed at this market are already being announced: Chorus Systemes’ COOL-
ORB is a good example of a technology that focuses on the realtime, security and reliability needs of the
telecommunications industry by providing a set of object services and architectural features that reflect
embedded applications typical of large-scale telecommunications applications, in contrast to the more
general computing market to which products like Orbix appear to be targetted.

6.6 IDL and ODL
IDL is the language used to define an object interface (in the TINA standard, there is an ODL language
that goes beyond IDL is specifying other attributes of the object in addition to its interface). CORBA
defines an IDL for the various languages that can be supported: C++, SmallTalk, Ada95, and so forth.
The most standard of these is the IDL for C++, and the examples given above are expressed in C++ for
that reason. However, expanded use of IDL for other programming languages is likely in the future.

Chapter6: CORBA and Object-Oriented Environments 115

115

The use of C++
programs in a CORBA
environment can demand a
high level of sophistication in
C++ programming. In
particular, the operator
overload functionality of C++
can conceal complex
machinery behind deceptively
simple interfaces. In a
standard programming
language one expects that an
assignment statement such as
a = b will execute rapidly. In
C++ such an operation may
involve allocation and
initialization of a new abstract
object and a potentially costly
copying operation. In
CORBA such an assignment
may involve costly remote
operations on a server remote
from the application program
that executes the assignment

statement. To the programmer, CORBA and C++ may appear as a mixed blessing: through the CORBA
IDL, operations such as assignment and value references can be transparently extended over a distributed
environment, which can seem like magic. But the magic is potentially tarnished by the discovery that a
single assignment might now take seconds (or hours) to complete!

Such observations point to a deficiency in the CORBA IDL language and, perhaps, the entire
technology as currently conceived. IDL provides no features for specifyingbehaviorsof remote objects
that are desirable or undesireable consequences of distribution. There is no possibility of using IDL to
indicate a performance property (or cost, in the above example), or to specify a set of fault-tolerance
guarantees for an object that differ from the ones normally provided in the environment. Synchronization
requirements or assumptions made by an object, or guarantees ofered by the client, cannot be expressed in
the language. This missing information, potentially needed for reliability purposes, can limit the ability of
the programmer to fully specify a complex distributed system, while also denying the user the basic
information needed to validate that a complex object is being used correctly.

One could argue that the IDL should be limited to specification of the interface to an object, and
that any behavioral specifications would be managed by other types of services. Indeed, in the case of the
Life Cycle service, one has a good example of how the CORBA community approaches this problem: the
life-cycle aspects of an object specification are treated as a special type of data managed by this service,
and are not considered to be a part of the object interface specification. Yet the author would is convinced
that this information often belongs in the interface specification, in the sense that these types of properties
may have direct implications for the user that accesses the object and may be information of a type that is
important in establishing that the object is being used correctly. That is, the author is convinced that the
specification of an object involves more than the specification of its interfaces, and indeed that the
interface specification involves more than just the manner in which one invokes the object. In contrast,
the CORBA community considers behavior to be orthogonal to interface specification, and hence relegates
behavioral aspects of the object’s specification to the special-purpose services directly concerned with that

Interface
definition

IDL
compiler

Interface
definition
interfaces
and stubs

Interface
definition

implementation
classes

Client uses object Server implements object

Figure 6-11: From the interface defintion, the IDL compiler creates stub and
interface files which are used by clients that invoke the object and by servers
that implement it.

Kenneth P. Birman - Building Secure and Reliable Network Applications116

116

type of information. Unfortunately, it seems likely that much basic research will need to be done before
this issue is addressed in a convincing manner.

6.7 ORB
An Object Request Broker, or ORB, is the component of the runtime system that binds client objects to the
server objects they access, and that interprets object invocations at runtime, arranging for the invocation to
occur on the object that was referenced. (CORBA is thus the OMG’s specification of the ORB and of its
associated services). ORB’s can be thought of as “switching” systems through which invocation messages
flow. A fully compliant CORBA implementation supports interoperation of ORB’s with one-another over
TCP connections, using what is called the GIOP protocol. In such an interoperation mode, any CORBA
server can potentially be invoked from any CORBA client, even if the server and client were built and are
operated on different versions of the CORBA technology base.

Associated with the ORB are a number of features designed to simplify the life of the developer.
An ORB can be programmed to automatically launch a server if it is not running when a client accesses it
(this is called “factory” functionality), and can be asked to automatically filter invocations through user-
supplied code that automates the handling of error conditions or the verification of security properties.
The ORB can also be programmed to make an intelligent choice of object if many objects are potentially
capable of handling the same request; such a functionality would permit, for example, load balancing
within a group of servers that replicate some database.

6.8 Naming Service
A CORBA naming service is used to bind names to objects. Much as a file system is organized as a set of
directories, the CORBA naming architecture defines a set ofnaming contexts, and each name is
interpreted relative to the naming context within which that name is registered. The CORBA naming
architecture is potentially a very general one, but in practice, many applications are expected to treat it as
an object-oriented generalization of a traditional naming hierarchy. Such applications would build
hierarchical naming context graphs (directory trees), use ascii style pathnames to identify objects, and
standardize the sets of attributes stored for each object in the naming service (size, accesstime,
modification time, owner, permissions, etc.) The architecture, however, is sufficiently flexible to allow a
much broader notion of names and naming.

A CORBA name should not be confused with an object reference. In the CORBA architecture,
an object reference is essentially a pointer to the object. Although a reference need not include specific
location information, it does include enough information for an ORB to find a path to the object, or to an
ORB that will know how to reach the object. Names, in contrast, are symbolic ways of naming these
references. By analogy to a UNIX file system, a CORBA object name is like a pathname (and similar to a
pathname, more than one name can refer to the same object). A CORBA object reference is like a UNIX
vnodereference: a machine address and an identifier for a fileinodestored on that machine. From the
name one can lookup the reference, but this is a potentially costly operation. Given the object reference
one can invoke the object, and this (one hopes) will be quite a bit cheaper.

Chapter6: CORBA and Object-Oriented Environments 117

117

6.9 ENS
The CORBA Event Notification Service or ENS provides for notifications of asynchronous “events” to
applications that register an interest in those events by obtaining a handle, to which events can be posted
and on which events can be received. Reliability features are optionally supplied. The ENS is best
understood in terms of what is called thepublish/subscribecommunications architecture5. In this
approach, messages are produced bypublisherswhich label each new message using a set ofsubjectsor
attributes. Separately, applications that wish to be informed when events occur on a given subject will
subscribeto that subject or will poll for messages relating to the subject. The role of the ENS is to reliably
bind the publishers to the subscribers, ensuring that even though the publishers do not know who the
subscribers will be, and vice versa, messages are promptly and reliably delivered to them.

Two examples will make the value of such a model more clear. Suppose that one were using
CORBA to implement a software architecture for a large brokerage system or a stock exchange. The ENS
for such an environment could be used to broadcast stock trades as they occur. The events in this example
would be “named” using the stock and bond names that they describe. Each broker would subscribe to the
stocks of interest, again using these subject names, and the application program would then receive
incoming quotes and display them to the screen. Notice that the publisher program can be developed
without knowing anything about the nature of the applications that will use the ENS to monitor its
outputs: it need not have compatible types or interfaces except with respect to the events that are
exchanged between them. And the subscriber, for its part, does not need to be bound to a particular
publisher: if a new data source of interest is developed it can be introduced into the system without
changing the existing architecture.

A second
example of how the ENS
can be useful would arise
in system management
and monitoring. Suppose
that an application is
being developed to
automate some of the
management functions
that arise in a very large
VLSI fabrication facility.
As time goes by, the

developers expect to add more and more sources of information and introduce more and more applications
that use this information to increase the efficiency and productivity of the factory. An ENS architecture
facilitates doing so, because it permits the developers to separate theinformation architectureof their
application from itsimplementation architecture.In such an example, the information architecture is the
structure of the ENS event “space” itself: the subjects under which events may be posted, and the types of
events that can arise in each subject. The sources and consumers of the events can be introduced later,
and will in general be unaware of one-another. Such a design preserves tremendous flexibility and
facilitates an evolutionary design for the system. After basic functionality is in place, additional functions
can be introduced in a gradual way and without disrupting existing software. Here, the events would be
named according to the aspect of factory function to which they relate: status of devices, completion of job
steps, scheduled downtime, and so forth. Each application program would subscribe to those classes of
events relevant to its task, ignoring all others by not subscribing to them.

5 It should be noted however that the ENS lacks the sort of subject “mapping” facilities that are central to many
publish-subscribe message-bus architectures, and is in this sense a more primitive facility than some of the
message bus technologies that will be discussed later in the text, such as the Teknekron Information Bus (TIB).

Figure 6-12: The CORBA ENS is a form of message "bus" that supports a
publish/subscribe architecture. The sources of events (blue) and consumers (violet)
need not be explicitly aware of oneanother, and the sets can change dynamically. A
single object can produce or consume events of multiple types, and in fact an object
can be both producer and consumer.

Kenneth P. Birman - Building Secure and Reliable Network Applications118

118

Not all CORBA implementations include the ENS. For example, the basic Orbix product
described above lacks an ENS,although the Orbix+Isis extention makes use of a technology called the Isis
Message Distribution Service to implement ENS functionality in an Orbix setting. This, in turn, was
implemented using the Isis Toolkit, which we will discuss in more detail in Chapter 17.

6.10 Life Cycle Service
The Life Cycle Service or LCS standardizes the facilities for creating and destroying objects, and for
copying them or moving them within the system. The service includes afactory for manufacturing new
objects of a designated type. The Life Cycle Service is also responsible for scheduling backups,
periodically compressing object repositories to reclaim free space, and initiating other “life cycle”
activities. To some degree, the service can be used to program object-specific management and
supervisory functions, which may be important to reliable control of a distributed system. However, there
is at present limited experience with life cycle issues for CORBA objects, hence these possibilities remain
an area for future development and research.

6.11 Persistent Object Service
The Persistent Object Service or POS is the CORBA equivalent of a file system. This service maintains
collections of objects for long-term use, organizing them for efficient retrieval and working closely with
its clients to give application-specific meanings to the consistency, persistency, and access control
restrictions implemented within the service. This permits the development of special-purposePOS’s, for
example to maintain databases with large numbers of nearly identical objects organized into relational
tables, as opposed to file system-style storage of very irregular objects, etc.

6.12 Transaction Service
Mentioned earlier, the transaction service is an embedding of database-style transactions into CORBA
architecture. If implemented, the service provides aconcurrency controlservice for synchronizing the
actions of concurrently active transactions,flat and (optionally)nestedtransactional tools, and special-
purpose persistent object services that implement the transactionalcommitand abort mechanisms. The
Transaction Service is often used with therelationship servicewhich tracks relationships among sets of
objects, for example if they are grouped into a database or some other shared data structure. We will be
looking at the transactional execution model in Section 7.4 and in Chapter 21.

6.13 Inter-Object Broker Protocol
The IOB, or Inter-Object Broker Protocol, is a protocol by which ORB’s can be interconnected. The
protocol is intended for use both between geographically dispersed ORB’s from a single vendor, and to
permit interoperation between ORB’s developed independently by different vendors. The IOB includes
definitions of a standard object reference data structure by which an ORB can recognize a foreign object
reference and redirect it to the appropriate ORB, and definitions of the messages exchanged between
ORB’s for this purpose. The IOB is defined for use over a TCP channel; should the channel break or not
be available at the time a reference is used, the corresponding invocation will return an exception.

6.14 Future CORBA Services
The evolution of CORBA continues to advance the coverage of the architecture, although not all vendor
products will include all possible CORBA services. Future services now under discussion include archival
storage for infrequently accessed objects, backup/restore services, versioning services, data interchange
and internationalization services, logging and recovery services, replication services for promoting high
availability, and security services. Real-time services are likely to be added to this list in a future round of
CORBA enhancements, as will other sorts of reliability and robustness-enhancing technologies.

Chapter6: CORBA and Object-Oriented Environments 119

119

6.15 Properties of CORBA Solutions
While the CORBA architecture is impressive in its breadth, the user should not be confused into believing
that CORBA therefore embodies solutions for the sorts of problems that were raised in the first chapters of
this book, or the ones we consider in Chapter 15. To understand this point, it is important to again stress
that CORBA is a somewhat “superficial” technology in specifying the way thingslook but nothow they
should be implemented.In language terminology, CORBA is concerned with syntax but not semantics.
This is a position that the OMG adopted intentionally, and the key players in that organization would
certainly defend it. Nonetheless, it is also a potentially troublesome aspect of CORBA, in the sense that a
correctly specified CORBA application may still be underspecified (even in terms of the interface to the
objects) for purposes of verifying that the objects are used correctly or for predicting the behavior of the
application.

Among other frequently cited concerns about CORBA is that the technology can require extreme
sophistication on the part of developers, who must at a minimum understand exactly how the various
object classes operate and how memory management will be performed. Lacking such knowledge, which
is not an explicit part of the IDL, it may be impossible to use a distributed object efficiently. Even experts
complain that CORBA exception handling can be very tricky. Moreover, in very large systems there will
often be substantial amounts of old code that must interoperate with new solutions. Telecommunications
systems are sometimes said to involve millions or tens of millions of lines of such software, perhaps
written in outmoded programming languages or incorporating technologies for which source code is not
available. To gain the full benefits of CORBA, however, there is a potential need to use CORBA all
through a large distributed environment. This may mean that large amounts of “old code” must somehow
be retrofitted with CORBA interfaces and IDL’s, neither a simple nor an inexpensive proposition.

The reliability properties of a particular CORBA environment depend on a great number of
implementation decisions that can vary from vendor to vendor, and often will do so. Indeed, CORBA is
promoted to vendors precisely because it creates a “level playing field” within which their products can
interoperate but compete: the competition would revolve around this issue of relative performance,
reliability, or functionality guarantees. Conversely, this implies that individual applications cannot
necessarily count upon reliability properties of CORBA if they wish to maintain a high degree of
portability: such applications must in effect assume the least common denominator. Unfortunately, this
least level of guarantees, in the CORBA architectural specification is quite weak: invocations and binding
requests can fail, perhaps in inconsistent ways, corresponding closely to the failure conditions we
identified for RPC protocols that operate over standard communication architectures. Security, being
optional, must be assumed not to be present. Thus, CORBA creates a framework within which reliability
technologies can be standardized, but as currently positioned, the technology base is not necessarily one
that will encourage a new wave of reliable computing systems.

On the positive side, CORBA vendors have shown early signs of using reliability as a
differentiator for their products. Iona’s Orbix product is offered with a high availability technology based
on process group computing (Orbix+Isis [O+I95]) and a transactional subsystem based on a popular
transactional technology (Orbix+Tuxedo [O+T95]). Other major vendors are introducing reliability tools
of their own. Thus, while reliability may not be a standard property of CORBA applications, and may not
promote portability between CORBA platforms, it is at least clear that CORBA was conceived with the
possibility of supporting reliable computing in mind. Most of the protocols and techniques discussed in
the remainder of this textbook are compatible with CORBA in the sense that they could be used to
implement standard CORBA reliability services, such as its replication service or the event notification
service.

Kenneth P. Birman - Building Secure and Reliable Network Applications120

120

6.16 Related Readings
On the ANSA project and architecture: [ANSA89, ANSA91a, ANSA91b]. Another early effort in the
same area was Chronus: [GDS86, STB86]. On Corba: [OMG91] and other publications available from
the Object Management Group, a standards organization; see the Web page [http://www.omg.org]. For
the Corba products cited, such as Orbix: the reader should contact the relevant vendor. On TINA:
[TINA96]. On DCE [DCE94], and OLE-2 [OLE94]; material discussing network OLE had not yet been
made available at the time of this writing.

Chapter7: Client-Server Computing 121

121

7. Client-Server Computing

7.1 Stateless and Stateful Client-Server Interactions

Chapters 4 to 6 focused on the communication protocols used to implement RPC and streams, and on the
semantics of these technologies when a failure occurs. Independent of the way that a communication
technology is implemented, however, is the question of how the programming paradigms that employ it
can be exploited in developing applications, particularly if reliability is an important objective. In this
chapter, we examine client-server computing technologies, assuming that the client-server interactions are
by RPC, perhaps implemented directly, and perhaps issued over streams. Our emphasis is on the
interaction between architectural issues and the reliability properties of the resulting solutions. This topic
will prove particularly important when we begin to look closely at the Web, which is based on what is
called a “stateless” client-server computing paradigm, implemented over stream connections to Web
servers.

7.2 Major Uses of the Client-Server Paradigm

The majority of client-server applications fall into one of two categories, which can be broadly
characterized as being the file-server orstatelessarchitectures, and the database-styled transactional or
statefularchitectures. Although there are a great many client-server systems that neither manage files nor
any form of database, most such systems share a very similar design with one or the other of these.
Moeover, although there is an important middle ground consisting of stateful distributed architectures that
are not transactional, these sorts of applications have only emerged recently and continue to represent a
fairly small percentage of the client-server architectures found in real systems. Accordingly, by focusing
on these two very important cases, we will establish some basic intuitions about the broader technology
areas of which each is representative, and of the state of practice at the time of this writing. In Part III of
the text we will discuss stateful distributed systems architectures in more general terms and in much more
detail, but in doing so will also move away from the “state of practice” as of the mid 1990’s into
technologies that may not be widely deployed until late in the decade or beyond.

A stateless client-server architecture is one in which neither the clients nor the server need to
maintain accurate information about one-another’s status. This is not to say that the clients cannot
“cache” information obtained from a server, and indeed the use of caches is one of the key design features
that permit client-server systems to perform well. However, such cached information is understood to be
potentially stale, and any time an operation is performed on the basis of data from the cache, some sort of
validation scheme must be used to ensure that the outcome will be correct even if the cached data has
become invalid.

More precisely, a stateless client-server architecture has the property thatservers do not need to
maintain an accurate record of their current set of clients, and can change state without engaging in a
protocol between the server and its clients.Moreover, when such state changes occur,correct behavior
of the clients is not affected.The usual example of a stateless client-server architecture is one in which a
client caches records that it has copied from a name server. These records might, for example, map from
ascii names of bank accounts to the IP address of the bank server maintaining that account. Should the IP
address change (i.e. if an account is transferred to a new branch that uses a different server), a client that
tries to access that account will issue a request to the wrong server. Since the transfer of the account is
readily detected, this request will fail, causing the client to refresh its cache record by looking up the
account’s new location; the request can then be reissued and should now reach the correct server. This is
illustrated in Figure 7-1. Notice that the use of cached data is transparent to (concealed from) the

Kenneth P. Birman - Building Secure and Reliable Network Applications122

122

application program, which benefits through improved performance when the cached record is correct, but
is unaffected if an entry becomes stale and must be refreshed at the time it is used.

One implication of a stateless design is that the server and client are independently responsible
for ensuring the validity of their own states and actions. In particular, the server makes no promises to the
client, except that the data it provides was valid at the time it was provided. The client, for its part, must
carefully protect itself against the possibility that the data it obtained from the server has subsequently
become stale.

Notice that a stateless architecture does not imply that there is no form of “state” shared between
the server and its clients. On the contrary, such architectures often share state through caching, as seen in
the above example. The fundamental property of the stateless paradigm is that correct function doesn’t
require that the server keep track of the clients currently using it, and that the server can change data
(reassigning the account in this example) without interacting with the clients that may have cached old
copies of the data item. To compensate for this, the client side of such a system will normally include a
mechanism for detecting that data has become stale, and for refreshing it when an attempt is made to use
such stale data in an operation initiated by the client.

The stateless client-server paradigm is one of the most successful and widely adopted tools for
building distributed systems. File servers, perhaps the single most widely used form of distributed system,
are typically based on this paradigm. The Web is based on stateless servers, for example, and this is often
cited as one of the reasons for its rapid success. One could conclude that this pattern repeates the earlier
success of NFS: a stateless file system protocol that was tremendously successful in the early 1980’s and

name service

new server

original server

cached record

(3)

(1)

accurate record

accurate record

accurate record

accurate record
(2)

client system

Figure 7-1: In this example, a client of a banking database has cached the address of the server handling a specific
account. If the account is transferred, the client’s cached record is said to have become “stale”. Correct behavior
of the client is not compromised, however, because it is able to detect staleness and refresh the cached information
at runtime. Thus, if an attempt is made to access the account, the client will discover that it has been transferred
(step 1) and will look up the new address (step 2), or be told the new address by the original server. The request
can then be reissued to the correct server (step 3). The application program will benefit from improved
performance when the cached data is correct, which is hopefully the normal case, but never sees incorrect or
inconsistent behavior if the cached data is incorrect. The key to such an architecture lies in the ability to detect
that the cached data has become stale when attempting to use it, and in the availability of a mechanism for
refreshing the cache transparent to the application.

Chapter7: Client-Server Computing 123

123

fueled the success of Sun Microsystems, which introduced the protocol and was one of the first companies
to invest heavily in it. Moreover, many of the special purpose servers developed for individual applications
employ a stateless approach. However, as we will see below, stateless architectures also carry a price:
systems built this way are often have limited reliability or consistency guarantees.

It should also be mentioned that stateless designs are a principle but not an absolute rule. In
particular, there are many file systems (we will review some below) that are stateless in some ways but
make use of coherently shared state in other ways. In this section we will call such designs stateful, but
the developers of the systems themselves might consider that they have adhered to the principle of a
stateless design in making “minimum” use of coherently shared state. Such a philosophy recalls the end-
to-end philosophy of distributed systems design, in which communications semantics are left to the
application layer except when strong performance or complexity arguments can be advanced in favor of
putting stronger guarantees into an underlying layer. We will not take a position on this issue here (or if
we do, perhaps it is our position that if an architecture guarantees the consistency of distributed state, then
it is stateful!). However, to the degree that there is a design philosophy associated with stateless client-
server architectures, it is probably most accurate to say that it is one that “discourages” the use of
consistently replicated or coherently shared state except where such state is absolutely necessary.

In contrast, a stateful architecture is one inwhich information is shared between the client and
server in such a manner that the client may take local actions under the assumption that this information
is correct. In the example of Figure 7-1, this would have meant that the client system would never need
to retry a request. Clearly, to implement such a policy, the database and name mapping servers would
need to track the set of clients possessing a cached copy of the server for a record that is about to be
transferred. The system would need to somehow lock these records against use during the time of the
transfer, or to invalidate them so that clients attempting to access the transferred record would first look
up the new address. The resulting protocol would guarantee that if a client is permitted to access a cached
record, that record will be accurate, but it would do so at the cost of complexity (in the form of the
protocol needed when a record is transferred) and delay (namely, delays visible to the client when trying
to access a record that is temporarily locked, and/or delays within the servers when a record being
transferred is found to be cached at one or more clients).

Even from this simple example, it is clear that stateful architectures are potentially complex. If
one indeed believed that the success of the NFS and Web was directly related to their statelessness, it
would make sense to conclude that stateful architectures are inherently a bad idea: the theory would be
that anything worth billions of dollars to its creator must be good. Unfortunately, although seductive,
such a reaction also turns out to implicitly argue against reliability, coherent replication, many kinds of
security, and other “properties” that are inherently stateful in their formulation. Thus, while there is
certainly a lesson to be drawn here, the insights to be gained are not shallow ones.

Focusing on our example, one might wonder when, if ever, coherent caching is be desirable.
Upon close study, the issue can be seen to be a tradeoff between performance and necessary mechanism.
It is clear that a client system with a coherently cached data item will obtain performance benefits by
being able to perform actions correctly using local data (hence, avoiding a round-trip delay over the
network), and may therefore be able to guarantee some form of “real time” response to the application.
For applications in which the cost of communicating with a server is very high, or where there are
relatively strict real-time constraints, this could be an extremely important guarantee. For example, an
air-traffic controller contemplating a proposed course change for a flight would not tolerate long delays
while checking with the database servers in the various air sectors that flight will traverse. Similar issues
are seen in many real-time applications, such as computer assisted conferencing systems and multimedia
playback systems. In these cases one might be willing to accept additional mechanism (and hence
complexity) as a way of gaining a desired property. A stateless architecture will be much simpler, but
cached data may be stale and hence cannot be used in the same ways.

Kenneth P. Birman - Building Secure and Reliable Network Applications124

124

Another factor that favors the use of stateful architectures is the need to reduce load on a heavily
used server. If a server is extremely popular, coherent caching offers the possibility of distributing the
data it manages, and hence the load upon it, among a large number of clients and intermediate nodes in
the network. To the degree that clients manage to cache the right set of records, they avoid access to the
server and are able to perform what are abstractly thought of as distributed operations using purely local
computation. A good example of a setting where this is becoming important is the handling of popular
Web documents. As we will see when we discuss the Web, its architecture is basically that of a file server,
and heavy access to a popular document can therefore result in enormous load on the unfortunate server
on which that document is stored. By caching such documents at other servers, a large number of
potential sources (“shadow copies”) of the document can be created, permitting the load of servicing
incoming requests to be spread over many copies. But if the document in question is updated
dynamically, one now faces a coherent caching question.

If records can be coherently cachedwhile preserving the apparent behavior of a single server,
the performance benefits and potential for ensuring that real-time bounds will be satisfied can be
immense. In distributed systems where reliability is important, it is therefore common to find that which
coherent caching is beneficial or even necessary. The key issue is to somehow package the associated
mechanisms to avoid paying this complexity cost repeatedly. This is one of the topics that will be
discussed in Chapter 15 of this textbook.

There is, however, a second way to offer clients some of the benefits of stateful architecture, but
without ensuring that remotely cached data will be maintained in a coherent state. The key to this
alternative approach is to use some form of abort or “back out” mechanism to roll back actions taken by a
client on a server, under conditions where the server detects that the client’s state is inconsistent with its
own state, and to force the client to roll back its own state and, presumably, retry its operation with
refreshed or corrected data. This underlies the transactional approach to building client-server systems.
As noted above, transactional database systems are the most widely used of the stateful client-server
architectures.

The basic idea in a transactional system is that the client’s requests are structured into clearly
delimited transactions. Each transaction begins, encompasses a series ofreadandupdateoperations, and
then ends bycommitingin the case where the client and server consider the outcome to be successful, or
aborting if either client or server has detected an error. An aborted transaction is backed out both by the
server, which erases any effects of the transaction, and by the client, which will typically restart its request
at the point of the original “begin”, or report an error to the user and leave it to the user to decide if the
request should be retried. A transactional system is one that supports this model, guaranteeing that the
results of committed transactions will be preserved and that aborted transactions will leave no trace.

The connection between transactions and “statefulness” is as follows. Suppose that a transaction
is running, and a client has read a number of data items and issued some number of updates. Often it will
have locked the data items in question for reading and writing, a topic we discuss in more detail in
Chapter 21. These data items and locks can be viewed as a form of shared state between the client and the
server: the client basically trusts the server to ensure that the data it has read is valid until it commits or
aborts and releases the locks that it holds. Just as our cached data was copied to the client in the earlier
examples, all of this information can be viewed as knowledge of the server’s state that the client caches.
And the relationship is mutual: the server, for its part, holds an image of the client’s state in the form of
updates and locks it holds on behalf of the partially completed transactions.

Now, suppose that something causes the server’s state to become inconsistent with that of the
client, or vice versa. Perhaps the server crashes and then recovers, and in this process some information
that the client had provided to the server is lost. Or, perhaps it becomes desirable to change something in

Chapter7: Client-Server Computing 125

125

the database without waiting for the client to finish its transaction. In a stateless architecture we would
not have had to worry about the state of the client. In a transactional implementation of a stateful
architecture, on the other hand, the server can exploit the abort feature by arranging that the client’s
transaction be aborted, either immediately, or later when the client tries to commit it. This frees the
server from needing to worry about the state of the client. In effect, an abort or rollback mechanism can
be used as a tool by which a stateful client-server system is able to recover from a situation where the
client’s view of the state shared with the server has been rendered incorrect.

In the remainder of this chapter, we review examples of stateless file-server architectures from
the research and commercial community, stateful file-server architectures (we will return this topic in a
much more general way in Chapter 15), and stateful transactional architectures as used in database
systems. As usual, our underlying emphasis is on reliability implications of these architectural
alternatives.

7.3 Distributed File Systems

We have discussed the stateless approach to file server design in general terms. In this section, we look at
some specific file system architectures in more detail, to understand the precise sense in which these
systems are stateless, how their statelessness may be visible to the user, and the implications of
statelessness on file system reliability.

Client-server file systems normally are structured as shown in Figure 7-2. Here, we see that the
client application interacts with a cache of file system blocks and file descriptor objects maintained in the
client workstation. In UNIX, the file descriptor objects are calledvnodesand are basically server-
independent representations of theinodestructures used within the server to track the file. In contrast to
an inode, a vnode (“virtualized inode”) has a unique identifier that will not be reused over the lifetime of
the server, and omits detailed information such as block numbers. In effect, a vnode is an access key to the
file, obtained by the client’s file subsystem during the file open protocol, and usable by the server to
rapidly validate access and locate the corresponding inode.

client side

server side

buffer pool

data cache

application

Figure 7-2: In a stateless file system architecture, the client may cache data from the server. Such a cache is
similar in function to the server's buffer pool, but is not guaranteed to be accurate. In particular, if the server
modifies the data that the client has cached, it has no record of the locations at which copies may have been
cached, and no protocol by which cached data can be invalidated or refreshed. The client side of the architecture
will often include mechanisms that partially conceal this limitation, for example by validating that cachedfile data
is still valid at the time a file is opened. In effect, the cached data is treated as a set of “hints” that are used to
improve performance but should not be trusted in an absolute sense.

Kenneth P. Birman - Building Secure and Reliable Network Applications126

126

On the server side, the file system is conventionally structured, but is accessed by messages
containing a vnode identifier and an offset into the file, rather than block by block. The vnode identifier is
termed afile handle whereas the vnode itself is a representation of the contents of the inode, omitting
information that is only useful on the server itself but including information that the client application
programs might request using UNIXstatsystem calls.

The policies used for cache management differ widely within file systems. NFS uses a write-
through policy when updating a client cache, meaning that when the client cache is changed, a write
operation is immediately initiated to the NFS server. The client application is permitted to resume
execution before the write operation has been completed, but because the cache has already been updated
in this case, programs running on the client system will not normally observe any sort of inconsistency.
NFS issues anfsyncoperation when a file is closed, causing the close operation to delay until all of these
pending write operations have completed. The effect is to conceal the effects of asynchronous writes from
other applications executed on the same client computer. Users can also invoke this operation, or the
closeor fflushoperations, which also flush cached records to the server.

In NFS, the servermaintains no information at all about current clients. Instead, the file handle
is created in such a manner that mere possession of a file handle is considered proof that the client
successfully performed an open operation. In systems where security is an issue, NFS uses digital
signature technology to ensure that only legitimate clients can obtain a file handle, and that they can do so
only through the legitimate NFS protocol. These systems often require that file system handles be
periodically reopened, so that the lifetime of encryption keys can be limited.

On the client side, cached file blocks and file handles in the cache represent the main form of
state present in an NFS configuration. The approach used to ensure that this information is valid
represents a compromise between performance objectives and semantics. Each time a file is opened, NFS
verifies that the cached file handle is still valid. The file server, for its part, treats a file handle as invalid
if the file has been written (by some other client system) since the handle was issued. Thus, by issuing a
single open request, the client system is able to learn whether the data blocks cached on behalf of the file
are valid or not, and can discard them in the latter case.

This approach to cache validation poses a potential problem, which is that if a client workstation
has cached data from an open file, changes to the file that originate at some other workstation will not
invalidate these cached blocks, and no attempt to authenticate the file handle will occur. Thus, for
example, if processp on client workstationa has fileF open, and then processq on client workstationb
opensF, writes modified data into it, and then closes it, althoughF will be updated on the file server,
processp may continue to observe stale data for an unlimited period of time. Indeed, short of closing and
reopening the file, or accessing some file block that is not cached,p might never see the updates!

One case where this pattern of behavior can arise is when a pipeline of processes is executed with
each process on a different computer. Ifp is the first program in such a pipeline andq is the second
program,p could easily send a message down the pipe toq telling it to look into the file, andq will now
face the stale data problem. UNIX programmers often encounter problems such as this and work around
them by modifying the programs to usefflush and fsyncsystem calls to flush the cache atp and to empty
q’s cache of cached records for the shared file.

NFS vendors provide a second type of solution to this problem through an optional locking
mechanism, which is accessed using theflock system call. If this optional interface is used, the process
attempting to write the file would be unable to open it for update until the process holding it open for
reads has released its read lock. Conceptually, at least, the realization that the file needs to be unlocked
and then relocked would sensitize the developer of processp to the need to close and then reopen the file

Chapter7: Client-Server Computing 127

127

to avoid access anomalies, which are well documented inNFS. At any rate, file sharing is not all that
common in UNIX, as demonstrated in studies by Ousterhout et. al. [ODHK85], where it was found that
most file sharing is between programs executed sequentially from the same workstation.

The NFS protocol is thus stateless but there are situations in which the user can glimpse the
implementation of the protocol precisely because its statelessness leads to weakened semantics compared
to an idealized file system accessed through a single cache. Moreover, as noted in the previous chapter,
there are also situations in which the weak error reporting of RPC protocols is reflected in unexpected
behavior, such as the filecreateoperation of Section 4.7, which incorrectly reported that a file couldn’t
be created because a reissued RPC fooled the file system into thinking the file already existed.

Similar to the basic UNIX file system, NFS is designed to prefetch records when it appears likely
that they will soon be needed. For example, if the application program reads the first two blocks of a file,
the NFS client-side software will typically fetch the third block of that file without waiting for a read
request, placing the result in the cache. With a little luck, the application will now obtain a cache hit, and
be able to start processing the third block even as the NFS system fetches the fourth one. One can see that
this yields similar performance to simply transferring the entire file at the time it was initially opened.
Nonetheless, the protocol is relatively inefficient in the sense that each block must be independently
requested, whereas a streaming-style of transfer could avoid these requests and also handle
acknowledgements more efficiently. Below, we will look at some file systems that explicitly perform
whole-file transfers and that are able to outperform NFS when placed under heavy load.

For developers of reliable applications, the reliability of the file server is ofobvious concern. One
might want to know how failures would affect the behavior of operations. WithNFS, as normally
implemented, a failure can cause the file server to be unavailable for long periods of time, can partition a
client from a server, or can result in a crash and then reboot of a client. The precise consequences depend
on the user set the file system up. For the situations where a server becomes unreachable or crashes and
later reboots, the client program may experiencetimeouts that would be reported to the application layer
as errors, or it may simply retry its requests periodically, for as long as necessary until the file server
restarts. In the latter case, an operation to be reissued after a long delay, and there is some potential for
operations to behave unexpectedly as in the case ofcreate. Client failures, on the other hand, are
completely ignored by the server.

Because the NFS client-side cache uses a write-through policy, in such a situation a few updates
may be lost but the files on the server will not be left in an extremely stale state. The locking protocol used
by NFS, however, will not automatically break locks during a crash, hence files locked by the client will
remain locked until the application detects this condition and forces the locks to be released, using
commands issued from the client system or from some other system. There is a mode in which failures
automatically cause locks to be released, but this action will only occur when the client workstation is
restarted, presumably to avoid confusing network partitions with failure/reboot sequences.

Thus, while the stateless design of NFS simplifies it considerably, the design also introduces
serious reliability concerns. Our discussion has touched on the risk of processes seeing stale data when
they access files, the potential that writes could be lost, and the possibility that a critical file server might
become unavailable due to a network or computer failure. Were one building an application for which
reliability is critical, any of these cases could represent a very serious failure. The enormous success of
NFS should not be taken as an indication that reliable applications can in fact be built over it, but rather as
a sign that failures are really not all that frequent in modern computing systems, and that most
applications are not particularly critical! In a world where hardware was less reliable or the applications
were more critical, protocols such as the NFS protocol might be considerably less attractive.

Kenneth P. Birman - Building Secure and Reliable Network Applications128

128

Our discussion is for the case of a normal NFS server. There are versions of NFS that support
replication in software for higher availability (R/NFS, Deceit [Sie92], HA-NFS [BEM91], and Harp
[LGGJ91, LLSG92]), as well as dual-ported NFS server units in which a backup server can take control of
the file system. The former approaches employ process-group communication concepts of a sort we will
discuss later, although the protocol used to communicate with client programs remains unchanged. By
doing this, the possibility for load-balanced read access to the file server is created, enhancing read
performance through parallelism. At the same time, these approaches allow continuous availability even
when some servers are down. Each server has its own disk, permitting tolerance of media failures. And,
there is a possibility of varying the level of the replication selectively, so that critical files will be
replicated but non-critical files can be treated using conventional non-replicated methods. The interest in
such an approach is that any overhead associated with file replication is incurred only for files where there
is also a need for high availability, and hence the multi-server configuration comes closer to also giving
the capacity and performance benefits of a cluster of NFS servers. Many users like this possibility of
“paying only for what they use.”

The dual-ported hardware approaches, in contrast, primarily reduce the time to recovery. They
normally require that the servers reside in the same physical location, and are intolerant of media failure,
unless a “mirrored disk” is employed. Moreover, these approaches do not offer benefits of parallelism: one
pays for two servers, or for two servers and a mirror disk, as a form of insurance that the entire file system
will be available when needed. These sorts of file servers are, consequently, expensive. On the other hand,
their performance is typically that of a normal server – there is little or nodegradationbecause of the dual
configuration.

Clearly, if the performance degradation associated with replication can be kept sufficiently small,
the mirrored server and/or disk technologies will look expensive. Early generations of cluster-server
technology were slow enough to maintain mirroring as a viable alternative. However, the trend seems to
be for this overhead to become smaller and smaller, in which case the greater flexibility and enhanced
read performance, due to parallelism, would argue in favor of the NFS cluster technologies.

Yet another file system reliability technology has emerged relatively recently, and involves the
use of clusters or arrays of disks to implement a file system that is more reliable than any of the
component disks. Such so-called RAID file systems [PGK88] normally consist of a mixture of hardware
and software: the hardware for mediating access to the disks themselves, and the software to handle the
buffer pool, oversee file layout and optimize data access patterns. The actual protocol used to talk to the
RAID device over a network would be the same as for any other sort of remote disk: thus, it might be the
NFS protocol, or some other remote file access protocol; the use of RAID in the disk subsystem itself
would normally not result in protocol changes.

RAID devices typically require physical proximity of the disks to one-another (needed by the
hardware). The mechanism that implements the RAID is typically constructed in hardware, and employs
a surplus disk to maintain redundent data in the form of parity for sets of disk blocks; such an approach
permits a RAID system to tolerate one or more disk failures or bad blocks, depending on the way the
system is configured. A RAID is thus a set of disks that mimics a single more reliable disk unit with
roughly the summed capacity of its components, minus overhead for the parity disk. However, even with
special hardware, management and configuration of RAID systems can require specialized software
architectures [WSS95]

Similar to the case for a mirrored disk, the main benefits of a RAID architecture are high
availability in the server itself, together with large capacity and good average seek-time for information
retrieval. In a large-scale distributed application, the need to locate the RAID device at a single place, and
its reliance on a single source of power and software infrastructure, often mean that in practice such a file

Chapter7: Client-Server Computing 129

129

server has the same distributed reliability properties as would any other form of file server. In effect, the
risk of file server unavailability as a source of downtime is reduced, but other infrastructure-related
sources of file system unavailability remain to be addressed. In particular, if a RAID file system
implements the NFS protocol, it would be subject to all the limitations of the NFS architecture.

7.4 Stateful File Servers
The performance of NFS is limited by its write-through caching policy, which has lead developers of more
advanced file systems to focus on improved caching mechanisms and, because few applications actually
use the optional locking interfaces, on greater attention to cache validation protocols. In this section, we
briefly survey some of the best known stateful file systems. Our treatment is brief because of the

Kenneth P. Birman - Building Secure and Reliable Network Applications130

130

complexity of the implementations of the systems we review: the choice is between a superficial treatment
and one that would be quite lengthy. In many respects, stateful file servers are basically implementations
of a specialized form of data replication mechanism. In Chapters 13-16 and 21, we will be looking at
such mechanisms in a stepwise, structured manner, hence a decision was made to omit some details here.
This is unfortunate, because the file systems we now review are a rich and extremely interesting group of
distributed systems that incorporate some very innovative methods for overcoming the technical problems
that they confront. The reader is strongly encouraged to read some of the original research papers on
these and related systems.

The Andrew File System was developed at Carnegie Mellon University and subsequently used as the
basis of a world-wide file system product offered by Transarc Inc [SHNS85, SS96]. The basic ideas
in Andrew are easily summarized.

AFS was built with the assumption that the Kerberos authentication technology would be available.
We present Kerberos in Chapter 19, and hence limit ourselves to a brief summary of the basic
features of the system here. At the time that a user logs in (and later, periodically, if the user
remains connected long enough for timers to expire), Kerberos prompts for a password. Using a
secure protocol that employs DES to encrypt sensitive data, the password is employed to
authenticate the user to the Kerberos server, which will now act as a trustworthy intermediary in
establishing connections between the user and file servers that it will access. The file servers
similarly authenticate themselves to the Kerberos authentication server at startup.

File system access is by whole file transfer, except in the case of very large files, which are treated as
sets of smaller ones. Files can becachedin the AFS subsystem on a client, in which case requests are
satisfied out of the cached information whenever possible (in fact, there are two caches, one of file
data and one of file status information, but this distinction need not concern us here). The AFS
server tracks the clients that maintain cached copies of a given file, and, if the file is opened for
writing, uses callbacksto inform those clients that the cached copies are no longer valid.Additional
communication from the client to the server occurs frequently enough so that if a client becomes
disconnected from the server, it will soon begin to consider its cached files to be potentially stale.
(Indeed, studies of AFS file server availability have noted that disconnection from the server is a
more common source of denial of access to files in AFS than genuine server downtime).

AFS provides a strong form of security guarantee, based onaccess control listsat the level of entire
directories. Because the Kerberos authentication protocol is known to be highly secure, AFS can
trust the user identification information provided to it by client systems. Short of taking over a
client workstation, an unauthorized user would have no means of gaining access to cached or
primary copies of a file for which access is not permitted. AFS destroys cached data when a user
logs out or an authorization expires and is not refreshed [Sat89,SNS88, Sch94, Bir85, LABW92,
BM90].

In its current use as a wide-area file system, AFS has expanded to include some 1,000 servers and
20,000 clients in 10 countries, all united within a single file system name space [SS96]. Some 100,000
users are believed to employ the system on a regular basis. Despite this very large scale, 96% of file
system accesses are found to be resolved through cache hits, and server inaccessibility (primarily
due to communications timeouts) was as little as a few minutes per day. Moreover, this is found to
be true even when a significant fraction of file references are to remote files. AFS users are
reported to have had generally positive experiences with the system, but (perhaps not surprisingly)
complain about poor performance when a file is not cached and must be copied from a remote file
server. Their subjective experience presumably reflects the huge difference in performance
between AFS in the case where a file is cached and that when a copy must be downloaded over the
network.

Figure 7-3: The Andrew File System (AFS) is widely cited for its strong security architecture and consistency
guarantees.

Chapter7: Client-Server Computing 131

131

Work on stateful file systems architectures can be traced in part to an influential study of file
access patterns in the Sprite system at Berkeley [BHKSO91]. This work sought to characterize the file
system workload along a variety of axes: read/write split, block reuse frequency, file lifetimes, and so
forth. The findings, although not surprising, were at the same time eye-openers for many of the
researchers in the area. In this study, it was discovered that nearly nearly all file access was sequential,
and that there was very little sharing of files between different programs. When file sharing was
observed, the prevailing pattern was the simplest one: one program tended to write the file, in its entirety,
and then some other program would read the same file. Often (indeed, in most such cases), the file would
be deleted shortly after it was created. In fact, most files survived for less than 10 seconds or longer than
10,000 seconds. The importance of cache consistency was explored in this work (it turned out to be quite
important, but relatively easy to enforce for the most common patterns of sharing), and the frequency of
write-write sharing of files was shown to be so low that this could almost be treated as a special case.
(Later, there was considerable speculation that on systems with significant database activity, this finding
would have been affected). Moreover, considerable data was extracted on patterns of data transfer from
server to client: rate of transfer, percentage of the typical file that was transferred, etc. Out of this work
came a new generation of file systems that used closer cooperation between client and file system to
exploit such patterns.

Examples of well-known file systems that take employ a stateful approach to provide increased
performance (as opposed to availability) are AFS (see Figure 7-3) [Sat89, SHNS85, HKMN87] and
Sprite[OCDN88, SM89], a research file system and operating system developed at U.C. Berkeley. On the
availability side of the spectrum, the Coda project [KS91, MES95], a research effort at Carnegie Mellon
University, takes these ideas one step further, integrating them into a file system specifically for use on
mobile computers which operate in a disconnected, or partially connected, mode. Ficus, a project at
UCLA, uses a similar approach to deal with file replication in very wide-area networks with non-uniform
connectivity and bandwidith properties. To varying degrees, these systems can all be viewed as stateful
ones in which some of the information maintained within client workstations is guaranteed to be coherent.
The term stateful is used a little loosely here, particularly in comparison with the approaches we will
examine in Chapter 15. Perhaps it would be preferable to say that these systems are “more stateful” than
the NFS architecture, gaining performance through the additional state. Among the four, only Sprite
actually provides strong cache coherence to its clients [SM89]. The other systems provide other forms of
guarantees, which are used either to avoid inconsistency or to resolve inconsistencies after they occur.
Finally, we will briefly discussXFS, a file system under development at U.C. Berkeley that exploits the
file system memory of client workstations as an extended buffer pool, paging files from machine to
machine over the network to avoid the more costly I/O path from a client workstation over the network to
a remote disk.

Both AFS and Sprite replace the NFS write-through caching mechanism and file-handle
validation protocols with alternatives that reduce costs. The basic approach in AFS is to cache entire files,
informing the server that a modified version of a file may exist in the client workstation. Through a
combination of features such as whole-file transfers on file open and for write back to the server, and by
having the file server actively inform client systems when their cached entries become invalid,
considerable performance improvements are obtained with substantially stronger file access semantics
than for NFS. Indeed, the workload on an AFS server can be an order of magnitude or more lower than
that for an NFS server, and the performance observed by a client is comparably higher for many
applications. AFS was commercialized subsequent to the intial research project at CMU, becoming the
component technology for a line of enterprise file systems (“world-wide file systems”) marketed Transarc,
a subsidiary of IBM. The file system is discussed further in Figure 7-3.

Sprite, which caches file system blocks (but uses a large 4k block size), takes the notion of
coherent caching one step further, using a protocol in which the server actively tracks client caching,
issuing callbacks to update cached file blocks if updates are received. The model is based on the caching

Kenneth P. Birman - Building Secure and Reliable Network Applications132

132

of individual data blocks, not whole files, but the client caches are large enough to accomodate entire files.
The Sprite approach leads to such high cache hit rates that the server workload is reduced to almost pure
writes, an observation that triggered some extremely interesting work on file system organizations for
workloads that are heavily biased towards writes. Similar toAFS, the technology greatly decreases the
I/O load and CPU load on the servers that actually manage the disk.

Sprite is unusual in two ways. First, the system implements several different caching policies
depending upon how the file is opened: one policy is for read-only access; a second and more expensive
one is used forsequential write access,which occurs when a file is updated by one workstation and then
accessed by a second one later (but in which the file is never written simultaneously from several system),
and a third policy is used forconcurrent write access, which occurs when a file is written concurrently
from several sources. This last policy is very rarely needed because Sprite does not cache directories and
is not often used in support of database applications, which are among the few known to use concurrent
write sharing heavily. Secondly, unlike NFS, Sprite does not use a write-through policy. Thus, a file
that is opened for writing, updated, then closed and perhaps reopened by another application on the same
machine, read, and then deleted, would remain entirely in the cache of the client workstation. This
particular sequence is commonly seen in compilers that run in multiple passes and generate temporary
results, and in editors that operate on an intermediate copy of a file which will be deleted after the file is
rewritten and closed. The effect is to greatly reduce traffic between the client and the server relative to
what NFS might have, but also to leave the server quite far out of date with respect to a client system that
may be writing cached files.

Sequential write sharing is handled using version numbers. When a client opens a file, the
server returns the current version number, permitting the client to determine whether or not any cached
records it may have are still valid. When a file is shared for concurrent writing, a more costly but simple
scheme is used, whereby none of the clients are permitted to cache it. If the status of a file changes
because a new open or close has occured, Sprite issues a callback to other clients that have the file open,
permitting them to dynamically adapt their caching policy in an appropriate manner. Notice that because
a stateless file system such as NFS has no information as to its current client set, this policy would be
impractical to implement within NFS. On the other hand, Sprite faces the problem that if the callback
RPC fails, it must assume that the client has genuinely crashed; the technology is thus not tolerant of
communication outages that can partition a file server from its clients. Sprite also incurs costs that NFS
can sometimes avoid: bothopenand closeoperations must be performed as RPC’s, and there is at least
one extra RPC required (to check consistency) in the case where a file is opened, read quickly, and then
closed than in NFS.

The recovery of a Sprite server after a crash can be complicated, because some clients may have
had files opened in a cached for writing mode. To recover, the server makes use of its knowledge of the
set of clients that had cached files for writing, which is saved in a persistent storage area, and of the fact
that the consistency state of a file cannot change without the explicit approval of the server. This permits
the server to track down current copies of the files it manages and to bring itself back to a consistent state.

The developers of Sprite commented that “most of the complexity in the recovery mechanism
comes in detecting crashes and reboots, rather than in rebuilding state. This is done by tracking the
passage of RPC packets, and using periodic “keepalive” packets, to detect when a client or server has
crashed or rebooted: the same mechanism also suffices to detect network partitions. There is some cost to
tracking RPC packets but a reliable crash and reboot detetection mechanism is of course useful for other
purposes besides recovering file server state[SM89].” This comment may at first seem confusing,
because we have seen that RPC mechanisms cannot reliably detect failures. However, Sprite is not subject
to the restrictions we cited earlier because it can deny access to a file while waiting to gain access to the
most current version of it. Our concerns about RPC arose in relation to trying to determine the cause of
an RPC failure “in real-time”. A system that is able to wait for a server to recover is fortunate in not

Chapter7: Client-Server Computing 133

133

needing to solve this problem: if an apparent failure has occured, it can simply wait for the problem to be
repaired if to do otherwise might violate file system consistency guarantees.

Experiments have shown the Sprite cache-consistency protocols to be highly effective in reducing
traffic to the file server and preserving the illusion of a single-copy of each file. Performance of the
system is extremely good, utilization of servers very low, and the anomalous behaviors that can arise with
NFS are completely avoided. However, the technology is trusting of user-id’s, and hence suffers from
some of the same security concerns that we will present in relation to NFS in Chapter 19.

Coda is a file system for disconnected use. It can be understood as implementing a very
generalized version of the whole-file caching methods first introduced inAFS: where AFS caches
individual files, Coda caches groups of files and directories so as to maintain a complete cached copy of
the user’s entire file system or application. The idea within Coda is to track updates with sufficient
precision so that the actions taken by the user while operating on a cached copy of part of the file system
can be merged automatically into the master file system from which the files were copied. This merge
occurs when connection between the disconnected computer and the main file system server is
reestablished. Much of the sophistication of Coda is concerned with tracking the appropriate sets of files
to cache in this manner, and with optimizing the merge mechanisms so that user intervention can be
avoided when possible.

Kenneth P. Birman - Building Secure and Reliable Network Applications134

134

The Ficus system, developed by Jerry Popek’s group at UCLA [RHRS94], explores a similar set
of issues but focuses on an enterprise computing environment similar to the world-wide file system
problems to which AFS has been applied in recent years. (For brevity we will not discuss a previous
system developed by the same group, Locus [WPEK92]). In Ficus, the model is one of a large-scale file
system built of file servers that logically maintain replicas of a single “file system image”.
Communication connectivity can be lost and servers can crash, hence at any point, a server will have
replicas of some parts of the file system and will be out of touch with some other replicas for the same
data. This leads to an approach in which file type information is used both to limit the updates that can be
performed while a portion of the file system is disconnected from other segments, and to drive a file merge
process when communication is reestablished [HP95]. Where Coda is focused on disconnected operation,
however, Ficus emphasizes support for patterns of communication seen in large organizations that
experience bandwidth limits or partitioning problems that prevent servers from contacting each other for
brief periods of time. The resulting protocols and algorithms are similar to the ones used in Coda, but
place greater attention on file-by-file reconciliation methods, where Coda is oriented towards mechanisms
that deal with groups of files as an ensemble.

The challenge faced by Coda is easy appreciated when the following example is considered. Suppose
that Fred and Julia are collaborating on a major report to an important customer of their company.
Fred is responsible for certain sections of the report and Julia for others, but these sections are also
cited in the introductory material and “boilerplate” used to generate the report as a whole. As
many readers of this textbook will appreciate, there are software tools for this type of collaborative
work of varying ease of use. The most primitive tools provide only for locking of some sort, so that
Julia can lock Fred out of a file while she is actually editing it. More elaborate ones actually permit
multiple users to concurrently edit the shared files, annotating one-another’s work, and tracking
precisely who changed what through multiple levels of revisions. Such tools typically view the
document as a form of database and keep some type of log or history showing how it evolved through
time.

If the files in which the report are contained can be copied onto portable computers that become
disconnected from the network, however, these annotations will be introduced independently and
concurrently on the various copies. Files may be split or merged while the systems are disconnected
from each other, and even the time of access cannot be used to order these events, since the clocks on
computers can drift or be set incorrectly for many reasons. Thus, when copies of a complex set of
files are returned to the file system from which they were removed, the merge problem becomes a
nontrivial one both at the level of the file system itself (which may have to worry about directories
that have experienced both delete and add operations of potentially conflicting sorts in the various
concurrent users of the directory), and also at the level of the application and its notion of file
semantics.

disconnected
user

connected
user

Figure 7-4: Challenges of disconnected operation.

Chapter7: Client-Server Computing 135

135

All of these systems are known for additional contributions beyond the ones we have discussed.
Coda, for example, makes use of a recoverable virtual memory mechanism that offers a way to back out
changes made to a segment of virtual memory, using a logging facility that performs replay on behalf of
the user. Ficus is also known for work on “stackable” file systems, in which a single file system interface
is used to provide access to a variety of types of file-like abstractions. These contributions, and others not
cited here, are beyond the scope of our present discussion.

Not surprisingly, systems such as Coda and Ficus incorporate special purpose programming tools
and applications that are well matched to their styles of disconnected and partially connected operation
[RHRS94, MES95]. These tools include, for example, email systems that maintain logs of actions taken
against mailboxes, understanding how to delete mail that has been deleted while in a disconnected mode,
or to merge emails that arrived separately in different copies of a mailbox that was split within a large-
scale distributed environment. One can speculate that over time, a small and fairly standard set of tools
might emerge from such research, with which developers would implement specialized “disconnected
applications” that rely on well-tested reconciliation methods to recorrect inconsistencies that arise during
periods of disconnected interaction. At the time of this writing, however, the author was not aware of any
specific toolkits of this nature.

The last of the stateful file systems mentioned at the start of this section isXFS, a Berkeley
project that seeks to exploit the memory of the client workstations connected to a network as a form of
distributed storage region for a very high performance file server [ADNP95]. XFS could be called a
“serverless network file system”, although in practice the technology would more often be paired to a
conventional file system which would serve as a backing store. The basic idea of XFS, then, is to
distribute the contents of a file system over a set of workstations so that when a block of data is needed, it
can be obtained by a direct memory-to-memory transfer over the network rather than by means of a
request to a disk server which, having much less memory at its disposal, may then need to delay while
fetching it from the disk itself.

XFS raises some very complex issues of system configuration management and fault-tolerance.
The applications using an XFS need to know what servers belong to it, and this set changes dynamically
over time. Thus, there is a membership management problem that needs to be solved in software.
Workstations are reliable, but not completely reliable, hence there is a need to deal with failures; XFS
does this by using a RAID-style storage scheme in which each set ofn workstations is backed by ann+1’st
machine that maintains a parity block. If one of then+1 machines fails, the missing data can be
regenerated from the othern. Moreover, XFS is dynamically reconfigurable, creating some challenging
synchronization issues. On the positive side, all of this complexity brings with it a dramatic performance
improvement when XFS is compared with more traditional server architectures. For this textbook, it is
appealing to see XFS as an instance of the sort of server that can be built using the techniques of Chapter
15, in which we present protocols to solve problems like these, and also show how they can be packaged
in the form of readily used tools. (It should be noted that XFS draws heavily on the log-structured file
system work of Rosenblum and Ousterhout [RO91], a technology that is beyond the scope of this text).

The reliability properties of these stateful file systems go well beyond those ofNFS. For AFS and
Sprite, reliability is limited by the manner in which the servers detect the failure of clients, since a failed
client clears its cache upon recovery and the server needs to update its knowledge of the state of the cache
accordingly. In fact, both AFS and Sprite detect failures through timeouts, hence there can be patterns of
failure that would cause a client to be incorrectly sensed as having failed, leaving its file system cache
corrupted until some future attempt to validate cache contents occurs, at which point the problem would
be detected and reported. In Sprite, network partition failures are considered unlikely because the
physical network used at Berkeley is quite robust, and in any case, network partitions cause the client
workstations to initiate a recovery protocol. Information concerning the precise handling of network
partitions, or about methods for replicating AFS servers, was not available to the author at the time of this

Kenneth P. Birman - Building Secure and Reliable Network Applications136

136

writing. XFS is based on a failure model similar to that of AFS and Sprite, in which crash-failures are
anticipated and dealt with in the basic system architecture, but partitioning failures that result in the
misdiagnosis of apparent crash failures is not an anticipated mode of failure.

Coda and Ficus treat partitioning as part of their normal mode of operation, dealing with
partitioning failures (or client and server failures) using the model of independent concurrent operation
and subsequent state merge that was presented earlier. Such approaches clearly trade higher availability
for a more complex merge protocol and greater sophistications within the applications themselves.

7.5 Distributed Database Systems

Distributed database systems represent the other very large use of client-server architectures in distributed
systems. Unlike the case of distributed file systems, however, database technologies use a special
programming model called thetransactional approachand support this through a set of special protocols

The Lotus Notes system is a commercial database product that uses a client-server model to manage
collections of documents, which can draw upon a great variety of applications (word-processing,
spreadsheets, financial analysis packages, and so forth). The system is widely popular because of the
extremely simple sharing model that it supports and its close integration with email and “chat”
facilities, supporting what has become known as a “groupware” collaboration model. The term
computer supported collaborative work,or CSCW, is often used in reference to activities that are
supported by technologies such as Lotus Notes.

Notes is structured as a client-server architecture. The client system is a graphical user interface
that permits the user to visualize information within the document database, create or annotate
documents, “mine” the database for documents satisfying some sort of a query, and to exchange
email or send memos which can contain documents as attachments. A security facility permits the
database to be selectively protected using passwords, so that only designated users will have access
to the documents contained in those parts of the database. If desired, portions of especially sensitive
documents can be encrypted so that even a database administrator would be unable to access them
without the appropriate passwords.

Lotus Notes also provides features forreplication of portions of its database between the client
systems and the server. Such replication permits a user to carry a self-contained copy of the desired
documents (and others to which they are attached) and to update them in a disconnected mode.
Later, when the database server is back in contact with the user, updates are exchanged to bring the
two sets of documents back into agreement. Replication of documents is also possible among Notes
servers within an enterprise, although the Notes user must take steps to limit concurrent editing
when replication is employed. (This is in contrast with Coda, which permits concurrent use of files
and works to automatically merge changes). At the time of this writing, Notes did not support
replication of servers for increased availability, and treated each server as a separate security
domain with its own users and passwords.

Within the terminology of this chapter, Lotus Notes is a form of partially stateful file server,
although presented through a sophisticated object model and with powerful tools oriented towards
cooperative use by members of work groups. Many of the limitations of stateless file servers are
present in Notes, however, such as the need to restrict concurrent updates to documents that have
been replicated. The Notes environment user environment is extremely well engineered and is
largely successful in presenting such limitations and restrictions as features that the skilled Notes
user learns to employ. In effect, by drawing on semantic knowledge of the application, the Lotus
Notes developers were able to work around limitations associated with this style of file server. The
difficulty encountered in distributed file systems is precisely that they lack this sort of semantic
knowledge and are consequently forced to solve such problems in complete generality, leading to
sometimes surprising or non-intuitive behavior that reveals their distributed infrastructure.

Chapter7: Client-Server Computing 137

137

[Gra79, GR93]. The reliability and concurrency semantics of a database are very well understood through
this model, and its efficient implementation is a major topic of research – and an important arena for
commercial competition. For the purposes of this introductory chapter, we will simply survey the main
issues, returning to implementation issues later, in Chapter 21. Consistent with the practical tone of this
text as a whole, we will not engage in a detailed treatment of the theory of serializability or transactional
systems, although this is a rich area of study about which a great deal is known [BHG87].

Transactional systems are based upon a premise that applications can be divided into client
programs and server programs, such that the client programs have minimal interactions with one another.
Such an architecture can be visualized as a set of wheels, with database servers forming the hubs to which
client programs are connected by communication pathways – the spokes. One client program can interact
with multiple database servers, but although the issues this raises are very well understood, such “multi-
database” configurations are relatively uncommon in commercial practice. To good approximation, then,
existing client-server database applications consist of some set of disjoint groups, each group containing a
database server and its associated clients, with no interaction between client programs except through
sharing a database, and with very few, if any, client programs that interact with multiple databases
simultaneously. Moreover, although it is known how to replicate databases for increased availability and
load-balancing [BHG87, GR93], relatively little use is made of this option in existing systems. Thus, the
“hubs” of distributed database systems rarely interact with one another. (We’ll see why this is the case in
Part III of the textbook; ultimately, the issue turns out to be one of performance).

A central premise of the approach is that each interaction by a client with the database server can
be structured as abegin event, followed by a series of database operations (these would normally be
database queries, but we can think of them asreadandupdateoperations and ignore the details), followed
by a commit or abort operation. Such an interaction is called atransaction, and a client program will
typically issue one or more transactions, perhaps interacting with a user or the outside world between the
completion of one transaction and the start of the next. A transactional system should guarantee the
persistence of committed transactions, although we will see that high availability database systems
sometimes weaken this guarantee toboost performance. When a transaction is aborted, on the other hand,
its effects are completely rolled back, as if the transaction had never even been issued.

Transactional client-server systems are stateful: each action by the client assumes that the
database remembers various things about the previous operations done by the same client, such as locking
information that arises out of the database concurrency control model and updates that were previously
performed by the client as part of the same transaction. The clients can be viewed as maintaining
coherent caches of this same information during the period while a transaction is active (not yet
committed).

The essential property of the transactional execution model, which is called theserializability
model, is that it guarantees isolation of concurrent transactions. That is, if transactionsT1 and T2 are
executed concurrently by client processesp and q, the effects will be as ifT1 had been executed entirely
beforeT2, or entirely afterT2 – the database actively prevents them from interfering with one another. The
reasoning underlying this approach is that it will be easier to write database application programs to
assume that the database is idle at the time the program executed. Rather than force the application
programmer to cope with real-world scenarios in which multiple applications simultaneously access
database, the database system is only permitted to interleave operations from multiple transactions if it is
certain that the interleaving will not be noticeable to users. At the same time, the model frees the database
system to schedule operations in a way that keeps the server as busy as possible on behalf of a very large
number of concurrent clients.

Kenneth P. Birman - Building Secure and Reliable Network Applications138

138

T1: R1(X) R1(Y) W1(Z) commit

T2: R2(X) W2(X) W2(Y) commit

DB: R1(X) R2(X) W2(X) R1(Y) W1(Z) W2(Y)

T1: R1(X) R1(Y) W1(Z) commit

T2: R2(X) W2(X) W2(Y) commit

DB: R1(X) R2(X) W2(X) W2(Y) R1(Y) W1(Z)

Figure 7-5: A non-serializable transaction interleaving (left), and one serializable in the order T2, T1 (right). Each
transaction can be understood as a trace that records the actions of a program that operates on the database,
oblivious to other transactions that may be active concurrently. In practice, of course, the operations become known
as the transaction executes, although our example shows the situation at the time these two transactions reach their
commit points. The database is presented with the operations initiated by each transaction, typically one by one, and
schedules them by deciding when to execute each operation. This results in an additional “trace” or log showing the
order in which the database actually performed the operations presented to it. A serializable execution is one that
leaves the database in a state that could have been reached by executing the same transactions one by one, in some
order, and with no concurrency.

Notice that simply running transactions one at a time would achieve the serializability property6.
However, it would also yield poor performance, because each transaction may take a long time to execute.
By running multiple transactions at the same time, and interleaving their operations, a database server can
give greatly improved performance, and system utilization levels will rise substantially, just as a
conventional uniprocessor can benefit from multi-tasking. Even so, database systems sometimes need to
delay one transaction until another completes, particularly when transactions are very long. To maximize
performance, it is common for client-server database systems to require (or at least strongly recommend)
that transactions be designed to be as short as possible. Obviously, not all applications fit these
assumptions, but they match the needs of a great many computing systems.

There are a variety of options for implementing the serializability property. The most common is
to use locking, for example by requiring that a transaction obtain a read-lock on any data item that it will
read, and a write-lock on any data item it will update. Read-locks are normally non-exclusive: multiple
transactions are typically permitted to read the same objects concurrently. Write-locks, however, are
mutually exclusive: only one transaction can hold such a lock at a time. In the most standard locking
protocol, called2-phase locking, transactions retain all of their locks until they commit or abort, and then
release them as a group. It is easy to see that this achieves serializability: if transactionTj reads fromTi,
or updates a variable afterTi does so,Tj must first acquire a lock thatTi will have held exclusively for its
update operation. TransactionTj will therefore have to wait untilTi has committed and will be serialized
after Ti. Notice that the transactions can obtain read locks on the same objects concurrently, but because
read operations commute, they will not affect the serialization order (the problem gets harder if a
transaction may need to “upgrade” some of its read locks to write locks!)

6 An important special case arises in settings where each transaction can be represented as a single operation,
performing a desired task and then committing or aborting and returning a result. Many distributed systems are
said to be “transactional” but in fact operate in this much more restrictive manner. However, even if the
application perceives a transaction as being initiated with a single operation, the database system itself may
execute that transaction as a series of operations. These observations motivate a number of implementation
decisions and optimizations, which we discuss in Chapter 21.

Chapter7: Client-Server Computing 139

139

Concurrency control (and hence locking) mechanisms can be classified asoptimistic or
pessimistic.The locking policy described above is a pessimistic one, because each lock is obtained before
the locked data item is accessed. An optimistic policy is one in which transactions simply assume that
they will be successful in acquiring locks and perform the necessary work in an opportunistic manner. At
commit time, the transaction also verifies that its optimistic assumption was justified (that it got lucky, in
effect), and aborts if it now turns out that some of its lock requests should in fact have delayed the
computation. As one might expect, a high rate of aborts is a risk with optimistic concurrency control
mechanisms, and they can only be used in settings where the granularity of locking is small enough so
that the risk of a real locking conflict between two transactions is actually very low.

The pessimistic aspect of a pessimistic concurrency control scheme reflects the assumption that
there may be frequent conflicts between concurrent transactions. This makes it necessary for a pessimistic
locking scheme to operate in a more conventional manner, by delaying the transaction as each new lock
request arises until that lock has been granted; if some other transaction holds a lock on the same item,
the requesting transaction will now be delayed until the lock holding transaction has committed or
aborted.

Deadlock is an important concern with pessimistic locking protocols. For example, suppose that
Ti obtains a read lock onx and then requests a write lock ony. Simultaneously,Tj obtains a read lock ony
and then requests a write lock onx. Neither transaction can be granted its lock, and in fact one transaction
or the other (or both) must now be aborted. At a minimum, a transaction that has been waiting a very
long time for a lock will normally abort; in more elaborate schemes, an algorithm can obtain locks in a
way that avoids deadlock, or can use an algorithm that explicitly detects deadlocks when they occur and
overcomes them by aborting one of the deadlocked transactions. Deadlock-free concurrency control
policies can also be devised: for example, by arranging that transactions acquire locks in a fixed order, or
by using a very “coarse” locking granularity so that any given transaction requires only one lock. We will
return to this topic, and related issues, in Chapter 21 when we discuss techniques for actually
implementing a transactional system.

Locking is not the only way to implement transactional concurrency control. Other important
techniques include so-called “timestamped” concurrency control algorithms, in which each transaction is
assigned a logical time of execution, and its operations are performed as if they had been issued at the
time given by the timestamp. Timestamped concurrency control is relatively uncommon in the types of
systems that we consider in this text, hence for reasons of brevity we omit any detailed discussion of the
approach. We do note, however, that optimistic timestamped concurrency control mechanisms have been
shown to give good performance in systems where there are few true concurrent accesses to the same data
items, and that pessimistic locking schemes give the best performance in the converse situation, where a
fairly high level of conflicting operations result from concurrent access to a small set of data items.
Additionally, timestamped concurrency control is considered preferable when dealing with transactions
that do a great deal of writing, while locking is considered preferable for transactions that are read-
intensive. Weihl has demonstrated that the two styles of concurrency control cannot be mixed: one cannot
use timestamps for one class of transactions and locks for another, on the same database. However, he
does give a hybrid scheme that combines features of the two approaches and works well in systems with
mixtures of read-intensive and write-intensive transactions.

It is common to summarize the properties of a client-server database system so that the
mnemonic ACID can be used to recall them:

• Atomicity: Each transaction is executed as if it were a single indivisible unit. The termatomicwill be
used throughout this text to refer to operations that have multiple sub-operations but that are
performed in an all-or-nothing manner.

Kenneth P. Birman - Building Secure and Reliable Network Applications140

140

• Concurrency:Transactions are executed so as to maximize concurrency, in this way maximizing the
degrees of freedom available within the server to schedule execution efficiently (for example, by doing
disk I/O in an efficient order).

• Independence:Transactions are designed to execute independently from one another. Each client is
written to execute as if the entire remainder of the system were idle, and the database server itself
prevents concurrent transactions from observing one-another’s intermediate results.

• Durability: The results of committed transactions are persistent.

Notice that each of these properties could be beneficial in some settings but could represent a
disadvantage in others. For example, there are applications in which one wants the client programs to
cooperate explicitly. The ACID properties effectively constrain such programs to interact using the
database as an intermediary. Indeed, the overall model makes sense for many classical database
applications, but is less well suited to message based distributed systems consisting of large numbers of
servers and in which the programs coordinate their actions and cooperate to tolerate failures. All of this
will add up to the perspective that complex distributed systems need a mixture of tools, which should
include database technology but not legislate that databases be used to the exclusion of other technologies.
Later we will have much more to say about this topic.

We turn now to the question raised earlier: the sense in which transactional systems are
“stateful”, and the implications that this has for client-server software architectures.

A client of a transactional system maintains several forms of state during the period that the
transaction executes. These include the transaction id by which operations are identified, the intermediate
results of the transactional operation (for example, values that were read while the transaction was
running, or values that the transaction will write if it commits), and any locks or concurrency control
information that has been acquired while the transaction was active. This state is all “shared” with the
database server, which for its part must keep original values of any data objects updated by non-committed
transactions, keep updates sorted by transactional-id to know which values to commit if the transaction is
successful, and maintain read-lock and write-lock records on behalf of the client, blocking other
transactions that attempt to access the locked data items whileallowing access to the client holding the
locks. The server thus knows which processes are its active clients, and must monitor their health in
order to abort transactions associated with clients that fail before committing (otherwise, a failure could
leave the database in a locked state).

The ability to use commit and abort is extremely valuable in implementing transactional systems
and applications. In addition to the role of these operations in defining the “scope” of a transaction for
purposes of serializability, they also represent a tool that can be used directly by the programmer. For
example, an application be designed to assume that a certain class of operations (such as selling a seat on
an airline) will succeed, and toupdate database records as it runs under this assumption. Such an
algorithm would be optimistic in much the same sense as a concurrency control scheme can be optimistic.
If, for whatever reason, the operation encounters an error condition (no seats available on some flight,
customer credit card refused, etc.) the operation can simply abort and the intermediate actions that were
taken will be erased from the database. Moreover, the serializability model ensures that applications can
be written without attention to one another: transactional serializability ensures that if a transaction would
be correct when executed in isolation, it will also be correct when executed concurrently against a
database server that interleaves operations for increased performance.

The transactional model is also valuable from a reliability perspective. The isolation of
transactions from one-another avoids inconsistencies that might arise if one transaction were to see the
partial results of some other transaction. For example, suppose that transactionT1 increments variablex
by 1 and is executed concurrently with transactionT2, which decrementsx by 1. If T1 and T2 readx

Chapter7: Client-Server Computing 141

141

concurrently they might base their computations on the same initial value ofx. Thewrite operation that
completes last would then erase the other update. Many concurrent systems are prone to bugs because of
this sort of mutual exclusion problem; transactional systems avoid this issue using locking or other
concurrency control mechanisms that would forceT2 to wait until T1 has terminated, or the converse.
Moreover, transactional abort offers a simple way for a server to deal with a client that fails or seems to
hang: it can simply timeout and abort the transaction that the client initiated. (If the client is really alive,
its attempt to commit will eventually fail: transactional systems never guarantee that a commit will be
successful). Similarly, the client is insulated from the effects of server failures: it can modify data on the
server without concern that an inopportune server crash could leave the database in an inconsistent state.

There is, however, a negative side to transactional distributed computing. As we will see in
Chapter 21, transactional programming can be extremely restrictive. The model basically prevents
programs from cooperating as peers in a distributed setting, and although extensions have been proposed
to overcome this limitation, none seems to be fully satisfactory. That is, transactions really work best for
applications in which there is a computational “master” process that issues requests to a set of “slave”
processors on which data is stored. This is, of course, a common model, but it is not the only one. Any
transactional application in which several processes know about each other and execute concurrently is
hard to model in this manner.

Moreover, transactional mechanisms can be costly, particularly when a transaction is executed on
data that has been replicated for high availability or distributed over multiple servers. The locking
mechanisms used to ensure serializability can severely limit concurrency, and it can be very difficult to
deal with transactions that run for long periods of time, since these will often leave the entire server
locked and unable to accept new requests. It can also be very difficult to decide what to do if a transaction
aborts unexpectedly: should the client retry it? Report to the user that it aborted? Decisions such as these
are very difficult, particularly in sophisticated applications in which one is essentially forced to find a way
to “roll forward”.

For all of these reasons, although transactional computing is a powerful and popular tool in
developing reliable distributed software systems, it does not represent a complete model or a complete
solution to all reliability issues that arise.

7.6 Applying Transactions to File Servers

Transactional access to data may seem extremely wellmatched to the issue of file server reliability.
Typically, however, file servers either do not implement transactional functionality, or do so only for the
specific case of database applications. The reasons for this illustrate the sense in which a mechanism such
as transactional data access may be unacceptably constraining in non-transactional settings.

General purpose computing applications make frequent and extensive use of files. They store
parameters in files, search directories for files with special names, store temporary results in files that are
passed from phase to phase of a multiphase computation, implement ad-hoc structures within very large
files, and even use the existence or non-existence of files and the file protection bits as persistent locking
mechanisms, compensating for the lack of locking tools in operating systems such as UNIX.

As we saw earlier, file systems used in support of this model are often designed to be stateless,
particularly in distributed systems. That is, each operation by a client is a complete and self-contained
unit. The file system maintains no memory of actions by clients, and although the clients may cache
information from the file system (such as handles pointing to open file objects), they are designed to
refresh this information if it is found to be stale when referenced. Such an approach has the merit of

Kenneth P. Birman - Building Secure and Reliable Network Applications142

142

extreme simplicity. It is certainly not the only approach: some file systems maintain coherent caches of
file system blocks within client systems, and these are necessarily stateful. Nonetheless, the great majority
of distributed file systems are stateless.

The introduction of transactions on files thus brings with it stateful aspects that are otherwise
avoided, potentially complicating any otherwise simple system architecture. However, transactions pose
more problems than mere complexity. In particular, the locking mechanisms used by transactions are ill-
matched to the pattern of file access seen in general operating systems applications.

Consider the program that was used to edit this manuscript. When started, it displays a list of
files that end with the extension “.doc”, and waited for the author to select the file on which he wished to
work. (The author sometimes chose this moment to get a hot cup of coffee, sharpen a pencil, or play a
quick game of solitaire!). Eventually, the file selected and open, an extended editing session ensued,
perhaps even appearing to last overnight or over a weekend if some distraction prevented the author from
closing the file and exiting the program before leaving for the evening. In a standard transactional model,
each of the read accesses and each of the write accesses would represent an operation associated with the
transaction, and transactional serialization ordering would be achieved by delaying these operations as
needed to ensure that only serializable executions are permitted, for example with locks.

This now creates the prospect of a file system containing directories that are locked against
updates (because some transaction has read the contents), files that are completely untouchable (because
some transaction is updating, or perhaps even deleting the contents), and of long editing sessions that
routinely end in failure (because locks may be broken after long delays, forcing the client program to abort
its transaction and start again from scratch)! It may not seem obvious that such files should pose a
problem, but suppose that a transaction’s behavior was slightly different as a result of seeing these
transient conditions? That transaction would not be correctly serialized if the editing transaction was now
aborted, resulting in some other state. No transaction should have been allowed to see the intermediate
state.

Obviously, this analysis could be criticized as postulating a clumsy application of transactional
serializability to the file system. In practice, one would presumably adapt the model to the semantics of
the application. However, even for the specific case of transactional file systems, the experience systems
has been less than convincing. For example, at Xerox the early versions of the “Clearinghouse” software
(a form of file system used for email and other user-profile information) offered a fully transactional
interface. Over time, this was greatly restricted because of the impracticality of transactional concurrency
control in settings that involve large numbers of general-purpose applications.

Moreover many file-based applications lack a practical way to assign a transaction-id to the
logical transaction. As an example, consider a version control software system. Such a system seems well
matched to the transactional model: a user checks out a file, modifies it, and then checks it in; meanwhile,
other users are prevented from doing updates and can only read old copies. Here, however, many
individual programs may operate on the file over the period of the “transaction”. Lacking is any practical
way to associate an identifier with the series of operations. Clearly, the application programs themselves
can do so, but one of the basic principles of reliability is to avoid placing excessive trust in the correctness
of individual applications; in this example, the correctness of the applications would be a key element of
the correctness of the transactional architecture, a very questionable design choice.

On the other hand, transactional file systems offer important benefits. Most often cited among
these are the atomic update properties of a transaction, whereby a set of changes to files are made entirely,
or not at all. This has resulted in proposals for file systems that are transactional in the limited sense of
offering failure atomicity for updates, but without carrying this to the extreme of also providing

Chapter7: Client-Server Computing 143

143

transactional serializability. Hagmann’s use of “group commit” to reimplement the Cedar file system
[Hag87] and IBM’s QuickSilver file system [SW91] are examples of a research efforts that are viewed as
very successful in offering such a compromise. However, transactional atomicity remains uncommon in
the mostly widely used commercial file system products because of the complexity associated with a
stateful file system implementation. The appeal of stateless design, and the inherent reliability associated
with an architecture in which the clients and servers take responsibility only for their own actions and
place limited trust in information that they don’t own directly, continues to rule the marketplace.

The most popular alternative to transactions is the atomic “rename” operation offered by many
commercially standard file systems. For complex objects represented as a single file, or as a rooted graph
of files, an application can atomically update the collection by creating a new root object containing the
modifications, or pointing to modified versions of other files, and then “rename” the result to obtain the
equivalent effect of an atomic commit, with all the updates being installed simultaneously. If a crash
occurs, it suffices to delete the partially modified copy; the original version will not be affected. Despite
having some minor limitations, designers of fairly complex file systems applications have achieved a
considerable degree of reliability using operations such as rename, perhaps together with an “fsync”
operation that forces recentupdates to an object or file out to the persistent disk storage area.

In conclusion, it is tempting to apply stateful mechanisms and even transactional techniques to
file servers. Yet similar results can be obtained, for this particular application, with less costly and
cumbersome solutions. Moreover, the simplicity of a stateless approach has enormous appeal in a world
where there may be very little control over the software that runs on client computers, and in which trust
in the client system will often be misplaced. In light of these considerations, file systems can be expected
remain predominantly stateless even in settings where reliability is paramount.

More generally, this point illustrates an insight to which we will return repeatedly in thisbook.
Reliability is a complex goal and can require a variety of “tools”. While a stateless file system may be
adequately reliable for one use, some other application may find its behavior hopelessly inconsistent and
impossible to work around. A stateful database architecture works wonderfully for database applications,
but turns out to be difficult to adapt to general purpose operating systems applications that have “less
structure”, or that merely have a non-transactional structure. Only a diversity of tools, integrated in an
environment that encourages the user to match the tool to the need, can possibly lead to reliability in the
general sense. No single approach will suffice.

7.7 Message Oriented Middleware
An emerging area of considerable commercial importance,Message Oriented Middlewareis concerned
with extending the client-server paradigm so that clients and servers can be operated asynchronously.
This means, for example, that a client may be able to send requests to a server that is not currently
operational for batch processing later, and that a server may be able to schedule requests from a request
queue without fear of delaying a client application that is waiting for a reply. We discuss “MOMS” later
in this text, in conjunction with other distributed computing paradigms that fall out of the strict,
synchronous-style, client-server architectures that were the focus of this chapter. The interested reader is
refered to Section 11.4.

7.8 Related Topics
The discussion of this chapter has merely touched upon a very active area for both commercial products
and academic research. Although NFS is probably the most widely used distributed file system
technology, other major products are doing well in the field. For example, Transarc’s AFS product (based
on a research system developed originally at Carnegie Mellon University) is widely cited for its advanced
security and scalability features. AFS is often promoted as a secure, “world-wide” file system technology.

Kenneth P. Birman - Building Secure and Reliable Network Applications144

144

Later, when we discuss NFS security, it will become clear that this is potentially a very important property
and represents a serious reliability exposure in distributed computing configurations that useNFS. Locus
Computing Corporation’s “Locus” product has similar capabilities, but is designed for environments with
intermittent connectivity. On the PC side, major file system products are available in Microsoft as part of
its Windows NT server technology, from Banyan, and from Novell.

Stateful database and transactional technologies represent one of the largest existing markets for
distributed computing systems. Major database products include Sybase, Informix and Oracle; all of these
include client-server architectures. There are dozens of less well known but very powerful technologies.
OLTP technologies, which permit transaction operations on files and other special purpose data
structures, are also a major commercial market: well known products include Tuxedo and Encina; and
there are (again) a great many less well known but very successful similar technologies available in this
market.

On the research side of the picture, much activity centers around the technical possibilities
created by ATM communication, with its extremely high bandwidths and low latencies. File systems that
page data over an ATM and that treat the client buffer pools as a large distributed buffering resource
shared by all clients are being developed: such systems gain enormous performance benefits from the
substantial enlargement in the file system buffer pool that results, and at the same time benefit because the
latency incurred when fetching data over the network is orders of magnitude lower than that of fetching
data from a remote disk. Examples of this style of research include the XFS project at Berkeley[ADNP95],
the Global Memory project at University of Washington [FMPK95], and the CRL project at MIT
[JKW95]. Such architectures create interesting reliability and consistency issues closely related to the
technologies will be will be discussing in Part III, and it is likely that for them to succeed, these issues
must be solved using techniques like the ones we present in discussing process group computing systems.

The changing technology picture is indirectly changing the actual workload presented to the
database or file server that resides at the end of the line. One major area of research has concerned the
creation of parallel file servers using arrays of inexpensive disks on which an error correcting code is
employed to achieve a high degree of reliability. Such RAID file servers have high capacity because they
aggregate large numbers of small disks; good data transfer properties, again because they can benefit from
parallelism, and good seek time not because the small disks are especially fast, but rather because load is
shared across them and this reduces the effective length of the I/O request queue to each drive. Research
on striping data across a RAID system to optimize its response time has yielded further performance
improvements.

In the past, file systems and database servers saw a mixed read-write load with a bias towards
read operations, and were organized accordingly. But as the percentage of active data resident in the
buffer pools of clients has risen, the percentage of read requests that actually reach the server has dropped
correspondingly. A modern file system server sees a work load that is heavily biased towards update
traffic. Best known of the work in this area is Rosenblum’s log-structured file system (LFS) [RO91],
developed as part of Ousterhout’s Sprite project at Berkeley. LFS implements an append-only data
structure (a log) which it garbage collects and compacts using background scavenger mechanisms. Fast
indexes permit rapid read access to the file system but, because most of the disk I/O is in the form of
writes to the log, the system gains a tremendous performance boost. Seltzer, studying similar issues in the
context of database systems, showed that similar benefits were possible. One can anticipate that the
technology trends now seen in the broad marketplace will continue to shift basic elements of the low level
file system architecture creating further opportunities for significant improvements in average data access
latencies and in other aspects of client-server performance.

Chapter7: Client-Server Computing 145

145

7.9 Related Readings
The author is not aware of any good general reference on NFS itself, although the standard is available
from Sun Microsystems and is widely supported. NFS performance and access patterns is studied in
[ODHK85] and extended to the Sprite file system in [BHKSO91]. NFS-like file systems supporting
replication include [Sie92, BEM91, LGGS91, LLSG92, KLS85, DEC95]. Topics related to the CMU file
system work that lead to AFS are covered in [Sat89, SNS88, Sch94, BIR85, LABW92, BM90, Spe85,
SHNS85, HKMN87]. Coda is discussed in [KS91, MES95]. RAID is discussed in [PGK88]. Sprite is
discussed in [OCDN88, SM89, NWO87]. Ficus is discussed in [RHRS94], Locus in [WPEK92, HP95].
XFS is discussed in [ADNP95]. Work on global memory is covered in [FMPK95, JKW95]. Database
references for the transactional approach: [Gra79, BHG87, GR93]. Tandem’s system is presented in
[BGH87]. Nomadic transactional systems are covered in [AK93, Ami93]. Transactions on file systems
are discussed in [Hag87, SW91]. Related work is treated in [LCJS87, LS83,MOS82, MES93].

Kenneth P. Birman - Building Secure and Reliable Network Applications146

146

8. Operating System Support for High
Performance Communication
The performance of a communication system is typically measured in terms of the latency and throughput
for typical messages that traverse that system, starting in a source application and ending at a destination
application. Accordingly, these issues have received considerable scrutiny within the operating systems
research community, which has developed a series of innovative proposals for improving performance in
communications-oriented applications. Below, we review some of these proposals.

There are other aspects of communication performance that matter a great deal when building a
reliable distributed application, but that have received considerably lessattention. Prominent among these
are the loss characteristics of the communication subsystem. In typical communications architectures,
messages are generated by a source application which passes them to the operating system. As we saw
early in this textbook, such messages will then travel down some form of protocol stack, eventually
reaching a device driver that arranges for the data to be transmitted on the wire. Remotely, the same
process is repeated.

Such a path offers many opportunities for inefficiency and potential message loss. Frequently,
the layer-to-layer “hand-offs” that occur involve copying the message from one memory region or address
space to another, perhaps with a header prepended or a suffix appended. Each of these copying operations
will be costly (even if other costs such as scheduling are even more costly), and if a layer is overloaded or
is unable to allocate the necessary storage, a message may be lost without warning. Jointly, the
consumption of CPU and memory resources by the communication subsystem can become very heavy
during periods of frequent message transmission and reception, triggering overload and high rates of
message loss. In Chapter 3 we saw that such losses can sometimes become significant. Thus, while we
will be looking at techniques for reducing the amount of copying and the number of cross address space
control transfers needed to perform a communication operation, the reader should also keep in mind that
by reducing copying, these techniques may also be reducing the rate of message loss that occurs in the
protocol stack.

The statistical propertiesof communication channels represent an extremely important area for
future study. Most distributed systems, and particularly the ones intended for critical settings, assume that
communication channels offer identical and independent “quality of service” properties to each packet
transmitted. For example, it is typically implicit in the design of a protocol that if two packets are
transmitted independently, then the observed latency, data throughput and probability of loss, will be
identical. Such assumptions match well with the properties of communications hardware during periods
of light, uniform load, but the layers of software involved in implementing communication stacks and
routing packets through a complex network can seriously distort these underlying properties.

Within the telecommunications community, bandwidth sharing and routing algorithms have been
developed that are fair in the sense of dividing available bandwidth fairly among a set of virtual circuits of
known “expected traffic” levels. But the problem of achieving fairness in a packet switched environment
with varying loads from many sources is much harder and is not at all well understood. One way to think
about this problem is to visualize the operating systems layers through which packets must travel, and the
switching systems used to route packets to their destinations, as a form of “filter” that can distort the
distribution of packets in time and superimpose errors on an initially error-free data stream. Such a
perspective leads to the view that these intermediary software layers introduce noise into the distributions
of inter-message latency and error rates.

Chapter8: Operating System Support for High Performance Communication 147

147

Such a perspective is readily confirmed by experiment. The most widely used distributed
computing environments exhibit highly correlated communication properties: if one packet is delayed, the
next will probably be delayed too. If one packet is dropped in transmission, the odds are that the next will
be as well. As one might expect, however, such problems are a direct consequence of the same memory
constraints and layered architectures that also introduce the large latency and performance overheads that
the techniques presented below are designed to combat. Thus, although the techniques discussed in this
chapter were developed to provide higher performance, and were not specifically intended to improve the
statistical properties of the network, they would in fact be expected to exhibit better statistical behavior
than does the standard distributed systems architecture simply be eliminating layers of software that
introduce delays and packet loss.

8.1 Lightweight RPC

Performance of remote procedure calls has been a major topic of research since RPC programming
environments first became popular. Several approaches to increasing RPC performance have had
particularly significant impact.

The study of RPC performance as a research area surged in 1989 when Schroeder and Burrows
undertook to precisely measure the costs associated with RPC on the Firefly operating system [SB89].
These researchers started by surveying the costs of RPC on a variety of standard platforms. Their results
have subsequently become outdated because of advances in systems and processor speeds, but the finding
that RPC performance varies enormously even in relative terms probably remains true today. In their
study, the range of performance was from 1.1ms to do a null RPC (equivalent to 4,400 instructions) on the
“Cedar” system, highly optimized for the Dorado multi-processor, to 78ms (195,000 instructions) for a
very general version of RPC running on a major vendor’s top of the line platform (at that time). One
interesting finding of this study was that the number of instructions in the RPC code path was often high
(the “average” in the systems they looked at was approximately 6,000 for systems with many limitations
and about 140,000 for the most general RPC systems). Thus faster processors would be expected to have a
big impact on RPC performance, which is one of the reasons that the situation has improved somewhat
since the time of this study.

Using a bus analyzer to pin down costs to the level of individual machine cycles, this effort lead
to a ten-fold performance improvement in the RPC technology under investigation, which was based
originally on the Berkeley UNIX RPC. Among the optimizations that had the biggest impact were the
elimination of copying within the application address space by marshaling data directly into the RPC
packet using an inline compilation technique, and the implementation of an RPC “fast path” that
eliminated all generality in favor of a hand-coded RPC protocol using the fewest instructions possible,
subject to the constraint that the normal O/S protection guarantees would be respected. (It is worthwhile
to note that on PC operating systems, which often lack protection mechanisms and provide applications
with direct access to the I/O devices, even higher performance can often be achieved, but at the cost of
substantially reduced security and hence exposure of the system as a whole to bugs and intrusion by
viruses).

Soon after this work on Firefly RPC was completed, researchers at the University of Washington
became interested in other opportunities to optimize communication paths in modern operating systems.
Lightweight RPC originated with the observation that as computing systems adopt RPC-based
architectures, the use of RPC innon-distributedsettings is rising as rapidly as is RPC over a network.
Unlike a network, RPC in the non-distributed case can accurately sense many kinds of failures and
because the same physical memory is potentially visible to both sender and destination, the use of shared
memory mechanisms represents an appealing option for enhancing performance. Bershad, Anderson and
others set out to optimize this common special case [BALL89].

Kenneth P. Birman - Building Secure and Reliable Network Applications148

148

A shared memory RPC mechanism typically requires that messages be allocated within pages,
starting on page boundaries and with a limit of one message per page. In some cases, the pages used for
message passing are from a special pool of memory maintained by the kernel, in others, no such
restriction applies but there may be other restrictions, such as limits on passing data structures that
contain pointers. When a message is sent, the kernel modifies the page table of the destination to map the
page containing the message into the address space of the destination process. Depending on the operating
system, the page containing the message may be mapped out of the memory of the sender, modified to
point to an empty page, or marked as read-only. In this last approach (where the page is marked as read
only) some systems will trap write-faults and make a private copy if either process attempts a
modification. This method is called “copy on write,” and was first supported in the Mach microkernel
[Ras86].

If one studies the overheads associated with RPC in the local, shared memory case, the cost of
manipulating the page tables of the sender and destination and of context switching between the sending
and receiving processes emerges as a major factor. The University of Washington team focused on this
problem in developing what they called aLightweight Remote Procedure Callfacility (LRPC). In essence,
this approach one reduces time for local RPC both by exploiting shared memory and by avoiding excess
context switches. Specifically, the messages containing the RPC arguments are placed in shared memory,
while the invocation itself is done by changing the current page table and flushing the TLB so that the
destination process is essentially invoked in co-routine style, with the lowest overhead possible given that
virtual memory is in use on the machine. The reply from the destination process is similarly implemented
as a “direct” context switch back to the sender process.

Although LRPC may appear to be as costly as normal RPC in the local case, the approach
actually achieves substantial savings. First, a normal RPC is implemented by having the client program
perform a message send followed by a separate message receive operation, which blocks. Thus, two system
calls occur, with the message itself being copied into the kernel’s data space, or (if shared memory is
exploited) a message descriptor being constructed in the kernel’s data space. Meanwhile, the destination
process will have issued a receive request and would often be in a blocked state. The arrival of the
message makes the destination process runnable, and on a uniprocessor this creates a scheduling decision,
since the sender process is also runnable in the first stage of the algorithm (when it has sent its request
and not yet performed the subsequent receive operation). Thus, although the user might expect the sender
to issue its two system calls and then block, causing the scheduler to run and activate the destination
process, other sequences are possible. If the scheduler runs right after the initial send operation, it could
context switch to the RPC server leaving the client runnable. It is now possible that a context switch back
to the client will occur, and then back to the server again, before the server replies. The same sequence
may then occur when the reply is finally sent.

We thus see that a conventional operating system requires four system calls to implement an
LRPC operation, and that although a minimum of two context switches must occur, it is easily possible for
an additional two context switches to take place, and if the execution of the operating system scheduler
represents a significant cost, the scheduler may run two or more times more than the minimum. All of
these excess operations are potentially costly.

Accordingly, LRPC is implemented using a special system call whereby the client process
combines its send and receive operations into a single request, and the server (which will normally delay
waiting for a new RPC request after replying to the client) issues the reply and subsequent receive as a
single request. Moreover, execution of the scheduler is completely bypassed.

As in the case of RPC, the actual performance figures for LRPC are of limited value because
processor speeds and architectures have been evolving so rapidly. One can get a sense of the improvment

Chapter8: Operating System Support for High Performance Communication 149

149

by looking at the number of instructions required to perform an LRPC. Recall that the Schroeder and
Burrows study had found that thousands of instructions were required to issue an RPC. In contrast, the
LRPC team calculated that only a few hundred instructions are “necessarily” required to perform an
LRPC  a small enough number to make such factors as TLB misses (caused when the hardware cache
associated with the virtual memory mapping system is flushed) rise to have an important impact on
performance. LRPC was, in any case, somewhat more expensive than the theoretical minimum: about
50% slower measured in terms of round-trip latency or instructions executed for a null procedure call.
Nonetheless, this represents a factor of at least five when compared to the performance of typical RPC in
the local case, and ten or more when the approach is compared to the performance of a fairly heavy-
weight vendor supported RPC package.

So dramatic is this effect that some operating systems vendors began to support LRPC
immediately after the work was first reported. Others limited themselves to fine tuning their existing
implementations, or improving the hardware used to connect their processors to the network. At the time
of this writing, RPC performances have improved somewhat but faster processors are no longer bringing
commensurate improvements in RPC performance. Vendors tend to point out that RPC performance, by
itself, is only one of many factors that enter into overall system performance, and that optimizing this one
case to an excessive degree can bring diminishing returns. They also argue for generality even in the
local case, and hence that LRPC is undesirable because it requires a different RPC implementation than
for the remote case and thus increases the complexity of the operating system for a scenario that may not
be as common in commercial computing settings as it seems to be in academic research laboratories.

To some degree, these points are undoubtably valid ones: when an RPC arrives at a server, the
program that will handle it may need to be scheduled, it may experience page faults, buffering and
caching issues can severely impact its performance, and so forth. On the other hand, the performance of a
null RPC or LRPC is entirely a measure of operating system overhead, and hence is “wasted time” by any
reasonable definition. Moreover, the insights gained in LRPC are potentially applicable to other parts of
the operating system: Bershad, for example, on to demonstrate that the same idea can be generalized
using a notion ofthread activationsandcontinuations, with similarly dramatic impact on other aspects of
operating system performance. This work seems not to have impacted the commercial operating systems
community, at least at the time of this writing.

8.2 Fbuf’s and the xKernel Project
During the same period, the University of Arizona, under Larry Peterson, developed a series of innovative
operating system extensions for high performance communication. Most relevant to the topic of this
chapter are the x-Kernel, a stand-alone operating system for developing high speed communications
protocols, and thefbufs architecture [DP93], which is a general purpose technique for optimizing stack-
structured protocols to achieve high performance. Both pieces of work were done out of the context of any
particular operating system, but are potentially applicable to most standard vendor-supported operating
systems.

Kenneth P. Birman - Building Secure and Reliable Network Applications150

150

The x-Kernel [PHMA89] is an operating
system dedicated to the implementation of
network protocols for experimental research on
performance, flow-control, or other issues. The
assumption that x-Kernel applications are purely
communication-oriented greatly simplified the
operating system design, which confines itself to
addressing those issues encountered in the
implementation of protocols, while omitting
support for elaborate virtual memory
mechanisms, special purpose file systems, and
many of the other operating facilities that are
considered mandatory in modern computing
environments.

Recall from the early chapters of this text
that many protocols have a layered structure, with
the different layers having responsibility for
different aspects of the overall communication
abstraction. In x-Kernel, protocols having a

layered structure are represented as a partially ordered graph of modules. The application process
involves a protocol by issuing a procedure call to one of the root nodes in such a graph, and control then
flows down the graph as the message is passed from layer to layer. x-Kernel includes built-in mechanisms
for efficiently representing messages and managing their headers, and for dynamically restructuring the
protocol graph or the route that an individual message will take, depending upon the state of the protocols
involved and the nature of the message. Other x-Kernel features include a thread-based execution model,
memory management tools, and timer mechanisms.

Using the x-Kernel, Peterson implemented several standard RPC and stream protocols,
demonstrating that his architecture was indeed powerful enough to permit a variety of such protocols to
co-exist, and confirming its value as an experimental tool. Layered protocol architectures are often
thought to be inefficient but Peterson suggested a number of design practices that, in his experience,
avoided overhead and permitted highly modular protocol implementations to perform as well as the
original monolithic protocols on which his work was based. (Later, researchers such as Tennenhouse
confirmed both that standard implementations of layered protocols, particularly in the UNIX streams
architecture, have potentially high overheads, but also that appropriate design techniques can be used to
greatly reduce these costs).

Peterson’s interest in layered protocols subsequently lead him to look at performance issues
associated with layered or pipelined architectures, in which modules of a protocol operate in protected
memory regions (Figure 8-1). To a limited degree, systems like UNIX and NT have an architecture such
as this; UNIX streams, for example, are based on a modular architecture that is supported directly within
the kernel. As an example, an incoming message is passed up a stack that starts with the device driver
and then includes each of the streams modules that have been “pushed” onto the streams connection,
terminating finally in a cross-address-space transfer of control to the application program. UNIX
programmers think of such a structure as a form of “pipe” implemented directly in the kernel.
Unfortunately, like a pipe, a stream can involve significant overhead.

module 0 module 1

copy

buffers buffers

Figure 8-1: In a conventional layered architecture, as
messages pass from layer to layer (here shown from left to
right), messages and headers may need to be copied
repeatedly. This contributed to high overhead. In this
illustration, the white and gray buffers are independent
regions in virtual memory.

Chapter8: Operating System Support for High Performance Communication 151

151

Peterson’sfbufs architecture focuses on the handling of memory in pipelined operating systems
contexts such as these. An fbuf is a memory buffer for use by a protocol; it will typically contain a
message or a header for a message. The architecture concerns itself with the issue of mapping such a
buffer into the successive address spaces within which it will be accessed, and with the protection
problems that arise if modules are to be restricted so that they can only operate on data that they “own”.
The basic approach is to cache memory bindings, so that a protocol stack that is used repeatedly can reuse
the same memory mappings for each message in a stream of messages. Ideally, the cost of moving a
packet from one address space to another can be reduced to the flipping of a protection bit in the address
space mappings of the sending and receiving modules (Figure8-2). The method completely eliminates
copying, while retaining a fairly standard operating system structure and protection boundaries.

8.3 Active Messages

At the University of California, Berkeley, and Cornell University, researchers have explored techniques
for fast message passing in parallel computing systems. Culler and von Eicken observed that operating
system overheads are the dominant source of overhead in message-oriented parallel computing systems
[ECGS92, TL93]. Their work resulted in an extremely aggressive attack on communication costs, in
which the application interacts directly with an I/O device and the overhead for sending or receiving a
message can be reduced to as little as a few instructions. The CPU and latency overhead of an operating
system is slashed in this manner, with important impact on the performance of parallel applications.
Moreover, as we will see below, similar ideas can be implemented in general purpose operating systems.

An active messageis a type of message generated within a parallel application that takes
advantage of knowledge that the program running on the destination node of a parallel computer is
precisely the same as the program on the source node to obtain substantial performance enhancements. In
the approach, the sender is able to anticipate much of the work that the destination node would normally
have to do if the source and destination were written to run on general purpose operating systems.
Moreover, because the source and destination are the same program, the compiler can effectively short-
circuit much of the work and overhead associated with mechanisms for general-purpose message
generation and for dealing with heterogeneous architectures. Finally, because the communications
hardware in parallel computers does not lose messages, active messages are designed for a world in which
message loss and processor failure do not occur.

module 0

buffers

module 1

buffers

module 0

buffers

module 1

buffers

Figure 8-2: In Peterson's scheme, the buffers are in fact shared using virtual memory, exploiting protection features
to avoid risk of corruption. To "pass" a buffer, access to it is enabled in the destination address space and
disabled in the sender’s address space. (Above, the white buffers represent real pointers and the gray ones represent
invalid page-table entries pointing to the same memory regions but with access disabled). When the buffer finally
reaches the last module in the pipeline it is freed and reallocated for a new message arriving from the left. Such an
approach reduces the overhead of layering to the costs associated with manipulation of the page table entries
associated with the modules comprising the pipeline.

Kenneth P. Birman - Building Secure and Reliable Network Applications152

152

The basic approach is as follows. The sender of a message generates the message in a format that
is preagreed between the sender and destination. Because the destination is running the same program as
the sender and is running on the same hardware architecture, such a message will be directly interpretable
by the destination without any of the overhead for describing data types and layout that one sees in normal
RPC environments. Moreover, the sender places the address of a handler for this particular class of
message into the header of the message. That is, a program running on machineA places an address of a
handler that resides within machineB directly into the message. On the reception machine, as the
message is copied out of the network interface, its first bytes are already sufficient to transfer control to a
handler compiled specifically to receive messages of this type. This reduces the overhead of
communication from the tens of thousands of instructions common on general purpose machines to as few
as five to ten instructions. In effect, the sender is able to issue a procedure call directly into the code of the
destination process, with most of the overhead being that associated with triggering an interrupt on the
destination machine and with copying data into the network on the sending side and out of the network on
the receiving side. In some situations (for example, when the destination node is idle and waiting for an
incoming request) even the interrupt can be eliminated by having the destination wait in a tight polling
loop.

Obviously, active messages make sense only if a single application is loaded onto multiple nodes
of a parallel computer, such as the CM5 or SP2, and hence has complete trust in those programs and
accurate knowledge of the memory layout of the nodes with which it communicates. In practice, the types
of systems that use the approach normally have identical programs running on each node. One node is
selected as the “master” and controls the computation, while the other nodes, its “slaves”, take actions on
the orders of the master. The actual programming model visible to the user is one in which a sequential
program initiates parallel actions by invoking parallel “operations” or procedures, which have been
programmed to distribute work among the slaves and then to wait for them to finish computing before
taking the next step. This model is naturally matched to active messages, which can now be viewed as
optimizing normal message passing to take advantage of the huge amount of detailed information
available to the system regarding the way that messages will be handled. In these systems, there is no
need for generality, and generality proves to be expensive. Active messages are a general way of

source destination

1240: handlermessage

1240

Figure 8-3: An active message includes the address of the handler to which it should be passed directly in the
message header. In contrast with a traditional message passing architecture, in which such a message would be
copied repeatedly through successively lower layers of the operating system, an active message is copied directly
into the network adapter by the procedure that generates it in the application program, and is effectively
transferred directly to the application-layer handler on the receiving side with no additional copying. Such a “zero
copy” approach reduces communication latencies to a bare minimum and eliminates almost all overhead on the
messages themselves. However, it also requires a high level of mutual trust and knowledge between source and
destination, a condition that is more typical of parallel supercomputingapplications than general distributed
programs.

Chapter8: Operating System Support for High Performance Communication 153

153

optimizing to extract the maximum performance out of the hardware by exploiting this prior knowledge.

Active messages are useful in support of many programming constructs. The approach can be
exploited to build extremely inexpensive RPC interactions, but is also applicable to direct language
support for data replication or parallel algorithms in which data or computation is distributed over the
modes of a parallel processor. Culler and von Eicken have explored a number of such options, and
reported particular success with language-based embedding of active messages within a parallel version of
the C programming language they call “split C”, and in a data-parallel language called ID-90.

8.4 Beyond Active Messages: U-Net
At Cornell University, Von Eicken has continued the work start started in his study of Active Messages,
looking for ways of applying the same optimizations in general purpose operating systems connected to
shared communication devices. U-Net is a communications architecture designed for use within a
standard operating system such as UNIX or NT, and is intended to provide the standard protection
guarantees taken for granted in these sorts of operating systems [EBBV95]. These guarantees are
provided, however, in a way that imposes extremely little overhead relative to the performance that can be
attained in a dedicated application that has direct control over the communications device interface. U-
Net gains this performance using an implementation that is split between traditional software
functionality integrated into the device driver, and non-traditional functionality implemented directly
within the communications controller interfaced to the communications device. Most controllers are
programmable, hence the approach is more general than it may sound, although it should also be
acknowledged that existing systems very rarely reprogram the firmware of device controllers to gain
performance!

master

slaves

Figure 8-4: A typical parallel program employs a sequential master thread of control that initiates parallel actions
on slave processors and waits for them to complete before starting the next computational step. While computing,
the slave nodes may exchange messages, but this too tends to be both regular and predictable. Such applications
match closely with the approach to communication used in Active Messages, which trades generality for low
overhead and simplicity.

Kenneth P. Birman - Building Secure and Reliable Network Applications154

154

The U-Net system starts with an observation we have made repeatedly in prior chapters, namely
that the multiple layers of protocols and operating system software between the application and the
communication wire represent a tremendous barrier to performance, impacting both latency and
throughput. U-Net overcomes these costs by restructuring the core operating system layers that handle
such communication so that channel setup and control functions can operate “out of band”, while the
application interacts directly with the device itself. Such a direct path results in minimal latency for the
transfer of data from source to destination, but raises significant protection concerns: if an application can
interact directly with the device, there is no obvious reason that it will not be able to subvert the interface
to violate the protection on memory controlled by other applications or break into communication
channels that share the device but were established for other purposes.

The U-Net architecture is based on a notion of acommunications segment,which is a region of
memory shared between the device controller and the application program. Each application is assigned a
set of pages within the segment for use in sending and receiving messages, and is prevented from
accessing pages not belong to it. Associated with the application are three queues: one pointing to
received messages, one to outgoing messages, and one to free memory regions. Objects in the
communication segment are of fixed size, simplifying the architecture at the cost of a small amount of
overhead.

Each of these communication structures is bound to a U-Net channel, which is a communication
session for which permissions have been validated, linking a known source to a known destination over an
established ATM communication channel. The application process plays no role in specifying the
hardware communication channels to which its messages will be sent: it is restricted to writing in memory
buffers that have been allocated for its use and updating the send, receive and free queue appropriately.
These restrictions are the basis of the U-Net protection guarantees cited earlier.

a)

b)

node 1

K NI

U

U

U

node 2

KNI

U

U

U

node 1

K

NI

U

U

U

node 2

K

NI

U

U

U

Figure 8-5: In a conventional communications architecture, all messages pass through the kernel before reaching
the I/O device (a), resulting in high overheads. U-Net bypasses the kernel for I/O operations (b), while preserving
a standard protection model.

Chapter8: Operating System Support for High Performance Communication 155

155

U-Net maps the communication segment of a process directly into its address space, pinning the
pages into physical memory and disabling the hardware caching mechanisms so that updates to a segment
will be applied directly to that segment. The set of communication segments for all the processes using U-
Net is mapped to be visible to the device controller over the I/O bus of the processor used; the controller
can thus initiate DMA or direct memory transfers in and out of the shared region as needed and without
delaying for any sort of setup. A limitation of this approach is that the I/O bus is a scarce resource shared
by all devices on a system, and the U-Net mapping excludes any other possible mapping for this region.
However, some machines (for example, on the cluster-style multiprocessors discussed in Chapter 24),
there are no other devices contending for this mapping unit, and dedicating it to the use of the
communications subsystem makes perfect sense.

The communications segment is directly monitored by the device controller. U-Net accomplishes
this by reprogramming the device controller, although it is also possible to imagine an implementation in
which a kernel driver would provide this functionality. The controller watches for outgoing messages on
the send queue; if one is present, it immediately sends the message. The delay between when a message is
placed on the send queue and when sending starts is never larger than a few microseconds. Incoming
messages are automatically placed on the receive queue unless the pool of memory is exhausted; should
that occur, any incoming messages are discarded silently. To accomplish this, U-Net need only look at the
first bytes of the incoming message, which give the ATM channel number on which it was transmitted.
These are used to index into a table maintained within the device controller that gives the range of
addresses within which the communications segment can be found, and the head of the receive and free
queues are then located at a fixed offset from the base of the segment. To minimize latency, the addresses
of a few free memory regions are cached in the device controller’s memory

Such an approach may seem complex because of the need to reprogram the device controller. In
fact, however, the concept of a programmable device controller is a very old one (IBM’s channel
architecture for the 370 series of computers already supported a similar “programmable channels”
architecture nearly twenty years ago). Programmability such as this remains fairly common, and device
drivers that download code into controllers are not unheard of today. Thus, although unconventional, the
U-Net approach is not actually “unreasonable”. The style of programming required is similar to that used
when implementing a device driver for use in a conventional operating system..

With this architecture, U-Net achieves impressive application-to-application performance. The
technology easily saturates an ATM interface operating at the OC3 performance level of 155Mbits/second,
and measured end-to-end latencies through a single ATM switch are as low as 26us for a small message.
These performance levels are also reflected in higher level protocols: versions of UDP and TCP have been
layered over U-Net and shown capable of saturating the ATM for packet sizes as low as 1k bytes; similar
performance is achieved with a standard UDP or TCP technology only for very large packets of 8k bytes
or more. Overall, performance of the approach tends to be an order of magnitude or more better than with
a conventional architecture for all metrics not limited by the raw bandwidth of the ATM: throughput for
small packets, latency, and computational overhead of communication. Such results emphasize the
importance of rethinking standard operating system structures in light of the extremely high performance
that modern computing platforms can achieve.

Kenneth P. Birman - Building Secure and Reliable Network Applications156

156

Returning to the point made at the start of this chapter, a technology like U-Net also improves the
statistical properties of the communication channel. There are fewer places at which messages can be
lost, hence reliability increases and, in well designed applications, may approach perfect reliability. The
complexity of the hand-off mechanisms employed as messages pass from application to controller to ATM
and back up to the receiver is greatly reduced, hence the measured latencies are much “tighter” than in a
conventional environment, where dozens of events could contribute towards variation in latency. Overall,
then, U-Net is not just a higher performance communication architecture, but is also one that is more
conducive to the support of extremely reliable distributed software.

8.5 Protocol Compilation Techniques
U-Net seeks to provide very high performance by supporting a standard operating system structure in
which a non-standard I/O path is provided to the application program. A different direction of research,
best known through the results of the SPIN project at University of Washington [BSPS95], is concerned
with building operating systems that are dynamically extensible through application programs coded in a
special type-safe language and linked directly into the operating system at runtime. In effect, such a
technology compiles the protocols used in the application into a form that can be executed close to the
device driver. The approach results in speedups that are impressive by the standards of conventional
operating systems, although less dramatic than those achieved by U-Net.

The key idea in SPIN is to exploit dynamically loadable code modules to place the
communications protocol very close to the wire. The system is based on Modula-3, a powerful modern
programming language similar to C++ or other modular languages, but “type safe”. Among other
guarantees, type safety implies that a SPIN protocol module can be trusted not to corrupt memory or to

I /O bus ATM
controller

Communication
segments

User
processes

ATM

Figure 8-6: U-Net shared memory architecture permits the device controller to directly map a communications
region shared with each user process. The send, receive and free message queues are at known offsets within the
region. The architecture provides strong protection guarantees and yet slashes the latency and CPU overheads
associated with communication. In this approach, the kernel assists in setup of the segments but is not interposed
on the actual I/O path used for communication once the segments are established.

Chapter8: Operating System Support for High Performance Communication 157

157

leak dynamically allocated memory resources. This is in contrast with, for example, the situation for a
streams module, which must be “trusted” to respect such restrictions.

SPIN creates a runtime context within which the programmer can establish communication
connections, allocate and free messages, and schedule lightweight threads. These features are sufficient to
support communications protocols such as the ones that implement typical RPC or streams modules, as
well as for more specialized protocols such as might be used to implement file systems or to maintain
cache consistency. The approach yields latency and throughput improvements of as much as a factor of
two when compared to a conventional user-space implementation of similar functionality. Most of the
benefit is gained by avoiding the need to copy messages across address space boundaries and to cross
protection boundaries when executing the short code segments typical of highly optimized protocols.
Applications of SPIN include support for streams-style extensibility in protocols, but also less traditional
operating systems features such as distributed shared memory and file system paging over an ATM
between the file system buffer pools of different machines.

Perhaps more significant, a SPIN module has control over the conditions under which messages
are dropped because of a lack of resources or time to process them. Such control, lacking in traditional
operating systems, permits an intelligent and controlled degradation if necessary, a marked contrast with
the more conventional situation in which as load gradually increases, a point is reached where the
operating system essentially collapses, losing a high percentage of incoming and outgoing messages, often
without indicating that any error has occurred.

Like U-Net, SPIN illustrates that substantial performance gains in distributed protocol
performance can be achieved by concentrating on the supporting infrastructure. Existing operating
systems remain “single-user” centric in the sense of having been conceived and implemented with
dedicated applications in mind. Although such systems have evolved successfully into platforms capable
of supporting distributed applications, they are far from optimal in terms of overhead imposed on
protocols, data loss characteristics, and length of the I/O path followed by a typical message on its way to
the wire. As work such as this enters the mainstream, significant reliability benefits will spill over to end-
users, who often experience the side-effects of the high latencies and loss rates of current architectures as
sources of unreliability and failure.

8.6 Related Readings
For work on kernel and microkernel architectures for high speed communication: Ameoba [MRTR90,
RST88, RST89]. Chorus [AGHR89, RAAB88a, RAAB88b]. Mach [RAS86]. QNX [Hil92]. Sprite
[OCDN88]. Issues associated with the performance of threads are treated in [ABLL91]. Packet filters
are discussed in the context of Mach in [MRA87]. The classic paper on RPC cost analysis is [SB89], but
see also [CT87]. TCP cost analysis and optimizations are presented in [CJRS89, Jac88, Jac90, KF93,
Jen90]. Lightweight RPC is treated in [BALL89]. Fbufs and the xKernel in [DP83, PHMA89, AP93].
Active Messages are covered in [ECGS92, TL93] and U-Net in [EBBV95]. SPIN is treated in [BSPS95].

Kenneth P. Birman - Building Secure and Reliable Network Applications158

158

Part II: The World Wide Web

This second part of the textbook focuses on the technologies that make up the World Wide Web, which
we take in a general sense that includes internet email and “news” as well as the Mosaic-style of
network document browser that has seized the public attention. Our treatment seeks to be detailed
enough to provide the reader with a good understanding concerning the key components of the
technology base and the manner in which they are implemented, but without going to such an extreme
level of detail as to lose track of our broader agenda, which is to understand how reliable distributed
computing services and tools can be introduced into the sorts of critical applications that may soon be
placed on the Web.

Chapter9: The World Wide Web 159

159

9. The World Wide Web
As recently as1992 or 1993, it was common to read of a coming revolution in communications and
computing technologies. Authors predicted a future information economy, the emergence of digital
libraries and newspapers, the prospects of commerce over the network, and so forth. Yet the press was
also filled with skeptical articles, suggesting that although there might well be a trend towards an
information superhighway, it seemed to lack on-ramps accessible to normal computer users.

In an astonishingly short period of time, this situation has reversed itself. By assembling a
relatively simple client-server application using mature, well-understood technologies, a group of
researchers at CERN and at the National Center for Supercomputing Applications (NCSA) developed
system for downloading and displaying documents over a network. They employed an object-oriented
approach in which their display system could be programmed to display various types of objects: audio,
digitized images, text, hypertext documents represented using the hypertext markup language (a standard
for representing complex documents), and other data types. They agreed upon a simple resource location
scheme, capable of encoding the information needed to locate an object on a server and the protocol with
which it should be accessed. Their display interface integrated these concepts with easily used, powerful,
graphical user interface tools. And suddenly, by pointing and clicking, a completely unsophisticated user
could access a rich collection of data and documents over the internet. Moreover, authoring tools for
hypertext documents already existed, making it surprisingly easy to create elaborate graphics and
sophisticated hypertext materials. By writing simple programs to track network servers, checking for
changed content and following hypertext links, substantial databases of web documents were assembled,
against which sophisticated information retrieval tools could be applied. Overnight, the long predicted
revolution in communications took place.

Two years later, there seems to be no end to the predictions for the potential scope and impact of
the information revolution. One is reminded of the early days of the biotechnology revolution, during
which dozens of companies were launched, fortunes were earned, and the world briefly overlooked the
complexity of the biological world in its unbridled enthusiasm for a new technology. Of course, initial
hopes can be unrealistic. A decade or so later, the biotechnology revolution is beginning to deliver on
some of its initial promise, but the popular press and the individual in the street have long since become
disillusioned.

The biotechnology experience highlights the gap that often forms between the expectations of the
general populace, and the deliverable reality of a technology area. We face a comparable problem in
distributed computing today. On the one hand, the public seems increasingly convinced that the
information society has arrived. Popular expectations for this technology are hugely inflated, and it is
being deployed on a scale and rate that is surely unprecedented in the history of technology. Yet, the
fundamental science underlying web applications is in many ways very limited. The vivid graphics and
ease with which hundreds of thousands of data sources can be accessed obscures more basic technical
limitations, which may prevent the use of the Web for many of the uses that the popular press currently
anticipates.

Kenneth P. Birman - Building Secure and Reliable Network Applications160

160

7

6

9

8

5

4

Cornell Web Proxy
(cached documents)

Local Web Proxy
(cached documents)

Cornell Web
Server

...
...

The network
name service is
structured like
an inverted tree.

cornell.edu

cs.cornell.edu

cafe.org

sf.cafe.org

1
2

3

Web brower’s system
only needs to contact
local name and web
services.

The web operates like a postal service. Computers have “names” and “addresses,” and
communication is by the exchange ofelectronic “letters” (messages) between programs. Individual
systems don’t need to know how to locate all the resources in the world. Instead, many services, like
the name service and web document servers, are structured to pass requests via local
representatives, which forward them to more remote ones, until the desired location or a document
is reached.

For example, to retrieve the web documentwww.cs.cornell.edu/Info/Projects/HORUS, a browser
must first map the name of the web server, www.cs.cornell.edu, to an address. If the address is
unknown locally, the request will be forwarded up to a central name server and then down to one at
Cornell (1-3). The request to get the document itself will often pass through one or more web
“proxies” on its way to the web server itself (4-9). These intermediaries save copies of frequently
used information in short-term memory. Thus, if many documents are fetched from Cornell, the
server address will be remembered by the local name service, and if the same document is fetched
more than once, one of the web proxies will respond rapidly using a saved copy. The termcaching
refers to the hoarding of reused information in this manner.

Our web surfer looks irritated, perhaps because the requested server “is overloaded or not
responding.” This common error message is actually misleading because it can be provoked by
many conditions, some of which don’t involve the server at all. For example, the name service may
have failed or become overloaded, or this may be true of a web proxy , opposed to the Cornell web
server itself. The Internet addresses for any of these may be incorrect, or stale (e.g. if a machine
has been moved). The Internet connections themselves may have failed or become overloaded.

Although caching dramatically speeds response times in network applications, the web does not
track the locations of cached copies of documents, and offers no guarantees that cached documents
will be updated. Thus, a user may sometimes see a stale (outdated) copy of a document. If a
document is complex, a user may even be presented with an inconsistent mixture of stale and up-to-
date information.

With wider use of the web and other distributed computing technologies, critical applications will
require stronger guarantees. Such applications depend upon correct, consistent, secure and rapid
responses. If an application relies on rapidly changing information, stale responses may be
misleading, incorrect, or even dangerous, as in the context of a medical display in a hospital, or the
screen image presented to an air-traffic controller.

One way to address such concerns is to arrange for cached copies of vital information such as
resource addresses, web documents, and other kinds of data to be maintained consistently and
updated promptly. By reliably replicating information, computers can guarantee rapid response to
requests, avoid overloading the network, and avoid “single points of failure”. The same techniques
also offer benefits from scaleable parallelism, where incoming requests are handled cooperatively
by multiple servers in a way that balances load to give better response times.

Chapter9: The World Wide Web 161

161

As we will see below, the basic functionality of the Web can be understood in terms of a large
collection of independently operated servers. A web browser is little more than a graphical interface
capable of issuing remote procedure calls to such a server, or using simple protocols to establish a
connection to a server by which a file can be downloaded. The model is stateless: each request is handled
as a separate interaction, and if a request times out, a browser will simply display an error message. On
the other hand, the simplicity of the underlying model is largely concealed from the user, who has the
experience of a “session” and a strong sense of continuity and consistency when all goes well. For
example, a user who fills in a graphical form seems to be in a dialog with the remote server, although the
server, like an NFS server, would not normally save any meaningful “state” for this dialog.

The reason that this should concern us becomes clear when we consider some of the uses to
which web servers are being put. Commerce over the internet is being aggressively pursued by a diverse
population of companies. Such commerce will someday take many forms, including direct purchases and
sales between companies, and direct sales of products and information to human users. Today, the client
of a web server who purchases a product provides credit card billing information, and trusts the security
mechanisms of the browser and remote servers to protect this data from intruders. But, unlike a situation
in which this information is provided by telephone, the Web is a shared packet forwarding system in
which a number of forms of intrusion are possible. For the human user, interacting with a server over the
Web may seem comparable to interacting to a human agent over a telephone. The better analogy,
however, is to shouting out one’s credit card information in a crowded train station.

The introduction of encryption technologies will soon eliminate the most extreme deficiencies in
this situation. Yet data security alone is just one element of a broader set of requirements. As the reader
should recall from the first chapters of this text, RPC-based systems have the limitation that when a
timeout occurs, it is often impossible for the user to determine if a request has been carried out, and if a
server sends a critical reply just when the network malfunctions, the contents of that reply may be
irretrievably lost. Moreover, there are no standard ways to guarantee that an RPC server will be available
when it is needed, or even to be sure that an RPC server purporting to provide a desired service is in fact a
valid representative of that service. For example, when working over the Web, how can a user convince
him or herself that a remote server offering to sell jewelry at very competitive prices is not in fact
fraudulent? Indeed, how can the user become convinced that the web page for the bank down the street is
in fact a legitimate web page presented by a legitimate server, and not some sort of a fraudulent version
that has been maliciously inserted onto the Web? At the time of this writing, the proposed web security
architectures embody at most partial responses to these sorts of concerns.

Full service banking and investment support over the Web is likely to emerge in the near future.
Moreover, many banks and brokerages are developing web-based investment tools for internal use, in
which remote servers price equities and bonds, provide access to financial strategy information, and
maintain information about overall risk and capital exposure in various markets. Such tools also
potentially expose these organizations to new forms of criminal activity, insider trading and fraud.
Traditionally banks have kept their money in huge safes, buried deep underground. Here, one faces the
prospect of prospect that billions of dollars will be protected primarily by the communications protocols
and security architecture of the Web. We should ask ourselves if these are understood well enough to be
trusted for such a purpose.

Web interfaces are extremely attractive for remote control of devices. How long will it be before
such an interface is used to permit a plant supervisor to control a nuclear power plant from a remote
location, or permit a physician to gain access to patient records or current monitoring status from home?
Indeed, a hospital could potentially place all of its medical records onto web servers, including everything
from online telemetry and patient charts to x-rays, laboratory data, and even billing. But when this
development occurs, how will we know that hackers cannot, also, gain access to these databases, perhaps
even manipulating the care plans for patients?

Kenneth P. Birman - Building Secure and Reliable Network Applications162

162

A trend towards critical dependence on information infrastructure and applications is already
evident within many corporations. There is an increasing momentum behind the idea of developing
“corporate knowledge bases” in which the documentation, strategic reasoning, and even records of key
meetings would be archived for consultation and reuse. It is easy to imagine the use of a web model for
such purposes, and this author is aware of several efforts directed to developing products based on this
concept.

Taking the same idea one step further, the military sees the Web as a model for future
information based conflict management systems. Such systems would gather data from diverse sources,
integrating it and assisting all levels of the military command hierarchy in making coordinated, intelligent
decisions that reflect the rapidly changing battlefield situation and that draw on continuously updated
intelligence and analysis. The outcome of battles may someday depend on the reliability and integrity of
information assets.

Libraries, newspapers, journals and book publishers are increasingly looking to the Web as a new
paradigm for publishing the material they assemble. In this model, a subscriber to a journal orbook
would read it through some form of web interface, being charged either on a per-access basis, or provided
with some form of subscription.

The list goes on. What is striking to this author is the extent to which our society is rushing to
make the transition, placing its most critical activities and valuable resources on the Web. A perception
has been created that to be a viable company in the late 1990’s, it will be necessary to make as much use
of this new technology as possible. Obviously, such a trend presupposes that web servers and interfaces
are reliable enough to safely support the envisioned uses.

Many of the applications cited above have extremely demanding security and privacy
requirements. Several involve situations in which human lives might be at risk if the envisioned Web
application malfunctions by presenting the user with stale or incorrect data; in others, the risk is that great
sums of money could be lost, a business might fail, or a battle lost. Fault-tolerance and guaranteed
availability are likely to matter as much as security: one wants these systems to protect data against
unauthorized access, but also to guarantee rapid and correct access by authorized users.

Today, reliability of the Web is often taken as a synonym fordata security.When this broader
spectrum of potential uses is considered, however, it becomes clear that reliability, consistency,
availability and trustworthiness will be at least as important as data security if critical applications are to
besafelyentrusted to the Web or the Internet. Unfortunately, however, these considerations rarely receive
attention when the decision to move an application to the Web is made. In effect, the enormous
enthusiasm for thepotential information revolution has triggered a great leap of faith that it has already
arrived. And, unfortunately, it already seems to be too late to slow, much less reverse, this trend. Our
only option is to understand how web applications can be made sufficiently reliable to be used safely in the
ways that society now seems certain to employ them.

Unfortunately, this situation seems very likely to deteriorate before any significant level of
awareness that there is even an issue here will be achieved. As is traditionally the case in technology
areas, reliability considerations are distinctly secondary to performance and user-oriented functionality in
the development of web services. If anything, the trend seems to a form of latter-day gold rush, in which
companies are stampeding to be first to introduce the critical servers and services on which web commerce
will depend. Digital cash servers, signature authorities, special purpose web search engines, and services
that map from universal resource names to locations providing those services are a few examples of these
new dependencies; they add to a list that already included such technologies as the routing and data
transport layers of the internet, the domain name service, and the internet address resolution protocol. To

Chapter9: The World Wide Web 163

163

a great degree, these new services are promoted to potential users on the basis of functionality, not
robustness. Indeed, the trend at the time of this writing seems to be to stamp “highly available” or “fault-
tolerant” or more or less any system capable of rebooting itself after a crash. As we have already seen,
recovering from a failure can involve much more than simply restarting the failed service.

The trends are being exacerbated by the need to provide availability for “hot web sites”, which
can easily be swamped by huge volumes of requests from thousands or millions of potential users. To deal
with such problems, web servers are turning to a variety of ad-hoc replication and caching schemes, in
which the document corresponding to a particular web request may be fetched from a location other than
its ostensible “home.” The prospect is thus created of a world within which critical data is entrusted to
web servers which replicate it for improved availability and performance, but without necessarily
providing strong guarantees that the information in question will actually be valid (or detectably stale) at
the time it is accessed. Moreover, standards such as HTTP V1/0 remain extremely vague as to the
conditions under which it is appropriate to cache documents, and when they should be refreshed if they
may have become stale.

Broadly, the picture would seem to reflect two opposing trends. On the one hand, as critical
applications are introduced into the Web, users may begin to depend on the correctness and accuracy of
web servers and resources, along with other elements of the internet infrastructure such as its routing
layers, data transport performance, and so forth. To operate safely, these critical applications will often
require a spectrum of behavioralguarantees.On the other hand, the modern internet offers guarantees in
none of these areas, and the introduction of new forms of web services, many of which rapidly become
indispensable components of the overall infrastructure, is only exacerbating the gap. Recalling our list of
potential uses in commerce, banking, medicine, the military, and others, the potential for very serious
failures becomes apparent. We are moving towards a world in which the electronic equivalents of the
bridges that we traverse may collapse without warning, in which road signs may be out of date or
intentionally wrong, and in which the agents with which we interact over the network may sometimes be
clever frauds controlled by malicious intruders.

As a researcher, one can always adopt a positive attitude towards such a situation, identifying
technical gaps as “research opportunities” or “open questions for future study.” Many of the techniques
presented in this textbook could be applied to web browsers and servers, and doing so would permit those
servers to overcome some (not all!) of the limitations identified above. Yet it seems safe to assume that by
the time this actually occurs, many critical applications will already be operational using technologies that
are only superficially appropriate.

Short of some major societal pressure on the developers and customers for information
technologies, it is very unlikely that the critical web applications of the coming decade will achieve a level
of reliability commensurate with the requirements of the applications. In particular, we seem to lack a
level of societal consciousness of the need for a reliable technical base, and a legal infrastructure that
assigns responsibility for reliability to the developers and deployers of the technology. Lacking both the
pressure to provide reliability and any meaningful notion of accountability, there is very little to motivate
developers to focus seriously on reliability issues. Meanwhile, the prospect of earning huge fortunes
overnight has created a near hysteria to introduce new Web-based solutions in every imaginable setting.

As we noted early in this textbook, society has yet to demand the same level of quality assurance
from the developers of software products and systems as it does from bridge builders. Unfortunately, it
seems that the negative consequences of this relaxed attitude will soon become all too apparent.

Kenneth P. Birman - Building Secure and Reliable Network Applications164

164

9.1 Related Readings
On the Web: [BCLF94, BCLF95, BCGP92, GM95a, GM95b]. There is a large amount of online material
concerning the Web, for example in the archives maintained by Netscape Corporation
[http://www.netscape.com].

Chapter10: The Major Web Technologies 165

165

10. The Major Web Technologies
This chapter briefly reviews the component technologies of the World-Wide-Web [BCGP92, BCLF94]
(but not on some of the associated technologies, such as email and network bulletin boards, which are
considered in Chapter 11). The Web draws on the basic client-server and stream protocols that were
discussed earlier, hence there is a strong sense in which the issue here is how those technologies can be
appliedto a distributed problem, not the development of a new or different technology base. In the case of
the Web, there are three broad technology areas that arise. Aweb browseris a program for interfacing to
a web server. There are various levels of browsers but the most widely used are based on graphical
windowing displays, which permit the display of textual material including sophisticated formatting
directives, graphical images, and implement access through hypertext links on behalf of the user. Web
browser’s also have a notion of a object type, and will run the display program appropriate to a given type
when asked to do so. This permits a user to download and replay a video image file, audio file, or other
forms of sophisticated media. (Fancier display programs typically download access information only, then
launch a viewer of their own that pulls the necessary data and, for example, displays it in real-time).

Web servers and the associated notion of web “proxies” (which are intermediaries that can act as
servers by responding to queries using cached documents) represent the second major category of web
technologies. This is the level at which issues such as coherent replication and caching arise, and in
which the Web authentication mechanisms are currently implemented.

The third major technology area underlying the Web consists of thesearch enginesthat locate
web documents and index them in various ways, implementing query-style access on behalf of a web user.
These search engines have two “sides” to them: a user-interface side, in which they accept queries from a
web user and identify web resources that match the specified request, and a document finding side, which
visits web servers and follows hyperlinks to locate and index new documents. At present, few users think
in terms of search engines as playing a “critical” role in the overall technology area. This could change,
however, to the degree that individuals become dependent upon search engines to track down critical
information and to report it promptly. One can easily imagine a future in which a financial analyst would
become completely reliant upon such interfaces, as might a military mission planner, an air traffic
controller, or a news analyst. If we believe that the Web will have the degree of impact that now seems
plausible, such developments begin to seem very likely.

Looking to the future, these technologies will soon be supplanted by others. Security and
authentication services, provided by various vendors, are emerging to play a key role in establishing
trustworthy links between web users and companies from which they purchase services; these security
features include data encryption, digital signatures with which the identity of a user can be validated, and
tools for performing third-party validation of transactions whereby an intermediary trusted by two parties
mediates a transaction between them. Digital cash and digital banks will surely emerge to play an
important role in any future commercial digital market. Special purpose telecommunications service
providers will offer servers that can be used to purchase telecommunications connections with special
properties for conferences, remote teleaccess to devices, communication lines with guarantees of latency,
throughput, or error rate, and so forth. Web implementations of “auction” facilities will permit the
emergence of commodities markets in which large purchases of commodities can be satisfied through a
process of bidding and bid matching. Completely digital stock exchanges will follow soon after. Thus,
while the early use of the web is primarily focused on a paradigm of remote access and retrieval, the future
of the web will come closer and closer to creating a virtual environment that emulates many of the
physical abstractions on which contemporary society resides, while also introducing new paradigms for
working, social interaction, and commerce. And these new electronic worlds will depend upon a wide
variety of critical services to function correctly and reliably.

Kenneth P. Birman - Building Secure and Reliable Network Applications166

166

10.1 Hyper-Text Markup Language (HTML)
The Hyper-Text Markup Language, or HTML, is a standard for representing textual documents and the
associated formatting information needed to display them. HTML is quite sophisticated, and includes
such information as text formatting attributes (font, color, size, etc.), a means for creating lists, specifying
indentation, and tools for implementing other standard formats. HTML also has conditional mechanisms,
means for displaying data in a concise form that can later be expanded upon request by the user, and so
forth. The standard envision various levels of compliance, and the most appropriate level for use in the
Web has become a significant area of debate within the community. For brevity, however, we do not treat
these issues in the present textbook.

HTML offers ways of naming locations in documents, and for specifying what are called
hypertext linksor meta-links. These links are textual representations of a document, a location in a
document, or a “service” that the reader of a document can access. There are two forms of HTML links:
those representing embedded documents, which are automatically retrieved and displayed when the parent
document is displayed, and conditional links, which are typically shown in the form of some sort of
“button” that the user can select to retrieve the specified object. These buttons can be true buttons, regions
within the document text (typically highlighted in color and underlined), or regions of a graphical image.
This last approach is used to implement touch-sensitive maps and pictures.

10.2 Virtual Reality Markup Language (VRML)
At the time of this writing, a number of proposals have emerged for VRML languages, which undertake to
represent virtual reality “worlds” -- three-dimensional or interactive data structures in which browsing has
much of the look and feed of navigation in the real world. Although there will certainly be a vigorous
debate in this area before standards emerge, it is easy to imagine an evolutionary path whereby interaction
with the Web will become more and more like navigation in a library, a building, a city, or even the
world.

It is entirely likely that by late in the 1990’s, Web users who seek information about hotels in
Paris, France will simply fly there through a virtual reality interface, moving around animated scenes of
Paris and even checking the rooms that they are reserving, all from a workstation or PC. An interactive
agent, or “avatar”, may welcome the visitor and provide information about the hotel, speaking much like
the talking heads already seen on some futuristic television shows. Today, obtaining the same
information involves dealing with flat 2-dimensional Web servers that present HTML documents to their
users, and with flat text-oriented retrieval systems; both are frequently cited as important impediments to
wider use of the Web. Yet, a small number of innovative research groups and companies are already
demonstrating VRML systems and language proposals.

Unfortunately, at the time of this writing the degree of agreement on VRML languages and
interfaces was still inadequate to justify any extended treatment in the text. Thus although the author is
personally convinced that VRML systems may represent the next decisive event in the trend towards
widespread adoption of the Web, there is little more that can be said about these systems except that they
represent an extremely important development that merits close attention.

10.3 Universal Resource Locators (URLs)

When a document contains a hypertext link, that link takes the form of auniversal resource
locator, or URL. A URL specifies the information needed by a web server to track down a specified
document. This typically consists of the protocol used to find that document (i.e. “ftp” or “http”, the
hypertext transfer protocol), the name of the server on which the document resides (i.e.

Chapter10: The Major Web Technologies 167

167

“www.cs.cornell.edu”), an optional internet port number to use when contacting that server (otherwise the
default port number is used), and a path name for the resource in question relative to the default for that
server. The syntax is somewhat peculiar for historical reasons that we will not discuss here.

For example, Cornell’s Horus research project maintains a world-wide-web page with URL
http://www.cs.cornell.edu/Info/Projects/Horus.html, meaning that the hypertext transfer protocol
should be used over the Internet to locate the serverwww.cs.cornell.edu and to connect to it using the
default port number. The documentInfo/Projects/Horus.html can be found there. The extension.html
tells the web browser that this document contains HTML information and should be displayed using the
standardhtml display software. The “://” separator is a form of syntactic convention and has no special
meaning. Variant forms of the URL are also supported; for example, if the protocol and machine name
are omitted, the URL is taken to represent a path. Such a path can be a network path (“//” followed by a
network location), an absolute path (“/” followed by a file name in the local file system), or a relative path
(“a file name which does not start with a “/”, and which is interpreted relative to the directory from which
the browser is running). In some cases a port number is specified after the host name; if it is omitted (as
above), port number 80 is assumed.

Most web users are familiar with the network path form of URL, because this is the form that is
used to retrieve a document from a remote server. Within a document, however, the “relative path”
notation tends to be used heavily, so that if a document and its subdocuments are all copied from one
server to another, the subdocuments can still be found.

10.4 Hyper-Text Transport Protocol (HTTP)
The hypertext transport protocol is one of the standard protocols used to retrieve documents from a web
server [BCLF95]. In current use, http and ftp are by far the most commonly used file transfer protocols,
and are supported by all web browsers of which this author is familiar. In the future, new transfer
protocols implementing special features or exploiting special properties of the retrieved object may be
introduced. HTTP was designed to provide lightness (in the sense of ease of implementation) and speed,
which is clearly necessary in distributed, collaborative, hypermedia applications. However, as the scale of
use of the Web has expanded, and load upon it has grown, it has become clear that HTTP does not really
provide either of these properties. This has resulted in a series of “hacks” that improve performance but
also raise consistency issues, notably through the growing use of Web proxies that cache documents.

Web browsers typically provide extensible interfaces: new types of documents can be introduced,
and new forms of display programs and transfer protocols are therefore needed to retrieve and display
them. This requirement creates a need for flexibility at multiple levels: search, front-end update options,
annotation, and selective retrieval. For this purpose, HTTP supports an extensible set of methods that are
typically accessed through different forms of URL and different document types (extensions like .txt,
.html, etc). The term URI (Universal Resource Indentifier) has become popular to express the idea that
the URL may be a “locator” but may also be a form of “name” that indicates the form of abstract service
that should be consulted to retrieve the desired document. As we will see shortly, this permits an HTTP
server to construct documents upon demand, with content matched to the remote user’s inquiry.

The hypertext transfer protocol itself is implemented using a very simple RPC-style interface, in
which all messages are represented as human-readable ascii strings, although often containing encoded or
even encrypted information. Messages are represented in the same way that internet mail passes data in
messages. This includes text and also a form of encoded text called the Multipurpose Internet Mail
Extensions or MIME (the HTTP version is “MIME-like” in the sense that it extends a normal MIME
scheme with additional forms of encoding). However, HTTP can also be used as a generic protocol for
contacting other sorts of document repositories, including document caches (these are often called

Kenneth P. Birman - Building Secure and Reliable Network Applications168

168

“proxies”), gateways that may impose some form of firewall between the user and the outside world, and
other servers that handle such protocols as Gopher, FTP, NNTP, SMTP, and WAIS. When this feature is
used, the HTTP client is expected to understand the form of data available from the protocol it employs
and to implement the necessary mechanisms to convert the resulting data into a displayable form and to
display it to the user.

In the normal case, when HTTP is used to communicate with a web server, the protocol employs
a client-server style of request-response, operating over a TCP connection that the client makes to the
server and later breaks after its request has been satisfied. Each request takes the form of a request
method or “command”, a URI, a protocol version identifier, and a MIME-like message containing special
parameters to the request server. These may include information about the client, keys or other proofs of
authorization, arguments that modify the way the request will be performed, and so forth. The server
responds with a status line that gives the message’s protocol version, and outcome code (success or one of
a set of standard error codes), and then a MIME-like message containing the “content” associated with the
reply. In normal use the client sends a single request over a single connection, and receives a single
response back from the server. More complicated situations can arise if a client interacts with an HTTP
server over a connection that passes through proxies which can cache replies, gateways, or other
intermediaries; we return to these issues in Section 10.7.

HTTP messages can be compressed, typically using the UNIX compression tools “gzip” or
“compress”. Decompression is done in the browser upon receipt of a MIME-like message indicating that
the body type has compressed content.

The HTTP commands consist of the following:

• Get. The get command is used to retrieve a document from a web server. Normally, the
document URL is provided as an argument to the command, and the document itself is returned to the
server in its response message. Thus, the command “GET //www.cs.cornell.edu/Info.html HTTP/1.0”

browser

proxy server

Figure 10-1: Components of a typical Web application. The user interacts with a graphical browser, which
displays HTML documents and other graphical objects and issues HTTP commands to the servers on which objects
needed by the user are stored. A proxy may be used to cache responses. Historically, HTTP applications have not
fully specified what is or is not a “cacheable” response, hence the use of this feature varies depending upon the
origin of the proxy. Individual browsers may be capable of specialized display behaviors, such as rasterized
display of graphical images or execution of pseudo-code programs written in languages such as Java or Visual
Basic. Although not shown above, there may be more than one level of proxy between the browser and server, and
requests may “tunnel” through one or more firewalls before reaching the server. Moreover, messages passing
over the Internet are relatively insecure and could be intercepted, read, and even modified on the path in either
direction, if a Web security architecture is not employed.

Chapter10: The Major Web Technologies 169

169

could be used to request that the document “Info.html” be retrieved from “www.cs.cornell.edu”,
compressed and encoded into a MIME-like object, and returned to the requesting client. The origin of the
resource is included but does not preclude caching: if a proxy sees this request it may be able to satisfy it
out of a cache of documents that includes a copy of the Info.html previously retrieved from
www.cs.cornell.edu. In such cases, the client will be completely unaware that the document came from
the proxy and not the server that keeps the original copy.

There are some special cases in which a get command behaves differently. First, there are cases
in which a server should calculate a new HTML document for each request. These are handled by
specifying a URL that identifies a program in a special area on the web server called the cgi-bin area, and
encodes arguments to the program in the pathname suffix (the reader can easily observe this behavior by
looking at the pathname generated when a search request is issued to one of the major web search engines,
such as Lycos or Yahoo). A web server that is asked to retrieve one of these program objects will instead
run the program, using the pathname suffix as an argument, and creating a document as output in a
temporary area which is then transmitted to the client. Many form-fill queries associated with web pages
use this approach, as opposed to the “post” command which transmits arguments in a manner that
requires slightly more sophisticated parsing and hence somewhat more effort on the part of the developer.

A second special case arises if a document has moved; in this case, the get command can send
back a redirection error code to the client that includes the URL of the new location. The browser can
either reissue its request or display a short message indicatingthis document has movedhere. A
conditional form ofget called If-Modified-Sincecan be used to retrieve a resource only if it has changed
since some specified data, and is often used to refresh a cached object: if the object has not changed,
minimal data is moved.

The get operation does not change the state of the server, and (in principle) the server will not
need to retain any memory of the get operations that it has serviced. In practice many servers cheat on the
rules in order to prefetch documents likely to be needed in future get operations, and some servers keep
detailed statistics about the access patterns of clients. We will return to this issue below; it raises some
fairly serious concerns both about privacy and security of web applications.

• Head. The head command is similar to get, but the server must not send any form of entity
body in the response. The command is typically used to test a hypertext link for validity or to obtain
accessibility and modification information about a document without actually retrieving the document.
Thus, a browser that periodically polls a document for changes could use the head command to check the
modification time of the document and only issue a get command if the document indeed has changed.

• Post. The post command is used to request that the destination server accept the information
included in the request as a new “subordinate” of the resource designated by the path. This command is
used for annotation of existing resources (the client “posts” a “note” on the resource), posting of a
conventional message to an email destination, bulletin board, mailing list, or chat session, providing a
block of data obtained through a form-fill, or extend a database or file through an “append” operation.

This set of commands can be extended by individual servers. For example, a growing number of
servers support a subscription mechanism by which each update to a document will automatically be
transmitted for as long as a connection to the server remains open. This feature is needed by services that
dynamically send updates to displayed documents, for example to provide stock market quotes to a display
that shows the market feed in real-time. However, unless such methods are standardized through the
“Internet Task Force” they may only be supported by individual vendors. Moreover, special purpose
protocols may sometimes make more sense for such purposes: the display program that displays a medical

Kenneth P. Birman - Building Secure and Reliable Network Applications170

170

record could receiveupdates to the EKG part of the displayed “document”, but it could also make a
connection to a specified EKG data source and map the incoming data onto the part of the document that
shows the EKG. The latter approach may make much more sense than one in which updates are received
in HTTP format, particularly for data that is compressed in unusual ways or for which the desired quality
of service of the communication channels involves unusual requirements or a special setup procedure.

Status codes play a potentially active role in HTTP. Thus, in addition to the standard codes
(“created”, “accepted”, “document not found”) there are codes that signify that a document has moved
permanently or temporarily, providing the URL at which it can be found. Such a response is said to
“redirect” the incoming request, but can also be used in load-balancing schemes. For example, certain
heavily used web sites are implemented as clusters of computers. In these cases, an initial request will be
directed to a load balancing server that redirects the request using a “temporary” URL to whichever of the
servers in the cluster is presently least loaded. Because the redirection is temporary, a subsequent request
will go back to the front-end server.

A curious feature of HTTP is that the client process is responsible both for openingand for
closinga separate TCP connection for each command performed on the server. If retrieval of a document
involves multiple get operations, multiple channels will be opened, one for each request. One might
question this choice, since the TCP channel connection protocol represents a source of overhead that could
be avoided if the browser were permitted to maintain connections for longer periods. Such an architecture
is considered inappropriate, however, because of the potentially large number of clients that a server may
be simultaneously handling. Thus, although it might seem that servers could maintain state associated
with its attached channels, in practice is this not done. Even so, the solution can leave the server with a
lot of resources tied up on behalf of channels. In particular, in settings where internet latencies are high
(or when clients fail), servers may be left with a large number of open TCP connections, waiting for the
final close sequence to be executed by the corresponding clients. For a heavily loaded server, these open
connections represent a significant form of overhead.

10.5 Representations of Image Data
Several standards are employed to compress image data for storage in web servers. These includeGIF, an
encoding for single images,MPEG and JPEG, which encode video data consisting of multiple frames,
and a growing number of proprietary protocols. Text documents are normally represented using html, but
postscript is also supported by many browsers, as is the “rich text format” used by Microsoft’s text
processing products.

In the most common usage, GIF files are retrieved using a rasterized method in which a low
quality image can be rapidly displayed and then gradually improved as additional information is retrieved.
The idea is to start by fetching just part of the date (perhaps, every fourth raster of the image), and to
interpolate between the rasters using a standard image interpolation scheme. Having finished this task,
half of the remaining rasters will be fetched and the interpolation recomputing using this additional data;
now, every other raster of the image will be based on valid data. Finally, the last rasters are fetched and
the interpolation becomes unnecessary. The user is given the impression of a photographic image that
gradually swims into focus. Depending on the browser used, this scheme may sweep from top of the
image to bottom as a form of “wipe”, or some sort of randomized scheme may be used. Most browsers
permit the user to interrupt an image transfer before it finishes, so that a user who accidentally starts a
very slow retrieval can work with the retrieved document even before it is fully available.

This type of retrieval is initiated using options to the “get” command, and may require
compatibility between the browser and the server. A less sophisticated browser or server may not support
rasterized retrieval, in which case the rasterization option to “get” will be ignored and the image displayed

Chapter10: The Major Web Technologies 171

171

top to bottom in the standard manner. The most sophisticated browsers now on the market maintain a
type of “device driver” which is used to customize their style of retrieval to the type of web server and
code version number from which a document is retrieved.

In contrast to the approach used for GIF files, MPEG and JPEG files, and documents represented
in formats other than HTML, are normally transferred to a temporary space on the user’s file system, for
display by an appropriate viewer. In these cases, the file object will typically be entirely transferred before
the viewer can be launched, potentially resulting in a long delay before the user is able to see the video
data played back or the contents of the text document.

The web is designed to be extensible. Each type of object is recognized by its file extension, and
each web server is configured withviewerprograms for each of these types. It is expected that new file
types will be introduced over time, and new types of viewers developed to display the corresponding data.
However, although such viewers can often be downloaded over the network, users should be extremely
cautious before doing so. A web document “viewer” is simply a program that the user downloads and
runs, and there is nothing to prevent that program from taking actions that have nothing at all to do with
the ostensible display task. The program could be a form of virus or worm, or designed to damage the
user’s computer system or to retrieve data from it and send it to third parties. For this reason, the major
vendors of web browsers are starting to offer libraries of certified viewers for the more important types of
web data. Their browsers will automatically download these types of viewers, which are in some ways
similar to dynamically loaded executables in a standard operating system. When the user attempts to
configure a new and non-standard viewer, on the other hand, the browser may warn against this or even
refuse to do so.

An important class of viewers are those that use their own data retrieval protocols to fetch
complex image data. These viewers are typically launched using very small, compact image descriptions
that can be understood as domain-specific URL’s. Once started, the viewer uses standard windowing
primitives to discover the location of its display window on the screen, and then begins to retrieve and
display data into this location in real-time. The advantage of such an approach is that it avoids the need
to download the full image object before it can be displayed. Since an image object may be extremely
large, there are enormous advantages to such an approach, and it is likely that this type of specialized
image display will become more and more common in the future.

10.6 Authorization and Privacy Issues
Certain types of resources require that the web browser authenticate its requests by including a special
field, WWW-authorization field with the request. This field providescredentials containing the
authentication information that will be used to decide if permission for the request should be granted.
Credentials are said to be valid within arealm.

The basic HTTP authentication scheme is based on a model in which the user must present a
user-id and password to obtain credentials for access to a realm [BCLF95]. The user-id and password are
transmitted in a slightly obscured but insecure mode: they are translated to a representation called base64,
encoded as an ascii string of digits, and sent over the connection to the server. This approach is only
secure to the degree that the communication channel to the server is secure; if an intruder were to capture
such an authorization request in transit over the network (for example by installing a “packet sniffer” at a
gateway), the same information could later be presented to the same realm and server to authenticate
access by the intruder. Nonetheless, the basic authentication scheme is required from all servers,
including those that can operate with stronger protection. Browsers that communicate with a server for
which stronger security is available will often warn the user before sending a message that performs basic
authentication.

Kenneth P. Birman - Building Secure and Reliable Network Applications172

172

When transferring genuinely sensitive information, web applications typically make use of a
trusted intermediary that provides session keys, using what is called public key encryption to authenticate
channels and then a secret key encryption scheme to protect the data subsequently sent on that channel
(the so-calledsecure sockets layeris described more fully in [IETF95, DB96]). At the core of this
approach is a technology for publishing keys that can be used to encrypt data so that it can be read only by
a process that holds the corresponding private key. The basic idea is that the public keys for services to be
used by a client can be distributed to that client in some way that is hard to disrupt or tamper with, and the
client can than create messages that are illegible to any process other than the desired server. A client
that has created a key pair for itself can similarly publish its public key, in which case it will be able to
receive messages that only it can read. Because public key cryptography is costly, the recommended
approach involves using a public key handshake to generate a secret key with which the data subsequently
exchanged on the channel can be encrypted; in this manner, a faster protocol such as DES or RC4 can be
employed for any large objects that need to be transferred securely.

We will have more to say about security architectures for distributed systems in Chapter 19, and
hence will not discuss any details here.

There are ways to attack this sort of security architecture, but they are potentially difficult to
mount. If an intruder can break or steal the private keys used by the client or server, it may be possible to
misrepresent itself as one or the other and initiate secured transactions at leisure. Another option is to
attack the stored public key information, so as to replace a public key with a falsified one that would
permit a faked version of a server to mimic the real thing. Realistically, however, these would both be a
very difficult types of attack to engineer without some form of insider access to the systems on which the
client and server execute, or an unexpectedly fast way of breaking the cryptographic system used to
implement the session keys. In practice, it is generally believed that although the “basic” authentication
scheme is extremely fragile, the stronger web security architecture should be adequate for most
commercial transactions between individuals,provided however that the computer on which the client
runs can be trusted. Whether the same schemes are adequate to secure transactions between banks, or
military systems that transmit orders to the battlefield, remains an open question.

Web technologies raise a number of privacy issues that go beyond the concerns one may have
about connection security. Many HTTP requests either include sensitive information such as
authentication credentials, or include fields that reveal the identity of the sender, URI’s of documents
being used by the sender, or software version numbers associated with the browser or server. These forms
of information all can be misused. Moreover, many users employ the same password for all their
authenticated actions, hence a single “corrupt” server that relies on the basic authentication scheme might
reveal a password that can be used to attack “secure” servers that use the basic scheme.

Web servers are often considered to be digital analogs of libraries. Within the United States, it is
illegal for a library to maintain records of the documents that a client has examined in the past: only
“current” locations of documents may be maintained in the records. Web servers that keep logs of
accesses may thus be doing something that would be illegal if the server were indeed the legal equivalent
of a library. Nonetheless, it is widely reported that such logging of requests is commonly done, often to
obtain information on typical request patterns. The concern, of course, is that information about the
private reading habits of individuals is concerned to be personal and protected in the United States, and
logs that were gathered for a mundane purpose such as maintaining statistics on frequency of access to
parts of a document base might be abused for some less acceptable purpose.

Access patterns are not the only issue here. Knowledge of a URI for a document within which a
pointer to some other document was stored may be used to gain access to the higher level document, by
“following the link” backwards. This higher level document may, however, be private and sensitive to the

Chapter10: The Major Web Technologies 173

173

user who created it. With information about the version numbers of software on the browser or server, an
intruder may be able to attack one or both using known security holes. A proxy could be subverted and
modified to return incorrect information in response to “get” commands, or to modify data sent in “put”
commands, or to replay requests (even encrypted ones), which will then be performed more than once to
the degree that the server was genuinely stateless. These are just a few of the mostobvious concerns that
one could raise about HTTP authentication and privacy.

These considerations point to the sense in which we tend to casually trust web interfaces in ways
that may be highly inappropriate. In a literal sense, use of the web is a highlypublic activity today: much
of the information passed is basically insecure, and even the protection of passwords may be very limited.
Although security is improving, the stronger security mechanisms are not yet standard. Even if one trusts
the security protocol implemented by the Web, one must also trust many elements of the environment: for
example, one may need to “trust” that the copy of a secure web browser that one has downloaded over the
network wasn’t modified in the network on the way to the user’s machine, or modified on the server itself
from which it was retrieved. How can the user be sure that the browser that he or she is using has not
been changed in a way that will prevent it from following the normal security protocol? These sorts of
questions turn out to lack good answers.

One thinks of the network as anonymous, but user-id information is present in nearly every
message sent over it. Patterns of access can be tracked and intruders may be able to misrepresent a
compromised server as one that is trusted using techniques that are likely to be undetectable to the user.
Yet the familiarity and “comfort” associated with the high quality of graphics and easily used interfaces to
web browsers and key services lulls the user into a sense of trust. Because the system “feels” private,
much like a telephone call to a mail-order sales department, one feels safe in revealing credit card
information or other relatively private data. With the basic authentication scheme of the Web, doing so is
little different from jotting it down on the wall of a telephonebooth. The secure authentication scheme is
considerably better, but is not yet widely standard.

Within the Web community, the general view of these issues is that they represent fairly minor
problems. The Web security architecture (the cryptographic one) is considered reasonably strong, and
although the various dependencies cited above are widely recognized, it is also felt that do not correspond
to gaping exposures or “show stoppers” that could prevent digital commerce on the Web from taking off.
The laws that protect private information are reasonably strong in the United States, and it is assumed that
these offer recourse to users who discover that information about themselves is being gathered or used
inappropriately. Fraud and theft by insiders is generally believed to be a more serious problem, and the
legal system again offers the best recourse to such problems. For these reasons, most members of the Web
community would probably feel more concerned about overload, denial of services due to failure, and
consistency than about security.

From the standpoint of the author of this textbook, though, the bottom line is not yet clear. It
would be nice to believe that security is a problem of the past, but a bit more experience with the current
web security architecture will be needed before one can feel confident that it has no unexpected problems
that clever intruders might be able to exploit. In particular, it is troubling to realize that the current
security architecture of the Web depends upon the integrity of software that will increasingly be running
on unprotected PC platforms, and that may be have been downloaded from unsecured sites on the Web.
While Java and other intepreted languages could reduce this threat, it seems unlikely to go away soon. In
the current environment, it would be surprisingnot to see the emergence of computer viruses that
specialize in capturing private keys and revealing them to external intruders without otherwise damaging
the host system. This sort of consideration (and we will see a related problem when we talk about non-PC
systems that depend upon standard file systems like NFS) can only engender some degree of skepticism
about the near-term prospects for real security in the Web.

Kenneth P. Birman - Building Secure and Reliable Network Applications174

174

10.7 Web Proxy Servers
In Figure 10-1 aserver proxywas shown between the browser and document server. Such proxies are a
common feature of the world wide web, and are widely perceived as critical to the eventual scalability of
the technology. A proxy is any intermediary process through which HTTP operations pass on their way to
the server specified in the document URL. Proxies are permitted to cache documents or responses to
certain categories of requests, and in future systems may even use cached information to dynamically
construct responses on behalf of local users.

This leads to a conceptual structure in which each server can be viewed as surrounded by a ring
of proxies that happen to be caching copies of documents associated with it (Figure 10-2). However,
because the web is designed as a stateless architecture, this structure is not typically represented: one could
deduce a possible structure from the log of requests to the server, but information is not explicitly
maintained in regard to the locations of copies of documents. Thus, a web server would not typically have
a means by which it could inform proxies that have cached documents when the primary copy changes.
Instead, the proxies periodically refresh the documents they manage by using the “head” command to poll
the server for changes, or the conditional “get” command to simply pull an updated copy if one is
available.

In Chapters 13-16
this textbook we will be
looking at techniques for
explicitly managing groups
of processes that need to
coherently replicate data,
such as web documents.
These techniques could be
used to implement coherent
replication within a set of
web proxies, provided that

one is prepared to relax the stateless system architecture normally used between the proxies and the
primary server. Looking to the future, it is likely that web documents will be more and more “dynamic”
in many settings, making such coherency a problem of growing importance to the community selling web-
based information that must be accurate to have its maximum value.

In the most common use of web proxies today, however, their impact is to increase availability at
the cost of visible inconsistency when documents are updated frequently. Such proxies reduce load on the
web server and are often able to respond to requests under conditions when a web server might be
inaccessible, crashed, or overloaded. However, unless a web proxy validates every document before
returning a cached copy of it, which is not a standard behavior, a proxy may provide stale data to its users
for a potentially unbounded period of time, decreasing the perceived reliability of the architecture.
Moreover, even if a proxy does refresh a cached record periodically, the Web potentially permits the use of
multiple layers of proxy between the user and the server that maintains the original document. Thus,
knowing that the local proxy has tried to refresh a document is not necessarily a strong guarantee of
consistency. “Head” operations cannot be cached, hence if this command is used to test for freshness
there is a reasonable guarantee that staleness can be detected. But all types of “get” commands can be
cached, so even if a document is known to be stale, there may be no practical way to force an
uncooperative proxy to pass a request through to the primary server.

web server

proxy proxy proxyproxy

Figure 10-2: Conceptually, the proxies that cache a document form a distributed
"process group", although this group would not typically be explicitly represented,
a consequence of the stateless philosophy used in the overall web architecture.

Chapter10: The Major Web Technologies 175

175

10.8 Java, HotJava, and Agent Based Browsers
One way to think of an HTML document is as a form of program that the browser “executes”
interpretively. Such a perspective makes it natural to take the next step and to consider sending a genuine
program to the browser, which it could execute local to the user. Doing so has significant performance
and flexibility benefits and has emerged as a major area of research. One way to obtain this behavior is to
introduce new application-specific document types. When a user accesses such a document, his or her
browser will download the associated data file and then run a type-specific display program to display its
contents. If the type of the file is a new one not previously known to the browser, it will also download the
necessary display program, which is called an “agent”. But this is clearly a risky proposition: the agent
may well display the downloaded data, but nothing prevents it from also infecting the host machine with
viruses, scanning local files for sensitive data, or damaging information on the host.

Such considerations have resulted in research on new forms ofagent programming languages
[Rei94] that are safe and yet offer the performance and flexibility benefits of downloaded display code.
Best known among the programming languages available for use in programming such display agents are
SUN Microsystem’s HotJava browser, which downloads and runs programs written in an object-oriented
language called Java [GM95a, GM95b]. Other options also exist. The TCL/TK (“Tickle-Toolkit”)
language has become tremendously popular, and can be used to rapidly prototype very sophisticated
display applications Ous94]. Many industry analysis predict that Visual Basic, an extremely popular
programming language for designing interactive PC applications, will rapidly emerge as a major
alternative to Java. Interestingly, all of these areinterpreted languages. The security problems
associated with importing untrustworthy code are increasingly causing companies that see the Web as

browser
server

“get”

document

Java
program server

“type-specific
protocol”

data

HotJava browser

Figure 10-3: In a conventional Web interface, the user's requests result in retrieval of full documents (top). The
browser understands HTML and can display it directly; for other types of documents it will copy the incoming
object to a temporary location and then execute the appropriate display program. If an object type is unknown, the
user may be forced to import potentially untrustworthy programs over the network. When using an agent language
such as Java (bottom), the browser becomes an interpreter for programs that execute directly on the user’s
workstation and that can implement type-specific protocols for retrieving data over the network and displaying it
(right). Not only does the security of the architecture improve (the HotJava browser is designed with many
protection features), but the ability to execute a program on the user’s workstation means that data transmission
from server to client can be optimized in a type-specific way, interact withnon-standard servers (that may use
protocols other than HTTP), and dynamically retrieve data over a period of time (unlike the approach used for
HTML, which involves retrieving a document just once and then breaking the connection).

Kenneth P. Birman - Building Secure and Reliable Network Applications176

176

their future to turn to interpretation as a source of protection against hostile intrusion into a machine on
which a browser is running.

The Java language [GM95b] is designed to resemble C++, but has built-in functions for
interaction with a user through a graphical interface. These are called “applets” and consist of little
graphical application objects that perform such operations as drawing a button or a box, providing a pull-
down menu, and so forth. The language is touted as being robust and secure, although security is used
here in the sense of protection against viruses and other forms of misbehavior by imported applications;
the Java environment provides nothing new for securing the path from the browser to the server, or
authenticating a user to the server.

Interestingly, Java has no functions or procedures, and no notion of data structures. The entire
model is based on a very simple, pure object interface approach: programmers workonly with object
classes and there methods. The argument advanced by the developers of Java is that this “functional”
model is adequate and simple, and by offering only one way to express a given task, the risk of
programmer errors is reduced and the standardization of the resulting applications increased. Other
“missing features” of Java include multiple inheritance (a problemantic aspect of C++), operator
overloading (in Java, an operator means just what it seems to mean; in C++, an operator can mean almost
anything at all), automatic coercions (again, a costly C++ feature that is made explicit and hence
“controlled” in Java), pointers and goto statements. In summary, Java looks somewhat similar to C or
C++, but is in fact an extremely simplified subset, really containing the absolute minimum mechanisms
needed to program sophisticated display applications without getting into trouble or somehow
contaminating the client workstation on which the downloaded applet will execute.

Java is a multithreaded language, offering many of the same benefits as are seen in RPC servers
that uses threads. At the same time, however, Java is designed with features that protect against
concurrency bugs. It supports dynamic memory allocation, but uses a memory management model that
has no pointers or pointer arithmetic, eliminating one of the major sources of bugs for typical C and C++
programs. A background garbage collection facility quietly cleans up unreferenced memory, making
memory leaks less likely than in C or C++ where memory can be “lost” while a program executes. The
language provides extensive compile-time checking, and uses a second round of run-time checking to
prevent Java applications from attempting to introduce viruses onto a host platform or otherwise
misbehaving in ways that could crash the machine. The later can even protect against programs written
to look like legitimate Java “object codes” but that were compiled using “hostile compilers.”

Although “security” of a Java application means “safe against misbehavior by imported agents”,
Java was designed with the secure sockets layer of the Web in mind. The language doesn’t add anything
new here, but does include support for the available network security options such as firewalls and the
security features of HTTP. Individual developers can extend these or use them to develop applications
that are safe against intruders who might try and attack a server or steal data by snooping over a network.
Java can thus claim to have closed the two major security holes in the Web: that of needing to important
untrusted software onto a platform, and that of the connection to the remote server.

The actual role of a Java program is to build a display for the user, perhaps using data solicited
from a Java server, and to interact with the user through potentially sophisticated control logic. Such an
approach can drastically reduce the amount of data that a server must send to its clients. For example, a
medical data server might need to send graphs, charts, images, and several other types of objects to the
user interface. Using an HTML approach, the server would construct the necessary document upon
request and send it to the display agent, which would then interactively solicit subdocuments needed to
form the display. The graphical data would be shipped in the form of GIF, MPEG or JPEG images, and

Chapter10: The Major Web Technologies 177

177

the entire document might require the transmission of megabytes of information from server to display
agent.

By writing a Java program for this purpose, the same interaction could be dramatically
optimized. Unlike conventional browsers, the HotJava browser is designed without any built-in
knowledge of the protocols used to retrieve data over the Internet. Thus, where a standard browser is
essentially an “expert” in displaying HTML documents retrieved using HTTP, HotJava understands both
HTML and HTTP though classes of display and retrieval objects that implement code needed to deal with
retrieving such documents from remote servers and displaying them to the user. Like any browser,
HotJava includes built-in object classes for such standard Internet protocols and objects as HTTP, HTML,
SMTP (the mail transfer protocol), URL’s (making sense of Web addresses), GIF, NNTP (the news
transfer protocol), FTP, and Gopher. However, the user can add new document types and new retrieval
protocols to this list in fact the user can even add new kinds of document addresses, if desired. At
runtime, the HotJava browser will ask the appropriate class of object to resolve the address, fetch the
object, and display it.

Sometimes, the browser may encounter an object type that it doesn’t know how to display. For
example, a downloaded Java applet may contain references to other Java objects with which the browser is
unfamiliar. In this case, the browser will automatically request that the server transfer the Java display
code needed to display the unknown object class. The benefit of this approach is that the server can
potentially maintain a tremendously large database of object types -- in the limit, each object on the server
can be a type of its own, or the server could actually construct a new object type for each request.
Abstractly it would seem that the browser would needed unlimited storage capacity to maintain the
methods needed to display such a huge variety of objects, but in practice, by downloading methods as they
are needed, the actual use of memory in the browser is very limited. Moreover, this model potentially
permits the server to revise or upgrade the display code for an object, perhaps to fix a bug or add a new
feature. The next time that the browser downloads the method, the new functionality will immediately be
available.

The developers of Java talk about the language as supporting “dynamic content” because new
data types and the code needed to display them can be safely imported from a server, at runtime, without
concern about security violations. One could even imagine a type of server that would construct a new
Java display program in response to each incoming request, compile it on the fly, and in this way provide
newcomputedobject classes dynamically. Such an approach offers intriguing new choices in the endless
tension for generality without excess code or loss of performance.

Indeed, Java programs can potentially use non-standard protocols to communicate with the server
from which they retrieve data. Although this feature is somewhat limited by the need for the HotJava
browser to maintain a trusted and secure environment, it still means that Java applications can break away
from the very restricted HTTP protocol, implementing flexible protocols for talking to the server and
hence providing functionality that would be hard to support directly over HTTP.

Returning to our medical example, these features make Java suitable for supporting specialized
display programs that might be designed to compute medical graphics directly from the raw data. The
display objects could also implement special-purpose data compression or decompression algorithms
matched to the particular properties of medical image data. Moreover, the language can potentially
support a much richer style of user interface than would otherwise be practical: if it makes sense to do so,
a display object could permit its users to request that data be rescaled, that a graph be rotated, certain
features be highlighted, and so forth, all in an application-specific manner and without soliciting
additional data from the server. Whatever makes sense to the application developer can be coded by
picking an appropriate document representation and designing an appropriate interactive display program

Kenneth P. Birman - Building Secure and Reliable Network Applications178

178

in the form of an interpreted Java object or objects. This is in contrast to a more standard approach in
which the browser has a very limited set of capabilities and any other behavior that one might desire must
be implemented on the server.

Although Java was initiated lauded for its security features, it wasn’t long before security
concerns about Java surfaced. Many of these may have been corrected by the time thisbook goes to press
in late 1996, but it may be useful to briefly touch upon some examples of these concerns simply to make
the point that reliability doesn’t come easily in distributed systems, and that the complex technologies
(such as Hot Java) that are most promising in the long term can often reduce reliability in the early period
soon after they are introduced. Security threats associated with downloaded agents and other downloaded
software may well become a huge problem in the late 1990’s, because on the one hand we see enormous
enthusiasm for rapid adoption of these technologies in critical settings, and yet on the other hand, the
associated security problems have yet to be fully qualified and are far from having been convincingly
resolved.

The author is aware of at least two issues that arose early in the Java “life cycle”. The first of
these was associated with a feature by which compiled Java code could be downloaded from Java servers
to the Hot Java browser. Although Java is intended primarily for interpretive use, this compilation
technique is important for performance, and in the long term, it is likely that Java will be an increasingly
compiled language. Nonetheless, the very early versions of the object code down-loading mechanism
apparently had a bug that clever hackers could exploit to download malicious software that might cause
damage to client file systems. This problem was apparently fixed soon after it appeared, and before any
major use had been made of it by the community that develops viruses. Yet one can only wonder how
many early versions of the Hot Java browser are still in use, and hence still exposed to this bug.

A second problem was reported in Spring of 1996, and was nicknamed the “Black Widow
applet.” Java Black Widow applets are hostile programs created to infect the systems of users who surf
the Web, using Java as their technology (see http://www.cs.princeton.edu/sip/pub/secure96.html). These
programs are designed to interfere with their host computers, primarily by consuming RAM and CPU
cycles, so as to lower the performance available to the user. Some of these applets also make use of the
compiled code problems of earlier Java servers, and make use of this ability to a third party on the Internet
and, without the PC owner's knowledge, transfer information out of the user's computer by subverting the
HTTP protocol. Even sophisticated firewalls can be penetrated because the attack is launched from within
the Java applet, which operates behind the firewall. Many users are surprised to realize that there maybe
untrustworthy Web sites that could launch an attack on a browser, and indeed many may not even be
aware that they are using a browser that supports the Java technology and hence is at risk. Apparently,
many of these problems will son be fixed in new versions of the browsers offered by major vendors, but
again, one can only wonder how many older and hence flawed browsers will remain in the field, and for
how long.

One can easily imagine a future in which such problems would lead the vendors to create private
networks within which only trusted web sites are available, and to limit the ability of their browser
technologies to download applications from untrusted sites. Without any doubt, such a world would
appeal to the very large network operators, since the user’s PC would effectively be controlled by the
vendor if this were to occur: in effect, the user’s system would be able to download information only from
the network service provider’s servers and those of its affiliates. Yet one must also wonder if the promise
of the Web could really be achieved if it is ultimately controlled by some small number of large
companies. For the Web to emerge as a thriving economic force and a major contributor to the future
information-based economy, it may be that only a free-enterprise model similar to the current Internet will
work. If this is so, we can only hope that the security and reliability concerns that threaten the Internet
today will be overcome to a sufficient degree to enable wider and wider use of the technology by users who
have no particular restrictions imposed upon their actions by their network provider.

Chapter10: The Major Web Technologies 179

179

As an example, there is much current research into what are called “sandbox” technologies,
which consist of profiles that describe the expected behavior of an agent application and that can be
enforced by the browser that downloads it. To the degree that the profile itself is obtained from a
trustworthy source and cannot be compromised or modified while being downloaded (perhaps a risky
assumption!), one could imagine browsers that product themselves against untrusted code by restricting
the actions that the downloaded code can perform. The major vendors would then begin to play the role
of certification authorities, providing (or “signing”) profile information, which is perhaps a more limited
and hence less intrusive activity for them than to completely “control” some form of virtual private
network and to restrict their browsers to operate only within its confines.

10.9 GUI Builders and Other Distributed CASE Tools
Java is currently the best known of the Web agent languages, but in time it may actually not be the most
widely successful. As this book was being written, companies known for their graphical database access
tools were hard at work on converting these into Web agent languages. Thus, languages like Visual Basic
(the most widely used GUI language on PC systems) and Power Builder (a GUI building environment
supporting a number of programming languages) are likely to become available in Java-like forms,
supporting the development of graphical display agents that can be sent by a server to the user’s Web
browser, with the same sorts of advantages offered by Java. Database products like Oracle’s Power
Objects may similarly migrate into network-enabled versions over a short period of time. By offering tight
integration with database systems, these developments are likely to make close coupling of database
servers with the Web much more common than it was during the first few years after the Web
phenomenon began.

Moreover, outright execution of downloaded programs may become more common and less risky
over times. Recall that Java was introduced primarily as a response to the risks of downloading and
executing special purpose display programs for novel object types. If this sort of operation was less of a
risk, there would be substantial advantages to a non-interpretive execution model. In particular, Java is
unlikely to perform as well as compiled code, although it has a big advantage in being portable to a wide
variety of architectures. Yet on relatively standard architectures, such as PC’s, this advantage may not be
all that important, and the performance issue could be critical to the success of the agent language.

Earlier in this text we discussedobject code editingof the sort investigated by Lucco and
Graham. These technologies, as we saw at the time, offer a way to contain the potential actions of a piece
of untrusted software, permitting a platform to import a function or program and yet to limit its actions to
a set of operations that are considered safe. Object code editing systems represent a viable alternative to
the Java model: one could easily imagine using them to download compiled code, encapsulate it to
eliminate the risk of ill effect, and then to directly execute it on the client’s workstation or PC. Object
code editors are potentially language independent: the program downloaded could be written in C, C++,
assembler language, or Basic. Thus they have the benefit of not requiring the user to learn and work with
a new programming language and model, as is the case for Java. It seems likely to this author that object
code editors will emerge to play an increasingly important role in the world of agents in the future,
particularly if signficant use of VRML applications begins to create a demanding performance problem on
the client side.

10.10 Tacoma and the Agent Push Model
The agent languages described above, such as Java, are characterized by supporting a “pull” model of
computation. That is, the client browser pulls the agent software from the server, and executes it locally.
However, there are applications in which one would prefer the converse model: one in which the browser
builds an agent which is then sent to the server to execute remotely. In particular, this would seem to be
the case for applications in which the user needs to browse a very large database but only wishes to see a

Kenneth P. Birman - Building Secure and Reliable Network Applications180

180

small number of selections that satisfy some property. In a conventional “pull” model such a user
ultimately depends on the flexibility of the search interface and capabilities of the web server; to the
degree that the server is limited, the user will need to retrieve entire documents and study them.

Consider a situation in which the user is expected to pay for these documents. For example, the
server might be an image archive, and the user may be purchasing specific images for use in a publication.
The owner’s of the image archive won’t want to release images for casual browsing, because the data is a
valuable resource that they own. Each retrieved image may carry a hefty price and require some form of
contractual agreement. In this case, short of somehow offering low-quality images to the browser and
selling the high quality ones (a viable model only for certain classes of application), there seems to be a
serious obstacle to a Web-based solution.

The TACOMA language, developed by researchers at the University of Tromso and at Cornell
University, works to overcome these problems by offering an agent push model, in which the agent goes to
the data, does some work, and may even migrate from server to server before ultimately returning results
to the end-user [JvRS95a, JvRS95b, JvRS96, AJ95]. TACOMA was originally designed for use in the
StormCast system [Joh94], a weather and environmental monitoring application about which we will hear
more about in future chapters.

The basic TACOMA problem area is easily described. StormCast collects and archives huge
amounts of weather and environmental data in the far north, storing this information at a number of
archive servers. The goal is to be able to use this sort of data to construct special-purpose weather
forecasts, such as might be used by local airports or fishing vessels.

Not suprisingly, the extreme weather conditions of the Arctic make general weather prediction
difficult. To predict the weather in a specific place, such as the fiords near Tromso, one needs to combine
local information about land topography and prevailing winds with remote information. If a storm is
sweeping in from the north, data may be needed from a weather server off shore to the north; if the
current prediction suggests that weather to the south is more important, the predictive software may need
to extract data from an archive to the south. Moreover, predictions may need to draw on satellite data and
periodically computed weather modelling information generated sporadically by supercomputing centers
associated with the Norweigan Meteorology organization. Thus, in the most general case, a local weather
prediction could combine information extracted from dozens of archives containing gigabytes of
potentially relevant information. It is immediately clear that the push model supported by Java-like
languages cannot address this requirement. One simply doesn’t want to move the data to the browser in
this case.

Using TACOMA, the user writes programs in any of a number of supported languages, such as
C, C++ , Tcl or Perl. These programs are considered to “travel” from server to server carrying
“briefcases” in which data is stored. Arriving at a server, a TACOMA agent will meet with an execution
agent that unpacks the program itself and the data from the briefcase, compiles the program, and executes
it. A variety of security mechanisms are employed to limit the ill effects of agents and to avoid the
unintended proliferation of agents within the system. TACOMA itself implements the basic encapsulation
mechanisms needed to implement briefcases (which are basically small movable file systems, containing
data files organized within folders), and provides support for the basic “meet” primitive by which an agent
moves from place to place. Additional servers provide facilities for longer term data storage,
preprogrammed operations such as data retrieval from local databases, and navigation aids for moving
within a collection of multiple servers.

Chapter10: The Major Web Technologies 181

181

Thus, to implement the weather prediction application described above, the application
programmer would develop a set of agent programs. When a weather prediction is requested, these agents
would be dispatched to seek out the relevant data, perhaps even doing computation directly at the remote
data archive, and sending back only the information actually needed by the user. The results of the search
would then be combined and integrated into a single display object on the user’s workstation.

Similarly, to overcome the image retrieval problems we discussed, a TACOMA agent might be
developed that understands the user’s search criteria. The agent could then be sent to the image archive to
search for the desired images, sending back a list of images and their apparent quality relative to the
search criteria.

It can be seen that the push model of agents raises a number of hard problems that don’t arise in
a pull setting: management of the team of agents that are executing on behalf of a given user, termination
of a computation when the user has seen adequate results, garbage collection of intermediate results,
limiting the resources consumed by agents, and even navigating the network. Moreover, it is unlikely that
end-users of a system will want to do any sort of programming, so TACOMA needs to be seen as a sort of
agent middleware, used by an application programmer but hidden from the real user. Nonetheless, it is
also clear that there are important classes of applications that the Java-style of pull agent will not be able
to address, and which a push style of agent could potentially solve. It seems very likely that as the Web
matures, both forms of agent language will be of increasing importance.

10.11 Web Search Engines and Web Crawlers
An important class of web servers are thesearch engines, which permit the user to retrieve URL’s and
short information summaries about documents of potential interest. Such engines typically have two
components. Aweb crawleris a program that hunts for new information on the web and revisits sites for
which information has been cached, revalidating the cache and refreshing information that has changed.
Such programs normally maintain lists of web servers and URL’s. By retrieving the associated
documents, the web crawler extracts keywords and content information for use in resolving queries, and
also obtains new URI’s that can be exploited to find more documents.

A web search engine is a program that performs queries in a database of document descriptions
maintained by a web crawler. Such search engines accept queries in various forms (written language,
often english, is the most popular query language), and then use document selection algorithms that
attempt to match the words used in the query against the contents of the documents. Considerable
sophistication within the search engine is required to ensure that the results returned to the user will be
sensible ones, and to guarantee rapid response. A consequence is that information retrieval, already an
important research topic in computer science today, has become a key to the sucess of the Web.

Future web search programs are likely to offer customizable search criteria by which documents
can be located and presented to the user based on ongoing interests. An investor might have an ongoing
interest in documents that predict future earnings for companies represented in a stock portfolio, a
physician in documents relating to his or her specialization, and a lover of fine wines in documents that
review especially fine wines or in stores offering those wines at particularly good prices. Increasingly,
web users will be offered these sorts of functionality’s by the companies that today offer access to the
internet and its email, chat and bulletin board services.

Kenneth P. Birman - Building Secure and Reliable Network Applications182

182

10.12 Important Web Servers
Although the Web can support a great variety of servers, business or “enterprise” use of the Web is likely
to revolve around a small subset that support a highly standardized commercial environment. Current
thinking is that these would consist of the following:

• Basic Web servers. These would maintain the documents and services around which the enterprise
builds its information model and applications.

• Web commerce or merchant servers. These would play the role of an online bank or checkbook.
Financial transactions that occur over the network (buying and selling of products and services)
would occur through the electronic analog of issuing a quote, responding with a purchase order,
delivery of the product or service, billing, and payment by check or money transfer. Data encryption
technologies and secure electronic transfer for credit-card purchases will be crucial to ensuring that
such commerce servers can be trusted and protected against third-party attack or other forms of
intrusion.

• Web exchange servers. These are servers that integrate functionality associated with such subsystems
as electronic mail, fax, chat groups and news groups, and multiplexing communication lines. Many
such servers will also incorporate firewall technologies. Group scheduling, such as has been
popularized by Lotus Notes, may also become a standard feature of such servers.

• Web-oriented database servers. As noted earlier, the early use of the Web has revolved around
databases of HTML documents, but this is not likely to be the case in the long term. Over time,
database servers will be increasingly integrated into the Web model. Indeed, it seems very likely that
just as database and transactional systems are predominent in other client-server applications, they
will ultimately dominate in Web environments.

10.13 Future Challenges
Although the explosive popularity of the Web makes it clear that the existing functionality of the system is
more than adequate to support useful applications, evolution of the broader technology base will also
require further research and development. Some of the major areas for future study include the following:

• Improved GUI builders and browsers.Although the first generation of browsers has already
revolutionized the Web, the second wave of GUI builder technologies promises to open distributed
computing to a vastly larger community. This development could revolutionize computing,
increasing the use of networking by orders of magnitude and tremendously amplifying the existing
trend towards critical dependency upon distributed computing systems.

 An interesting issue concerns the likely reliability impact of the widespread use of GUI builders,
which might be chacterized as the CASE tools of distributed computing. On the positive side, GUI
technologies encourage a tremendous degree of regularity in terms of application structure: every Java
application resembles every other Java application in terms of the basic computing model and the
basic communication model, although this model admits considerable customization. But on the
negative side, the weak intrinsic reliability of many GUI execution models and the consistency issues
cited earlier are likely to become that much more visible as hundreds of thousands of application
developers suddenly become “internet enabled”. If these sorts of problems turn out to have common,
visible consequences, the societal impact over time could be considerable.

 Thus, we see a tradeoff here that may only become more clear with increased experience. The
author’s intuition is that wider use of the Web will create growing pressure to “do something” about
network reliability and security, and that the latter topic is receiving much more seriousattention than
the former. This could make reliability, in the sense of availability, consistency, managability, timely
and guaranteed responsiveness, emerge as one of the major issues of the coming decade. But it is also
possible that 90% of the market will turn out to be disinterested in such issues, with the exception of

Chapter10: The Major Web Technologies 183

183

their need to gain sufficient security to support electronic commerce, and that the vendors will simply
focus on that 90% while largely overlooking the remaining 10%. This could lead us to a world of
secure banking tools imbedded into inconsistent and unreliable application software.

 The danger, of course, is that if we treat reliability issues casually, we may begin to see major events
in which distributed systems unreliability has horrific consequences, in the sense of causing accidents,
endangering health and privacy, bringing down banks, or other similarly frightening outcomes.
Should terrorism ever become a major problem on the network, one could imagine scenarios in which
that 10% exposure could suddenly loom as an immense problem: as discussed in the introduction, we
already face considerable risk through the increasing dependence of our telecommunications systems,
power systems, banking systems and air traffic control systems on the network, and this is
undoubtedly just the beginning of a long term trend.

 If there is light in this particular tunnel, it is that a number of functionality benefits turn out to arise
as “side effects” of the most effective reliability technologies, discussed in Part III of this text. It is
possible that the desire to build better groupware and conferencing systems, better electronic stock
markets and trading systems, and better tools for mundane applications like document handling in
large organizations will drive developers to look more seriously at the same technologies that also
turn out to promote reliability. If this occurs, the knowledge base and tool base for integrating
reliability solutions into GUI environments and elaborate agent programming languages could
expand substantially, making it reliability both easier and more transparent to achieve, and more
widely accessible.

• Universal Resource Names.Universal resource locators suffer from excessive specificity: they tell the
browser precisely where a document can be found. At the same time, they often lack information that
may be needed to determine which version of a document is desired. Future developments will soon
result in the introduction of universal resource names capable of uniquely identifying a document
regardless of where it may be cached, and including additional information to permit a user to
validate its authenticity or to distinguish between versions. Such a universal resource name would
facilitate increased use of caching within web servers and proxies other than the originating server
where the original copy of the document resides. Important issues raised by this direction of research
include the management of consistency in a world of replicated documents that may be extensively
cached.

• Security and Commerce Issues.The basic security architecture of the Web is very limited and rather
trusting of the network. As noted earlier, a number of standards have been proposed in the areas of
web security and digital cash. These proposals remain difficult to evaluate and compare with one
another, and considerable work will be needed before widely acceptable standards are available.
These steps are needed, however, if the web is to become a serious setting for commerce and banking.

• Availability of Critical Web Data. Security is only of the reliability issues raised by the Web.
Another important concern is availability of critical resources, such as medical documents that may
be needed in order to treat patients in a hospital, banking records needed in secure financial
applications, and decision support documents needed for split-second planning in settings such as
battlefields. Current web architectures tend to include single points of failure, such as the web server
responsible for the original copy of a document, and the authentication servers used to establish
secure web connections. When these critical resources are inaccessible or down, critical uses of the
web may be impossible. Thus, technologies permitting critical resources to be replicated for fault-
tolerance and higher availability will be of growing importance as critical applications are shifted to
the Web.

• Consistency and the Web.Mechanisms for caching web documents and replicating critical resources
raise questions about the degree to which a user can trust a document to be a legitimate and current
version of the document that was requested. With existing web architectures, the only way to validate
a document is to connect to its home server and use the “head” command to confirm that it has not

Kenneth P. Birman - Building Secure and Reliable Network Applications184

184

changed since it was created. Moreover, there is no guarantee that as a user retrieves a set of linked
documents, they will not be simultaneously updated on the originating server. Such a situation could
result in a juxtoposition of stale and current documents, yielding a confusing or inconsistent result.
More broadly, we need to understand what it means to say that a document or set of documents are
seen in mutually consistent states, and how this property can be guaranteed by the Web. Where
documents are replicated or cached, the same requirement extends to the replicas. In Chapter 17 we
will consider solutions to these sorts of problems, but their use in the Web remains tentative, and
many issues will require further research, experimentation, and standardization.

10.14 Related Readings
On the Web: [BCLF94, BCLF95, BCGP92]. For Java, [GM95a, GM95b]. For Tacoma, [JvRS95a,
JvRS95b, JvRS96, AJ95]. There is a large amount of online material concerning the Web, for example in
the archives maintained by Netscape Corporation [http://www.netscape.com].

Chapter11: RelatedInternet Technologies 185

185

11. Related Internet Technologies
The Web is just the latest of a series of internet technologies to have gained extremely wide acceptance.
In this chapter we briefly review some of the other important members of this technology family,
including both old technologies such as mail and file transfer and new ones such as high speed message
bus architectures and security firewalls. Details on many of the technologies discussed here can be found
in [COM93].

11.1 File Transfer Tools
The earliest networking technologies were those supporting file transfer in distributed settings. These
typically consist of programs for sending and receiving files, commands for initiating transfers and
managing file transfer “queues” during periods when transfers back up, utilities for administering the
storage areas within which files are placed while a transfer is pending, and policies for assigning
appropriate ownership and access rights to transferred files.

The most common file transfer mechanism in modern computer systems is that associated with
the FTP protocol, which defines a set of standard message formats and request types for navigating in a
file system, searching directories, and moving files. FTP includes a security mechanism based on
password authentication; however, these passwords are transmitted in an insecure way over the network,
exposing them to potential attack by intruders. Many modern systems employ non-reusable passwords for
this reason.

Other well known file transfer protocols include the UNIX-to-UNIX copy program (UUCP), and
the file transfer protocol standardized by the ISO protocol suite. Neither protocol is widely used, however,
and FTP is a defacto standard within the internet.

11.2 Electronic Mail
Electronic mail was the first of the internet applications to gain wide popularity, and remains a dominant
technology at the time of this writing. Mail systems have become steadily easier to use and more
sophisticated over time, and email users are supported by increasingly sophisticated mail reading and
composition tools.

Underlying the email system are a small collection of very simple protocols, of which the Simple
Mail Transfer Protocol, or SMTP, is most widely used and most standard. The architecture of a typical
mailing system is as follows. The user composes a mail message, which is encoded into ascii (perhaps
using a MIME representation) and then stored in a queue of outgoing email messages. Periodically, this
queue is scanned by a mail daemon program, which uses SMTP to actually transmit the message to its
destinations. For each destination, the mail daemon establishes a TCP connection, delivers a series of
email messages, and receives acknowledgments of successful reception after the receivedmail is stored on
the remote incoming mail queue. To determine the location of the daemon that will receive a particular
piece of mail, the DNS for the destination host is queried.

Kenneth P. Birman - Building Secure and Reliable Network Applications186

186

Users who depend upon network mail systems will be aware that the protocol is robust, but not
absolutely reliable. Email may be lost after it has been successfully acknowledged, for example if the
remote machine crashes just after receiving an email. Email may be delivered incorrectly, for example if
the file system of a mail recipient is not accessible at the time the mail arrives and hence forwarding or
routing instructions are not correctly applied. Further, there is the risk that email will be inappropriately
deleted if a crash occurs as the user starts to retrieve it from a mailbox. Thus, although the technology of
email is fairly robust, experienced users learn not to rely upon it in a critical way. To a limited degree, the
“return receipt” mechanisms of modernmailers can overcome these difficulties, but heterogeneity
prevents these from representing a completely satisfactory solution. Similarly, use of the more
sophisticated email mechanisms, such as email with attached files, remains limited by incompatibilities
between the mail reception processes that must interpret the incoming data.

11.3 Network Bulletin Boards (newsgroups)
Network bulletin boards evolved in parallel with the email system, and hence share many of the same
properties. Bulletin boards differ primarily in the way that messages are viewed and the way that they are
distributed.

As most readers will be aware, a bulletin board is typically presented to the user as a set of
articles, which may be related to one-another in what are called “conversations” or “threads”. These are
represented by special fields in the message headers that identify each message uniquely and permit one
message to refer to another. Messages are typically stored in some form of directory structure and the
programs used to view them operate by displaying the contents of the directory and maintaining a simple
database in which the messages each user has read are tracked.

The news distribution protocol, implemented by the NNTP daemon, is simple but highly
effective. It is based on a notion of flooding. Each news message is posted to a news group or groups.
Associated with each news group is a graph representing the connections between machines that wish to
accept copies of postings to the group. To post a message, the user creates it and enqueues it in an
outgoing news area, where the news daemon will eventually find it. The daemon for a given machine will

User
sends
email

spool

local
daemon

remote
daemon

spool

remote
mail

reader

DNS
server

Figure 11-1: Steps in sending an email. The user composes the email and it is stored in a local spool for
transmission by the local mail daemon. The daemon contacts the DNS to find the remote SMTP daemon's address
for the destination machine, then transfers the mail fileand, when an acknowledgment is received, deletes it
locally. On the remote system, incoming mail is delivered to user mailboxes. The protocol is relatively reliable
but can still lose mail if a machine crashes while transferring messages into or out of a spool, or under other
unusual conditions such as when there are problems forwarding an email.

Chapter11: RelatedInternet Technologies 187

187

periodically establish contact with some set of machines “adjacent” to it in the news distribution graph,
exchanging messages that give the current set of available postings and their subjects. If a daemon
connects to an adjacent daemon that has not yet received a copy of some posting, it forwards it over the
link, and vice versa.

This protocol is fairly reliable, but not absolutely so. Similar to the case of email, an ill-timed
crash can cause a machine to lose a copy of a recently received news posting after it has been confirmed,
in which case there may be a gap in the news sequence for the corresponding group unless some other
source happens to offer a copy of the same message on a different connection. Messages that are posted
concurrently may be seen in different orders by different readers, and if a posting does not explicitly list
all of the prior postings on which it is dependent, this can be visible to readers, because their display
programs will not recognize that one message predates another. The display algorithms can also be fooled
into displaying messages out of order by clock synchronization errors, which can erroneously indicate that
one message is earlier than another that it actually follows.

The news protocol
is known to suffer from a
variety of security
problems. It is trivial to
forge a message by simply
constructing what appears
to be a legitimate news
message and placing it in
the reception area used by
the news daemons. Such
messages will be forwarded
even if they misrepresent
the name of the sender, the
originating machine, or
other information. Indeed,
scripts for spamming
newsgroups have become
popular: these permit an
individual to post a single
message to a great number
of newsgroups. To a very
limited degree, the news
distribution protocol has
improved with time to
resist such attacks, but for
a user with even a small

degree of sophistication, the technology is open to abuse.

Thus, while news systems are generally reliable, it would be inappropriate to use them in critical
settings. In any use for which the authenticity of messages is important, the context in which they were
sent is significant, or the guarantee that postings will definitely reach their destinations is required, the
technology is only able to provide partial solutions.

11.4 Message Oriented MiddleWare Systems (MOMS)
Most major distributed systems vendors offer products in what has become known as the “message
oriented middleware” or MOMS market. Typical of these products are Digital Equiment’s MessageQ

User
posts
news

spool

local
daemon

A

B

Figure 11-2: The network news protocol, NNTP, "floods" the network by gossip
between machines that have news articles and machines that have yet to receive
them. In this example, a message posted by a user reaches a forwarding node, A,
which gossips with B by exchanging messages indicating the newsgroups for which
each has recently received new postings. If B has not yet received the posting A
just received, and is interested in the newsgroup, it will pull a copy from A.
Failures of the network or of intermediate forwarding nodes can prevent articles
from reaching their destinations quickly, in which case they will expire and may
never reach some destinations. Thus, the protocol is quite reliable but now
“always” reliable.

Kenneth P. Birman - Building Secure and Reliable Network Applications188

188

product line, IBM’s MQSeries products, and the so-called “asynchronous message agent technology”
available in some object-oriented computing systems. For example, CORBA Event Notification Services
are likely to be positioned asMOMS products.

Broadly, these products fall into two categories. One very important area is concerned with
providing network access tomainframe systems. IBM’sMQSeries product is focused on this problem, as
are perhaps a dozen comparable products from a variety of vendors, although as noted below,MQSeries
can also be useful in other settings. Technologies of this sort typically present the mainframe through a
service interface abstraction that permits the distributed systems application developer to use a client-
server architecture to develop their applications. These architectures are frequently asynchronous in the
sense that the sending of a request to the mainframe system is decoupled from the handling of its reply,
much as if one were sending mail to the mainframe server which will later send mail back containing the
results of some inquiry. The message queueing system lives between the clients and the mainframe
server, accepting the outgoing messages, transmitting them to the mainframe using the protocols
appropriate for the mainframe operating system, arranging for the requests to be executed in a reliable
manner (in some cases, even launching the associated application, if it is not already running), and then
repeating the sequence in the opposite direction when the reply is sent back. Of course, these products are
not confined to the mainframe connectivity problem, and many systems use them as front-ends to
conventional servers running on network nodes or workstations. However, the mainframe connectivity
issue seems to be driving force behind this market.

The second broad category of products uses a similar architecture but is intended more as a high-
level message passing abstraction for direct use in networked applications. In these products, of which
DEC’s MessageQ is perhaps typical, the abstraction presented to the user is of named “mailboxes” to
which messages can be sent by applications on the network, much as user’s send email to one-another.
Unlike email, the messages in question contain binary data, but the idea is very similar. Later, authorized
applications dequeue the incoming messages for processing, sending back replies if desired, or simply
consuming them silently. As one might expect, these products contain extensive support for such options
as priority levels (so that urgent messages can skip ahead of less critical ones), flow control (so that
message queues won’t grow without limit if the consumer process or processes are slow), security, queue
management, load-balancing (when several processes consume from the same queues), data persistance
and fault-tolerance (for long-running applications), etc.

If the model of this second category of message queuing products is that of an email system used
at a program-to-program level, the performance is perhaps closer to that of a special-purpose file system.
Indeed, many of these systems work very much as a file system would work: adding a message to a queue
is done by appending the message to a file representing the queue, and dequeueing a message is done by
reading from the front of the file and freeing the corresponding disk space for reuse.

The growing popularity of message-oriented middleware products is typically due to their relative
ease of use when compared to datagram style message communication. Applications that communicate
using RPC or datagrams need to have the producer and consumer processes running at the same time, and
must engage in a potentially complex binding protocol whereby the consumer or server process registers
itself and the producer or client process locates the server and establishes a connection to it.
Communication is, however, very rapid once this connection establishment phase has been completed. In
contrast, a message-oriented middleware system does not require that the producer and consumer both be
running at the same time, or even that they be knowledgeable of one-another: a producer may not be able
to predict the process that will dequeue and execute its request, and a consumer process may be developed
long before it is known what the various producers of messages it consumes will be. The downside of the
model is that these products can be very slow in comparison to direct point-to-point communication over
the network (perhaps by a factor of hundreds!), and that they can be hard to manage, because of the risk

Chapter11: RelatedInternet Technologies 189

189

that a queue will leak messages and grow very large or that other subtle scheduling effects will cause the
system to become overloaded and to thrash.

There is a good online source of additional information on middleware products, developed by
the “Message Oriented Middleware Association”, or MOMA:

http://www.sbexpos.com/sbexpos/associations/moma/home.html
Information on specific products should be obtained from the corresponding vendors.

11.5 Message Bus Architectures
Starting with the V operating system in 1985 [CZ85] and the Isis “news” application in 1987 [BJ87a], a
number of distributed systems have offered a bulletin board style of communication directly to application
programs; MIT’ Zephyr system followed soon after [DEFJ88]. In this technology, which is variously
called “message bus” communication, “message queues”, “subject-based addressing”, or “process group”
addressing, processes register interest in message subjects bysubscribingto them. The same or other
processes can then send out messages bypublishingthem under one or more subjects. The message bus
system is responsible for matching publisher to subscriber in a way that is efficient and transparent to
both: the publisher is typically unaware of the current set of subscribers (unless it wishes to know) and the
subscriber is typically not aware of the current set of publishers (again, unless it has some reason to ask
for this information).

Message bus architectures are in most respects very similar to network bulletin boards. An
application can subscribe to many subjects, just as a user of a bulletin board system can monitor many
bulletin board topics. Both systems typically support some form of hierarchical name space for subjects,
and both typically allow one message to be sent to multiple subjects. The only significant difference is
that message bus protocols tend to be optimized for high speed, using broadcast hardware if possible, and
typically deliver messages as soon as they reach their destination, through some form ofupcall to the
application process. In contrast, a bulletin board system usually requires a polling interface, in which the
reader checks for new news and is not directly notified at the instant a message arrives.

The usual example of a setting in which a message bus system might be used is that of a financial
trading application or stock exchange. In such systems, the subjects to which the messages are sent are
typically the names of the financial instruments being traded: /equities/ibm, or /bonds/at&t. Depending
on the nature of the message bus, reliability guarantees may be non-existent, weak, or very strong. The V
system’s process group technology illustrates the first approach: an application subscribed by joining a
process group and published by sending to it, with the group name corresponding to the “subject”. V
multicasts to process groups lacked any sort of strong reliability guarantees, hence such an approach
usually will deliver messages but not always. V transmitted these messages using hardware multicast
features of the underlying transport technology, or point-to-point transport if hardware was not available.

The Teknekron Information Bus (TIB) [OPSS93] and Isis Message Distribution System (MDS)
[Gla96] are good examples of modern technologies that support this model with stronger reliability
properties. TIB is extremely popular in support of trading floors, and has had some success in factory
automation environments. Isis is used in similar settings but where reliability is an especially important
attribute: stock exchange systems, critical online control software in factories, and telecommunications
applications.

Teknekron’s TIB architecture is relatively simple, but is still sufficient to provide high
performance, scalability, and some degree of fault-tolerance when publishers fail. In this system,
messages are typically transmitted by the publisher using hardware broadcast, with an overlaid
retransmission mechanism that ensures that messages will be delivered reliably and in the order they were

Kenneth P. Birman - Building Secure and Reliable Network Applications190

190

published provided that the publisher doesn’t fail. Point-to-point communication is used if a subject has
only a small number of subscribers. Much as for a stream protocol, overload or transient communication
problems can cause exceptional conditions in which messages would be lost, but such conditions are
uncommon in the settings where TIB is normally used.

The TIB system provides a failover capability if there are two or more equivalent publishers for a
given class of subjects. In such a configuration, subscribers are initially connected to a primary publisher;
the backup goes through the motions of publishing data but TIB in fact inhibits the transmission of any
data. However, if the primary publisher fails, the TIB system will eventually detect this. Having done so,
the system will automatically reconfigure so that the subscriber will start to receive messages from the
other source. In this manner, TIB is able to guarantee that messages will normally be delivered in the
order they are sent, and will normally not have gaps or out of sequence delivery. These properties can,
however, be violated if the network becomes severely overloaded, a failure occurs on the publisher site, or
the subscriber becomes temporarily partitioned away from the network. In these cases a gap in the
sequence of delivered messages can occur during the period of time required for the “failover” to the
operational server

The Isis Message Distribution System (MDS) is an example of a message bus that provides very
strong reliability properties. This system is implemented using a technology based on reliable process
groups (discussed in Chapters 13-18), in which agreement protocols are used to ensure that messages will
be delivered to all processes that are subscribing to a subject, or to none. The approach also permits the
“active replication” of publishers, so that a backup can provide precisely the same sequence of messages as
the primary. By carefully coordinating the handling of failures, MDS is able to ensure that even if a
failure does occur, the sequence of messages will not be disrupted: all subscribers that remain connected
to the system will see the same messages, in the same order, even if a publisher fails, and this order will
not omit any messages if the backup is publishing the same data as the primary [Gla96].

MDS is implemented over hardware multicast, but uses this feature only for groups with large
fanout; point-to-point communication is employed for data transport when the number of subscribers to a
subject is small, or when the subscribers are not on the same branch of a local area network. The
resulting architecture achieves performance comparable to that of TIB in normal cases, but under
overload, when TIB can potentially lose messages, Isis MDS will typically choke back the publishers and,

subscribersubscribersubscriber subscriber

publisher publisher

Figure 11-3: Message-bus architectures (also known as publish/subscribe systems) originated as an application of
process groups in the V system, and a fault-tolerant version was included in early versions of the Isis Toolkit.
These technologies subsequently became commercially popular, particularly in financial and factory-floor settings.
A benefit of the architecture is that the subscriber doesn’t need to know who will publish on a given subject, or vice-
versa: here, messages on the “white” subject will reach the “white” but not the “gray” subscribers, a set that can
change dynamically and that may grow to include applications not planned at the time the publishers were
developed. A single process can publish upon or subscribe to multiple subjects. This introduces desirable flexibility
in a technology that can also achieve extremely high performance by using hardware multicast or broadcast, as
well as fault-tolerance or consistency guarantees if the technology base is implemented with reliability as a goal
An object-oriented encapsulation of message bus technology is provided as part of CORBA, through its “Event
Notification Service” or ENS. In this example theapplication is divided into publishers and subscribers, but in
practice a single process can play both roles, and can subscribe to many “subjects”. Wide-area extensions
normally mimic the gossip scheme used in support of network bulletin boards.

Chapter11: RelatedInternet Technologies 191

191

if the load becomes extreme, may actually drop slow receivers from the system as a way to catch up.
These different design choices are both considered to represent “reliable” behavior by the vendors of the
two products; clearly, the real issue for any given application will be the degree of match between the
reliability model and the needs of the applications that consume the data. MDS would be preferable in a
system where ordering and guaranteed delivery are very important to the end-user; TIB might be favored
in a setting where continued flow of information is ultimately valued more than the ordering and
reliability properties of the system.

The reader may recall that the CORBA Event Notification Service (ENS) uses a message-bus
architecture. TIB is in fact notable for supporting an object-oriented interface similar to the one required
for implementations of this service. The Isis MDS has been integrated into the Orbix+Isis product, and
hence can be used as an object-oriented CORBA ENS through Orbix [O+I95].

Both systems also provide a form of message spooling and playback facility. In TIB, this takes
the form of a subscriber that spools all messages on specified subjects to disk, replaying them later upon
request. MDS also includes a spooling technology that can store messages for future replay to a process.
The MDS implementation of this playback technology preserves the ordering and reliability attributes of
the basic publication mechanism, and is carefully synchronized with the delivery of new messages so that
a subscriber can obtain a “seamless” playback of spooled messages followed by the immediate delivery of
new messages, in a correct order and without gaps or duplication.

Both the TIB and MDS architectures can be extended to large-scale environments using a
protocol much like the one described in the previous section for network bulletin boards.

11.6 Internet Firewalls and Gateways
Internet firewalls have recently emerged to play a nearly ubiquitous role in internet settings. We discuss
firewalls in more detail in Chapter 19, and consequently limit ourselves to some very brief comments
here.

A firewall is a message filtering system that resides at the perimeter of a distributed system,
where messages enter and leave it from the broader internet. The specific architecture used may be that of
a true packet filter, or one that permits application-level code to examine the incoming and outgoing
packets (so-called “application-level proxy” technology). Although firewalls are not normally considered
to be distributed programs, if a network has multiple access points, the firewall will be instantiated
separately at each. Considered as a set, the collection of firewall programs will then be a distributed
system, although the distributed aspect may be implicit.

Firewall programs typically operate by examining each message on the basis of source,
destination, and authentication information (if enabled). Messages are permitted to pass through only if
they satisfy some criteria controlled by the system administrator or, in the case of an application-level
proxy technology, if the application programs that compose the firewall consider the message to be
acceptable. In this manner, a network can be made porous for network bulletin board and email
messages, but opaque to incoming FTP and remote login attempts, can be made to accept only packets
digitally signed by an acceptable user or originating machine, etc.

A gatewayis a program placed outside of a protected domain that offers users a limited set of
options for accessing information protected within the domain. A gateway may permit selected users to
establish login sessions with the protected domain, for example, but only after challenging the user to

Kenneth P. Birman - Building Secure and Reliable Network Applications192

192

provide a one-time password or some other form of authentication. Gateways often provide mechanisms
for file transfer as well, again requiring authentication before transfers are permitted.

For typical internet sites, the combination of firewalls and gateways provides the only real
security. Although passwords are still employed within the firewall, such systems may be open to other
forms of attack if an intruder manages to breach the firewall or to gain access permission from the
gateway. Nonetheless, these represent relatively strong barriers to intrusion. Whereas systems that lack
gateways and firewalls report frequent penetrations by hackers and other agents arriving over the network,
firewalls and gateways considerably raise the barrier to such attacks. They do not create a completely
secure environment, but they do offer an inexpensive way to repel all but the most sophisticated attackers.

11.7 Related Readings
Most internet technologies are documented through the so-calledRequest for Comments(RFC) reports,
which are archived at various sites within the network, notably on a server maintained by SRI
Corporation. The message bus technologies cited earlier were [CZ85, BJ87a, DEFJ88,OPSS93, Gla96].

Chapter11: RelatedInternet Technologies 193

193

Part III: Reliable Distributed Computing

In this third and final part of the textbook, we ask how distributed computing systems can be made
reliable, motivated by our review of servers used in Web settings, but seeking to generalize beyond
these specific cases to include future servers that may be introduced by developers of new classes of
critical distributed computing applications. Our focus is on communications technologies, but we do
review persistent storage technologies based on the transactional computing model, particularly as it
has been generalized to apply to objects in distributed environments.

Kenneth P. Birman - Building Secure and Reliable Network Applications194

194

12. How and Why Computer Systems Fail
Throughout the remainder of this part of the text, we will be concerned with technologies for making real
distributed systems reliable [BR96]. Before undertaking this task, it will be useful to briefly understand
the reasons that distributed systems fail. Although there are some dramatic studies of the consequences of
failures (see, for example, [Pet95]), our treatment draws primarily from work by Jim Gray [GBH87,
Gra90, GR93], who studied this issue while at Tandem Computers, and on presentations by Anita Borr
[BW92], who was a developer of Tandem’s transactional system architecture [Bar81], and Ram
Chilaragee, who has studied the same question at IBM [Chill92]. All three researchers focused on
systems designed to be as robust as possible and might have drawn different conclusions had they looked
at large distributed systems that incorporate technologies built with less stringent reliability standards.
Unfortunately, there seems to have been relatively little formal study of failure rates and causes in systems
that werenot engineered with reliability as a primary goal, despite the fact that a great number of systems
used in critical settings include components with this property.

12.1 Hardware Reliability and Trends
Hardware failures were a dominant consideration in architecting reliable systems until late in the 1980’s.
Hardware can fail in many ways, but as electronic packaging has improved and the density of integrated
circuits increased, hardware reliability has grown enormously. This improved reliability reflects the
decreased heat production and power consumption of smaller circuits, the reduction in the number of off-
chip connections and wiring, and improved manufacturing techniques. A consequence is that hardware-
related system downtime is fast becoming a minor component of the overall reliability concerns faced in a
large, complex distributed system.

To the degree that hardware failures remain a significant reliability concern today, the observed
problems are most often associated with the intrinsic limitations of connectors and mechanical devices.
Thus, computer network problems (manifest through message loss or partitioning failures, where a
component of the system becomes disconnected from some other component) are high on the list of
hardware-related causes of failure for any modern system. Disk failures are also a leading cause of
downtime in systems dependent upon large file or database servers, although RAID-style disk arrays can
protect against such problems to a limited degree.

A common hardware-related source of downtime has very little to do with failures, although it
can seriously impact system availability and perceived reliability. Any critical computing system will,
over its lifecycle, live through a series of hardware generations. These can force upgrades, because it may
become costly and impractical to maintain old generations of hardware. Thus, routine maintenance and
downtime for replacement of computing and storage components with more modern version must be
viewed as a planned activity that can emerge as one of the more serious sources of system unavailability if
not dealt with through a software architecture that can accommodate dynamic reconfiguration of critical
parts of the system while the remainder of the system remains online. This issue of planning for future
upgrading, expansion, and for new versions of components extends throughout a complex system,
encompassing all its hardware and software technologies.

12.2 Software Reliability and Trends
Early in this text, we observed that software reliability is best understood as a process, encompassing not
just the freedom of a system from software bugs, but also such issues as the software design methodology,
the testing and lifecycle quality assurance process used, the quality of self-checking mechanisms and of
user-interfaces, the degree to which the system implements the intended application (i.e. the quality of
match between system specification and problem specification), and the mechanisms provided for dealing

Chapter12: How and Why Computer Systems Fail 195

195

with anticipated failures, maintenance, and upgrades. This represents a rich, multidimensional collection
of issues and few critical systems deal with them as effectively as one might wish. Software developers, in
particular, often view software reliability in simplified terms, focusing exclusively on the software
specification that their code must implement, and on its correctness with regard to that specification.

Even this narrower issue of correctness remains an important challenge; indeed, many studies of
system downtime in critical applications have demonstrated that even after rigorous testing, software bugs
account for a substantial fraction of unplanned downtime (figures in the range of 25% to 35% are
common), and that this number is extremely hard to reduce (see, for example, Ivars Peterson’s recent book
Fatal Defect[Pet95]). Jim Gray and Bruce Lindsey, who have studied reliability issues in transactional
settings, once suggested that the residual software bugs in mature systems can be classified into two
categories, which they calledBohrbugsandHeisenbugs[GBH87, GR93].

A Bohrbug is a solid, reproducible
problem: if it occurs, and one takes note of
the circumstances, the scenario can be
reproduced and the bug will repeat itself.
The name is intended to remind us of
Bohr’s model of the atomic nucleus: a
small hard object, well localized in space.
Gray and Lindsey found that as systems
mature, the relative frequency of Bohrbugs
drops steadily over time, although other
studies (notably by Anita Borr) suggest that
the population of Bohrbugs is periodically
replenished when a system must be
upgraded or maintained over its lifecycle.

Heisenbugs are named for the
Heisenberg model of the nucleus: a
complex wave function that is influenced
by the act of observation. These bugs are
typically side-effects of problems that

occurred much earlier in an execution, such as overrunning an array or accidentally dereferencing a
pointer after the object to which it points has been freed. Such errors can corrupt the application in a way
that will cause it to crash, but not until the corrupted data structure is finally referenced, which may not
occur until long after the bug actually was exercised. Because such a bug is typically a symptom of the
underlying problem, rather than an instance of the true problem itself, Heisenbugs are exquisitely sensitive
to the order of execution. Even with identical inputs a program that crashed once may run correctly back
in the laboratory.

Not surprisingly, the major source of crashes in a mature software system turns out to be
Heisenbugs. Anita Borr’s work actually goes further, finding that most attempts to fix Heisenbugs
actually make the situation worse than it was in the first place. This observation is not surprising to
engineers of complex, large software systems: Heisenbugs correspond to problems that can be
tremendously hard to track down, and are often fixed by patching around them at runtime. Nowhere is
the gap between theory and practice in reliable computing more apparent than in the final testing and bug
correction stages of a major software deployment that must occur under time pressure or a deadline.

Figure 12-1: Developers are likely to discover and fix Bohrbugs,
which are easily localized and reproducible sources of errors.
Heisenbugs are fuzzy and hard to pin down. Often, these bugs
are actually symptoms of some other bug which doesn’t cause an
immediate crash; the developer will tend to work around them but
may find them extremely hard to fix in a convincing way. The
frequency of such bugs diminishes very slowly over thelife cycle
of an application.

Kenneth P. Birman - Building Secure and Reliable Network Applications196

196

12.3 Other Sources of Downtime
Jointly, hardware and software downtime, including downtime for upgrades, is typically said to account
for some two-thirds of system downtime in critical applications. The remaining third of downtime is
attributable to planned maintenance such as making backups, and environmental factors, such as power
outages, air conditioning or heating failures, leaking pipes, and other similar problems. (The author is
reminded of an early job in which he was asked to track down a bug that was causing a critical computing
system to crash at a major New York City hospital, always early in the morning or late in the day. Users
of the system were convinced that the problem was load-related and yet the developers had failed to
reproduce any errors under the most extreme forms of load-based stress test. The problem finally turned
out to be caused by power fluctuations associated with the underground subway system during rush hour,
which accidentally coincided with periods of heavy use at the beginning and end of the working day!)

Although there may be little hope of controlling these forms of downtime, the trend is to try and
treat them using software techniques that distribute critical functionality over sufficient numbers of
computers, and separate them to a sufficient degree, so that redundancy can overcome unplanned outages.
Having developed software capable of solving such problems, downtime for hardware maintenance,
backups, or other routine purposes can often be treated in the same way as are other forms of outages.
Such an approach tends to view system management, monitoring and online control as a part of the
system itself: a critical system should, in effect, be capable of modeling its own configuration and
triggering appropriate actions if critical functionality is compromised for any reason. In the chapters that
follow, this will motivate us to look at issues associated with having a system monitor its own membership
(the set of processes that compose it), and dynamically, adapting itself in a coordinated, consistent manner
if changes are sensed. Although the need for brevity will prevent us from treating system management
issues in the degree of detail that the problem deserves, we will develop the infrastructure on which
reliable management technologies can be implemented, and will briefly survey some recent work
specifically on the management problem.

12.4 Complexity
Many developers would argue that the single most serious threat to distributed systems reliability is the
complexityof many large distributed systems. Indeed, distributed systems used in critical applications
often interconnect huge numbers of components using subtle protocols, and the resulting architecture may
be extremely complex. The good news, however, is that when such systems are designed for reliability,
the techniques used to make them more reliable may also tend to counteract this complexity.

For example, in the chapters that follow we will be looking at replication techniques that permit
critical system data and services to be duplicated as a way to increase reliability. When this is done
correctly, the replicas will be consistent with one another and the system as a whole can be thought of as
containing just a single instance of the replicated object, but one that happens to be more reliable or more
secure than any single object normally would be. If the object is active (a program), it can beactively
replicatedby duplicating the inputs to it and consolidating the outputs it produces. These techniques lead
to a proliferation of components but also impose considerable regularity upon the set of components.
They thus control the complexity associated with the robustness intervention.

Going forward, we will be looking at system management tools that monitor sets of related
components, treating them as groups within which a common management, monitoring or control policy
can be applied. Again, by factoring out something that is true for all system components in a certain class
or set of classes, these techniques reduce complexity. What were previously a set of apparently
independent objects are now explicitly seen to be related objects that can be treated in similar ways, at
least for purposes of management, monitoring or control.

Chapter12: How and Why Computer Systems Fail 197

197

Broadly, then, we will see that although complexity is a serious threat to reliability, complexity
can potentially be controlled by capturing and exploiting regularities in distributed system structure
regularities that are common when such systems are designed to be managed, fault-tolerant, secure, or
otherwise reliable. To the degree that this is done, the system structure becomes more explicit and hence
complexity is reduced. In some ways, the effort of building the system will increase: this structure needs
to be specified, and needs to remain accurate as the system subsequently evolves. But in other ways, the
effort is decreased: by managing a set of components in a uniform way, one avoids the need to do so in an
ad-hoc basis that may be similar for the members of the set but not identical merely as an artifact of
having developed the component management policies independently.

These observations are a strong motivation for looking at technologies that can support grouping
of components in various ways and for varied purposes. However, they also point to a secondary
consideration: unless such technologies are well integrated with system development software tools, they
will prove to be irritating and hard to maintain as a system is extended over time. As we will see,
researchers have been more active on the former problem than on the latter one, but this situation has now
begun to change, particularly with the introduction of CORBA-based reliability solutions that are well
integrated with CORBA development tools.

12.5 Detecting failures
Surprisingly little work has been done on the problem of building failure detection subsystems. A
consequence is that many distributed systems detect failures using timeouts, an error-prone approach that
forces the application to overcome inaccurate failure detections in software.

Recent work by Werner Vogels [Vog96] suggests that many distributed systems may be able to do
quite a bit better. Vogels makes the analogy between detecting a failure and discovering that one’s tenant
has disappeared. If a landlord were trying to contact a tenant whose rent check is late, it would be a little
extreme to contact the police after trying to telephone that tenant once, at an arbitrary time during the day,
and not receiving any reply. More likely, the landlord would telephone severaltimes, inquire of
neighbors, check to see if the mail is still being collected and if electricity and water is being consumed,
and otherwise check for indirect evidence of the presense or absense of the tenant.

Modern distributed systems offer a great number of facilities that are analogous to these physical
options. The management information base of a typical computing node (it’s MIB) provides information
on the active processes and their consumption of resources such as memory, computing time, and I/O
operations. Often, the network itself is instrumented, and indeed it may sometimes be possible to detect a
network partition in an accurate way by querying MIB’s associated with network interface and routing
nodes. If the operating system on which the application in question is running is accessible, one can
sometimes ask it about the status of the processes it is supporting. And, in applications designed with
fault-tolerance in mind, there may be the option of integrating self-checking mechanisms directly into the
code, so that the application will periodically verify that it is healthy and take some action, such as
resetting a counter, each time the check succeeds. Through such a collection of tactics, one can
potentially detect “most” failures rapidly and accurately, and even distinguish partitioning failures from
other failures such as crashes or application termination. Vogels has implemented a prototype of a failure
investigator service that uses these techniques, yeilding much faster and better failure detection than is
traditionally assumed possible in distributed systems. Unfortunately, though, this approach is not at all
standard. Many distributed systems rely entirely on timeouts for failures; as one might expect, this results
in a high rate of erroneous detections and a great deal of complexity in order to overcome their
consequences.

Kenneth P. Birman - Building Secure and Reliable Network Applications198

198

12.6 Hostile Environments
The discussion of this chapter has enumerated a great variety of reliability threats that a typical distributed
system may need to anticipate and deal with. The problems considered, however, were all of a nature that
might be considered “routine”, in the sense that they all fall into the category of building software and
hardware to be robust against anticipated classes of accidental failures, and to be self-managed in ways
that anticipate system upgrades and maintenance events.

Yet, it is sometimes surprising to realize that the Internet is a hostile environment, and growing
more so. Modern computer networks are shared with a huge population of computer literate users, whose
goals and sense of personal ethics may differ tremendously from those of the system developer. Whether
intentionally or otherwise, these network users represent a diffuse threat, who may unexpectedly probe a
distributed system for weaknesses, or even to subject it to a well planned and orchestrated assault without
prior warning.

The intentional threat spectrum is as varied as the accidental threat spectrum reviewed earlier.
The most widely known of the threats are computer viruses, which are software programs designed to
copy themselves from machine to machine, and to do damage to the machines on which they manage to
establish themselves. (A benign type of virus that does no damage is called aworm,but because the mere
presence of an unanticipated program can impact system reliability, it is perhaps best to take the view that
all undesired intrusions into a system represent a threat to reliable behavior). A virus may attack a system
by violating assumptions it makes about the environment or the network, breaking through security codes
and passwords, piggybacking a ride on legitimate messages, or any of a number of other routes. Attacks
that exploit several routes at the same time are more and more common, for example simultaneously
compromising some aspect of the telecommunications infrastructure on which an application depends
while also presenting the application with an exceptional condition that it can only handle correctly when
the telecommunications subsystem is also functioning.

Other types of intentional threats include unauthorized users or authorized users who exceed
their normal limitations. In a banking system, one worries about a rogue trader or an employee who seeks
to divert funds without detection. A disgruntled employee may seek to damage the critical systems or data
of an organization that is perceived as having wronged him or her. In the most extreme case, one can
imagine hostile actions directed at a nation’s critical computing systems during a period of war, or
terrorism. Today, this sort ofinformation warfaremay seem like a suitable topic for science fiction
writers, yet as society shifts increasingly critical activities onto computing and communications
technology, the potential targets for attack will eventually become rich enough to interest military
adversaries.

Clearly, no computing system can be protected against every conceivable form of internal and
external threat. Distributed computing can, however, offer considerable benefits against a well known and
fully characterized threat profile. By distributing critical functionality over sets of processes that must
cooperate and coordinate their actions in order to perform sensitive functions, the barrier against external
threats can be raised very high. A terrorist who might easily overcome a system that effectively lacks any
defenses at all would face a much harder problem overcoming firewalls, breaking through security
boundaries, and interfering with critical subsystems designed to continue operating correctly even if some
limited number of system components crash or are compromised. Later, we will discuss virtual private
network technologies that take such approaches even further, preventing all communication within the
network except that initiated by authenticated users. Clearly, if a system uses a technology such as this, it
will be relatively hard to break into. However, the cost of such a solution may be higher than most
installations can afford.

Chapter12: How and Why Computer Systems Fail 199

199

As the developer of a critical system, the challenge is to anticipate the threats that it must
overcome, and to do so in a manner that balances costs against benefits. Often, the threat profile that a
component subsystem may face will be localized to that component, hence the developer may need to go to
great lengths in protecting some especially critical subsystems against reliability and security threats,
while using much more limited and less costly technologies elsewhere in the same system. Our obligation
in this textbook involves a corresponding issue: that of understanding not just how a reliability problem
can be solved, but also how the solution can be applied in a selective and localized manner, so that a
developer who faces a specific problem in a specific context can draw on a solution tailored to that
problem and context, without requiring that the entire system be reengineered to overcome a narrow
threat.

Today, we lack a technology with these attributes. Most fault-tolerance and security technologies
demand that the developer adopt a fault-tolerant or secure computing and communications architecture
from the first lines of code entered into the system. With such an approach, fault-tolerance and security
become very hard to address late in the game, when substantial amounts of technology already exist.
Unfortunately, however, most critical systems are built up out of preexisting technology, which will
necessarily have been adapted to the new use and hence will necessarily be confronted with new types of
reliability and security threats that were not anticipated in the original setting. Needed, then, is a
technology base that is flexible enough to teach us how to overcome a great variety of possible threats, but
that is also flexible enough to be used in a narrow and selective manner (so that the costs of reliability are
localized to the component being made reliable), efficient (so that these costs are as low as possible), and
suitable for being introducedlate in the game,when a system may already include substantial amounts of
preexisting technology.

The good news, however, is that current research is making major strides in the desired direction.
In the chapters that follow, we will be looking at many of the fundamental challenges that arise in
overcoming various classes of threats. We will discuss computing models that are dynamic, self-managed,
and fault-tolerant, and will see how a technology based onwrapping preexisting interfaces and
components with look-alike technologies that introduce desired robustness features can be used to harden
complex, pre-existing systems, albeit with many limitations. Finally, we will consider some of the large-
scale systems issues raised when a complex system must be managed and controlled in a distributed
setting. While it would an overstatement to claim that all the issues have been solved, it is clear that
considerable progress towards an integrated technology base for hardening critical systems is being made.

This author has few illusions about reliability: critical computing systems will continue to be less
reliable than they should be until the customers and societal users of such systems demand reliability, and
the developers begin to routinely concern themselves with understanding the threats to reliability in a
given setting, and planning a strategy for responding to those threats and for testing the response.
However, there is reason to believe that in those cases where this process does occur, a technology base
capable of rising to the occasion can be provided.

12.7 Related Readings
On dramatic system failures and their consequences: [Gib94, Pet95]. How and why systems fail and what
can be done about it: [GBH87, Gra90, GR93, BW92, Chill92, BR96]. On the failure investigator:
[Vog96]. On understanding failures [Cri96].

Kenneth P. Birman - Building Secure and Reliable Network Applications200

200

13. Guaranteeing Behavior in Distributed Systems

13.1 Consistent Distributed Behavior
It is intuitively natural to expect that a distributed system should be able to mimic the behavior of a non-
distributed one. Such a system would benefit from its distributed architecture to gain better performance,
fault-tolerance, or other advantages, and yet would implement a specification that may originally have
been conceived with no particular attention to issues of distribution [BR96]. In effect, the specification of
this type of distributed system talks about the desired behavior of ‘‘the system’’ as if the system were a
single entity.

Because system designers rarely think in terms of concurrent behaviors of a system, describing a
system as if it were actually not distributed and only worrying about its distributed nature later is in fact a
very natural way to approach distributed software development. A developer who adopts this approach
would probably say that the “intended interpretation” of the design methodology is that the final system
should behaveconsistently with the specification. Pressed to explain this more rigorously, such a
developer would probably say that the behavior of a correct distributed implementation of the
specification should be indistinguishable from a possible non-distributed behavior of a non-distributed
program conforming with the specification. Earlier, we saw that transactional systems use such an
approach when they require serializability, and our hypothetical developer might well cite that example as
an illustration of how this concept might be put into practice. In this part of thebook, we will explore
ramifications of such an approach, namely the requirement that there be a way to “explain” distributed
behaviors of the system in terms of simpler, non-distributed, system specifications.

One can ask a number of questions about distributed consistency. The purpose of this first
chapter is to set down some of these questions and to start exploring at least some of the answers. Other
answers, and in some cases, refined questions, will appear in subsequent chapters of the text. The broad
theme of this chapter, however, starts with a recognition that the concept of reliability built into the
standard technologies we have discussed until now is at best a very ad-hoc one. At worst, it may be
fundamentally meaningless. To do better, we need to start by associating meaning with at least some
intuitively attractive distributed reliability goal.

For example, we asked if a reliable stream was ultimately more reliable than an RPC protocol.
And, in some deep sense, the answer seems to be a negative one: a stream built using timeouts for failure
detection is ultimately no more reliable than a protocol like RPC, which retries each request few times
before timing out. In both cases, data that has been acknowledged is known to have reached its
destination: the RPC provides such acknowledgments in the form of a reply, while the stream does so
implicitly by accepting data beyond the capacity of its window (if a stream has accepted more data than its
window limitation, the sender can deduce that the initial portion of the data must have been
acknowledged). But the status of an RPC in progress, or of data still in the window of a stream, is
uncertain in very similar senses, and if an error is reported the sender will not have any way to know what
happened to that data. We saw earlier that such an error may occur even if neither sender nor destination
fails. Yet streams are often considered a “reliable” way of transferring data. Obviously, they are more
reliable than datagrams most of the time, but it would be an overstatement to claim that a stream is
reliable in some absolute sense.

To say stronger things about a distributed system or protocol, we need to understand the
conditions under which consistent behavior is achievable, and the senses in which consistency is
achievable. This will turn out to be a deep, but solvable, problem. The solution reveals a path to a
suprisingly rich class of distributed computing systems in which all sorts of guarantees and properties can

Chapter13: GuaranteeingBehavior in Distributed Systems 201

201

be achieved. Beyond merely offering rigorous ways of overcoming communication failures, these will
include distributed security properties, self-management, load-balancing, and other forms of dynamic
adaptation to the environment. All of these are properties that fall under the broad framework of
consistent behaviors that are, to a degree, achievable in distributed settings.

We will also discover some hard limits on what can be done in a distributed system. Certain
forms of consistency and fault-tolerance are provably impossible, and although these impossibility results
leave us a great deal of room to maneuver, they still circumscribe the achievable behaviors of distributed
systems with strong properties.

13.2 Warning: Rough Road Ahead!
Before launching into this material, it may be useful to offer a few words of warning to the reader. The
material in this chapter and the next two is of a somewhat different nature that most of what we have
covered up to the present. Previous chapters have surveyed the state of the art in distributed computing,
and to do so it has rarely been necessary to deal with abstractions. In these next few chapters, we’ll also
be surveying the state of the art, but in an area of distributed computing that is concerned primarily with
abstractions, and in which some of the protocols used are very subtle. This may make the treatment seem
very abstract and “hard” by comparison with what we have done up to now, and with the style of the
remainder of thebook, which returns largely to higher level issues.

In the introduction to this book we commented that in a better world, distributed systems
engineers could reach over to a well-stocked shelf of tools and technologies for reliable distributed
computing, finding powerful computer-aided design tools that would make fault-tolerant computing or
other reliability goals transparently achievable. But with the exception of a small number of products (the
author is thinking of the Electra system, which will be discussed in Chapter 18, and the Orbix+Isis
product line), there are few technologies that offer a plug-and-play approach to reliability.

Despite the emergent character of reliability as a software products market, however, we do know
a great deal about building reliable systems, and there are some very powerful research systems that
demonstrate how these concepts can be put to work in practice. We’ll review quite a few of them, and
most of the systems we describe are available to potential users either for research efforts or as free,
public-domain software distributions. It seems very likely that the set of available products will also
expand rapidly in coming years. Moreover, as we will see in Chapters 16 and 17, some of the existing
groupware technologies are designed to be directly useable in their present form, even if better packaging
would make it quite a bit easier to do so.

Thus, there is really little alternative but for the potential technology consumer to approach this
area by trying to acquire a somewhat deeper perspective on what can, and what cannot, be accomplished,
and by reviewing the research prototypes of solutions for the area. To the degree that a developer has
deep pockets, many of these technologies could be reimplemented in-house. Less well-heeled developers
may be able to work with the existing products, and will often be able to gain access to public-domain
technologies or research prototypes. Finally, companies that offer products where reliability might
represent a significant market advantage could “size” the development effort that would be required to
develop and deploy new product lines with reliability as a major feature by looking at the protocols that
are needed by such systems, viewing the research prototypes as proofs of concept that could be imitated at
known cost. In the absense of that shelf of reliability technologies in the local software store, this seems to
be the most reasonable way to approach the area.

Those readers whose interest in this text is primarily practical may find the remainder of this
chapter and Chapters 14, 15 and 16 excessively abstract or “theoretical”. The author has made every

Kenneth P. Birman - Building Secure and Reliable Network Applications202

202

effort to ensure that Chapters 17-25 can be read without detailed knowledge of the material that follows,
and hence such readers should be able to skim these sections without being lost in the remainder of the
text.

13.3 Membership in a Distributed System
The first parts of this book have glossed over what turns out to be one of the fundamental questions that
we will ask about a distributed system, namely that of determining what processes belong to the system.
Before trying to solve this problem, it will be helpful to observe that there are two prevailing
interpretations of what membership should mean in a distributed setting. The more widely used
interpretation concerns itself with dynamically varying subsets of a static maximal set of processes.

This “static” view of membership corresponds to the behavior of transactional database systems,
and other systems in which some set of servers are associated with physical resources such as the
databases files being managed, and collection of multimedia images, or some sort of hardware. In such a
system, the name of a process would not normally be its process identifier (pid), but rather will be derived
from the name of the resource it manages. If there are three identical replicas of a database, we might say
that the process managing the first replica is nameda, the secondb, and the thirdc, and reuse these same
names even if replicaa crashes and must be rebooted. One would model this type of system as having a
fixed maximum membership, {a,b,c}, but as operating with a dynamically varying subset of the members.
We will call this a static membership model because the subsets are defined over a static population of
processes.

Similarly, one can define a “dynamic” model of system membership. In this model, processes are
created, execute for a period of time, and then terminate. Each process has a unique name that will never
be reused. In a dynamic membership model, the system is defined to be that set of processes that are
operational at a given point in time. A dynamic system or set of processes would begin execution when
some initial membership isbooted, and then would evolve as processes join the system (having been
created) or leave the system (having terminated or crashed). Abstractly, the space of possible process
names is presumably finite, so one could argue that this dynamic approach to membership isn’t really so
different from the static one. In practice, however, a static system typically has such a small number of
components, perhaps as few as three or four, that the problem is genuinely a very different one. After all,
it would not be uncommon for a complex distributed system to spawn hundreds or thousands of processes
per hour as it executes. Indeed, many systems of this sort are defined as if the space of processor
identifiers were in fact infinite, under the assumption that the system is very unlikely to have any
processor that remains operational long enough to actually start reusing identifiers. After all, even if a
system spawns 100 processes per second, it would take one and a half years to exhaust a 32-bit process
identifier “space”.

One could imagine an argument in favor of a hybrid model of system membership; one in which
a dynamically managed set of processes surrounds a more static core set of servers. Such a model would
be more realistic than the static and dynamic models, because real computing networks do tend to have
fixed sets of servers on which the client workstations and computers depend. The main disadvantage of
using this mixed model as the overall system model is that it leads to very complex descriptions of system
behavior. For this reason, although it is technically feasible to work with a mixed model, the results
presented in this text are expressed in terms of the static and dynamic models of system membership.
More specifically, we will work by generalizing results from a static model into a more dynamic one.

In designing systems, however, it is often helpful for the developer to keep in mind that even if a
dynamic membership model is employed, information about static resources can still be useful. Indeed, by
drawing on such information, it may be possible to solve problems that, in a purely dynamic model, could

Chapter13: GuaranteeingBehavior in Distributed Systems 203

203

not be solved. For example, we will look at situations where groups of processes have membership that
varies over time, increasing as processes join, and decreasing as they depart or fail. Sometimes, if a
failure may have partitioned such a group it is hard to know which component of the group “owns” some
critical resource. However, suppose that we also notice that two out of three of the computers attached to
this resource are accessible in one component of the partitioned group, and hence that at most one of the
three is accessible in the other component. Such information is sufficient to let the former component
treat itself as the owner of the “service” associated with those computers: the other component will
recognize that it must limit its actions to avoid conflict. Thus, even though we focus here on developing a
dynamic membership model, by doing so we do not preclude the use of static information as part of the
algorithms used by the resulting groups.

13.4 Time in Distributed Systems
In discussing the two views of system membership, we made casual reference to temporal properties of a
system. Clearly, the notion of time represents a second fundamental component of any distributed
computing model. In the simplest terms, a distributed system is any set of processes that communicate by
message passing and carry out desired actions over time. Specifications of distributed behavior often
include such terms as “when”, “before”, “after”, and “simultaneously” and we will need to develop the
tools to make this terminology rigorous.

In non-distributed settings, time has anobvious meaning at least to non-physicists. The world is full of
clocks, which are accurate and synchronized to varying degrees. Something similar is true for distributed
systems: all computers have some form of clock, and clock synchronization services are a standard part of
any distributed computing environment. Moreover, just as in any other setting, these clocks have limited
accuracy. Two different processes, reading their local clocks at the same instant in (real) time, might
observe different values, depending on the quality of the clock synchronization algorithm. Clocks may
also drift over long periods of time.

The use of time in a distributed system raises several sorts of problems. Oneobvious problem is
to devise algorithms for synchronizing clocks accurately. In Chapter 20 we will look at several such
algorithms, including some very good ones. However, even given very accurate clocks, communication
systems operate at such high speeds that the use of physical clocks for fine-grained temporal
measurements can only make sense for processes sharing the same clock, for example by operating on the
same computer. This leads to something of a quandary: in what sense is it meaningful to say that one
event occurs and then another does so, or that two events are concurrent, if no means is available by which
a program could label events and compare their times of occurrence?

Looking at this question in 1978, Leslie Lamport proposed a model of logical time that answers
this question [Lam78b, Lam84]. Lamport considered sets of processes (they could be static or dynamic)
that interact by message passing. In his approach, the execution of a process is modeled as a series of
atomic events, each of which requires a single unit of logical time to perform. More precisely, his model
represents a process by a tuple (Ep, <p) whereEp is set of events that occurred within processp, and <p is
a partial order on those events. The advantage of this representation is that it captures any concurrency
available withinp. Thus, if a andb are events withinp, a <p b means thata happens beforeb, in some
sense meaningful top. For example,b might be an operation that reads a value written bya, b could have
acquired a lock thata released, orp might be executing sequential code in which operationb isn’t
initiated until aftera has terminated.

Notice that there are many levels of granularity at which one might describe the events that occur
as a process executes. At the level of the components from which the computer was fabricated,
computation consists of concurrent events that implement the instructions or microinstructions executed
by the user’s program. At a higher level, a process might be viewed in terms of statements in a

Kenneth P. Birman - Building Secure and Reliable Network Applications204

204

programming language, control-flow graphs, procedure calls, or units of work that make sense in some
external frame of reference, such as operations on a database. Concurrency within a process may arise
from interrupt handlers, parallel programming constructs in the language or runtime system, or from the
use of lightweight threads. Thus, when we talk about the events that occur within a process, it is
understood that the designer of a system will typically have a granularity of representation that seems
natural for the distributed protocol or specification at hand, and that events are encoded to this degree of
precision. Within this text, most examples will be at a very coarse level of precision, in which we treat all
the local computation that occurs within a process between when it sends or receives a first message and
when it sends or receives a second message as a single event, or perhaps even as being associated with the
send or receive event itself.

Lamport models the sending and receiving of messages as events. Thus, an eventa could be the
sending of a messagem, denotedsnd(m),the reception ofm, denotedrcv(m), or the delivery ofm to
application code, denoteddeliv(m). When the process at which an event occurs is not clear from context,
we will add the process identifier as a subscript: thus,sndp(m), rcvp(m) and delivp(m). The reasons for
separating receive events from delivery events is to be able totalk about protocols that receive a message
and do things to it, or delay it, before letting the application program see it. Not every message sent will
necessarily be received, and not every message received will necessarily be delivered to the application;
the former property depends upon the reliability characteristics of the network, and the latter upon the
nature of the message.

Consider a processp with an eventsnd(m)and a processq in which there is a corresponding
eventrcv(m), for the same messagem. Clearly, the sending of a message precedes its receipt. Thus, we
can introduce an additional partial order that orders send and receive events for the same messages.
Denote this communication ordering relation by <m so that we can writesndp(m) <m rcvq(m).

This leads to a definition of logical time in a distributed system as the transitive closure of the <p

relations for the processesp that comprise the system, and <m. We will write a→b to denote the fact that
a andb are ordered within this temporal relation, which is often called the potential causality relation for
the system. In words, we will say thata happened beforeb. If neither a→b nor b→a, we will say thata
andb occurconcurrently.

Potential causality is useful in many ways. First, it allows us to be precise when talking about the
temporal properties of algorithms used in distributed systems. For example, up to now, when we have
used phrasing such as “at a point in time” or “when” in relation to a distributed execution, it may not have
been clear just what it means to talk about an instant in time that spans a set of processes composing the
system. Certainly, the discussion at the start of this chapter, in which it was noted that clocks in a
distributed system will not often be sufficiently synchronized to measure time, should have raised
concerns about the notion of simultaneous events. An instant in time should correspond to a set of
simultaneous events, one per process in the system, but the mostobvious way of writing down such a set
(namely, writing the state of each process as that process reaches some designated time) would not
physically realizable by any protocol we could implement as a part of such a system.

Consider, however, a set of concurrent events, one per process in a system. Such a set potentially
represents an instantaneous snapshot of a distributed system, and even if the events did not occur at
precisely the same instant in real time, there is no way to determine this from within the system. We will
use the termconsistent cutto refer to a set of events with this property [CL85]. A consistent snapshot is
the full set of events that happen before or on a consistent cut. Note that a consistent snapshot will
include the state of communication channels “at the time” of the consistent cut: the messages in the
channels will be those for which the snapshot contains asndevent but lacks a correspondingrcv event.

Chapter13: GuaranteeingBehavior in Distributed Systems 205

205

Figure 13-1 illustrates this notion: the red “cuts” are inconsistent because they include message
receive events but exclude the correspond sending events. The green cuts satisfy the consistency property.
If one thinks about process execution timelines as if they were made of rubber, the green cuts correspond
to possible distortions of the execution in which time never flows “backwards”; the red cuts correspond to
distortions that violate this property.

If a program or a person were to look at the state of a distributed system along an inconsistent cut
(i.e. by contacting the processes one by one to check each individual state and then assembling a picture of
the system as a whole from the data so obtained), the results could be confusing and meaningless. For
example, if a system manages some form of data using a lock, it could appear that multiple processes hold
the lock simultaneously. To see this, imagine that processp holds the lock and then sends a message to
processq in which it passes the lock toq. If our cut happened to showq after it received this message
(and hence obtained the lock) but showedp before it sent it (and hence when it still held the lock),p andq
would appear to both hold the lock. Yet in the real execution, this state never arose. Were a developer
trying to debug a distributed system, considerable time could be wasted in trying to sort out real bugs from
these sorts of “virtual” bugs introduced as artifacts of the way the system state was collected!

The value of consistent cuts is that they represent states the distributed system might actually
have been in at a single instant in real-time. Of course, there is no way to know which of the feasible cuts
for a given execution correspond to the “actual” real-time states through which the system passed, but
Lamport’s observation was that in a practical sense, to even ask this question reveals a basic
misunderstanding of the nature of time in distributed systems. In his eyes, the consistent cuts for a
distributed system are themore meaningfulnotion of simultaneous states for that system, while external
time, being inaccessible within the system, is actuallylessmeaningful. Lacking a practical way to make
real-time clocks that are accurate to the resolution necessary to accurately timestamp events, he would
argue that real-time is in fact not a very useful property for protocols that operate at this level. Of course,
we can still use real-time for other purposes that demand lesser degrees of accuracy, and will reintroduce
it later, but for the time being, we accept this perspective. Babaoglu and Marzullo discuss some uses of
consistent cuts in [BM93].

Potential causality is a useful tool for reasoning about a distributed system, but it also has more
practical significance. There are several ways to build logical clocks with which causal relationships
between events can be detected, to varying degrees of accuracy.

p0 a

f

e

p3

b

p2

p1
c

d

Figure 13-1: Examples of consistent (black) and inconsistent (gray) cuts. The gray cuts illustrate states in which a
message receive event is included but the corresponding send event is omitted. Consistent cuts represent system
states that could have arisen at a single instant in real-time. Notice, however, that a consistent cut may not actually
capture simultaneous states of the processes in question (that is, a cut might be instantaneous in real-time, but there
are many consistent cuts that are not at all simultaneous), and that there may be many such cuts through a given
point in the history of a process.

Kenneth P. Birman - Building Secure and Reliable Network Applications206

206

A very simple logical clock can be constructed by associating a counter with each process and
message in the system. LetLTp be the logical time for processp (the value ofp’s copy of this counter),
and letLTm be the logical time associated with messagem (also called the logical timestamp ofm). The
following rules are used to maintain these counters.

1. If LTp<LTm processp setsLTp = LTm+1

2. If LTp≥LTm processp setsLTp = LTp+1

3. For other events, processp setsLTp = LTp+1

We will use the notationLT(a) to denote the value ofLTp when eventa occurred at processp. It can easily
be shown that ifa→b, LT(a)<LT(b): From the definition of the potential causality relation, we know that
if a→b, there must exist a chain of eventsa≡e0→e1...→ek≡b, where each pair are related either by the
event ordering <p for some process p or by the event ordering <m on messages. By construction, the
logical clock values associated with these events can only increase, establishing the desired result. On the
other hand,LT(a)<LT(b) does not imply thata→b, since concurrent events may have the same
timestamps.

For systems in which the set of processes is static, logical clocks can be generalized in a way that
permits a more accurate representation of causality. A vector clock is a vector of counters, one per process
in the set [Fid88, Mat89, SES89]. Similar to the notation for logical clocks, we will say thatVTp andVTm

represent the vector times associated with process p and message m, respectively. Given a vector time
VT, the notation VT[p] denotes the entry in the vector corresponding to processp.

The rules for maintaining a vector clock are similar to the ones used for logical clocks, except
that a process only increments its own counter. Specifically:

1. Prior to performing any event, processp setsVTp[p] = VTp[p]+1

2. Upon delivering a messagem, processp sets VTp = max(VTp, VTm)

p0 a

f

e

p3

b

p2

p1
c

d

Figure 13-2: Distorted timelines that might correspond to faster or slower executions of the processesillustrated in
the previous figure. Here we have redrawn the earlier execution to make an inconsistent cut appear to be physically
instantaneous, by slowing down process p1 (dotted lines) and speeding up p3 (jagged). But notice that to get the cut
“straight” we now have message etravelling “backwards” in time, an impossibility! The black cuts in the earlier
figure, in contrast, can all be straightened without such problems. This lends intuition to the idea that a consistent
cut is a state that could have occured at an instant in time, while an inconsistent cut is a state that could not have
occured in real-time.

Chapter13: GuaranteeingBehavior in Distributed Systems 207

207

In (2), the functionmaxapplied to two vectors is just the element by element maximum of the respective
entries. We now define two comparison operations on vector times. IfVT(a)andVT(b)are vector times,
we will say thatVT(a)≤ VT(b) if ∀I: VT(a)[i] ≤ VT(b)[i]. When VT(a)≤ VT(b) and∃i: VT(a)[i]<VT(b)[i]
we will write VT(a)<VT(b).

In words, a vector time entry for a processp is just a count of the number of events that have
occured atp. If processp has a vector clock withVtp[q] set to six, this means that some chain of events
has causedp to hear (directly or indirectly) from processq subsequent to the sixth event that occured at
processq. Thus, the vector time for an evente tells us, for each process in the vector, how many events
occured at that process causally prior to whene occured. If VT(m) = [17,2,3], corresponding to processes
{ p,q,r}, we know that 17 events occured at processp that causally precede the sending ofm, 2 at process
q, and 3 at processr.

It is easy to see that vector clocks accurately encode potential causality. Ifa→b, then we again
consider a chain of events related by the process or message ordering:a≡e0→e1...→ek≡b. By construction,
at each event the vector time can only increase (that is,VT(ei)<VT(ei+1)), because each process increments
its own vector time entry prior to each operation, and receive operations compute an element by element
maximum. Thus,VT(a)<VT(b). However, unlike what a logical clock, the converse also holds: if
VT(a)<VT(b), then a→b. To see this, letp be the process at which eventa occurred, and consider
VT(a)[p]. In the case whereb also occurs at processp, we know that∀I: VT(a)[i] ≤ VT(b)[i], hence ifa
andb are not the same event,a must happen beforeb at p. Otherwise, suppose thatb occurs at processq.
According to the algorithm, processq only changesVTq[p] upon delivery of some messagem for which
VT(m)[p]>VTq[p] at the event of the delivery. If we denoteb asek anddeliv(m)asek-1, the send event for
m asek-2, and the sender ofm by q’, we can now trace a chain of events back to a processq’’ from which
q’ received this vectortimestamp entry. Continuing this procedure, we will eventually reach processp.
We will now have constructed a chain of eventsa≡e0→e1...→ek≡b, establishing thata→b, the desired
result.

In English, this tells us that if we have a fixed set of processes and use vector timestamps to
record the passage of time, we can accurately represent the potential causality relationship for message
sent and received, and other events, within that set. Doing so will alsoallow us to determine when events
are concurrent: this is the case if neithera→b nor b→a.

There has been considerable research on optimizing the encoding of vector timestamps, and the
representation presented above is far from the best possible in a large system [Cha91]. For a very large
system, it is considered preferable to represent causal time using a set of event identifiers, {e0, e1, ... ek}
such that the events in the set are concurrent and causally precede the event being labeled [Pet87, MM93].
Thus if a→b, b→d andc→d one could say that eventd took place at causal time {b,c} (meaning “after
events b and c”), event b at time {a}, and so forth. In practice the identifiers used in such a
representation would be process identifiers and event counters maintained on a per-process basis, hence
this precedence orderrepresentation is recognizable as a compression of the vector timestamp The
precedence-order representation is useful in settings where processes can potentially construct the full→
relation, and in which the level of true concurrency is fairly low. The vector timestamp representation is
preferred in settings where the number of participating processes is fairly low and the level of concurrency
may be high.

Logical and vector clocks will prove to be powerful tools in developing protocols for use in real
distributed applications. For example, with either type of clock we can identify sets of events that are
concurrent and hence satisfy the properties required from a consistent cut. The method favored in a
specific setting will typically depend upon the importance of precisely representing the potential causal
order, and on the overhead that can be tolerated. Notice however that while logical clocks can be used in

Kenneth P. Birman - Building Secure and Reliable Network Applications208

208

systems with dynamic membership, this is not the case for a vector clock. All processes that use a vector
clock must be in agreement upon the system membership used to index the vector. Thus vector clocks, as
formulated here, require a static notion of system membership. (Later we will see that they can be used in
systems where membership changes dynamically as long as the places where the changes occur are well
defined and no communication spans those “membership change events”).

The remainder of this chapter focuses on problems for which logical time, represented through
some form of logical timestamp, represents the most natural temporal model. In many distributed
applications, however, some notion of “real-time” is also required, and our emphasis on logical time in
this section should not be taken as dismissing the importance of other temporal schemes. Methods for
synchronizing clocks and for working within the intrinsic limitations of such clocks are the subject of
Chapter 20, below.

13.5 Failure Models and Reliability Goals
Any discussion of reliability is necessarily phrased with respect to the reliability “threats” of concern in
the setting under study. For example, we may wish to design a system so that its components will
automatically restart after crash failures, which is called therecoverabilityproblem. Recoverability does
not imply continuous availability of the system during the periods before a faulty component has been
repaired. Moreover, the specification of a recoverability problem would need to say something about how
components fail: through clean crashes that never damage persistent storage associated with them, in
other limited ways, in arbitrary ways that can cause unrestricted damage to the data directly managed by
the faulty component, and so forth. These are the sorts of problems typically addressed using variations
on the transactional computing technologies introduced in Section 7.5, and to which we will return in
Chapter 21.

A higher level of reliability may entaildynamic availability,whereby the operational components
of a system are guaranteed to continue providing correct, consistent behavior even in the presence of some
limited number of component failures. For example, one might wish to design a system so that it will
remain available provided that at most one failure occurs, under the assumption that failures are clean
ones that involve no incorrect actions by the failing component before its failure is detected and it shuts
down. Similarly, one might want to guarantee reliability of a critical subsystem up tot failures involving
arbitrary misbehavior by components of some type. The former problem would be much easier to solve,
since the data available at operational components can be trusted; the latter would require a voting scheme
in which data is trusted only when there is sufficient evidence as to its validity so that even ift arbitrary
faults were to occur, the deduced value would still be correct.

At the outset of this book, we gave names to these failures categories: the benign version would
be an example of ahalting failure, while the unrestricted version would fall into theByzantinefailure
model. An extremely benign (and in some ways not very realistic) model is thefailstop model, in which
machines fail by halting and the failures arereportedto all surviving members by a notification service
(the challenge, needless to say, is implementing a means for accurately detecting failures and turning into
a reporting mechanism that can be trusted not to make mistakes!)

In the subsections that follow, we will provide precise definitions of a small subset of the
problems that one might wish to solve in a static membership environment subject to failures. This
represents a rich area of study and any attempt to exhaustively treat the subject could easily fill abook.
However, as noted at the outset, our primary focus in the text is to understand the most appropriate
reliability model for realistic distributed systems. For a number of reasons, a dynamic membership model
is more closely matched to the properties of typical distributed systems than the static one; even when a
system uses a small hardware base that is itself relatively static, we will see that availability goals

Chapter13: GuaranteeingBehavior in Distributed Systems 209

209

frequently make a dynamic membership model more appropriate for the application itself. Accordingly,
we will confine ourselves here to a small number of particularly important problems, and to a very
restricted class of failure models.

13.6 Reliable Computing in a Static Membership Model
The problems on which we now focus are concerned with replicating information in a static environment
subject to failstop failures, and with solving the same problem in a Byzantine failure model. By
replication, we mean supporting a variable that can be updated or read and that behaves like a single non-
faulty variable even when failures occur at some subset of the replicas. Replication may also involve
supporting a locking protocol, so that a process needing to perform a series of reads and updates can
prevent other processes from interfering with its computation, and in the most general case this problem
becomes the transactional one discussed in Chapter 7.5. We’ll use replication as a sort of “gold standard”
against which various approaches can be compared in terms of cost, complexity, and properties.

Replication turns out to be a fundamental problem for other reasons, as well. As we begin to look
at tools for distributed computing in the coming chapters, we will see that even when these tools do
something that can seem very far from “replication” per se, they often do so by replicating other forms of
state that permit the members of a set of processes to cooperate implicitly by looking at their local copies
of this replicated information.

Some examples of replicated information will help make this point clear. The most explicit form
of replicated data is simply a replicated variable of some sort. In a bank, one might want to replicate the
current holdings of Yen as part of a distributed risk-management strategy that seeks to avoid over-
exposure to Yen fluctuations. Replication of this information means that it is made locally accessible to
the traders (perhaps world-wide): their computers don’t need to fetch this data from a central database in
New York but have it directly accessible at all times. Obviously, such a model entails supporting updates
from many sources, but it should also be clear why one might want to replicate information this way.
Notice also that by replicating this data, the risk that it will be inaccessible when needed (because lines to
the server are overloaded or the server itself is down) is greatly reduced.

Similarly, a hospital might want to view a patient’s medication record as a replicated data item,
with copies on the workstation of the patient’s physician, displayed on a “virtual chart” at the nursing
station, visible next to the bed on a status display, and availably on the pharmacy computer. One could, of
course, build such a system to use a central server and design all of these other applications as clients of
the server that poll it periodically for updates, similar to the way that a web proxy refreshes cached
documents by polling their home server. But it may be preferable to view the data as replicated if, for
example, each of the applications needs to represent it in a different way, and needs to guarantee that its
version is up to date. In such a setting, the data really is replicated in the conceptual sense, and although
one might chose to implement the replication policy using a client-server architecture, doing so is
basically an implementation decision. Moreover, such a central-server architecture would create a single
point of failure for the hospital, which can be highly undesirable.

An air traffic control system needs to replicate information about flight plans and current
trajectories and speeds. This information resides in the database of each air traffic control center that
tracks a given plane, and may also be visible on the workstation of the controller. If plans to develop “free
flight” systems advance, such information will also need to be replicated within the cockpits of planes that
are close to one-another. Again, one could implement such a system with a central server, but doing so in
a setting as critical as air traffic control makes little sense: the load on a central server would be huge, and
the single point failure concerns would be impossible to overcome. The alternative is to view the system
as one in which this sort of data is replicated.

Kenneth P. Birman - Building Secure and Reliable Network Applications210

210

We previously saw that web proxies can maintain copies of web documents, caching them to
satisfy “get” requests without contacting the document’s home server. Such proxies form a group that
replicate the document although in this case, the web proxies typically would not know anything about
each other, and the replication algorithm depends upon the proxies polling the main server and noticing
changes. Thus, document replication in the web is not able to guarantee that data will be consistent.
However, one could imagine modifying a web server so that when contacted by caching proxy servers of
the same “make”, it tracks the copies of its documents and explicitly refreshes them if they change. Such
a step would introduce consistent replication into the web, an issue about which we will have much more
to say in Sections 17.3 and 17.4.

Distributed systems also replicate more subtle forms of information. Consider, for example, a set
of database servers on a parallel database platform. Each is responsible for some part of the load and
backs up some other server, taking over for it in the event that it should fail (we’ll see how to implement
such a structure below). These servers replicate information concerning which servers are included in the
system, which server is handling a given part of the database, and what the status of the servers
(operational or failed) is at a given point in time. Abstractly, this is replicated data which the servers use
to drive their individual actions. As above, one couldimagine designating one special server as the
“master” which distributes the rules on the basis of which the others operate, but that would just be one
way of implementing the replication scheme.

Finally, if a server is extremely critical, one can “actively replicate” it by providing the same
inputs to two or more replicas [BR96, Bir91, BR94, Coo85, BJ87a, RBM96]. If the servers are
deterministic, they will now execute in lock step, taking the same actions at the same time, and thus
providing tolerance of limited numbers of failures. A checkpoint/restart scheme can then be introduced to
permit additional servers to be launched as necessary.

Thus, replication is an important problem in itself, but also because it underlies a great many
other distributed behaviors. One could, in fact, argue that replication is the most fundamental of the
distributed computing paradigms. By understanding how to solve replication as an abstract problem, we
will also gain insight into how these other problems can be solved.

13.6.1 The Distributed Commit Problem
We begin by discussing a classical problem that arises as a subproblem in several of the replication
methods that follow. This is thedistributed commitproblem, and involves performing an operation in an
all-or-nothing manner [Gra79, GR93].

The commit problem arises when we wish to have a set of processes that all agree on whether or
not to perform some action that may not be possible at some of the participants. To overcome this initial
uncertainty, it is necessary to first determine whether or not all the participants will be able to perform the
operation, and then to communicate the outcome of the decision to the participants in a reliable way (the
assumption is that once a participant has confirmed that it can perform the operation, this remains true
even if it subsequently crashes and must be restarted). We say that operation can becommittedif the
participants should all perform it Once a commit decision is reached, this requirement will hold even if
some participants fail and later recover. On the other hand, if one or more participants are unable to
perform the operation when initially queried, or some can’t be contacted, the operation as a wholeaborts,
meaning that no participant should perform it.

Consider a system composed of a static setS containing processes {p0, p1, ... pn} that fail by
crashing and that maintain bothvolatile data, which is lost if a crash occurs, andpersistentdata, which
can be recovered after a crash in the same state that it had at the time of the crash. An example of

Chapter13: GuaranteeingBehavior in Distributed Systems 211

211

persistent data would be a disk file; volatile data is any information in a processor’s memory on some sort
of a scratch area that will not be preserved if the system crashes and must be rebooted. It is frequently
much cheaper to store information in volatile data hence it would be common for a program to write
intermediate results of a computation to volatile storage. The commit problem will now arise if we wish
to arrange for all the volatile information to be saved persistently. The all-or-nothing aspects of the
problem reflect the possibility that a computer might fail and lose the volatile data it held; in this case the
desired outcome would be that no changes to any of the persistent storage areas occur.

As an example, we might wish for all of the processes in S to write some message into their
persistent data storage. During the initial stages of the protocol, the message would be sent to the
processes which would each store it into their volatile memory. When the decision is made to try and
commit this data, the processes clearly cannot just modify the persistent area, because some process might
fail before doing so. Consequently, the commit protocol involves first storing the volatile information into
a persistent but “temporary” region of storage. Having done so, the participants would signal their ability
to commit.

If all the participants are successful, it is safe to begin transfers from the temporary area to the
“real” data storage region. Consequently, when these processes are later told that the operation as a whole
should commit, they would copy their temporary copies of the message into a permanent part of the
persistent storage area. On the other hand, if the operation aborts, they would not perform this copy
operation. As should be evident, the challenge of the protocol will be to handle with the recovery of a
participant from a failed state; in this situation, it must determine whether any commit protocols were
pending at the time of its failure and, if so, whether they terminated in a commit or an abort state.

A distributed commit protocol is normally initiated by a process that we will call thecoordinator;
assume that this is processp0 . In a formal sense, the objective of the protocol is forp0 to solicit votes for
or against a commit from the processes inS, and then to send acommitmessage to those processes only if
all of the votes are in favor commit, and otherwise to send anabort. To avoid a trivial solution in which
p0 always sends anabort, we would ideally like to require that if all processes vote for commit and no
communication failures occur, the outcome should be commit. Unfortunately, however, it is easy to see
that such a requirement is not really meaningful because communication failures can prevent messages
from reaching the coordinator. Thus, we are forced to adopt a weaker non-triviality requirement, by
saying that if all processes vote for commit and all the votes reach the coordinator, the protocol should
commit.

A commit protocol can be implemented in many ways. For example, RPC could be used to query
the participants and later to inform them of the outcome, or a token could be circulated among the
participants which they would each modify before forwarding, indicating their vote, and so forth. The
most standard implementations, however, are called two- and three-phase commit protocols, often
abbreviated as 2PC and 3PC in the literature.

13.6.1.1 Two-Phase Commit
A 2PC protocol operates in rounds of multicast communication. Each phase is composed of one round of
messages to the participants, and one round of replies from the recipients to the sender. The coordinator
initially selects a unique identifier for this run of the protocol, for example by concatenating its own
process id to the value of a logical clock. The protocol identifier will be used to distinguish the messages
associated with different runs of the protocol that happen to execute concurrently, and in the remainder of
this section we will assume that all the messages under discussion are labeled by this initial identifier.

Kenneth P. Birman - Building Secure and Reliable Network Applications212

212

The coordinator starts by sending out a first round of messages to the participants. These
messages normally contain the protocol identifier, the list of participants (so that all the participants will
know who the other participants are), and a message “type” indicating that this is the first round of a 2PC
protocol. In a static system where all the processes in the system participate in the 2PC protocol, the list
of participants can be omitted because it has a well-known value. Additional fields can be added to this
message depending on the situation in which the 2PC was needed. For example, it could contain a
description of the action that the coordinator wishes to take (if this is not obvious to the participants), a
reference to some volatile information that the coordinator wishes to have copied to a persistent data area,
and so forth. 2PC is thus a very general tool that can solve any of a number of specific problems, which
share the attribute of needing an all-or-nothing outcome and the property that participants must be asked
if they will be able to perform the operation before it is safe to assume that they can do so.

Each participant, upon receiving the first round message, takes such local actions as are needed
to decide if it can vote in favor of commit. For example, a participant may need to set up some sort of
persistent data structure, recording that the 2PC protocol is underway and saving the information that will
be needed to perform the desired action if a commit occurs. In the example from above, the participant
would copy its volatile data to the temporary persistent region of the disk and then “force” the records to
the disk. Having done this (which may take some time), the participant sends back its vote. The
coordinator collects votes, but also uses a timer to limit the duration of the first phase (the initial round of
outgoing messages and the collection of replies). If a timeout occurs before the first phase replies have all
been collected, the coordinator aborts the protocol. Otherwise, it makes a commit or abort decision
according to the votes it collects.7

Now we enter the second phase of the protocol, in which the coordinator sends out commit or
abort messages in a new round of communication. Upon receipt of these messages, the participants take
the desired action or, if the protocol is aborted, they delete the associated information from their persistent
data stores. Figure 13-3 illustrates this basic skeleton of the 2PC protocol.

7 As described, this protocol already violates the non-triviality goal that we expressed earlier. No timer is really
“safe” in an asynchronous distributed system, because an adversary could just set the minimum message latency to
the timer value plus one second, and in this way cause the protocol to abort despite the fact that all processes vote
commit and all messages will reach the coordinator. Concerns such as this can seem unreasonably narrowminded,
but are actually important in trying to pin down the precise conditionsunder which commit is possible. The
practical community (to which this textbook is targetted) tends to be fairly relaxed about such issues, while the
theory community (whose work this author tries to follow closely) tends to take problems of this sort very
seriously. It is regretable but perhaps inevitable that some degree of misunderstanding results from these different
points of view. In reading this particular treatment, the more formally inclined reader is urged to interpret the text
to mean what the author meant to say, not what he wrote!

Chapter13: GuaranteeingBehavior in Distributed Systems 213

213

p0 p1 p2

ok to commit?
save to temp area

commit!
make permanent

ok... ok...

Coordinator:
multicast: ok to commit?
collect replies

all ok => send commit
else =>send abort

Participant:
ok to commit =>

save to temp area, replyok
commit =>

make change permanent
abort =>

delete temp area

Figure 13-3: Skeleton of two-phase commit protocol

Several failure cases need to be addressed. The coordinator could fail before starting the
protocol, during the first phase, while collecting replies, after collecting replies but before sending the
second phase messages, or during the transmission of the second phase messages. The same is true for a
participant. For each case we need to specify a recovery action that leads to successful termination of the
protocol with the desired all-or-nothing semantics.

In addition to this, the protocol described above omits consideration of the storage of information
associated with the run. In particular, it seems clear that the coordinator and participants should not need
to keep any form of information “indefinitely” in a correctly specified protocol. Our protocol makes use of
a protocol identifier, and we will see that the recovery mechanisms require that some information been
saved for a period of time, indexed by protocol identifier. Thus, rules will be needed for garbage
collection of information associated with terminated 2PC protocols. Otherwise, the information-base in
which this data is stored might grow without limit, ultimately posing serious storage and management
problems.

We start by focusing on participant failures, then turn to the issue of coordinator failure, and
finally to this question of garbage collection.

Suppose that a processpi fails during the execution of a 2PC protocol. With regard to the
protocol,pi may be any of several states. In its initial state,pi will be “unaware” of the protocol. In this
case,pi will not receive the initial vote message, hence the coordinator aborts the protocol. The initial
state ends whenpi has received the initial vote request and is prepared to send back a vote in favor of
commit (if pi doesn’t vote for commit, or isn’t yet prepared, the protocol will abort in any case). We will
now say thatpi is prepared to commit.In the prepared to commit state,pi is compelled to learn the
outcome of the protocol even if it fails and later recovers. This is an important observation because the
applications that use 2PC often must lock critical resources or limit processing of new requests bypi while
it is prepared to commit. This means that untilpi learns the outcome of the request, it may be unavailable
for other types of processing. Such a state can result in denial of services. The next state entered bypi is
called thecommitor abort state, in which it knows the outcome of the protocol. Failures that occur at this
stage must not be allowed to disrupt the termination actions ofpi, such as the release of any resources that
were tied up during the prepared state. Finally,pi returns to its initial state, garbage collecting all

Kenneth P. Birman - Building Secure and Reliable Network Applications214

214

information associated with the execution of the protocol and retaining only the effects of any committed
actions.

From this discussion, we see that a process recovering from a failure will need to determine
whether or not it was in a prepared to commit, commit, or abort state at the moment of the failure. In a
prepared to commit state, the process will need to find out whether the 2PC protocol terminated in a
commit or abort, so there must be some form of system service or protocol outcome file in which this
information is logged. Having entered a commit or abort state, the process needs a way to complete the
commit or abort action even if it is repeatedly disrupted by failures in the act of doing so. We say that the
action must beidempotent, meaning that it can be performed repeatedly without ill effects. An example of
an idempotent action would be copying a file from one location to another: provided that access to the
target file is disallowed until the copying action completes, the process can copy the file once or many
times with the same outcome. In particular, if a failure disrupts the copying action, it can be restarted
after the process recovers.

Not surprisingly, many systems that use 2PC are structured to take advantage of this type of file
copying. In the most common approach, information needed to perform the commit or abort action is
saved in alog on the persistent storage area. The commit or abort state is represented by a bit in a table,
also stored in the persistent area, describing pending 2PC protocols, indexed by protocol identifier. Upon
recovery, a process first consults this table to determine the actions it should take, and then uses the log to
carry out the action. Only after successfully completing the action does a process delete its knowledge of
the protocol and garbage collect the log records that were needed to carry it out.

Up to now, we have not considered coordinator failure, hence it would be reasonable to assume
that the coordinator itself plays the role of tracking the protocol outcome and saving this information until
all participants are known to have completed their commit or abort actions. The 2PC protocol thus needs
a final phase in which messages flow back from participants to the coordinator, which must retain
information about the protocol until all such messages have been received.

Chapter13: GuaranteeingBehavior in Distributed Systems 215

215

Coordinator:
multicast: ok to commit?
collect replies

all ok => log “commit” to “outcomes” table
send commit

else =>send abort
collect acknowledgments
garbage-collect protocol outcome information

Participant:
ok to commit =>

save to temp area, replyok
commit =>

make change permanent
abort =>

delete temp area

After failure:
for each pending protocol

contact coordinator to learn outcome

Figure 13-4: 2PC extended to handle participant failures.

Consider next the case where the coordinator fails during a 2PC protocol. If we are willing to
wait for the coordinator to recover, the protocol requires few changes to deal with this situation. The first
change is to modify the coordinator to save its commit decision to persistent storagebefore sending
commit or abort messages to the participants.8 Upon recovery, the coordinator is now guaranteed to have
available the information needed to terminate the protocol, which it can do by simply retransmitting the
final commit or abort message. A participant that is not in the precommit state would acknowledge such a
message but take no action; a participant waiting in the precommit state would terminate the protocol
upon receipt of it.

8 It is actually sufficient for the coordinator to save only commit decisions in persistent storage. After failure, a
recovering coordinator can safely presume the protocol to have aborted if it finds no commit record; the advantage
of such a change is to make the abort case less costly, by removing a disk I/O operation from the “critical path”
before the abort can be acted upon. The elimination of a single disk I/O operation may seem like a minor
optimization, but in fact can be quite significant, in light of the 10-fold latency difference between a typical disk
I/O operation (10-25ms) and a typical network communication operation (perhaps 1-4ms latency). One doesn’t
often have an opportunity to obtain an order of magnitude performance improvement in a critical path, hence these
are the sorts of engineering decisions that can have very important implications for overall system performance!

Kenneth P. Birman - Building Secure and Reliable Network Applications216

216

Coordinator:
multicast: ok to commit?
collect replies

all ok => log “commit” to “outcomes” table
wait until safe on persistent store
send commit

else =>send abort
collect acknowledgements
garbage-collect protocol outcome information

After failure:
for each pending protocol in outcomes table

send outcome (commit or abort)
wait for acknowledgements
garbage-collect outcome information

Participant: first time message received
ok to commit =>

save to temp area, replyok
commit =>

make change permanent
abort =>

delete temp area

Message is a duplicate (recovering coordinator)
send acknowledgment

After failure:
for each pending protocol

contact coordinator to learn outcome

Figure 13-5: 2PC protocol extended to overcome coordinator failures

One major problem with this solution to 2PC is that if a coordinator failure occurs, the
participants are blocked, waiting for the coordinator to recover. As noted earlier, precommit often ties
down resources or involves holding locks, hence blocking in this manner can have serious implications for
system availability. Suppose that we permit the participants to communicate among themselves. Could
we increase the availability of the system so as to guarantee progress even if the coordinator crashes?

Again, there are three stages of the protocol to consider. If the coordinator crashes during its
first phase of message transmissions, a state may result in which some participants are prepared to
commit, others may be unable to commit (they have voted to abort, and know that the protocol will
eventually do so), and still other processes may not know anything at all about the state of the protocol. If
it crashes during its decision, or before sending out all the second-phase messages, there may be a mixture
of processes left in the prepared state and processes that know the final outcome.

Suppose that we add a timeout mechanism to the participants: in the prepared state, a participant
that does not learn the outcome of the protocol within some specified period of time will timeout and seek
to complete the protocol on its own. Clearly, there will be some unavoidable risk of a timeout that occurs
because of a transient network failure, much as in the case of RPC failure detection mechanisms discussed
early in the text. Thus, a participant that takes over in this case cannot safely conclude that the
coordinator has actually failed. Indeed, any mechanism for takeover will need to work even if the timeout
is set to 0, and even if the participants try to run the protocol to completion starting from the instant that
they receive the phase 1 message and enter a prepared to commit state!

Accordingly, let pi be some process that has experienced a protocol timeout in the prepared to
commit state. What arepi ’s options? The most obvious would be for it to send out a first-phase message
of its own, querying the state of the otherpj. From the information gathered in this phase,pi may be able
to deduce that the protocol committed or aborted. This would be the case if, for example, some processpj

had received a second-phase outcome message from the coordinator before it crashed. Having
determined the outcome,pi can simply repeat the second-phase of the original protocol. Although

Chapter13: GuaranteeingBehavior in Distributed Systems 217

217

participants may receive as many asn copies of the outcome message (if all the participants time out
simultaneously), this is clearly a safe way to terminate the protocol.

On the other hand, it is also possible thatpi would be unable to determine the outcome of the
protocol. This would occur, for example, if all processes contacted bypi, as well aspi itself, were in the
prepared state, with a single exception: processpj, which does not respond to the inquiry message.
Perhaps,pj has failed, or perhaps the network is temporarily partitioned. The problem now is that only
the coordinator andpj can determine the outcome, which depends entirely onpj’s vote. If the coordinator
is itself a participant, as is often the case, a single failure can thus leave the 2PC participants blocked until
the failure is repaired! This risk is unavoidable in a 2PC solution to the commit problem.

Earlier, we discussed the garbage collection issue. Notice that in this extension to 2PC,
participants must retain information about the outcome of the protocol until they are certain that all
participants know the outcome. Otherwise, if a participantpj were to commit but “forget” that it had done
so, it would be unable to assist some other participantpi in terminating the protocol after a coordinator
failure.

Garbage collection can be done by adding a third phase of messages from the coordinator (or a
participant who takes over from the coordinator) to the participants. This phase would start after all
participants have acknowledged receipt of the second-phase commit or abort message, and would simply
tell participants that it is safe to garbage collect the protocol information. The handling of coordinator
failure can be similar to that during the pending state. A timer is set in each participant that has entered
the final state but not yet seen the garbage collection message. Should the timer expire, such a participant
can simply echo out the commit or abort message, which all other participants acknowledge. Once all
participants have acknowledged the message, a garbage collection message can be sent out and the
protocol state safely garbage collected.

Notice that the final round of communication, for purposes of garbage collection, can often be
delayed for a period of time and then run once in a while, on behalf of many 2PC protocols at the same
time. When this is done, the garbage collection protocol is itself best viewed as a 2PC protocol that
executes perhaps once per hour. During its first round, a garbage collection protocol would solicit from
each process in the system the set of protocols for which they have reached the final state. It is not
difficult to see that if communication is FIFO in the system, then 2PC protocols even if failures occur
 will complete in FIFO order. This being the case, each process need only provide a single protocol
identifier, per protocol coordinator, to in response to such an inquiry: the identifier of the last 2PC
initiated by the coordinator to have reached its final state. The process running the garbage collection
protocol can then compute the minimum over these values. For each coordinator, the minimum will be a
2PC protocol identifier which has fully terminated at all the participant processes, and hence which can be
garbage-collected throughout the system.

Kenneth P. Birman - Building Secure and Reliable Network Applications218

218

Coordinator:
multicast: ok to commit?
collect replies

all ok => log “commit” to “outcomes” table
wait until safe on persistent store
send commit

else =>send abort
collect acknowledgements

After failure:
for each pending protocol in outcomes table

send outcome (commit or abort)
wait for acknowledgements

Periodically:
query each process:terminated protocols?
for each coordinator: determine fully

terminatedprotocols
2PC to garbage collect outcomes information

Participant: first time message received
ok to commit =>

save to temp area, replyok
commit =>

log outcome, make change permanent
abort =>

log outcome, delete temp area

Message is a duplicate (recovering coordinator)
send acknowledgment

After failure:
for each pending protocol

contact coordinator to learn outcome

After timeout in prepare to commitstate:
query other participants about state

outcome can be deduced =>
run coordinator-recovery protocol

outcome uncertain =>
must wait

Figure 13-6: Final version of 2PC commit, participants attempt to terminate protocol without blocking, periodic
2PC protocol used to garbage collect outcomes information saved by participants and coordinators for recovery.

We thus arrive at the “final” version of the 2PC protocol shown in Figure 13-6. Notice that this
protocol has a potential message complexity that grows asO(n2) with the worst case occurring if a
network communication problem disrupts communication during the three basic stages of communication.
Further, notice that although the protocol is commonly called a “two phase” commit, a true two-phase
version will always block if the coordinator fails. The version of Figure 13-6 gains a higher degree of
availability at the cost of additional communication for purposes of garbage collection. However, although
this protocol may be more available than our initial attempt, it can still block if a failure occurs at a
critical stage. In particular, participants will be unable to terminate the protocol if a failure of both the
coordinator and a participant occurs during the decision stage of the protocol.

13.6.1.2 Three-Phase Commit
Skeen and Stonebraker studied the cases in which 2PC can block, in 1981 [Ske82b]. Their work resulted
in a protocol calledthree-phase commit(3PC), which is guaranteed to be non-blocking provided that only
failstop failures occur. Before we present this protocol, it is important to stress that the failstop model is
not a very realistic one: this model requires that processes fail only by crashing and that such failuresbe
accurately detectableby other processes that remain operational. Inaccurate failure detections and
network partition failures continue to pose the threat of blocking in this protocol, as we shall see. In
practice, these considerations limit the utility of the protocol (because we lack a way to accurately sense
failures in most systems, and network partitions are a real threat in most distributed environments).
Nonetheless, the protocol sheds light both on the issue of blocking and on the broader notion of
consistency in distributed systems, hence we present it here.

As in the case of the 2PC protocol, 3PC really requires a fourth phase of messages for purposes of
garbage collection. However, this problem is easily solved using the same method that was presented in

Chapter13: GuaranteeingBehavior in Distributed Systems 219

219

Figure 13-6 for the case of 2PC. For brevity, we therefore focus on the basic 3PC protocol and overlook
the garbage collection issue.

Recall that 2PC blocks under conditions in which the coordinator crashes and one or more
participants crash, such that the operational participants are unable to deduce the protocol outcome
without information that is only available at the coordinator and/or these participants. The fundamental
problem is that in a 2PC protocol, the coordinator can make a commit or abort decision that would be
known to some participantpj and even acted upon bypj, but totally unknown to other processes in the
system. The 3PC protocol prevents this from occurring by introducing an additional round of
communication, and delaying the “prepared” state until processes receive this phase of messages. By
doing so, the protocol ensures that the state of the system can always be deduced by a subset of the
operational processes, provided that the operational processes can still communicate reliably among
themselves.

Coordinator:
multicast: ok to commit?
collect replies

all ok => log “precommit”
send precommit

else =>send abort
collect acks from non-failed participants

all ack => log “commit”
send commit

collect acknowledgements
garbage-collect protocol outcome information

Participant: logs “state” on each message
ok to commit =>

save to temp area, replyok
precommit=>

enter precommit state, acknowledge
commit =>

make change permanent
abort =>

delete temp area

After failure:
collect participant state information
all precommit, or any committed=>

push forward to commit
else =>

push back to abort

Figure 13-7: Outline of a 3-phase commit protocol

A typical 3PC protocol operates as shown in Figure 13-7. As in the case of 2PC, the first round
message solicits votes from the participants. However, instead of entering a prepared state, a participant
that has voted for commit enters anok to commitstate. The coordinator collects votes and can
immediately abort the protocol if some votes are negative, or if some votes are missing. Unlike for a 2PC,
it does not immediately commit if the outcome is unanimously positive. Instead, the coordinator sends out
a round of prepare to commitmessages, receipt of which cases all participants to enter the prepare to
commit state and to send an acknowledgment. After receiving acknowledgements from all participants,
the coordinator sendscommitmessages and the participants commit. Notice that theok to commitstate is
similar to thepreparedstate in the 2PC protocol, in that a participant is expected to remain capable of
committing even if failures and recoveries occur after it has entered this state.

If the coordinator of a 3PC protocol detects failures of some participants (recall that in this
model, failures are accurately detectable), and has not yet received their acknowledgements to itsprepare
to commitmessages, the 3PC can still be committed. In this case, the unresponsive participants can be
counted upon to run a recovery protocol when the cause of their failure is repaired, and that protocol will
lead them to eventually commit. The protocol thus has the property that it will only commit if all
operational participants are in theprepared to commitstate. This observation permits any subset of
operational participants to terminate the protocol safely after a crash of the coordinator and/or other
participants.

Kenneth P. Birman - Building Secure and Reliable Network Applications220

220

The 3PC termination protocol is similar to the 2PC protocol, and starts by querying the state of
the participants. If any participant knows the outcome of the protocol (commit or abort), the protocol can
be terminated by disseminating that outcome. If the participants are all in a prepared to commit state, the
protocol can safely be committed.

Suppose, however, that some mixture of states is found in the state vector. In this situation, the
participating processes have the choice of driving the protocol forward to a commit or back to an abort.
This is done by rounds of message exchange that either move the full set of participants toprepared to
commitand thence to acommit, or that back them took to commitand then abort. Again, because of the
failstop assumption, this algorithm runs no risk of errors. Indeed, the processes have a simple and natural
way to select a new coordinator at their disposal: since the system membership is assumed to be static, and
since failures are detectable crashes (the failstop assumption), the operational process with the lowest
process identifier can be assigned this responsibility. It will eventually recognize the situation and will
then take over, running the protocol to completion.

Notice also that even if additional failures occur, the requirement that the protocol only commit
once all operational processes are in aprepared to commitstate, and only abort when all operational
processes have reached anok to commitstate (also calledprepared to abort) eliminates many possible
concerns. However, this is true only because failures are accurately detectable, and because processes that
fail will always run a recovery protocol upon restarting.

It is not hard to see how this recovery protocol should work. A recovering process is compelled
to track down some operational process that knows the outcome of the protocol, and to learn the outcome
from that process. If all processes fail, the recovering process must identify the subset of processes that
were the last to fail [Ske85], learning the protocol outcome from them. In the case where the protocol had
not reached a commit or abort decision when all processes failed, it can be resumed using the states of the
participants that were the last to fail, together with any other participants that have recovered in the
interim.

Unfortunately, however, the news for 3PC is actually not quite so good as this protocol may make
it seem, because real systems do not satisfy the failstop failure assumption. Although there may be some
specific conditions under which failures are by detectable crashes, these most often depend upon special
hardware. In a typical network, failures are only detectable using timeouts, and the same imprecision that
makes reliable computing difficult over RPC and streams also limits the failure handling ability of the
3PC.

The problem that arises is most easily understood by considering a network partitioning scenario,
in which two groups of participating processes are independently operational and trying to terminate the
protocol. One group may see a state that is entirelyprepared to commitand would want to terminate the
protocol by commit. The other, however, could see a state that is entirelyok to commitand would
consider abort to be the only safe outcome: after all, perhaps some unreachable process voted against
commit! Clearly, 3PC will be unable to make progress in settings where partition failures can arise. We
will return to this issue in Section 13.8, when we discuss a basic result by Fisher, Lynch and Paterson; the
inability to terminate a 3PC protocol in settings that don’t satisfy failstop-failure assumptions is one of
many manifestations of the so-called “FLP impossibility” result [FLP85, Ric96]. For the moment, though,
we find ourselves in the uncomfortable position of having a solution to a problem that is similar to, but not
quite identical to, the one that arises in real systems. One consequence of this is that few systems make
use of 3PC commit protocols today: given a situation in which 3PC is “less likely” to block than 2PC, but
may nonetheless block when certain classes of failures occur, the extra cost of the 3PC is not generally
seen as bringing a return commensurate with its cost.

Chapter13: GuaranteeingBehavior in Distributed Systems 221

221

13.6.2 Reading and Updating Replicated Data with Crash Failures
The 2PC protocol represents a powerful tool for solving end-user applications. In this section, we focus
on the use of 2PC to implement a data replication algorithm in an environment where processes fail by
crashing. Notice that we have returned to a realistic failure model here, hence the 3PC protocol would
offer few advantages.

Accordingly, consider a system composed of a static setScontaining processes {p0, p1, ... pn} that
fail by crashing and that maintain volatile and persistent data.Assume that each processpi maintains a
local replica of some data object, which is updated by operationupdatei and read using operationreadi.
Each operation, both local and distributed, returns a value for the replicated data object. Our goal is to
define distributed operationsUPDATE and READ that remain available even whent<n processes have
failed, and that return results indistinguishable from those that might be returned by a single, non-faulty
process. Secondary goals are to understand the relationship betweent and n and to determine the
maximum level of availability that can be achieved without violating the “one copy” behavior of the
distributed operations.

The best known solutions to the static replication problem are based onquorummethods Tho87,
Ske82a, Gif79]. In these methods, bothUPDATEandREADoperations can be performed on less than the
full number of replicas, provided however that there is a guarantee of overlap between the replicas at
which any successfulUPDATE is performed, and those at which any otherUPDATE or any successful
READis performed. Let us denote the number of replicas that must be read to perform aREADoperation
by qr, and the number to perform anUPDATEby qu . Our quorum overlap rule requires us that we need
qr + qu > n and thatqu + qu > n.

An implementation of a quorum replication method associates aversion numberwith each data
item. The version number is just a counter that will be incremented by each attempted update. Each
replica will include a copy of the data object, together with the version number corresponding to the
update that wrote that value into the object.

To perform aREADoperation, a process readsqr replicas and discards any replicas with version
numbers smaller than those of the others. The remaining values should all be identical, and the process
treats any of these as the outcome of itsREADoperation.

In itial

ok

prepare

commit

abort

in quire

prepare ok

commit abort

abort

coord failed

ok?

prepare

commit

Figure 13-8: States for a non-faulty participant in 3PC protocol

Kenneth P. Birman - Building Secure and Reliable Network Applications222

222

To perform anUPDATE operation, the 2PC protocol must be used. The updating process first
performs aREADoperation to determine the current version number and, if desired, the value of the data
item. It calculates the new value of the data object, increments the version number, and then initiates a
2PC protocol to write the value and version number toqu or more replicas. In the first stage of this
protocol, a replica votes to abort if the version number it already has stored is larger than the version
number proposed in the update. Otherwise, it locks out read requests to the same item and waits in anok
to commitstate. The coordinator will commit the protocol if it receives onlycommitvotes, and if it is
successful in contacting at leastqu or more replicas; otherwise, it aborts the protocol. If new read
operations occur during theok to commitstate, they are delayed until the commit or abort decision is
reached. On the other hand, if new updates arrive during theok to commitstate, the participant votes to
abort them

Our solution raises several
issues. First, we need to be convinced
that it is correct, and to understand
how it would be used to build a
replicated object tolerant oft failures.
A second issue is to understand the
behavior of the replicated object if
recoveries occur. The last issue to be
addressed concerns concurrent
systems: as stated, the protocol may
be prone to livelock (cycles in which
one or more updates are repeatedly
aborted).

With regard to correctness,
notice that the use of 2PC ensures

that an UPDATE operation either occurs atqu replicas or at none. Moreover,READ operations are
delayed while anUPDATE is in progress. Making use of the quorum overlap property, it is easy to see
that if anUPDATEis successful, any subsequentREADoperation must overlap with it at least one replica,
and theREADwill therefore reflect the value of thatUPDATE,or of a subsequent one. If twoUPDATE
operations occur concurrently, one or both will abort. Finally, if twoUPDATEoperations occur in some
order, then since theUPDATEstarts with aREADoperation, the laterUPDATEwill use a larger version
number than the earlier one, and its value will be the one that persists.

To toleratet failures, it will be necessary that theUPDATEquorum,qu be no larger thann-t. It
follows that theREAD quorum,qr, must have a value larger thant. For example, in the common case
where we wish to guarantee availability despite a single failure,t will equal 1. TheREADquorum will
therefore need to be at least 2, implying that a minimum of 3 copies are needed to implement the
replicated data object. If 3 copies are in fact used, theUPDATEquorum would also be set to 2. We could
also use extra copies: with 4 copies, for example, theREADquorum could be left at 2 (one typically wants
reads to be as fast as possible and hence would want to read as few copies as possible), and theUPDATE
quorum increased to 3, guaranteeing that anyREADwill overlap with any priorUPDATE and that any
pair of UPDATEoperations will overlap with one another. Notice, however, that with 4 copies, 3 is the
smallest possibleUPDATEquorum.

Our replication algorithm places no special constraints on the recovery protocol, beyond those
associated with the 2PC protocol itself. Thus, a recovering process simply terminates any pending 2PC
protocols and can then resume participation in newREADandUPDATEalgorithms.

READ
UPDATE

p0 p1 p2

reads 2
copies

read

2PC

Figure 13-9: Quorum update algorithm uses a quorum-read followed
by a 2PC protocol for updates

Chapter13: GuaranteeingBehavior in Distributed Systems 223

223

Turning finally to the issue of concurrentUPDATEoperations, it is evident that there may be a
real problem here. If concurrent operations of this sort are required, they can easily force one another to
abort. Presumably, an abortedUPDATE would simply be reissued, hence a livelock can arise. One
solution to this problem is to protect theUPDATE operation using a locking mechanism, permitting
concurrentUPDATE requests only if they access independent data items. Another possibility is employ
some form of backoff mechanism, similar to the one used by an ethernet controller. Later, when we
consider dynamic process groups and atomic multicast, we will see additional solutions to this problem.

What should the reader conclude about this replication protocol? One important conclusion is
that the protocol does not represent a very good solution to the problem, and will perform very poorly in
comparison with some of the dynamic methods introduced below, in Section 13.9. Limitations include the
need to read multiple copies of data objects in order to ensure that the quorum overlap rule is satisfied
despite failures, which makes read operations costly. A second limitation is the extensive use of 2PC,
itself a costly protocol, when doingUPDATE operations. Even a modest application may issue large
numbers ofREADandUPDATErequests, leading to a tremendous volume of I/O. This is in contrast with
dynamic membership solutions that will turn out to be extremely sparing in I/O, permitting completely
local READoperations,UPDATEoperations that cost as little as one message per replica, and yet able to
guarantee very strong consistency properties. Perhaps for these reasons, quorum data management has
seen relatively little use in commercial products and systems.

There is one setting in which quorum data management is found to be less costly: transactional
replication schemes, typically as part of a replicated database. In these settings, database concurrency
control eliminates the concerns raised earlier in regard to livelock or thrashing, and the overhead of the
2PC protocol can be amortized into a single 2PC protocol that executes at the end of the transaction.
Moreover, READoperations can sometimes “cheat” in transactional settings, accessing a local copy and
later confirming that the local copy was a valid one as part of the first phase of the 2PC protocol that
terminates the transaction. Such a read can be understood as using a form of optimism, similar to that of
an optimistic concurrency control scheme. The ability to abort thus makes possible significant
optimizations in the solution.

On the other hand, few transactional systems have incorporated quorum replication. If one
discusses the option with database companies, the message that emerges is clear: transactional replication
is perceived as being extremely costly, and 2PC represents a huge burden when compared to transactions
that run entirely locally on a single, non-replicated database. Transaction rates are approaching 10,000
per second for top of the line commercial database products on non-replicated high performance
computers; rates of 100 per second would be impressive for a replicated transactional product. The two
orders of magnitude performance loss is more than the commercial community can readily accept, even if
it confers increased product availability. We will return to this point in Chapter 21.

13.7 Replicated Data with Non-Benign Failure Modes
The discussion of the previous sections assumed a crash-failure model that is approximated in most
distributed systems, but may sometimes represent a risky simplification. Consider a situation in which the
actions of a computing system have critical implications, such as the software responsible for adjusting the
position of an aircraft wing in flight, or for opening the cargo-door of the Space Shuttle. In settings like
these, the designer may hesitate to simply assume that the only failures that will occur will be benign
ones.

There has been considerable work on protocols for coordinating actions under extremely
pessimistic failure models, centering on what is called the Byzantine Generals problem, which explores a
type of agreement protocol under the assumption that failures can produce arbitrarily incorrect behavior,

Kenneth P. Birman - Building Secure and Reliable Network Applications224

224

but that thenumberof failures is known to be bounded. Although this assumption may seem “more
realistic” than the assumption that processes fail by clean crashes, the model also includes a second type
of assumption that some might view as unrealistically benign: it assumes that the processors participating
in a system share perfectly synchronized clocks, permitting them to exchange messages in “rounds” that
are triggered by the clocks (for example, once every second). Moreover, the model assumes that the
latencies associated with message exchange between correct processors is accurately known.

Thus, the model permits failures of unlimited severity, but at the same time assumes that the
numberof failures is limited, and that operational processes share a very simple computing environment.
Notice in particular that the round model would only be realistic for a very small class of modern parallel
computers and is remote from the situation on distributed computing networks. The usual reasoning is
that by endowing the operational computers with “extra power” (in the form of synchronized rounds), we
can only make their task easier. Thus, understanding the minimum cost for solving a problem in this
model will certainly teach us something about the minimum cost of overcoming failures in real-world
settings.

The Byzantine Generals problem itself is as follows [Lyn96]. Suppose that an army has laid
siege to a city and has the force to prevail in an overwhelming attack. However, if divided the army might
lose the battle. Moreover, the commanding generals suspect that there are traitors in their midst. Under
what conditions can the loyal generals coordinate their action so as to either attack in unison, or not attack
at all? The assumption is that the generals start the protocol with individual opinions on the best strategy:
to attack or to continue the siege. They exchange messages to execute the protocol, and if they “decide” to
attack during thei’th round of communication, they will all attack at the start of roundi+1. A traitorous
general can send out any messages it likes and can lie about its own state, but can never forge the message
of a loyal general. Finally, to avoid trivial solutions, it is required that if all the loyal generals favor
attacking, an attack will result, and that if all favor maintaining the siege, no attack will occur.

To see why this is difficult, consider a simple case of the problem in which three generals
surround the city. Assume that two are loyal, but that one favorsattack and the other prefers to hold back.
The third general is a traitor. Moreover, assume that it is known that there is at most one traitor. If the
loyal generals exchange their “votes”, they will both see a tie: one vote for attack, one opposed. Now
suppose that the traitor sends an attack message to one general and tells the other to hold back. The loyal
generals now see inconsistent states: one is likely to attack while the other holds back. The forces divided,
they would be defeated in battle. The Byzantine Generals problem is thus seen to be impossible fort=1
andn=3.

With four generals and at most one failure, the problem is solvable, but not trivially so.Assume
that two loyal generals favor attack, the third retreat, and the fourth is a traitor, and again that it is known
that there is at most one traitor. The generals exchange messages, and the traitor sends retreat to one an
attack to two others. One loyal general will now have a tied vote: two votes to attack, two to retreat. The
other two generals will see three votes for attack, and one for retreat. A second round of communication
will clearly be needed before this protocol can terminate! Accordingly, we now imagine a second round in
which the generals circulate messages concerning their state in the first round. Two loyal generals will
start this round knowing that it is “safe to attack:” on the basis of the messages received in the first round,
they can deduce that even with the traitor’s vote, the majority of loyal generals favored an attack. The
remaining loyal general simply sends out a message that it is still undecided. At the end of this round, all
the loyal generals will have one “undecided” vote, two votes that “it is safe to attack”, and one message
from the traitor. Clearly, no matter what the traitor votes during the second round, all three loyal generals
can deduce that it is safe to attack. Thus, with four generals and at most one traitor, the protocol
terminates after 2 rounds.

Chapter13: GuaranteeingBehavior in Distributed Systems 225

225

Using this model one can prove what are called lower-bounds and upper-bounds on the
Byzantine Agreement problem. A lower bound would be a limit to the quality of a possible solution to the
problem. For example, one can prove that any solution to the problem capable of overcomingt traitors
requires a minimum of3t+1 participants (hence:2t+1 or more loyal generals). The intuition into such a
bound is fairly clear: the loyal generals must somehow be able to deduce a common strategy even witht
participants whose votes cannot be trusted. Within the remainder there needs to be a way to identify a
majority decision. However, it is surprisingly difficult to prove that this must be the case. For our
purposes in the present textbook, such a proof would represent a digression and hence is omitted, but
interested readers are referred to the excellent treatment in [Merxx]. Another example of a lower bound
concerns the minimum number of messages required to solve the problem: no protocol can overcomet
faults with fewer than t+1 rounds of message exchange, and hence O(t*n 2) messages, wheren is the
number of participating processes.

In practical terms, these represent costly findings: recall that our 2PC protocol is capable of
solving a problem much like Byzantine agreement in two rounds of message exchange requiring only3n
messages, albeit for a simpler failure model. Moreover, the quorum methods permit data to be replicated
using as few ast+1 copies to overcomet failures. And, we will be looking at even cheaper replication
schemes below, albeit with slightly weaker guarantees. Thus, a Byzantine protocol is genuinely costly,
and the best solutions are also fairly complex.

An upper bound on the problem would be a demonstration of a protocol that actually solves
Byzantine agreement and an analysis of its complexity (number of rounds of communication required or
messages required). Such a demonstration is an upper bound because it rules out the need for a more
costly protocol to achieve the same objectives. Clearly, one hopes for upper bounds that are as close as
possible to the lower bounds, but unfortunately no such protocols have been found for the Byzantine
agreement problem. The simple protocol illustrated above can easily be generalized into a solution fort
failures that achieves the lower bound for rounds of message exchange, although not for numbers of
messages required.

Suppose that we wanted to use Byzantine Agreement to solve a static data replication problem in
a very critical or hostile setting. To do so, it would be necessary that the setting somehow correspond to
the setup of the Byzantine agreement problem itself. For example, one could imagine using Byzantine
agreement to control an aircraft wing or the Space Shuttle cargo hold door by designing hardware that
carries out voting through some form of physical process. The hardware would need to implement the
mechanisms needed to write software that executes in rounds, and the programs would need to be
carefully analyzed to be sure that when operational, all the computing they do in each round can be
completed before that round terminates.

On the other hand, one would not want to use a Byzantine agreement protocol in a system where
at the end of the protocol, some single program will take the output of the protocol and perform a critical
action. In that sort of a setting (unfortunately, far more typical of “real” computer systems), all we will
have done is to transfer complete trust in the set of servers within which the agreement protocol runs into
a complete trust in the single program that carries out their decision.

The practical use of Byzantine agreement raises another concern: the timing assumptions built
into the model are not realizable in most computing environments. While it is certainly possible to build a
system with closely synchronized clocks and to approximate the synchronous rounds used in the model,
the pragmatic reality is that few existing computer systems offer such a feature. Software clock
synchronization, on the other hand, is subject to intrinsic limitations of its own, and for this reason is a
poor alternative to the real thing. Moreover, the assumption that message exchanges can be completed
within known, bounded latency is very hard to satisfy in general purpose computing environments.

Kenneth P. Birman - Building Secure and Reliable Network Applications226

226

Continuing in this vein, one could also question the extreme pessimism of the failure model. In a
Byzantine setting the traitor can act as an adversary, seeking to force the correct processes to malfunction.
For a worst-case analysis this makes a good deal of sense. But having understood the worst case, one can
also ask whether real-world systems should be designed to routinely assume such a pessimistic view of the
behavior of system components. After all, if one is this negative, shouldn’t the hardware itself also be
suspected of potential misbehavior, and the compiler, and the various prebuilt system components that
implement message passing? In designing a security subsystem or implementing a firewall, such an
analysis makes a lot of sense. But when designing a system that merely seeks to maintain availability
despite failures, and is not expected to come under active and coordinated attack, an extremely pessimistic
model would be both unwieldy and costly.

From these considerations, one sees that a Byzantine computing model may be applicable to
certain types of special-purpose hardware, but will rarely be directly applicable to more general distributed
computing environments where we might raise a reliability goal. As an aside, it should be noted that
Rabin has introduced a set of probabilistic Byzantine protocols that are extremely efficient, but that accept
a small risk of error (the risk diminishes exponentially with the number of rounds of agreement executed)
[Rab83]. Developers who seek to implement Byzantine-based solutions to critical problems would be wise
to consider using these elegant and efficient protocols.

13.8 Reliability in Asynchronous Environments
At the other side of the spectrum is what we call theasynchronouscomputing model, in which a set of
processes cooperate by exchanging messages over communication links that are arbitrarily slow and balky.
The assumption here is that the messages sent on the links eventually get through, but that there is no
meaningful way to measure progress except by the reception of messages. Clearly such a model is overly
pessimistic, but in a way that is different from the pessimism of the Byzantine model, which extended
primarily to failures: here we are pessimistic about our ability to measure time or to predict the amount of
time actions will take. A message that arrives after a century of delay would be processed no differently
than a message received withinmilliseconds of being transmitted. At the same time, this model assumes
that processes fail by crashing, taking no incorrect actions and simply halting silently.

One might wonder why the asynchronous system completely eliminates any physical notion of
time. We have seen that real distributed computing systems lack ways to closely synchronize clocks and
are unable to distinguish network partitioning failures from processor failures, so that there is a sense in
which the asynchronous model isn’t as unrealistic as it may initially appear. Real systems do have clocks
and use these to establish timeouts, but generally lack a way to ensure that these timeouts will be
“accurate”, as we saw when we discussed RPC protocols and the associated reliability issues in Chapter 4.
Indeed, if an asynchronous model can be criticized as specifically unrealistic, this is primarily in its
assumption of reliable communication links: real systems tend to have limited memory resources, and a
reliable communication link for a network subject to extended partitioning failures will require unlimited
spooling of the messages sent. This represents an impractical design point, hence a better model would
state that when a process isreachablemessages will be exchanged reliably with it, but that if it becomes
inaccessible messages to it will be lost and its state, faulty or operational, cannot be accurately
determined. In Italy, Babaoglu and his colleagues are studying such a model, but this is recent work and
the full implications of this design point are not yet fully understood [BDGB94]. Other researchers, such
as Cristian, are looking at models that are partially asynchronous: they have time bounds, but the bounds
are large compared to typical message passing latencies [Cri96]. Again, it is too early to say whether or
not this model represents a good choice for research on realistic distributed systems.

Within the purely asynchronous model, a classical result limits what we can hope to accomplish.
In 1985, Fischer, Lynch and Patterson proved that the asynchronous consensus problem (similar to the
Byzantine agreement problem, but posed in an asynchronous setting) is impossible if even a single process

Chapter13: GuaranteeingBehavior in Distributed Systems 227

227

can fail [FLP85]. Their proof revolves around the use of type of message scheduler that delays the
progress of a consensus protocol, and holds regardless of the way that the protocol itself works. Basically,
they demonstrate that any protocol that is guaranteed to only produce correct outcomes in an
asynchronous system can be indefinitely delayed by a complex pattern of network partitioning failures.
More recent work has extended this result to some of the communication protocols we will discuss in the
remainder of this Chapter [CHTC96, Ric96].

The FLP proof is short but quite sophisticated, and it is common for practitioners to conclude that
it does not correspond to any scenario that would be expected to arise in a real distributed system. For
example, recall that 3PC is unable to make progress when failure detection is unreliable because of
message loss or delays in the network. The FLP result predicts that if a protocol such as 3PC is capable of
solving the consensus problem, can be prevented from terminating. However, if one studies the FLP
proof, it turns out that the type of partitioning failure exploited by the proof is at least superficially very
remote from the pattern of crashes and network partitioning that forces the 3PC to block.

Thus, it is a bit facile to say that FLP predicts that 3PC will block in this specific way, because
the proof constructs a scenario that on its face seems to have relatively little to do with the one that causes
problems in a protocol like 3PC. At the very least, one would be expected to relate the FLP scheduling
pattern to the situation when 3PC blocks, and this author is not aware of any research which has made
this connection concrete. Indeed, it is not entirely clear that 3PCcould be used to solve the consensus
problem: perhaps the latter is actually a harder problem, in which case the inability to solve consensus
might not imply that 3PC cannot be solved in asynchronous systems.

As a matter of fact, although it isobvious that 3PC cannot be solved when the network is
partitioned, if one studies the model used in FLP carefully one discovers that network partitioning is not
actually a failure model admitted by this work: the FLP result assumes that every message sent will
eventually be received, in FIFO order. Thus FLP essentially requires that every partition eventually be
fixed, and that every message eventually get through. The tendency of 3PC to block during partitions,
which concerned us above, is not captured by FLP because FLP is willing to wait until such a partition is
repaired (and implicitly assumes that it will be), while we wanted 3PC to make progress even while the
partition is present (whether or not it will eventually be repaired).

To be more precise, FLP tells us that any asynchronous consensus decision can beindefinitely
delayed, not merely delayed until a problematic communication link is fixed. Moreover, it says that this
is true even if every message sent in the system eventually reaches its destination. During this period of
delay the processes may thus be quite active. Finally, and in some sense most surprising of all, the proof
doesn’t require that any process fail at all: it is entirely based on a pattern of message delays. Thus, FLP
not only predicts that we would be unable to develop a 3PC protocol that can guarantee progress despite
failures, but in fact that there is no 3PC protocol that can terminate at all, even if no failures actually
occur and the network is merely subject to unlimited numbers of network partitioning events. Above, we
convinced ourselves that 3PC would need to block (wait) in a single situation; FLP tells us that if a
protocol such as 3PC can be used to solve the consensus, then there is a sequence of communication
failures that would it from reaching a commit or abort point regardless of how long it executes!

Kenneth P. Birman - Building Secure and Reliable Network Applications228

228

To see that 3PC solves consensus, we should be able to show how to map one problem to the
other, and back. For example, suppose that the inputs to the participants in a 3PC protocol are used to
determine their vote, for or against commit, and that we pick one of the processes to run the protocol.
Superficially, it may seem that this is a mapping from 3PC to consensus. But recall that consensus of the
type considered by FLP is concerned with protocols that tolerate a single failure, which would presumably
include the process that starts the protocol. Moreover, although we didn’t get into this issue, consensus
has a non-triviality requirement, which is that if all the inputs are ‘1’ the decision will be ‘1’, and if all
the inputs are ‘0’ the decision should be ‘0’. As stated, our mapping of 3PC to consensus might not
satisfy non-triviality while also overcoming a single failure. This author is not aware of a detailed
treatment of this issue. Thus, while it would not be surprising to find that 3PC is equivalent to consensus,
neither is it obvious that the correspondence is an exact one.

But assume that 3PC is in fact equivalent to consensus. In atheoretical sense, FLP would
represent a very strong limitation on 3PC. In apractical sense, though, it is unclear whether it has direct
relevance to developers of reliable distributed software. Above, we commented that even the scenario that
causes 2PC to block is extremely unlikely unless the coordinator is also a participant; thus 2PC (or 3PC
when the coordinator actually is a participant) would seem to be an adequate protocol for most real
systems. Perhaps we are saved from trying to develop some other very strange protocol to evade this
limitation: FLP tells us that any such protocol will sometimes block. But once 2PC or 3PC has blocked,
one could argue that it is of little practical consequence whether this was provoked by a complex sequence
of network partitioning failures or by something simple and “blunt” like the simultaneous crash of a
majority of the computers in the network. Indeed, we would consider that 3PC has failed to achieve its
objectives as soon as the first partitioning failure occurs and it ceases to makecontinuousprogress. Yet
the FLP result, in some sense, hasn’t even “kicked in” at this point: it relates toultimateprogress. In the
FLP work, the issue of a protocol being blocked is not really modeled in the formalism at all, except in the
sense that such a protocol has not yet reached a decision state.

The Asynchronous Computing Model

Although we refer to our model as the “asynchronous one”, it is in fact more constrained. In the
asynchronous model, as used by distributed systems theoreticians, processes communicate entirely
by message passing and there is no notion of time. Message passing is reliable but individual
messages can be delayed indefinitely, and there is no meaningful notion of failure except that of a
process that crashes, taking no further actions, or that violates its protocol by failing to send a
message or discarding a received message. Even these two forms of communication failure are
frequently ruled out.

The form of asynchronous computing environment used in this chapter, in contrast, is intended to be
“realistic”. This implies that there are in fact clocks on the processors and expectations regarding
typical round-trip latencies for messages. Such temporal data can be used to define a notion of
reachability, or to trigger a failure detection mechanism. The detected failure may not be
attributable to a specific component (in particular, it will be impossible to know if a process failed,
or just the link to it), but the fact that some sort of problem has occurred will be detected, perhaps
very rapidly. Moreover, in practice, the frequency with which failures are erroneously suspected
can be kept low.

Jointly, these properties make the asynchronous model used in this textbook “different” than the one
used in most theoretical work. And this is a good thing, too: in the fully asynchronous model, it is
known that the group membership problem cannot be solved, in the sense that any protocol capable
of solving the problem may encounter situations in which it cannot make progress. In contrast,
these problems are always solvable in asynchronous environments that satisfy sufficient constraints
on the frequency of true or incorrectly detected failures and on the quality of communication.

Chapter13: GuaranteeingBehavior in Distributed Systems 229

229

We thus see that although FLP tells us that the asynchronous consensus problem cannotalways
be solved, it says nothing at all about when problems such as this actuallycan be solved. As we will see
momentarily, more recent work answers this question for asynchronous consensus. However, unlike an
impossibility result, to apply this new result one would need to be able to relate a given execution model to
the asynchronous one, and a given problem to consensus.

FLP is frequently misunderstood having proved the impossibility of building fault-tolerant
distributed software for realistic environments. This is not the case at all! FLP doesn’t say that one cannot
build a consensus protocol tolerant of one failure, or of many failures, but simply that if one does build
such a protocol, and then runs it in a system with no notion of global time whatsoever, and no “timeouts”,
there will be a pattern of message delays that prevents it from terminating. The pattern in question may
be extremely improbable, meaning that one might still be able to build an asynchronous protocol that
would terminate with overwhelming probability. Moreover, realistic systems have many forms of time:
timeouts, loosely synchronized global clocks, and (often) a good idea of how long messages should take to
reach their destinations and to be acknowledged. This sort of information allows real systems to “evade”
the limitations imposed by FLP, or at least creates a runtime environment that differs in fundamental ways
from the FLP-style of asynchronous environment.

This brings us to the more recent work in the area, which presents a precise characterization of
the conditions under which a consensus protocol can terminate in an asynchronous environment.
Chandra and Toueg have shown how the consensus problem can be expressed using what they call “weak
failure detectors”, which are a mechanism for detecting that a process has failed without necessarily doing
so accurately [CT91, CHT92]. A weak failure detector can make mistakes and change its mind; its
behavior is similar to what might result by setting some arbitrary timeout, declaring a process faulty if no
communication is received from it during thetimeout period, and then declaring that it is actually
operational after all if a message subsequently turns up (the communication channels are still assumed to
be reliable and FIFO). Using this model, Chandra and Toueg prove that consensus can be solved provided
that a period of execution arises during which all genuinely faulty processes are suspected as faulty, and
during which at least one operational process is never suspected as faulty by any other operational process.
One can think of this as a constraint on the quality of the communication channels and the timeout period:
if communication works well enough, and timeouts are accurate enough, for a long enough period of time,
a consensus decision can be reached. Interested readers should also look at [BDM95, FKMBD95, GS96,
Ric96]. Two very recent papers in the area are [BBD96, Nei96].

Kenneth P. Birman - Building Secure and Reliable Network Applications230

230

What Chandra and Toueg have done has general implications for the developers of other forms
of distributed systems that seek to guarantee reliability. We learn from this result that to guarantee
progress, the developer may need to guarantee a higher quality of communication than in the classical
asynchronous model, a degree of clock synchronization (lacking in the model), or some form of accurate
failure detection. With any of these, the FLP limitations can be evaded (they no longer hold). In general,
it will not be possible to say “my protocol always terminates” without also saying “when such and such a
condition holds” on the communication channels, the timeouts used, or other properties of the
environment.

This said, the FLP result does create a quandary for practitioners who hope to be rigorous about
the reliability properties of their algorithms, by making it difficult to talk in rigorous terms about what

Impossibility of Computing to Work
The following tongue-in-cheek story illustrates the sense in which a problem such as distributed
consensus can be “impossible to solve.” Suppose that you were discussing commuting to work with a
colleague, who comments that because she owns two cars, she is able to reliably commute to work.
In the rare mornings when one car won’t start, she simply takes the other, and gets the non-
functioning one repaired if it is still balky when the weekend comes around.

In a formal sense, you could argue that your colleague may belucky, but is certainly not accurate in
claiming that she can “reliably” commute to work. After all, both cars might fail at the same time.
Indeed, even if neither car fails, if she uses a “fault-tolerant” algorithm, a clever adversary might
easily prevent her from ever leaving her house.

This adversary would simply prevent the car from starting during a period that lasts a little longer
than your colleague is willing to crank the motor before giving up and trying the other car. From
her point of view, both cars will appear to have broken down. The adversary, however, can
maintain that neither car was actually faulty, and that had she merely cranked the engine longer,
either car would have started. Indeed, the adversary can argue that had shenot tried to use a fault-
tolerant algorithm, she could have started either car by merely not giving up on it “just before it was
ready to start.”

Obviously, the argument used to demonstrate the impossibility of solving problems in the general
asynchronous model is quite a bit more sophisticated than this, but it has a similar flavor in a deeper
sense. The adversary keeps delaying a message from being delivered just long enough to convince
the protocol to “reconfigure itself” and look for a way of reaching concensus without waiting for the
process that sent the message. In effect, the protocol gives up on one car and tries to start the other
one. Eventually, this leads back to a state where some critical message will trigger a consensus
decision (“start the car”). But the adversary now allows the old message through and delays
messages from this new “critical” source.

What is odd about the model is that protocols are not supposed to be bothered by arbitrarily long
delays in message deliver. In practice, if a message is delayed by a “real” network for longer than a
small amount of time, the message is considered to have been lost and the link, or its sender, is
treated as having crashed. Thus, the asynchronous model focuses on a type of behavior that is not
actually typical of real distributed protocols.

For this reason, readers with an interest in theory are encouraged to look to the substantial
literature on the theory of distributed computing, but to do so from a reasonably sophisticated
perspective. The theoretical community has shed important light on some very fundamental issues,
but the models used are not always realistic ones. One learns from these results, but must also be
careful to appreciate the relevance of the results to the more realistic needs of practical systems.

Chapter13: GuaranteeingBehavior in Distributed Systems 231

231

protocols for asynchronous distributed systems actually guarantee. We would like to be able to talk about
one protocol being more tolerant of failures than another, but now we see that such statements will
apparently need to be made about protocols that one can only guarantee fault-tolerance in a conditional
way, and where the conditions may not be simple to express or to validate.

What seems to have happened here is that we lack an appropriate notion of what it means for a
protocol to be “live” in an asynchronous setting. The FLP notion of liveness is rigorously defined and not
achievable, but in any case seems not to get at the more relative notion of liveness that we seek in
developing a “non-blocking commit protocol”. As it happens, even this more relative form of liveness is
not always achievable, and this coincidence has sometimes lead practitioners and even theoreticians to
conclude that the forms of liveness are “the same”, since neither is always possible. This subtle but very
important point has yet to be treated adequately by the theoretical community. We need a model within
which we can talk about 3PC making progress “under conditions when 2PC would not do so” without
getting snarled in the impossibility of guaranteeing progress for all possible runs in the asynchronous
model.

Returning to our data replication problem, these theoretical results do have some practical
implications. In particular, they suggest that there may not be much more that can be accomplished in a
static computing model. The quorum methods give us a way to overcome failures or damage to limited
numbers of data objects within a set of replicas; although expensive, such methods clearly work. While
they would not work with a very serious type of failure in which processes behave maliciously, the
Byzantine agreement and consensus literature suggests that one cannot always solve this problem in an
asynchronous model, and the synchronous model is sufficiently specialized as to be largely inapplicable to
standard distributed computing systems.

Our best hope, in light of these limitations, will be to focus on the poor performance of the style
of replication algorithm arrived at above. Perhaps a less costly algorithm would represent a viable option
for introducing tolerance to at least a useful class of failures in realistic distributed environments.
Moreover, although the FLP result tells us that for certain categories of objectives that are as strong as
consensus, availability must always be limited, the result does not speak directly to the sorts of tradeoffs
between availability and cost seen in 2PC and 3PC. Perhaps we can talk about optimal progress and
identify the protocol structures that result in the best possible availability without sacrificing consistency,
even if we must accept that our protocols will (at least theoretically) remain exposed to scenarios in which
they are unable to make progress.

13.9 The Dynamic Group Membership Problem
If we desire to move beyond the limitations of the protocols presented above, it will be necessary to
identify some point of leverage offering a practical form of freedom that can be exploited to reduce the
costs of reliability, measured in terms of messages exchanged to accomplish a goal like updating
replicated data, or rounds of messages exchanged for such a purpose. What options are available to us?

Focusing on the model itself, it makes sense to examine the static nature of the membership
model. In light of the fact that real programs are started, run for a while, and then terminate, one might
ask if a static membership model really makes sense in a distributed setting. The most apparent response
is that the hardware resources on which the programs execute will normally be static, but also that such a
model actually may not berequired for many applications. Moreover, the hardware base used in many
systems does change over time, albeit slowly and fairly infrequently. If one assumes that certain platforms
are always started with the same set of programs running on them, a static membership model is closely
matched to the environment, but if one looks at the same system over a long enough time scale to

Kenneth P. Birman - Building Secure and Reliable Network Applications232

232

encompass periods of hardware reconfiguration and upgrades, or looks at the applications themselves, the
static model seems less natural.

Suppose that one grants that a given application is closely matched to the static model. Even in
this case, what really makes that system static is the “memory” its component programs retain of their
past actions; otherwise, even though the applications tend to run on the same platforms, this is of limited
importance outside of its implications for the maximum number of applications that might be operational
at any time. Suppose that a computer has an attached disk on it, and some program is the manager for a
database object stored on that disk. Each time this program interacts with other programs in the system,
its entire past history of interactions is evidenced by the state of the database at the time of the interaction.
It makes sense to model such a system as having a set of processes that may be inaccessible for periods of
time, but that are basically static and predefined,because the data saved on disk lets them prove that this
was the case.Persistence, then, is at the core of the static model.

Another example of a setting in which the resources are fundamentally static would be a system
in which some set of computers control a collection of external devices. The devices will presumably not
represent a rapidly changing resource, hence it makes a lot of sense to model the programs that manage
them as a static group of processes. Here, the external world is persistent, to the degree that it retains
memory of the actions taken in the past. Absent such memory, though, one might just as well call this a
dynamic system model.

In fact, there are a great many types of programs that are launched and execute with no particular
memory of the past activities on the computer used to run them. These programs may tend to run
repeatedly on the same set of platforms, and one certainly could apply a static system membership model
to them. Yet in a deeper sense they are oblivious to the place at which they run. Such a perspective gives
rise to what we call thedynamic membership model, in which the set of processes that compose the system
at a given time varies. New processes are started andjoin the system, while active processesleave the
system when they terminate, fail, or simply chose to disconnect themselves. While such a system may
also have a static set of processes associated with it, such as a set of servers shared by the dynamically
changing population of transient processes, it makes sense to adopt a dynamic membership model to deal
with this collection of transient participants.

Even the process associated with a static resource such as a database can potentially be modeled
as a dynamic component of the system to which it belongs. In this perspective there is a need for the
system to behave in a manner consistent with the externally persistent actions taken by previous members,
which may be recorded in databases or have had external effects on the environment that must be
respected. On the other hand, the process that manages such a resource is treated as a dynamic
component of the system that must be launched when the database server isbooted and that terminates
when the server crashes. Its state is volatile: the database persists, but not the memory contents of the
server at the time it shuts down. Thus, even if one believes that a static system model is physically
reasonable, it may still be acceptable to model this with a dynamic model, provided that attention is paid
to externally persistent actions initiated by system members. The advantage of doing so is that the model
will not be tied to the system configuration, so hardware upgrades and other configuration changes do not
necessarily have to be treated outside of the model in which reliability was presented. To the degree that
systems need to be self-managing, such freedom can be extremely useful.

The dynamic model poses new challenges, not the least of which is to develop mechanisms for
tracking the current membership of the system, since this will no longer be a “well known” quantity. It
also offers significant potential for improvements in our protocols, however, particularly if processes that
leave the system are considered to have terminated. The advantage, as we will see shortly, is that

Chapter13: GuaranteeingBehavior in Distributed Systems 233

233

agreementwithin the operational group of system membersis an easier problem to solve than the sorts of
consensus and replication problems examined above for a static set of possibility inaccessible members.

In the remainder of this section,
we explore some of the fundamental
problems raised by dynamic
membership. The treatment
distinguishes two cases: those in which
actions must bedynamically uniform,
meaning that any action taken by a
process must be consistent with
subsequent actions by the operational
part of the system [ADKM92a, SS93,
MBRS94], and those in which dynamic
uniformity is not required, meaning that
the operational part of the system is
taken to “define” the system, and the
states and actions of processes that

subsequently fail can be discarded. Dynamic uniformity captures the case of a process that, although
executed within a dynamic system model, may perform externally visible actions. In our database server
example, the server process can perform such actions, by modifying the contents of the database it
manages.

Dynamic uniformity may seem similar to the property achieved by a commit protocol, but there
are important differences. In a commit protocol, we require thatif any process commits some action, all
processes will commit it.This obligation holds within a statically defined set of processes: a process that
fails may later recover, so the commit problem involves an indefinite obligation with regard to a set of
participants that is specified at the outset. In fact, the obligation even holds if a process reaches a decision
and then crashes without telling any other process what that decision was.

application is
dynamic

server is static but
associated process
is dynamic

Figure 13-10: Trading system

Kenneth P. Birman - Building Secure and Reliable Network Applications234

234

Dynamic uniformity says thatif
any process performs some action, all
processes that remain operational will
also perform it(Figure 13-14). That is,
the obligation to perform an action
begins as soon as any process in the
system performs that action, and then
extends to processes that remain
operational, but not to processes that
fail. This is because, in a dynamic
membership model, we adopt the view
that if a process is excluded from the
membership it has “failed”, and that a
process that fails never rejoins the
system. In practice, a process that fails
may reconnect as a “new” process, but
when we consider join events, we
normally say that a process that joins the
system is only required to perform those
actions that are initiated after its join
event (in a causal sense). The idea is
that a process that joins the system,
whether it is new or some sort of old
process that is reconnecting after a long
delay, learns the state of the system as it
first connects, and then is guaranteed to

perform all the dynamically uniform actions that any process performs, until such time as it fails or
(equivalently) is excluded from the system membership set.

Real-world applications often have a need for dynamic uniformity, but this is not invariably the
case. Consider a desktop computing system used in a financial application. The role of the application
program might be to display financial information of importance to the trader in a timely manner, to
compute financial metrics such as theoretical prices for specified trading instruments, and to communicate
new trades to the exchanges at which they will be carried out. Such systems are common and represent a
leading-edge example of distributed computing used in support of day-to-day commerce. These systems
are also quite critical to their users, so they are a good example of an application in which reliability is
important.

Is such an application best viewed as static, or dynamic, and must the actions taken be
dynamically uniform ones? If we assume that the servers providing trading information and updates are
continuously operational, there is little need for the application on the trader’s desktop to retain
significant state. It may make sense to cache frequently used financial parameters or to keep a local log of
submitted trading requests as part of the application, but such a system would be unlikely to provide
services when disconnected from the network and hence is unlikely to have any significant form of local
state information that is not also stored on the databases and other servers that maintain the firm’s
accounts.

Thus, while there are some forms of information that may be stored on disk, it is reasonable to
view this as an example of a dynamic computing application. The trader sits down at his or her desk and
begins to work, launching one or more programs that connect to the back-end computing system and start
providing data and support services. At the end of the day, or when no longer needed, the programs shut
down. And in the event of a network communication problem that disconnects the desktop system from

p

q

r

crashes*

p

q

r

crashes*

*

*

Figure 13-11: Non-uniform (above) and dynamically uniform
(below) executions. In the non-uniform case, process p takes an
action (denoted "*") that no other process takes. This is acceptable
because p crashes. In the dynamically uniform case, all must take
the action if any does so. This implies that before p took the action,
its intention to do so must have been communicated to the remainder
of the system.

Chapter13: GuaranteeingBehavior in Distributed Systems 235

235

the system servers, the trader is more likely to move to a different station than to try and continue using it
while disconnected. Rapidly, any “state” that was associated with the disconnected station will become
stale, and when the station is reconnected, it may make more sense to restart the application programs as
if from a failure rather than try and reintegrate them into the system so as to exploit local information not
available on the servers.

This type of dynamicism is common in client-server architectures. Recall the discussion of
caching that arose when we considered web proxies in Part II of the textbook. The cached documents
reside within a dynamically changing set of processes that surround a static set of servers on which the
originals reside. The same could be said for the file systems we examined in Part I, which cache buffers
or whole files.

It is not often required that actions taken by a user-interface program satisfy a dynamic
uniformity property. Dynamic uniformity arises when a single action is logically taken at multiple places
in a network, for example when a replicated database is updated, or when a set of traders are all asked to
take some action and it is important thatall of them do so. In our trading system, one could imagine the
server sending information to multiple client systems, or a client entering a trading strategy that impacts
multiple other clients and servers. More likely, however, the information sent by servers to the client
systems will be pricing updates and similar data, and if the client system and server system fail just as the
information is sent, there may not be any great concern that the same message be delivered to every other
client in the network. Similarly, if the client sends a request for information to the server but fails at the
instant the request is sent, it may not be terribly important if the request is seen by the server or not.
These are examples of non-dynamically-uniform actions.

In contrast, although the process that handles the database can be viewed as a dynamic member
of the system, its actions do need to satisfy dynamically uniform. If a set of such servers maintain
replicated data or have any sort of consistency property that spans them as a set, it will be important that if
an action is taken by one process it will also be taken by the others.

Thus, our example can be modeled as a dynamic system. Some parts of the system may require
dynamic uniformity, but others can manage without this property. As we will see shortly, this choice has
significant performance implications, hence we will work towards a family of protocols in which dynamic
uniformity is available on an operation by operation basis, depending on the needs of the application and
the costs they are prepared to pay for this guarantee.

13.10 The Group Membership Problem
The role of a group membership service (GMS) is tomaintain the membership of a distributed system on
behalf of the processes that compose it [BJ87b, Cri91b, MPS91, MSMA91, RB91, ADKM92b, Gol92,
Ric92, Ric93, RVR93, Mal94, MMA94, Aga94, BDGB94, Rei94b BG95, CS95, ACBM95, BDM95,
FKMBD95, CHTC96, GS96]. As described above, processes join and leave the system dynamically over
its lifetime. We will adopt a model in which processes wishing to join do so by first contacting theGMS,
which updates the list of system members and then grants the request. Once admitted to the system, a
process may interact with other system members. Finally, if the process terminates, the GMS service will
again update the list of system members.9

9 The author’s work in this area included an effort to break out the GMS problem from the context in which we use
it, specifying it as a formal abstract question using temporal logic, and then using the temporal logic properties to
reason about the correctness and optimality of the protocols used to implement GMS. Unfortunately, some of this
work was later found to have flaws, specifically in the temporal logic formulas that were proposed as the rigorous
specification of the GMS. Readers who become interested in this area should be aware that the GMS specification

Kenneth P. Birman - Building Secure and Reliable Network Applications236

236

The interface between the GMS and other system processes provides three operations, tabulated
in Figure 13-12. Thejoin operation is involved by a process that wishes to become a system member.
The monitor operation is used by a process to register its interest in the status of some other process;
should that process be dropped from the membership, a callback will occur to notify it of the event. Such
a callback is treated as the equivalent of a failure notification in the failstop computing model: the process
is considered to have crashed, all communication links with it are severed, and messages subsequently
received from it are rejected. Finally, the leaveoperation is used by a process that wishes to disconnect
itself from the system, or by some other system component that has detected a fault and wishes to signal
that a particular process has failed. We assume throughout this section that failure detections are
inaccurate in the sense that they may result from partitioning of the network, but are otherwise of
sufficiently good quality as to rarely exclude an operational process as faulty.

The GMS itself will need to be highly available, hence it will typically be implemented by a set of
processes that cooperate to implement the GMS abstraction. Although these processes would normally
reside on a statically defined set of server computers, so that they can readily be located by a process
wishing to join the system, the actual composition of the group may vary over time due to failures within
the GMS service itself, and one can imagine other ways of tracking down representatives (files, name
services, the use of hardware broadcast to poll for a member, etc). Notice that in order to implement the
GMS abstraction on behalf of the remainder of the system, a GMS server needs to solve the GMS problem

used in papers by Ricciardi and Birman does have some fairly serious problems. Better specifications have
subsequently been proposed by Malkhi (unpublished; 1995), Babaoglu [BBD96], and Neiger [Nei96].

The essential difficulty is that the behavior of a GMS implementation depends upon future events. Suppose that a
processp suspects that processq is faulty. If p itself remains in the system,q will eventually be excluded from it.
But there are cases in whichp might itself be excluded from the system, in which bothp andq might be excluded,
and in which the system as a whole is prevented from making progress because less than a majority of the
processes that participated in the previous system view have remained operational. Unfortunately, it is not clear
which of these cases will apply untillater in the executionwhen the system’s future has become definite. In the
specification of the GMS one wants to say that “ifp suspects the failure ofq thanq will eventually be excluded
from the system, unlessp is excluded from the system.” However, formalizing this type of uncertain action is
extremely difficult in the most popular forms of temporal logics.

A further problem was caused by what is ultimately a misunderstanding of terminology. In the theory community,
one says that a problem is “impossible” if the problem is “not always solvable” in the target environment. Thus,
because there can be sequences of failures for which GMS is unable to make progress, the GMS problem is an
“impossible one”. The theory community deals with this by defining special types of failure detectors and proving
that a problem like GMS is (always) solvable given such a failure detector. They do not necessarily tackle the
issues associated with implementing such a failure detector.

In our specification of GMS Ricciardi and I used a similar approach, characterizing GMS as “live provided that the
frequency of failures was sufficiently low”, but using english rather than temporal logic formulas to express these
conditions. Subsequent readers were critical of this approach, arguing that from the formulas alone it was
impossible to know precisely what were the conditions for which GMS is guaranteed to be live. Moreover, they
proved that in the absense of some form of restrictive condition (some form of failure detector), the GMS problem
was “impossible” in the sense that it cannot always be solved in the general asynchronous model. This is not
surprising, and reflects the same limitations we encountered when looking at the multi-phase commit protocol.

In summary, then, there exists an attempt to formalize the GMS problem, and there are some known and serious
problems with the proposed formalization. However, the proposed protocols are generally recognized to work
correctly, and the concerns that have been raised revolve around relatively subtle theoretical issues having to do
with the way the formal specification of the problem was expressed in temporal logic. At the time of this writing,
there has been encouraging progress on these issues, and we are closer than ever before to knowing precisely when
GMS can be solved and precisely how this problem relates to the asynchronous concensus problem. These
research topics, however, seem to have no practical implications at all for the design of distributed software
systems such as the ones we present here: they warn us that we will not always be able to guarantee progress,
consistency, and high availability, but do not imply that we will not “usually” be successful in all of these goals.

Chapter13: GuaranteeingBehavior in Distributed Systems 237

237

on its own behalf. We will say that it uses agroup membership protocol, or GMP, for this purpose. Thus,
the GMP deals with the membership of a small “service,” theGMS, which the remainder of the system (a
potentially large set of processes) employ to track the composition of the system as a whole.

Similar to the situation for other system processes that don’t comprise theGMS, the GMP
problem is defined in terms ofjoin and leaveevents; the latter being triggered by inability of the GMS
processes to communicate with one-another. Clearly, such an environment creates the threat of a
partitioning failure, in which a single GMS might split into multiple GMS sub-instances, each of which
considers the other to be faulty. What should be our goals when such a partitioned scenario arises?

Suppose that our distributed system is being used in a setting such as air-traffic control. If the
output of the GMS is treated as being the logical equivalent of a failure notification, one would expect the
system to reconfigure itself after such notifications to restore full air traffic control support within the
remaining set of processes. For example, if some component of the air traffic control system is
responsible for advising controllers as to the status of sectors of the airspace (free or occupied), and the
associated process fails, the air traffic system would probably restart it by launching a new status manager
process.

Now, a GMS partition would be the likely consequence of a network partition, raising the
prospect that two air traffic sector services could find themselves simultaneously active, both trying to
control access to the same portions of the airspace, and neither aware of the other! Such an inconsistency
would have disastrous consequences. While the partitioning of the GMS might be permissible, it is clear
that at most one of the resulting GMS components should be permitted to initiate new actions.

From this example we see that although one might want to allow a system to remain operational
during partitionings of theGMS, one also needs a way to pick one component of the overall system as the
“primary” one, within which authoritative decisions can be taken on behalf of the system as a whole
[Ric93, Mal94]. Non-primary components might report information on the basis of their state as of the
time when a partitioning occurred, but would not permit potentially conflicting actions (like routing a
plane into an apparently free sector of airspace) to be initiated. Such an approach clearly generalizes: one
can imagine a system in which some applications would be considered “primary” within a component that
is considered non-primary for other purposes. Moreover, there may be classes of actions that are safe
even within a non-primary component; an example would be the reallocation of air traffic within sectors
of the air traffic service already owned by the partition at the time the network failed. But it is clear that
any GMP solution should at least track primaryness so that actions can be appropriately limited.10

The key properties of the primary component of the GMS will be that its membership should
overlap with the membership of a previous primary component of theGMS, and that there should only be
one primary component of the GMS within any partitioning of the GMS as a whole. We will then say that
the primaryness of a partition of the distributed system as a whole is determined by the primaryness of the
GMP component to which its processes are connected.

At the outset of this chapter we discussed notions of time in distributed settings. In defining the
primary component of a partitioned GMS we used temporal terms without making it clear exactly what

10 Later, we will present some work by Idit Keidar and Danny Dolev [KD95], in which a partioned distributed system
is able to make progress despite the fact that no primary component is ever present. However, in this work a static
system membership model is used, and no action can be taken until a majority of the processes in the system as a
whole are known to be “aware” of the action. This is a costly constraint and seems likely to limit the applicability
of the approach.

Kenneth P. Birman - Building Secure and Reliable Network Applications238

238

form of time was intended. In what follows, we havelogical time in mind. In particular, suppose that
processp is a member of the primary component of theGMS, but then suddenly becomes partitioned away
from the remainder of theGMS, executing for an arbitrarily long period oftime without sending or
receiving any additional messages, and finally shutting down. By the discussion up to now, it is clear that
we would want the GMS to reconfigure itself to excludep, if possible, forming a new primary GMS
component that can permit further progress in the system as a whole. But now the question arises of
whetherp would be aware that this has occurred. If not,p might consider itself a member of the previous
primary component of theGMS, and we would now have two primary components of the GMS active
simultaneously.

There are two ways in which we will want to respond to this issue. The first involves a limited
introduction of time into the model. Where clocks are available, it would be useful to have a mechanism
whereby any process that ceases to be a member of a component of a partitioned GMS can detect this
situation within a bounded period of time. For example, it would be helpful to know that within “2
seconds” of being excluded from the GMS,p knows that it is no longer a member of the primary
component. If we assume that clocks are synchronized to a specified degree, we would ideally like to be
able to compute the smallest time constantδ, such that it is meaningful to say thatp will detect this
condition within time t+δ of when it occurs.

In addition to this, we will need a way to capture the sense in which it is legal forp to lag the
GMS in this manner, albeit for a limited period of time. Notice that because we wish to require that
primary components of the GMS have overlapping membership, if we are given two different membership
lists for the GMS,a andb, eithera→b, or b→a. Thus, rather than say that there should be at most one
primary component of the GMS active simultaneously, we will say that any two concurrently active
membership lists for the GMS (in the sense that each is considered current by some process) should be
ordered by causality. Equivalently, we could now say that there is at most a single sequence of GMS
membership lists that are considered to represent the primary component of theGMS. We will use the
term view of the GMS membership to denote the value of the membership list that holds for a given
process within the GMS at a specified point in its execution.

If the GMS can experience a partitioning failure, it can also experience themergingof partitions
[ADKM92b, Mal94, MMA94]. The GMP should therefore include a merge protocol. Finally, if all the
members of the GMS fail, or if the primary partition is somehow lost, the GMP should provide for a
restart from complete failure, or for identification of the primary partition when the merge of two non-
primary partitions makes it possible to determine that there is no active primary partition within the
system. We’ll discuss this issue at some length in Chapter 15.

The protocol that we now present is based on one that was developed as part of the Isis system in
1987 [BJ87b], but was substantially extended by Ricciardi in 1991 as part of her Ph.D. dissertation [RB91,
Ric92, Ric93]. A slightly more elaborate version of this protocol has been proved optimal, but we present
a simpler version for clarity. The protocol has the interesting property that all GMS members see exactly
the same sequence of join and leave events. The members use this property to obtain an unusually
efficient protocol execution.

To avoid placing excessive trust in the correctness or fault-tolerance of the clients, our goal will
be to implement a GMS for which all operations are invoked using a modified RPC protocol. Our
solution should allow a process to issue requests to any member of the GMS server group with which it is
able to establish contact. The protocol implemented by the group should have the property that ajoin
operations are idempotent: if a joining process times out or otherwise fails to receive a reply it can reissue
its request, perhaps to a different server. Having joined the system, clients that detect apparent failures
merely report them to the GMS. The GMS itself will be responsible for all forms of failure notification,

Chapter13: GuaranteeingBehavior in Distributed Systems 239

239

both for GMS members and other clients. Thus, actions that would normally be triggered by timeouts
(such as reissuing an RPC or breaking a stream connection) will be triggered in our system by a GMS
callback notifying the process doing the RPC or maintaining the stream that the party it is contacting has
failed. Figure 13-12 summarizes this interface.

Operation Function Failure Handling

join(process-id, callback)
returns (time,GMS-list)

Calling process is added to member-
ship list of system, returns logical
time of the join event and a list
giving the membership of the GMS
service. The callback function is
invoked whenever the core
membership of the GMS changes.

Idempotent: can be reissued to
any GMS process with same
outcome

leave(process-id)
returns void

Can be issued by any member of the
system. GMS drops the specified
process from the membership list
and issues notification to all mem-
bers of the system. If the process in
question is really operational, it must
rejoin under a new process-id

Idempotent. Fails only if the
GMS process that was the
target is dropped from the GMS
membership list.

monitor(process-id,callback)
returns callback-id

Can be issued by any member of the
system, GMS registers a callback
and will invoke callback(process-id)
later if the designated process fails

Idempotent, as for leave.

Figure 13-12: Table of GMS operations

13.10.1 Protocol used to track GMS Membership
We start by presenting the protocol used to track the core membership of the GMS service itself. These
are the processes responsible for implementing the GMS abstraction, but not their clients. We assume
that the processes all watch one-another using some form of network-level ping operation, detecting
failures by timeout.

Both the addition of new GMS members and the deletion of apparently failed members is
handled by the GMS coordinator, which is the GMS member that has been operational for the longest
period of time. As we will see, although the GMS protocol permits more than one process to be added or
deleted at a time, it orders all add and delete events so that this notion of “oldest” process is well defined
and consistent throughout the GMS. If some process believes the GMS coordinator has failed, it treats the
next highest ranked process (perhaps itself) as the new coordinator.

Our initial protocol will be such that any process suspected of having failed is subsequently
shunnedby the system members that learn of the suspected failure. Upon detection of an apparent failure,
a GMS process immediately ceases to accept communication from the failed process. It also immediately
sends a message to every other GMS process with which it is communicating, informing them of the
apparent failure; they shun the faulty process as well. If a shunned process is actually operational, it will
learn that it is being shunned when it next attempts to communicate with some GMS process that has
heard of the fault, at which point it is expected to rejoin the GMS under a new process identifier. In this
manner, a suspected failure can be treated as if it were a real one.

Kenneth P. Birman - Building Secure and Reliable Network Applications240

240

Having developed this initial protocol, we will discuss extensions that allow partitions to form
and later merge, in Section 13.10.4, and than again in Chapter 15, where we present an execution model
that makes use of this functionality.

Upon learning of a failure or an addition request, the GMS coordinator starts a protocol that will
lead to the updating of the membership list, which is replicated among all GMS processes. The protocol
requires two phases when the processes being added or deleted do not include the old GMS coordinator; a
third phase is used if the coordinator has failed and a new coordinator is taking over. Any number of add
operations can be combined into a single round of the protocol. A single round can also perform multiple
delete operations, but here, there is a limit: at most a minority of the processes present in a given view can
be dropped from the subsequent view (more precisely, a majority of the processes in a given view must
acknowledge the next view; obviously, this implies that the processes in question must bealive!)

In the two-phase case, the first round of the protocol sends the list of add and delete events to the
participants, including the coordinator itself, which all acknowledge receipt. The coordinator waits for as
many replies as possible, but also requires a majority response from the current membership. If less than
a majority of processes are reachable it waits until communication is restored before continuing. If
processes have failed and only a minority are available, a special protocol described below is executed.

Unless additional failures occur at this point in the protocol, which would be very unlikely, a
majority of processes acknowledge the first-round protocol. The GMS coordinator now commits the
update in a second round, which also carrys with it notifications of any failures that were detected during
the first round. Indeed, the second round protocol can be compacted with the first round of a new instance
of the deletion protocol, if desired. The GMS members update their membership view upon reception of
the second round protocol messages.

In what one hopes will be unusual conditions, it may be that a majority of the previous
membership cannot be contacted because too many GMS processes have crashed. In this case, a GMS
coordinator still must ensure that the failed processes did not acquiesce in a reconfiguration protocol of
which it was not a part. In general, this problem may not be solvable: for example, it may be that a
majority of GMS processes have crashed, and hence prior to crashing they could have admitted any
number of new processes and deleted the ones now trying to run the protocol. Those new processes could
now be anywhere in the system. In practice, however, this problem is often easy to solve: the GMS will
most often execute within a static set of possible server hosts, and even if this set has some small degree of
dynamicism, it is normally possible to track down any possible GMS server by checking some moderate
number of nodes for a representative.

Both of these two cases were for the case where the coordinator did not fail. A three-phase
protocol is required when the current coordinator is suspected as having failed, and some other
coordinator must take over. The new coordinator starts by informing at least a majority of the GMS
processes listed in the current membership that the coordinator has failed, and collecting their
acknowledgements and current membership information. At the end of this first phase the new
coordinator may have learned of pending add or delete events that were initiated by the prior coordinator
before it was suspected as having failed. The first round protocol also has the effect of ensuring that a
majority of GMS processes will start to shun the old coordinator. The second and third rounds of the
protocol are exactly as for the normal case: the new coordinator proposes a new membership list,
incorporating any add events of which it has learned, and all the delete events including those it learned
about during the initial round of communication and that for the old coordinator. It waits for a majority to
acknowledge this message and then commits it, piggybacking suspected failure information for any
unresponsible processes.

Chapter13: GuaranteeingBehavior in Distributed Systems 241

241

Ricciardi has given a detailed proof that the above protocol results in a single, ordered sequence
of process add and leave events for the GMS, and that it isimmune to partitioning [Ric92]. The key to
her proof is the observation that any new membership list installed successfully necessarily must be
acknowledged by a majority of the previous one, and hence that any two concurrent protocols will be
related by a causal path. One protocol will learn of the other, or both will learn of one another, and this is
sufficient to prevent the GMS from partitioning. She shows that if thei’th round of the protocol starts
with n processes in the GMS membership, an arbitrary number of processes can be added to the GMS and
at mostn/2-1 processes can be excluded (this is because of the requirement that a majority of processes
agree with each proposed new view). In addition, she shows that even if a steady stream of join and leave
or failure events occurs, the GMS should be able to continuously output new GMS views provided that the
number of failures never rises high enough to prevent majority agreement on the next view. In effect,
although the protocol may be discussing the proposedi+2’nd view, it is still able to commit thei+1’st
view.

13.10.2 GMS Protocol to Handle Client Add and Join Events
We now turn to the issues that arise if a GMS server is used to manage the membership of some larger
number of client processes, which interact with it through the interface given earlier.

In this approach, a process wishing to join the system will locate an operational GMS member. It
then issues ajoin RPC to that process. If the RPC times out the request can simply be reissued to some
other member. When the join succeeds, it learns its ranking (thetime at which the join took place), and
also the current membership of the GMS service, which is useful in setting up subsequent monitor
operations. Similarly, a process wishing to report a failure can invoke theleave operation in any
operational GMS member. If that member fails before confirming that the operation has been successful,
the caller can detect this by receiving a callback reporting the failure of the GMS member itself, and then
can reissue the request.

To solve these problems, we could now develop a specialized protocol. Before doing so, however,
it makes sense to ask if the GMS is not simply an instance of a service that manages replicated data on
behalf of a set of clients; if so, we should instead develop the most general and efficient solutions possible
for the replicated data problem, and then use them within the GMS to maintain this specific form of
information. And indeed, it is very natural to adopt this point of view.

To transform the one problem into the other, we need to understand how an RPC interface to the
GMS can be implemented such that the GMS would reliably offer the desired functionality to its clients,
using data replication primitives internally for this purpose. Then we can focus on the data replication
problem separately, and convince ourselves that the necessary primitives can be developed and can offer
efficient performance.

The first problem that needs to be addressed concerns the case where a client issues a request to
some representative of the GMS that fails before responding. This can be solved by ensuring that such
requests areidempotent, meaning that the same operation can be issued repeatedly, and will repeatedly
return the identical result. For example, an operation that assigns the value 3 to a variablex is
idempotent, whereas an operation that incrementsx by adding 1 to it would not be. We can make the
client join operation idempotent by having the client uniquely identify itself, and repeat the identifier each
time the request must be reissued. Recall that the GMS returns the “time” of the join operation; this can
be made idempotent by arranging that if a client join request is received from a client that is already listed
as a system member, the time currently listed is returned and no other action is taken.

Kenneth P. Birman - Building Secure and Reliable Network Applications242

242

The remaining operations are all initiated by processes that belong to the system. These, too,
might need to be reissued if the GMS process contacted to perform the operation fails before responding
(the failure would be detected when a new GMS membership list is delivered to a process waiting for a
response, and the GMS member it is waiting for is found to have been dropped from the list). It is clear
that exactly the same approach can be used to solve this problem. Each request need only be uniquely
identifiable, for example using the process identifier of the invoking process and some form of counter
(request 17 from processp on hosth).

The central issue is thus reduced to replication of data within theGMS, or within similar groups
of processes. We will postpone this problem momentarily, returning below when we give a protocol for
implementing replicated data within dynamically defined groups of processes.

13.10.3 GMS Notifications With Bounded Delay
If the processes within a system possess synchronized clocks, it is possible to bound the delay before a
process becomes aware that it has been partitioned from the system. Consider a system in which the
health of a process is monitored by the continued reception of some form of “still alive” messages received
from it; if no such message is received after delayσ, any of the processes monitoring that process can
report it as faulty to the GMS. (Normally, such a process would also cease to accept incoming messages
from the faulty process, and would also gossip with other processes to ensure that ifp considersq to have
failed, than any process that receives a message fromp will also begin to shun messages fromq). Now,
assume further that all processes which do receive a “still alive” message acknowledge it.

In this setting,p will become aware that it may have been partitioned from the system within a
maximum delay of 2*ε+σ, where ε represents the maximum latency of the communication channels.
More precisely,p will discover that it has been partitioned from the system 2*ε+σ time units after it last
had contact with a majority of the previous primary component of theGMS. In such situations, it would
be appropriate forp to break any channels it has to system members, and to cease taking actions on behalf
of the system as a whole.

Thus, although the GMS may run its protocol to excludep as early as 2*ε time units beforep
discovers that has been partitioned from the main system, there is a bound on this delay. The implication
is that the new primary system component can safely break locks held byp or otherwise takeover actions
for which p was responsible after 2*ε time units have elapsed.

Chapter13: GuaranteeingBehavior in Distributed Systems 243

243

Reasoning such as this is only possible in systems where clocks are synchronized to a known
precision, and in which the delays associated with communication channels are also known. In practice,
such values are rarely known with any accuracy, but coarse approximations may exist. Thus, in a system
where message passing primitives provide expected latencies of a few milliseconds, one might takeε to be
a much larger number, like one second or ten seconds. Although extremely conservative, such an
approach would in practice be quite safe. Later we will examine real-time issues more closely, to ask how
much better we can do, but it is useful to keep in mind that very coarse-grained real-time problems are
often simple in distributed systems where the equivalent fine-grained real-time problems would be very
difficult or provably impossible. At the same time, even a coarse-grained rule such as this one would only
be safe if there was good reason to believe that the value ofε was a “safe” approximation. Some systems
provide no guarantees of this sort at all, in which case incorrect behavior could result if a period of
extreme overload or some other unusual condition caused theε limit to be exceeded.

To summarize, the “core primary partitionGMS” protocol must satisfy the following properties:

• C-GMS-1: The system membership takes the form of “system views”. There is an initial system view
which is predetermined at the time the system starts. Subsequent views differ by the addition or
deletion of processes.

• C-GMS-2: Only processes that request to be added to the system are added. Only processes that are
suspected of failure, or that request to leave the system, are deleted.

• C-GMS-3: A majority of the processes in view i of the system must acquiesce in the composition of
view i+1 of the system.

• C-GMS-4: Starting from an initial system view, subsequences of a single sequence of “system views”
are reported to system members. Each system member observes such a subsequence starting with the
view in which it was first added to the system, and continuing until it fails, leaves the system, or is
excluded from the system.

p0 p2p1

last ping

last ack

timeout!

timeout at p0

“safe” state

time t

t+2εεεε+σσσσ
t+εεεε+σσσσ
t+σσσσ

t+εεεε

Figure 13-13: If channel delays are bounded, a process can detect that it has been partitioned from the primary
component within a bounded time interval, making it safe for the primary component to take over actions from it
even if where externally visible effects may be involved. Above, the gray region denotes a period during which the
new primary process will be unable to take over because there is some possibility that the old primary process is
still operational in a non-primary component and may still be initiating “authoritative actions”. At the end of the
gray period a new primary process can be appointed within the primary component. There may be a period of real-
time during which no primary process was active, but there is no risk that two were simultaneously active. One can
also bias a system in the other direction, so that there will always be at least one primary active provided that the
rate of failures is limited.

Kenneth P. Birman - Building Secure and Reliable Network Applications244

244

• C-GMS-5: If process p suspects process q of being faulty, then if the core-GMS service is able to
report new views, either q will be dropped from the system, or p will be dropped, or both.

• C-GMS-6: In a system with synchronized clocks and bounded message latencies, any process
dropped from the system view will know that this has occurred within bounded time.

As noted above, the core GMS protocol will not always be able to make progress: there are
patterns of failures and communication problems that can prevent it from reporting new system views.
For this reason,C-GMS-5is a conditional liveness property:if the core GMS is able to report new views,
then it eventually acts upon process add or delete requests. It is not yet clear what conditions represent the
weakest environment within which liveness of the GMS can always be guaranteed. For the protocol given
above, the core GMS will make progress provided that at most a minority of processes from viewi fail or
are suspected as having failed during the period needed to execute the two- or three-phase commit
protocol used to install new views. Such a characterization may seen evasive, since such a protocol may
execute extremely rapidly in some settings and extremely slowly in others. However, unless the timing
properties of the system are sufficiently strong to support estimation of the time needed to run the
protocol, this seems to be as strong a statement as can be made.

We note that the failure detector called <>W in the work of Chandra and Toueg is characterized
in terms somewhat similar to this [CT91, CHT92]. Very recent work by several researchers ([BDM95,
Gue95, FKMB95) has shown that the <>W failure detector can be adapted to asynchronous systems in
which messages can be lost during failures or processes can be “killed” because the majority of processes
in the system consider them to be malfunctioning. Although fairly theoretical in nature, these studies are
shedding light on the conditions under which problems such as membership agreement can always be
solved, and those under which agreement may not always be possible (the theoreticians are fond of calling
the latter settings in which the problem is “impossible”). To present this work here, however, would
require a lengthy theoretical digression, which would be out of keeping with the generally practical tone of
the remainder of the text. Accordingly, we cite this work and simply encourage the interested reader to
turn to the papers for further detail.

13.10.4 Extending the GMS to Allow Partition and Merge Events
Research on the Transis system, at Hebrew University in Jerusalem, has yielded insights into the
extension of protocols such as the one used to implement our primary component GMS so that it can
permit continued operation during partitionings that leave no primary component, or allow activity in a
non-primary component, reconciling the resulting system state when partitions later remerge [ADKM92b,
Mal94]. Some of this work was done jointly with the Totem project at U. C. Santa Barbara [MAMA94].

Briefly, the approach is as follows. In Ricciardi’s protocols, when the GMS is unable to obtain a
majority vote in favor of a proposed new view, the protocol ceases to make progress. In the extended
protocol, such a GMS can continue to produce new views, but no longer considers itself to be the primary
partition of the system. Of course, there is also a complementary case in which the GMS encounters some
other GMS and the two merge their membership views. It may now be the case that one GMS or the other
was the primary component of the system, in which case the new merged GMS will also be primary for
the system. On the other hand, perhaps a primary component fragmented in such a way that none of the
surviving components considers itself to be the primary one. When this occurs, it may be that later, such
components will remerge and primaryness can then be “deduced” by study of the joint histories of the two
components. Thus, one can extend the GMS to make progress even when partitioning occurs.

Some recent work at the University of Bologna, on a system named Relacs, has refined this
approach into one that is notable for its simplicity and clarity. Ozalp Babaoglu, working with Alberto
Bartoli and Gianluca Dini, have demonstrated that a very small set of extensions to a view-synchronous

Chapter13: GuaranteeingBehavior in Distributed Systems 245

245

environment suffice to support EVS-like functionality. They call their model Enriched View Synchrony,
and describe it in a technical report that appeared shortly before this text went to press [BBD96]. Very
briefly, Enriched View Synchrony arranges to deliver onlynon-overlappinggroup views within different
components of a partitioned system. The reasoning behind this is that overlapping views can cause
applications to briefly believe that the same process or site resides on both sides of a partition, leading to
inconsistent behavior. Then, they provide a set of predicates by which a component can determine
whether or not it has a quorum that would permit direct update of the global system state, and algorithmic
tools for assisting in the state merge problem that arises when communication is reestablished. The
author is not aware of any implementation of this model yet, but the primitives are simple and an
implementation in a system such as Horus (Chapter 18) would not be difficult.

Having described these approaches, there remains an important question: whether or not it is
desirableto allow a GMS to make progress in this manner. We defer this point until Chapter 16. In
addition, as was noted in a footnote above, Keidar and Dolev have shown that there are cases in which no
component is ever the primary one for the system, and yet dynamically unform actions can still be
performed through a type of gossip that occurs whenever the network becomes reconnected and two non-
minority components succeed in communicating [KD95]. Although interesting, this protocol is costly:
prior to taking any action, a majority of all the processes in the system must be known to have seen the
action. Indeed, Keidar and Dolev develop their solution for a static membership model, in which the
GMS tracks subsets of a known maximum system membership. The majority requirement makes this
protocol costly, hence although it is potentially useful in the context of wide-area systems that experience
frequent partition failures, it is not likely that one would use it directly in the local-area communication
layers of a system. We will return to this issue in Chapter 15, in conjunction with the model called
Extended Virtual Synchrony.

13.11 Dynamic Process Groups and Group Communication
When the GMS is used to ensure system-wide agreement on failure and join events, the illusion of a
failstop computing environment is created [SM94]. For example, if one were to implement the 3PC
protocol of Section 13.6.1.2 using the notifications of the GMS service as a failure detection mechanism,
the 3PC protocol would be non-blocking provided, of course, that the GMS service itself is able to
remain active and continue to output failure detections. The same power that the GMS brings to the 3PC
problem can also be exploited to solve other problems, such as data replication, and offers us ways to do so
that can be remarkably inexpensive relative to the quorum update solutions presented previously. Yet, we
remain able to say that these systems are reliable in a strong sense: under the conditions when the GMS
can make progress, such protocol will also make progress, and will maintain their consistency properties
continuously, at least when permission to initiate new actions is limited to the primary component in the
event that the system experiences a partitioning failure.

Kenneth P. Birman - Building Secure and Reliable Network Applications246

246

In the subsections that follow, we develop this idea into an environment for computing with what
are calledvirtually synchronous process groups.We begin by focusing on a simpler problem, closely
related to 2PC, namely the reliable delivery of a message to a statically defined group of processes. Not
surprisingly, our solution will be easily understood in terms of the 2PC protocol, delivering messages in
the first phase if internal consistency is all that we require, and doing so in the second phase if dynamic
uniformity (external consistency) is needed. We will then show how this solution can be extended to
provide ordering on the delivery of messages; later, such ordered and reliable communication protocols
will be used to implement replicated data and locking. Next, we show how the same protocols can also be
used to implement dynamic groups of processes. In contrast to the dynamic membership protocols used in
the GMS, however, these protocols will be quite a bit simpler and less costly. Next, we introduce a
synchronization mechanism that allows us to characterize these protocols as failure-atomic with respect to
group membership changes; this implements a model called theview synchronymodel. Finally, we show
how view synchrony can support a more extensive execution model calledvirtually synchrony, which
supports a particularly simple and efficient style of fault-tolerant computing. Thus, step by step, we will
show how to built up a reliable and consistent computing environment starting with the protocols
embodied in the group membership service.

Up to the present we have focused on protocols in terms of a single group of processes at a time,
but the introduction of sophisticated protocols and tools in support of process group computing also
creates the likelihood that a system will need to support a great many process groups simultaneously and
that a single distributed application may embody considerable numbers of groups perhaps many groups
per process that is present. Such developments have important performance implications, and will
motivate us to reexamine our protocols.

crash

p tsrq

Figure 13-14: A dynamically uniform multicast involves a more costly protocol, but if the message is delivered to
any destination, the system guarantees that the remaining destinations will also receive it. This is sometimes
called a “safe” delivery, in the sense that it is safe to take actions that leave externally visible effects with respect
to which the remainder of the system must be consistent. However, a non-uniform multicast is often safe for
applications in which the action taken upon receipt of the message has only internal effects on the system state, or
when consistency with respect to external actions can be established in other ways, for example from the
semantics of the application.

Chapter13: GuaranteeingBehavior in Distributed Systems 247

247

Finally, we will turn to the software engineering issues associated with support for process group
computing. This topic, which is addressed in the next chapter of the textbook, will center on a specific
software system developed by the author and his colleagues, called Horus. The chapter also reviews a
number of other systems, however, and in fact one of the key goals of Horus is to be able to support the
features of some of these other systems within a common framework.

13.11.1 Group Communication Primitives
A group communication primitiveis a procedure for sending a message to a set of processes that can be
addressed without knowledge of the current membership of the set. Recall that we discussed the notion of
a hardwarebroadcastcapable of delivering a single message to every computer connected to some sort of
communications device. Group communication primitives would normally transmit to subsets of the full
membership of a computing system, so we use the termmulticastto describe their behavior. A multicast
is a protocol that sends a message from onesenderprocess to multipledestinationprocesses, which
deliver it.

Suppose that we know that the current composition of some groupG is {p0, pk}. What
properties should a multicast to G satisfy?

The answer to this question will depend upon the application. As will become clear in Chapters
16 and 17, there are a great number of “reliable” applications for which a multicast with relatively weak
properties would suffice. For example, an application that is simply seeking information that any of the
members ofG can provide might multicast an inquiry toG as part of an RPC-style protocol that requires a
single reply, taking the first one that is received. Such a multicast would ideally avoid sending the
message to the full membership ofG, resorting instead to heuristics for selecting a member that is likely to
respond quickly (like one on the same machine as the sender), and implementing the multicast as an RPC
to this member that falls back to some other strategy if no local process is found, or if it fails to respond
before a timeout elapses. One might argue that this is hardly a legitimate implementation of a multicast,
since it often behaves like an RPC protocol, but there are systems that implement precisely this
functionality and find it extremely useful.

A multimedia system might use a similar multicast, but with real-time rate-control or latency
properties that correspond to the requirements of the display software [RS92]. As groupware uses of
distributed systems become increasingly important, one can predict that vendors of web browsers will
focus on offering such functions and that telecommunications service providers will provide the
corresponding communications support. Such support would probably need to be aware of the video

crash

p tsrq

Figure 13-15: Non-dynamically uniform message delivery: the message is delivered to one destination, q, but
then the sender and q crash and the message is delivered to none of the remaining destinations.

Kenneth P. Birman - Building Secure and Reliable Network Applications248

248

encoding that is used, for example MPEG, so that it can recognize and drop data selectively if a line
becomes congested or a date frame is contaminated or will arrive too late to be displayed.

Distributed systems that use
groups as a structuring construct may
require guarantees of a different nature,
and we now focus on those. A slightly
more ambitious multicast primitive that
could be useful in such a group-oriented
application might work by sending the
message to the full membership of the
destination set, but without providing
reliability, ordering, flow control, or any
form of feedback in regard to the
outcome of the operation. Such a
multicast could be implemented by
invoking the IP multicast (or UDP
multicast) transport primitives that we
discussed in Section 3.3.1. The user
whose application requires any of these
properties would implement some form

of end-to-end protocol to achieve them.

A more elaborate form of multicast would be afailure-atomicmulticast, which guarantees that
for a specified class of failures, the multicast will either reach all of its destinations, or none of them. As
we just observed, there are really two forms of failure atomicity that might both be interesting, depending
on the circumstance. A failure-atomic multicast isdynamically uniformif it guarantees that if any process
delivers the multicast, than all processes that remain operational will do so, regardless of whether or not
the initial recipient remains operational subsequent to delivering the message. A failure-atomic multicast
that is not dynamically uniform would guarantee only that if one waits long enough, one will find either
that all the destinations that remained operational delivered the message, or that none did so. To avoid
trivial outcomes, both primitives require that the message be delivered eventually if the sender doesn’t
fail.11

To reiterate a point made earlier, the key difference between a dynamically uniform protocol and
one that is merely failure-atomic but non-uniform has to do with the obligation when the first delivery
event occurs. From the perspective of a recipient processp, if m is sent using a protocol that provides
dynamic uniformity, then whenp delivers m it also knows that any future execution of the system in
which a set of processes remains operational will also guarantee the delivery ofm within its remaining
destinations among that set of processes, as illustrated in Figure 13-14. (We state it this way because

11 Such a definition leaves open the potential for another sort of trivial solution: one in which the act of invoking the
multicast primitive causes the sender to be excluded from the system as faulty. A rigorous non-triviality
requirement would also exclude this sort of behavior, and there may be other trivial cases that this author is not
aware of. However, as was noted early in the textbook, our focus here is on reliability as a practical engineering
discipline, and not on the development of a mathematics of reliability. The author is convinced that such a
mathematics is urgently needed, and is concerned that minor problems such as this one could have subtle and
undesired implications in correctness proofs. However, the logical formalism that would permit a problem such as
this to be specified completely rigorously remain elusive, apparently because of the self-defined character of a
system that maintains its own membership and seeks an internal consistency guarantee but not an external one.
This author is hopeful that with further progress in the area of specification, limitations such as these can be
overcome in the near future.

p

t: joins

srq

crashes

Figure 13-16: Neither form of atomicity guarantees that a message
will actually be delivered to a destination that fails before having an
opportunity to deliver the message, or that joins the system after the
message is sent.

Chapter13: GuaranteeingBehavior in Distributed Systems 249

249

processes that join afterm was sent are not required to deliverm). On the other hand, if processp
receives a non-uniform multicast m, p knows that if both the sender ofm andp crash or are excluded from
the system membership,m may not reach its other destinations, as seen in Figure 13-15.

Dynamic uniformity is a costly property to provide, butp would want this guarantee if its actions
upon receivingm will leave some externally visible trace that the system must know about, such as
redirecting an airplane or issuing money from a automatic teller. A non-dynamic failure atomicity rule
would be adequate for most internal actions, like updating a data structure maintained byp, and even for
some external ones, like displaying a quote on a financial analyst’s workstation, or updating an image in a
collaborative work session. In these cases, one may want the highest possible performance and not be
willing to pay a steep cost for the dynamic uniformity property because the guarantee it provides is not
actually a necessary one. Notice that neither property ensures that a message will reachall of its
destinations, because no protocol can be sure that a destination will not crash before having an
opportunity to deliver the message, as seen in Figure 13-16.

In this section of the textbook, the word “failure” is understood to refer to the reporting of failure
events by the GMS [SM94]. Problems that result in the detection of an apparent failure by a system
member are reported to the GMS but do not directly trigger any actions (except that messages from
apparently faulty processes are ignored), until the GMS officially notifies the full system that the failure
has occurred. Thus, although one could develop failure atomic multicasts against a variety of failure
models, we will not be doing so in this section.

13.12 Delivery Ordering Options
Turning now to multicast delivery ordering, let us start by considering a multicast that offers no
guarantees whatsoever. Using such a multicast, a process that sends two messagesm0 andm1 concurrently
would have no assurances at all about their relative order of delivery or relative atomicity. That is,
suppose thatm0 was the message sent first. Not only mightm1 reach any destinations that it shares with
m0 first, but a failure of the sender might result in a scenario wherem1 was delivered atomically to all its
destinations butm0 was not delivered to any process that remains operational (Figure 13-17). Such an
outcome would be atomic on a per-multicast basis, but might not be a very useful primitive from the
perspective of the application developer! Thus, we should ask what forms of order a multicast primitive
can guarantee, but also ask how order is connected to atomicity in our failure-atomicity model.

Kenneth P. Birman - Building Secure and Reliable Network Applications250

250

We will be studying a hierarchy of increasingly ordered delivery properties. The weakest of these
is usually called “sender order” or “FIFO order” and requires that if the same process sendsm0 and m1

thenm0 will be delivered beforem1 at any destinations they have in common. A slightly stronger ordering
property is called causal delivery order, and says that ifsend(m0)→send(m1), then m0 will be delivered
beforem1 at any destinations they have in common (Figure 13-19). Still stronger is an order whereby any
processes that receive the same two messages receive them in the same order: if at processp,
deliv(m0)→deliv(m1), thenm0 will be delivered beforem1 at all destinations they have in common. This is
sometimes called a totally ordered delivery protocol, but to do so is something of a misnomer, since one
can imagine a number of ordering properties that would be total in this respect without necessarily
implying the existing of a single system-wide total ordering on all the messages sent in the system. The
reason for this is that our definition focuses on delivery orders where messages overlap, but doesn’t
actually relate these orders to an acyclic system-wide ordering. The Transis project calls this type of
locally ordered multicast an “agreed” order, and we like this term too: the destinations agree on the order,
even for multicasts that may have been initiated concurrently and hence that may be unordered by their
senders (Figure 13-20). However, the agreed order is more commonly called a “total” order or an
“atomic” delivery order in the systems that support multicast communication and the papers in the
literature.

G
p1p0 r

m1

m0

m2

q

Figure 13-17: An unordered multicast provides noguarantees. Here, m0 was sent before m1, but is received after
m1 at destination p0. The reception order for m2, sent concurrently by process r, is different at each of its

destinations.

G
p1p0 r

m1

m0

m2

q

Figure 13-18: Sender ordered or "fifo" multicast. Notice that m2, which is sent concurrently, is unordered with
respect to m0 and m1.

Chapter13: GuaranteeingBehavior in Distributed Systems 251

251

One can extend the agreed order into a causal agreed order (now one requires that if the sending
events were ordered by causality, the delivery order will respect the causal send order), or into a system-
wide agreed order (one requires that there exists a single system-wide total order on messages, such that
the delivery ordering used at any individual process is consistent with the message ordering in this system
total order). Later we will see why these are not identical orderings. Moreover, in systems that have
multiple process groups, the issue will arise of how to extend ordering properties to span multiple process
groups.

Wilhelm and Schiper have proposed that total ordering be further classified asweakor strongin
terms analogous to the dynamically uniform and non-uniform delivery properties. A weak total ordering
property would be one guaranteed to hold only atcorrect processes, namely those that remain operational
until the protocol terminates. A strong total ordering property would hold even at faulty processes,
namely those that fail after delivering messages but before the protocol as a whole has terminated.

G
p1p0 r

m2

m0

q0

m1

q1

Figure 13-19: Causally ordered multicast delivery. Here m0 is sent before m1 in a causal sense, because a message
is sent from q0 to q1 after m0 was sent, and before q1 sends m1. Perhaps q0 has requested that q1 send m1. m0 is
consequently delivered before m1 at destinations that receive both messages. Multicast m2 is sent concurrently and
no ordering guarantees are provided. In this example, m2 is delivered after m1 by p0 and before m1 by p1.

G
p1p0 r

m2

m0

q0

m1

q1

Figure 13-20: When using a totally ordered multicast primitive, p0 and p1 receive exactly the same multicasts, and
the message are delivered in identical orders. Above the order happens to also be causal, but this is not a specific
guarantee of the primitive.

Kenneth P. Birman - Building Secure and Reliable Network Applications252

252

For example, suppose that a protocol fixes the delivery ordering for messagesm1 and m2 at
processp, deliveringm1 first. If p fails, a weak total ordering would permit the delivery ofm2 beforem1 at
some other processq that survives the failure, even though this order is not the one seen byp. Like
dynamic uniformity, the argument for strong total ordering is that this may be required if the ordering of
messages may have externally visible consequences, which could be noticed by an external observer who
interacts with a process that later fails, and then interacts with some other process that remained
operational. Naturally, this guarantee has a price, though, and one would prefer to use a less costly weak
protocol in settings where such a guarantee is not required.

Let us now return to the issue raised briefly above, concerning the connection between the
ordering properties for a set of multicasts and their failure atomicity properties. To avoid creating an
excessive number of possible multicast protocols, we will assume here that the developer of a reliable
application will typically want the specified ordering property to extend into the failure atomicity
properties of the primitives used, too. That is, in a situation where the ordering property of a multicast
would imply that messagem0 should be delivered beforem1 if they have any destinations in common, we
will require that ifm1 is delivered successfully, thenm0 must be too, whether or not they actually do have
common destinations. This is sometimes called agap freedomguarantee: it is the constraint that failures
cannot leave holes or gaps in the ordered past of the system. Such a gap is seen in Figure 13-21.

Notice that this rule is stated so that it
would apply even if m0 and m1 have no
destinations in common! The reason for this is
that ordering requirements are normally
transitive: if m0 is beforem1 andm1 is beforem2,
thenm0 is also beforem2, and we would like both
delivery ordering obligations and failure atomicity
obligations to be guaranteed betweenm0 and m2.
Had we instead required that “in a situation where
the ordering property of a multicast implies that
messagem0 should be delivered beforem1, then if
they have any destinations in common, we will
also require that ifm1 is delivered successfully,
then m0 must be too,” the delivery atomicity
requirement might not apply betweenm0 andm2.

Lacking a gap-freedom guarantee, one
can imagine runs of a system that would leave
orphaned processes that are technically prohibited

from communicating with one-another. For example, in Figure 13-21,q1 sends messagem1 to the
members of group G causally afterm0 was sent byq0 to G. The members of G are now required to deliver
m0 before deliveringm1. However, if the failure atomicity rule is such that the failure ofq0 could prevent
m0 from ever being delivered, this ordering obligation can only be satisfied byneverdeliveringm1. One
could say thatq1 has been partitioned fromG by the ordering obligations of the system! Thus, if a system
provides ordering guarantees and failure atomicity guarantees, it should normally extend the latter to
encompass the former.

Yet an additional question arises if a process sends multicasts to a group while processes are
joining or leaving it. In these cases the membership of the group will be in flux at the time that the
message is sent, and one can imagine a number of ways to interpret group atomicity that a system could
implement. We will defer this problem for the present, returning to it in Section 13.12.2.

G
p1p0 r

m2

m0

q0

m1

q1

? ?
crash

Figure 13-21: In this undesirable scenario, the failure of
q0 leaves a "causal gap" in the message delivery order,
preventing q1 from communicating with members of G. If
m1 is delivered, the causal ordering property would be
violated, because send(m0)→send(m1). But m0 will never
be delivered. Thus q1 is logically partitioned from G!

Chapter13: GuaranteeingBehavior in Distributed Systems 253

253

13.12.1.1 Non-Uniform Failure-Atomic Group Multicast
Consider the following simple, but inefficient group multicast protocol. The sender adds a header to its
message listing the membership of the destination group at the time that it sends the message. It now
transmits the message to the members of the group, perhaps taking advantage of a hardware multicast
feature if one is available, and otherwise transmitting the message over stream-style reliable connections
to the destinations. (However, unlike a conventional stream protocol, here we will assume that the
connection is only broken if the GMS reports that one of the endpoints has left the system).

Upon reception of a message, the destination processes deliver it immediately, but then resend it
to the remaining destinations. Again, each process uses reliable stream-style channels for this
retransmission stage, breaking the channel only if the GMS reports the departure of an endpoint. A
participant will now receive one copy of the message from the sender, and one from each non-failed
participant other than itself. After delivery of the initial copy, it therefore discards any duplicates. We
will now argue that this protocol is failure-atomic, although not dynamically uniform.

To see that it is failure-atomic, assume that some processpi receives and delivers a copy of the
message and remains operational. Failure atomicity tells us that all other destinations that remain
operational must also receive and deliver the message. It is clear that this will occur, since the only
condition under whichpi would fail to forward a message topj would be if the GMS reports thatpi has
failed, or if it reports thatpj has failed. But we assumed thatpi does not fail, and the output of the GMS
can be trusted in this environment. Thus, the protocol achieves failure-atomicity. To see that the protocol
is not dynamically uniform, consider the situation if the sender sends a copy of the message only to
processpi and then both processes fail. In this case,pi may have delivered the message and then executed
for some extended period of time before crashing or detecting that it has been partitioned from the system.
The message has thus been delivered to one of the destinations and that destination may well have acted
on it in a visible way, and yet none of the processes that remain operational will ever receive it. As we
noted earlier, this often will not pose a problem for the application, but it is a behavior that the developer
must anticipate and treat appropriately in his or her application.

As can be seen in Figure 13-22, this simple protocol is a costly one: to send a message ton
destinations requiresO(n2) messages. Of course, with hardware broadcast functions, or if the network is
not a bottleneck, the cost will be lower, but the protocol still requires each process to send and receive
each message approximatelyn times.

p0 p3p2p1

Figure 13-22: A very simple reliable multicast protocol. The initial round of messages triggers a second round of
messages as each recipient echoes the incoming message to the other destinations.

Kenneth P. Birman - Building Secure and Reliable Network Applications254

254

But now, suppose that we delay the “retransmission” stage of the protocol, doing this only if the
GMS informs the participants that the sender has failed. This change yields we have a less costly
protocol, which requiresn messages (or just one, if hardware broadcast is an option), but in which the
participants may need to save a copy of each message indefinitely. They would do this “just in case” the
sender fails.

Recall that we are transmitting messages over a reliable stream. It follows that within the lower
levels of the communication system, there is an occassional acknowledgment flowing from each
participant back to the sender. If we tap into this information, the sender will “know” when the
participants have all received copies of its message. It can now send a second phase message out,
informing the participants that it is safe to delete the saved copy of each message, although they must still
save the message “identification” information to reject duplicates if the sender happens to crash midway
through this stage. At this stage the participants can disable their retransmission logic and discard the
saved copy of the message (although not its identification information), since any retransmitted message
would be a duplicate. Later, the sender could run still a third phase, telling the participants that they can
safely delete even the message identification information, because after the second phase there will be no
risk of a failure that would cause the message to be retransmitted by the participants.

But now a further optimization
is possible. There is no real hurry to run
the third phase of this protocol, and even
the second phase can be delayed to some
degree. Moreover, most processes that
send a multicast will tend to send a
subsequent one soon afterwards: this
principle is well known from all forms of
operating systems and database software,
and can be summarized by the maxim
that the most likely action by any
process is to repeat the same action it
took most recently. Accordingly, it
makes sense to delay sending out
messages for the second and third phase
of the protocol, in the hope that a new
multicast will be initiated and this
information can be piggybacked onto the

first-stage of an outgoing message associated with that subsequent protocol!

In this manner, we arrive at a solution, illustrated in Figure 13-23, that has an average cost ofn
messages per multicast, or just one if hardware broadcast can be exploited, plus some sort of background
cost associated with the overhead to implement a reliable stream channel. When a failure does occur, any
pending multicast will suddenly generate as many asn2 additional messages, but even this effect can
potentially be mitigated. For example, since the GMS provides the same membership list to all processes
and the message itself carried the list of its destinations, the participants can delay briefly in the hope that
some jointly identifiable “lowest ranked” participant will turn out to have received the message and will
terminate the protocol on behalf of all. We omit the details of such a solution, but any serious system for
reliable distributed computing would implement a variety of such mechanisms to keep costs down to an
absolute minimum, and to maximize the value of each message actually transmitted using piggybacking,
delaying tactics, and hardware broadcast.

p0 p3p2p1

ok to deliver

garbage collect

all have seen it

Figure 13-23: An improved 3-phase protocol. Ideally, the second
and third phases would be piggybacked onto other multicasts from
the same sender to the same set of destinations, and hence would not
require “extra” messages.

Chapter13: GuaranteeingBehavior in Distributed Systems 255

255

13.12.1.2 Dynamically Uniform Failure-Atomic Group Multicast
We can extend the above protocol to one that is dynamically uniform, but doing so requires that no
process deliver the message until it is known the processes in the destination group all have a copy. (In
some cases it may be sufficient to know that a majority have a copy, but we will not concern ourselves
with these sorts of special cases now, because they are typically limited to the processes that actually run
the GMS protocol).

We could accomplish this in the original inefficient protocol of Figure 13-22, by modifying the
original non-uniform protocol to delay the delivery of messages until a copy has been received from every
destination that is still present in the membership list provided by theGMS. However, such a protocol
would suffer from the inefficiencies that lead us to optimize the original protocol into the one in Figure
13-23. Accordingly, it makes more sense to focus on that improved protocol.

Here, it can be seen that an
additional round of messages will be
needed before the multicast can be
delivered initially; the remainder of the
protocol can then be used without change
(Figure 13-24). Unfortunately, though,
this initial round also delays the delivery
of the messages to their destinations. In
the original protocol, a message could be
delivered as soon as it reached a
destination for the first time, thus the
latency to delivery is precisely the
latency from the sender to a given
destination for a single “hop”. Now the
latency might be substantially increased:
for a dynamically uniform delivery, we
will need to wait for a round-trip to the
slowest process in the set of destinations,
and then one more hop until the sender
has time to inform the destinations that it
is safe to deliver the messages. In
practice, this may represent an increase

in latency of a factor of ten or more. Thus, while dynamically uniform guarantees are sometimes needed,
the developer of a distributed application should request this property only when it is genuinely necessary,
or performance (to the degree that latency is a factor in performance) will suffer badly.

13.12.2 Dynamic Process Groups
When we introduced the GMS, our system became very dynamic, allowing processes to join and leave at
will. But not all processes in the system will be part of the same application, and the protocols presented
in the previous section are therefore assumed to be sent to groups of processes that represent subsets of the
full system membership. This is seen in Figure 13-25, which illustrates the structure of a hypothetical
trading system, in which services (replicated for improved performance or availability) implement
theoretical pricing calculations. Here we have one big system, with many small groups in it. How should
the membership of such a subgroup be managed?

p0 p3p2p1

ok to deliver

garbage collect

all have seen it

save message

Figure 13-24: A dynamically uniform version of the optimized,
reliable multicast protocol. Latency to delivery may be much
higher, because no process can deliver the message until all
processes have received and saved a copy. Here, the third and
fourth phases can piggyback on other multicasts but the first two
stages may need to be executed as promptly as possible, to avoid
increasing the latency still further. Latency is often a key
performance factor.

Kenneth P. Birman - Building Secure and Reliable Network Applications256

256

In this section, we introduce a membership management protocol based on the idea that a single
process within each group will serve as the “coordinator” for membership changes. If a process wishes to
join the group, or voluntarily leaves the group, this coordinator will update the group membership
accordingly. (The role of being coordinator will really be handled by the layer of software that
implements groups, so this won’t be visible to the application process itself.) Additionally, the
coordinator will monitor the members (through the GMS, and by periodically pinging them to verify that
they are still healthy), excluding any failed processes from the membership much as in the case of a
process that leaves voluntarily.

In the approach we present here, all processes that belong to a group maintain a local copy of the
current membership list. We call this the “view” of the group, and will say that each time the
membership of the group changes, a “new view” of the group is reported to the members. Our protocol
will have the property that all group members see the identical sequence of group views within any given
component of a partitioned system. In practice, we will mostly be interested in primary-component
partitions, and in these cases, we will simply say that all processes either see identical views for a group
or, if excluded from the primary component, cease to see new views and eventually detect that they are
partitioned, at which point a process may terminate or attempt to rejoin the system much as a new process
would.

The members of a group depend upon their coordinator for the reporting of new views, and
consequently monitor the liveness of the coordinator by periodically pinging it. If the coordinator appears
to be faulty, the member or members that detect this report the situation to the GMS in the usual manner,
simultaneously cutting off communication to the coordinator and starting to piggyback or “gossip” this
information on messages to other members, which similarly cut their channels to the coordinator and, if
necessary, relay this information to theGMS. The GMS will eventually report that the coordinator has
failed, at which point the lowest ranked of the remaining members takes over as the new coordinator, and
similarly if this process fails in its turn.

Market Data Feed:
Current Pricing

Analytics

Long-haul WAN Spooler
(to Zurich, Tokyo,)

Trading display (front
end client systems)

Historical pricing
database

Figure 13-25: Distributed trading system may have both “static” and “dynamic” uses for process groups. The
historical database, replicated for load-balancing and availability, is tied to the databases themselves and hence
can be viewed as static. This is also true of the market data feeds, which are often redundant for fault-tolerance.
Other parts of the system, however, such as the analytics (replicated for parallelism) and the client interface
processes (one or more per trader) are highly dynamic groups. For uniformity of the model, it makes sense to
adopt a dynamic group model, but to keep in mind that some of these groups in fact manage physical resources.

Chapter13: GuaranteeingBehavior in Distributed Systems 257

257

Interestingly, we have now solved our problem, because we can use the non-dynamically uniform
multicast protocol to distribute new views within the group. In fact, this hides a subtle point, to which we
will return momentarily, namely the way to deal with ordering properties of a reliable multicast,
particularly in the case where the sender fails and the protocol must be terminated by other processes in
the system. However, we will see below that the protocol has the necessary ordering properties when it
operates over stream connections that guarantee FIFO delivery of messages, and when the failure
handling mechanisms introduced earlier are executed in the same order that the messages themselves
were initially seen (i.e. if processpi first received multicast m0 before multicastm1, thenpi retransmitsm0

beforem1).

13.12.3 View-Synchronous Failure Atomicity
We have now created an environment within which a process that joins a process group will receive the
membership view for that group as of the time it was added to the group, and will subsequently observe
any changes that occur until it crashes or leaves the group, provided only that the GMS continues to report
failure information. Such a process may now wish to initiate multicasts to the group using the reliable
protocols presented above. But suppose that a process belonging to a group fails while some multicasts
from it are pending? When can the other members be certain that they have seen “all” of its messages, so
that they can take over from it if the application requires that they do so?

Up to now, our protocol structure would not provide this information to a group member. For
example, it may be that processp0 fails after sending a message top1 but to no other member. It is
entirely possible that the failure ofp0 will be reported through a new process group view before this
message is finally delivered to the remaining members. Such a situation would create difficult problems
for the application developer, and we need a mechanism to avoid it. This is illustrated in Figure 13-26.

It makes sense to assume that the application developer will want failure notification to represent
a “final” state with regard to the failed process. Thus, it would be preferable for all messages initiated by
process p0 to have been delivered to their destinations before the failure of p0 is reported through the
delivery of a new view. We will call the necessary protocol aflush protocol, meaning that it flushes
partially completed multicasts out of the system, reporting the new view only after this has been done.

In the example illustrated by Figure 13-26, we did not include the exchange of messages required
to multicast the new view of group G. Notice, however, that the figure is probably incorrect if the new

p0 p3p2p1

crash

G={p0,...p3}

G={p1,p2,p3}

m delivered

m delivered

Figure 13-26: Althoughm was sent when p0 belonged to G, it reaches p2 and p3 after a view change reporting that
p0 has failed. The red and blue delivery events thus differ in that the recipients will observe a different view of the
process group at the time the message arrives. This can result in inconsistency if, for example, the membership of
the group is used to subdivide the incoming tasks among the group members.

Kenneth P. Birman - Building Secure and Reliable Network Applications258

258

view coordinator for group G is actually process p1. To see this, recall that the communication channels
are FIFO and that the termination of an interrupted multicast protocol requires only a single round of
communication. Thus, if process p1 simply runs the completion protocol for multicasts initiated by p0

before it starts the new-view multicast protocol that will announce that p0 has been dropped by the group,
the pending multicast will be completed first. This is shown below.

We can guarantee this behavior
even if multicast m is dynamically
uniform, simply by delaying the new
view multicast until the outcome of the
dynamically uniform protocol has been
determined.

On the other hand, the problem
becomes harder ifp1 (which is the only
process to have received the multicast
from p0) is not the coordinator for the
new view protocol. In this case, it will
be necessary for the new-view protocol to
operate with an additional round, in
which the members of G are asked to
flush any multicasts that are as yet

unterminated, and the new-view protocol runs only when this flush phase has finished. Moreover, even if
the new view protocol is being executed to drop p0 from the group, it is possible that the system will soon
discover that some other process, perhaps p2, is also faulty and must also be dropped. Thus, a flush
protocol should flush messagesregardless of their originating processwith the result that all multicasts
will have been flushed out of the system before the new view is installed.

These observations lead to a communication property that Babaoglu and his colleagues have
called view synchronous communication, which is one of several properties associated with thevirtual
synchrony modelintroduced by the author and Thomas Joseph in 1985-1987. A view-synchronous
communication system ensures that any multicast initiated in a given view of some process group will be
failure-atomic with respect to that view, and will be terminated before a new view of the process group is
installed.

One might wonder how a view-synchronous communication system can prevent a process from
initiating new multicasts while the view installation protocol is running. If such multicasts are locked out,
there may be an extended delay during which no multicasts can be transmitted, causes performance
problems for the application programs layered over the system. But if such multicasts are permitted, the
first phase of the flush protocol will not have flushedall the necessary multicasts!

A solution for this problem was suggested independently by Ladin and Malki, working on
systems called Harp and Transis, respectively. In these systems, if a multicast is initiated while a
protocol to install viewi of group G is running, the multicast destinations are taken to be the future
membership of G when that new view has been installed. For example, in the figure above, a new
multicast might be initiated by process p2 while the protocol to exclude p0 from G is still running. Such a
new multicast would be addressed to {p1, p2, p3} (not to p0), and would be delivered only after the new
view is delivered to the remaining group members. The multicast can thus be initiated while the view
change protocol is running, and would only be delayed if, when the system is ready to deliver a copy of the
message to some group member, the corresponding view has not yet been reported. This approach will
often avoid delays completely, since the new view protocol was already running and will often terminate

p0 p3p2p1

crash

G={p0,...p3}

G={p1,p2,p3}

m delivered

m delivered

Figure 13-27: Process p1 flushes pending multicasts before
initiating the new-view protocol.

Chapter13: GuaranteeingBehavior in Distributed Systems 259

259

in roughly the same amount of time as will be needed for the new multicast protocol to start delivering
messages to destinations. Thus, at least in the most common case, the view change can be accomplished
even as communication to the group continues unabated. Of course, if multiple failures occur, messages
will still queue up on reception and will need to be delayed until the view flush protocol terminates, so this
desirable behavior cannot always be guaranteed.

13.12.4 Summary of GMS Properties

The following is an informal (English-language) summary of the properties that a group
membership service guarantees to members of subgroups of the full system membership. We use the term
process group for such a subgroup. When we say “guarantees” the reader should keep in mind that a
GMS service does not, and in fact cannot, guarantee that it will remain operational despite all possible
patterns of failures and communication outages. Some patterns of failure or of network outages will
prevent such a service from reporting new system views and will consequently prevent the reporting of
new process group views. Thus, the guarantees of a GMS are relative to a constraint, namely that the
system provide a sufficiently reliable transport of messages and that the rate of failures is sufficiently low.

• GMS-1: Starting from an initial group view, the GMS reports new views that differ by addition and
deletion of group members. The reporting of changes is by the two-stage interface described above, which
gives protocols an opportunity to flush pending communication from a failed process before its failure is
reported to application processes.

•GMS-2: The group view is not changed capriciously. A process is added only if it has started and is
trying to join the system, and deleted only if it has failed or is suspected of having failed by some other
member of the system.

• GMS-3: All group members observe continuous subsequences of the same sequence of group views,
starting with the view during which the member was first added to the group, and ending either with a
view that registers the voluntary departure of the member from the group, or with the failure of the
member.

• GMS-4: The GMS is fair in the sense that it will not indefinitely delay a view change associated with
one event while performing other view changes. That is, if the GMS service itself is live, join requests
will eventually cause the requesting process to be added to the group, and leave or failure events will
eventually cause a new group view to be formed that excludes the departing process.

• GMS-5: Either the GMS permits progress only in a primary component of a partitioned network, or, if
it permits progress in non-primary components, all group views are delivered with an additional boolean
flag indicating whether or not the group view resides in the primary component of the network. This
single boolean flag is shared by all the groups in a given component: the flag doesn’t indicate whether a
given view of a group is primary for that group, but rather indicates whether a given view of the group
resides in the primary component of the encompassing network.

Although we will not pursue these points here, it should be noted that many networks have some form of
critical resources on which the processes reside. Although the protocols given above are designed to make
progress when a majority of the processes in the system remain alive after a partitioning failure, a more
reasonable approach would also take into account the resulting resource pattern. In many settings, for
example, one would want to define the primary partition of a network to be the one that retains the
majority of the servers after a partitioning event. One can also imagine settings in which the primary
should be the component within which access to some special piece of hardware remains possible, such as
the radar in an air-traffic control application. These sorts of problems can generally be solved by
associating weights with the processes in the system, and redefining the majority rule as a weighted
majority rule. Such an approach recalls work in the 1970’s and early 1980’s by Bob Thomas of BBN on
weighted majority voting schemes and weighted quorum replication algorithms [Tho79, Gif79].

Kenneth P. Birman - Building Secure and Reliable Network Applications260

260

13.12.5 Ordered Multicast
Earlier, we observed that our multicast protocol would preserve the sender’s order if executed over FIFO
channels, and if the algorithm used to terminate an active multicast was also FIFO. Of course, some
systems may seek higher levels of concurrency by using non-FIFO reliable channels, or by concurrently
executing the termination protocol for more than one multicast, but even so, such systems could
potentially “number” multicasts to track the order in which they should be delivered. Freedom from
gaps in the sender order is similarly straightforward to ensure.

This leads to a broader issue of what forms of multicast ordering are useful in distributed
systems, and how such orderings can be guaranteed. In developing application programs that make use of
process groups, it is common to employ what Leslie Lamport and Fred Schneider call astate machine
style of distributed algorithm [Sch90]. Later, we will see reasons that one might want to relax this model,
but the original idea is to run identical software at each member of a group of processes, and to use a
failure-atomic multicast to deliver messages to the members in identical order. Lamport’s proposal was
that Byzantine Agreement protocols be used for this multicast, and in fact he also uses Byzantine
Agreement on messages output by the group members. The result of this is that the group as a whole
gives the behavior of a single ultra-reliable process, in which the operational members behave identically
and the faulty behaviors of faulty members can be tolerated up to the limits of the Byzantine Agreement
protocols. Clearly, the method requires deterministic programs, and thus could not be used in
applications that are multi-threaded or that accept input through an interrupt-style of event notification.
Both of these are common in modern software, so this restriction may be a serious one.

As we will use the concept, through, there is really only one aspect of the approach that is
exploited, namely that of building applications that will remain in identical states if presented with
identical inputs in identical orders. Here we may not require that the applications actually be
deterministic, but merely that they be designed to maintain identically replicated states. This problem, as
we will see below, is solvable even for programs that may be very non-deterministic in other ways, and
very concurrent. Moreover, we will not be using Byzantine Agreement, but will substitute various weaker
forms of multicast protocol. Nonetheless, it has become usual to refer to this as a variation on Lamport’s
state machine approach, and it is certainly the case that his work was the first to exploit process groups in
this manner.

13.12.5.1 Fifo Order
The FIFO multicast protocol is sometimes calledfbcast (the “b” comes from the early literature which
tended to focus on static system membership and hence on “broadcasts” to the full membership; “fmcast”
might make more sense here, but would be non-standard). Such a protocol can be developed using the
methods discussed above, provided that the software used to implement the failure recovery algorithm is
carefully designed to ensure that the sender’s order will be preserved, or at least tracked to the point of
message delivery.

There are two variants on the basicfbcast: a normalfbcast, which is non-uniform, and a “safe”
fbcast, which guarantees the dynamic uniformity property at the cost of an extra round of communication.

The costs of a protocol are normally measured in terms of the latency before delivery can occur,
the message load imposed on each individual participant (which corresponds to the CPU usage in most
settings), the number of messages placed on the network as a function of group size (this may or may not
be a limiting factor, depending on the properties of the network), and the overhead required to represent
protocol-specific headers. When the sender of a multicast is also a group member, there are really two
latency metrics that may be important: latency from when a message is sent to when it is delivered, which
is usually expressed as a multiple of the communication latency of the network and transport software,

Chapter13: GuaranteeingBehavior in Distributed Systems 261

261

and the latency from when the sender initiates the multicast to when it learns the delivery ordering for
that multicast. During this period, some algorithms will be waiting in the sender case, the sender may
be unable to proceed until it knows “when” its own message will be delivered (in the sense of ordering
with respect to other concurrent multicasts from other senders). And in the case of a destination process,
it is clear that until the message is delivered, no actions can be taken.

In all of these regards,fbcastandsafe fbcastare inexpensive protocols. The latency seen by the
sender is minimal: in the case offbcast,as soon as the multicast has been transmitted, the sender knows
that the message will be delivered in an order consistent with its order of sending. Still focusing on
fbcast,the latency between when the message is sent and when it is delivered to a destination is exactly
that of the network itself: upon receipt, a message isimmediately deliverable. (This cost is much higher if
the sender fails while sending, of course). The protocol requires only a single round of communication,
and other costs are hidden in the background and often can be piggybacked on other traffic. And the
header used forfbcast needs only to identify the message uniquely and capture the sender’s order,
information that may be expressed in a few bytes of storage.

For the safe version offbcast, of course, these costs would be quite a bit higher, because an extra
round of communication is needed to know that all the intended recipients have a copy of the message.
Thussafe fbcasthas a latency at the sender of roughly twice the maximum network latency experienced in
sending the message (to the slowest destination, and back), and a latency at the destinations of roughly
three times this figure. Notice that even the fastest destinations are limited by the response times of the
slowest destinations, although one can imagine “partially safe” implementations of the protocol in which a
majority of replies would be adequate to permit progress, and the view change protocol would be changed
correspondingly.

The fbcast and safe fbcastprotocols can be used in a state-machine style of computing under
conditions where the messages transmitted by different senders are independent of one another, and hence
the actions taken by recipients will commute. For example, suppose that senderp is reporting trades on a
stock exchange and senderq is reporting bond pricing information. Although this information may be
sent to the same destinations, it may or may not be combined in a way that is order sensitive. When the
recipients are insensitive to the order of messages that originate in different senders,fbcast is a “strong
enough” ordering to ensure that a state machine style of computing can safely be used. However, many
applications are more sensitive to ordering than this, and the ordering properties offbcastwould not be
sufficient to ensure that group members remain consistent with one another in such cases.

13.12.5.2 Causal Order
An obvious question to ask concerns the maximum amount of order that can be provided in a

protocol that has the same cost asfbcast. At the beginning of this chapter, we discussed the causal
ordering relation, which is the transitive closure of the message send/receive relation and the internal
ordering associated with processes. Working with Joseph in 1985, this author developed a causally
ordered protocol with cost similar to that offbcast and showed how it could be used to implement
replicated data. We named the protocolcbcast. Soon thereafter, Schmuck was able to show that causal
order is a form of maximal ordering relation among fbcast-like protocols. More precisely, he showed that
any ordering property that can be implemented using an asynchronous protocol can be represented as a
subset of the causal ordering relationship. This proves that causally ordered communication is the most
powerful protocol possible with cost similar to that offbcast.

The basic idea of a causally ordered multicast is easy to express. Recall that a FIFO multicast is
required to respect the order in which any single sender sent a sequence of multicasts. If processp sends
m0 and then later sendsm1, a FIFO multicast must deliverm0 beforem1 at any overlapping destinations.
The ordering rule for a causally ordered multicast is almost identical: ifsend(m0) → send(m1), then a
causally ordered delivery will ensure thatm0 is delivered beforem1 at any overlapping destinations. In

Kenneth P. Birman - Building Secure and Reliable Network Applications262

262

some sense, causal order is just a generalization of the FIFO sender order. For a FIFO order, we focus on
event that happen in some order at a single place in the system. For the causal order, we relax this to
events that are ordered under the “happens before” relationship, which can span multiple processes but is
otherwise essentially the same as the sender-order for a single process. In English, a causally ordered
multicast simply guarantees thatif m0 is sent before m1, then m9 will be delivered before m1 at
destinations they have in common.

The first time one encounters the notion of causally ordered delivery, it can be confusing because
the definition doesn’t look at all like a definition of FIFO ordered delivery. In fact, however, the concept
is extremely similar. Most readers will be comfortable with the idea of a thread of control that moves
from process to process as RPC is used by a client process to ask a server to take some action on its behalf.
We can think of the thread of computation in the server as being part of the thread of the client. In some
sense, a single “computation” spans two address spaces. Causally ordered multicasts are simply
multicasts ordered along such a thread of computation. When this perspective is adopted one sees that
FIFO ordering is in some ways the less natural concept: it “artificially” tracks ordering of events only
when they occur in the same address space. If processp sends messagem0 and then asks processq to
send messagem1 it seems natural to say thatm1 was sent afterm0. Causal ordering expresses this relation,
but FIFO ordering only does so ifp andq are in the same address space.

There are several ways to implement multicast delivery orderings that are consistent with the
causal order. We will now present two such schemes, both based on adding a timestamp to the message
header before it is initially transmitted. The first scheme uses a logical clock; the resulting change in
header size is very small but the protocol itself has high latency. The second scheme uses a vector
timestamp and achieves much better performance. Finally, we discuss several ways of compressing these
timestamps to minimize the overhead associated with the ordering property.

13.12.5.2.1 Causal ordering with logical ti mestamps

Suppose that we are interested in preserving causal order within process groups, and in doing so only
during periods when the membership of the group is fixed (the flush protocol that implements view
synchrony makes this a reasonable goal). Finally, assume that all multicasts are sent to the full
membership of the group. By attaching a logical timestamp to each message, maintained using Lamport’s
logical clock algorithm, we can ensure that ifSEND(m1) → SEND(m2), thenm1 will be delivered before
m2 at overlapping destinations. The approach is extremely simple: upon receipt of a messagemi a process
pi waits until it knows that there are no messages still in the channels to it from other group members,pj

that could have a timestamp smaller thanLT(mi).

How can pi be sure of this? In a setting where process group members continuously emit
multicasts, it suffices to wait long enough. Knowing thatmi will eventually reach every other group
member,pi can reason that eventually, every group member will increase its logical clock to a value at
least as large asLT(mi), and will subsequently send out a message with that larger timestamp value. Since
we are assuming that the communication channels in our system preserve FIFO ordering, as soon as any
message has been received with atimestamp greater than or equal to that ofmi from a processpj, all future
messages frompj will have a timestamp strictly greater than that ofmi. Thus,pi can wait long enough to
have the full set of messages that have timestamps less than or equal toLT(mi), then deliver the delayed
messages in timestamp order. If two messages have the same timestamp, they must have been sent
concurrently, andpi can either deliver them in an arbitrary order, or can use some agreed-upon rule (for
example, by breaking ties using the process-id of the sender, or its ranking in the group view) to obtain a
total order. With this approach, it is no harder to deliver messages in an order that is causal and total
than to do so in an order that is only causal.

Of course, in many (if not most) settings, some group members will send to the group frequently
while others send rarely or participate only as message recipients. In such environments,pi might wait in
vain for a message frompj , preventing the delivery ofmi. There are two obvious solutions to this

Chapter13: GuaranteeingBehavior in Distributed Systems 263

263

problem: group members can be modified to send a periodic multicast simply to keep the channels active,
or pi can pingpj when necessary, in this manner flushing the communication channel between them.

Although simple, this causal ordering protocol is too costly for most settings. A single multicast
will trigger a wave ofn2 messages within the group, and a long delay may elapse before it is safe to deliver
a multicast. For many applications, latency is the key factor that limits performance, and this protocol is a
potentially slow one because incoming messages must be delayed until a suitable message is received on
every other incoming channel. Moreover, the number of messages that must be delayed can be very large
in a large group, creating potential buffering problems.

13.12.5.2.2 Causal ordering with vector timestamps

If we are willing to accept a higher overhead, the inclusion of a vectortimestamp in each message permits
the implementation of a much more accurate message delaying policy. Using the vector timestamp, we
can delay an incoming messagemi precisely until any missing causally prior messages have been received.
This algorithm, like the previous one, assumes that all messages are multicast to the full set of group
members.

Again, the idea is simple. Each message is labeled with the vector timestamp of the sender as of
the time when the message was sent. This timestamp is essentially a count of the number of causally prior
messages that have been delivered to the application at the sender process, broken down by source. Thus,
the vector timestamp for processp1 might contain the sequence [13,0,7,6] for a group G with membership
{ p0, p1, p2, p3} at the time it creates and multicastsmi. Processp1 will increment the counter for its own
vector entry (here we assume that the vector entries are ordered in the same way as the processes in the
group view), labeling the message with timestamp [13,1,7,6]. The meaning of such a timestamp is that
this is the first message sent byp1, but that it has received and delivered 13 messages fromp0, 7 from p2,
and 6 fromp3. Presumably, these received messages created a context within whichmi makes sense, and
if some process deliversmi without having seen one or more of them, it may run the risk of
misinterpretingmi. A causal ordering avoids such problems.

Now, suppose that processp3 receivesmi. It is possible thatmi would be the very first message
that p3 has received up to this point in its execution. In this case,p3 might have a vector timestamp as
small as [0,0,0,6], reflecting only the six messages it sent beforemi was transmitted. Of course, the vector
timestamp atp3 could also be much larger: the only really upper limit is that the entry forp1 is necessarily
0, sincemi is the first message sent byp1. The delivery rule for a recipient such asp3 is now clear: it
should delay messagemi until both of the following conditions are satisfied:

1. Messagemi is thenextmessage, in sequence, from its sender.

2. Every “causally prior” message has been received and delivered to the application.

We can translate rule 2 into the following formula:

If messagemi sent by processpi is received by processpj, then we delaymi until, for each value of
k different fromi andj, VT(pj)[k] ≥ VT(mi)[k]

Thus, if p3 has not yet received any messages fromp0, it will not delivery mi until it has received at least
13 messages fromp0. Figure 13-28 illustrates this rule in a simpler case, involving only two messages.

We need to convince ourselves that this rule really ensures that messages will be delivered in a
causal order. To see this, it suffices to observe that whenmi was sent, the sender had already received and

Kenneth P. Birman - Building Secure and Reliable Network Applications264

264

delivered the messages identified byVT(mi). Since these are precisely the messages causally ordered
beforemi, the protocol only delivers messages in an order consistent with causality.

The causal ordering relationship is acyclic, hence one would be tempted to conclude that this
protocol can never delay a message indefinitely. But in fact, it can do so if failures occur. Suppose that
processp0 crashes. Our flush protocol will now run, and the 13 messages thatp0 sent top1 will be
retransmitted byp1 on its behalf. But ifp1 also fails, we could have a situation in whichmi, sent byp1

causally after having received 13 messages fromp0, will never be safely deliverable, because no record
exists of one or more of these prior messages! The point here is that although the communication
channels in the system are FIFO,p1 is not expected to forward messages on behalf of other processes until
a flush protocol starts because one or more processes have left or joined the system. Thus, a dual failure
can leave a gap such thatmi is causally orphaned.

1,0,0,0
1,1,0,0

p0 p1 p2 p3

Figure 13-28: Upon receipt of a message with vector timestamp [1,1,0,0] from p1, process p2 detects that it is "too
early" to deliver this message, and delays it until a message from p0 has been received and delivered.

Chapter13: GuaranteeingBehavior in Distributed Systems 265

265

The good news, however, is that this can only happen if thesender of mi fails, as illustrated in
Figure 13-29. Otherwise, the sender will have a buffered copy of any messages that it received and that
are still unstable, and this information will be sufficient to fill in any causal gaps in the message history
prior to whenmi was sent. Thus, our protocol can leave individual messages that are orphaned, but
cannot partition group members away from one another in the sense that concerned us earlier.

Our system will eventually discover any such causal orphan when flushing the group prior to
installing a new view that drops the sender ofmi. At this point, there are two options:mi can be delivered
to the application with some form of warning that it is an orphaned message preceded by missing causally
prior messages, ormi can simply be discarded. Either approach leaves the system in a self-consistent
state, and surviving processes are never prevented from communicating with one another.

Causal ordering with vector timestamps is a very efficient way to obtain this delivery ordering
property. The overhead is limited to the vector timestamp itself, and to the increased latency associated
with executing the timestamp ordering algorithm and with delaying messages that genuinely arrive too
early. Such situations are common if the machines involved are overloaded, channels are backlogged, or
the network is congested and lossy, but otherwise would rarely be observed. In the best case, when none
of these conditions is present, the causal ordering property can be assured with essentially no additional
cost in latency or messages passed within the system! On the other hand, notice that the causal ordering
obtained is definitely not a total ordering, as was the case in the algorithm based on logical timestamps.
Here, we have a genuinely less costly ordering property, but it is also less ordered.

13.12.5.2.3 Timestamp compression

The major form of overhead associated with a vector-timestamp causality is that of the vectors themselves.
This has stimulated interest in schemes for compressing the vector timestamp information transmitted in
messages. Although an exhaustive treatment of this topic is well beyond the scope of the current textbook,
there are some specific optimizations that are worth mentioning.

Suppose that a process sends a burst of multicasts a common pattern in many applications.
After the first vector timestamp, each subsequent message will contain a nearly identical timestamp,

m0

m1

G = {p0, p1, p2, p3}

crash

Figure 13-29: When processes p0 and p1 crash, message m1 is causally orphaned. This would be detected during
the flush protocol that installs the new group view. Although m1 has been received by the surviving processes, it is
not possible to deliver it while still satisfying the causal ordering constraint. However, this situation can only
occur if the sender of the message is one of the failed processes. By discarding m1 the system can avoid causal
gaps. Surviving group members will never be logically partitioned (prevented from communicating with each
other) in the sense that concerned us earlier.

Kenneth P. Birman - Building Secure and Reliable Network Applications266

266

differing only in the timestamp associated with the sender itself, which will increment for each new
multicast. In such a case, the algorithm could be modified to omit the timestamp: a missing timestamp
would be interpreted as being “the previous timestamp, incremented in the sender’s field only”. This
single optimization can eliminate most of the vector timestamp overhead seen in a system characterized
by bursty communication! More accurately, what has happened here is that the sequence number used to
implement the FIFO channel from source to destination makes the sender’s own vector timestamp entry
redundant. We can omit the vector timestamp because none of the other entries were changing and the
sender’s sequence number is represented elsewhere in the packets being transmitted.

An important case of this optimization arises if all the multicasts to some group are sent along a
single causal path. For example, suppose that a group has some form of “token” that circulates within it,
and only the token holder can initiate multicasts to the group. In this case, we can implementcbcast
using a single sequence number: the1’st cbcast,the 2’nd, and so forth. Later this form ofcbcastwill
turn out to be important. Notice, however, that if there are concurrent multicasts from different senders
(that is, if senders can transmit multicasts without waiting for the token), the optimization is no longer
able to express the causal ordering relationships on messages sent within the group.

A second optimization is to reset the vector timestamp fields to zero each time the group changes
its membership, and to sort the group members so that any passive receivers are listed last in the group
view. With these steps, the vector timestamp for a message will tend to end in a series of zeros,
corresponding to those processes that have not sent a message since the previous view change event. The
vector timestamp can then be truncated: the reception of a short vector would imply that the missing fields
are all zeros. Moreover, the numbers themselves will tend to stay smaller, and hence can be represented
using shorter fields (if they threaten to overflow, a flush protocol can be run to reset them). Again, a
single very simple optimization would be expected to greatly reduce overhead in typical systems that use
this causal ordering scheme.

A third optimization involves sending only the difference vector, representing those fields that
have changed since the previous message multicast by this sender. Such a vector would be more complex
to represent (since we need to know which fields have changed and by how much), but much shorter
(since, in a large system, one would expect few fields to change in any short period of time). This
generalizes into a “run-length” encoding.

This third optimization can also be understood as an instance of an ordering scheme introduced
originally in the Psync, Totem and Transis systems. Rather than representing messages by counters, a
precedence relation is maintained for messages: a tree of the messages received and the causal
relationships between them. When a message is sent, the leaves of the causal tree are transmitted. These
leaves are a set of concurrent messages, all of which are causally prior to the message now being
transmitted. Often, there will be very few such messages, because many groups would be expected to
exhibit low levels of concurrency.

The receiver of a message will now delay it until those messages it lists as causally prior have
been delivered. By transitivity, no message will be delivered until all the causally prior messages have
been delivered. Moreover, the same scheme can be combined with one similar to the logical timestamp
ordering scheme of the first causal multicast algorithm, to obtain a primitive that is both causally and
totally ordered. However, doing so necessarily increases the latency of the protocol.

13.12.5.2.4 Causal multicast and consistent cuts

At the outset of this chapter we discussed notions of logical time, defining the causal relation and
introducing, in Section 13.4, the definition of a consistent cut. Notice that the delivery events of a
multicast protocol such ascbcastare concurrent and hence can be thought of as occurring “at the same

Chapter13: GuaranteeingBehavior in Distributed Systems 267

267

time” in all the members of a process group. In a logical sense,cbcastdelivers messages at what may
look to the recipients like a single instant in time. Unfortunately, however, the delivery events for a single
cbcastdo not represent a consistent cut across the system, because communication that was concurrent
with the cbcastcould cross it. Thus one could easily encounter a system in which acbcastis delivered at
processp which has received messagem, but where the samecbcastwas delivered at processq (the
eventual sender ofm) beforem had been transmitted.

With a secondcbcastmessage, it actually possible to identify a true consistent cut, but to do so
we need to either introduce a notion of an epoch number, or to inhibit communication briefly. The
inhibition algorithm is easier to understand. It starts with a firstcbcast message, which tells the
recipients to inhibit the sending of new messages. The process group members receiving this message
send back an acknowledgment to the process that initiated thecbcast. The initiator, having collected
replies from all group members, now sends a secondcbcasttelling the group members that they can stop
recording incoming messages and resume normal communication. It is easy to see that all messages that
were in the communication channels when the firstcbcastwas received will now have been delivered and
that the communication channels will be empty. The recipients now resume normal communication.
(They should also monitor the state of the initiator, in case it fails!) The algorithm is very similar to the
one for changing the membership of a process group, presented in Section 13.12.3.

Non-inhibitory algorithms for forming consistent cuts are also known. One way to solve this
problem is to addepoch numbersto the multicasts in the system. Each process keeps anepoch counter
and tags every message with the counter value. In the consistent cut protocol described above, the first
phase message now tells processes to increment the epoch counters (and not to inhibit new messages).
Thus, instead of delaying new messages, they are sent promptly but with epoch numberk+1 instead of
epoch numberk. The same algorithm described above now works toallow the system to reason about the
consistent cut associated with itsk’th epoch even as it exchanges new messages during epochk+1.
Another well known solution takes the form of what is called anecho protocolsin which two messages
traverse every communication link in the system [Chandy/Lamport]. For a system will all-to-all
communication connectivity, such protocols will transmitO(n2) messages, in contrast with theO(n)
required for the inhibitory solution.

This cbcastprovides a relatively inexpensive way of testing the distributed state of the system to
detect a desired property. In particular, if the processes that receive acbcastcompute a predicate or write
down some element of their states at the moment the message is received, these states will “fit together”
cleanly and can be treated as a glimpse of the system as a whole at a single instant in time. For example,
to count the number of processes for which some condition holds, it is sufficient to send acbcastasking
processes if the condition holds and to count the number that returntrue. The result is a value that could
in fact have been valid for the group at a single instant in real-time. On the negative side, this guarantee
only holds with respect to communication that uses causally ordered primitives. If processes communicate
with other primitives, the delivery events of thecbcastwill not necessarily be prefix-closed when the send
and receive events for these messages are taken into account. Marzullo and Sabel have developed
optimized versions of this algorithm.

Some examples of properties that could be checked using our consistent cut algorithm include the
current holder of a token in a distributed locking algorithm (the token will never appear to be lost or
duplicated), the current load on the processes in a group (the states of members will never be accidentally
sampled at “different times” yielding an illusory load that is unrealistically high or low), the wait-for
graph of a system subject to infrequent deadlocks (deadlock will never be detected when the system is in
fact not deadlocked), or the contents of a database (the database will never be checked at a time when it
has been updated at some locations but not others). On the other hand, because the basic algorithm
inhibits the sending of new messages in the group, albeit briefly, there will be many systems for which the

Kenneth P. Birman - Building Secure and Reliable Network Applications268

268

performance impact is too high and a solution that sends more messages but avoids inhibition states would
be preferable. The epoch based scheme represents a reasonable alternative, but we have not treated fault-
tolerance issues; in practice, such a scheme works best if all cuts are initiated by some single member of a
group, such as the oldest process in it, and a group flush is known to occur if that process fails and some
other takes over from it. We leave the details of this algorithm as a small problem for the reader.

13.12.5.2.5 Exploiting Topological Knowledge

Many networks have topological properties that can be exploited to optimize the representation of causal
information within a process group that implements a protocol such ascbcast. Within the NavTech
system, developed at INESC in Portugal, wide-area applications operate over a communications transport
layer implemented as part of NavTech. This structure is programmed to know of the location of wide area
network links and to make use of hardware multicast where possible [RVR93, RV95]. A consequence is
that if a group is physically laid out with multiple subgroups interconnected over a wide area link, as seen
in Figure 13-30.

In a geographically distributed system, it is frequently the case that all messages from some
subset of the process group members will be relayed to the remaining members through a small number of
relay points. Rodriguez exploits this observation to reduce the amount of information needed to represent
causal ordering relationships within the process group. Suppose that messagem1 is causally dependent
upon messagem0 and that both were sent over the same communications link. When these messages are
relayed to processes on the other side of the link they will appear to have been “sent” by a single sender
and hence the ordering relationship between them can be compressed into the form of a single vector-
timestamp entry. In general, this observation permits any set of processes that route through a single
point to be represented using a single sequence number on the other side of that point.

Stephenson explored the same question in a more general setting involving complex relationships
between overlapping process groups (the “multi-group causality” problem) [Ste91]. His work identifies an
optimization similar to this one, as well as others that take advantage of other regular “layouts” of
overlapping groups, such as a series of groups organized into a tree or some other graph-like structure.

The reader may wonder about causal cycles, in which messagem2, sent on the “right” of a
linkage point, becomes causally dependent onm1, send on the “left”, which was in turn dependent upon
m0, also sent on the left. Both Rodriguez and Stephenson made the observation that asm2 is forwarded

Figure 13-30: In a complex network, a single process group may be physically broken into multiple subgroups. With
knowledge of the network topology, the NavTech system is able to reduce the information needed to implement causal
ordering. Stephenson has looked at the equivalent problem in multigroup settings where independent process groups
may overlap in arbitrary ways.

Chapter13: GuaranteeingBehavior in Distributed Systems 269

269

back through the link, it emerges with the old causal dependency uponm1 reestablished. This method can
be generalized to deal with cases where there are multiple links (overlap points) between the subgroups
that implement a single process group in a complex environment.

13.12.5.3 Total Order
In developing our causally ordered communication primitive, we really ended up with a family of such
primitives. Cheapest of these are purely causal in the sense that concurrently transmitted multicasts might
be delivered in different orders to different members. The more costly ones combined causal order with
mechanisms that resulted in a causal, total order. We saw two such primitives: one was the causal
ordering algorithm based on logical timestamps, and the second (introduced very briefly) was the
algorithm used for total order in the Totem and Transis systems, which extend the causal order into a total
one using a canonical sorting procedure, but in which latency is increased by the need to wait until
multicasts have been received from all potential sources of concurrent multicasts.12 In this section we
discuss totally ordered multicasts, known by the nameabcast(for historical reasons), in more detail.

When causal ordering is not a specific requirement, there are some very simple ways to obtain
total order. The most common of these is to use a sequencer process or token [CM84, Kaa92]. A
sequencer process is a distinguished process that publishes an ordering on the messages of which it is
aware; all other group members buffer multicasts until the ordering is known, and then deliver them in
the appropriate order. A token is a way to move the sequencer around within a group: while holding the
token, a process may put a sequence number on outgoing multicasts. Provided that the group only has a
single token, the token ordering results in a total ordering for multicasts within the group. This approach
was introduced in a very early protocol by Chang and Maxemchuck [CM84], and remains popular because
of its simplicity and low overhead. Care must be taken, of course, to ensure that failures cannot cause the
token to be lost, briefly duplicated, or result in gaps in the total ordering that orphan subsequent messages.
We saw this solution above as an optimization to cbcastin the case where all the communication to a
group originates along a single causal path within the group. From the perspective of the application,
cbcastandabcastare indistinguishable in this case, which turns out to be a common and important one.

It is also possible to use the causally ordered multicast primitive to implement a causal and totally
ordered token-based ordering scheme. Such a primitive would respect the delivery ordering property of
cbcast when causally prior multicasts are pending in a group, and likeabcast when two processes
concurrently try to send a multicast. Rather than present this algorithm here, however, we defer it
momentarily until Chapter 13.16, when we present it in the context of a method for implementing
replicated data with locks on the data items. We do this because, in practice, token based total ordering
algorithms are more common than the other methods. The most common use of causal ordering is in
conjunction with the specific replication scheme presented in Chapter 13.16, hence it is more natural to
treat the topic in that setting.

Yet an additional total ordering algorithm was introduced by Leslie Lamport in his very early
work on logical time in distributed systems [Lam78b], and later adapted to group communication settings
by Skeen during a period when he collaborated with this author on an early version of the Isis totally
ordered communication primitive. The algorithm uses a two-phase protocol in which processes vote on
the message ordering to use, expressing this vote as a logical timestamp.

12 Most “ordered” of all is the flush protocol used to install new views: this delivers a type of message (the new
view) in a way that is ordered with respect to all other types of messages . In the Isis Toolkit, there was actually a
gbcastprimitive that could be used to obtain this behavior at the desire of the user, but it was rarely used and more
recent systems tend to use this protocol only to install new process group views.

Kenneth P. Birman - Building Secure and Reliable Network Applications270

270

The algorithm operates as follows. In a first phase of communication, the originator of the
multicast (we’ll call it the coordinator) sends the message to the members of the destination group. These
processes save the message but do not yet deliver it to the application. Instead, each proposes a “delivery
time” for the message using a logical clock, which is made unique by appending the process-id. The
coordinator collects these proposed delivery times, sorts the vector, and designates the maximum time as
the committeddelivery time. It sends this time back to the participants. They update their logical clocks
(and hence will never propose a smaller time) and reorder the messages in their pending queue. If a
pending message has a committed delivery time, and the time is smallest among the proposed and
committed times for other messages, it can be delivered to the application layer.

This solution can be seen to deliver messages in a total order, since all the processes base the
delivery action on the same committed timestamp. It can be made fault-tolerant by electing a new
coordinator if the original sender fails. One curious property of the algorithm, however, is that it has a
non-uniform ordering guarantee. To see this, consider the case where a coordinator and a participant fail,
and that participant also proposed the maximum timestamp value. The old coordinator may have
committed a timestamp that could be used for delivery to the participant, but that will not be re-used by
the remaining processes, which may therefore pick a different delivery order. Thus, just as dynamic
uniformity is costly to achieve as an atomicity property, one sees that a dynamically uniform ordering
property may be quite costly. It should be noted that dynamic uniformity and dynamically uniform
ordering tend to go together: if delivery is delayed until it is known that all operational processes have a
copy of a message, it is normally possibly to ensure that all processes will use identical delivery orderings

This two-phase ordering algorithm, and a protocol called the “born-order” protocol which was
introduced by the Transis and Totem systems (messages are ordered using unique message identification
numbers that are assigned when the messages are first created or “born”), have advantages in settings
with multiple overlapping process groups, a topic to which we will return in Chapter 14. Both provide
what is called “globally total order”, which means that evenabcastmessages sent in different groups will
be delivered in the same order at any overlapping destinations they may have.

The token based ordering algorithms provide “locally total order”, which means thatabcast
messages sent in different groups may be received in different orders even at destinations that they share.
This may seem to argue that one should use the globally total algorithms; such reasoning could be carried
further to justify a decision to only consider gloablly total ordering schemes that also guarantee dynamic
uniformity. However, this line of reasoning leads to more and more costly solutions. For most of the
author’s work, the token based algorithms have been adequate, and the author has never seen an
application for which globally total dynamically uniform ordering was a requirement.

Unfortunately, the general rule seems to be that “stronger ordering is more costly”. On the basis
of the known protocols, the stronger ordering properties tend to require that more messages be exchanged
within a group, and are subject to longer latencies before message delivery can be performed. We
characterize this as unfortunate, because it suggests that in the effort to achieve greater efficiency, the
designer of a reliable distributed system may be faced with a tradeoff between complexity and
performance. Even more unfortunate is the discovery that the differences are extreme. When we look at
Horus, we will find that its highest performance protocols (which include a locally total multicast that is
non-uniform) are nearlythree orders of magnitudefaster than the best known dynamically uniform and
globally total ordered protocols (measured in terms of latency between when a message is sent and when it
is delivered).

By tailoring the choice of protocol to the specific needs of an application, far higher performance
can be obtained. On the other hand, it is very appealing to use a single, very strong primitive system-wide
in order to reduce the degree of domain-specific knowledge needed to arrive at a safe and correct

Chapter13: GuaranteeingBehavior in Distributed Systems 271

271

implementation. The designer of a system in which multicasts are infrequent and far from the critical
performance path should count him or herself as very fortunate indeed: such systems can be built on a
strong, totally ordered, and hence dynamically uniform communication primitive, and the high cost will
probably not be noticable. The rest of us are faced with a more challenging design problem.

13.13 Communication From Non-Members to a Group
Up to now, all of our protocols have focused on the case of group members communicating with one-
another. However, in many systems there is an equally important need to provide reliable and ordered
communication from non-members into a group. This section presents two solutions to the problem, one
for a situation in which the non-member process has located a single member of the group but lacks
detailed membership information about the remainder of the group, and one for the case of a non-member
that nonetheless has cached group membership information.

In the first case, our algorithm will have the non-member process ask some group member to
issue the multicast on its behalf, using an RPC for this purpose. In this approach, each such multicast is
given a unique identifier by its originator, so that if the forwarding process fails before reporting on the
outcome of the multicast, the same request can be reissued. The new forwarding process would check to
see if the multicast was previously completed, issue it if not, and then return the outcome in either case.
Various optimizations can then be introduced, so that a separate RPC will not be required for each
multicast. The protocol is illustrated in Figure 13-31 for the normal case, when the contact process does
not fail. Not shown is the eventual garbage collection phase needed to delete status information
accumulated during the protocol and saved for use in the case where the contact eventually fails.

Our second solution uses what
is called aniterated approach, in which
the non-member processes cache
possibly inaccurate process group views.
Specifically, each group view is given a
unique identifier, and client processes
use an RPC or some other mechanism to
obtain a copy of the group view (for
example, they may join a larger group
within in which the group reports
changes in its core membership to
interested non-members). The client
then includes the view identifier in its
message and multicasts it directly to the
group members. Again, the members
will retain some limited history of prior
interactions using a mechanism such as
the one for the multiphase commit
protocols.

There are now three cases that may arise. Such a multicast can arrive in the correct view, it can
arrive partially in the correct view and partially “late” (after some members have installed a new group
view), or it can arrive entirely late. In the first case, the protocol is considered successful. In the second
case, the group flush algorithm will push the partially delivered multicast to a view-synchronous
termination; when the late messages finally arrive, they will be ignored as duplicates by the group
members that receive them, since these processes will have already delivered the message during the flush
protocol. In the third case, all the group members will recognize the message as a late one that was not
flushed by the system and all will reject it. Some or all should also send a message back to the non-

c

Figure 13-31: Non-member of a group uses a simple RPC-based
protocol to request that a multicast bedone on its behalf. Such a
protocol becomes complex when ordering considerations are added,
particularly because the forwarding process may fail during the
protocol run.

Kenneth P. Birman - Building Secure and Reliable Network Applications272

272

member warning it that its message was not successfully delivered; the client can then retry its multicast
with refreshed membership information. This last case is said to “iterate” the multicast. If it is practical
to modify the underlying reliable transport protocol, a convenient way to return status information to the
sender is by attaching it to the acknowledgment messages such protocols transmit.

This protocol is clearly quite simple, although its complexity grows when one considers the
issues associated with preserving sender order or causality information in the case where iteration is
required. To solve such a problem, a non-member that discovers itself to be using stale group view
information should inhibit the transmission of new multicasts while refreshing the group view data. It
should then retransmit, in the correct order, all multicasts that are not known to have been successfully
delivered in while it was sending using the previous group view. Some care is required in this last step,
however, because new members of the group may not have sufficient information to recognize and discard
duplicate messages.

To overcome this problem, there are basically two options. The simplest case arises when the
group members transfer information to joining processes that includes the record of multicasts
successfully received from non-members prior to when the new member joined. Such a state transfer can
be accomplished using a mechanism discussed in the next chapter. Knowing that the members will detect
and discard duplicates, the non-member can safely retransmit any multicasts that are still pending, in the
correct order, followed by any that may have been delayed while waiting to refresh the group membership.
Such an approach minimizes the delay before normal communication is restored.

The second option is applicable when it is impractical to transfer state information to the joining
member. In this case, the non-member will need to query the group, determining the status of pending
multicasts by consulting with surviving members from the previous view. Having determined the precise
set of multicasts that were “dropped” upon reception, the non-member can retransmit these messages and
any buffered messages, and then resume normal communication. Such an approach is likely to have

c

crash

flush

ignored

Figure 13-32: An iterated protocol. The client sends to the group as its membership is changing (to drop one
member). Its multicast is terminated by the flush associated with the new view installation (message just prior to the
new view), and when one of its messages arrives late (dashed line), the recipient detects it as a duplicate and ignores
it. Had the multicast been so late that all the copies were rejected, the sender would have refreshed its estimate of
group membership and retried the multicast. Doing this while also respecting ordering obligations can make the
protocol complex, although the basic idea is quite simple. Notice that the protocol is cheaper than the RPC
solution: the client sends directly to the actual group members, rather than indirectly sending through a proxy.
However, while the figure may seem to suggest that there is no acknowledgment from the group to the client, this is
not the case: the client communicates over a reliable FIFO channel to each member, hence acknowledgements are
implicitly present. Indeed, some effort may be needed to avoid an implosion effect that would overwhelm the client
of a large group with a huge number of acknowledgements.

Chapter13: GuaranteeingBehavior in Distributed Systems 273

273

higher overhead than the first one, since the non-member (and there may be many of them) must query
the group after each membership change. It would not be surprising if significant delays were introduced
by such an algorithm.

13.13.1 Scalability
The preceeding discussion of techniques and costs did not address questions of scalability and limits. Yet
clearly, the decision to make a communication protocol reliable will have an associated cost, which might
be significant. We treat this topic in Section 18.8, and hence to avoid duplication of the material treated
there, limit ourselves to a forward pointer here. However, the reader is cautioned to keep in mind that
reliability does have a price, and hence that many of the most demanding distributed applications, which
generate extremely high message-passing loads, must be “split” into a reliable subsystem that experiences
lower loads and provides stronger guarantees for the subset of messages that pass through it, and a
concurrently executed unreliable subsystem, which handles the bulk of communication but offers much
weaker guarantees to its users. Reliability and properties can be extremely valuable, as we will see below
and in the subsequent chapters, but one shouldn’t make the mistake of assuming that reliability properties
arealwaysdesirable or that such properties should be provided everywhere in a distributed system. Used
selectively, these technologies are very powerful; used blindly, they may actually compromise reliability of
the application by introducing undesired overheads and instability in those parts of the system that have
strong performance requirements and weaker reliability requirements.

13.14 Communication from a Group to a Non-Member
The discussion of the preceding section did not consider the issues raised by transmission of replies from a
group to a non-member. These replies, however, and other forms of communication outside of a group,
raise many of the same reliability issues that motivated the ordering and gap-freedom protocols presented
above. For example, suppose that a group is using a causally ordered multicast internally, and that one of
its members sends a point-to-point message to some process outside the group. In a logical sense, that
message may now be dependent upon the prior causal history of the group, and if that process now
communicates with other members of the group, issues of causal ordering and freedom from causal gaps
will arise.

This specific scenario was studied by Ladin and Liskov, who developed a system in which vector
timestamps could be exported by a group to its clients; the client later presented the timestamp back to the
group when issuing requests to other members, and in this way was protected against causal ordering
violations. The protocol proposed in that work used stable storage to ensure that even if a failure
occurred, no causal gaps could arise.

Other researchers have considered the same issues using different methods. Work by Schiper, for
example, explored the use of an x n matrix to encode point to point causality information [SES89], and
the Isis Toolkit introduced mechanisms to preserve causal order when point to point communication was
done in a system. We will present some of these methods below, in Chapter 13.16, and hence omit further
discussion of them for the time being.

13.15 Summary
When we introduced the sender ordered multicast primitive, we noted that it is often called “fbcast” in
systems that explicitly support it, the causally ordered multicast primitive “cbcast”, and the totally ordered
one, “abcast”. These names are traditional ones, and areobviously somewhat at odds with terminology in
this textbook. More natural names might be “fmcast”, “cmcast” and “tmcast”. However, a sufficiently
large number of papers and systems have used the terminology of broadcasts, and have called the totally
ordered primitive “atomic”, that it would confuse many readers if we did not at least adopt the standard
acronyms for these primitives.

Kenneth P. Birman - Building Secure and Reliable Network Applications274

274

The following table summarizes the most important terminology and primitives defined in this
chapter.

Concept Brief description

Process group A set of processes that have joined the same group. The group has amembership list
which is presented to group members in a data structure called theprocess group view
which lists the members of the group and other information, such as their ranking.

View
synchronous
multicast

A way of sending a message to a process group such that all the group members that
don’t crash will receive the message between the same pair of group views. That is, a
message is delivered entirely before or entirely after a given view of the group is
delivered to the members. If a process sends a multicast when the group membership
consists of { p0, pk} and doesn’t crash, the message will be delivered while the group
view is still {p0, pk}.

safe multicast A multicast having the property that if any group member delivers it, then all
operational group members will also deliver it. This property is costly to guarantee and
corresponds to adynamic uniformityconstraint. Most multicast primitives can be
implemented in a safe or an unsafe version; the less costly one being preferable. In this
text, we are somewhat hesitant to use the term “safe” because a protocol lacking this
property is not necessarily “unsafe”. Consequently, we will normally describe a protocol
as being dynamically uniform (safe) or non-uniform (unsafe). If we do not specifically
say that a protocol needs to be dynamically uniform, the reader should assume that we
intend the non-uniform case.

fbcast View-synchronous FIFO group communication. If the same processp sendsm1 prior to
sendingm2 than processes that receive both messages deliverm1 prior to m2.

cbcast View-synchronous causally ordered group communication. IfSEND(m1) → SEND(m2),
then processes that receive both messages deliverm1 prior to m2.

abcast View-synchronous totally ordered group communication. If processesp and q both
receivem1 andm2 then either both deliverm1 prior to m2, or both deliverm2 prior to m1.

As noted earlier,abcastcomes in several versions. Throughout the remainder of this
text, we will assume thatabcastis a locally total and non-dynamically uniform protocol.
That is, we focus on the least costly of the possibleabcast primitives, unless we
specifically indicate otherwise.

cabcast Causally and totally ordered group communication. The deliver order is as for abcast,
but is also consistent with the causal sending order.

gbcast A group communication primitive based upon the view-synchronous flush protocol.
Supported as a user-callable API in the Isis Toolkit, but very costly and not widely used.
gbcast delivers a message in a way that is totally ordered relative to all other
communication in the same group.

gap freedom The guarantee that if messagemi should be delivered beforemj and some process
receives mj and remains operational,mi will also be delivered to its remaining
destinations. A system that lacks this property can be exposed to a form of logical
partitioning, where a process that has received mj is prevented from (ever)
communicating to some process that was supposed to receivemi but will not because of a
failure.

member A process belonging to a process group

Chapter13: GuaranteeingBehavior in Distributed Systems 275

275

(of a group)

group client A non-member of a process group that communicates with it, and that may need to
monitor the membership of that group as it changes dynamically over time.

virtual
synchrony

A distributed communication system in which process groups are provided, supporting
view-synchronous communication and gap-freedom, and in which algorithms are
developed using a style of “closely synchronous” computing in which all group members
see the same events in the same order, and consequently can closely coordinate their
actions. Such synchronization becomes “virtual” when the ordering properties of the
communication primitive are weakened in ways that do not change the correctness of
the algorithm. By introducing such weaker orderings, a group can be made more likely
to tolerate failure and can gain a significant performance improvement.

13.16 Related Readings
On logical notions of time: [Lam78b, Lam84]. Causal ordering in message delivery: [BJ87a, BJ87b].
Consistent cuts: [CL85, BM93]. Vector clocks: [Fid88, Mat89], used in message delivery: [SES89,
BSS91, LLSG92]. Optimizing vector clock representations [Cha91, MM93], compression using
topological information about groups of processes: [BSS91, RVR93, RV95]. Static groups and quorum
replication: [Coo85, BHG87, BJ87a]. Two-phase commit: [Gra79, BHG87, GR93]. Three-phase commit:
[Ske82b, Ske85]. Byzantine agreement: [Merxx, BE83, CASD85, COK86, CT90, Rab83, Sch84].
Asynchronous Consensus: [FLP85, CT91, CT92], but see also [BDM95, FKMBD95, GS96, Ric96]. The
method of Chandra and Toueg: [CT91, CHT92, BDM95, Gue92, FKMB95, CHTC96]. Group
membership: [BJ87a, BJ87b, Cri91b, MPS91, MSMA91, RB91, CHTC96], see also [Gol92, Ric92, Ric93,
RVR93, Aga94, BDGB94, Rei94b, BG95, CS95, ACBM95, BDM95, FKMBD95, CHTC96, GS96,
Ric96]. Partitionable membership [ADKM92b, MMA94]. Failstop illusion: [SM93]. Token based total
order: [CM84, Kaa92]. Lamport’s method: [Lam78b, BJ87b]. Communication from non-members ot a
group: [BJ87b, Woo91]. Point-to-point causality [SES90].

Kenneth P. Birman - Building Secure and Reliable Network Applications276

276

14. Point-to-Point and Multigroup Considerations
Up to now, we have considered settings in which all communication occurs within a process group, and
although we did discuss protocols by which a client can multicast into a group, we did not consider issues
raised by replies from the group to the client. Primary among these is the question of preserving the causal
order if a group member replies to a client, which we treat in Section 13.14. We then turn to issues
involving multiple groups, including causal order, total order, causal and total ordering domains, and
coordination of the view flush algorithms where more than one group is involved.

Even before starting to look at these topics, however, there arises a broader philosophical issue.
When one develops an idea, such as the combination of “properties” with group communication, there is
always a question concerning just how far one wants to take the resulting technology. Process groups, as
treated in the previous chapter, are localized and self-contained entities. The directions treated in this
chapter are concerned with extending this local model into an encompassing system-wide model. One can
easily imagine a style of distributed system in which the fundamental communication abstraction was in
fact the process group, with communication to a single process being viewed as a special case of the
general one. In such a setting, one might well try and extend ordering properties so that they would apply
system-wide, and in so doing, achieve an elegant and highly uniform programming abstraction.

There is a serious risk associated with this whole line of thinking, namely that it will result in
system-wide costs and system-wide overhead, of a potentially unpredictable nature. Recall the end-to-end
argument of Saltzer et. al. [SRC84]: in most systems, given a choice between paying a cost where and
when it is needed, and paying that cost system-wide, one should favor the end-to-end solution, whereby
the cost is incurred only when the associated property is desired. By and large, the techniques we present
below should only be considered when there is a very clear and specific justification for using them. Any
system that uses these methods casually is likely to perform poorly and to exhibit unpredictable.

14.1 Causal Communication Outside of a Process Group
Although there are sophisticated protocols in guaranteeing that causality will be respected for arbitrary
communication patterns, the most practical solutions generally confine concurrency and associated
causality issues to the interior of a process group. For example, at the end of Section 13.14, we briefly
cited the replication protocol of Ladin and Liskov [LGGJ91, LLSG92]. This protocol transmits a
timestamp to the client, and the client later includes the most recent of thetimestamps it has received in
any requests it issues to the group. The group members can detect causal ordering violations and delay
such a request until causally prior multicasts have reached their destinations, as seen in Figure 14-1.

Chapter14: Point-to-Point and Multigroup Considerations 277

277

An alternative is to simply delay messages sent out of a group until any causally prior multicasts
sent within the group have become stable have reached their destinations. Since there is no remaining
causal ordering obligation in this case, the message need not carry causality information. Moreover, such
an approach may not be as costly as it sounds, for the same reason that theflush protocol introduced
earlier turns out not to be terribly costly in practice: most asynchronouscbcastor fbcastmessages become
stable shortly after they are issued, and long before any reply is sent to the client. Thus any latency is
associated with the very last multicasts to have been initiated within the group, and will normally be
small. We will see a similar phenomenon (in more detail) in Section 17.5, which discusses a replication
protocol for stream protocols.

There has been some work on the use of causal order as a system-wide guarantee, applying to
point-to-point communication as well as multicasts. Unfortunately, representing such ordering
information requires a matrix of size O(n2) in the size of the system. Moreover, this type of ordering
information is only useful if messages are sent asynchronously (without waiting for replies). But, if this is
done in systems that use point-to-point communication, there is noobvious way to recover if a message is
lost (when its sender fails) after subsequent messages (to other destinations) have been delivered.
Cheriton and Skeen discuss this form of all-out causal order in a well known paper and conclude that it is
probably not desirable; this author agrees [SES89, CS93, Bir94, Coo94, Ren95]. If point-to-point
messages are treated as being causally prior to other messages, it is best to wait until they have been
received before sending causally dependent messages to other destinations.13 (We’ll have more to say
about Cheriton and Skeen’s paper in Chapter 16.)

13 Notice that this issue doesn’t arise for communication to the same destination as for the point-to-point message: one
can send any number of point-to-point messages or “individual copies” of multicasts to a single process within a
group without delaying. The requirement is that messages toother destinations be delayed, until these point-to-
point messages are stable.

client

Figure 14-1: In the replication protocol used by Ladin and Liskov in the Harp system, vector timestamps are used to
track causal multicasts within a server group. If a client interacts with a server in that group, it does so using a
standard RPC protocol. However, the group timestamp is included with the reply, and can be presented with a
subsequent request to the group. This permits the group members to detect missing prior multicasts and to
appropriately delay a request, but doesn’t go so far as to include the client’s point-to-point messages in the causal
state of the system. Such tradeoffs between properties and cost seem entirely appropriate, because an attempt to
track causal order system-wide can result in significant overheads. Systems such as the Isis Toolkit, which enforce
causal order even for point to point message passing, generally do so by delaying after sending point-to-point
messages until they are known to be stable, a simple and conservative solution that avoids the need to “represent”
ordering information for such messages.

Kenneth P. Birman - Building Secure and Reliable Network Applications278

278

Early versions of the Isis Toolkit actually solved this problem without actually representing
causal information at all, although later work replaced this scheme with one that waits for point-to-point
messages to become stable [BJ87b, BSS91]. The approach was to piggyback pnding messages (those that
are not known to have reached all their destinations) onall subsequent messages, regardless of their
destination (Figure 14-2). That is, if processp has sent multicastm1 to process group G and now wishes
to send a messagem2 to any destination other than group G, a copy ofm1 is included withm2. By
applying this rule system-wide,p can be certain that if any route causes a messagem3, causally dependent
uponm1, to reach a destination ofm1, a copy ofm1 will be delivered too. A background garbage collection
algorithm is used to delete these spare copies of messages when they do reach their destinations, and a
simple duplicate supression scheme is employed to avoid delivering the same message more than once if it
reaches a destination multiple times in the interim.

This scheme may seem wildly expensive, but in fact was rarely found to send a message more
than once in applications that operate over Isis. One important reason for this was that Isis has other
options available for use when the cost of piggybacking grew too high. For example, instead of sending
m0 piggybacked to some destination far from its true destination,q, any process can simply sendm0 to q,
in this way making it stable. The system can also wait for stability to be detected by the original sender, at
which point garbage collection will remove the obligation. Additionally, notice thatm0 only needs to be
piggybacked once to any given destination. In Isis, which typically runs on a small set of servers, this
meant that the worst case was just to piggyback the message once to each server. For all of thes reasons,
the cost of piggybackbacking was never found to be extreme in Isis. The Isis algorithm also has the benefit
of avoiding any potential gaps in the causal communication order: ifq has received a message that was
causally afterm1, thenq will retain a copy ofm1 until m1 is safe at its destinations.

Nonetheless, the author is not aware of any system that has used this approach other than Isis.
Perhaps the strongest argument against the approach is that it has anunpredictableoverhead: one can
imagine patterns of communication for which its costs would be high, such as a client-server architecture
in which the server replies to a high rate of incoming RPC’s: in principle, each reply will carry copies of
some large number of prior but unstable replies, and the garbage collection algorithm will have a great
deal of work to do. Moreover, the actual overhead imposed on a given message is likely to vary depending
on the amount of time since the garbage collection mechanism last was executed. Recent group
communications systems, like Horus, seek to provide extremely predictable communication latency and

p rq

m0

m0;m1

m0;m2

Figure 14-2: After sending m0 asynchronously to q, p sends m1 to r. To preserve causality, a copy of m0 is
piggybacked on this message, and similarly when r sends m3 to q. This ensures that q will receive m0 by the first
causal path to reach it. A background garbage collection algorithm cleans up copies of messages that have
become stable by reaching all of their destinations. To avoid excessive propogation of messages, the system always
has the alternative of sending a message directly to its true destination and waiting for it to become stable, or
simply waiting until the message reaches its destinations and becomes stable.

Chapter14: Point-to-Point and Multigroup Considerations 279

279

bandwidth, and hence steer away from mechanisms that are difficult to analyze in any straightforward
manner.

14.2 Extending Causal Order to Multigroup Settings
Additional issues arise when groups can overlap. Suppose that a process sends or receives multicasts in
more than one group, a pattern that is commonly observed in complex systems that make heavy use of
group computing. Just as we asked how causal order can be guaranteed when a causal path includes
point-to-point messages, one can ask how causal and total order can be extended to apply to multicasts
sent in a series of groups.

Consider first the issue of causal ordering. If processp belongs to groupsg1 and g2, one can
imagine a chain of multicasts that include messages sent asynchronously in both groups. For example,
perhaps we will havem1 → m2 → m3, wherem1 andm3 are sent asynchronously ing1 andm2 in g2. Upon
receipt of a copy ofm3, a process may need to check for and detect causal ordering violations, delayingm3

if necessary untilm1 has been received. In fact, this exampleillustrates two problems, because we also
need to be sure that the delivery atomicity properties of the system extend to sequences of multicasts sent
in different group. Otherwise, scenarios can arise wherebym3 becomes causally orphaned and can never
be delivered.

In Figure 14-3, for example, if a
failure causesm1 to be lost,m3 can never
be delivered. There are several
possibilities for solving the atomicity
problem, which lead to different
possibilities for dealing with causal order.
A simple option is to delay a multicast to
group g2 while there are causally prior
multicasts pending in groupg1. In the
example,m2 would be delayed untilm1

becomes stable. Most existing process
group systems use this solution, which is
called the conservativescheme. It is
simple to implement and offers
acceptable performance for most
applications. To the degree that overhead

is introduced, it occurs within the process group itself and hence is both localized and readily measured.

Less conservative schemes are both riskier in the sense that safety can be compromised when
certain types of failures occur, that they require more overhead, and that this overhead is less localized
and consequently harder to quantify. For example, ak-stability solution might wait untilm1 is known to
have been received atk+1 destinations. The multicast will now be atomic provided that no more thank
simultaneous failures occur in the group. However, we now need a way to detect causal ordering
violations and to delay a message that arrives prematurely to overcome them.

One option is to annotate each multicast with multiple vector timestamps. The approach requires
a form of piggybacking; each multicast carries with it only timestamps that have changed, or (if
timestamp compression is used), only those that fields that have changed. Stephenson has explored this
scheme and related ones, and shown that they offer general enforcement of causality at low average
overhead. In practice, however, the author is not aware of any systems that implement this method,

m3

m2

m1

Figure 14-3: Message m3 is causally ordered after m1, and hence
may need to be delayed upon reception.

Kenneth P. Birman - Building Secure and Reliable Network Applications280

280

apparently because the conservative scheme is so simple and because of the risk of a safety violation if a
failure in fact causesk processes to fail simultaneously.

Another option is to use the Isis style of piggybacking cbcast implementation. Early versions of
the Isis Toolkit employed this approach, and as noted earlier; the associated overhead turns out to be fairly
low. The details are essentially identical to the method presented in Section 14.1. This approach has the
advantage of also providing atomicity, but the disadvantage of having unpredictable costs.

In summary, there are several possibilities for enforcing causal ordering in multigroup settings.
One should ask whether the costs associated with doing so are reasonable ones to pay. The consensus of
the community has tended to accept costs that arelimited to within a single group (i.e. the conservative
mode delays) but not costs that are paid system-wide (such as those associated with piggybacking vector
timestamps or copies of messages). Even the conservative scheme, however, can be avoided if the
application doesn’t actuallyneedthe guarantee that this provides. Thus, the application designer should
start with an analysis of the use and importance of multigroup causality before deciding to assume this
property in a given setting.

14.3 Extending Total Order to Multigroup Settings
The total ordering protocols presented in Section 13.12.5.3 guarantee that messages sent in any one
group will be totally ordered with respect to one-another. However, even if the conservative stability rule
is used, this guarantee does not extend to messages sent in different groups but received at processes that
belong to both. Moreover, the local versions of total ordering permit some surprising global ordering
problems. Consider, for example, multicasts sent to a set of processes that form overlapping groups as
shown in Figure 14-4. If one multicast is sent to each group, we could easily have processp receivem1

followed by m2, processq receivem2 followed by m3, processr receivem3 followed bym4, and processs
receivem1 followed bym4. Since only a single multicast was sent in each group, such an order is total if
only the perspective of the individual group is considered. Yet this ordering is clearly a cyclic one in a

global sense.

A number of schemes for generating a globally acyclic total ordering are known, and indeed one
could express qualms with the use of the term total for an ordering that now turns out to sometimes admit

p q

s r

p q r s

m2

m3m0

m1

Figure 14-4: Overlapping process groups, seen from "above" and in a time-space diagram. Here, m0 was sent to
{p,q}, m1 to {q,r} and so forth, and since each group received only one message, there is no ordering requirement
within the individual groups. Thus an abcast protocol would never delay any of these messages. But one can deduce
a global ordering for the multicasts: process p sees m0 after m3, q sees m0 before m1, r sees m1 before m2, and s sees
m2 before m3. This global ordering thus cyclic,illustrating that many of our abcast ordering algorithms provide
locally total ordering but not globally total ordering.

Chapter14: Point-to-Point and Multigroup Considerations 281

281

cycles. Perhaps it would be best to say that previously we identified a number of methods for obtaining
locally total multicast ordering whereas now we consider the issue ofglobally totalmulticast ordering.

The essential feature of the globally total schemes is that the groups within which ordering is
desired must share some resource that is used to obtain the ordering property. For example, if a set of
groups shares the same ordering token, the ordering of messages assigned using the token can be made
globally as well as locally total. Clearly, however, such a protocol could be costly, since the token will
now be a single bottleneck for ordered multicast delivery.

In the Psync system an ordering scheme that uses multicast labels was first introduced [Pet87,
PBS89]; soon after, variations of this were proposed by the Transis and Totem systemsADKM92a,
MM89]. All of these methods work by using some form of unique label to place the multicasts in a total
order determined by their labels. Before delivering such a multicast, a process must be sure it has
received all other multicasts that could have smaller labels. The latency of this protocol is thus prone to
rise with the number of processes in the aggregated membership of groups to which the receiving process
belongs.

Each of these methods, and in fact all methods known to the author, have performance that
degrades as a function of scale. The larger the set of processes over which a total ordering property will
apply, the more costly the ordering protocol. When deciding if globally total ordering is warranted, it is
therefore useful to ask what sort of applications might be expected to notice the cycles that a local
ordering protocol would allow. The reasoning is that if a cheaper protocol is still adequate for the
purposes of the application, most developers would favor the cheaper protocol. In the case of globally
total ordering, few applications that really need this property are known.

Indeed, the following may be the only widely cited example of a problem for which locally total
order is inadequate and globally total order is consequently needed. Suppose that we wish to solve the
Dining Philosopher’s problem. In this problem, which is a classical synchronization problem well known
to the distributed systems community, a collection of philosophers gather around a table. Between each
pair of philosophers is a single shared fork, and at the center of the table is a plate of pasta. To eat, a
philosopher must have one fork in each hand. The life of a philosopher is an infinite repetition of the
sequence:think, pick up forks, eat, put down forks.Our challenge is to implement a protocol solving this
problem that avoids deadlock.

Suppose that the processes in our example are the forks, and that the multicasts originate in
philosopher processes that are arrayed around the table. The philosophers can now request their forks by
sending totally ordered multicasts to the process group of forks to their left and right. It is easy to see that
if forks are granted in the order that the requests arrive, a globally total order avoids deadlock, but a
locally total order is deadlock prone. Presumably, there is a family of multi-group locking and
synchronization protocols for which similar results would hold. However, to repeat the point made above,
this author has never encountered a real-world application in which globally total order is needed. This
being the case, such strong ordering should perhaps be held in reserve as an option for applications that
specifically request it, but not a default. If globally total order were as cheap as locally total order, of
course; the conclusion would be reversed.

14.4 Causal and Total Ordering Domains
We have seen that when ordering properties are extended to apply to multiple heavyweight groups, the
costs of achieving ordering can rise substantially. Sometimes, however, such properties really are needed,
at least in subsets of an application. If this occurs, one option may be to provide the application with
control over these costs by introducing what are calledcausal and total ordering domains. Such a

Kenneth P. Birman - Building Secure and Reliable Network Applications282

282

domain would be an attribute of a process group: at the time a group is created, it would be bound to an
ordering domain identifier, which remains constant thereafter. We can then implement the rule that when
two groups are in different domains, multicast ordering properties need not hold across them. For
example, if groupg1 and groupg2 are members of different ordering domains, the system could ignore
causal ordering between multicasts sent ing1 and multicasts sent ing2. More general still would be a
scheme in which a domain is provided for each type of ordering: two groups could then be in the same
causal domain but different total ordering domains, for example. Implementation of ordering domains is
trivial if the corresponding multigroup ordering property is available within a system. For example, if
group g1 and groupg2 are members of different causal ordering domains, the conservative rule would be
overlooked when a process switched from sending or receiving in one group and starts to do send in the
other. Delays would only arise when two groups are explicitly placed in the same ordering domain,
presumably because the application actually requires multigroup ordering in this case.

It can be argued that the benefits associated with preserving causal order system-wide are
significantly greater than those for supporting globally total order. The reasoning is that causal order is
needed to implement asynchronous data replication algorithms, and that these have such a large
performance advantage over other schemes that the benefits outweigh the costs of now needing to enforce
causal order across group boundaries. However, the conservative causality scheme is an adequate solution
to this particular problem, and has the benefit ofproviding a system-wide guarantee with a local method.
When combined with causal domains, such a mechanism has a highly selective cost. This said, however,
it should also be noted that theflushprimitive proposed earlier offers the same benefits and is quite easy to
use. Thus, many real systems opt for causal ordering, do not delay when sending messages outside of a
group, and provide aflush primitive for use by the application itself when causal ordering is needed over
group boundaries. Such a compromise is visible to the user, but easily understood.

Similar reasoning seems to argue against globally total order: the primitive has a significant cost
(mostly in terms of latency) and limited benefit. Thus, the author’s work has ceased to provide this
property, after initially doing so in the early versions of the Isis Toolkit. The costs were simply too high to
make globally total ordering the default, and the complexity of supporting a very rarely used mechanism
then argued against having the property at all.

14.5 Multicasts to Multiple Groups
An additional multigroup issue concerns the sending of a single multicast to a set of process groups in a
single atomic operation. Up to now, such an action would require that the multicast be sent to one group
at a time, raising issues of non-atomic delivery if the sender fails midway. One can imagine solving this
problem by implementing a multigroup multicast as a form of non-blocking commit protocol; Schiper and
Raynal have proposed such a protocol in conjunction with their work on the Phoenix system [SR96].
However, there is another option, which is to create a new process group superimposed on the multiple
destination groups, and to send the multicast in that group. Interestingly, the best implementations of a
group create protocol require a singlefbcast, hence if one creates a group, issues a single multicast in it,
and then deletes the group, this has comparable cost to doing a multi-phase commit over the same set of
processes and then garbage collecting after the protocol has terminated!

This last observation argues against explicit support for sending a multicast to several groups at
the same time, except in settings where the set of groups to be used cannot be predicted in advance and is
very unlikely to be “reused” for subsequently communication. That is, although the application process
can be presented with an interface that allows multicasts to be sent to sets of groups, it may be best to
implement such a mechanism by creating a group in the manner described above. On the belief that most
group communication patterns will be reused shortly after they are first employed, such a group could then
be retained for a period of time in the hope that a subsequent multicast to the same destinations will reuse
its membership information. The group can then be torn down after some period during which no new

Chapter14: Point-to-Point and Multigroup Considerations 283

283

multicasts are transmitted. Only if such a scheme is impractical would one need a multicast primitive
capable of sending to many groups at the same time, and the author of this text is not familiar with any
setting in which such a scheme is clearly not viable.

14.6 Multigroup View Management Protocols
A final issue that arises in systems where groups overlap heavily is that our view management and flush
protocol will run once for each group when a failure or join occurs, and our state transfer protocol only
handles the case of a process that joins a single group at a time. Clearly, these will be sources of
inefficiency (in the first case) and inconvenience (in the second case) if group overlap is common. This
observation, combined with the delays associated with conservative ordering algorithms and the concerns
raised above in regard to globally total order, has motivated research on ways of collapsing heavily
overlapped groups into smaller numbers of larger groups. Such approaches are often described as
resulting in lightweight groups, because the groups seen by the application typically map onto some
enclosing set ofheavyweightgroups.

Glade has explored this approach in Isis and Horus [GBCS92]. His work supports the same
process group interfaces as for a normal process group, but maps multicasts on lightweight groups into
multicasts to the enclosing heavyweight groups. Such multicasts are filtered on arrival, so that an
individual process will only be given copies of messages actually destined to for it. The approach
essentially maps the fine-grained membership of the lightweight groups to a coarser-grained membership
in a much smaller number of heavyweight groups.

The benefit of Glade’s approach is that it avoids both the costs of maintaining large numbers of
groups (the membership protocols run just once if a process joins or leaves the system, updating multiple
lightweight groups in one operation. Moreover, the causal and total ordering guarantees of our single-
group solutions will now give the illusion of multigroup causal and total ordering, with no changes to the
protocols themselves. Glade argues that when a system produces very large numbers of overlapping
process groups there are likely to be underlying patterns that can be exploited to efficiently map the
groups to a small number of heavyweight ones. In applications with which the author is familiar, Glade’s
point seems to hold. Object oriented uses of Isis (for example, Orbix+Isis) can generate substantial
overlap when a single application uses multiple object groups. But this is also precisely the case where a
heavyweight group will turn out to have the least overhead, because it precisely matches the membership
of the lightweight groups.

Glade’s algorithms in support of lightweight process groups are relatively simple. A multicast to
such a group is, as noted before, mapped to a multicast to the corresponding heavyweight group and
filtered on arrival. Membership changes can be implemented either by using anabcastto the lightweight
group or, in more extreme cases, by using a flushed multicast, similar to the one used to install view
changes in the heavyweight group. For most purposes, theabcastsolution is sufficient.

14.7 Related Reading
On the timestamp technique used in Harp: [LGGJ91, LLSG92]. Preserving causality in point-to-point
message passing systems [SES90]. On the associated controversy [CS93] and the responses [Bir94,
Coo94, Ren94]. Multiple groups in Isis: [BJ87b, BSS81] . On communication from a non-member of a
group to a group: [Woo93, BJ87b]. Graph representations of message dependencies [Pet87, PBS89,
ADKM92a, MM89]. Lightweight process groups [GBCS92].

Kenneth P. Birman - Building Secure and Reliable Network Applications284

284

15. The Virtually Synchronous Execution Model
The process group communication primitives introduced in the previous chapters create a powerful
framework for algorithmic development. When the properties and primitives are combined for this
purpose, we will say that avirtually synchronousexecution environment results [BJ87a, BJ87b, BR94].
However, although we built our primitives “up” from basic message passing, it is probably easier to
understand the idea behind virtual synchrony in a top-down treatment. We’ll then use the approach to
develop an extremely high performance replicated data algorithm, as well as several other tools for
consistent distributed computing.

15.1 Virtual Synchrony
Suppose that we wish to use a process group (or a set of process groups) as a building block in a
distributed application. The group members will join that group for the purpose of cooperation, perhaps
to replicate data or to perform some operation fault-tolerantly. The issue now arises of how to design such
algorithms with a high degree of confidence that they will operate correctly.

Recall the discussion of transactional serializability from Section 7.5. In that context, we
encountered a similar problem: a set of concurrently executed programs that share files or a database and
wish to avoid interference with one-another. The basic idea was to allow the developer to code these
applications as if they would run in isolation from one-another, one by one. The database itself is
permitted to interleave operations for greater efficiency, but only in ways that preserve the illusion that
each “transaction” executes without interruption. The results of a transaction are visible only after it
commits; a transaction that aborts is automatically and completely erased from the memory of the system.
As we noted at the time, transactional serializability allows the developer to use a simple programming
model, while offering the system an opportunity to benefit from high levels of concurrency and
asynchronous communication.

Virtual synchrony is not based on transactions, but introduces a similar approach to
programming with process groups. In the virtual synchrony model, the simplifying abstraction seen by
the developer is that of a set of processes (the group members) whichall see the same events in the same
order. These events are incoming messages to the group and group membership changes. The key
insight, which is not a very deep one, is that since all the processes see the same inputs, they can execute
the same algorithm and in this manner stay in consistent states. This is seen in Figure 15-1, which
illustrates a process group that receives messages from several non-members, has a new member join and
transfers the “state” of the group to it, and then experiences a failure of one of the old members. Notice
that the group members see identical sequences of events while they belong to the group. The members
differ, however, in their relative “ranking” within the group membership. There are many possible ways
to rank the members of a group, but the most common one, which is used in this Chapter, assumes that
the rank is based on when members joined the oldest member having the lowest ranking, and so forth.

Chapter15: The Virtually Synchronous Execution Model 285

285

The State Machine approach of Lamport and Schneider first introduced this approach as part of a
proposal for replicating objects in settings subject to Byzantine failures [Sch88b, Sch90]. Their work
made a group of identical replicas of the object in question, and used Byzantine Agreement for all
interactions with the group and to implement its interactions with the external world. However, the State
Machine approach saw little use when it was first proposed for the same reason that Byzantine Agreement
sees little practical use: few computing environments satisfy the necessary synchronous computing and
communications requirements, and it is difficult to employ a service that employs a Byzantine fault model
without extending the same approach to other aspects of the environment, such as any external objects
with which the service interactions, and the operating systems software used to implement the
communication layer.

A further concern about the State Machine approach is that all copies of the program see
identical inputs in the identical order. If one program crashes because of a software bug, so will all of the
replicas of that program. Unfortunately, as we saw earlier, studies of real-world computing installations
reveal that even in mature software systems, bugs that crash the application remain a proportionately
important cause of failures. Thus, by requiring correct processes that operate deterministically and in
lock-step, the State Machine approach is unable to offer protection against software faults.

Virtual synchrony is similar to the State Machine abstraction, but moves outside of the original
Byzantine setting, while also introducing optimizations that overcome the concerns raised above. The
idea is to view the State Machine as a sort of reference model but to allow a variety of optimizations so
that the true execution of a process group may be very far from lock-step synchrony. In effect, just as
transactional executions allow operations to be interleaved, provided that the behavior is indistinguishable
from some serial execution, a virtual synchrony execution allows operations to be interleaved, provided
that the result is indistinguishable from some closely synchronous (State Machine) execution.
Nonetheless, the executions of the different replicas will be different enough to offer some hope that
software bugs will not be propagated across the entire group.

To take a very simple example, suppose that we wish to support a process group whose members
replicate some form of database and perform load-balanced queries upon it. The operations on the service
will be queries and updates, and we will overlook failures (for the time being) to keep the problem as
simple as possible.

Next, suppose that we implement both queries and database updates as totally ordered multicasts
to the group membership. Every member will have the same view of the membership of the group, and
each will see the same updates and queries in the same order. By simply applying the updates in the order
they were received, the members canmaintain identically replicated copies of the database. As for the
queries, an approximation of load-balancing can be had using the ranking of processes in the group view.

G
p1p0 p2

m2

q0

m1

q1

state transfer

m0

crash

Figure 15-1: Closely synchronous execution: all group members see the same events (incoming messages and new
group views) in the same order. In this example only the non-members of the group send multicasts to it, but the
group members can also multicast to one-another, and can send point-to-point messages to the non-members. For
example, a group RPC could be performed by sending a multicast to the group, to which one or more members
reply.

Kenneth P. Birman - Building Secure and Reliable Network Applications286

286

Suppose that the process-group view ranks the members in [0...n-1]. Then thei’th incoming query can be
assigned to the process whose rank is(i mod n). Each query will be handled by exactly one process.

We’ll call this a closely synchronousexecution. Frank Schmuck was the first to propose this
term, observing that the actions of the receiving processes were closely synchronized but might be spread
over a significant period of real-time. The synchronous model, as discussed previously in this text, would
normally require real-time bounds on the time period over which an action is performed by the different
processes that perform it. Notice that a closely synchronous execution does not require identical actions
by identical processes: if we use the load-balancing idea outlined above, actions will be quite different at
the different copies. Thus, a closely synchronous group is similar to a group that uses State Machine
replication, but not identical.

Having developed this solution, however, there will often be ways to weaken the ordering
properties of the protocols it uses. For example, it may be the case that updates are only initiated by a
single source, in which case anfbcast protocol would be sufficient to provide the desired ordering.
Updates will no longer be ordered with respect to queries if such a change is made, but in an application
where a single process issues an update and follows it with a query, the update would always be received
first and hence the query will reflect the result of doing the update. In a slightly fancier setting,cbcast
might be needed to ensure that the algorithm will operate correctly. For example, withcbcastone would
know that if an application issues an update and then tells some other process to do a query, that second
process will see the effects of the causally prior updates. Often, an analysis such as this one can be carried
very far.

Having substitutedfbcastor cbcastfor the originalabcast, however, the execution will no longer
be closely synchronous, since different processes may see different sequences of updates and queries and
hence perform the same actions but in different orders. The significant point is that if the original
analysis was performed correctly, the actions willproduce an effect indistinguishable from that which
might have resulted from a closely synchronous execution.Thus, the execution “looks” closely
synchronous, even though it is not. It isvirtually synchronousin much the same sense that a
transactional system creates the illusion of a serial execution even though the database server is
interleaving operations from different transactions to increase concurrency.

Our transformation has the advantage of delivering inputs to the process group members in
different orders, at least some of the time. Moreover, as we saw earlier, the process groups themselves are
dynamically constructed, with processes joining them at different times. And, the ranking of the
processes within the group differs. Thus, there is substantial room for processes to execute in slightly
different ways, affording a degree of protection against software bugs that crash some of the members.

Recall the Gray/Lindsey characterization of Bohrbugs and Heisenbugs, from Chapter 12. It is
interesting to realize that virtually synchronous replication can protect against Heisenbugs [BR94, BR96].
If a replica crashes because such a bug has been exercised, the probability that other group members will
crash simultaneously is reduced by the many aspects of the execution that differ from replica to replica.
Our transformation from a closely synchronous system to a virtually synchronous one increases the natural
resiliency of the group, assuming that its constituent members are mature, well debugged code.
Nonetheless, some exposure to correlated failures is unavoidable, and the designer of a critical system
should keep this in mind.

Additionally, notice that thecbcastprimitive can be used asynchronously. That is, there is no
good reason for a process that issues acbcastto perform an update to wait until the update has been
completed by the full membership of the group. The properties of thecbcastprotocol ensure that these
asynchronously transmitted messages will reliably reach their destinations, and that any causally
subsequent actions by the same or different processes will see the effects of the priorcbcast’s. In an
intuitive sense, one could say that thesecbcastprotocols look as if they were performed instantly, even
when they actually execute over an extended period of time.

In practice, the most common transformation that we will make is precisely this one: the
replacement of a totally orderedabcastprimitive with an asynchronous, causally orderedcbcastprimitive.

Chapter15: The Virtually Synchronous Execution Model 287

287

In the subsections that follow, this pattern will occur repeatedly. Such transformations have been studied
by Schmuck in his doctoral dissertation, and shown to be extremely general: what we do in the subsections
below can be done in many settings.

Thus, we have transformed a closely synchronous group application, in which the members
operate largely in lock-step, into a very asynchronous implementation in which the members can pull
ahead and others can lag behind, in which communication can occur concurrently with other execution,
and in which the group may be able to tolerate software bugs that crash some of its members! These are
important advantages that account for the appeal of the approach.

When an application has multiple process groups in it, an additional level of analysis is often
required. As we saw in the previous chapter, multigroup causal (and total) ordering is expensive. When
one considers real systems, it also turns out that multigroup ordering is often unecessary: many
applications that need multiple groups use them for purposes that are fairly independent of one-another.
Operations on such independent groups can be thought of as commutative, and hence it may be possible to
use cbcast to optimize such groups independently without taking the next step of enforcing causal
orderings across groups. Where multi-group ordering is needed, it will often be confined to small sets of
groups, which can be treated as an ordering domain. In this manner, an all-around solution results that
can scale to large numbers of groups while still preserving the benefits of the one-round asynchronous
communication pattern seen in thecbcastprotocol, and absent in theabcastprotocols.

Our overall approach, it should be noted, is considerably less effective when the dynamic
uniformity guarantees of the “safe” multicast protocols are required. The problem is that whereas
asynchronouscbcastis a very fast protocol that delivers messages during its first phase of communication,
any dynamically uniform protocol will delay delivery until a second phase. The benefit of replacing
abcastwith cbcastin such a case is lost. Thus, one begins to see a major split between the algorithms
that run fairly synchronously, requiring more than a single phase of message passing before delivery can
occur, and those that operate asynchronously, allowing the sender of a multicast to continue computing
while multicasts that update the remainder of a group or that inform the remainder of the system of some
event propagate concurrently to their destinations.

The following is a summary of the key elements of the virtual synchrony model:

• Support for process groups.Processes can join groups dynamically, and are automatically excluded
from a group if they crash.

• Identical process group views and mutually consistent rankings.Members of a process group are
presented with identical sequences of group membership, which we callviewsof that process group.
If a non-primary component of the system forns after a failure, any process group views reported to
processes in that component are identified as non-primary, and the view sequence properties will
otherwise hold for all the processes in a given components. The view ranks the components, and all
group members see identical rankings for identical group views.

• State transfer to the joining process.A process that joins a group can obtain the group’s current state
from some prior member, or from a set of members.

• A family of reliable, ordered multicast protocols.We have seen a number of these, includingfbcast,
cbcast, abcast, cabcast,the safe (dynamically uniform) versions of these, and the group flush
protocol, which is sometimes given the namegbcast.

• Gap-freedom guarantees.After a failure, if some messagemj is delivered to its destinations, than any
messagemi that the system is obliged to deliver prior tomj will also have been delivered to its
destinations.

Kenneth P. Birman - Building Secure and Reliable Network Applications288

288

• View synchronous multicast delivery.Any pair of processes that are both members of two consecutive
group views receive the same set of multicasts during the period between those views.14

• Use of asynchronous, causal or fifo multicast.Although algorithms will often be developed using a
closely synchronous computing model, a systematic effort is made to replace synchronous, totally
ordered, and dynamically uniform (safe) multicasts with less costly alternatives, notably the
asynchronouscbcastprimitive in its non-dynamically-uniform (unsafe) mode.

15.2 Extended Virtual Synchrony
As presented above, the virtual synchrony model is inherently intolerant of partitioning failures: the model
is defined in terms of a single “system” component within which process groups reside. In this primary
component approach, if a network partitioning failure occurs and splits a group into fragments, only the
fragment that resides in the primary component of the system is able to continue operation. Fragments
that find themselves in the non-primary component(s) of the system are typically forced to shut down, and
the processes within them must reconnect to the primary component when communication is restored.

The basis of the primary component approach lies in a subtle issue that we first saw when
discussing commit protocols. In a dynamic distributed environment there can be symmetric failure modes
that result from communication problems that mimic process failures. In such a situation perhaps process
p will consider that processq has failed while processq believes the converse to be true. To make
progress, one or the other (or perhaps both) of these events must become “official”. In a partitioned run of
the system, only one of these conflicting states can become official.

At the core of the problem is that observation that, if a system experiences a partitioning failure,
it is impossible to guarantee that multiple components can remain operational (in the sense of initiating
new actions, delivering messages and new group views, etc) with guarantees that also span both sides of
the partition. To obtain strong system-wide guarantees a protocolmust always wait for communication to
be reestablished under at least some executions in at least one side of the partition.When we resolve this
problem in the manner of the protocols of the previous chapters, the primary component is permitted to
make progress at the expense of inconsistency relative to other components: within them, the sets of
messages delivered may be different from the set in the primary component, and the order may also be
different. In the case of the dynamically uniform protocols the guarantees are stronger but non-primary
components may be left in a state where some dynamically uniform multicasts are still undelivered and
where new dynamically uniform ones are completely blocked. The primary component, in contrast, can
make progress so long as its GMS protocol is able to make progress.

Some researchers, notably in the Transis and Totem projects, have pointed out that there are
applications that can tolerate inconsistency of the sort that would potentially arise if progress was
permitted in a non-primary component of a partitioned system [Mal94, Aga94,DMS95]. In these
systems, any component that can reach internal agreement on its membership is permitted to continue
operation. However, only a single component of the system is designated as the primary one. An
application that is safe only in the primary component would simply shut down in non-primary
components. Other applications, however, might continue to be available in non-primary components,
merging their states back into the primary component when the partitioning failure ends.

Carrying this observation even further, the Transis group has shown that there are distributed
systems in which no component ever can be identified as the primary one, and yet every action initiated

14 In some systems this is weakened so that if a process fails but its failure is not reported promptly, it is considered
to have received multicasts that would have been delivered to it had it still been operational.

Chapter15: The Virtually Synchronous Execution Model 289

289

within the system can eventually be performed in a globally consistent manner [KD95,DMS95].
However, this work involves both a static system model and a very costly protocol, which delays
peforming an action until a majority of the processes in the system as a whole have acknowledge receipt of
it. The idea is that actions can be initiated within dynamically defined components that represent subsets
of the true “maximal” system configuration, but that they remain in a pending state until a sufficient
number of processes are known to have seen them, which occurs when communication is restored between
components. Eventually, knowledge of the actions reaches enough processes so that it becomes safe to
perform them. But the protocol is clearly intended for systems that operate in a partitioned mode over
very long periods of time, and where there is no special hurry to perform actions. Yair Amir has extended
this approach to deal with more urgent actions, but his approach involves weakening the global
consistency properties [Ami95]. Thus, one is faced with a basic tradeoff between ensuring that actions
will occur quickly and providing consistency between the primary component of the system and other
components. We can have one or the other, but not both at once.

Although the author’s own system, Horus, supports an extended model of the former sort
[Mal94]. (In fact, this part of Horus was actually implemented by Malki, who ported the associated code
from Transis into Horus). However, it is quite a bit harder to work with than the primary partition model.
The merge of states when an arbitrary application resumes contact between a non-primary and a primary
component can very difficult and cannot, in general, be solved automatically. In practice, such an
application would normally remember any “update” actions it has taken and save these on a queue. When
a merge becomes possible it would replace its state with that of the primary component and then reapply
these updates, if any. But it is not clear how large a class of applications can operate this way. Moreover,
unless dynamically uniform protocols are employed for updates, the non-primary component’s state may
be inconsistent with the primary one in significant ways.

On the other hand, the primary component model is awkward in wide-area networks where
partitioning events occur frequently. Here, the model will in effect shut down parts of the overall system
that are physically remote from the “main” part of the system. Each time they manage to restart after a
communication failure, a new communication problem will soon cut them off again.

Figure 15-2: When a partitioning failure occurs, anapplication may be split into two or more fragments, each
complete in the sense that it may potentially have a full set of processes and groups. In the primary component
model, however, only one "set" is permitted to remain operational  hopefully one that has a full complement of
process and groups. Above, the white component might thus be alive after the link breaks while the members of the
gray component are prevented from continuing execution. The rationale underlying this model is that it is
impossible to guarantee consistency if both sides of a partitioning failure are also permitted to remain available
while a communication failure is pending. Thus we could allow both to run if we sacrifice consistency, but then we
face a number of hard problems: which side “owns” critical resources? How can the two sides overcome potential
inconsistencies in their states as of the time of the partition failure event? There are nogood general answers to
these questions.

Kenneth P. Birman - Building Secure and Reliable Network Applications290

290

Recent work, which we will not havetime to discuss in detail, points to yet a third possible mode
of operation. In this mode, a computing system would be viewed as a wide-area-network composed of
interconnected local area networks, as was first proposed in the Transis project. Within each of the LAN
systems one would run a “local” subsystem: a complete primary-component system with its own sets of
process groups and a self-sufficient collection of services and applications. The WAN layer of the system
would be built up by superimposing a second communication structure on the aggregate of LAN’s and
would support its own set of WAN services. At this higher level of the system, one would use a true
asynchronous communication model: if a partitioning event does occur, such a WAN system would wait
until the problem is resolved. The WAN system would then be in a position to make use of protocols that
don’t attempt to make progress while communication is disrupted, but rather wait as long as necessary
until the exchange of messages resumes and hence the protocol can be pushed forward. The consensus
protocol of Chandra and Toueg is a good example of a protocol that one could use at the WAN level of a
system structured in this manner, while the virtual synchrony model would be instantiated multiple times
separately: once for each LAN subsystem.

Figure 15-3: The extended virtual synchrony model allows both white gray partitions to continue progress despite
the inconsistencies that may arise between their states. However, only one of the components is considered to be
the primary one. Thus the white partition might be considered to be “authoritative” for the system while the gray
one is permitted to remain alive but is known to be potentially stale. Later when the communication between the
components is restored, the various process group components merge, resulting in a single larger system
component with a single instance of each process group (below). The problem, however, is that merging must
somehow overcome the inconsistencies that may have arisen during the original partitioning failure, and this may
not always be possible. Working with such a model is potentially challenging for the developer. Moreover, one
must ask what sorts of applications would be able to continue operating in the red partition knowing that the state
of the system may at that point be inconsistent, for example reflecting the delivery of messages in orders that differ
from the order in the main partition, having atomicity errors, orgaps in the message delivery ordering.

Chapter15: The Virtually Synchronous Execution Model 291

291

In this two-tiered model, an application would typically be implemented as a “local part”
designed to remain available in the local component and to reconfigure itself to continue progress despite
local failures. The primary component virtual synchrony model is ideal for this purpose. When an action
is taken that has “global implications” the local part would initiate a global action by asking the WAN
architecture to communicate this message through the WAN system. The WAN system would use
potentially slow protocols that offer strong global ordering and atomicity properties at the expense of
reduced progress when partitioning failures occur, delivering the resulting messages back into the various
local subsystems. The local subsystems would then apply these updates to their “global states”.

Danny Dolev has suggested the following simple way to understand such a two-tier system. In
his view, the LAN subsystems run applications that are either entirely confined to the LAN (and have no
interest in global state), or that operate by reading theglobal state but updating theirlocal state. These
applications do not directly update the global system state. Rather, if an action requires that the global
state be updated, the LAN subsystem places the associated information on a WAN action queue, perhaps
replicating this for higher availability. From that queue, the WAN protocols will eventually propagate the
action into the WAN level of the system, out of which it will filter back down into the LAN level in the
form of an update to the global system state. The LAN layer will then update its local state to reflect the
fact that the requested action has finally been completed. The LAN layer of such a system would use the
primary-component virtual synchrony model, while the WAN layer employs protocols based on the
method in [KD95].

First introduced in the Isis system’s “long-haul” service by Makpangou, and then extended
through Dolev and Malki’s work on the Transis architecture (which has a “lansis” and a “wansis”
subsystem), two-tier architectures such as this have receivedattention in many projects and systems. They
are now used in Transis, Horus, NavTech, Phoenix and Relacs. By splitting the application into the part
that can be done locally with higher availability and the part that must be performed globally even if
availability is limited, they don’t force a black or white decision on the developer. Moreover, a great
many applications seem to fit well with this model. Looking to the future, it seems likely that we will

Figure 15-4: In a two-tiered model, each LAN has its own complete subsystem and runs using its own copy of the
primary-component virtual synchrony model. A WAN system (gray) spans the LANs and is responsible for
distributing global updates. The WAN layer may block while a partitioning failure prevents it from establishing the
degree of consensus needed to safely deliver updates, but the local systems continue running even if global updates
are delayed. Such a mixed approach splits the concerns of theapplication into local ones, where the focus is on
local consistency and high availability, and global ones, where the focus is on global consistency even if
partitioning failures can introduce long delays. The author favors this approach, which is used in the Isis Toolkit’s
“long-haul” subsystem, and has been applied successfully in such Isis applications as its wide-area “news” facility.

Kenneth P. Birman - Building Secure and Reliable Network Applications292

292

soon begin to see programming tools that encapsulate this architecture into a simple to use, object-
oriented framework, making it readily accessible to a wide community of potential developers.

15.3 Virtually Synchronous Algorithms and Tools
In the subsections that follow, we develop a set of simple algorithms that illustrate the power, and
limitations, of reliable multicast within dynamic process groups. These algorithms are just a small subset
of the ones that can be developed using the primitives, and the sophisticated system designer may
sometimes find a need for a causal and total multicast primitive (“cabcast”), or one with some other slight
variation on the properties on which we have focused here. Happily, the protocols we have presented are
easily modified for special needs, and modern group communication systems, like the Horus system, are
designed precisely to accommodate such flexibility and fine-tuning. The algorithms that follow, then,
should be viewed as a form of template upon which other solutions might be developed through a process
of gradual refinement and adaptation.

15.3.1 Replicated Data and Synchronization
When discussing the static process group model, we put it to the test by using it to implement replicated
data. The reader will recall from Section 13.7 that this approach was found to have a number of
performance problems. The algorithm that resulted would have forced group members to execute nearly
in lock-step, and the protocols themselves were costly in terms both of latency and messages required.
Virtual synchrony, on the other hand, offers a solution to this problem that is inexpensive in all of these
aspects, provided that dynamic uniformity is not required. When dynamic uniformity is required, the cost
is still lower than for the static, quorum-replication methods although the advantage is less pronounced.

As suggested above, we start by describing our replication and synchronization algorithm in
terms of a closely synchronous execution model. We will initially focus on the non dynamically-uniform
case. Suppose that we wish to supportREAD, UPDATE,andLOCK operations on data replicated within
a process group. As a first approximation to a solution would useabcastto implement theUPDATEand
LOCK operations, while allowing any group member to performREADoperations using its local replica
of the data maintained by the group.

Specifically, we will require that each group member maintain a private replica of the group data.
When joining a group, the state transfer algorithm (developed below) must be used to initialize the replica
associated with the joining process. Subsequently, all members will apply the same sequence of updates
by tracking the order in whichUPDATEmessages are delivered, and respecting this order when actually
performing the updates.READoperations, as suggested above, are performed using the local replica (this
is in contrast to the quorum methods, where a read must access multiple copies).

An UPDATE operation can be performed without waiting for the group members to actually
complete the individual update actions. Instead, anabcastis issued asynchronously (without waiting for
the message to be delivered), and the individual replicas perform the update when the message arrives.

Many systems make use of non-exclusive “read” locks. If desired, these can also be implemented
locally. The requesting process will be granted the lock immediately unless an exclusive (write) lock is
registered at this copy. Finally, exclusive (write)LOCK operations are performed by issuing anabcastto
request the lock and then waiting for each group member to grant it. A recipient of such a request waits
until there are no pending read locks and then grants the request in the order it was received. The lock
will later be released either with anotherabcastmessage, or upon reception of a new view of the process
group reporting the failure of the process that holds the lock.

Chapter15: The Virtually Synchronous Execution Model 293

293

One would hope that it is obvious that this implementation of replicated data will be tolerant of
failures and guarantee the consistency of the copies. The individual replicas start in identical states
because the state transfer to a joining member copies the state of the replicated data object from some
existing member. Subsequent updates and lock operations behave identically at all copies. Thus, all see
the same events in the same order, and remain in identical states.

Now, let us ask how many of theseabcastoperations can be replaced with asynchronouscbcast
operations. In particular, suppose that we replaceall of the abcast’s with asynchronouscbcast’s.
Remarkably, with just two small changes, the modified algorithm will be correct. The first change is that
all updates must be guarded by a lock with appropriate granularity.That is, if any update might be in
conflict with a concurrent update, we will require that the application ensure that the update provide for
some form of mutual exclusion. On the other hand, updates that are known to be independent commute,
and hence can be issued concurrently. For example, updates to two different variables maintained by the
same process group can be issued concurrently, and in groups where all the updates for a specific type of
data originate with a single process, no locks may be required at all.

The second change is a bit more subtle: it has to do with the way that ordering is established
when a series of write locks are requested within the group. The change is as follows. We will say that
the first process to join the group, when the group is first created, is itsinitial writer. This process is
considered to control write access to all the data items managed by the group.

Now, before doing an update, a process will typically request a lock, sending acbcastto inform
the group members of itsLOCK request and waiting for the members to grant the request. In our original
closely synchronous algorithm, a recipient of such a request granted it in first-come first-served order
when no local read-lock was pending. Our modified algorithm, however, will wait before granting lock
requests. They simply pile up in a queue, ordered in whatever order thecbcastmessages were delivered.

When the writer for a given lock no longer needs that lock, we will say that it becomesprepared
to pass the lock. This process will react to incoming lock requests by sending out acbcastthatgrantsthe
lock request. The grant message will be delivered to all group members. Once the grant message is
received, a member dequeues the corresponding lock request (the causal ordering properties ensure that
the request will indeed be found on the pending lock-request queue!) and then grants it when any read-
locks that may be present for the same item have been released. A writer grants the lock to the process
that issued that oldest of the pending lock requests on its version of the lock queue.

Having obtained a grant message for its lock request and individual confirmation messages from
each group member that the lock has been acquired locally to it, the writer may begin issuing updates. In
many systems the local read-lock mechanism will not be required in which case the members need not
confirm write-lock acquisition, and the writer need not wait for these messages. The members simply
dequeue the pending lock request when the grant message arrives, and the writer proceeds to issueupdates
as soon as it receives the grant message itself.

Kenneth P. Birman - Building Secure and Reliable Network Applications294

294

It may at first seem surprising that this algorithm can work: why should it ensure that the group
members will perform the same sequence of updates on their replicas? To see this, start by noticing that
the members actually might not perform identical sequences of updates (Figure 15-5). However, any
sequence ofconflicting updateswill be identical at all replicas, for the following reason. Within the
group, there can be only one writer that holds a given lock. That writer usescbcast(asynchronously) to
issue updates, and usescbcast(again asynchronously) to grant the write lock to the subsequent writer.
This establishes a total order on the updates: one can imagine a causal path traced through the group,
from writer to writer, with the updates neatly numbered along it: the first update, the second, the granting
of the lock to a new writer, the third update, the granting of the lock to a new writer, the fourth update,
and so forth. Thus, whencbcastenforces the delivery order, any set of updates covered by the same lock
will be delivered in the same order to all group members.

As for the non-conflicting updates: these commute with the others, and hence would have had the
same effect regardless of how they were ordered. The ordering of updates is thus significant only with
respect to other conflicting updates.

Finally, the reader may have noticed that lock requests are not actually seen in the same order at
each participant. This is not a problem, however, because the lock request order isn’t actually used in the
algorithm. As long as the grant operation is reasonably fair and grants a request that is genuinely
pending, the algorithm will work. These properties do hold in the algorithm as presented above.

The remarkable thing about this new algorithm is that it is almost entirely asynchronous. Recall
that ourcbcastalgorithm is delivered in the same view of the process group as the one that was in place
when thecbcastwas initiated. This implies that the sender of acbcastcan always deliver “its own copy”
of the multicast as soon as it initiates the message. After all, by definition, any causally priorcbcastswill
already have been delivered at the sender, and the flush protocol enforces the view-synchrony and causal-
gap freedom guarantees. This means that a process that wants to issue an update can perform the update
locally, sending off acbcast that will update the other replicas without delaying local computation.
Clearly, a lock request will block the process that issues it unless that process happens to hold the write
lock already, as may often be the case in systems with bursty communication patterns. But it is clear that
this minimal delay the time needed to request permission to write, and for the grant message to travel

update 1

update 4

update 3

update 2

lock grant

grant

Figure 15-5: A set of conflictingupdates are ordered because only one process can write at a time. Each update,
and the lock-granting message, is an asynchronous cbcast. Because the causal order is in fact a total one along
this causal path (shown in bold), all group members see the same updates in the same order. Lock requests are not
shown, but they too would be issued using asynchronous cbcasts. Notice that lock requests will not be seen in the
same order by all processes, but this is not required for the algorithm to behave correctly. All that matters is that
the grant operation grant a currently pending lock request, and in this algorithm, all processes do have a way to
track the pending requests, even though they may learn about those requests in different orders.

Chapter15: The Virtually Synchronous Execution Model 295

295

back to the requesting process, is necessary in any system.

Moreover, the algorithm can be simplified further. Although we usedcbcasthere, one could
potentially replace these withfbcast by employing a sequence number: thei’th update would be so
labeled, and all group members would simply apply updates in sequence order. The token would now
represent permission to initiate new updates (and the guarantee that the values a process reads are the
most current ones). Such a change eliminates the vector timestamp overhead associated withcbcast,and
is also recognizable as an implementation of one of theabcastprotocols that we developed earlier!

From the perspective of an application, this asynchronous replication and locking scheme may
seem astonishingly fast. The only delays imposed upon the application are when it requests a new write
lock. During periods when it holds the lock, or if it is lucky enough to find the lock already available, the
application is never delayed at all. Read operations can be performed locally, and write operations
respond as soon as the local update has been completed and thecbcastor fbcast(we’ll just call it a cbcast
for simplicity) to the remaining members handed off to the communications subsystem. Later, we will see
that the Horus system achieves performance that can reach 85,000 such updates per second. Reads are
essentially free, hence millions could be done per second. When this is compared with a quorum read and
update technology, in which it would be surprising to exceed 100 reads andupdates (combined) in one
second, the benefits of an asynchronouscbcastbecome clear. In practice, quorum schemes are often
considerably slower than this because of the overheads built into the algorithm. Moreover, a quorum read
or update forces the group members into lock-step, while our asynchronous replication algorithm
encourages them to leap ahead of one-another, buffering messages to be transmitted in the background.

However, we must not delude ourselves into viewing this algorithm as identical to the quorum
replication scheme, because that scheme provides the equivalent of a dynamic uniformity guarantee and of
a strong total ordering. The algorithm described above could be modified to provide such a guarantee by
using asafe cbcastin place of the standardcbcastused above. But such a change will make the protocol
dramatically slower, because eachUPDATE will now be delayed until at least a majority of the group
members acknowledge receipt of theupdate message. Thus, although the algorithm would continue to
perform READ operations from local replicas,UPDATE operations will now be subject to the same
performance limits as for a quorum update. The benefit may still be considerable, but the advantage of
this scheme over a quorum one would be much reduced.

In the experience of the author, dynamic uniformity is needed quite rarely. If an application is
about to take an externally visible action and it is important that, in the event of a failure, the other
replicas of the application be in a consistent state with that of the application taking the action, this
guarantee becomes important. In such cases, it can be useful to have a way toflushcommunication within
the group, so that any prior asynchronous multicasts are forced out of the communication channels and
delivered to their destinations. Acbcast followed by a flush is thus the equivalent of asafe cbcast
(stronger, really, since theflush will flush all prior cbcasts, while asafe cbcastmight not do provide this
guarantee). Many process group systems, including Horus, adopt this approach rather than one based on a
safe cbcast. The application developer is unlikely to useflush very frequently, hence the average
performance may approximate that of our fully asynchronous algorithm, with occassional short delays
when aflush pushes a few messages through the channels to their destinations. Unless large backlogs
develop within the system, long delays are unlikely to arise. Thus, such a compromise can be very
reasonable from the perspective of the application designer.

By way of analogy, many system developers are familiar with the behavior of operating systems
that buffer disk I/O. In such settings, to increase performance, it is common to permit the application to
continue operation as soon as a disk write is reflected in the cache contents without waiting for the data
to be flushed to the disk itself. When a stronger guarantee is required, the application explicitly requests

Kenneth P. Birman - Building Secure and Reliable Network Applications296

296

that the disk buffer be flushed by invoking an appropriate primitive, such as the UNIXfsyncsystem call.
The situation created by the asynchronouscbcastis entirely analogous, and the role of theflushprimitive
is precisely the same as that offsync. Thus, even if inconvenient, there is a sense in which this problem
should be familiar!

What about a comparison with the closely synchronous algorithm from which ours was derived?
Interestingly, the story here is not so clear. Suppose that we adopt the same approach to the dynamic
uniformity issue, by using aflush primitive with this property is required. Now, the performance of the
closely synchronousabcastalgorithm will depend entirely on the way thatabcast is implemented. In
particular, one could implementabcastusing thecbcast-based lock and update scheme of this section, or
using a rotating token (with very similar results). Such anabcastsolution would push the logic of our
“algorithm” into the communication primitive itself. In principle, performance could come be the same as
for an algorithm that usescbcastexplicitly. And, indeed, this level of performance has been achieved in
experiments with the Horus system. The major issues is that to do so, one needs to use anabcast
algorithm well matched to the communication pattern of the user, and this is not always possible: many
systems lack the knowledge to predict such patterns accurately.

15.3.2 State transfer to a joining process
As we noted several times in the above discussion, there often arises a need to transfer information about
the current state of a process group to a joining member at the instant it joins. In the iterated protocol by
which a non-member of a group communicates with a group, for example, it turned out to be necessary to
ensure that the group members learn how many messages have been successfully delivered from each
client prior to the join event. In a replicated data algorithm, there is clearly a need to transfer a current
copy of the data in question to the joining process.

The most appropriate representation of the state of the group, however, will be highly dependent
on the application. Some forms of state may be amenable to extreme compression, or may be
reconstructable from information stored on files or logs using relatively small amounts of information at
the time the process joins. Accordingly, we adopt the view that a state transfer should be done by the
application itself. Such a transfer is requested at the time of the join, and operates much like a remote
procedure call.

Given this point of view, it is easy to introduce state transfer into the protocol for group flush that
was described above. At thetime a process first requests that it be added to the group, it should signal its
intention to solicit state from the members. The associated information is passed in the form a message to
the group members, and carried along with the join protocol to be reported with the new group view after
the members perform the flush operation.

Chapter15: The Virtually Synchronous Execution Model 297

297

Each member now faces a
choice: it can stop processing new
requests at the instant of the flush, or can
make a copy of its state as of the time of
the flush for possible future use, in which
case it can resume processing. The
joining process will solicit state
information RPC-style, pulling it from
one or more of the prior members. If
state information is needed from all
members, they can also send it without
waiting for it to be solicited (Figure 15-
6), although this can create a burst of
communication load just at the moment
when the flush protocol is still running,
with the risk of momentarily overloading
some processes or the network. At the
other extreme, if a transfer is needed
from just a single member, the joining
process should transmit an asynchronous
multicastterminatingthe transfer after it
has successfully pulled the state from

some member. The remaining members can now resume processing requests or discard any information
that had saved for use during the state transfer protocol.

Perhaps the best among these options, if one single approach is desired as a default, is for the
joining process to pull state from a single existing member, switching to a second member if a failure
disrupts the transfer. The members should save the state in a buffer for later transfer, and should use
some form of “out of band” transfer (for example over a specially created TCP channel) to avoid sending
large state objects over the same channels used for other forms of group communication and request
processing. The transfer being completed, the joining process should send a multicast that tells the other
members it is safe to delete their saved state copies. This is illustrated in Figure 15-7.

Having had considerable
experience with state transfer
mechanisms, the author should warn
developers of a frequently encountered
problem. In many systems, the group
state can be so large that transferring it
represents a potentially slow operation.
For example, in a file system application,
the state transferred to a joining process
might need to contain the full contents of
every file that was modified since that
process was last operational. Clearly, it
would be aterrible idea to shut down the
request processing by existing group
members during this extended period of
time!

Such considerations lead to
three broad recommendations. First, if the state may be very large, it is advisable to transfer as much of it

initialize

send state

Figure 15-6: One of several state transfer mechanisms. In this very
simple scheme, the group members all send their copies of the state
to the joining member, and then resume computing. The method
may be a good choice if the state is known to be small, since it
minimizes delay, is fault-tolerant (albeit sending redundant
information), and very easy to implement. If the state may be large,
however, the overhead could be substantial.

save state

initialize

request
send state

delete

Figure 15-7: A good state transfer mechanism for cases where the
state is of unknown size: the joining member solicits state from some
existing member, and then tells the group as a whole when it is safe
to delete the saved data.

Kenneth P. Birman - Building Secure and Reliable Network Applications298

298

as possible before initiating the join request. A mechanism can then be implemented by which any “last
minute changes” are transferred to the joining process, but without extended delays. Secondly, the state
transfer should be done asynchronously, and in a manner that will not lead to congestion or flow control
problems that impede the normal processing of requests by the service. A service that technically remains
available, but actually is inaccessible because its communication channels are crammed with data to a
joining process may seem very unavailable to other users. Finally, where possible, the approach of
“jotting down the state” is preferable to one that shuts down a server even briefly during the transfer.
Again, this reflects a philosophy whereby every effort is made to avoid delaying the response by the server
to ongoing requests during the period while the join is still in progress.

15.3.3 Load-Balancing
One of the more common uses of process groups is to implement some form of load-balancing algorithm,
whereby the members of a group share the workload presented to them so as to obtain a speedup from
parallelism. It is no exaggeration to say that parallelism of this sort may represent the most important
single property of process group computing systems: the opportunity to gain performance while also
obtaining fault-tolerance benefits on relatively inexpensive cluster-style computing platforms isobviously
of tremendous potential importance to the size of the market for process group server architectures.

There are two broad styles of load-balancing algorithms. The first style involves multicasting the
client’s request to the full membership of the group; the decision as to how the request should be
processed is left for the group members to resolve. This approach has the advantage of requiring little
trust in the client, but the disadvantage of communicating the full request (which may involve a large
amount of data) to more processes than really need to see this information. In the second style, the client
either makes a choice among the group members, or is assigned a preferred group member to which its
requests are issued. Here, some degree of trust in the behavior of the clients is accepted in order to reduce
the communication load on the system. In this second style, the client may also need to implement afail-
over policyby which it reissues a request if the server to which it was originally issued turns out to be
faulty or fails while processing it.

Load-balancing algorithms of the first sort require some form of deterministic rule by which
incoming requests can be assigned within the server group. As an example, if incoming requests are
issued using anabcastprotocol, the group can take advantage of the fact that all members see the requests
in the same order. Thei’th request can now be assigned to the server whose rank within the group isi
mod n,or the servers can use some other deterministic algorithm for assigning the incoming work.

If group members periodically
send out load reports to one-another, also
usingabcast, these load measures can be
used to balance work in the following
manner. Suppose that the servers in the
group measure their load on an simple
numeric scale, with 0 representing an
unloaded server, 1 representing a server
that is currently handling a single
request, and so forth. The load on a
group of n servers now can be
represented as a vector [l0, ... ln]. Think
of these load values as intervals within a
line segment of total lengthL = (l0 + ...
+ ln) and assume that the group members
employ an algorithm for independently

req0

req1

coord1

coord0

Figure 15-8: Load balancing based on a coordinator scheme using
ranking. Ideally, the load on the members will be fairly uniform.

Chapter15: The Virtually Synchronous Execution Model 299

299

but identically generating pseudo-random numbers, the seed of which is transferred as part of the state
passed to a joining process when it joins the group. Then as each new request is received, the group
members can independently pick the same random number on the segment [0,L], assigning the request to
the process corresponding to the interval within which that number falls. Such an approach will tend to
equalize load by randomly spreading it within the group, and has the benefit of working well even if the
load values are approximate and may be somewhat inaccurate.

The same methods can be used as the basis for client affinity load-balancing schemes. In these,
the group members provide the client with information that they use to select the server to which requests
will be sent. For example, the group can statically assign clients to particular members at the time the
client first interacts with the group. Such an approach risks overloading a server whose clients happen to
be unusually active, but can also be advantageous if caching is a key determinate of request processing
performance, since this server is more likely to benefit from the use of a caching algorithm.
Alternatively, the client can randomly select a server for each new request within the group membership,
or can use the same load-balancing scheme outlined above to spread requests over the group membership
using approximate load information, which the members would periodically broadcast to the clients. Any
of these represents a viable option for distributing work, and the best choice for a given setting will
depend on other information available only to the application designer, such as the likely size of the data
associated with each request, fault-tolerance considerations (discussed in the next section), or issues such
as the balance between queries (which can often be load-balanced) and update requests (which generally
cannot).

In the Isis system, some use was made of load-balancing methods within which the members of a
group subdivide the processing of individual requests among themselves (e.g.one process does “half” the
work of processing a request and a second does the other “half”, as might be done to speed the search of a
large database). In practice, the author is not aware that much use was ever made of these methods, and
consequently they are not included in the present textbook.

15.3.4 Primary-Backup Fault Tolerance
Earlier, we illustrated the concept of primary-backup fault-tolerance, in which a pair of servers are used to
implement a critical service. Virtually synchronous process groups offer a good setting within which such
an approach can be used [BBMS93].

Primary-backup fault-tolerance is most easily understood if one assumes that the application is
completely deterministic. That is, the behavior of the server program will be completely determined by
the order of inputs to it, and is therefore reproducible by simply replaying the same inputs in the same
order to a second copy. Under this (admittedly unrealistic!) assumption, a backup server can track the
actions of a primary server by simply arranging that a totally ordered broadcast be used to transmit
incoming requests to the primary-backup group. The client processes should be designed to detect and
ignore duplicate replies to requests (by numbering requests and including the number in the reply). The
primary can simply compute results for incoming requests and reply normally, periodically informing the
backup of the most recent replies that are known to have been received safely. The backupmimics the
primary, buffering replies and garbage collecting them when such a status message is received. If the
primary fails, the backup resends any replies in its buffer.

Kenneth P. Birman - Building Secure and Reliable Network Applications300

300

Most primary-backup schemes employ some form of checkpoint method to launch a new replica
if the primary process actually does fail. At some convenient point soon after the failure, the backup
turned primary makes a checkpoint of its state15, and simultaneously launches a new backup process. The
new process loads its initial state from the checkpoint and joins a process group with the primary. State
transfer can also be used to initialize the backup, but this is often harder to implement because many
primary-backup schemes must operate with old code that is not amenable to change, and in which the
most appropriate form of “state” is hard to identify. Fortunately, it is just this class of server that is most
likely to support a checkpoint mechanism.

The same approach can be extended to work with non-deterministic primary servers, but doing so
is potentially much harder. The basic idea is to find a way totrace (keep a record of) the non-
deterministic actions of the primary, so that the backup can be forced to repeat those actions in a trace-
driven mode. For example, suppose that the only non-deterministic actions taken by the primary are to
request the time of day from the operating system. This system call can be modified to record the value so
obtained, sending it in a message to the backup. If the backup pauses each time it encounters a time-of-
day system call, it will either see a copy of the value used by the primary (in which case it should use that
value and ignore the value of its local clock), or see the primary fail (in which case it takes over as
primary and begins to run off its local clock). Unfortunately, there can be a great many sources of non-
determinism in a typical program, and some will be very hard to deal with: lightweight thread scheduling,
delivery of interrupts, shared memory algorithms, I/O ready notifications through system calls such as
“select”, and so forth. Moreover, it is easily seen that to operate a primary-backup scheme efficiently,
both the incoming requests, the corresponding replies, and these internal trace messages will need to be
transmitted as asynchronously as possible, while respecting causality. Our causal ordering algorithms
were oriented towards group multicast, and this particular case would demand non-trivial analysis and
optimizations. Thus, in practice, primary-backup replication can be very hard to implement when using
arbitrary servers.

15 Interested readers may also want to read about log-based recovery techniques, which we do not cover in this book
because these techniques have not been applied in many real systems. Alvisi gives a very general log-based
recovery algorithm and reviews other work in the area in his doctoral dissertation and a paper with Marzullo.

req0

req1

trace data

primary backup

Figure 15-9: Primary-backup scheme for non-deterministic servers requires that trace information reach the
backup. The fundamental requirement is a causal gap-freedom property: if a reply or some other visible
consequence of a primary’s actions is visible to a client or the outside world, all causally prior inputs to the
primary and trace information must also be delivered to the backup. The trace data contains information about how
non-deterministic actions were performed in the primary. The ordering obligation is ultimately a fairly weak one,
and the primary could run “far ahead” of the backup, giving good performance and masking the costs of
replication for fault-tolerance. The complexity of the scheme is fairly high because it can be hard to generate and
use trace information, hence it is rare to see primary-backup fault-tolerance in non-deterministic applications.

Chapter15: The Virtually Synchronous Execution Model 301

301

Yet an additional drawback to the approach is that it may fail to overcome software bugs. As we
can see, primary-backup replication is primarily appealing for deterministic applications. But these are
just the ones in which Heisenbugs would be carefully repeated by a primary-backup solution, unless the
fact of starting the backup from a state checkpoint introduces some degree of tolerance to this class of
failures! Thus, the approach is likely to be exposed to correlated failures of the primary and backup in the
case where it can be most readily applied.

15.3.5 Coordinator-Cohort Fault-Tolerance
The coordinator-cohort approach to fault-tolerance generalizes the primary-backup approach in ways that
can help overcome the limitations cited above. In this fault-tolerance method, the work of handling
requests is load-shared within the group members. (The same load-sharing mechanisms discussed before
are used to balance load). The handler for a given request is said to be thecoordinatorfor processing that
request, and is responsible for sending any updates or necessary trace information to the other members,
which are termed thecohortsfor that request. As in the primary-backup scheme, if the coordinator fails,
one of the cohorts takes over.

Unlike the primary-backup method, there may be many coordinators active in the same group, for
many different requests. Moreover, the trace information in a primary backup scheme normally contains
the information needed for the backup to duplicate the actions of the primary, whereas the trace data of a
coordinator-cohort scheme will often consist of a “log” of updates that the coordinator applied to the
group state. In this approach, the cohorts do not actively replicate the actions of the coordinator, but
merely update their states to reflect its updates. Locking must be used for concurrency control. In
addition, the coordinator will normally send some form of copy of the reply to its cohorts, so that they can
garbage collect information associated with the pending requests for which they are backups. The
approach is illustrated in Figure 15-10.

Some practical cautions limit the flexibility of this style of load-balanced and fault-tolerant
computing (which is quite popular among user’s of systems like the Isis Toolkit and Horus, we should
add!). First, it is important that the coordinator selection algorithm do a good job of load-balancing, or
some single group member may become overloaded with the lion’s share of the requests. In addition to
this, the method can be very complex for requests that involve non-trivial updates to the group state, or
that involve non-deterministic processing which the cohort may be expected to reproduce. In such cases,

req0

req1

coord1

coord0

Figure 15-10: Coordinator-cohort scheme. The work of handling requests is divided among the processes in the
group. Notice that as each coordinator replies, it also (atomically) informs the other group members that is has
terminated. This permits them to garbage collect information about pending requests that other group members
are handling. In the scheme, each process group member is active handling some requests, and is simultaneously
passively backup up other members on other requests. The approach is best suited well for deterministic
applications, but can also be adapted to non-deterministic ones.

Kenneth P. Birman - Building Secure and Reliable Network Applications302

302

it can be necessary to use an atomic protocol for sending the reply to the requesting client and the trace
information or termination information to the cohorts. Isis implements a protocol for this purpose: it is
atomic and can send to the members of a group plus one additional member. However, such protocols are
not common in most systems for reliable distributed computing. Given appropriate protocol support,
however, and a reasonably simple server (for example, one processing requests that are primarily queries
that don’t change the server state), the approach can be highly successful, offering scaleable parallelism
and fault-tolerance for the same “price”.

15.4 Related Readings
On virtual synchrony: [BR94, Pow96, BR96], but see also [BJ87a, BJ87b, DM96, BR96, SR96]. Extended
virtual synchrony: [Mal94], but also see [Ami95, KD95, Aga95, MMABL96]. On uses of the virtual
synchrony model, see [BR94, BJ87a]. Primary-backup schemes, [BBMS93]. Discussion of other
approaches to the same problems can be found in [Cri96].

Chapter16: Consistencyin Distributed Systems 303

303

16. Consistency in Distributed Systems
In the previous sections, we examined options for implementing replicated data in various group
membership models and looked at protocols for ordering conflicting actions under various ordering goals.
We then showed how these protocols could be used as the basis of a computational model, virtual
synchrony, in which members of distributed process groups see events that occur within those groups in
consistent orders and with failure atomicity guarantees, and are consequently able to behave in consistent
ways.

Lacking is a more general synthesis, which we seek to provide in the present chapter. Key ideas
underlying virtual synchrony are seen to be:

• Self-defining system and process group membership, in which processes are excluded from a
system if necessary to permit continued progress. Tools for joining a group, state transfer,
communication, and reporting new membership views.

• Depending on the model, a notion of primary component of the system.

• Algorithms that seek to achieve internal (as opposed to dynamically uniform) consistency.

• Distributed consistency achieved by ordering conflicting replicated events in consistent ways at
the processes that observe those events.

The remainder of this chapter reviews these points relative to the alternatives we touched upon in
developing our protocols and tools.

16.1 Consistency in the Static and Dynamic Membership Models
In the static model, the system is understood to be the set of places at which processes that act on behalf

of the system execute. Here, “the system” is a relatively fixed collection of resources, but which
experience dynamic disruptions of communication connectivity, process failures, and restarts. Obviously,
a static system may not be static over very long periods of time, but the time scale on which membership
of the full set of places where members run is understood to be long compared to the time scale at which
these other events occur, and the protocols for adding new members to the static set or dropping them are
treated as being outside of the normal execution model. In cases where the system is symmetric, meaning
that any correct execution of the system would also have been correct if the process identifiers were
permuted, static systems rely on agreement protocols within which the majority of the statically defined
composition of the full system must participate, directly or indirectly.

Kenneth P. Birman - Building Secure and Reliable Network Applications304

304

The dynamic model employs a notion of system membership that is self-defined and for this
reason less difficult to support than the static one. Dynamic systems add and lose members on a very
short time scale compared to static ones. In the case where the system is symmetric, the set of processes
that must participate in decisions is based on a majority of a dynamically defined group; this is a weaker
requirement than for the static model and hence permits progress under conditions when a static system
would not make progress.

These points are already significant when one considers what it means to say that a protocol is
“live” in the two settings. However, before focusing on liveness, we review the question of consistency.

Consistency in a static model is typically defined with regard to an external observer who may be
capable of comparing the state and actions of a process that has become partitioned from the other
processes in the system with the states and actions of the processes that remained connected. Such an
external observer could be a disk that contains a database that will eventually have to be reintegrated and
reconciled with other databases maintained by the processes remaining in the connected portion of the
system, an external device or physical process with which the system processes interact, or some form of
external communication technology that lacks the flexibility of message passing but may still transfer
information in some way between system processes.

Figure 16-1: Static and dynamic views of a single set of sites. From a static perspective, the set has fixed
membership but changing connectivity and availability properties (above). For example, the black nodes may be
available and the gray ones treated as not available. Depending upon how such a system is implemented, it may be
impossible to perform certain types of operations (notably, updates) unless a majority of the nodes are available.
The dynamic perspective, shown below, treats the system as if it were partitioned into a set of components whose
membership is self-defined (below). Here, the black component might be the primary one and the gray components
non-primary. In contrast to the static approach, the primary component remains available, if primaryness can be
deduced within the system. If communication is possible between two components, they are expected to merge their
states in this model. Neither perspective is “more correct” than the other: the most appropriate way to view a
system will typically depend upon the application, and different parts of the sameapplication may sometimes
require differentapproaches to membership. However, in the dynamic model, it is frequently important to track one
of the components as being “primary” for the system, restricting certain classes of actions to occur only in this
component (or not at all, if the primaryness attribute cannot be tracked after a complex series of failures).

Chapter16: Consistencyin Distributed Systems 305

305

Consistency in a dynamic system is a much more “internal” notion. In essence, a dynamic form
of consistency requires that processes permitted to interact with one another will never observe
contradictions in their states, detectable by comparing the contents of messages that they exchange.
Obviously, process states and the system state evolve through time, but the idea here is that if processp
sends a message to processq that in some way reflects state information shared by them, processq should
never conclude that the message sent by processp is “impossible” on the basis of whatq itself has seen in
regard to this shared state. For example, if the state shared byp andq is a replicated variable andq has
observed that variable to increment only by 2’s from 0 to its current value of 40, it would be inconsistent if
p sent a message, ostensibly reflecting a past state, in which the variable’s value was7. For q such a state
would not merely be stale, it would be impossible, sinceq believes itself to have seen the identical
sequence of events, and the variable never had the value 7 inq’s history.

Although this example is a silly one, it corresponds to more realistic scenarios in which dynamic
consistency is precisely what one wants. For example, when a set of processes divide the work of
performing some operation using a coordinator-cohort rule, or by exploiting a mutually perceived ranking
to partition a database, dynamic consistency is required for the partitioning to make sense. Dynamic
consistency is also what one might desire from the web proxies and servers that maintain copies of some
document: they should agree on the version of the document that is the most current one, and provide
guarantees to the user that the most current document is returned in response to a request.

The significance of the specific example seen above is thus not that applications often care about
the past state of a replicated variable, but rather that “cooperation” or “coordination” or “synchronization”
in distributed settings all involve cases in which a processp may need to reason about the state and
actions of some other processq. When this occurs,p can be understood to be using a form of replicated
system state that it believes itself to share withq. Our shared variable has now become the shared notion
of the state of a lock, or the shared list of members and ranking of members for a process group to which
both belong. Inconsistency in these cases means that the system is visibly misbehaving: two processes
both think they have locked the same variable, or each thinks the other holds the lock when neither in fact
holds it. Perhaps both processes consider themselves primary for some request, or neither does. Perhaps
both search the first half of a database, each thinking the other is searching the second half. And these
same issues only get worse if we move to larger numbers of processes.

Of course, as the system evolves through time, it may be thatp once held a lock but no longer
does. So the issue is not so much one of being continuously consistent, but of seeing mutually consistent
and mutually evolving histories of the system state. In effect, if the processes in a system see the same

x = 2, 4, 6, 8 x = 2, 4, 7, 9

Figure 16-2: Dynamic(or “interactive”) consistency is the guarantee that the members of a given system
component will maintain mutually consistent states (here, by agreeing upon the sequence of values that a variable x
has taken). If a protocol is not dynamically uniform, it may allow a process that becomes partitioned away from a
component of the system to observe events in a way that is inconsistent with the event ordering observed within that
component. Thus, in this example, the component on the right (consisting of a single process) observes x to take on
the values 7 and 9, while the larger component on the right sees x pass through only even values. By pronouncing
at most one of these components to be the primary one for the system, we can impose a sensible interpretation on
this scenario. Alternatives are to use dynamically uniform protocols with external consistency guarantees. Such
protocols can be supported both in the dynamic membership model and the static one, where this guarantee is
almost always required. However, they are far more costly than protocols that do not provide dynamic uniformity.

Kenneth P. Birman - Building Secure and Reliable Network Applications306

306

events in the same order, they can remain consistent with one another. This extremely general notion is
at the heart of all forms of distributed consistency.

In the purest sense, the dynamic system model is entirely concerned with freedom from detectable
inconsistencies in the logically derivable system state. This notion is well defined in part because of the
rule that when a dynamic system considers some process to have failed, communication to that process is
permanently severed. Under such a rule,p cannot communicate toq unless both are still within the same
component of the possibly partitioned system, and the protocols for dynamic systems operate in a manner
that maintains consistency within subsets of processes that reside in the same component. That is, the
system may allow a process to be inconsistent with the state of the system as a whole, but it does so only
when that process is considered to have failed, and will never be allowed to rejoin the system until it has
done something to correct its (presumably inconsistent) state.

The ability to take such an action permits dynamic systems to make progress when a static system
might have to wait for a disconnected process to reconnect itself, or a failed process to be restarted. Thus,
a process in the dynamic model can sometimes (often, in fact) make progress while a process in the static
one would not be able to do so.

The static model, on the other hand, is in many ways a more intuitive and simpler one than the
dynamic one. It is easy to draw an analogy between a static set of resources and a statically defined set of
system processes, and external consistency constraints, being very strong, are also easy to understand.
The dynamic model is in some sense superficially easy to understand, but much harder to understand upon
close study. Suppose that we are told that “processp is a member of a dynamically defined system
component, and sets a replicated variablex to 7.” In a static system we would have concluded that, if the
system is guaranteeing the consistency of this action,p was safe in taking it. In a dynamic system, it may
be that it is too early to know ifp is a valid member of the system, and hence that settingx to 7 is a safe
action in the broader sense. The problem is that future events may cause the system to reconfigure itself
in a way that excludesp and leads to an evolution of system state in whichx never does take on the value
7. Moreover, the asynchronous nature of communication means that even if in real-timep setsx to 7
before being excluded by the other system members as if it was faulty, in the logical system model,p’s
action occursafter it has been excluded from the system!

Where external actions are to be taken, the introduction of time offers us a way to work around
this dilemma. Recall our air traffic control example. Sharing a clock with the remainder of the system,p
can be warned with adequate time to avoid a situation where two processes ever own the air traffic space
at the same time. Of course, this does not eliminate the problem that during the period after it became
disconnected and before the remainder of the system “took over”,p may have initiated actions. We can
resolve this issue by acknowledging that it is impossible to improve on the solution, and asking the
application program to take an appropriate action. In this specific example,p would warn the air traffic
controller that actions taken within the pastδ seconds may not have been properly recorded by the main
system, and that connection to it has now been lost. With a human in the loop, such a solution would
seem adequate. In fact, there is little choice, for no system that takes actions at multiple locations can ever
be precisely sure of its state if a failure occurs while such an action might be underway.

Faced with such seemingly troubling scenarios, one asks why we consider the dynamic model at
all. Part of the answer is that the guarantees it offers are almost as strong as those for the static case, and
yet it can often make progress when a static solution would be unable to do so. Moreover, the static
model sometimes it just doesn’t fit a problem. Web proxies, for example, are a very dynamic and
unpredictable set: “the truth is out there”, but a server will not be able to predict in advance just where
copies of its documents may end up (imagine the case where one web proxy obtains a copy of a document
from some other web proxy!). But perhaps the best answer is that, as we saw in previous chapters, the

Chapter16: Consistencyin Distributed Systems 307

307

weaker model permits dramatically improved performance, perhaps by a factor of hundreds if our goal is
to replicate data.

Both the static and dynamic system models offer a strong form of consistency whereby the state
of the system is guaranteed to be consistent and coordinated over large numbers of components. But while
taking an action in the static model can require a fairly slow, multiphase, protocol, the dynamic system is
often able to exploit asynchronous single-phase protocols such as the non-uniformfbcast and cbcast
primitives for similar purposes. It is no exaggeration to say that these asynchronous protocols may result
in levels of performance that are hundreds of times superior to those achievable when subjected to static
consistency and membership constraints! For example, the Horus system is able to send nearly 75,000
small multicasts per second to update a variable replicated between two processes. This figure drops to
about 50 updates per second when using a quorum style replication scheme, and perhaps 1500 per second
when using an RPC scheme that is disconnected from any notion of consistency at all. The latency
improvements can be even larger: in Horus, there are latency differences of as much as three orders of
magnitude between typical figures for the dynamic case and typical protocols for taking actions in a static
or dynamically uniform manner.

In practical work with dynamic system models, we typically need to assume that the system is
basically well behaved, despite experiencing some infrequent rate of failures. Under such an assumption,
the model is easy to work with and makes sense. If a system experiences frequent failures (relative to the
time it takes to reconfigure itself or otherwise repair the failures), the static model becomes more and
more appealing and the dynamic one less and less predictable. Fortunately, most real systems are build
with extremely reliable components that, indeed, experience infrequent failures. This pragmatic
consideration explains why dynamically consistent distributed systems have become popular: the model
behaves reasonably in real environments, and the performance is extremely good compared to what can be
achieved in the static model.

Indeed, one way to understand the performance advantage of the dynamic model is that, by
“precomputing” membership information, the dynamic algorithms represent optimizations of the static
algorithms. As one looks closely at the algorithms, they seem more and more similar in a basic way, and
perhaps this explains why that should be the case. In effect, the static and dynamic models are very
similar, but the static algorithms (such as quorum data replication) tend to compute the membership
information they needed on each operation, while the dynamic ones precompute this information and are
built using a much simpler failstop model. However, although this perspective is intuitively appealing,
the author has never seen it elaborated in any sort of detailed formal treatment

Moreover, it is important to realize that the external notion of consistency associated with static
models is in some ways much stronger, and consequently more restrictive, than is necessary for realistic
applications. This can translate to periods of “mandatory unavailability” where a static system model
forces us to stop and wait, while a dynamic consistency model permits reconfiguration and progress.
Many distributed systems contain services of various kinds that have small server states (which can
therefore be transferred to a new server when it joins the system), and that are only of interest when they
are operational and connected to “the system” as a whole. Mutual consistency between the servers and the
states of the applications using them is all that one desires in such internal uses of a consistency
preserving technology. If a dynamic approach is dramatically faster than a static one, so much the better
for the dynamic approach!

These comments should not be taken to suggest that a dynamic system canalwaysmake progress
even when a static one must wait. In recent work, Chandra and his colleagues have established that a
result similar to the FLP result holds for group-membership protocols [CHTC96], and hence that there are
conditions under which an asynchronous system can be prevented from reaching consensus upon its own

Kenneth P. Birman - Building Secure and Reliable Network Applications308

308

membership, and hence prevented from making progress. Other researchers (including the author) have
pinned down precise conditions (in various models) under which dynamic membership consensus
protocols are guaranteed to make progress [BDM95, FKMBD95, GS96, Nei96], and the good news is that
for most practical settings the answer is that such protocols make progress with overwhelmingly high
probability if the probability of failures and message loss are uniform and independent over the processes
and messages sent in the system. In effect, only partitioning failures or a very intelligent adversary (one
that in practice could never be implemented) can prevent these systems from making progress.

Thus, we know thatall of these models face conditions under which progress is not possible.
Research is still underway on pinning down the precise conditions when progressis possible in each
approach: the maximum rates of failures that dynamic systems can sustain. But as a practical matter, the
evidence is that all of these models are perfectly reasonable for building reliable distributed systems. The
theoretical impossibility results do not appear to represent practical impediments to implementing reliable
distributed software; they simply tell us that there will be conditions that these reliability approaches
cannot overcome. The choice, in a practical sense, is to match the performance and consistency properties
of the solution to the performance and consistency requirements of the application. The weaker the
requirements, the better the performance we can achieve.

Our study also revealed two other issues that deserve comment: the need, or lack thereof, for a
primary componentin a partitioned membership model, and the broader but related question of how
consistency is tied to ordering properties in distributed environments.

The question of a primary component is readily understood in terms of the air-traffic control
example we looked at earlier. In that example, there was a need to take “authoritative action” within a
service on behalf of the system as a whole. In effect, a representative of a service needed to be sure that it
could safely allow an air traffic control to take a certain action, meaning that it runs no risk of being
contradicted by any other process (or, in the case of a possible partitioning failure, that before any other
process could start taking potentially conflicting actions, a timeout would elapse and the air traffic
controller warned that this representative of the service was now out of touch with the primary partition).

In the static system model, there is only a single notion of the system as a whole, and actions are
taken upon the authority of the full system membership. Naturally, it can take time to obtain majority
acquiescence in an action [KD95], hence this is a model in which some actions may be delayed for a
considerable period of time. However, when an action is actually taken, it is taken on behalf of the full
system.

In the dynamic model we lose this guarantee and face the prospect that our notion of consistency
can become trivial because of system partitioning failures. In the limit, a dynamic system could partition
arbitrarily, with each component having its own notion of authoritative action. For purelyinternal
purposes, such a notion of consistency may be adequate, in the sense that it still permits work to be shared
among the processes that compose the system, and (as noted above), is sufficient to avoid the risk that the
states of processes will be directly inconsistent in a way that is readily detectable. The state merge
problem [Mal94, BBD96], which arises when two components of a partitioned system reestablish
communication connectivity and must reconcile their states, is where such problems are normally resolved
(and the normal resolution is to simply take the state of one partition as being the official system state,
abandoning the other). As noted in Chapter 13, this challenge has lead researchers working on the
Relacs system in Bologna to propose a set of tools, combined with a set of guarantees that relate to view
installation, which simplify the development of applications that can operate in this manner [BBD96].

The weakness of allowing simultaneous progress in multiple components of a partitioned
dynamic system, however, is that there is no meaningful form of consistency that can be guaranteed

Chapter16: Consistencyin Distributed Systems 309

309

between the components, unless one is prepared to pay the high cost of using only dynamically uniform
message delivery protocols. In particular, the impossibility of guaranteeing progress among the
participants in a consensus protocol implies that when a system partitions, there will be situations in
which we can define the membership of both components but cannot decide how to terminate protocols
that were underway at the time of the partitioning event. Consequences of this observation include the
implication that when non-uniform protocols are employed, it will be impossible to ensure that the
components have consistent histories (in terms of the events that occurred and the ordering of events) for
their past prior to the partitioning event. In practice, one component, or both, may be irreconcilably
inconsistent with the other!

There is no obvious way to “merge” states in such a situation: the only real option is to arbitrarily
pick one component’s state as the official one and to replace the other component’s state with this state,
perhaps reapplying any updates that occurred in the “unofficial” partition. Such an approach, however,
can be understood as one in which the primary component is simply selected when the network partition
is corrected rather than when it forms. If there is a reasonable basis on which to make the decision, why
delay it?

As we saw in the previous chapter, there are two broad ways to deal with this problem. The one
favored in the author’s own work is to define a notion ofprimary componentof a partitioned system, and
to track primaryness when the partitioning event first occurs. The system can then enforce the rule that
non-primary components must not trust their own histories of the past state of the system and certainly
should not undertake authoritative actions on behalf of the system as a whole. A non-primary component
may, for example, continue to operate a device that it “owns”, but is not safe in instructing an air traffic
controller about the status of air space sectors or other global forms of state-sensitive data unless they were
updated using dynamically uniform protocols.

Of course, a dynamic distributed system can lose its primary component, and making matters still
more difficult, there may be patterns of partial communication connectivity within which a static
distributed system model can make progress but no primary partition can be formed, and hence a dynamic
model must block! For example, suppose that a system partitions so that all of its members are
disconnected from one another. Now we can selectively reenable connections so that over time, a majority
of a static system membership set are able to vote in favor of some action. Such a pattern of
communication could allow progress. For example, there is the protocol of Keidar and Dolev, cited
several times above, in which an action can be terminated entirely on the basis of point to point
connections [KD95]. However, as we commented, this protocol delays actions until a majority of the
processes in the whole system knows about them, which will often be a very long time.

The author’s work has not needed to directly engage these issues because of the underlying
assumption that rates of failure are relatively low and that partitioning failures are infrequent and rapidly
repaired. Such assumptions let us conclude that these types of partitioning scenarios just don’t arise in
typical local-area networks and typical distributed systems.

On the other hand, frequent periods of partitioned operationcouldarise in very mobile situations,
such as when units are active on a battlefield. They are simply less likely to arise in applications like air
traffic control systems or other “conventional” distributed environments. Thus, there are probably systems
that should use a static model with partial communications connectivity as their basic model, systems that
should use a primary component consistency model, and perhaps still other systems for which a virtual
synchrony model that doesn’t track primaryness would suffice. These represent successively higher levels
of availability, and even the weakest retains a meaningful notion of distributed consistency. At the same
time, they represent diminishing notions of consistency in any absolute sense. This suggests that there are
unavoidable tradeoffs in the design of reliable distributed systems for critical applications.

Kenneth P. Birman - Building Secure and Reliable Network Applications310

310

The two-tiered architecture of the previous section can be recognized as a response to this
impossibility result. Such an approach explicitly trades higher availability for weaker consistency in the
LAN subsystems while favoring strong consistency at the expense of reduced availability in the WAN
layer (which might run a protocol based on the Chandra-Toueg consensus algorithm). For example, the
LAN level of a system might use non-uniform protocols for speed, while the WAN level uses tools and
protocols similar to the ones proposed bythe Transis effort, or by Babaoglu’s group in their work on
Relacs [BBD96].

We alluded briefly to the connection between consistency and order. This topic is perhaps an
appropriate one on which to end our review of the models. Starting with Lamport’s earliest work on
distributed computing systems, it was already clear that consistency and the ordering of distributed events
are closely linked. Over time, it has become apparent that distributed systems contain what are essentially
two forms of knowledge or information. Static knowledge is that information which is well known to all
of the processes in the system, at the outset. For example, the membership of a static system is a form of
static knowledge. Being well known, it can be exploited in a decentralized but consistent manner. Other
forms of static knowledge can include knowledge of the protocol that processes use, knowledge that some
processes are more important than others, or knowledge that certain classes of events can only occur in
certain places within the system as a whole.

Dynamic knowledge is that which stems from unpredicted events that arise within the system
either as a consequence of non-determinism of the members, failures or event orderings that are
determined by external physical processes, or inputs from external users of the system. The events that
occur within a distributed system are frequently associated with the need to update the system state in
response to dynamic events. To the degree that system state is replicated, or is reflected in the states of
multiple system processes, these dynamic updates of the state will need to occur at multiple places. In the

internal external

dynamic, no
primary partion

static
dynamically
uniform,
static model

non-uniform,
dynamic model

increasing costs,
decreasing availability

Membership

Consistency

dynamic,
primary partition

Figure 16-3: Conceptual options for the distributed systems designer. Even when one seeks "consistency" there are
choices concerning how strong the consistency desired should be, and which membership model to use. The least
costly and highest availability solution for replicating data, for example, looks only for internal consistency within
dynamically defined partitions of a system, and does not limit progress to the primary partition. This model, we have
suggested, may be too weak for practical purposes. A slightly less available approach that maintains the same high
level of performance allows progress only in the primary partition. As one introduces further constraints, such as
dynamic uniformity or a static system model, costs rise and availability falls, but the system model becomes simpler
and simpler to understand. The most costly and restrictive model sacrifices nearly three orders of magnitude of
performance in some studies relative to the least costly one. Within any given model, the degree of ordering
required for multicasts introduces further fine-grained cost/benefit tradeoffs.

Chapter16: Consistencyin Distributed Systems 311

311

work we presented above, process groups are the places where such state resides, and multicasts are used
to update such state.

Viewed from this perspective, it becomes apparent thatconsistency is order, in the sense that the
distributed aspects of the system state are entirely defined by process groups and multicasts to those
groups, and these abstractions, in turn, are defined entirely in terms of ordering and atomicity. Moreover,
to the degree that the system membership is self-defined, as in the dynamic models, atomicity is also an
order-based abstraction!

This reasoning leads to the conclusion that the deepest of the properties in a distributed system
concerned with consistency may be theordering in which distributed events are scheduled to occur. As
we have seen, there are many ways to order events, but the schemes all depend upon either explicit
participation by a majority of the system processes, or upon dynamically changing membership, managed
by a group membership protocol. These protocols, in turn, depend upon majority action (by a dynamically
defined majority). Moreover, when examined closely, all the dynamic protocols depend upon some notion
of token or special permission that enables the process holding that permission to take actions on behalf of
the system as a whole. One is strongly inclined to speculate that in this observation lies the grain of a
general theory of distributed computing, in which all forms of consistency and all forms of progress could
be related to membership, and in which dynamic membership could be related to the liveness of token
passing or “leader election” protocols. At the time of this writing, the author is not aware of any clear
presentation of this theory of all possible behaviors for asynchronous distributed systems, but perhaps it
will emerge in the not distant future.

Our goals in this textbook remain practical, however, and we now have powerful practical tools
to bring to bear on the problems of reliability and robustness in critical applications. Even knowing that
our solutions will not be able to guarantee progress under all possible asynchronous conditions, we have
seen enough to know how to guarantee thatwhenprogress is made, consistency will be preserved. There
are promising signs of emerging understanding of the conditions under which progress can be made, and
the evidence is that the prognosis is really quite good: if a system rarely loses messages and rarely
experiences real failures (or mistakenly detects failures), the system will be able to reconfigure itself
dynamically and make progress while maintaining consistency.

As to the tradeoffs between the static and dynamic model, it may be that real applications should
employ mixtures of the two. The static model is more costly in most settings (perhaps not in heavily
partitioned ones), and may be drastically more expensive if the goal is merely to update the state of a
distributed server or a set of web pages managed on a collection of web proxies. The dynamic primary
component model, while overcoming these problems, lacks external safety guarantees that may sometimes
be needed. And the non-primary component model lacks consistency and the ability to initiate
authoritative actions at all, but perhaps this ability is not always needed. Complex distributed systems of
the future may well incorporate multiple levels of consistency, using the cheapest one that suffices for a
given purpose.

16.2 General remarks Concerning Causal and Total Ordering
The entire notion of providing ordered message delivery has been a source of considerable controversy
within the community that develops distributed software [Ren93]. Causal ordering has been especially
controversial, but even total ordering is opposed by some researchers [CS93], although others have been
critical of the arguments advanced in this area [Bir94, Coo94, Ren94]. The CATOCS controversy came
to a head in 1993, and although it seems no longer to interest the research community, it would also be
hard to claim that there is a generally accepted resolution of the question.

Kenneth P. Birman - Building Secure and Reliable Network Applications312

312

Underlying the debate are tradeoffs between consistency, ordering, and cost. As we have seen,
ordering is an important form of “consistency”. In the next chapter we will develop a variety of powerful
tools for exploiting ordering, especially to implement replicated data efficiently. Thus, since the first
work on consistency and replication with process groups, there has been an emphasis on ordering. Some
systems, like the Isis Toolkit developed by this author in the mid 1980’s, made extensive use of causal
ordering because of its relatively high performance and low latency. Isis, in fact, enforces causally
delivered ordering as a system-wide default, although as we saw in Chapter 14, such a design point is in
some ways risky. The Isis approach makes certain types of asynchronous algorithm very easy to
implement, but has important cost implications; developers of sophisticated Isis applications sometimes
need to disable the causal ordering mechanism to avoid these costs. Other systems, such as Ameoba,
looked at the same issues but concluded that causal ordering is rarely needed if total ordering can be made
fast enough. Writing this text, today, this author tends to agree with the Ameoba project except in certain
special cases.

Above, we have seen a sampling of the sorts of uses to which ordered group communication can
be put. Moreover, earlier sections of this book have established the potential value of these sorts of
solutions in settings such as the Web, financial trading systems, and highly available database or file
servers.

Nonetheless, there is a third community of researchers (Cheriton and Skeen are best known
within this group) who have concluded that ordered communication is almost never matched with the
needs of the application [CS93]. These researchers cite their success in developing distributed support for
equity trading in financial settings and work in factory automation, both settings in which developers have
reported good results using distributed message-bus technologies (TIB is the one used by Cheriton and
Skeen) that offer little in the sense of distributed consistency or fault-tolerance guarantees. To the degree
that the need arises for consistency within these applications, Cheriton and Skeen have found ways to
reduce the consistency requirements of theapplicationrather than providing stronger consistency within a
system to respond to a strong application-level consistency requirement (the NFS example from Section
7.3 comes to mind). Broadly, this leads them to a mindset that favors the use of stateless architectures,
non-replicated data, and simple fault-tolerance solutions in which one restarts a failed server and leaves it
to the clients to reconnect. Cheriton and Skeen suggest that such a point of view is the logical extension
of the end-to-end argument [SRC84], which they interpret as an argument that each application must
take direct responsibility for guaranteeing its own behavior.

Cheriton and Skeen also make some very specific points. They are critical of system-level
support for causal or total ordering guarantees. The argue that communication ordering properties are
better left to customized application-level protocols, which can also incorporate other sorts of application-
specific properties. In support of this view, they present applications that need stronger ordering
guarantees and applications that need weaker ones, arguing that in the former case, causal or total
ordering will be inadequate, and in the latter that it will be overkill (we won’t repeat these examples here).
Their analysis leads them to conclude that inalmost all cases, causal order is more than the application
needs (and more costly), or less than the application needs (in which case the application must add some
higher level ordering protocol of its own in any case), and similarly for total ordering [CS93].

Unfortunately, while making some good points, this paper also includes a number of questionable
claims, including some outright errors that were refuted in other papers including one written by the
author of this text [Bir94, Coo94, Ren94]. For example, they claim that causal ordering algorithms have
an overhead on messages that grows asn2 wheren is the number of processes in the system as a whole.
Yet we have seen that causal ordering for group multicasts, the case Cheriton and Skeen claim to be
discussing, can easily be provided with a vector clock whose length is linear in the number of active
senders in a group (rarely more than two or three processes), and that in more complex settings,
compression techniques can often be used to bound the vector timestamp to a small size. This particular

Chapter16: Consistencyin Distributed Systems 313

313

claim is thus incorrect. The example is just one of several specific points on which Cheriton and Skeen
make statements that could be disputed purely on technical grounds.

Also curious is the entire approach to causal ordering adopted by Cheriton and Skeen. In this
chapter, we have seen that causal order is often needed when one seeks tooptimizean algorithm expressed
originally in terms of totally ordered communication, and that total ordering is useful because, in a state-
machine style of distributed system, by presenting the same inputs to the various processes in a group in
the same order, their states can be kept consistent. Cheriton and Skeen never address this use of ordering,
focusing instead on causal and total order in the context of a publish-subscribe architecture in which a
small number of data publishers send data that a large number of consumers receive and process, and in
which there are no consistency requirements that span the consumer processes. This example somewhat
misses the point of the preceedings chapters, where we made extensive use of total ordering primarily for
consistent replication of data, and of causal ordering as a relaxation of total ordering where the sender has
some form of mutual exclusion within the group.

To this author, Cheriton and Skeen’s most effective argument is one based on the end-to-end
philosophy. They suggest, in effect, that although many applications will benefit from properties such as
fault-tolerance, ordering, or other communication guarantees, no single primitive is capable of capturing
all possible properties without imposing absurdly high costs for the applications that required weaker
guarantees. Our observation about the cost of dynamically uniform strong ordering bears this out: here we
see a very strong property, but it is also thousands of times more costly than rather similar but weaker
property! If one makes the weaker version of a primitive the default, the application programmer will
need to be careful not to be surprised by its non-uniform behavior; the stronger version may just be too
costly for many applications. Cheriton and Skeen generalize from similar observations based on their
own examples and conclude that the application should implement its own ordering protocols.

Yet we have seen that these protocols are not trivial, and implementing them would not be an
easy undertaking. It also seems unreasonable to expect the average application designer to implement a
special-purpose, hand-crafted protocol for each specific need. In practice, if ordering and atomicity
properties are not provided by the computing system, it seems unlikely that applications will be able to
make any use of these concepts at all. Thus, even if one agrees with the end-to-end philosophy, one might
disagree that it implies that each application programmer should implement nearly identical and rather
complex ordering and consistency protocols, because no single protocol will suffice for all uses.

Current systems, including the Horus system which was developed by the author and his
colleagues at Cornell, usually adopt a middle ground, in which the ordering and atomicity properties of
the communication system are viewed as options that can be selectively enabled (Chapter 18). The
designer can in this way match the ordering property of a communication primitive to the intended use. If
Cheriton and Skeen were using Horus, their arguments would warn us not to enable such-and-such a
property for a particular application because the application doesn’t need the property and the property is
costly. Other parts of their work would be seen to argue in favor of additional properties beyond the ones
normally provided by Horus. As it happens, Horus is easily extended to accomodate such special needs.
Thus the reasoning of Cheriton and Skeen can be seen as critical of systems that adopt a single all-or-
nothing approach to ordering or atomicity, but perhaps not of systems such as Horus that seek to be more
general and flexible.

The benefits of providing stronger communication tools in a “system”, in the eyes of the author,
are that the resulting protocols can be highly optimized and refined, giving much better performance than
could be achieved by a typical application developer working over a very general but very “weak”
communications infrastructure. To the degree that Cheriton and Skeen are correct and application
developers will need to implement special-purpose ordering properties, such a system can also provide

Kenneth P. Birman - Building Secure and Reliable Network Applications314

314

powerful support for the necessary protocol development tasks. In either case, the effort required from the
developer is reduced and the reliability and performance of the resulting applications improved.

We mentioned that the community has been particularly uncomfortable with the causal ordering
property. Within a system such as Horus, causal order is normally usedas an optimizationof total order,
in settings where the algorithm was designed to use a totally ordered communication primitive but
exhibits a pattern communication for which the causal order is also a total one. We will return to this
point below, but we mention it now simply to stress that the “explicit” use of casually ordered
communication, much criticized by Cheriton and Skeen, is actually quite uncommon. More typical is a
process of refinement whereby an application is gradually extended to use less and less costly
communication primitives in order to optimize performance. The enforcement of causal ordering, system
wide, is not likely to become standard in future distributed systems. Whencbcast is substituted forabcast
communication may cease to be totally ordered but any situation in which messages arrive in different
orders at different members will be due to events that commute. Thus theireffecton the group state will
be as if the messages had been received in a total order even if the actual sequence of events is different.

In contrast, much of the discussion and controversy surrounding causal order arises when causal
order is considered not as an optimization, but rather as an ordering property that one might employ by
default, just as a stream provides FIFO ordering by default. Indeed, the analogy is a very good one,
because causal ordering is an extention of FIFO ordering. Additionally, much of the argument over causal
order uses examples in which point-to-point messages are sent asynchronously, with system-wide causal
order used to to ensure that “later” messages arrive after “earlier” ones. There some merit in this view of
things, because the assumption of system-wide causal ordering permits some very asynchronous
algorithms to be expressed extremely elegantly and simply. It would be a shame to lose the option of
exploiting such algorithms. However, system-wide causal order is not really the main use of causal order,
and one could easily live without such a guarantee. Point-to-point messages can also be sent using a fast
RPC protocol, and saving a few hundred microseconds at the cost of a substantial system-wide overhead
seems like a very questionable design choice; systems like Horus obtain system-wide causality, if desired,
by waiting for asynchronously transmitted messages to become stable in many situations.

On the other hand, when causal order is used as an optimization of atomic or total order, the
performance benefits can be huge. So we face a performance argument, in fact, in which the rejection of
causal order involves an acceptance of higher than necessarylatencies, particularly for replicated data.

Notice that if asynchronouscbcastis only used to replaceabcastin settings where the resulting
delivery order will be unchanged, the associated process group can still be programmed under the
assumption that all group members will see the same events in the same order. As it turns out, there are
cases in which the handling of messages commute and the members may not even need to see messages in
identical ordering in order to behave as if they did. There are major advantages to exploiting these cases:
doing so potentially reduces idle time (because the latency to message delivery is lower, hence a member
can start work on a request sooner, if thecbcastencodes a request that will cause the recipient to perform
a computation). Moreover, the risk that a Heisenbug will cause all group members to fail simultaneously
is reduced because the members do not process the requests in identical orders, and Heisenbugs are likely
to be very sensitive to the detailed ordering of events within a process. Yet one still presents the algorithm
in the group and thinks of the group as if all the communication within it was totally ordered.

16.3 Summary and Conclusion
There has been a great deal of debate over the notions of consistency and reliability in distributed systems
(which are sometimes seen as violating end-to-end principles), and of causal or total ordering (which are
sometimes too weak or too strong for the needs of a specific application that does need ordering). Finally,

Chapter16: Consistencyin Distributed Systems 315

315

although we have not focused on this here, there is the criticism that technologies such as the ones we
have reviewed do not “fit” with standard styles of distributed systems development.

As to the first concern, the best argument for consistency and reliability is to simply exhibit
classes of critical distributed computing systems that will not be sufficiently available unless data is
replicated, and will not be trustworthy unless the data is replicated consistency. We have done so
throughout this textbook; if the reader is unconvinced, there islittle that will convince him or her. On the
other hand, one would not want to conclude thatmost distributed applications need these properties:
today, the ones that do remain a fairly small subset of the total. However, this subset is rapidly growing.
Moreover, even if one believed that consistency and reliability are extremely important in a great many
applications, one would not want to impose potentially costly communication properties system-wide,
especially in applications with very large numbers of overlapping process groups. To do so is to invite
poor performance, although there may be specific situations where the enforcement of strong properties
within small sets of groups is desirable or necessary.

Turning to the second issue, it is clearly true that different applications have different ordering
needs. The best solution to this problem is to offer systems that permit the ordering and consistency
properties of a communications primitive or process group to be tailored to their need. If the designer is
concerned about paying the minimum price for the properties an application really requires, such a system
can then be configured to only offer the properties desired. Below, will see that the Horus system
implements just such an approach.

Finally, as to the last issue, it is true that we have presented a distributed computing model that,
so far, may not seem very closely tied to the software engineering tools normally used to implement
distributed systems. In the next chapter we study this practical issue, looking at how group
communication tools and virtual synchrony can be applied to real systems that may have been
implemented using other technologies.

16.4 Related Reading
On notions of consistency in distributed systems: [BR94, BR96]; in the case of partitionable systems,
[Mal94, KD95, MMABL96, Ami95]. On the Causal Controversy, [Ren93]. The dispute over CATOCS:
[CS93], with responses in [Bir94, Coo94, Ren94]. The end-to-end argument was first put forward in
[SRC84]. Regarding recent theoretical work on tradeoffs between consistency and availability: [FLP85,
CHTC96, BDM95, FKMBD95, CS96].

Kenneth P. Birman - Building Secure and Reliable Network Applications316

316

17. Retrofitting Reliability into Complex Systems
This chapter is concerned with options for presenting group computing tools to the application developer.
Two broad approaches are considered: those involving wrappers that encapsulate an existing piece of
software in an environment that transparently extends its properties, for example by introducing fault-
tolerance through replication or security, and those based upon toolkits which provide explicit procedure-
call interfaces. We will not examine specific examples of such systems now, but instead focus on the
advantages and disadvantages of each approach, and on their limitations. In the next chapter and beyond,
however, we turn to a real system on which the author has worked and present substantial detail, and in
Chapter 26 we review a number of other systems in the same area.

17.1 Wrappers and Toolkits
The introduction of reliability technologies into a complex application raises two sorts of issues. One is
that many applications contain substantial amounts of preexisting software, or make use of off-the-shelf
components (the military and government favors the acronym COTS for this, meaning “components off
the shelf”; presumably because OTSC is hard to pronounce!) In these cases, the developer is extremely
limited in terms of the ways that the old technology can be modified. Awrapper is a technology that
overcomes this problem by intercepting events at some interface between the unmodifiable technology and
the external environment [Jon93], replacing the original behavior of that interface with an extended
behavior that confers a desired property on the wrapped component, extends the interface itself with new
functionality, or otherwise offers a virtualized environment within which the old component executes.
Wrapping is a powerful technical option for hardening existing software, although it also has some
practical limitations that we will need to understand. In this section, we’ll review a number of
approaches to performing the wrapping operation itself, as well as a number of types of interventions that
wrappers can enable.

An alternative to wrapping is to explicitly develop a new application program that is designed
from the outset with the reliability technology in mind. For example, we might set out to build an
authentication service for a distributed environment that implements a particular encryption technology,
and that uses replication to avoid denial of service when some of its server processes fail. Such a program
would be said to use atoolkit style of distributed computing, in which the sorts of algorithms developed in
the previous chapter are explicitly invoked to accomplish a desired task. A toolkit approach packages
potentially complex mechanisms, such as replicated data with locking, behind simple to use interfaces (in
the case of replicated data,LOCK, READ and UPDATE operations). The disadvantage of such an
approach is that it can be hard to glue a reliability tool into an arbitrary piece of code, and the tools
themselves will often reflect design tradeoffs that limit generality. Thus, toolkits can be very powerful but
are in some sense inflexible: they adopt a programming paradigm, and having done so, it is potentially
difficult to use the functionality encapsulated within the toolkit in a setting other than the one envisioned
by the tool designer.

Toolkits can also take other forms. For example, one could view a firewall, which filters
messages entering and exiting a distributed application, as a tool for enforcing a limited security policy.
When one uses this broader interpretation of the term, toolkits include quite a variety of presentations of
reliability technologies. In addition to the case of firewalls, a toolkit could package a reliable
communication technology as a message bus, a system monitoring and management technology, a fault-
tolerant file system or database system, a wide-area name service, or in some other form (Figure 17-1).
Moreover, one can view a programming language that offers primitives for reliable computing as a form
of toolkit.

Chapter17: Retrofitting Reliability into Complex Systems 317

317

In practice, many realistic distributed applications require a mixture of toolkit solutions and
wrappers. To the degree that a system has new functionality which can be developed with a reliability
technology in mind, the designer is afforded a great deal of flexibility and power through the execution
model supported (for example, transactional serializability or virtual synchrony), and may be able to
provide sophisticated functionality that would not otherwise be feasible. On the other hand, in any system
that reuses large amounts of old code, wrappers can be invaluable by shielding the previously developed
functionality from the programming model and assumptions of the toolkit.

Server replication Tools and techniques for replicating data to achieve high availability, load-
balancing, scalable parallelism, very large memory-mapped caches, etc.
Cluster API’s for management and exploitation of clusters

Video server Technologies for striping video data across multiple servers, isochronous
replay, single replay when multiple clients request the same data

WAN replication Technologies for data diffusion among servers that make up a corporate
network.

Client groupware Integration of group conferencing and cooperative work tools into Java agents,
Tcl/Tk, or other GUI-builders and client-side applications.

Client reliability Mechanisms for transparently fault-tolerant RPC to servers, consistent data
subscription for sets of clients that monitor the same data source, etc.

System management Tools for instrumenting a distributed system and performing reactive control.
Different solutions might be needed when instrumenting the network itself,
cluster-style servers, and user-developed applications.

Firewalls and
containment tools

Tools for restricting the behavior of an application or for protecting it against a
potentially hostile environment. For example, such a toolkit might provide a
bank with a way to install a “partially trusted” client-server application so as to
permit its normal operations while prevening unauthorized ones.

Figure 17-1: Some types of toolkits that might be useful in building or hardening distributed systems. Each toolkit would
address a set of application-specific problems, presenting an API specialized to the programming language or environment
within which the toolkit will be used, and to the task at hand. While it is also possible to develop extremely general toolkits that
seek to address a great variety of possible types of users, doing so can result in a presentation of the technology that is
architecturally weak and hence doesn’t guide the user to the best system structure for solving their problems. In contrast,
application-oriented toolkits often reflect strong structural assumptions that are known to result in solutions that perform well
and achieve high reliability.

Kenneth P. Birman - Building Secure and Reliable Network Applications318

318

17.1.1 Wrapper Technologies
In our usage, a wrapper is any technology that intercepts an existing execution path in a manner
transparent to the wrapped application or component. By wrapping a component, the developer is able to
virtualize the wrapped interface, introducing an extended version with new functionality or other desirable
properties. In particular, wrappers can be used to introduce various robustness mechanisms, such as
replication for fault-tolerance, or message encryption for security.

17.1.1.1 Wrapping at Object Interfaces
Object oriented interfaces are the best example of a
wrapping technology (Figure 17-2), and systems built
using Corba or OLE-2 are, in effect, “pre-wrapped” in a
manner that makes it easy to introduce new technologies
or to substitute a hardened implementation of a service
for a non-robust one. Suppose, for example, that a Corba
implementation of a client-server system turns out to be
unavailable because the server has sometimes crashed.
Earlier, when discussing Corba, we pointed out that the
Corba architectural features in support of dynamic
reconfiguration or “fail-over” are difficult to use. If,
however, a Corba service could be replaced with a
process group (“object group”) implementing the same
functionality, the problem becomes trivial. Technologies
like Orbix+Isis and Electra, described in Chapter 18,
provide precisely this ability. In effect, the Corba
interface “wraps” the service in such a manner that any
other service providing a compatible interface can be
substituted for the original one transparently.

17.1.1.2 Wrapping by Library Replacement
Even when we lack an object-oriented architecture,
similar ideas can often be employed to achieve these sorts
of objectives. As an example, one can potentially wrap a
program by relinking it with a modified version of a

library procedure that it calls. In the relinked program, the code will still issue the same procedure calls
as it did in the past. But control will now pass to the wrapper procedures which can take actions other
than those taken by the original versions.

In practice, this specific wrapping method would only work on older operating systems, because
of the way that libraries are implemented on typical modern operating systems. Until fairly recently, it
was typical for linkers to operate by making a single pass over the application program, building asymbol
table and a list ofunresolved external references.The linker would then make a single pass over the
library (which would typically be represented as a directory containing object files, or as an archive of
object files), examining the symbol table for each contained object and linking it to the application
program if the symbols it declares include any of the remaining unresolved external references. This
process causes the size of the program object to grow, and results in extensions both to the symbol table
and, potentially, to the list of unresolved external references. As the linking process continues, these
references will in turn be resolved, until there are no remaining external references. At that point, the
linker assigns addresses to the various object modules and builds a single program file which it writes out.
In some systems, the actual object files are not copied into the program, but are instead loaded
dynamically when first referenced at runtime.

client server

client

server

server

server

server
API

same
API

Figure 17-2: Object oriented interfaces permit the
easy substitution of a reliable service for a less
reliable one. They represent a simple example of
a "wrapper" technology. However, one can often
wrap a system component even if it was not built
using object-oriented tools.

Chapter17: Retrofitting Reliability into Complex Systems 319

319

Operating systems and linkers
have evolved, however, in response to
pressure for more efficient use of
computer memory. Most modern
operating systems support some form of
shared libraries. In the shared library
schemes, it would be impossible to
replace just one procedure in the shared
library. Any wrapper technology for a
shared library environment would then
involve reimplementing all the
procedures defined by the shared library,
a daunting prospect.

17.1.1.3 Wrapping by Object
Code Editing
Object code editingis an example of a

recent wrapping technology that has been exploited in a number of recent research and commercial
application settings. The approach was originally developed by Wahbe, Lucco, Anderson and Graham
[WLAG93], and involves analysis of the object code files before or during the linking process. A variety
of object code transformations are possible. Lucco, for example, uses object code editing to enforce type
safety and to eliminate the risk of address boundary violations in modules that will run without memory
protection: a software fault isolation technique.

For purposes of wrapping, object code editing would permit the selective remapping of certain
procedure calls into calls to wrapper functions, which could then issue calls to the original procedures if
desired. In this manner, an application that uses the UNIXsendtosystem call to transmit a message could
be transformed into one that callsfilter_sendto (perhaps even passing additional arguments). This
procedure, presumably after filtering outgoing messages, could then callsendtoif a message survives its
output filtering criteria. Notice that an approximation to this result can be obtained by simply reading in
the symbol table of the application’s
object file and modifying entries prior to
the linking stage.

One important application of
object code editing, cited earlier,
involves importing untrustworthy code
into a client’s Web browser. When we
discussed this option in Section 10.9, we
described it simply as a security
enhancement tool. Clearly, however, the
same idea could be useful in many other
settings. Thus it makes sense to
understand object code editing as a
wrapping technology, and the specific
use of it in Web browser applications as
an example of how such a wrapper might
permit us to increase our level of trust in
applications that would otherwise
represent a serious security threat.

id = lookup(“henry”);
db_fetch(id,buf);
buf.rc_bal += 100.
buf.rc_time = NOW;
db_update(id,buf);

... etc ...

lookup....

db_update...

db_fetch....

Figure 17-3: A linker establishes the correspondence between
procedure calls in the application and procedure definitions in
libraries, which may be shared in some settings.

id = lookup(“henry”);
db_fetch(id,buf);
buf.rc_bal += 100.
buf.rc_time = NOW;
db_update(id,buf);

... etc ...

lookup....

db_update...

db_fetch....

Figure 17-4: A wrapper (gray) intercepts selected procedure calls
or interface invocations, permitting the introduction of new
functionality transparently to theapplication or library. The
wrapper may itself forward the calls to the library, but can also
perform other operations. Wrappers are an important option for
introducing reliability into an existingapplication, which may be
too complex to rewrite or to modify easily with explicit procedure
calls to a reliability toolkit or some other new technology.

Kenneth P. Birman - Building Secure and Reliable Network Applications320

320

17.1.1.4 Wrapping With Interposition Agents and Buddy Processes
Up to now, we have focused on wrappers that operate directly upon the application process and that live in
its address space. However, wrappers need not be so intrusive.

Interposition involves placing some sort of object or process in between an existing object or
process and its users. An interposition architecture based on what are called “coprocesses” or “buddy”
processes is a simple way to implement this approach, particularly for developers familiar with UNIX
“pipes” (Figure 17-5). Such an architecture involves replacing the connections from an existing process
to the outside world with an interface to a buddy process that has a much more sophisticated view of the
external environment. For example, perhaps the existing program is basically designed to process a
pipeline of data, record by record, or to process batch-style files containing large numbers of records. The
buddy process might employ a pipe or file system interface to the original application, which will often
continue to execute as if it were still reading batch files or commands typed by a user at a terminal, and
hence may not need to be modified. To the outside world, however, the interface seen is the one presented
by the buddy process, which may now exploit sophisticated technologies such as CORBA, DCE, the Isis
Toolkit or Horus, a message bus, and so forth. (One can also imagine imbedding the buddy process
directly into the address space of the original application, coroutine style, but this is likely to be much
more complex and the benefit may be small unless the connection from the buddy process to the older
application is known to represent a bottleneck). The pair of processes would be treated as a single entity
for purposes of system management and reliability: they would run on the same platform, and be set up so
that if one fails, the other is automatically killed too.

Interposition wrappers may also be supported by
the operating system. Many operating systems provide
some form of packet filter capability, which would permit a
user-supplied procedure to examine incoming or outgoing
messages, selectively operating on them in various ways.
Clearly, a packet filter can implement wrapping. The
streams communication abstraction in UNIX, discussed in
Chapter 5, supports a related form of wrapping, in which
streams modules are pushed and popped from a protocol
stack. Pushing a streams module onto the stack is a way of
“wrapping” the stream with some new functionality
implemented in the module. The stream still looks the
same to its users, but its behavior changes.

Interposition wrappers have been elevated to a
real art form in the Chorus operating system [RAAB88,
RAAH88], which is object oriented and uses object

invocation for procedure and system calls. In Chorus, an object invocation is done by specifying a
procedure to invoke and providing a handle referencing the target object. If a different handle is specified
for the original one, and the object referenced has the same or a superset of the interface of the original
object, the same call will pass control to a new object. This object now represents a wrapper. Chorus uses
this technique extensively for a great variety of purposes, including the sorts of security and reliability
objectives cited above.

17.1.1.5 Wrapping Communication Infrastructures: Virtual Private Networks
Sometime in the near future, it may become possible to wrap an application by replacing the
communications infrastructure it uses with a virtual infrastructure. Much work on the internet and on
telecommunications information architectures is concerned with developing a technology base that can
support virtual private networks, having special security or quality of service guarantees. A virtual

old
process

buddy
process pipe

Figure 17-5: A simple way to wrap an old
program may be to build a new program that
controls the old one through a pipe. The
"buddy" process now acts as a proxy for the old
process. Performance of pipes is sufficiently
high in modern systems to make this approach
surprisingly inexpensive. The buddy process is
typically very simple and hence is likely to be
very reliable; a consequence is that the
reliability of the pair (if both run on the same
processor) is typically the same as that of the
old process.

Chapter17: Retrofitting Reliability into Complex Systems 321

321

network could also wrap an application, for example by imposing a firewall interface between certain
classes of components, or by encrypting data so that intruders can be prevented from eavesdropping.

The concept of a virtual private network runs along the following lines. In Section 10.8 we saw
how agent languages such as Java permit a server to download special purpose display software into a
client’s browser. One could also imagine doing this into the network communication infrastructure itself,
so that the network routing and switching nodes would be in a position to provide customized behavior on
behalf of specialized applications that need particular, non-standard, communication features. We call the
resulting structure a virtual private network because, from the perspective of each individual user, the
network seems to be a dedicated one with precisely the properties needed by the application. This is a
virtual behavior, however, in the sense that it is superimposed on the a physical network of a more general
nature. Uses to which a virtual private network (VPN) could be put include the following:

• Support for a security infrastructure within which only legitimate users can send or receive
messages. This behavior might be accomplished by requiring that messages be signed using
some form of VPN key, which the VPN itself would validate.

• Communication links with special video-transmission properties, such as guarantees of
limited loss rate or real-time delivery (so-called “isochronous” communication).

• Tools for stepping down data rates when a slow participant conferences to a set of
individuals who all share much higher speed video systems. Here, the VPN would filter the
video data, sending through only a small percentage of the frames to reduce load on the slow
link.

• Concealing link-level redundancy from the user. In current networks, although it is possible
to build a redundant communications infrastructure that will remain conected even if a link
fails, one often must assign two IP addresses to each process in the network, and the
application itself must sense that problems have developed and switch from one to the other
explicitly. A VPN could hide this mechanism, providing protection against link failures in a
manner transparent to the user.

17.1.1.6 Wrappers: Some Final Thoughts
Wrappers will be familiar to the systems engineering community, which has long employed these sorts of
“hacks” to attach an old piece of code to a new system component. By giving the approach an appealing
name, we are not trying to suggest that it represents a breakthrough in technology. On the contrary, the
point is simply that there can be many ways to introduce new technologies into a distributed system and
not all of them require that the system be rebuilt from scratch.

Given the option, it is certainly desirable to build with the robustness goals and tools that will be
used in mind. But lacking that option, one is not necessarily forced to abandon the use of a robustness
enhancing tool. There are often back-door mechanisms by which such tools can be slipped under the
covers or otherwise introduced in a largely transparent, non-intrusive manner. Doing so will preserve the
large investment that an organization may have made in its existing infrastructure and applications, and
hence should be viewed as a positive option, not a setback for the developer who seeks to harden a system.
Preservation of the existing technology base must be given a high priority in any distributed systems
development effort, and wrappers represent an important tool in trying to accomplish this goal.

17.1.2 Introducing Robustness in Wrapped Applications
Our purpose in this textbook is to understand how reliability can be enhanced through the appropriate use
of distributed computing technologies. How do wrappers help in this undertaking? Examples of
robustness properties that wrappers can be used to introduce into an application include the following:

Kenneth P. Birman - Building Secure and Reliable Network Applications322

322

• Fault-tolerance. Here, the role of the wrapper is to replace the existing I/O interface between an
application and its external environment with one that replicates inputs so that each of a set of
replicas of the application will see the same inputs. The wrapper also plays a role in “collating” the
outputs, so that a replicated application will appear to produce a single output, albeit more reliably
than if it were not replicated. To this author’s knowledge, the first such use was in a protocol
proposed by Borg as part of a system called Aurogen [BBG83, BBGH85], and the approach was later
generalized by Eric Cooper in his work on a system called Circus at Berkeley [Coo87], and in the Isis
system developed by the author at Cornell University [BJ87a]. Generally, these techniques assume
that the wrapped application is completely deterministic, although later we will see an example in
which a wrapper can deal with non-determinism by carefully tracing the non-deterministic actions of
a primary process and then replaying those actions in a replica.

• Caching. Many applications use remote services in a client-server manner, through some form of
RPC interface. Such interfaces can potentially be wrapped to extend their functionality. For
example, a database system might evolve over time to support caching of data within its clients, to
take advantage of patterns of repeated access to the same data items, which are common in most
distributed applications. To avoid changing the client programs, the database system could wrap an
existing interface with a wrapper that manages the cached data, satisfying requests out of the cache
when possible and otherwise forwarding them to the server. Notice that the set of clients managing
the same cached data item represent a form of process group, within which the cached data can be
viewed as a form of replicated data.

• Security and authentication.A wrapper that intercepts incoming and outgoing messages can secure
communication by, for example, encrypting those messages or adding a signature field as they depart,
and decrypting incoming messages or validating the signature field. Invalid messages can either be
discarded silently, or some form of I/O failure can be reported to the application program. This type
of wrapper needs access to a cryptographic subsystem for performing encryption or generating
signatures. Notice that in this case, a single application may constitute a form ofsecurity enclave
having the property that all components of the application share certain classes of cryptographic
secrets. It follows that the set of wrappers associated with the application can be considered as a form
of process group, despite the fact that it may not be necessary to explicitly represent that group at
runtime or communicate to it as a group.

• Firewall protection. A wrapper can perform the same sort of actions as a firewall, intercepting
incoming or outgoing messages and applying some form of filtering to them, passing only those
messages that satisfy the filtering criteria. Such a wrapper would be placed at each of the I/O
boundaries between the application and its external environment. As in the case of the security
enclave just mentioned, a firewall can be viewed as a set of processes that ring a protected
application, or that encircle an application to protect the remainder of the system from its potentially
unauthorized behavior. If the ring contains multiple members multiple firewall processes the
structure of a process group is again present, even if the group is not explicitly represented by the
system. For example, all firewall processes need to use consistent filtering policies if a firewall is to
behave correctly in a distributed setting.

• Monitoring and tracing or logging.A wrapper can monitor the use of a specific interface or set of
interfaces, and triggering actions under conditions that depend on the flow of data through those
interfaces. For example, a wrapper could be used to log the actions of an application for purposes of
tracing the overall performance and efficiency of a system, or in a more active role, could be used to
enforce a security policy under which an application has an associated behavioral profile, and in
which deviation from that profile of expected behavior potentially triggers interventions by an
oversight mechanism. Such a security policy would be called anin-depth security mechanism,
meaning that unlike a security policy applied merely at the perimeter of the system, it would continue
to be applied in an active way throughout the lifetime of an application or access to the system.

Chapter17: Retrofitting Reliability into Complex Systems 323

323

• Quality of service negotiation.A wrapper could be placed around a communication connection for
which the application has implicit behavioral requirements, such as minimum performance,
throughput, or loss rate requirements, or maximum latency limits. The wrapper could then play a
role either in negotiation with the underlying network infrastructure to ensure that the required
quality of service is provided, or in triggering reconfiguration of an application if the necessary
quality of service cannot be obtained. Since many applications are build withimplicit requirements of
this sort, such a wrapper would really play the role of makingexplicit an existing (but not expressed)
aspect of the application. One reason that such a wrapper might make sense would be that future
networks may be able to offer guarantees of quality of service even when current networks do not.
Thus, an existing application might in the future be “wrapped” to take advantage of those new
properties with little or no change to the underlying application software itself.

• Language level wrappers.Wrappers can also operate at the level of a programming language, or an
interpreted runtime environment. In Chapter 18, for example, we will describe a case in which the
Tcl/Tk programming language was extended to introduce fault-tolerance by wrapping some of its
standard interfaces with extended ones. Similarly, we will see that fault-tolerance and load-balancing
can often be introduced into object-oriented programming languages, such as C++, Ada, or
SmallTalk, by introducing new object classes that are transparently replicated or that use other
transparent extensions of their normal functionality. An existing application can then benefit from
replication by simply using these objects in place of the ones previously used.

The above is at best a very partial list. What it illustrates is that given the idea of using wrappers to reach
into a system and manage or modify it, one can imagine a great variety of possible interventions that
would have the effect of introducing fault-tolerance or other forms of robustness, such as security, system
management, or explicit declaration of requirements that the application places on its environment.

These examples also illustrate another point: when wrappers are used to introduce a robustness
property, it is often the case that some form of distributed process group structure will be present in the
resulting system. As noted above, the system may not need to actually represent such a structure and may
not try to take advantage of itper-se.However, it is also clear that the ability to represent such structures
and to program using them explicitly could confer important benefits on a distributed environment. The
wrappers could, for example, use consistently replicated and dynamically updated data to vary some sort
of security policy. Thus, a firewall could be made dynamic, capable of varying its filtering behavior in
response to changing requirements on the part of the application or environment. A monitoring
mechanism could communicate information among its representatives in an attempt to detect correlated
behaviors or attacks on a system. A caching mechanism can ensure the consistency of its cached data by
updating it dynamically.

Wrappers do not always require process group support, but the two technologies are well matched
to one-another. Where a process group technology is available, the developer of a wrapper can potentially
benefit from it to provide sophisticated functionality that would otherwise be difficult to implement.
Moreover, some types of wrappers are only meaningful if process group communication is available.

17.1.3 Toolkit Technologies
In the introduction to this chapter, we noted that wrappers will often have limitations. For example,
although it is fairly easy to use wrappers to replicate a completely deterministic application to make it
fault-tolerant, it is much harder to do so if an application is not deterministic. And, unfortunately, many
applications are non-deterministic forobvious reasons. For example, an application that is sensitive to
time (e.g. timestamps on files or messages, clock values, timeouts) will be non-deterministic to the degree
that it is difficult to guarantee that the behavior of a replica will be the same without ensuring that the
replica sees the same time values and receivestimer interrupts at the same point in its execution. The
UNIX selectsystem call is a source of non-determinism, as are interactions with devices. Any time an

Kenneth P. Birman - Building Secure and Reliable Network Applications324

324

application usesftell to measure the amount of data available in an incoming communication connection,
this introduces a form of non-determinism. Asynchronous I/O mechanisms, common in many systems,
are also potentially non-deterministic. And parallel or preemptive multithreaded applications are
potentially the most nondeterministic of all.

In cases such as these, there may be no obvious way that a wrapper could be introduced to
transparently confer some desired reliability property. Alternatively, it may be possible to do so but
impractically costly or complex. In such cases, it is sometimes hard to avoid building a new version of the
application in question, in which explicit use is made of the desired reliability technology. Generally,
such approaches involve what is called atoolkit methodology.

In a toolkit, the desired technology is prepackaged, usually in the form of procedure calls (Figure
17-6). These provide the functionality needed by the application, but without requiring that the user
understand the reasoning that lead the toolkit developer to decide that in one situation,cbcastwas a good
choice of communication primitive, but that in another,abcastis a better option, and so forth. A toolkit
for managing replicated data might offer an abstract data type called a replicated data item, perhaps with
some form of “name” and some sort of representation, such as a vector or ann-dimensional array.
Operations appropriate to the data type would then be offered:UPDATE, READ,and LOCK being the
obvious ones for a replicated data item (in addition to such additional operations as may be needed to
initialize the object, detach from it when no longer using it, etc). Other examples of typical toolkit
functionality might include transactional interfaces, mechanisms for performing distributed load-
balancing or fault-tolerant request execution, tools for publish/subscribe styles of communication, tuple-
space tools implementing an abstraction similar to the one in the Linda tuple-oriented parallel
programming environment, etc. The potential list of tools is really unlimited, particularly if such issues as
distributed systems security are also considered.

Chapter17: Retrofitting Reliability into Complex Systems 325

325

Toolkits often include other elements of a distributed environment, such as a name space for
managing names of objects, a notion of a communications endpoint object, process group communication
support, message data structures and message manipulation functionality, lightweight threads or other
event notification interfaces, and so forth. Alternatively, a toolkit may assume that that the user is already
working with a distributed computing environment, such as the DCE environment or SUN Microsystem’s
ONC environment. The advantage of such an assumption is that it reduces the scope of the toolkit itself to
those issues explicitly associated with its model; the disadvantage being that it compels the toolkit user to
also use the environment in question, reducing portability.

17.1.4 Distributed Programming Languages
The reader may recall the discussion of agent programming languages and other “Fourth generation
languages” (4GL’s), which package powerful computing tools in the form of special-purpose
programming environments. Java is the best known example of such a language, albeit aimed at a setting
in which reliability is taken primarily to mean “security of the user’s system against viruses, worms, and
other forms of intrusion.” Power Builder and Visual Basic will soon emerge as important alternatives to
Java. Other sorts of agent oriented programming languages include Tcl/Tk [Ous94] and TACOMA
[JvRS95].

Although existing distributed programming languages lack group communication features and
few make provisions for reliability or fault-tolerance, one can extend many such languages without
difficult. The resulting enhanced language can be viewed as a form of distributed computing toolkit in
which the tools are tightly integrated with the language. For example, in Chapter 18, we will see how the
Tcl/Tk GUI development environment was converted into a distributed groupware system by integrating it

Tool Description
Load-balancing Provides mechanisms for building a load-balanced server, which

can handle more work as the number of group members increases.
Guaranteed execution Provides fault-tolerance in RPC-style request execution, normally

in a manner that is transparent to the client
Locking Provides synchronization or some form of “token passing”
Replicated data Provides for data replication, with interfaces to read and write

data, and selectable properties such as data persistence, dynamic
uniformity, and the type of data integrity guarantees supported

Logging Maintains logs and checkpoints and provides playback
Wide-area spooling Provides tools for integrating LAN systems into a WAN solution
Membership ranking Within a process group, provides a ranking on the members that

can be used to subdivide tasks or load-balance work
Monitoring and control Provides interfaces for instrumenting communication into and out

of a group and for controlling some aspects of communication
State transfer Supports the transfer of group “state” to a joining process
Bulk transfer Supports out of band transfer of very large blocks of data
Shared memory Tools for managing shared memory regions within a process

group, which the members can then use for communication that is
diffi cult or expensive torepresent in terms of message passing

Figure 17-6: Typical interfaces that one might find in a toolkit for process group computing. In typical practice, a
set of toolkits would be needed, each aimed at a different class of problems. The interfaces listedabove would be
typical for a server replication toolkit, but might not be appropriate for building a cluster-style multimedia video
server or a caching web proxy with dynamic update and document consistency guarantees.

Kenneth P. Birman - Building Secure and Reliable Network Applications326

326

with Horus. The resulting system is a powerful protyping tool, but in fact could actually support
“production” applications as well; Brian Smith at Cornell University is using this infrastructure in
support of a new video conferencing system, and it could also be employed as a groupware and computer-
supported cooperative work CSCW programming tool.

Similarly, one can integrate a technology such as Horus into a web browser such as the Hot Java
browser, in this way providing the option of group communication support directly to Java applets and
applications. We’ll discuss this type of functionality and the opportunities it might create in Section 17.4.

17.2 Wrapping a Simple RPC server
To illustrate the idea of wrapping for reliability, consider a simple RPC server designed for a financial
setting. A common problem that arises in banking is to compute the theoretical price for a bond; this
involves a calculation that potentially reflects current and projected interest rates, market conditions and
volatility (expected price fluctuations), dependency of the priced bond on other securities, and myriad
other factors. Typically, the necessary model and input data is represented in the form of a server, which
clients access using RPC requests. Each RPC can be reissued as often as necessary: the results may not be
identical (because the server is continuously updating the parameters to its model) but any particular result
should be valid for at least a brief period of time.

Now, suppose that we have developed such a server, but that only after putting it into operation
began to be concerned about its availability. A typical scenario might be that the server has evolved over
time, so that although it was really quite simple and easy to restart after crashes when first introduced, it
can now require an hour or more to restart itself after failures. The result is that if the server does fail, the
disruption could be extremely costly.

An analysis of the causes of failure is likely to reveal that the server itself is fairly stable,
although a low residual rate of crashes is observed. Perhaps there is a lingering suspicion that some
changes recently introduced to handle the possible unification of European currencies after 1997 are
buggy, and are causing crashes. The development team is working on this problem and expects to have a
new version in a few months, but management, being pragmatic, doubts that this will be the end of the
software reliability issues for this server. Meanwhile, however, routine maintenance and communication
link problems are believed to be at least as serious a source of downtime. Finally, although the server
hardware is relatively robust, it has definitely caused at least two major outages during the past year, and
loss of power associated with a fire triggered additional downtime recently.

In such a situation, it may be extremely important to take steps to improve server reliability. But
clearly, rebuilding the server from scratch would be an impractical step given the evolutionary nature of
the software that it uses. Such an effort could take months or years, and when traders perceive a problem,
they are rarely prepared to wait years for a solution.

The introduction of reliable hardware and networks could improve matters substantially. A dual
network connection to the server, for example, would permit messages to route around problematic
network components such as faulty routers or damaged bridges. But the software and management
failures would remain an issue. Upgrading to a fault-tolerant hardware platform on which to run the
server would clearly improve reliability but only to a degree. If the software is in fact responsible for
many of the failures that are being observed, all of these steps will only eliminate some fraction of the
outages.

Chapter17: Retrofitting Reliability into Complex Systems 327

327

An approach that replicates the server using wrappers, however, might be very appealing in this
setting. As stated, the server state seems to be dependent on pricing inputs to it, but not on queries.
Thus, a solution such as the one in Figure 17-7 can be considered. Here, the inputs that determine server
behavior are replicated using broadcasts to a process group. The queries are load-balanced by directing
the queries for any given client to one or another member of the server process group. The architecture
has substantial design flexibility in this regard: the clients can be managed as a group, with their queries
carefully programmed to match each client to a different, optimally selected, server. Alternatively, the
clients can use a random policy to issue requests to the servers. If a server is unreasonably slow to
respond, or has clearly failed, the same request could be reissued to some other server (or, if the request
itself may have caused the failure, a slightly modified version of the request could be issued to some other
server). Moreover, the use of wrappers makes it easy to see how such an approach can be introduced
transparently (without changing existing server or client code). Perhaps the only really difficult problem
would be to restart a server while the system is already active.

In fact, even this problem may not be so difficult to solve. The same wrappers that are used to
replace the connection from the data sources to the server with a broadcast to the replicated server group
can potentially be set up to log input to the server group members in the order that they are delivered. To
start a new server, this information can be transferred to it using a state transfer from the old members,
after which any new inputs can be delivered. When the new server is fully initialized, a message can then
be sent to the client wrappers informing them that the new server is able to accept requests. To optimize
this process, it may be possible to launch the server using a checkpoint, replaying only those logged events
that changed the server state after the checkpoint was created. These steps would have the effect of
minimizing the impact of the slow server restart on perceived system performance.

This discussion is not entirely hypothetical. The author is aware of a number of settings in which
problems such as this were solved precisely in this manner. The use of wrappers is clearly an effective
way to introduce reliability or other properties (such as load-balancing) transparently, or nearly so, in
complex settings characterized by substantial preexisting applications.

17.3 Wrapping a Web Server
The techniques of the preceding section could also be used to develop a fault-tolerant version of a web
server. However, whereas the example presented above concerned a database server that was used only
for queries, many web servers also offer applications that become active in response to data submitted by
the user through a form-fill or similar interface. To wrap such a server for fault-tolerance, one would

clients server pricing data

Figure 17-7: A client-server application can be wrapped to introduce fault-tolerance and load-balancing with few or
no changes to the existing code.

Kenneth P. Birman - Building Secure and Reliable Network Applications328

328

need to first confirm that its implementation is deterministic if these sorts of operations are invoked in the
same order at the replicas. Given such information, theabcastprotocol could be used to ensure that the
replicas all see the same inputs in the same order. Since the replicas would now take the same actions
against the same state, the first response received could be passed back to the user; subsequentduplicate
responses can be ignored.

A slightly more elaborate approach is commonly used to introduce load-balancing within a set of
replicated web servers for query accesses, while fully replicating update accesses to keep the copies in
consistent states. The HTTP protocol is sufficiently sophisticated to make this an easy task: for each
retrieval (get) request received, a front-end web server simply returns a different server’s address from
which that retrieval request should be satisfied, using a “temporary redirection” error code. This requires
no changes to the http protocol, web browsers, or web servers, and although purists might consider it to be
a form of “hack”, the benefits of introducing load-balancing without having to redesign HTTP are so
substantial that within the Web development community, the approach is viewed as an important design
paradigm. In the terminology of this chapter, the front-end server “wraps” the cluster of back-end
machines.

17.4 Hardening Other Aspects of the Web

Chapter17: Retrofitting Reliability into Complex Systems 329

329

A wrapped Web server just hints at the potential that group communication tools may have in future
enterprise uses of the Web. As seen in

Application domain Uses of process groups
Server replication • High availability, fault-tolerance

•••• State transfer to restarted process
•••• Scalable parallelism and automatic load balancing
•••• Coherent caching for local data access
•••• Database replication for high availability

Data dissemination • Dynamic update of documents in the Web, or of fields in documents
• Video data transmission to group conference browser’s with video viewers
• Updates to parameters of a parallel program
• Updates to spread-sheet values displayed to browsers showing financial data
• Database updates to database GUI viewers
• Publish/subscribe applications

System management • Propagate management information base (MIB) updates to visualization
systems

• Propogate knowlwdge of the set of servers that compose a service
• Rank the members of a server set for subdividing the work
• Detecting failures and recoveries and triggering consistent, coordinated

action
• Coordination of actions when multiple processes can all handle some event
• Rebalancing of load when a server becomes overloaded, fails, or recovers

Security applications • Dynamically updating firewall profiles
• Updating security keys and authorization information
• Replicating authorization servers or directories for high availability
• Splitting secrets to raise the barrier faced by potential intruders
• Wrapping components to enforce behavior limitations (a form of firewall that

is placed close to the component and monitors the behavior of the
application as a whole)

Figure 17-8: Potential uses of groups in Internet Systems

Kenneth P. Birman - Building Secure and Reliable Network Applications330

330

Application domain Uses of process groups
Server replication • High availability, fault-tolerance

•••• State transfer to restarted process
•••• Scalable parallelism and automatic load balancing
•••• Coherent caching for local data access
•••• Database replication for high availability

Data dissemination • Dynamic update of documents in the Web, or of fields in documents
• Video data transmission to group conference browser’s with video viewers
• Updates to parameters of a parallel program
• Updates to spread-sheet values displayed to browsers showing financial data
• Database updates to database GUI viewers
• Publish/subscribe applications

System management • Propagate management information base (MIB) updates to visualization
systems

• Propogate knowlwdge of the set of servers that compose a service
• Rank the members of a server set for subdividing the work
• Detecting failures and recoveries and triggering consistent, coordinated

action
• Coordination of actions when multiple processes can all handle some event
• Rebalancing of load when a server becomes overloaded, fails, or recovers

Security applications • Dynamically updating firewall profiles
• Updating security keys and authorization information
• Replicating authorization servers or directories for high availability
• Splitting secrets to raise the barrier faced by potential intruders
• Wrapping components to enforce behavior limitations (a form of firewall that

is placed close to the component and monitors the behavior of the
application as a whole)

Figure 17-8, Figure 17-9 and Figure 17-10, the expansion of the Web into groupware applications and
environments, computer-aided cooperative work (CSCW), and dynamic information publication
applications, all create challenges that the sorts of tools we developed in Chapters 13-16 could be used to
solve.

Today, a typical enterprise that makes use of a number of Web servers treats each server as an
independently managed platform, and has little control over the cache coherency policies of the Web
proxy servers that reside between the end-user and the Web servers. With group replication and load-
balancing, we could transform these Web servers into fault-tolerant, parallel processing systems. Such a
step would bring benefits such as high availability and scalable performance, enabling the enterprise to
reduce the risk of server overload when a popular document is under heavy demand. Looking to the
future, Web servers will increasingly be used as video servers, capturing video input (such as conferences
and short presentation by company experts on topics of near-term interest, news stories off the wire, etc),
in which case such scalable parallelism may be critical to both data archiving (which often involves
computationally costly techniques such as compression) and playback.

Chapter17: Retrofitting Reliability into Complex Systems 331

331

Wide-area group tools
could also be used to integrate
these servers into a wide-area
architecture that would be
seamless, presenting users with
the abstraction of a single, highly
consistent, high availability Web
service, and yet internally self-
managed and structured. Such a
multi-server system might
implement data migration
policies, moving data to keep it
close to the users that demand it
most often, and wide-area
replication of critical information
that is widely requested, while
also providing guarantees of
rapid update anc consistency.
Later, we will be looking at
security technologies that could
also be provided through such an
enterprise architecture,
permitting a company to limit
access to its critical data to just

those users who have been authorized, for example through provision of a Fortezza card (see Section
19.3.4).

Turning to the caching Web proxies, group communication tools would permit us to replace the
standard caching policy with a stateful coherent caching mechanism. In contrast with the typical situation
today, where a Web page may be stale, such an approach would allow a server to reliably send out a
message that would invalidate or refresh any cached data that has changed since it was copied. Moreover,
by drawing on CORBA functionality, one could begin to deal with document groups (sets of documents
with hyperlinks to one-another) and over multi-document structures in a more sophisticated manner.

Group communication tools can also play a role in the delivery of data to end-users. Consider,
for example, the idea of treating a message within a group as a Java-style self-displaying object, a topic we
touched upon above. In effect, the server could manufactor and broadcast to a set of users an actively self-
constructed entity. Now, if group tools are available within the browsers themselves, these applets could
cooperate with one-another to animate a scene in a way that all participants in the group conferencing
session can observe, or to mediate among a set of concurrent actions initiated by different users. User’s
would download the current state of such an applet and then receive (or generate)updates, observing these
in a consistent order with respect to other concurrent users. Indeed, the applet itself could be made self-
modifying, for example by sending out new code if actions taken by the users demand it (zooming for
higher resolution, for example, might cause an applet to replace itself with one suited for accurate display
of fine grained detail).

Thus, one could imagine a world of active multi-documents in which the objects retrieved by
different users would be mutually consistent, dynamically updated, able to communicate with one another,
and in which updates originating on the Web servers would be automatically and rapidly propagated to
the documents themselves. Such a technology would permit a major step forward in conferencing tools,
and is likely to be needed in some settings, such as telemedicine (remote surgery or consultations),
military strategic/tactical analysis, and remote teleoperation of devices. It would enable a new generation

Figure 17-9: Web server transmits continuous updates to documents or video
feeds to a group of users. Depending upon the properties of the group-
communication technology employed, the user’s may be guaranteed to see
identical sequences of input, to see data synchronously, security from
external intrusion or interference, and so forth. Such a capability is most
conveniently packaged by integrating group communication directly into a
web agent language such as Java or Visual Basic, for example by extending
the Hot Java browser with group communication protocols that could then
be used through a groupware API.

Kenneth P. Birman - Building Secure and Reliable Network Applications332

332

of interactive multiparticipant network games or simulations, and could support the sorts of cooperation
needed in commercial or financial transactions that require simultaneous actions in multiple markets or
multiple countries. The potential seems nearly unlimited. Moreover, all of these are applications that
would appear very difficult to realize in the absense of a consistent group communication architecture, and
that demand a high level of reliability in order to be useful within the intended community.

Obviously, our wrapped Web server represents just the tip of potentially large application
domain. While it is difficult to say with any certainty that this type of system will ever be of commercial
importance, or to predict the timeframe in which it might become real, it seems plausible that the
pressures that today are pushing more and more organizations and cooperations onto the Web will
tomorrow translate into pressure for consistent, predictable, and rapidly updated groupware tools and
objects. The match of the technologies we have presented with this likely need is good, although the
packagingof group communication tools to work naturally and easily within such applications will
certainly demand additional research and development. In particular, notice that the tools and API’s that
one might desire at the level of a replicated Web server will look completely different from those that
would make sense in a multimedia groupware conferencing system. This is one reason that systems like
Horus need flexibility, both at the level of how they behave and how they look. Nonetheless, the
development of appropriate API’s ultimately seems like a small obstacle. The author is confident that
group communication tools will come to play a large role in the enterprise Web computing systems of the
coming decades.

17.5 Unbreakable Stream Connections
Motivated by Section 17.4, we now consider a more complex example. In Chapter 5 we discussed
unreliability issues associated with stream style communication. Above, we discussed extensions to web

caching proxy

caching proxycaching proxy

Figure 17-10: Potential group communication uses in Web applications arise at several levels. Web servers can
be replicated for fault-tolerance and load-balancing, or integrated into wide-area structures that might span
large corporations with many sites. Caching web proxies could be "fixed" to provide guarantees of data
consistenyc, and digital encryption or signatures used to protect the overall enterprise against intusion or
attack. Moreover, one can forsee integrating group communication directly into agent languages like Java,
thereby creating a natural tool for building cooperative groupware applications. A key to successfully realizing
this vision will be to design wrappers or toolkit API’s that are both natural and easy to use for the different
levels of abstraction and purposes seen here: clearly, the tools one would want to use in building an interactive
multimedia groupware object would be very different from those one would use to replicate a Web server.

Chapter17: Retrofitting Reliability into Complex Systems 333

333

servers that might make them reliable. However, consider the client browser: it will typically connect to
such a server through a stream (a TCP connection, to be specific). Thus it makes sense to ask how group
communication tools can help us overcome some of the problems we noted in our original discussion of
streams and their behavior when failures occur. After all, if we want our web technology to becompletely
reliable and to handle failures in a completely transparent manner, we will need to solve this problem.

Our analysis will lead to a mixed conclusion, and indeed one reason for including this section in
the textbook is toillustrate the challenges created by “real world” considerations, and the sort of tradeoffs
that result. A constraint underlying the discussion will be the assumption that we are concerned with a
client and a server, and that the server (but not the client) is to be replicated for increased availability.
The client, on the other hand, uses a completely standard and unmodified implementation of some stream-
style reliable protocol. Below, we will use TCP as our example for such a protocol, although the same
discussion would make sense for other stream-style protocols. This constraint prevents us from using a
solution such as the protocol of Section 13.13.

Notice, however, that these constraints are somewhat arbitrary. While there may be important
benefits in avoiding modification of the client systems, these benefits are unlikely to appeal to a developer
who will need to pay a high cost, in complexity or performance, for the transparency afforded by such a
solution. Moreover, in a world where servers can download agents to the client, it may be quite simple to
download a special purpose applet that causes the client’s system to simply talk to the server through some
new, special-purpose protocol. This alternative will underlie much of the discussion of this chapter. We
will see that under certain conditions, a very transparent stream protocol from the client to the server can
be made reliable at low cost, and this class of solutions will be discussed in some detail. Under other
conditions, we will encounter dead-ends in which either the complexity or performance overheads exceed
the likely threshold of pain at which the non-member to group protocols would make more sense. Such of
solutions are consequently of limited practical interest, and we will discuss them only superficially.

17.5.1 Reliability Options for Stream Communication
What would it mean to say that a stream connection is “more reliable” than the ones considered in
Chapter 5? Two types of answers make sense to this author. A sensible starting point would be to
overcome the failure reporting problems of stream connections, by “rewiring” the failure mechanisms of
some standard stream protocol to the GMS input and outs. More precisely, we can introduce wrappers for
this purpose. Depending on how the streams package was implemented, this might be very easy (i.e. if
the streams module is implemented using source code available to the developer and that can easily be
modified), but would more often represent a tremendously difficult undertaking. The problem is that
standard computer systems generally place such code inside the O/S kernel and protect it against
modification by users.

In light of our constraint that the client be unmodified, this rewiring will only occur within the
server. Nonetheless, it can have the effect of avoiding inconsistent failure scenarios, if a client is
connected to multiple servers. In such cases, we will now be sure that if one server concludes that a client
has failed, all servers will react consistently.

Kenneth P. Birman - Building Secure and Reliable Network Applications334

334

The use of wrappers to
provide consistent failure
reporting requires that code be
added to “intercept” failure
detections in the streams
package, modifying the
reporting of such events so that
they become upcalls to the
GMS service. To do this, one
would first modify the channel
protocol so that each process
using the protocol registers
itself with the GMS, and so that
any process p connected to
some other processq asks the
GMS to monitorq and to report
failures. Next, suppose that the
original code implementing the
connection had a procedure
called break_connection that

gets called when the number of retransmission attempts for some packet exceeds a threshold. The
developer would modify these parts of the cold to instead issue upcalls to the GMS service, informing it
that the endpoint has apparently failed. This will cause the GMS to run a protocol excluding the
endpoint, as discussed above, and eventually to issue downcallsto all the processes monitoring the
endpoint that has been excluded.When the GMS reports that the endpoint of the connection has “failed”
the old code associated withbreak_connectionwould be executed. Notice, however, that in the original
implementation, each process independently detects (apparent) failures and immediately executes
break_connection. With this change, each process continues to independently detect failures, butall
processes executebreak_connectionif any does so. This interaction is illustrated in Figure 17-11.
Moreover, the example isn’t completely hypothetical: there are public-domain implementations of the
TCP protocol stack that run in user-space, and the author’s students have carried out this transformation
successfully, and demonstrated that the resulting technology indeed exhibits consistent failure reporting
semantics. On the other hand, one could question whether the benefits of this change justify the effort.

pq

GMS

broadcast breaks all connections to q

crash
timeout “q failed”

Figure 17-11: Modified streams protocol reports detected failures to the GMS,
which breaks all connections to a failed or excluded process simultaneously.
To introduce this behavior, the original interfaces by which the protocol
detects and reports failures, within itself, would be wrapped to interconnect
the detection mechanism with the GMS, and to connect the GMS output back
to the stream protocol.

Chapter17: Retrofitting Reliability into Complex Systems 335

335

A more ambitious goal would be
to support a stream connection to a
group of processes, having the property
that the members can now emulate the
behavior of a single very reliable, non-
replicated, service. Solving this problem
potentially involves much more effort
than for our initial intervention. Here,
we need a way to ensure that the stream
connection (say, TCP) survives the
failure of subsets of the members, and
that the members can stay in consistent
states even when failures occur. We will
want our solution to be easy to use (in
particular, it would be best if the clients
of such a connection could employ
standard versions of the streams
protocol, with all the changes being
made on the server side). And, we will
want the solution to be as efficient as
possible, so that the cost of using a
reliable service through such a reliable
connection is as close as possible to the
cost of using an unreliable service
through a conventional stream
connection. Such an arrangement is
illustrated in Figure 17-12 and Figure
17-13; the former figure shows how this
might work, while the latter shows how
the resulting structure appears to the
client system.

Recall that this problem would
be straightforward to solve if we had the
freedom to modify the application on the
client side of the connection. In that

case, it would suffice to implement an interface that looks like the standard streams interface for the client
computing platform, but operates using one of the client to group protocols developed in Section 13.13.
Thus, in the specific case of a Java-enabled web browser, where there is a realistic option for downloading
an agent that can use such a non-standard protocol to talk to the server, there is a relatively simple
solution to this problem.

The same problem is quite a bit harder if our goal is to fool a standard streams protocol like TCP
into believing that it is communicating with a single non-faulty process using that protocol, when in fact
the destination is group. As we will see below, a completely general solution may be so costly that
implementation of a “direct” client to group broadcast would be highly advantageous. However, for a
somewhat constrained class of stream protocols and applications, a very transparent, very general solution
is achievable.

17.5.2 An Unbreakable Stream That Mimics TCP
To address this issue, we will need to assume that there is a version of the stream protocol that has been
“isolated” in the form of a protocol module with a well-defined interface. To simplify the discussion,

client

TCP

crash

Figure 17-12: A more elaborate solution to the reliable streams
problem. In the desired protocol, the client uses a completely
standard streams protocol, such as TCP, but the messages are
delivered as reliable broadcasts within the group. Unless all
members fail, the client sees an unbroken TCP connection to what
appears to be a continuously available server. Only if all members
fail does the channel break from the perspective of the client.

client

primary

backup

TCP

failover

Figure 17-13: A successful implementation of the reliable streams
protocol would provide clients with the illusion of a completely
transparent “failover”, under which their TCP connection to a
primary server would automatically and seamlessly switch from a
primary server to the backup if a failure occurs..

Kenneth P. Birman - Building Secure and Reliable Network Applications336

336

assume that we are talking about a TCP protocol (other stream protocols could be treated the same way;
only the details would change). At the bottom, the protocol accepts incoming IP packets from the
network, and sends back IP packets containing acknowledgements, retransmission requests, and outgoing
TCP data (outgoing “segments”). Internally, the module has an interface to the timer subsystem of the
machine on which it is running, using this to read the time and to schedule timer interrupts. Fortunately,
not many protocol implementations of this sort make use of threaded concurrency, but if the module in
question does so, the interface from it to the subsystem that implements lightweight threads would also
have to be considered as part of its interface to the outside world. Finally, there is the interface by which
the module interacts with the application process: this consists of its read and write interface, perhaps a
control interface (this would implement the UNIXioctl, ftell, and select interfaces, or the equivalent
operations on other operating systems). This environment is seen in Figure 17-14.

17.5.3 Non-Determinism and Its
Consequences
To use the load-balancing or primary-
backup replication techniques presented
earlier, together with a fault-tolerance
scheme based on wrappers, we need to
understand how to control any non-
determinism associated with this protocol.
Specifically, let’s assume that we intercept
incoming events by replacing the various
interfaces that connect the TCP protocol to
the outside world with modified interfaces
that will try and keep a set of backup
processes in sync with a primary. How hard
would it be to make such a solution work?

Given a TCP protocol that is
accurately modeled as above, this problem is not as hard as one might expect. Our enumeration of
interfaces has reduced the TCP protocol itself to a state machine that can be thought of as receiving
incoming “events” from its varied interfaces, computing, and then performing output events. Even access
by the protocol to the clock can be thought of as an output event (sent to the clock) followed by an input
event (a response from the clock to the protocol). It follows that we can arrange for a primary copy of the
TCP protocol to broadcast a script of the full set of its interactions with the outside world. Such a script
would list the events that occurred to the protocol and its actions: first, it received an IP data packet
containing the following byte sequence. Then it issued a request to read the local clock. Next, a read
request was received from the application; 18 bytes of data were returned.

If a copy of the TCP protocol module has access to such a script earlier we called this a
“trace”  it can precisely emulate the actions of the primary merely by replaying the same input events in
the same order. If our interface specification was complete and accurate, the backup will faithfully
perform the exact same actions in the same order. This approach can be extended to encapsulate the
application process as well: given a complete characterization of the application process’ interface to the
external environment, the actions taken by the primary copy can be traced in such a manner that the
actions of the replicas will emulate it in an accurate manner. An analysis of the protocol itself will
generally be needed to convince ourselves that we know precisely how it can be non-deterministic, and
that the required information can be encoded into trace messages.

Obviously, there are sources of non-determinism that can be very hard to deal with. Interrupt
driven behavior and thread scheduling are two instances of such problems, and any sort of direct access by

TCP protocol
System clock
Thread scheduling
Memory Manager

Read/Write
Control operations

IP packets
- incoming
- outgoing

Figure 17-14: The TCP protocol can be viewed as a black box
with interfaces to its environment. Although these interfaces are
non-trivial, they are not overwhelmingly so.

Chapter17: Retrofitting Reliability into Complex Systems 337

337

the driver to hardware properties of the computer or attached peripherals runs the risk of introducing
similar problems. One can imagine noting the “time” at which an interrupt occurs, and forcing the
backup to replay interrupts at the right time, and similarly noting the time at which thread scheduling
actions occur, replaying these in the same manner. Other kinds of non-determinism, on the other hand,
may be much easier to deal with. For example, if the application program itself is deterministic, and will
write back the identical data if given identical inputs, the main source of non-determinism seen by the
protocol stack may be that associated with the relative ordering of timeouts andwrite operations. This
ordering information, and the associated clock values when timeouts occur, can be encoded very concisely.
Notice, though, that even the knowledge that no timeout occurred before the application sent a message to
the client may be significant to the state of the protocol.

17.5.4 Dealing With Arbitrary Non-Determinism
A paper by Bressoud and Schneider recently suggested a way to extend this trace-driven approach to
software fault-tolerance to make entire machines fault-tolerant, including the operating system and all the
applications running on the machine [BS95]. They do this using special hardware properties of certain
classes of modern microprocessors. Their work operates at the level of the CPU itself, and involves noting
the time at which interrupts occur. Specifically, the method requires a special hardware register that
measures time in machine cycles and is saved as part of the interrupt sequence.

The same register can also be set to a value, in which case an interrupt is generated at the desired
“time”. Using uses this feature on the backup, the Bressoud and Schneider solution operates by repeatedly
setting the cycle counter to the time at which the next interrupt should occur. All other types of interrupts
are disabled, and the machine is allowed to execute up to the point when the counter fires. Then, an
interrupt indistinguishable from the one that occurred on the primary is generated. The method is most
readily applicable to machines with very few I/O connections: ideally, just a communications interface and
an interface to the clock. Unfortunately, the hardware required is available only on HP’s PA-RISC
microprocessors.

Returning to our problem, it is easy to see that the key factor limiting a solution will be the
degree of non-determinism present in the TCP protocol. Motivated by Bressoud and Schneider’s work, it
may sometimes be possible to modify a TCP protocol that includes non-determinism (such as concurrent
threads or interrupts) into a protocol that is deterministic and hence describable by a trace (for example,
by replacing the threads and interrupts with a non-threaded polling method). As noted in the introduction
to this setting, some forms of design complexity are best viewed as an argument for the “non-member to a
group” protocols of Section 13.13, and any substantial change to the TCP protocol itself to eliminate non-
determinism probably falls into this class of complex interventions that should be viewed with skepticism.
In the remainder of this section, we will assume that it is reasonably easy to “trace” the actions of our TCP
protocol, and that the volume of trace information is reasonably low; otherwise, the method simply should
not be used.

17.5.5 Replicating the IP Address
Our transformation leaves two questions open. First, we need to resolve a simple matter, which is to
ensure that the backup will actually receive incoming IP packets after taking over from the primary in the
event of a failure. The specific issue is as follows. Normally, the receive side of a stream connection is
identifiable by the address (the IP address) to which packets are sent by TCP. This address would
normally consist of the IP address of the machine itself, and is “locked” into the TCP protocol of the client
system. As a consequence, IP packets sent by the client are only received at one site, which represents a
single point of failure for the protocol. We need a way to shift the adress to a different location to enable a
backup to take over after a crash.

Kenneth P. Birman - Building Secure and Reliable Network Applications338

338

This problem can be solved by manufacturing “virtual” IP addresses, which don’t correspond to
any real machine on the network. It turns out that the IP address of a machine is assigned during the boot
sequence, and that there is typical some form of protected system call by which a new address can be
assigned. Indeed, if a machine resides on multiple networks, it may have multiple IP addresses, since the
IP address is typically used to index into routing tables. Thus, it is perfectly practical to assign a single
machine a “true” address and one or more virtual addresses. We can use this feature to assign the TCP
endpoint such an address, and to reassign that address to a backup after a failure. In UNIX, this is done
using theifconfig system command.

17.5.6 Maximizing Concurrency by Relaxing Multicast Ordering
The other lingering problem is concerned with maximizing performance. Had we not intervened to
replicate the TCP state machine, it would reside on the critical path that determines I/O latency and
throughput from client to server and back. Suddenly, we have modified this path to insert what may turn
out to be a large number of multicasts to the replicas. How costly will these be?

Specifically, we need to understand the conditions under which a replicated TCP stack can
perform as well, or nearly as well, as a non-replicated one. The rationale is similar to the one we
encountered in discussing sources of non-determinism: if the performance hit associated with a reliable
stream is high, it makes more sense to simply modify the client to use a protocol that is knowledgeable
about the presence of a group.

The cheapest case for our protocol arises when the stream connection is used as a pipe, with uni-
directional communication from the client to the server. In this case, notice that all the multicasts are
initiated by the primary copy of the TCP protocol stack until a failure occurs. Only then will multicasts
begin to be initiated by a backup process, namely the new primary. For this purpose, a sender-ordered
protocol would be sufficient, the primitive we calledfbcast. Now, the costs offbcast arise in several
ways. There is the fixed overhead of creating the message and passing it to the local multicast subsystem,
which may be as small as a few tens of instructions for a very small message and an efficient
implementation offbcast. There is a background cost associated with the protocol, but this would
normally not impact the latency seen in the primary server, which is the one measurable by the client.
Next, there is a bandwidth cost: every byte that reaches the primary will need to be forwarded to the
clients; in some cases this may represent a problem, although it will often be of minor importance because
most communication devices are capable of sustaining much higher loads than the TCP protocol itself can
produce. Finally, however, there is an issue of waiting forfbcast stability that we will discuss
momentarily.

To the degree that bandwidth proves to be a problem, one can imagine developing a protocol in
which the full group of servers would present the same IP address to the network, much as in the IP
multicast protocol discussed earlier. However, with such an approach, there is the risk that some data
segments may not reach some of the clients, and there will be a need to retransmit data that any client
misses. This starts to sound like a complex and costly undertaking, so in keeping with our initial
constraints, we will assume that bandwidth is not a problem. If it is expected to be a problem, a protocol
knowledgeable about the presence of a group should be used.

The stability issue to which we alluded is the following. Consider a TCP-level acknowledgment
or some other message sent by the TCP protocol, from the primary server to the client. When such a
message is received, the client’s outgoing window will beupdated, clearing frames associated with any
data that was acknowledged. If the primary now crashes, there will be no possibility of reconstructing the
data that was garbage collected. Thus, we see that before sending any TCP-level message from the
primary to the client, the primary should wait until any causally prior messages have reached the backups.
This constraint applies both to incoming TCP-level messages from the client to the server, and to trace

Chapter17: Retrofitting Reliability into Complex Systems 339

339

messages that the primary may have generated in the course of handling incoming data. In the
terminology of Chapter 13, we need to be sure that these causally prior messages are “stable” at the
backup.

For one-directional streams, this problem does not represent a serious source of delay, because
the only messages affected are acknowledgements generated within TCP, and the use of a larger TCP
window suffices to hide the higher latency. In effect, there is no situation in which theapplicationwould
be forced to wait for stability of thefbcast’s that convey trace information to the backup processes. In
pipelines with multiple stages, each successive write may need to delay for stability of the priorfbcast’s,
but such delays are likely to be hidden by concurrency. Moreover, one-directional streams are easy to
detect, because the protocol can simply assume itself to be in a uni-directional mode until the server
attempts to send information back to the client.

In the more general case, however, such as an RPC or object invocation that runs over a stream,
it is likely that a single, very smallfbcast will need to be sent from the primary server to its backups
immediately after eachwrite operation by the application to the TCP stream. Thisfbcastbecomes stable
when it has reached its destinations; round-trip times in typical modern multicast systems, like Horus, are
in the range of .7ms to 1.4ms for such events. Thus, responses from the server to the client may be
delayed by about 1 ms to achieve fault-tolerance. Such a cost may seem small to some users and large to
others. It can be viewed as the “price of transparency”, since comparable delays would not have arisen in
applications where complete transparency on the client side was not an objective. This is illustrated in
Figure 17-15.

Thus, we find ourselves back at the same limitation cited earlier for the TCP protocol itself. In
the simple case of a largely one-way communication channel, and to the degree that the protocol and the
application are deterministic, the replication method will have minimal impact on system performance.
As we move away from this simple case into more complex ones, the protocol becomes much more

client

backup acks
receipt of trace

trace sent to
backup

delay visible to
client →→→→ {

primary backup

Figure 17-15: The latency introduced by replication is largely invisible to the client. As seen here, most trace
information reaches the backup while the primary is still computing. Only the last trace message, sent after the
primary issues its reply and before that reply can be sent from primary to client, introduces noticeable latency in
the critical path that limits RPC round-trip times over the replicated TCP channel. The problem is that if the trace
information causally prior to the reply is lost in a crash, the primary’s state cannot be reproduced by the backup.
Thus, this information must be stable at the backup before the reply is transmitted. Unfortunately, the use of
timeouts in the TCP protocol stack implies that such information will be generated. One can imagine other
protocols, however, or optimizations to the TCP protocol, in which the primary would have extremely little or no
trace information to send to the backup; replication of such protocols for fault-tolerance would introduce minimal
additional latency.

Kenneth P. Birman - Building Secure and Reliable Network Applications340

340

complex and imposes increasingly visible overheads that would not have been incurred if the client were
simply modified to use a protocol knowledgeable about the presence of a group of servers.

When our modifications are feasible, notice also that the role of the virtual synchrony model is
fairly limited. The model lets us overlook issues of agreement on membership in the server group, and
lets us implement anfbcastprotocol that will be delivered atomically before failure notifications occur for
the primary server, if it fails. These guarantees greatly simplify the protocol, which isn’t all that simple in
any case. One could argue that without them, the solution would be impractically complex. The model
does not, however, introduce any particularly complex reasoning of its own.

17.5.7 State Transfer Issues
Our discussion overlooked the issues relating to launching of new servers, and of transferring state
information to bring them up to date. For applications and protocols in which state is easily represented,
the solution presented here can easily be modified to accommodate joins with state transfer to the joining
process. Otherwise, it may be best to launch a sufficient set of replicas at the time the connection is first
made, so that even if failures occur, the group will still have an adequate number of servers to continue
providing response.

17.5.8 Discussion
Although we presented the unbreakable streams problem as a hypothetical one, the author has supervised
several research projects that pursued precisely such an analysis and ultimately implemented unbreakable
TCP connections for various purposes. One of these projects focused on the case of TCP channels to
mobile users whose hand-held computers might need to connect to a succession of base stations as the
computer was moved around [CB94], while another looked at TCP in a more standard LAN setting where
the focus was on transparent failover of the sort described above [Won95]. Thus, with modest effort, the
problem can be solved in the manner outlined above.

Our analysis suggests that in situations where we are not bandwidth limited and where the
streams protocol to be modified is available to the developer and has modest non-determinism, a reliability
transformation that uses wrappers to introduce fault-tolerance through replication might be worthwhile.
The impact on performance and complexity would be reasonably low, and the performance costs may
actually be hidden by concurrency. However, if any of these conditions does not hold, the introduced
complexity and performance overhead may begin to seem excessive for the degree of transparency such a
reliable protocol can afford. Finally, we have observed that there will probably be a small latency impact
associated with our transformation in RPC-style interactions, but that but that this cost would probably be
hidden in pipeline-style uses of streams, again because of the concurrency achieved between the protocol
used to transmit trace information to a replica and the computation occurring in the application itself.

In the specific case of the web browser that connects to an enhanced web server, one might well
look at these tradeoffs and these costs, and conclude that the benefit of providing reliability of this sort
would not be worth the additional complexity and development effort. First, the possibility of
downloading a Java applet that contains a protocol such as the ones developed for “non-member to group
communication” in Chapter 13 may represent the easiest path to a solution. Moreover, even in situations
where downloading such an applet is unrealistic, the decision to use an unreliable stream might have
relatively minor consequences. Such a decision would mean that the web server group would remain
available even if some of its members fail, but that a client actually using a web server at the instant it
crashes might see the failure much as, today, web accesses often fail for any of a number of reasons.
However, the actual frequency of such events will surely be very low, and perhaps the impact when they
occur sufficiently minor to make the design point an acceptable one. This is especially likely to be the
case if some of the other reasons that a web operation can fail remain in our “hardened” design, for
example a DNS timeout. After all, if the hardened system can still fail from time to time (although, one

Chapter17: Retrofitting Reliability into Complex Systems 341

341

hopes, infrequently!), making a large investment to eliminate what may be a statistically small percentage
of the remaining failure cases might not make a lot of sense.

These sorts of tradeoffs are inevitable in complex distributed systems, and it important for the
developer to keep one eye on the balance. It is very appealing to imagine a technology that would let us
replicate a server, making it fault-tolerant, in a manner that would be completely transparent to its clients.
An unbreakable TCP stream connecting the client to the server seems like a natural and inevitably
desirable feature. Yet the alternative of building a protocol whereby the client would “know” it was
communicating to the group, or that would conceal such interactions beneath a layer of software
presenting a streams-like interface, must be weighed against the presumed disadvantages of needing to
modify (or at least recompile) the client program.

In the author’s experience, one often encounters such tradeoffs between performance and
transparency, or complexity and transparency. Transparency is a good thing, and the use of wrappers can
provide a route for very transparent hardening of a distributed system. However, transparency should
generally not be elevated to the level of a religion. In effect, a technology should be as transparent as
possible, consistent with the need to keep the software used simple and the overheads associated with it
low. When these properties fall into question, a less transparent solution should be seriously considered.

17.6 Building a Replicated TCP Protocol Using a Toolkit
The above analysis may leave the reader with the sense that even if one can wrap a TCP protocol for fault-
tolerance, the benefits of doing so are outweighed by the complexity of dealing with “black-box” non-
determinism. But it is important to keep in mind that the limitations associated with the solution we
developed stemmed specifically from the attempt to use a wrapper to avoid modifying the TCP protocol
itself. If, in contrast, we were in a position to implement a TCP protocol of our own, the same issues
could be circumvented.

In particular, the question of non-determinism underlies most of the performance concerns raised
above. Were we to design a TCP implementation specifically for the purpose of replicating itwe could
probably eliminate most or all of this non-determinism through a design that cleverly hides non-
deterministic events behind other sorts of communication. For example, our TCP protocol could be
designed to check for timeouts and to send acknowledgment messages using timestamps placed on
messages by the primary copy of the protocol stack. That is, each time the primary process receives a
message or any other form of input, it could timestamp the outgoing copies of that message with the time
at which it saw the event. If the protocol used these inputs to trigger timeout-related events, we could
avoid the need to send much of the trace information mentioned above.

Pro • Totally transparent failover
• Uninterrupted service to client
• Client system not changed at all

Con • With Java, might have a reasonably easy way to modify the client system
• Solution is complex
• Performance penalty may be substantial for some patterns of use
• Doesn’t address “other” causes of failure, such as the ones discussed in

Part II of the text

Figure 17-16: Tradeoffs to be considered when looking at the decision to implement a transparently fault-
tolerant TCP stream protocol. In many settings, the arguments againstdoing so would dominate.

Kenneth P. Birman - Building Secure and Reliable Network Applications342

342

Conversely, whereas our wrapper would be forced to trace interrupt events and thread switching
events in order to overcome non-determinism, an explicitly replicated approach might use concurrent
threads only for logically independent tasks, ensuring that in any situation where there is a sensitivity to
thread scheduling order, that order is deterministically fixed by the external sequence of events received
by the TCP protocol stack.

Another concern of ours was that the application program might sometimes request a full buffer
of data and yet be passed a partial buffer by the TCP implementation. Knowing that such a situation
creates an overhead in a replicated TCP stream, one might implement the protocol to never return a
partial result from areadoperation unless the remote end of the stream has been closed. Knowing that all
reads block until the stream closes or 8kbytes are available for the reader, the non-determinism associated
with read requests can be greatly reduced or even eliminated.

These observations having been made, however, it should also be commented that our analysis in
this section has been superficial. Moreover, if a toolkit approach is used within the TCP stack on the
server side, it may be reasonable to extend the approach to encompass the client side as well. Such an
effort clearly represents a potential research (or product) opportunity, and goes beyond any investigation
of this topic of which the author is aware. In the interest of brevity, we will not develop this discussion at
the present time.

17.7 Reliable Distributed Shared Memory
Distributed shared memories are a “hot topic” in the distributed systems research community. In this
section we look at the idea of implementing a wrapper for the UNIXmmap(or shrmem) functions, which
are normally used to map files and memory regions into the address space of user applications and shared
between concurrently executing processes. The extension we consider here provides for the sharing of
memory-mapped objects over a virtually synchronous communications architecture running on a high
speed communications network. One might use such a system as a repository for rapidly changing visual
information in the form of web pages: the provider of the information would update a local mapped copy
directly in memory, while the subscribers could map the region directly onto the memory of a display
device and in this way obtain a direct I/O path between the data source and the remote display. Other uses
might include parallel scientific computations in which the shared memory represents the shared state of
the parallel computation, a collaborative workplace or virtual reality environment shared between a
number of users, a simulation of a conference or meeting room populated by the participants in a
teleconference, or some other abstraction.

In studying this problem, we should comment at the outset that the topic is an area of active
research by several operating systems groups world-wide [LH89, GLLG90, ABHN91, FZ91, Car93,
FMPK95, JKW95] , but that author is not aware of any effort that has looked at the implementation of a
reliable shared memory using process group technology. To the degree that there has been work on this
subject, the emphasis has tended to be on settings in which reliability issues are secondary to questions of
functionality and performance. Our goal in this section, then, is to look at another non-trivial example of
how group communication might be used to solve a challenging contemporary problem, but not to claim
that our solution is a “real one” with known performance and latency properties.

17.7.1 The shared memory wrapper abstraction
As for the case of the unbreakable TCP connection, our solution will start with an appropriate wrapper
technology. In many UNIX-like operating systems there is a mechanism available for mapping a file into
the memory of a process, sharing memory between concurrently executing processes, or doing both at the
same time. The UNIX system calls supporting this functionality are calledshrmemor mmapdepending
on the version of UNIX one is using; a related interface calledsemctlprovides access to a semaphore-

Chapter17: Retrofitting Reliability into Complex Systems 343

343

based mutual exclusion mechanism. By wrapping these interfaces (for example, by intercepting calls to
them, checking the arguments and special-casing certain calls using new code, and passing other calls to
the operating system itself), the functionality of the shared memory subsystem can potentially be extended.
Our design makes use of such a wrapper.

In particular, if we assume that there will be adistributed shared memory daemonprocess
(DSMD) running on each node where our extended memory mapping functionality will be used, we can
adopt an approach whereby certain mapped-memory operations are recognized as being operations on the
DSM and are handled through cooperation with theDSMD. The recognition that an operation is remote
can be supported in either of two ways. One simple option is to introduce a new file-system object called a
DSM object and recognizable through a special file type, filename extension (such as .dsm), or some other
attribute. The file contents can then be treated as a handle on the DSM object itself by the DSM
subsystem. A second option is to extend the “options” field supported by the existing shared memory
system calls with extra bits, one of which could indicate that the request refers to a region of theDSM. In
a similar manner, we can extend the notion of semaphore “names” (which are normally positive integers
in UNIX) to include a DSM semaphore namespace for which operations are recognizable as being
distributed synchronization requests.

Having identified a DSM request, that request can then be handled through a protocol with the
DSMD process. In particular, we can adopt the rule that all distributed shared memory is implemented as
locally shared memory between the application process and theDSMD process, which the DSMD process
arranges to maintain in a coherent manner with regard to other processes mapping the same region of
memory. The DSMD process thus functions as a type of server that handles requests associated with
semaphore operations or events that involve the mapped memory, and that also manages the mapped
regions themselves as parts of its own address space. It will be the role of the DSMD servers as a group to
cooperate to implement the DSM abstractions in a correct manner; the system call wrappers are thereby
kept extremely small and simple, functioning mainly by passing requests through to theDSMD or to the
local copy of the operating system, depending on the nature of the system call that was intercepted. This
is illustrated in Figure 17-17.

For simplicity of the design, it will be helpful to consider the DSM architecture as being volatile:
DSM regions exist only while one or more processes are mapping them, and there is no persistent disk

DSMD DSMD

Figure 17-17: Two machines shared memory through the intermediary of a distributed shared memory daemon that
runs on each. A wrapper (shown as a small box) intercepts memory mapping and semaphore system calls,
redirecting DSM operations to the DSMD. The DMSD processes sharing a given region of memory belong to a
process group and cooperate to provide coherent, fault-tolerant behavior. The best implementation of the
abstraction depends upon the expected pattern of sharing and the origin of updates.

Kenneth P. Birman - Building Secure and Reliable Network Applications344

344

storage associated with them, except perhaps for purposes of paging if the region is too large to maintain
in memory. We can view the DSM as a whole as being a collection of objects orregions, each having a
base address within the DSM, a size, and perhaps access restrictions and security properties. A region
might be associated with a file system name, or could be allocated using some form of DSM region
manager server; we will not address this issue here.

Notice that our design has reduced the issue to one of maintaining replicated data and performing
synchronization with a collection of superimposed process groups (one on behalf of each shared memory
region). The DMSD processes that map a given region would also belong to the corresponding process
group. The properties of that process group and the algorithms used to maintain the data in it can now be
tuned to match well with the patterns of access expected from the application processes using it.

17.7.2 Memory coherency options for distributed shared memory
In any distributed memory architecture, memory coherence is one of the hardest issues to address.
Abstractly, the coherence properties of a memory characterize the degree to which that memory is
guaranteed to behave like a single non-shared memory that handles every memory access directly.
Because our memory is not resident at any single location, but is shared among the processes that happen
to be mapping it at a given time, there are a number of options in regard to the degree to which these
copies should be coherent. The major choices correspond to the options for shared memory on parallel
processors, and consist of the following:

1. Strong consistency. In this model, the DSM is expected to behave precisely as a single non-replicated
memory might have behaved. In effect, there is a single global serialization order for all read and
write operations.

2. Weak consistency.In this model, the DSM can be highly inconsistent. Updates propagate after an
unspecified and possibly long delay, and copies of the mapped region may differ significantly for this
reason.

3. Release consistency (DASH project).This model assumes that conflicting read or update accesses to
memory are always serialized (protected) using mutual exclusion locks, such as the semaphore system
calls that our wrapper intercepts. The model requires that if processp obtains a lock associated with
a region from processq, then p will also observe the results of any update thatq has performed.
However, if p tries to access the DSM without properly locking the memory, the outcome can be
unpredictable.

4. Causal consistency (Neiger and Hutto).In this model, the causal relationship between reads and
updates is tracked; the memory must provide the property that if accessb occurs after accessb in a
causal sense, thenb will observe the results of accessa.

There are additional models, but these four already represent a sufficient variety of options to
present us with some reasonable design choices. To implement strong consistency, it will be necessary to
order all update operations, raising the question of how this can be accomplished. The memory protection
mechanisms of a virtual memory system offer the needed flexibility: if we imagine theDSMD processes
for a given region to have all locked it as read-only, then the memory will refuse updates and will trivially
achieve the strong consistency property. Suppose now that each time an update occurs, we intercept the
resulting page fault in our wrapper and request that the localDSMD process enable the memory region for
write-access. The DSMD process can do this by obtaining a token, perhaps using thecbcastbased token
passing algorithm we developed earlier. It can then unlock the region for local writes and permit the local
process to continue. After a suitable period of time, or when it next learns of an update accessattempt by
some other process, it can relock the local copy of the region,cbcastthe changed portions, and then pass
the token. Notice that althoughcbcastis used to implement this policy, the desired behavior could also
have been obtained usingabcastfor all the operations, or even usingfbcastand sequencing the update

Chapter17: Retrofitting Reliability into Complex Systems 345

345

and token passing messages at the sender (the latter would have the advantage of requiring just a single
field to represent the sequence number). With all of these approaches, the resulting behavior is that of the
strongly consistent memory. The strongly consistent memory will also be causally consistency in the case
of the implementation that usescbcast; for the alternative implementations this will depend upon the
details of the scheme that is used.

The release consistency model can be implemented in a similar manner, except that in this case,
the token passing is associated with semaphore operations, and there is no need to communicate changes
to a page until the corresponding semaphore is released. Of course, there may be performance reasons
that would favor transmitting updates before the semaphore is released, but the release consistency model
itself does not require us to do so.

Consider now the degree of match between these design options and the expected patterns of use
for a DSM. It is likely that a DSM will either be updated primarily from one source at a time, or in a
random way by the processes that use it, simply because this is the pattern seen for other types of
distributed applications that maintain replicated data. For the case where there is a primary data source,
both the strong and release consistency models will work equally well: the update “lock” will tend to
remain at the site where the updates are done, and other copies of the DSM will passively receive
incoming updates. If the update source moves around, however, there may be advantages to the release
consistency implementation: although the programmer is compelled to include extra code (to lock objects
in a way that guarantees determinism), these locks may be obtained more efficiently than in the case of
strong consistency, where the implementation we proposed might move the update lock around more
frequently than necessary, incurring a high overhead in the process. Further, the release consistency
implementation avoids the need to trap page faults in the application, and in this manner avoids a
potentially high overhead for updates.

These considerations make release consistency an appealing model for ourDSM, despite its
dependence on the use of semaphore-style locking. Of course, should an application desire a weak

DSMD

DSMD

DSMD

DSMD

Figure 17-18: The proposed solution maps the DSM problem to a more familiar one: replicated data with locking
within a virtually synchronous process group. Only one of several overlapped groups is shown; another group
would be used for the dark gray memory region, yet another for the white one, etc. Virtual synchrony provides us
with simple solutions for what would otherwise be tricky problems, like ensuring the coherence of the distributed
memory, handling failures and dynamic join events, and dealing with protection. Actually implementing such an
architecture using the Horus system over an ATM network would be an interesting research project and would raise
interesting performance challenges, but the basic problem is clearly very closely matched to the model for which
virtual synchrony and Horus were developed.

Kenneth P. Birman - Building Secure and Reliable Network Applications346

346

consistency model or need strong consistency, we now know how both models can be implemented.

However, there are also issues that the consistency model overlooks, and yet that could be quite
important in a practical DSM. Many applications that operate on shared memory will be sensitive to the
latency with which updates are propagated, and there will be a subset in which other communication
patterns and properties are needed: for example, video algorithms will want to send a full frame at a time,
and will need guarantees of throughput and latency from the underlying communications architecture.
Accordingly, our design should include one additional interface by which a knowledgeable application can
specify the desired update properties to the DSM. Thisdsmctlsystem call would be used to specify both
the pattern of updates that the application will generate (random, page based, isochronous) and also the
maximum latency and other special requirements for acceptable performance. The DSMD can then use
this information to schedule its communication appropriately. If available, thepage dirtybit provided by
the virtual memory hardware can be checked periodically by theDSMD; if not, shared regions that are
mapped for update can be transmitted in their entirety at the frequency requested by the user.

17.7.3 False sharing
False sharing is a phenomenon seen on parallel shared memory machines that corresponds to thrashing in
a virtual memory architecture. The problem arises when multiple logically unrelated objects are mapped
to the same shared memory region or page by an accident of storage allocation. When these objects are
updated in parallel, the memory subsystem is unable to detect that the updates are independent ones and
treats the situation as one in which the processes doing the updates are contending for the same object. In
our implementation of strong consistency, the update token would bounce around in this case, resulting in
a huge overhead for token passing and page fault handing on the client systems. Yet the problem also
points to an issue in our proposed release consistency scheme, namely thegranularity of locking. In
particular, it becomes clear that the semaphores used for locking must have the same granularity as the
objects the DSMD transmits for updates, most likely a page. Otherwise, because theDSMD lacks a fine-
grained notion of data access, when an object is updated on a page and the semaphore locking that object
is released, the entire page will be transmitted to other processes mapping the page, potentially
overwriting parts of the page that the semaphore was not considered to “lock” and which are in fact not
even up to date on the node that held the lock.

Our DSM architecture can only work if the granularity of locking is at the page level or region
level, and in either case, false sharing could now arise as a visible problem for the developer. Rather than
trying to overcome this problem, it may be best to simply caution the user: the DSM architecture we have
proposed here will perform poorly if an application is subject to false sharing, hence such applications
may need to be redesigned to arrange for concurrently updated but logically unrelated objects to reside in
different regions or at least on different pages, and in the case of release consistency, must be locked by
separate semaphores.

17.7.4 Demand paging and intelligent prefetching
We cited the case of frequent and time-critical updates, but there is another style of DSM use which will
require more or less the opposite treatment. Suppose that the DSM region is extremely large and most
applications access it in a sparse manner. Then even if a region is “mapped” by some process, it may not
be necessary or even desirable to actively update that region each time some process updates some part of
the data area. In such cases, a demand-paging model makes more sense, whereby a portion of the DSM is
maintained as current only if the process holding that region is actually accessing it.

Although we will not tackle the problem here, for reasons of brevity, it would be desirable for
such large regions to be managed as multiple subregions, shrinking the process group for a given
subregion to include only those processes that are actively updating it or reading it. With such an
approach, one arrives at a form ofdemand pagingin which a process, upon attempting to access a

Chapter17: Retrofitting Reliability into Complex Systems 347

347

subregion that is not currently mapped into its address space, experiences a page fault. To resolve the
fault the DSMD would join the process group for that subregion, transferring the current state of the
subregion (or just those updates that have occurred since the process was last a memory), and then
enabling read or update access to the subregion and resuming local computation.

Notice that the virtual synchrony properties of the state transfer make it easy to describe a
solution to what would otherwise be a tricky synchronization problem! Lacking the virtual synchrony
model, it would not be at all simple to coordinate the addition of a new memory to a subregion group and
to integrate the state transfer operation with updates that may be occurring dynamically. The model
makes it easy to do so and to still be able to guarantee that release consistency or strong consistency will
be observed by the DSM user. On the other hand, recall that virtual synchrony comes with no guarantees
of real-time performance (a topic to which we will return in Chapter 20), and hence support for
dynamically adjusting the members of a process group that maps a given region or subregion may be
incompatible with providing real-time performance and latency guarantees. For situations in which such
guarantees are desired, it may be wise to disable this form of dynamicism unless the requirements are
fairly weak ones.

Demand paging systems perform best if the relatively costly operations involved in fetching a
page are performed shortly before the page fault actually takes place, so as to overlap useful computation
with the paging-in activity, and minimizing the delay associated with actually servicing the page fault
when it occurs. Accordingly, it would be advisable to implement some form of prefetching policy whereby
the DSMD, recognizing a pattern of access (such as sequential access to a series of subregions) would
assume that this pattern will continue into the future and join subregion groups in anticipation of the
future need. Our architecture creates a convenient context within which to implement such a policy.

17.7.5 Fault-tolerance issues
Our DSM will have a natural form of fault-tolerance that arises directly from the fault-tolerance of the
virtual synchrony model used by the DSMD processes to form process groups and propagate updates. The
issues that arise are primarily ones associated with the possibility of a failure by a process while it is doing
an update. Such an event might leave the DSM corrupted and a semaphore in the locked state (the token
for the group would be at the process that failed).

A good way to solve this problem would be to introduce a new kind of page-fault exception into
the DSM model, which could be called apage corruptionexception. In such an approach, when a process
holding an update lock or semaphore for a page or region fails, any subsequent access by some other
process mapping that region would result in a corruption trap. The handler for such a trap would be
granted the update lock or semaphore and would be required to restore the page to a consistent state. The
next update would be understood to clear the corruption bit, so that processes that don’t attempt to access
the page during the period of corruption might be completely y unaware that a problem had occurred.

17.7.6 Security and protection considerations
The reliability of a DSM should extend beyond issues of fault-tolerance and detecting potential corruption
to also include guarantees of protection and security or privacy if desired. We have not yet treated security
issues in this text, and hence defer discussion of the options until Chapter 19. In brief, one could arrange
for the data on the wire to be encrypted so that eavesdroppers lacking an appropriate key would be unable
to map a protected segment and unable to make sense of any intercepted updates. Depending on the
degree to which the system implementing virtual synchrony is trusted, weaker security options might
include some form of user-id based access control in which unauthorized users are prevented from joining
the group. Because the DSMD must join a process group to gain access to a DSM segment, the group join
operation can include authorization keys for use in determining whether or not access should be granted.
Alternatively, if theDSMD process itself can be trusted, it can perform a mapping from local user id’s on

Kenneth P. Birman - Building Secure and Reliable Network Applications348

348

the host machine where it is running to global user id’s in a protection domain associated with theDSM,
permitting access under UNIX-style restrictions.

17.7.7 Summary and discussion
The previous examples in this chapter illustrated some of the challenges that can be encountered when
attempting to exploit group structures in implementing a distributed system. In contrast, the DSM
example shows how simple and elegant solutions can be (and how easy it can be to understand them)
when the match of problem and tool turns out to be close. Our architecture would, in principle, be a
highly efficient one: the costs and overheads are predominately those of the virtual synchrony
communication architecture, and in the case of the release consistency model, no additional overhead
beyond this is imposed. As we will see below, the model can perform extremely well over an appropriate
software implementation architecture and with high speed hardware. The “video mapped” shared
memory suggested at the start of this section is not an unreasonable prospect. Moreover, by wrapping the
standard shared memory mechanisms for a setting, the DSM abstraction can be made extremely
transparent.

Of course, the feasibility of this architecture depends upon having a suitable shared memory
subsystem available for use between theDSMD and its clients; our solutions have in the end required that
we be able to manipulate memory protection bits from theDSMD, trap page faults by the client processes
and restart them after servicing these, and sense the state of a page (dirty or clean) to avoid undesired
excess communication. Some operating systems, such as Mach or the commercialOSF/1 system, provide
interfaces by which this would be possible; others do not, or offer only part of the support that might be
needed. However, the problem is clearly an approachable one and indeed is an appealing research topic;
perhaps the next edition of this textbook will report on one or more systems that really use this approach,
and will be able to compare the results with one or more systems offering equivalent functionality using
other methods.

17.8 Related Readings
On wrappers and technologies that can support them: [Jon93, RAAB88, RAAH88, WLAG93]. On the
Isis Toolkit: [BR94, BJ87a]. (Information on the most current API’s should be obtained directly from the
company that markets the Isis product line; their web page is http://www.isis.com). On agents: [GM95,
Ous94, JvRS95]. Virtual fault-tolerance: [BS95]. On shared memory: [LH89, GLLG90, ABHN91, FZ91,
Car93, FMPK95, JKW95]. Tanenbaum also discusses shared memory in [Tan88], and Coulouris treats
the topic in [CDK94].

Chapter18: Reliable Distributed Computing Systems 349

349

18. Reliable Distributed Computing Systems
The purpose of this chapter is to shift our attention away from protocol issues to architectural
considerations associated with the implementation of process group computing solutions. Although there
has been a great deal of work in this area, we focus on the Horus system16, because that system is well
matched to the presentation of this textbook and, having been developed by the author and his colleagues,
is well known to the author. Horus is available for researchers in academic or industrial settings (at no
fee), and may be used in conjunction with this textbook as a platform on which to base experiments and to
gain some hands-on experience with reliable distributed computing.

18.1 Architectural Considerations in Reliable Systems
It may strike the reader that Part II of this text and the first chapters of Part III have lost one of the
important themes of the first part of the book, namely the growing importance of architectural structure
and modularity in reliable distributed systems, and indeed in structuring distributed systems of all types.
Our goal in this chapter, in part, is to reestablish some of these principles in the context of the group
computing constructs introduced in Chapters 13-17. Specifically, we will explore the embedding of group
communication support into a modular systems architecture.

Historically, group computing and data replication tools have tended to overlook the importance
of architectural structure. These technologies have traditionally been presented in what might be called a
“flat” architecture: one in which the API’s provided by the system are fixed, correspond closely to the
group construct and associated communication primitives, and accessible more or less uniformly from any
application that makes use of the group communication environment, anywhere in the system.

In practice, however, the use of group communication will vary considerably depending upon
what one is attempting to do. Consider the examples that arose in Chapter 17 when we discussed group
computing in the context of enterprise Web applications:

• Groups used to replicate a Web server for load-balancing, fault-tolerance, or scalable
performance through parallelism.

• Groups used to interconnect a set of Web servers so as to create the illusion of a single,
corporate-wide server within which objects might migrate or be replicated to varying degrees
depending upon usage patterns.

• Groups corresponding to the set of Web proxy servers that cache a given data item, and used
to invalidate those cached copies or to refresh them when they change.

• Groups used to distribute Java applets to user’s cooperating in conferencing applications or
other groupware applications (we gave a number of examples in Chapter 17 and won’t repeat
them here).

16 The ancient Egyptian religion teaches that after the world was created, the Gods Osiris and Seth engaged in an epic
battle for control of the earth. Osiris, who is associated withgood, was defeated and hacked to pieces by the evil
Seth, and his body scattered over the Nile Delta. The Goddess Isis, gathered the fragments and magically restored
Osiris to life. He descended to rule the Underworld, and with Isis fathered a child, Horus, who went on to defeat
Seth. When we developed the Isis Toolkit, the image of a system that puts the pieces together after a failure
appealed to us, and we named the system accordingly, although the failures that the toolkit can handle are a little
less extreme than the one that Osiris experienced!. Later, when we developed Horus, it seemed appropriate to
again make allusion to the Egyptian myth. However, it may take some time to determine whether the Horus
system will go on to banish unreliability and inconsistency from the Information Superhighway).

Kenneth P. Birman - Building Secure and Reliable Network Applications350

350

• Groups used to distribute updates to documents, or other forms of updates, to Java applets
running close to the client browsers.

• Groups formed among the set of Java applets running on behalf of clients, for the purpose of
multicasting updates or other changes to the state of the group session among the
participants.

• Groups associated with security keys employed in a virtual private network.

Clearly, these uses correspond to applications that would be implemented at very different levels
of programming abstraction, and for which the most appropriate presentation of the group technology
would vary dramatically. Several of these represent potential uses of wrappers, but others would match
better with toolkit interfaces and still others with special-purpose high level programming languages.
Even within those subclasses, one would expect considerable variation in terms of what is wrapped, the
context in which those tools or languages are provided, and the nature of the tools themselves. No single
solution could possibly satisfy all of these potential types of developers and uses. On the contrary, any
system that offers just a single interface to all of its users is likely to confuse its users and to be perceived
as complex and difficult to learn. Returning to our historical observation, the tendency to offer group
communication tools through a flat interface (one that looks the same to all applications and that offers
identical capabilities no matter where it is used in the system) has proved to be an obstacle to the adoption
of these technologies, because the resulting tools tend to be “conceptually mismatched” with the
developer’s goals and mindset.

Indeed, the lesson goes further than this. Although we have presented group communication as
an obvious and elegant step, the experience of programming with groups can be quite a bit more
challenging than the developer might expect. Obtaining good performance is not always an easy thing,
and the challenge of doing so rises steeply if groups are deployed in an unstructured way, creating
complex patterns of overlap within which the loads placed on individual group members may vary widely
from process to process. Thus what may seem obvious and elegant to the reader, can start to seem clumsy
and complex to the developer who is struggling to obtain predictable performance and graceful scalability.

These observations argue for a more structured presentation of group computing technologies:
one in which the tools and API’s provided are aimed at a specific class of users, and will guide those users
to a harmonious and simple solution to the problems anticipated for that class of users. If the same
technology will also support some other community of users, a second set of tools and API’s should be
offered to them. Thus, the tools provided for Web server replication might look very different from those
available to the developer of a Java display applet, even if both the applet and the Web server turn out to
offer functionality that arises out of a group communication subsystem. The author believes that far too
little attention has been given to this issue up to the present, and that this has emerged as a significant
obstacle to the widespread use of reliability technologies.

Chapter18: Reliable Distributed Computing Systems 351

351

At a minimum, focusing only on issues associated with replication (as opposed to security, system
management, or real-time), it would appear that three “layers” of API’s are needed (Figure 18-19). The
lowest such layer is the one aimed at uses within servers; the middle layer focuses on interconnection and
management of servers within a WAN setting, and the third layer on client-side issues and interfaces.
Such layers may be further subdivided: perhaps the client layer offers a collection of transactional
database tools and a collection of Java groupware interfaces, while the server layer offers tools for
multimedia data transmission, tools for consistent replication and coordinated control, and tools for fault-
tolerance through active replication. This view of the matter now places unusual demands upon the
underlying communication system: not only must it potentially “look” different for different classes of
users, but it may also need to offer very different properties for different classes of users. Security and
management subsystems would introduce additional API’s, which may well be further structured. And
real-time subsystems are likely to require still further structure and interfaces.

18.2 Horus: A Flexible Group Communications System
The observations of the preceeding section may seem to yield an ambigious situation. On the one hand,

we have seen in previous chapters that process-group environments for distributed computing represent a
promising step towards robustness for mission-critical distributed applications. Process groups have a
“natural” correspondence with data or services that have been replicated for availability, or as part of a
coherent cache such as might be used to ensure the consistency of documents managed by a set of Web
proxies. They can been used to support highly available security domains. And, group mechanisms fit
well with an emerging generation of intelligent network and collaborative work applications.

Functionality of a “client-level” API:
• Fault-tolerant remote procedure call
• Reliable, unbreakable streams to servers
• Consistent or reliable subscriptions to data published by servers
• Tools for forming groupware sessions involving other client systems

Functionality of a “WAN” server API:
• Tools for consistently replicating data within wide-area or corporate networks
• Technology for updating global state and for merging after a partitioning failure is

corrected
• Security tools for creating virtual private networks
• Management tools for control and supervision

Functionality of a cluster server API:
•••• Tools for building fault-tolerant servers (ideally, as transparently as is feasible)
•••• Load-balancing and scalable parallelism support
•••• Management tools for system servicing and automatic reconfiguration
•••• Facilities for online upgrade

Other cases that may require specialized API’s:
•••• Multimedia data transport protocols (special quality-of-service or real-time

properties)
•••• Security (key management and authentication API’s)
•••• Debugging and instrumentation
•••• Very large scale data diffusion

Figure 18-1: Different levels of a system may require different styles of group computing support. A simple client-
server architecture gives rise to three levels of API, shown above. Further structure might be introduced in a
multimedia setting (where special protocols may be needed for video data movement or to provide time-synchronous
functionality), in a transactional database setting (where client’s may expect an SQL-oriented interface), and so
forth, or in a security setting (where API’s will focus on authentication and key management).

Kenneth P. Birman - Building Secure and Reliable Network Applications352

352

Yet we have also seen that there are many options concerning how process groups should look
and behave. The requirements that applications place on a group infrastructure can vary tremendously,
and there may be fundamental htradeoffs between semantics and performance. Even the most appropriate
way to present the group abstraction to the application depends on the setting.

The Horus system responds to this observation by providing an unusually flexible group
communication model to application-developers. This flexibility extends to system interfaces, the
properties provided by a protocol stack, and even the configuration of Horus itself, which can run in user
space, in an operating system kernel or microkernel, or be split between them. Horus can be used through
any of several application interfaces. These include toolkit-styled interfaces, but also wrappers that hide
group functionality behind Unix communication system-calls, the Tcl/Tk programming language, and
other distributed computing constructs. The intent is that it be possible to slide Horus beneath an existing
system as transparently as possible, for example to introduce fault-olerance or security without requiring
substantial changes to the system being hardened [BS95].

A basic goal of Horus is to provide efficient support for the virtually synchronous execution
model. However, although often desirable, properties like virtual synchrony may sometimes be
unwanted, introduce unnecessary overheads, or conflict with other objectives such as real-time guarantees.
Moreover, the optimal implementation of a desired group communication property sometimes depends on
the runtime environment. In an insecure environment, one might accept the overhead of data encryption,
but wish to avoid this cost when running inside a firewall. On a platform like the IBM SP2, which has
reliable message transmission, protocols for message retransmission would be superfluous.

Accordingly, Horus provides an architecture whereby the protocol supporting a group can be
varied, at runtime, to match the specific requirements of its application and environment. Virtual
synchrony is only one of the options available, and even when it is selected, the specific ordering
properties that messages will respect, the flow control policies used, and other details can be fine-tuned.
Horus obtains this flexibility using a structured framework for protocol composition, which incorporates
ideas from systems such as the UNIX streams framework and the x-Kernel, but replaces point-to-point
communication with group communication as the fundamental abstraction. In Horus, group
communication support is provided by stacking protocol modules that have a regular architecture, and in
which each module has a separate responsibility. A process group can be optimized by dynamically
including or excluding particular modules from its protocol stack.

18.2.1 A layered process group architecture
It is useful to think of Horus’ central protocol abstraction as resembling a Lego block; the Horus “system”
is thus like a box of Lego blocks. Each type of block implements a microprotocol that provides a different
communication feature. To promote the combination of these blocks into macroprotocols with desired
properties, the blocks have standardized top and bottom interfaces that allows them to be stacked on top of
each other at run time in a variety of ways (see Figure 18-2). Obviously, not every sort of protocol block
makes sense above or below every other sort. But the conceptual value of the architecture is that where it
makes sense to create a new protocol by restacking existing blocks in a new way, doing so is
straightforward.

Chapter18: Reliable Distributed Computing Systems 353

353

sign
comm

crypt
nak

vsync
fc

HORUS

application belongs to process group

Figure 18-2: Group protocol layers can be stacked at run-time like Lego blocks, and support applications through
one of several application programmer interfaces. Shown is an application program that belongs to a single
process group and is supported by a Horus protocol stack of four layers: “fc”, the flow-control layer, “vsync”, a
layer that implements virtually-synchronous process group views, “nak”, a layer that uses negative
acknowledgements to overcome communication failures, and “comm”, which interfaces Horus to a network. The
application would often use Horus through a wrapper that might conceal this group functionality, but can also do
so using a toolkit. The layers illustrated here are fanciful ones; some real layers are shown in Figure 18-3. Horus
supports many layers but not all need be used in any particular stack: shown here are two security layers (one for
signing messages and one for encrypting their contents), which were not used for this particular application.

Kenneth P. Birman - Building Secure and Reliable Network Applications354

354

COM The COM layer provides the Horus group interface to such low-level protocols as IP,
UDP, and some ATM interfaces.

NAK This layer implements a negative acknowledgement based message retransmission
protocol.

CYCLE Multi-media message dissemination using Smith’s “cyclic UDP” protocol
PARCLD H ierarchical message dissemination (parent-child layer)
FRAG Fragmentation and reassembly of large messages
MBRSHIP This layer provides each member with a list of endpoints that are believed to be

accessible. It runs a group membership consensus protocol to provide its users with
a virtually synchronous execution model.

FC Flow control layer
TOTAL Totally ordered message delivery
STABLE This layer detects when a message has been delivered to all destination endpoints,

and can consequently be garbage collected.
CRYPT Encryption and decryption of message body
MERGE Location and merging of multiple group instances

Figure 18-3: Horus provides a large collection of microprotocols. Some of the most important ones are shown
above, but there are more than 60 specialized layers that have been developed for special purposes, such as real-
time communication. This illustrates the sense in which Horus is both an architecture that can be used to
support special-purpose protocols as well as an implementation of virtual synchrony, if this is what the
application desires.

Technically, each Horus protocol block is a software module with a set of entry points for
downcall and upcall procedures. For example, there is a downcall to send a message, and an upcall to
receive a message. Each layer is identified by an ASCII name, and registers its upcall and downcall-
handlers at initialization time. There is a strong similarity between Horus protocol blocks and object
classes in an object-oriented inheritance scheme, and readers may wish to think of protocol blocks as
members of a class hierarchy.

To see how this works, consider the Horusmessage_sendoperation. It looks up the message send
entry in the topmost block, and invokes that function. This function may add a header to the message,
and will then typically invokemessage_sendagain. This time, control passes to the message send
function in the layer below it. This repeats itself recursively until the bottommost block is reached and
invokes a driver to actually send the message.

The specific layers currently supported by Horus solve such problems as interfacing the system to
varied communication transport mechanisms, overcoming lost packets, encryption and decryption,
maintaining group membership, helping a process that joins a group obtain the state of the group,
merging a group that has partitioned, flow control, etc. (see sidebar). Horus also includes tools to assist in
the development and debugging of new layers.

Each stack of blocks is carefully shielded from other stacks. It has its own prioritized threads,
and has controlled access to available memory through a mechanism calledmemory channels. Horus has
a memory scheduler that dynamically assigns the rate at which each stack can allocate memory,
depending on availability and priority, so that no stack can monopolize the available memory. This is
particularly important inside a kernel, or if one of the stacks has soft real-time requirements.

Chapter18: Reliable Distributed Computing Systems 355

355

Besides threads and
memory channels, each stack deals
with three other types of objects:
endpoints, groups, and messages.
The endpoint object models the
communicating entity. Depending
on the application, it may
correspond to a machine, a process,
a thread, a socket, a port, and so
forth. An endpoint has an address,
and can send and receive messages.
However, as we will see later,
messages are not addressed to
endpoints, but to groups. The
endpoint address is used for
membership purposes.

A group object is used to
maintain the local protocol state on
an endpoint. Associated with each
group object is thegroup addressto
which messages are sent, and a

view: a list of destination endpoint addresses that are believed to be accessible group members. Since a
group object is purely local, Horus technically allows different endpoints to have different views of the
same group. An endpoint may have multiple group objects, allowing it to communicate with different
groups and views. A user can install new views when processes crash or recover, and can use one of
several membership protocols to reach some form of agreement on views between multiple group objects
in the same group.

The message object is a local storage structure. Its interface includes operations to push and pop
protocol headers. Messages are passed from layer to layer by passing a pointer, and never need be copied.

A thread at the bottommost layer waits for messages arriving on the network interface. When a
message arrives, the bottommost layer (typically COM) pops off its header, and passes the message on to
the layer above it. This repeats itself recursively. If necessary, a layer may drop a message, or buffer it for
delayed delivery. When multiple messages arrive simultaneously, it may be important to enforce an order
on the delivery of the messages. However, since each message is delivered using its own thread, this
ordering may be lost depending on the scheduling policies used by the thread scheduler. Therefore, Horus
numbers the messages, and usesevent countsynchronization variables[RK79] to reconstruct the order
where necessary.

18.3 Protocol stacks
The microprotocol architecture of Horus would not be of great value unless the various classes of process
group protocols that we might wish to support can be simplified by being expressed as stacks of layers,
perform well, and share significant functionality. The experience with Horus in this regard has been very
positive.

For example, the stacks shown in Figure 18-4 all implement virtually synchronous process
groups. The left-most stack provides totally ordered, flow-controlled communication over the group
membership abstraction. The layers FRAG, NAK and COM respectively break large messages into

application belongs to process group

comm
nak

frag
mbrshp

fc

comm

comm
nak
frag

comm

nak
frag

mbrshp

parcld

comm
nak

frag
mbrshp

merge

totaltotal

Figure 18-4: The Horus stacks are shielded from each other, and have
their own threads and memory, each of which is provided through a
scheduler. Each stack can be thought of as a small program that
executes inside Horus. Although this feature is not shown above, a stack
can be split between the user’s address space and the kernel, permitting
the user to add customized features to a stack while benefitting from the
performance of a kernel-based protocol implementation.

Kenneth P. Birman - Building Secure and Reliable Network Applications356

356

smaller ones, overcome packet loss using negative acknowledgements, and interface Horus to the
underlying transport protocols. The adjacent stack is similar, but provides weaker ordering and includes a
layer that supports “state transfer” to a process joining a group, or when groups merge after a network
partition. To the right is a stack that supports scaling through a hierarchical structure, in which each
“parent” process is responsible for a set of “child” processes. The dual stack illustrated in this case
represents a feature whereby a message can be routed down one of several stacks, depending on the type of
processing required. Additional protocol blocks provide functionality such as data encryption, packing
small messages for efficient communication, isochronous communication (useful in multimedia systems),
etc.

For Horus layers to fit like Lego blocks, they each must provide the same downcall and upcall
interfaces. A lesson learned from thex-Kernel is that if the interface is not rich enough, extensive use will
be made of general purpose control operations (similar toioctl), which reduces configuration flexibility.
(Since the control operations are unique to a layer, the Lego blocks would not “fit” as easily.) TheHorus
Common Protocol Interface(HCPI) therefore supports an extensive interface that supports all common
operations in group communication systems, going beyond the functionality of earlier layered systems
such as the x-Kernel, Furthermore, the HCPI is designed for multiprocessing, and is completely
asynchronous and reentrant.

Broadly, the HCPI interfaces fall into two categories. Those in the first group are concerned with
sending and receiving messages, and the stability of messages17. The second category of Horus operations
are concerned with membership. In the down direction, they let an application or layer control the group
membership used by layers below it. As upcalls, these report membership changes, communication
problems, and other related events to the application.

While supporting the same HCPI, each Horus layer runs a different protocol, each implementing
a different property. Although Horus allows layers to be stacked in any order (and even multiple times),
most layers require certain semantics from layers below it, imposing a partial order on the stacking.
These constraints have been tabulated. Given information about the properties of the network transport
service, and the properties provided by the application, it is often possible to automatically generate the
minimal protocol stack that achieves a desired property.

Layered protocol architectures sometimes perform poorly. Traditional layered systems impose an
order on which protocols process messages, limiting opportunities for optimization, and imposing
excessive overhead. Clark and Tennenhouse have suggested that the key to good performance rests in
Integrated Layer Processing(ILP) [CT87, AP93, BD95, KP93, KC94]. Systems based on the ILP
principle avoid inter-layer ordering constraints, and can perform as well as monolithically structured
systems. Horus is consistent with ILP: there are no intrinsic ordering constraints on processing, so
unnecessary synchronization delays are avoided. Moreover, as we will see below, Horus supports an
optional protocol accelerator which greatly improves the performance of those layered protocols that make
use of it.

18.4 Using Horus to Build a Robust Groupware Application
Earlier, we commented that Horus can be hidden behind standard application programmer interfaces. A
good illustration of how this is done arose when we interfaced the Tcl/TK graphical programming

17 It is common to say that a message isstablewhen processing has completed and associated information can be
garbage collected. Horus standardizes the handling of stability information, but leaves the actual semantics of
stability to the user. Thus, an application for which stability means “logged to disk” can share this Horus
functionality with an application for which stability means “displayed on the screen.”

Chapter18: Reliable Distributed Computing Systems 357

357

language to Horus. A challenge posed by running systems like Horus side by side with a package like X-
windows or Tcl/TK is that such packages are rarely designed with threads or Horus communication stacks
in mind. To avoid a complex integration task, we therefore chose to run Tcl/TK as a separate thread in an
address space shared with Horus. Horus intercepts certain system calls issued by Tcl/TK (see Figure 3),
such as the Unixopenandsocketsystem calls. We call this the resulting mechanism anintercept proxy;
it is a special type of wrapper oriented towards intercepting this type of system call. The proxy redirects he
system calls, invoking Horus functions which will create Horus process groups and register appropriate
protocol stacks at run time. Subsequent I/O operations on these group I/O sockets are mapped to Horus
communication functions.

To make Horus accessible within Tcl applications, two new functions were registered with the
Tcl interpreter. One creates endpoint objects, and the other creates group addresses. The endpoint object
itself can create a group object using a group address. Group objects are used to send and receive
messages. Received messages result in calls to Tcl code, which typically interpret the message as a Tcl
command. This yields a powerful framework: a distributed, fault-tolerant, whiteboard application can be
built using only eight short lines of Tcl code, over a Horus stack of seven protocols.

To validate our approach, we ported a sophisticated Tcl/TK application to Horus. The
Continuous Media Toolkit (CMT) [RS92] is a Tcl/TK extension that provides objects that read or output
audio and video data. These objects can be linked together in pipelines, and are synchronized by alogical
timestampobject. This object may be set to run slower or faster than the real clock, or even backwards.
This allows stop, slow motion, fast forward, and rewind functions to be implemented.

Architecturally, CMT consists of a multi-media server process that multicasts video and audio to
a set of clients. We decided to replicate the server using a primary-backup approach, where the backup
servers stand by to back up failed or slow primaries.

The original CMT implementation depends on extensions to Tcl/TK. These implement a
master/slave relationship between the machines, provide for a form of logical timestamp synchronization
between them, and support a real-time communication protocol called Cyclic UDP. The Cyclic UDP
implementation consists of two halves, a sink object that accepts multi-media data from another CMT
object, and a source object that produces multi-media data and passes it on to another CMT object (see
Figure 18-5a). The resulting system is distributed but intolerant of failures, and does not allow for
multicast.

Kenneth P. Birman - Building Secure and Reliable Network Applications358

358

MPEG
sink

object

LTS slave

Dest
“half”
object

MPEG
prioritizer

object

Logical Timestamp

Source
“half”
object

UDP connection

MPEG
source
object

MPEG
Video

display

TCP connection

(a) Continuous Media Toolkit: Before Horus

Five superimposed
Horus process groups

replicated video
server

Uses Horus syncronized clocks
for logical timestamp

Supports multiple
client stations

(b) Horus used to introduce fault-tolerance and groupware capabilities

Figure 18-5: These figures show an example of a video service implemented using the Continuous Media Toolkit.
MPEG is a video compression standard. In (a), a standard, fault intolerant set-up is depicted. In (b), Horus was
used to implement a fault-tolerant version that is also able to multicast to a set of clients.

Chapter18: Reliable Distributed Computing Systems 359

359

Using Horus, it was straightforward to extend CMT with fault-tolerance and multicast
capabilities. Five Horus stacks were required. One of these is hidden from the application, and
implements a clock synchronization protocol [Cri89]. It uses a Horus layer called MERGE to ensure that
the different machines will find each other automatically (even after network partitions), and employs the
virtual synchrony property to rank the processes, assigning the lowest ranked machine to maintain a
master clock on behalf of the others. The second stack synchronizes the speeds and offsets with respect to
real-time of the logical timestamp objects. To keep these values consistent, it is necessary that they be
updated in the same order. Therefore, this stack is similar to the previous one, but includes a Horus
protocol block that places a total order on multicast messages delivered within the group.18 The third
tracks the list of servers and clients. Using a deterministic rule based on the process ranking maintained
by the virtual synchrony layer, one server decides to multicast the video, and one server, usually the same,
decides to multicast the audio. This set-up is shown in Figure 18-5b.

To disseminate the multi-media data, we used two identical stacks, one for audio and one for
video. The key component in these is a protocol block that implements a multi-media generalization of
the Cyclic UDP protocol. The algorithm is similar to FRAG, but will reassemble messages that arrive out
of order, and drop messages with missing.

One might expect that a huge amount of recoding would have been required to accomplish these
changes. However, all of the necessary work was completed using 42 lines of Tcl code. An additional
160 lines of C code supports the CMT frame buffers in Horus. Two new Horus layers were needed, but
were developed by adapting existing layers; they consist of 1800 lines of C code and 300 lines,
respectively (ignoring the comments and lines common to all layers). Thus, with relatively little effort
and little code, a complex application written with no expectation that process group computing might
later be valuable was modified to exploit Horus functionality.

18.5 Using Horus to Harden CORBA applications
The introduction of process groups into CMT required sophistication with Horus and its intercept proxies.
Many potential users would lack the sophistication and knowledge of Horus required to do this, hence we
recognized a need for a way to introduce Horus functionality in a more transparent way. This goal evokes
an image of “plug and play” robustness, and leads one to think in terms of an object-oriented approach to
group computing.

Early in this text we looked at CORBA, noting that object-oriented distributed applications that
comply with the CORBA ORB specification and support the IOP protocol can invoke one-another's
methods with relative ease. Our work resulted in a CORBA compliant interface to Horus, which we call
Electra [Maf95]. Electra can be used without Horus, and vice versa, but the combination represents a more
complete system.

In Electra, applications are provided with ways to build Horus process groups, and to directly
exploit the virtual synchrony model. Moreover, Electra objects can be aggregated to form “object groups,”
and object references can be bound to both singleton objects and object groups. An implication of the
interoperability of CORBA implementations is that Electra object groups can be invoked fromany
CORBA-compliant distributed application, regardless of the CORBA platform on which it is running,
without special provisions for group communication. This means that a service can be made fault-tolerant
without changing its clients.

18 This protocol differs from theTotal protocol in the Trans/Total[MMABL96] project in that the Horus protocol only
rotates the token among the current set of senders, while the Trans/Total protocol rotates the token among all
members.

Kenneth P. Birman - Building Secure and Reliable Network Applications360

360

When a method invocation occurs within Electra, object-group references are detected and
transformed into multicasts to the member objects (see Figure 18-6). Requests can be issued either in
transparent mode, where only the first arriving member reply is returned to the client application, or in
non-transparent mode, permitting the client to access the full set of responses from individual group
members. The transparent mode is used by clients to communicate with replicated CORBA objects, while
non-transparent mode is employed with object groups whose members perform different tasks. Clients
submit a request either in a synchronous, asynchronous, or deferred-synchronous way.

The integration of Horus into Electra shows that group programming can be provided in a
natural, transparent way with popular programming methodologies. The resulting technology permits the
use to “plug in” group communication tools anywhere that a CORBA application has a suitable interface.
To the degree that process-group computing interfaces and abstractions represent an impediment to their
use in commercial software, technologies such as Electra suggest a possible middle ground, in which
fault-tolerance, security, and other group-based mechanisms can be introduced late in the design cycle of a
sophisticated distributed application.

18.6 Basic Performance of Horus
A major concern of the Horus architecture is the overhead of layering, hence we now focus on this issue.
This section present the overall per formance of Horus on a system of SUN Sparc10 workstations running
SunOS 4.1.3, communicating through a loaded Ethernet. We used two network transport protocols:
normal UDP, and UDP with the Deering IP multicast extensions [Dee88] (shown as “Deering”).

To highlight some of the performance numbers: Horus achieves a one-way latency of 1.2 msecs
over an unordered virtual synchrony stack (over ATM, it is currently 0.7 msecs), and, using a totally

CORBA
object

Host C

CORBA
object

Host B

CORBA
object

Host A

CORBA
object ref.

Client Application
Requests Replies

HORUS

Object Group

Invocations

Replies

Figure 18-6: Object-group communication in Electra, a CORBA-compliant ORB that uses Horus to implement
group multicast. The invocation method can be changed depending on the intended use. Orbix+Isis and the COOL-
ORB are examples of commercial products that support object groups..

Chapter18: Reliable Distributed Computing Systems 361

361

ordered layer over the same stack, 7,500 1-byte messages per second. Given an application that can
accept lists of messages in a single receive operation, we can drive up the total number of messages per
second to over 75,000 using the FC Flow-Control layer, which buffers heavily using the “message list”
capabilities of Horus [FR95a]. Horus easily reached the Ethernet 1007 Kbytes/second maximum
bandwidth with a message size smaller than 1 kilobyte.

The performance test program has each member do exactly the same thing: sendk messages and
wait for k (n -1) messages of sizes, where s is the number of members. This way we simulate an
application that imposes a high load on the system while occasionally synchronizing on intermediate
results.

Figure 18-7 depicts the one-way communication latency of 1-byte Horus messages. As can be
seen in the top graph, hardware multicast is a big win, especially when the message size goes up. In the
bottom graph, we compare FIFO to totally ordered communication. For small messages we get a FIFO
one-way latency of about 1.5 milliseconds and a totally ordered one-way latency of about 6.7 milliseconds.
A problem with the totally ordered layer is that it can be inefficient when senders send single messages at
random, and with a high degree of concurrent sending by different group members. With just one sender,
the one-way latency drops to 1.6 milliseconds.

Obtain Data from
CACM paper

Figure 18-7: The left figure compares the one-way latency of 1-byte FIFO Horus messages over straight UDP and
UDP with the Deering IP multicast extensions. The right figure compares the performance of total and FIFO order
of Horus, both over UDP multicast.

Obtain Data from
CACM paper

Figure 18-8: These graphs depict the message throughput for virtually synchronous, FIFO ordered communication
over normal UDP and Deering UDP, and for totally ordering communication over Deering UDP.

Kenneth P. Birman - Building Secure and Reliable Network Applications362

362

Figure 18-8 shows the number of 1-byte messages per second that can be achieved for three
cases. For normal UDP and Deering UDP the throughput is fairly constant. For totally ordered
communication we see that the throughput becomes better if we send more messages per round (because
of increased concurrency). Perhaps surprisingly, the throughput also becomes better as the number of
members in the group goes up. The reason for this is threefold. First, with more members there are more
senders. Second, with more members it takes longer to order messages, and thus more messages can be
packed together and sent out in single network packets. Last, the ordering protocol allows only one sender
on the network at a time, thus introducing flow control and reducing collisions.

18.7 Masking the Overhead of Protocol Layering
Although layering of protocols can be advocated as a way of dealing with the complexity of computer
communication, it is also criticized for its performance overhead. Recent work by Van Renesse has
yielded considerable insight regarding the design of protocols, which van Renesse uses to mask the
overhead of layering in Horus. The fundamental idea is very similar to client caching in a file system.
With these new techniques, he achieves an order of magnitude improvement in end-to-end message
latency in the Horus communication framework, compared to the best latency possible using Horus
without these optimizations. Over an ATM network, the approach permits applications to send and
deliver messages of varying levels of semantics in about 85us, using a protocol stack that is written in ML,
an interpreted functional language. In contrast, the performance figures shown in the previous section
were for a version of Horus coded in C, and carefully optimzed by hand but without use of the protocol
accelerator.

Having presented this material in seminars, the author has noticed that the systems community
seems to respond to the very mention of the ML language with skepticsm, and it is perhaps appropriate to
comment on this before continuing. First, the reader should keep in mind that a technology such as Horus
is simply a tool that one uses to harden a system. It makes little difference whether such a tool is
internally coded in C, assembler language, Lisp, or ML if it works well for the desired purpose. The
decision to work with a version of Horus coded in ML is not one that would impact theuseof Horus in
applications that work with the technology through wrappers or toolkit interfaces. However, as we will
see here and in Chapter 25, it does bring some important benefits for Horus itself, notably the potential for
us to harden the system using formal software analysis tools. Moreover, although ML is often viewed as
obscure and of academic interest, the version of ML used in our work on Horus is not really so different
from Lisp or C++ once one becomes accustomed to the syntax. Finally, as we will see here, the
performance of Horus coded in ML is actually better than that of Horus coded in C, at least for certain
patterns of communication. Thus we would hope that the reader will recognize that the work reported here
is in fact very practical.

As we saw in earlier chapters, modern network technology allows for very low latency
communication. For example, the U-Net [EBBV95] interface to ATM achieves 75 microsecond round-trip
communication as long as the message is 40 bytes or smaller. On the other hand, if a message is larger, it
will not fit in a single ATM cell, significantly increasing the latency. This points to two basic concerns:
first, that systems like Horus need to be designed to take full advantage of the potential performance of
current communications technology, and secondly that to do so, it will be important that Horus protocols
use small headers, and introduce minimal processing overhead.

Unfortunately, these properties are not typical of the protocol layers needed to implement virtual
synchrony. Many of these protocols are complex, and layering introduces additional overhead of its own.
One source of overhead is interfacing: crossing a layer costs some CPU cycles. The other is header
overhead. Each layer uses its own header, which is prepended to every message and usually padded so
that each header is aligned on a 4 or 8 byte boundary. Combining this with a trend to very large addresses

Chapter18: Reliable Distributed Computing Systems 363

363

(of which at least two per message are needed), it is impossible to have the total amount of header space
be less than 40 bytes.

The Horus Protocol Accelerator (Horus PA) eliminates these overheads almost entirely, and
offers the potential of a one to three orders of magnitude of latency improvement over the protocol
implementations described in the previous subsection. For example, we looked at the impact of the Horus
PA on an ML [MTH90] implementation of a protocol stack with five layers. The ML code is interpreted
(although in the future it will be compiled), and therefore relatively slow compared to compiled C code.
Nevertheless, between two SunOS user processes on two Sparc 20s connected by a 155 Mbit/sec ATM
network, the Horus PA permits these layers to achieve a roundtrip latency of 175 microseconds, down
from about 1.5 milliseconds in the original Horus system (written in C).

The Horus PA achieves its results using three techniques. First, message header fields that never
change are only sent once. Second, the rest of the header information is carefully packed, ignoring layer
boundaries, typically leading to headers that are much smaller than 40 bytes, and thus leaving room to fit
a small message within a single U-Net packet. Third, a semi-automatic transformation is done on the send
and delivery operations, splitting them into two parts: one that updates or checks the header but not the
protocol state, and the other vice versa. The first part is then executed by a special packet filter (both in
the send and the delivery path) to circumvent the actual protocol layers whenever possible. The second
part is executed, as much as possible, when the application is idle or blocked.

18.7.1 Reducing Header Overhead
In traditional layered protocol systems, each protocol layer designs its own header data structure. The
headers are concatenated and prepended to each user message. For convenience, each header is aligned to
a 4 or 8 byte boundary to allow easy access. In systems like the x-Kernel or Horus, where many simple
protocols may be stacked on top of each other, this may lead to extensive padding overhead.

Some fields in the headers, such as the source and destination addresses, never change from
message to message. Yet, instead of agreeing on these values, they are frequently included in every
message, and used as the identifier of the connection to the peer. Since addresses tend to be large (and
getting larger to deal with the rapid growth the Internet), this results in significant use of space for what
are essentially constants of the connection. Moreover, notice that the connection itself may already be
identifiable from other information. On an ATM network, connections are “named” by a small 4 byte
VPI/VCI pair, and every packet carries this information. Thus, constants such as sender and destination
addresses are implied by the connection identifier and including them in the header is superfluous.

The Horus PA exploits these observations to reduce header sizes to a bare minimum. The approach starts
by dividing header fields into fourclasses:

• Connection Identification fields that never change during the period of a connection, such as
sender and destination.

• Protocol-specific Information fields that are important for the correct delivery of the particular
message frame. Examples are the sequence number of a message, or the message type (Horus
messages have types, such as “data”, “ack”, or “nack”). These fields must be deterministically
implied by the protocol “state”, and not on the message contents or the time at which it was sent.

• Message-specific information fields that need to accompany the message, such as the message
length and checksum, or a timestamp. Typically, such information depends only on the message, and
not on the protocol state.

• Gossip  fields that technically do not need to accompany the message, but are included for
efficiency.

Kenneth P. Birman - Building Secure and Reliable Network Applications364

364

Each layer is expected to declare the header fields that it will use during initialization, and
subsequently accesses fields using a collection of highly optimized functions implemented by the Horus
PA. These functions extract values directly from headers if they are present, and otherwise compute the
appropriate field value and return that instead. This permits the Horus PA to precompute header
templates that have optimized layouts, with a minumum of wasted space.

Horus includes the Protocol-specific and Message-specific information in every message.
Currently, although not technically necessary, Gossip information is also always included, since it is
usually small. However, since the Connection Identification fields never change, they are only included
occasionally because they tend to be large.

A 64-bit “mini-header” is placed on each message to indicate which headers it actually includes.
Two bits of this are used to indicate whether or not the connection identification is present in the message
and to destinate the byte-ordering for bytes in the message. The remaining 62-bits are aconnection
cookie, which is a magic number established in the connection identification header and selected
randomly, to identify the connection.

The idea is that the first message sent over a connection will a connection identifier, specifying
the cookie to use, and providing an initial copy of the connection identification fields. Subsequent
messages need only contain the identification field if it has changed. Since the Connection Identification
tend to include very large identifiers, this mechanism reduces the amount of header space in the normal
case significantly. For example, in the version of Horus that Van Renesse used in his tests, the connection
identification typically occupies about 76 bytes.

18.7.2 Eliminating Layered Protocol Processing Overhead
In most protocol implementations, layered or not, a great deal of processing must be done between the
application's send operation, and the time that the message is actually sent out onto the network. The
same is true between the arrival of a message and the delivery to the application. The Horus PA reduces
the length of the critical path by updating the protocol state only after a message has been sent or
delivered, and by precomputing any statically predictable protocol-specific header fields, so that the
necessary values will be knownbefore the application generates the next message (Figure 18-9). These
methods work because the protocol-specific information for most messages can be predicted (calculated)
before the message is sent or delivered. (Recall that, as noted above, such information must not depend on
the message contents or the time on which it was sent). Each connection maintains a predicted protocol-
specific header for the next send operation, and another for the next delivery (much like a read-ahead
strategy in a file system). For sending, the gossip information can be predicted as well, since this does not
depend on the message contents. The idea is a bit like that of prefetching in a file system.

Chapter18: Reliable Distributed Computing Systems 365

365

Thus, when a message is actually sent,
only the message-specific header will need to be
generated. This is done using apacket filter
[MRA87], which is constructed at the time of
layer initialization. Packet filters are
programmed using a simple programming
language (a dialect of ML), and operate by
extracting information from the message needed
to form the message-specific header. A filter can
also hand off a message to the associated layer
for special handling, for example if a message
fails to satisfy some assumption that was used in
predicting the protocol-specific header. In the
usual case, the message-specific header will be
computed, other headers are prepended from the
precomputed versions, and the message is

transmitted with no additional delay. Because the header fields have fixed and precomputed sizes, a
header template can be filled in with no copying, and scatter-send/scatter-gather hardware used to
transmit the header and message as a single packet without copying them first to a single place. This
reduces the computational cost of sending or delivering a message to a bare minimum, although it leaves
some background costs in the form of prediction code that must be executed before the next message is
sent or delivered

18.7.3 Message Packing
The Horus PA as described so far will reduce the latency of individual messages significantly, but only if
they are spaced out far enough to allow time for post-processing. If not, messages will have to wait until
the post-processing of every previous message completes (somewhat like a process that reads file system
records faster than they can be prefetched). To reduce this overhead, the Horus PA usesmessage packing
[FR95] to deal with backlogs. The idea is a very simple one. After the post-processing of a send
operation completes, the PA checks to see if there are messages waiting. If there are more than one, the
PA will pack these messages together into a single message. The single message is now processed in the
usual way, which takes only one pre-processing and post-processing phase. When the packed message is
ready for delivery, it is unpacked and the messages are individually delivered to the application.

Returning to our file system analogy, the approach is similar to one in which the application
could indicate that it plans to read three 1k data blocks. Rather than fetching them one by one, the file
system can now fetch them all at the same time. Doing so amortizes the overhead associated with
fetching the blocks, permitting better utilization of network bandwidth.

18.7.4 Performance of Horus with the Protocol Accelerator
The Horus PA dramatically improved the performance of the system over the base figures described
earlier (which were themselves comparable to the best performance figures cited for other systems). With
the accelerator, one-waylatencies dropped to as little as 85us (compared to 35us for the U-Net
implementation over which the accelerator was tested). As many as 85,000 one-byte messages could be
sent and delivered per second, over a protocol stack of five layers implementing the virtual synchrony
model within a group of two members. For RPC-style interactions, 2,600 round-trips per second were
achieved. These latency figures, however, represent a best-case scenario in which the frequency of
messages was low enough to permit the predictive mechanisms to operate; when they become overloaded,

Pre-process
multicast n

Data-dependent
stage, multicastn

Post-process
multicast n

Data-dependent
stage, multicastn

Post-process
multicast n

Pre-process
multicast n+1

Figure 18-9: Restructuring a protocol layer to reduce the
critical path. By moving data-dependent code to the front,
delays for sending the next message are minimized. Post-
processing of the current multicast and preprocessing of
the next multicast (all computation that can bedone before
seeing the actual contents of the message) are shifted to
occur after the current multicast has been sent, and hence
concurrently with application-level computing.

Kenneth P. Birman - Building Secure and Reliable Network Applications366

366

latency increases to about 425us for the same test pattern. This points to a strong dependency of the
method on the speed of the code used to implement layers.

Van Renesse’s work on the Horus PA made use of a version of the ML programming language
which was interpreted, not compiled. ML turns out to be a very useful language for specifying Horus
layers: it lends itself to formal analysis and permits packet filters to actually be constructed at runtime;
moreover, the programming model is well matched to the functional style of programming used to
implement Horus layers. ML compiler technology is rapidly evolving, and when the Horus PA is moved
to a compiled version of ML the sustainable load should rise and these maximum latency figures drop.

The Horus PA does suffer from some limitations. Message fragmentation and reassembly is not
supported by the PA, hence the pre-processing of large messages must be handled explicitly by the
protocol stack. Some technical complications result from this design decision, but it reduces the
complexity of the PA and hence improves the maximum performance achievable using it. A second
limitation is that the PA must be used by all parties to a communication stack. However, this is not an
unreasonable restriction, since Horus has the same sort of limitation with regard to the stacks themselves
(all members of a group must use identical or at least compatible protocol stacks).

18.8 Scalability
Up to the present, this text as largely overlooked issues associated with protocol scalability. Although a
serious treatment of scalability in the general sense might require a whole textbook in itself, the purpose of
this section is to set out some general remarks on the subject, as we have approached it in the Horus
project. It is perhaps worthwhile to comment that, overall, surprisingly little is known about scaling
reliable distributed systems.

If one looks at the scalability of Horus protocols, as we did earlier in presenting some basic Horus
performance figures, it is clear that Horus performs well for groups with small numbers of members, and
for moderately large groups when IP multicast is available as a hardware tool to reduce the cost of moving
large volumes of data to large numbers of destinations. Yet although these graphs are honest, they may be
misleading. In fact, as systems like Horus are scaled to larger and larger numbers of participating
processes, they experience steadily growing overheads, in the form of acknowldgements and negative
acknowledgements from the recipient processes to the senders. A consequence is that if these systems are
used with very large numbers of participating processes, the “backflow” associated with these types of
messages and with flow control becomes a serious problem.

A simple thought experiment suffices to illustrate that there are probably fundamental limits on
reliability in very large networks. Suppose that a communication network is extremely reliable, but that
the processes using it are designed to distrust that network, and to assume that it may actually malfunction
by losing messages. Moreover, assume that these processes are in fact closely rate-matched (the
consumers of data keep up with the producers), but again that the system is designed to deal with
individual processes that lag far behind. Now, were it not for the backflow of messages to the senders,
this hypothetical system might perform very well near the limits of the hardware. It could potentially be
scaled just by adding new recipient processes, and with no changes at all, continue to provide a high
observed level of reliability.

However, the backflow messages will substantially impact this simple and rosy scenario. They
represent a source of overhead, and in the case of flow control messages, if they are not received, the
sender may be forced to stop and wait for them. Now, the performance of the sender side is coupled to the
timely and reliable reception of backflow messages, and as we scale the number of recipients connected to
the system, we can anticipate a traffic jam phenomenon at the sender’s interface (protocol designers call

Chapter18: Reliable Distributed Computing Systems 367

367

this an acknowledgement “implosion”) that will cause traffic to get increasingly bursty and performance
to drop. In effect, the attempt to protect against the mere risk of data loss or flow control mismatches is
likely to slash the maximum achievable performance of the system. Now, obtaining a stable delivery of
data near the limits of our technology will become a tremendously difficult juggling problem, in which the
protocol developer must trade the transmission of backflow messages against their performance impact.

Graduate students Guerney Hunt and Michael Kalantar have studied aspects of this problem in
their doctoral dissertations at Cornell University, both using special purpose experimental tools (that is,
neither actually experimented on Horus or a similar system; Kalantar, in fact, worked mostly with a
simulator). Hunt’s work was on flow control in very large scale system. He concluded that most forms of
backflow were unworkable on a large scale, and ultimately proposed a rate-based flow control scheme in
which the sender limits the transmission rate for data to match what the receivers can accomodate
[Hunt95]. Kalantar looked at the impact of multicast ordering on latency, asking how frequently an
ordering property such as causal or total ordering would significantly impact the latency of message
delivery [Kal95]. He found that although ordering had a fairly small impact on latency, there were other
much important phenomena that represented serious potential concerns.

In particular, Kalantar discovered that as he scaled the size of his simulation, message latencies
tended to become unstable and bursty. He hypothesized that in large-scale protocols, the domain of stable
performance becomes smaller and smaller. In such situations, a slight perturbation of the overall system,
for example because of a lost message, could cause much of the remainder of the system to block because
of reliability or ordering constraints. Now, the system would shift into what is sometimes called aconvoy
behavior, in which long message backlogs build up and are never really eliminated; they may shift from
place to place, but stable, smooth delivery is generally not restored. In effect, a bursty scheduling behavior
represents a more stable configuration of the overall system than one in which message delivery is
extremely regular and smooth, at least if the number of recipients is large and the presented load is a
substantial percentage of the maximum achievable (so that there is little slack bandwidth with which the
system can catch up after an overload develops).

Hunt’s and Kalantar’s observations are not really surprising ones. It makes sense that it should
be easy to provide reliability or ordering when far from the saturation point of the hardware, and much
harder to do so as the communication or processor speed limits are approached.

Over many years of working with Isis and Horus, the author has gained considerable experience
with these sorts of scaling and flow control problems. Realistically, the conclusion can only be called a
mixed one. On the positive side, it seems that one can fairly easily build a reliable system if the
communication load won’t exceed, perhaps, 20% of the capacity of the hardware. With alittle luck, one
can even push as high as perhaps 40% of the hardware. (Happily, hardware is becoming so fast that this
may still represent a very satisfactory level of perfomance long into the future!)

However, as the load presented to the system rises beyond this threshold, or if the number of
destinations for a typical message becomes very large (hundreds), it becomes increasingly difficult to
guarantee reliability and flow control. A fundamental tradeoff seems to be present: one can send the data
and hope that it will usually arrive, and by doing so, may be able to operate quite reliably near the limits
of the hardware. But, of course, if a process falls behind, it may lose large numbers of messages before it
recovers, and no mechanism is provided to let it recover these from any form of backup storage. On the
other hand, one can operate in a less demanding performance range, and in this case provide reliability,
ordering, and performance guarantees. In between the two, however, lies a domain that is extremely
difficult in an engineering sense and often requires a very high level of software complexity, which will
necessarily reduce reliability. Moreover, one can raise serious questions about the stability of message
passing systems that operate in this intermediate domain, where the load presented is near the limits of

Kenneth P. Birman - Building Secure and Reliable Network Applications368

368

what can be accomplished. The typical experience in such systems is that they perform well, most of the
time, but that once something fails, the system falls so far behind that it can never again catch up: in
effect, any perturbation can shift such a system into the domain of overloads and hopeless backlogs.

Where does Horus position itself in this spectrum? Although the performance data shown earlier
may suggest that the system seeks to provide scalable reliability, it is more likely that successful Horus
applications will seek one property or the other, but not both at once, or at least not both when
performance is demanding. In Horus, this is done by using multiple protocol stacks, in which the protocol
stacks providing strong properties are used much less frequently, while the protocol stacks providing
weaker reliability properties may be used for high volume communication.

As an example, suppose that Horus were to be used to build a stock trading system. It might be
very important to ensure that certain clases of trading information will reach all clients, and for this sort
of information, a stack with strong reliability properties could be used. But as a general rule, the majority
of communication in such systems will be in the form of bid/offered pricing, which may not need to be
delivered quite so reliably: if a price quote is dropped, the loss won’t be serious so long as the next quote
has a good probability of getting through. Thus, one can visualize such a system as having two
superimposed architectures: one, which has much less traffic, and much stronger reliability requirements,
and a second one with much greater traffic but weaker properties. We saw a similar structure in the Horus
application to the CMT system: here, the stronger logical properites were reserved for coordination,
timestamp generation, and agreement on such data as system membership. The actual flow of video data
was through a protocol stack with very different properties: stronger temporal guarantees, but weaker
reliability properties. In building scalable reliable systems, such tradeoffs may be intrinsic.

In general, this leads to a number of interesting problems, having to do with the synchronization
and ordering of data when multiple communication streams are involved. Researchers at the Hebrew
University in Jerusalem, working with a system similar to Horus called Transis (and with Horus itself),
have begun to investigate this issue. Their work, on providing strong communication semantics in
applications that mix multiple “quality of service” properties at the transport level, promises to make such
multi-protocol systems more and more manageable and controlled [Iditxx].

More broadly, it seems likely that one could develop a theoretical argument to the effect that
reliability properties are fundamentally at odds with high performance. While one can scale reliable
systems, they appear to be intrinsically unstable if the result of the scaling is to push the overall system
anywhere close to the maximum performance of the technology used. Perhaps some future effort to model
these classes of systems will reveal the basic reasons for this relationship and point to classes of protocols
that degrade gracefully while remaining stable under steadily increasing scale and load. Until then,
however, the heuristic recommended by this writer is to scale systems, by all means, but to be extremely
careful not to expect the highest levels of reliabilty, performance and scale simultaneously. To do so is
simply to move beyond the limits of problems that we know how to solve, and may be to expect the
impossible. Instead, the most demanding systems must somehow be split into subsystems that demand
high performance but can manage with weaker reliability properties, and subsystems that need reliabilty,
but will not be subjected to extreme performance demands.

18.9 Related Readings
Chapter 26 includes a review of related research activities, which we will not duplicate here. On the
Horus system: [BR96, RBM96, FR95]. Horus used in a real-time telephone switching application:
Section 20.3 [FB96]. Virtual fault-tolerance: [BS95]. Layered protocols: [CT87, AP93, BD95, KP93,
KC94]. Event counters: [RK79]. The Continuous Media Toolkit: [RS92]. U-Net [EBBV95]. Packet

Chapter18: Reliable Distributed Computing Systems 369

369

filters (in Mach) [MRA87]. Chapter 25 discusses verification of the Horus protocols in more detail; this
work focuses on the same ML implementation of Horus to which the Protocol Accelerator was applied.

Kenneth P. Birman - Building Secure and Reliable Network Applications370

370

19. SecurityOptions for Distributed Settings
The use of distributed computing systems for storage of sensitive data and in commercial applications has
created significant pressure to improve the security options available to software developers. Yet
distributed systems security has many possible interpretations, corresponding to very different forms of
guarantees, and even the contemporary distributed systems that claim to be secure often suffer from basic
security weaknesses. In this chapter we will review some of the major security technologies, look at the
nature of their guarantee and of their limitations, and discuss some of the issues raised when one asks that
a security system also guarantee high availability.

The technologies we consider here span a range of approaches. At the weak end of the spectrum
are firewall technologies and otherperimeter defense mechanismsthat operate by restricting access or
communication across specified system boundaries. These technologies are extremely popular but very
limited in their capabilities. In particular, once an intruder has found a way to work around the firewall
or log into the system, the protection benefit is lost.

Internal to a distributed system one typically findsaccess control mechanismsthat are often
based on the UNIX model of user and group id’s, which are employed to limit access to shared resources
such as file systems. When these are used in stateless settings, serious problems arise, which we will
discuss here and will return to later, in Chapter 23. Access control mechanisms rarely extend to
communication, and this is perhaps their most serious security exposure. In fact, many communication
systems are open to attack by a clever intruder who is able to guess what port numbers will be used by the
protocols within the system: secrecy of port numbers is a common security dependency in modern
distributed software.

Stateful protection mechanismsoperate by maintaining strong notions of session and channel
state, and authenticating use at the time that communication sessions are established. These schemes
adopt the approach that after a user has been validated the difficulty of breaking into the user’s session
will represent an obstacle to intrusion.

Authenticationbased security systems employ some scheme to authenticate the user who is
running each application; the method may be highly reliable or less so depending upon the setting [NS78,
Den84]. Individual communication sessions are then protected using some form of key that is negotiated
using a trusted agent. Messages may be encrypted or signed in this approach, resulting in very strong
security guarantees. However, the costs of the overall approach can also be high, because of the
intrinsically high costs of data encryption and signature schemes. Moreover, such methods may involve
non-trivial modifications of the application programs that are used, and may be unsuitable for embedded
settings in which no human user would be available to periodically enter passwords or other
authentication data. The best known system of this sort is Kerberos, developed by MIT’s project Athena,
and our review will focus on the approaches used in that system [SNS88, Sch94].

Chapter19: Security Options for Distributed Settings 371

371

Multi-level distributed systems security architecturesare based on a government security
standard that was developed in the mid 1980’s. The security model here is very strong, but has proved to
be difficult to implement and to require extensive effort on the part of application developers. Perhaps for
these reasons, this approach has not been widely successful. Moreover, the pressure to use off the shelf
technologies has made it difficult even for the government to build systems that enforce multi-level
security.

Traditional security technologies have not considered availability when failures occur, creating a
exposure to attacks whereby critical system components are shut down, overloaded, or partitioned away
from application programs that depend upon them. Recent research has begun to address these concerns,
resulting in a new generation of highly available security technologies. However, when one considers
failures in the context of a security subsystem, the benign failure models of earlier chapters must be called
into question. Thus, work in this area has included a reexamination of Byzantine failure models, asking if
extremely robust authentication servers can be built that will remain available even if Byzantine failures
occur. Progress in this direction has been encouraging, as has work on using process groups to provide
security guarantees that go beyond those available in a single server.

Looking to the future, technologies supporting digital cash and digital commerce are likely to be
of increasing importance, and will often depend upon the use of trusted “banking” agents and strong
forms of encryption, such as the RSA or DES standards [DH79, RSA78, DES88]. Progress in this area
has been very rapid and we will review some of the major approaches.

Yet, if the progress in distributed systems security has been impressive, the limitations on such
systems remain quite serious. On the whole, it remains difficult to secure a distributed system and very
hard to add security to a technology that already exists and must be treated as a form of black box. The
best known technologies, such as Kerberos, are still used only sporadically. This makes it hard to
implement customized security mechanisms, and leaves the average distributed system quite open to

user server

authentication and
“ticket” services

1

3

2

Figure 19-1: MIT's Project Athena developed the Kerberos security architecture. Kerberos or a similar
mechanism is found at the core of many distributed systems security technologies today. In this approach, an
authentication service is used as a trusted intermediary to create secure channels, using DES encryption for
security. During step (1), the user employs a password as a DES key to request that a connection be established to
the remote server. The authentication server, which knows the user’s password, constructs a session key which is
sent back in duplicated form, one copy readable to the user and one encrypted with the server’s secret key (2). The
session key is now used between the user and server (3), providing the server with trusted information about user
identification and whereabouts. In practice, Kerberos avoids the need to keep user passwords around by trading
the user’s password for a session to the “ticket granting service”, which then acts as the user’s proxy in
establishing connections to necessary servers, but the idea is unchanged. Kerberos session keys expire and must be
periodically refreshed, hence even if an intruder gains physical access to the user’s machine, the period during
which illicit actions are possible is limited.

Kenneth P. Birman - Building Secure and Reliable Network Applications372

372

attack. Break-ins and security violations are extremely common in the most standard distributed
computing environments, and there seems to be at best a shallow commitment by the major software
vendors to improving the security of their basic product lines. These observations raise troubling
questions about the security to be expected from the emerging generation of extremely critical distributed
systems, many of which will be implemented using standard software solutions on standard platforms.
Until distributed systems security is difficult todisable, as opposed to being difficult to enable, we may
continue to read about intrusions of increasingly serious natures, and will continue to be at risk of serious
intrusions into our personal medical records, banking and financial systems, and personal computing
environments.

19.1 Perimeter Defense Technologies
It is common to protect a distributed system by erecting barriers around it. Examples include the
password control associated with dial-in ports, dial-back mechanisms that some systems use to restrict
access to a set of predesignated telephone numbers, and firewalls through which incoming and outgoing
messages must pass. Each of these technologies has important limitations.

Password control systems are subject to attack by password guessing mechanisms, and by
intruders who find ways to capture packets containing passwords as they are transmitted over the internet
or some other external networking technology. So-called password “sniffers” became a serious threat to
systems security in the mid 1990’s, and illustrate that the general internet is not the benign environment
that was in the early days of distributed computing, when most internet users knew each other by name.
Typical sniffers operate by exhibiting an IP address for some other legitimate machine on the network, or
by placing their network interfaces into promiscuous mode, in which all passing packets will be accepted.
They then scan the traffic captured for packets that might have originated in a login sequence. With a bit
of knowledge about how such packets normally look, it is not hard to reliably capture passwords as they
are routed through the internet. Sniffers have also been used to capture credit card information and to
intrude into email correspondence.

Dialup systems are often perceived as being more secure than direct network connections, but
this is not necessarily this is the case. The major problem is that many systems use their dialup
connections for data and file transfer and as a sending and receiving point for fax communications, and
hence the corresponding telephone numbers are stored in various standard data files, often with
connection information. An intruder who breaks into one system may in this manner learn dialup
numbers for other systems, and may even find logins and passwords that will make it easy to break in.
Moreover, the telephone system itself is increasingly complex and, as an unavoidable side-effect,
increasingly vulnerable to intrusions. This creates the threat that a telephone connection over which
communication protocols are running may be increasingly open to attack by a clever hacker who breaks
into the telephone system itself.

Dialback mechanisms, whereby the system calls the user back, clearly increase the hurdle that an
intruder must cross to penetrate a system relative to one in which the caller is assumed to be a potentially
legitimate user. However, such systems depend for their security upon the integrity of the telephone
system, which, a we have noted, can be subverted. In particular, the emergence of mobile telephones and
the introduction of mobility mechanisms into telephone switching systems creates a path by which an
intruder can potentially redirect a telephone dialback to a telephone number other than the intended one.
Such a mechanism is a good example of a security technology that can protect against benign attacks but
would be considerably more exposed to well-organized malicious ones.

Firewalls have become popular as a form of protection against communication-level attacks on
distributed systems. Many of these technologies operate usingpacket filtersand must be instantiated at

Chapter19: Security Options for Distributed Settings 373

373

all the access points to a distributed network. Each copy of the firewall will have afiltering control policy
in the form of a set of rules for deciding which packets to reject and which to pass through; although
firewalls that can check packet content have been proposed, typical filtering is on the basis of protocol
type, sender and destination addresses, and port numbers. Thus, for example, packets can be allowed
through if they are addressed to the email or ftp server on a particular node, and otherwise rejected.
Often, firewalls are combined withproxy mechanisms that permit file transfer and remote log in through
an intermediary system which enforces further restrictions. The use of proxies for the transfer of public
web pages and ftp areas has also become common: in these cases, the proxy is configured as a mirror of
some protected internal file system area, copying changed files to the less secure external area
periodically.

Other technologies that are commonly used to implement firewalls include application-level
proxies and routers. With these approaches, small fragments of user-supplied code (or programs obtained
from the firewall vendor) are permitted to examine the incoming and outgoing packet streams. These
programs run in a loop, waiting for the next incoming or outgoing message, performing an acceptance test
upon it, and then either discarding the message or permitting it to continue. The possibility of logging the
message and maintaining additional statistics on traffic is also commonly supported.

The major problem associated with firewall technologies is that they represent a single point of
failure: if the firewall is breached, the intruder may gain essentially free run of the enclosed system.
Intruders may know of ways to attack specific firewalls, perhaps learned through study of the code used to
implement the firewall, secret backdoor mechanisms included by the original firewall developers for
reasons of their own, or by compromising some of the software components included into the application
itself. Having broken in, it may be possible to establish connections to servers that will be fooled into
trusting the intruder or to otherwise act to attack the system from within. Reiterating the point made
above, an increasingly serious exposure is created by the explosive growth of telecommunications. In the
past, a dedicated “leased line” could safely be treated as an internal technology that links components of a
distributed system within its firewall. As we move into the future, such a line must be viewed as a
potential point of intrusion.

These considerations are increasingly leading corporations to implement what are calledvirtual
private networksin which communication is authenticated (typically using a hardware signature scheme)
so that all messages originating outside of the legitimately accepted sources will be rejected. In settings
where security is vital, these sorts of measures are likely to considerably increase the robustness of the
network to attack. However, the cost remains high, and a consequence it seems unlikely that the
“average” network will offer this sort of cryptographic protection for the forseeable future. Thus, while
the prospects for strong security may be promising in certain settings, such as military systems or
electronic banking systems, the more routine computing environments on which the great majority of
sensitive applications in fact run remain open to a great variety of attacks and are likely to continue to
have such exposures well into the next decade.

This situation may seem pessimistic, and yet in many respects, the story is far from over.
Although it may seem extremely negative to think in such terms, it is probable that future information
terrorists and warfare tactics will include some of these forms of attack and perhaps others that are hard to
anticipate until they have first been experienced. Short of a major shift in mindset on the part of vendors,
the situation is very likely to improve, and even then, we may need to wait until a generation of new
technologies has displaced the majority of the existing infrastructure, a process that takes some 10 to 15
years at the time of this writing. Thus, information security is likely to remain a serious problem at least
until the year 2010 or later.

Kenneth P. Birman - Building Secure and Reliable Network Applications374

374

Although we will now move on to other topics in security, we note that defensive management
techniques can be coupled with security-oriented wrappers to raise the barriers in systems that use firewall
technologies for protection. We will return to this subject in Chapter 23.

19.2 Access Control Technologies
Access control techniques operate by restricting use of system resources on the basis of user or group
identifiers that are typically fixed at login time, for example by validation of a password. It is typical that
these policies trust the operating system, its key services, and the network. In particular, the login
program is trusted to obtain the password and correctly check it against the database of system passwords,
granting the user permission to work under the desired user-id or group-id only if a match is detected, the
login system trusts the file server or Network Information Server to respond correctly with database
entries that can be safely used in this authentication process, and the resource manager (typically, an NFS
server or database server) trusts the ensemble, believing that all packets presented to it as “valid NFS
packets” or “valid XYZbase requests” in fact originated at a trusted source.19

These many dependencies are only rarely enforced in a rigorous way. Thus, one could potentially
attack an access control system by taking over a computer, rebooting it as the “root” or “superuser”,
directing the system to change the user id to any desired value, and then starting to work as the specified
user. An intruder could replace the standard login program with a modified one, introduce a fake NIS
that would emulate the NIS protocol but substitute faked password records. One could even code one’s
own version of the NFS client protocol which, operating from user space as a normal RPC application,
could misrepresent itself as a trusted source of NFS requests. All of these attacks on the NFS have been
used successfully at one time or another, and many of the loopholes have been closed by one or more of
the major vendors. Yet the fact remains that file and database servers continue to be largely trusting of
the major operating system components on the nodes where they run and where their clients run.

Perhaps the most serious limitation associated with access control mechanisms is that they
generally do not extend to the communication subsystem: typically, any process can issue an RPC message

19 Not all file systems are exposed to such problems. For example, the AFS file system has a sophisticated stateful
client-server architecture that is also much more robust to attack. AFS has become popular, but remains much less
widely used than NFS.

Figure 19-2: A long-haul connection internal to a distributed system (gray) represents a potential point of attack.
Developers often protect systems with firewalls on the periphery but overlook the risk that the communications
infrastructure may itself be compromised, offering the intruder a back-door into the protected environment.
Although some corporations are protecting themselves against such threats using encryption techniques to create
virtual private networks, most “mundane” communication systems are increasingly at risk.

Chapter19: Security Options for Distributed Settings 375

375

to any address it wishes to place in a message, and can attempt to connect to any stream endpoint for
which it possesses an address. In practice, these exposures are hard to exploit because a process that
undertakes to do so will need to guess the addresses being used by the applications is attacks. Precisely to
reduce this risk, many applications exploitrandomly generatedendpoint addresses, so that an intruder
would be forced to guess a large pseudo-random number to break into a critical server. However, pseudo-
random numbers may be less random than intended, particularly if an intruder has access to the pseudo-
random number generation scheme and samples of the values recently produced.

Such break-ins are more common than one might expect. For example, in 1994 an attack on
X11 servers was discovered in which an intruder found a way to deduce the connection port number that
would be used. Sending a message that would cause the X11 server to prepare to accept a new connection
to a shell command window, the intruder instead managed to connect to the server and to send a few
commands to it. Not surprisingly, this proved sufficient to open the door to a full-fledged penetration.
Moreover, the attack was orchestrated in such a manner as to trick typical firewalls into forwarding these
poisoned messages even through the normal firewall protection policy should have required that they be
rejected. Until the nature of the attack was understood, the approach permitted intrusion into a wide
variety of firewall protected systems.

To give some sense of how exposed typical distributed systems currently are, the following table
presents some of the assumptions made by the NFS file server technology when it is run without the
security technology available from some vendors (in practice, NFS security is rarely enabled in systems
that are protected by firewalls; the security mechanisms are hard to administer in heterogeneous
environments and can slow the NFS system down significantly). We have listed typical assumptions of
the NFS, the normal reason that this assumption holds, and one or moreattacks that operate by emulation
of the normal NFS environment in a way that the server is unable to detect. The statelessness of the NFS
server makes it particularly easy to attack, but most client-server systems have similar dependencies and
hence are similarly exposed.

NFS assumption Dependent on...
O/S integrity NFS protocol messages originate only in trusted subsystems or the kernel
Attacks: introduce a computer running an “open” operating system, modify the NFS subsystem.
Develop a user-level program that implements the NFS client protocol, use it to emulate a legitimate
NFS client issuing requests under any desired user id.
Authentication Assumes that user and group ID information is valid
Attacks:Spoof the Network Information Server or NFS response packets so that authentication will be
done against a falsified password database. Compromise the login program. Reboot the system or
login using the “root” or “superuser” account; then change the user id or group id to the desired one
and issue NFS requests.
Network integrity Assumes that communication over the network is secure
Attacks:Intercept network packets, reading file system data and modifying data written. Replay NFS
commands, perhaps with modifications.

Figure 19-3: When the NFS security mechanisms are not explicitly enabled, many attacks become possible. Other
client-server technologies, including database technologies, often have similar security exposures.

One can only feel serious concern when these security exposures are contemplated against the
backdrop of increasingly critical applications that trust client-server technologies such asNFS. For
example, it is very common to store sensitive files on unprotected NFS servers. As we noted, there is an
NFS security standard, but it is vendor-specific, and hence may be impractical to use in heterogeneous
environments. A hospital system, for example, is necessarily heterogeneous: the workstations used in
such systems must interoperate with a great variety of special purpose devices and peripherals, produced
by many vendors. Thus, in precisely the setting one might hope would use strong data protection, one
typically finds priorietary solutions or unprotected use of standard file servers! Indeed, many hospitals

Kenneth P. Birman - Building Secure and Reliable Network Applications376

376

might be prevented from using a strong security policy because so many individuals potentially need
access to a patient record that any form of restriction would effectively be nullified.

Thus, in a setting where protection of data is not just important but is actually legally mandated,
it may be very easy for an intruder to break in. While such an individual might find it hard to walk up to
a typical hospital computing station and break through its password protection, by connecting a portable
laptop computer to the hospital ethernet (potentially a much easier task), it would often be trivial to gain
access to the protected files stored on the hospitals servers. Such security exposures are already a
potentially serious issue, and the problem will only grow more serious with time.

When we first discussed the NFS security issues, we pointed out that there are other file systems
that do quite a bit better in this regard, such as the AFS system developed originally at Carnegie Mellon
University, and now commercialized by Transarc.AFS, however, is not considered to be standard and
many vendors provide NFS as part of their basic product line, while AFS is a commercial product from a
third party. Thus, the emergence of more secure file system technologies faces formidable practical
barriers. It is unfortunate but entirely likely that the same is true for other reliability and security
technologies.

19.3 Authentication Schemes and Kerberos
The weak points of typical computing environments are readily seen to be their authentication
mechanisms and their blind trust in the security of the communication subsystem. Best known among the
technologies that respond to these issues is MIT’s Kerberos system, developed as part of Project Athena.

Kerberos makes use of encryption, hence it will be useful to start by reviewing the existing
encryption technologies and their limitations. Although a number of encryption schemes have been
proposed, the most popular ones at the time of this writing are the RSA public key algorithms and the
DES encryption standard.

19.3.1 RSA and DES
RSA [RSA78] is an implementation of a public key cryptosystem [DH79] that exploits properties of
modular exponentiation. In practice, the method operates by generating pairs ofkeysthat are distributed
to the users and programs within a distributed system. One key within each pair is theprivate keyand is
kept secret. The other key ispublic, as is an encryption functioncrypt(key, object). The encryption
function has a number of useful properties. Suppose that we denote the public key of some user as K and
the private key of that user as K-1. Thencrypt(K,crypt(K-1, M)) = crypt(K-1,crypt(K, M)) = M. That is,
encryption by the public key will decrypt an object encrypted previously with the private key, and vice
versa. Moreover, even if keys A and B are unrelated, encryption is commutative:crypt(A,crypt(B, M)) =
crypt(B,crypt(A, M)).

In typical use, public keys are published in some form of trusted directory service [Bir85, For95].
If process A wants to send a secure message to process B, that could only have originated in process A and
can only be read by process B, A sendscrypt(A-1,crypt(B, M)) to B, and B computescrypt(B-1,crypt(A,
M)). to extract the message. Here, we have used A and A-1 as shorthand’s for the public and private keys
of process A, and similarly for B. A can send a message that only B can read by computing the simpler
crypt(B, M), and can sign a message to prove that the message was seen by A by attachingcrypt(A-1,
digest(M)) to the message, wheredigest(M) is a function that computes some sort of small number that
reflects the contents of M, perhaps using an error-correcting code for this purpose. Upon reception, a
process B can compute the digest of the received message and compare this with the result of decrypting
the signature sent by A using A’s public key. The message can be validated by verifying that these values
match [Den84].

Chapter19: Security Options for Distributed Settings 377

377

A process can also be asked to encrypt or sign a blinded message when using the RSA scheme.
To solve the former problem, process A is presented with M’ =crypt(B, M). If A computes M’’ =
crypt(A-1, M’) than crypt(B-1,M’’) will yield crypt(A-1, M) without A having ever seen M. Given an
appropriate message digest function, the same approach also allows a process to sign a message without
being able to read that message.

In contrast, the DES standard [DES77, DH79] is based on shared secret keys, in which two users
or processes that exchange a message will both have a copy of the key for messages sent between them.
Separate functions are provided for encryption and decryption of a message. Like the RSA scheme, DES
can also be used to encrypt a digest of a message as a proof that the message has not been tampered with.
Blinding mechanisms for DES are, however, not available at the present time.

DES is the basis of a government standard which specifies a standard key size and can be
implemented in hardware. Although the standard key size is large enough to provide security for most
applications, the key is still small enough to permit it to be broken using a supercomputing system or a
large number of powerful workstations in a distributed environment. This is viewed by the government as
a virtue of the scheme, because the possibility is thereby created of decrypting messages for purposes of
criminal investigation or national security. When using DES, it is possible to convert plain text (such as a
password) into a DES key; in effect, a password can be used to encrypt information so that it can only be
decrypted by a process that also has a copy of that password. As will be seen below, this is the central
feature that makes possible DES-based authentication architectures such as the Kerberos one [SNS88,
Sch94].

More recently, a security standard has been proposed for use in telecommunications
environments. This standard, Capstone, was designed for telephone communication but is not specific to
telephony, and involves a form of key for each user and supports what is calledkey escrowwhereby the
government is able to reconstruct the key by combining two portions of it, which are stored in secure and
independent locations [Den96]. The objective of this work is to permit secure and private use of
telephones while preserving the government’s right to wiretap with appropriate court orders. The Clipper
chip, which implements Capstone in hardware, is also used in the Fortezza PCMCIA card, described
further in Section 19.3.4.

Both DES and the Capstone security standard are the subjects of vigorous debate. On the one
hand, such methods limit privacy and personal security, because the government is able to break both
schemes and indeed may have taken steps to make them easier to break than is widely appreciated. On
the other hand, the growing use of information systems by criminal organizations clearly poses a serious
threat to security and privacy as well, and it is obviously desirable for the government to be able to combat
such organizations. Meanwhile, the fundamental security of methods such as RSA and DES is not
known. For example, although it is conjectured that RSA is very difficult to break, in 1995 it was shown
that in some cases, information about the amount of time needed to compute thecrypt function could
provide data that substantially reduces the difficulty of breaking the encryption scheme. Meanwhile,
clever uses of large numbers of computers have made it possible to break DES encryption unexpectedly
rapidly. These ongoing tensions between social obligations of privacy and security and the public
obligation of the government to oppose criminality, and between the strength of cryptographic systems
and the attacks upon them, can be expected to continue into the coming decades.

19.3.2 Kerberos
The Kerberos system is a widely used implementation of secure communication channels, based on the
DES encryption scheme [SNS88, Sch94]. Integrated into the DCE environment, Kerberos is currently a
de-facto standard in the UNIX community. The approach genuinely offers a major improvement in
security over that which is traditionally available within UNIX. Its primary limitation is that applications

Kenneth P. Birman - Building Secure and Reliable Network Applications378

378

using Kerberos must be modified to create communication channels using the Kerberos secure channel
facilities. Although this may seem to be a minor point, it represents a surprisingly serious one for
potential Kerberos users, since application software that makes use of Kerberos is not yet common.
Nonetheless, Kerberos has had some important successed; one of these is its use in the AFS system,
discussed earlier [Sat89].

The basic Kerberos protocols revolve around the use of a trusted authentication server which
creates session keys between clients and servers upon demand. The basic scheme is as follows. At the
time the user logs in, he presents a name and password to a login agent that runs in a trusted mode on the
user’s machine. The user can now create sessions with the various servers that he or she accesses. For
example, to communicate with an AFS server, the user requests that the authentication server create a new
unique session key and send it back in two forms, one for use by the user’s machine, and one for use by
the file server.

The authentication server, which has a copy of the user’s password and also the secret key of the
server itself, creates a new DES session key and encrypts it using the user’s password. A copy of the
session key encrypted with the server’s secret key is also included. The resulting information is sent back
to the user, where it is decrypted.

The user now sends a message to the remote server asking it to open a session. The server can
easily validate that the session key is legitimate, since it has been encrypted with its own secret key, which
could only have been done by the authentication server. The session key also contains trustworthy
information concerning the user id, workstation id, and the expiration time of the key itself. Thus, the
server knows with certainty who is using it, where they are working, and how long the session can remain
open without a refreshed session key.

It can be seen that there is a risk associated with the method described above, which is that it uses
the user’s password as an encryption key and hence must keep it in memory for a long period of time.
Perhaps the user trusts the login agent, but does not wish to trust the entire runtime environment over
long periods. A clever intruder might be able to simply walk up to a temporarily unused workstation and
steal the key from it, reusing it later at will.

Accordingly, Kerberos actually works by exchanging the user’s password for a type of one-time
password that has a limited lifetime and is stored only at aticket granting servicewith which a session is
established as soon as the user logs in. The user sends requests to make new connections to this ticket
granting service instead of to the original authentication service during the normal course of work, and it
encrypts them not with the user’s password, but with this one-time session key. The only threat is now
that an intruder might somehow manage to execute commands while the user is logged in (e.g. by sitting
down at a machine while the normal user is getting a cup of coffee). This threat is a real one, but minor
compared to the others that concern us. Moreover, since all the keys actually stored on the system have
limited validity, even if one is stolen, it can only be used briefly before it expires. In particular, if the
session key to the ticket granting service expires, the user is required to type in his or her password again,
and an intruder would have no way to obtain the password in this model without grabbing it during the
initial protocol to create a session with the ticket granting service, or by breaking into the authentication
server itself.

Once a session exists, communication to and from the file server can be done “in the clear”, in
which case the file server can use the user id information established during the connection setup to
authenticate file access, or can be signed, giving a somewhat stronger guarantee that the channel protocol
has not been compromised in some way, or even encrypted, in which case data exchanged is only

Chapter19: Security Options for Distributed Settings 379

379

accessible by the user and the server. In practice, the initial channel authentication, which also provides
strong authentication guarantees for the user id and group id information that will be employed in
restricting file access, suffices for most purposes. An overview of the protocol is seen in Figure 19-1.

The Kerberos protocol has been proved secure against most forms of attack [LABW92]; one of
the few dependencies being its trust in the system time servers, which are used to detect expiration of
session keys [BM90]. Moreover, the technology has been shown to scale to large installations using an
approach whereby authentication servers for multiple protection domains can be linked to create session
keys spanning wide areas. Perhaps the most serious exposure of the technology is that associated with
partitioned operation. If a portion of the network is cut off from the authentication server for its part of
the network, Kerberos session keys will begin expire and yet it will be impossible to refresh them with
new keys. Gradually, such a component of the network will lose the ability to operate, even between
applications and servers that reside entirely within the partitioned component. In future applications that
require support for mobility, with links forming and being cut very dynamically, the Kerberos design
would require additional thought.

A less obvious exposure to the Kerberos approach is that associated with active attacks on its
authentication and ticket-granting server. The server is a software system that operates on standard
computing platforms, and those platforms are often subject to attack over the network. For example, a
knowledgeable user might be able to concoct poison pill, by building a message that will look sufficiently
legitimate to be passed to some standard service on the node, but will then provoke the node into crashing
by exploiting some known intolerance to incorrect input. The fragility of contemporary systems to this
sort of attack is well known to protocol developers, many of whom have the experience of repeatedly
crashing the machines with which they work during the debugging stages of a development effort. Thus,
one could imagine an attack on Kerberos or a similar system aimed not at breaking through its security
architecture, but rather at repeatedly crashing the authentication server, with the effect of denying service
to legitimate users.

Kerberos supports the ability to prefabricate and cache session keys (tickets) for current users,
and this mechanism would offer a period of respite to a system subjected to a denial of service attach.
However, after a sufficient period of time, such an attack would effectively shut down the system.

Within military circles, there is an old story (perhaps not true) about an admiral who used a new
generation of information-based battle management system in a training exercise. Unfortunately, the
story goes, the system had an absolute requirement that all accesses to sensitive data be logged on an
“audit trail”, which for that system was printed on a protected lineprinter. At some point during the
exercise the line printer jammed or ran low on paper, hence the audit capability shut down. The system,
now unable to record the required audit records, therefore denied the admiral access to his databases of
troup movements and enemy positions. Moreover, the same problem rippled through the system,
preventing all forms of legitimate but sensitive data access.

The developer of a secure system often thinks of his or her task as being to protect critical data
from the “bad guys”. But any distributed system has a more immediate obligation which is to make data
and critical services available to the “good guys”. Denial of service in the name of security may be as
serious a problem as providing service to an unauthorized user. Indeed, the admiral in the story is now
said to have a profound distrust of computing systems. Having no choice but to use computers, in his
command the security mechanisms are disabled. (The military phrase is that “he runs all his computers
at system high”). This illustrates a fundamental point which is overlooked by most security technologies
today: security cannot be treated independent of other aspects of reliability.

Kenneth P. Birman - Building Secure and Reliable Network Applications380

380

19.3.3 ONC security and NFS
SUN Microsystems Inc. has developed an RPC standard around the protocols used to communicate with
NFS servers and similar systems, which it calls Open Network Computing (ONC). ONC includes an
authentication technology that can protect against most of the spoofing attacks described above. Similar
to a Kerberos system, this technology operates by obtaining unforgable authorization information at the
time a user logs into a network. The NFS is able to use this information to validate accesses as being from
legitimate workstations and to strengthen its access control policies. If desired, the technology can also
encrypt data to protect against network intruders who monitor passing messages.

Much like Kerberos, the NFS security technology is considered by many users to have limitations
and to be subject to indirect forms of attack. Perhaps the most serious limitations are those associated
with export of the technology: companies such as SUN export their products and US government
restrictions prevent the export of encryption technologies. As a result, it is impractical for SUN to enable
the NFS protection mechanisms by default, and in fact impractical to envision an open standard that
would allow complete interoperability between client and server systems from multiple vendors (the
major benefit of NFS), while also being secure through this technology. The problem here is theobvious
one: not all client and server systems are manufactured in the United States!

Beyond the heterogeneity issue is the problem of management of a security technology in
complex settings. Although ONC security works well for NFS systems in fairly simple systems based
entirely on SUN products, serious management challenges arise in complex system configurations with
users spread over a large physical area, or in systems that use heterogeneous hardware and software
sources. With security disabled, these problems vanish. Finally, the same availability issues raised in our
discussion of Kerberos pose a potential problem for ONC security. Thus it is perhaps not surprising that
these technologies have not been adopted on a widespread basis. Such considerations raise the question of
how one might “wrap” a technology such as NFS that was not developed with security in mind, so that
security can be superimposed without changing the underlying software. One can also ask about
monitoring a system to detect intrusions as an pro-active alternative to hardening a system against
intrusions and then betting that the security scheme will in fact provide the desired protection. We discuss
these issues in Chapter 23, below.

19.3.4 Fortezza
Fortezza is a recently introduced hardware-based security technology oriented towards users of portable
computers and other PC-compatible computing systems [Fort95, Den96]. Fortezza can be understood
both as an architecture and as an implementation of that architecture. In this section, we briefly described
both perspectives on the technology.

Viewed as an architecture, Fortezza represents a standard way to attach a public-key
cryptographic protocol to a computer system. Fortezza consists of a set of software interfaces which
standardize the interface to its cryptographic engine, which is itself implemented as a hardware device
that plugs into the PCMCIA slot of a standard personal computer. The idea is that a variety of hardware
devices might eventually exist that are compatible with this standard. Some, such as a military security
technology, might be highly restricted and not suitable for export; others, such as an internally accepted
security standard for commercial transactions might be less restricted and safe for export. By designing
software systems to use the Fortezza interfaces, the distributed application becomes independent of its
security technology and very general. Depending upon the Fortezza card that is actually used in a given
setting, the security properties of the resulting system may be strengthened or weakened. When no
security is desired at all, the Fortezza functions become no-ops: calls to them take no action and are
extremely inexpensive.

Chapter19: Security Options for Distributed Settings 381

381

Viewed as an implementation, Fortezza is an initial version of a credit-card sized PCMCIA card
compatible with the standard, and of the associated software interfaces implementing the architecture.
The initial Fortezza cards use the Clipper chip, which implements a cryptographic protocol called
Capstone. For example, the interfaces define a functionCI_Encrypt and a functionCI_Decrypt that
respectively convert a data record provided by the user into and out of its encrypted form. The initial
version of the card implements the “Capstone” cryptographic integrated circuit. It stores the private key
information needed for each of its possible users, and public keys needed for cryptography. The card
performs the digital signature and hash functions needed to sign messages, provides public and private
key functions, and supports block data encryption and decryption at high speeds. Other cards could be
produced that would implement other encryption technologies using the same interfaces, but different
methods.

Although we will not discuss this point in the present text, readers should be aware that Fortezza
supports what is calledkey escrow[Den96], meaning that the underlying technology permits a third party
to assemble the private key of a Fortezza user from information stored at one or more trusted locations
(two, in the specific case of the Capstone protocol). Key escrow is controversial because of public
concerns about the degree to which the law enforcement authorities who maintain these locations can
themselves be trusted, and about the security of the escrow databases. On the one hand, it can be argued
that in the absense of such an escrow mechanism, it will be easy for criminals to exploit secure
communications for illegal purposes such as money laundering and drug transactions. Key escrow
permits law enforcement organizations to wiretap such communication. But on the other side of the coin,
one can argue that the freedom of speech should extend to the freedom to encrypt data for privacy. The
issue is an active topic of public debate.

Described coarsely, many authentication schemes are secure either because of something the user
“knows”, which is used to establish authorization, or something the user “has”. Fortezza is designed to
have both properties: each user is expected to remember a personal identification code (PIN), and the card
cannot be used unless the PIN has been entered reasonably recently. At the sametime, the card itself is
required to perform secure functions, and stores the user’s private keys in a trustworthy manner. When a
user correctly enters his or her PIN, Fortezza behaves according to a standard public key encryption
scheme, as described earlier. (As an aside, it should be noted that the Clipper-based Fortezza PCMCIA
card does not implement this PIN functionality).

To authenticate a message as coming from user A, such a scheme requires a way to determine
the public key associated with user A. For this purpose, Fortezza uses a secured X.500-compatible
directory, in which user identifications are saved with what are called“certificates”. A certificate consists
of: a version number, a serial number, the issuer’s signature algorithm, the issuer’s distinguished name
validity period (after which the name is considered to have expired), the subject’s distinguished name, the
subject’s public key, and the issuer’s signature for the certificate as a whole. The “issuer” of a certificate
will typically be an X.500 server administered by a trusted agency or entity on behalf of the Fortezza
authentication domain.

In a typical use, Fortezza is designed with built-in knowledge of the public keys associated with
the trusted directory services that are appropriate for use in a given domain. A standard protocol is
supported by which these keys can be refreshed prior to the expiration of the “distinguished name” on
behalf of which they were issued. In this manner, the card itself knows whether or not it can trust a given
X.500 directory agent, because the certificates issued by that agent are either correctly and hence securely
signed, or are not and hence are invalid. Thus, although an intruder could potentially mascarade as an
X.500 directory server, without the private key information of the server it will be impossible to issue
valid certficates and hence to forge public key information. Short of breaking the cryptographic system
itself, the intruder’s only option is to seek to deny service by somehow preventing the Fortezza user from
obtaining needed public keys. If successful, such an attack could in principle last long enough for the

Kenneth P. Birman - Building Secure and Reliable Network Applications382

382

“names” involved to expire, at which point the card must be reprogrammed or replaced. However,
secured information will never be revealed even if the system is attacked in this manner, and incorrect
authentication will never occur.

Although Fortezza is designed as a PCMCIA card, the same technology could be implemented in
a true credit card with a microprocessor embedded into it. Such a system would then be a very suitable
basis for commercial transactions over the Internet. The primary risk would be one in which the computer
itself becomes compromised and takes advantage of the user’s card and PIN during the period when both
are present and valid to perform undesired actions on behalf of that user. Such a risk is essentially
unavoidable, however, in any system that uses software as an intermediary between the human user and
the services that he or she requests. With Fortezza or a similar technology, the period of vulnerability is
kept to a minimum: it holds only for as long as the card is in the machine, the PIN entered, and the
associated timeout has not yet occured. Although this still represents an exposure, it is difficult to see how
the risk could be further reduced.

19.4 Availability and Security
Recent research on the introduction of availability into Kerberos-like architectures has revealed
considerable potential for overcoming the availability limitations of the basic Kerberos approach. As we
saw above, Kerberos is dependent upon the availability of its authentication server for the generation of
new protection keys. Should the server fail or become partitioned away from the applications that depend
up it, the establishment of new channels and the renewal of keys for old channels will cease to be possible,
eventually shutting down the system.

In a doctoral dissertation based on an early version of the Horus system, Reiter showed that
process groups could be used to build highly available authentication servers [RBG92,RBR95, Rei93,
Rei94a, Rei94b]. His work included a secure join protocol for adding new processes to such a group,
methods for securely replicating data and for securing the ordering properties of a group communication
primitive (including the causal property), and an analysis of availability issues that arise in key
distribution when such a server is employed. Interestingly, Reiter’s approach does not require that the
time service used in a system like Kerberos be replicated: his techniques have a very weak dependency on
time.

Process group technologies permit Reiter to propose a number of exotic new security options as
well. Still working with Horus, he explored the use of “split secret” mechanisms to ensure that in a group
of n processes [HT87, Des88, Fra89, LH91, DFY92, FD92], the availability of anyn-k members would
suffice to maintain secure and available access to that group. In this work, Reiter uses a state machine
approach: the individual members have identical states and respond to incoming requests in identical
manner. Accordingly, his focus was on implementing state machines in environments with intruders, and
on signing reponses in such a way thatn-k signatures by members would be recognizable as a “group
signature” carrying the authority of the group as a whole.

A related approach can be developed in which the servers split a secret in such a manner that
none of the servers in the group has access to the full data, and yet clients can reconstruct the data
provided thatn-k or more of the servers are correct. Such a split secret scheme might be useful if the
group needs to maintain a secret that none of its individual members can be trusted to manage
appropriately.

Techniques such as these can be carried in many directions. Reiter, after leaving the Horus
project, started work on a system called Rampart at AT&T [Rei96]. Rampart provides secure group
functionality under assumptions of Byzantine failures, and would be used to build extremely secure group-

Chapter19: Security Options for Distributed Settings 383

383

based mechanisms for use by less stringently secured applications in a more general setting. For example,
Rampart could be the basis of an authentication service, a service used to maintain billing information in a
shared environment, a digital cash technology, or a strongly secured firewall technology.

Cooper, also working with Horus, has explored the use of process groups as a “blinding
mechanism.” The concept here originated with work by Chaum, who showed how privacy can be
enforced in distributed systems by mixing information from many sources in a manner that prevents an
intruder from matching an individual data item to its source or tracing a data item from source to
destination [Cha81]. Cooper’s work shows how a replicated service can actually mix up the contents of
messages from multiple sources to create a private and secure email repository [Coo94]. In his approach,
the process-group based mail repository service stores mail on behalf of many users. A protocol is given
for placing mail into the service, retrieving mail from it, and for dealing with “vacations”; the scheme
offers privacy (intruders cannot determine sources and destinations of messages) and security (intruders
cannot see the contents of messages) under a variety of attacks, and can also be made fault-tolerant
through replication.

Intended for large-scale mobile applications, Cooper’s work would permit exchanging messages
between processes in a large office complex or a city without revealing the physical location of the
principals. Such services might be popular among celebrities who need to arrange romantic liaisons using
portable computing and telephone devices; today, this type of communication is notoriously insecure.
More seriously, the emergence of digital commerce may exposure technology users to very serious
intrusions on their privacy and finances. Work such as Reiter’s, Chaum’s and Cooper’s suggests that
security and privacy should be possible even with the levels of availability that will be needed when
initiating commercial transactions from mobile devices.

19.5 Related Readings
On Kerberos: [SNS88, Sch94]. Associated theory [LABW92, BM90]. RSA and DES: [DH79, RSA78,
DES88, Den84]. Fortezza: most information is online, but [Den96] includes a brief review. Rampart:
[RBG92, RBR95, Rei93, Rei94a, Rei94b]. Split-key cryptographic techniques and associated theory:
[HT87, Des88, Fra89, LH91, DFY92, FD92]. Mixing techniques [Cha81, Coo94, CB95].

Kenneth P. Birman - Building Secure and Reliable Network Applications384

384

20. Clock Synchronization and Synchronous Systems
Previous sections of this book have made a number of uses of clocks ortime in distributed protocols. In
this chapter, we look more closely at the underlying issues. Our focus is on aspects of “real-time
computing” that are specific to distributed protocols and systems, since a full treatment of the topic would
merit a book of its own.

20.1 Clock Synchronization
Clock synchronization is an example of a topic that until the recent past represented an important area for
distributed systems research [LAM84, LM85, Mar84, LM85, KO87, ST87, Cri89, CF94, VR92, CM96],
overviews of the field can be found in [SWL90] and [Lis93]. The introduction of the global positioning
system, in the early 1990’s, greatly changed the situation. As recently as five years ago, a textbook such
as this would have treated the problem in considerable detail, to the benefit of the reader because the topic
is an elegant one and the clock-based protocols that have been proposed are interesting to read and
analyze. Today, however, it seems more appropriate to touch only briefly on the subject.

The general problem of clock synchronization arises because the computers in a distributed
system typically use internal clocks as their primary time source. On most systems, these clocks are
accurate to within a few seconds per day, but there can be surprising exceptions to the rule. PC’s, for
example, may operate in “power-saving” modes in which even the clock is slowed down or stopped,
making it impossible for the system to gauge real-time reliably. At the other end of the spectrum, the
global positioning system (GPS) has introduced an inexpensive way to obtain accurate timing information
using a radio receiver;time obtained in this manner is accurate to within a few milliseconds unless the
GPS signal itself is distorted by unusual atmospheric conditions or problems with the antenna used to
receive the signal.

Chapter20: Clock Synchronization and Synchronous Systems 385

385

Traditionally, clock synchronization was treated in the context of a group of peers, each
possessing an equivalent local clock, with known accuracy and drift properties. The goal in such a system
was typically to design an agreement protocol by which the clocks could be kept as close as possible to
“real-time” and with which the tendency of individual clocks to drift (from one another and to do so with
respect to real-time) could be controlled. To accomplish this, processes in such a system would
periodically exchange time readings, running a protocol by which a software clock could be constructed
having substantially better properties than that of any of the individual participating programs, and with
the potential to overcome outright failures whereby a clock might drift at an excessive rate or return
completely erroneous values.

Key parameters to such a protocol are the expected and maximum communication latencies of
the system. It can be shown that these values limit the quality of clock synchronization achievable in a
system by introducing uncertainty in the values exchanged between processes. For example, if the latency
of the communication system betweenp andq is known to vary in the range [0,ε], any clock reading that
p sends toq will potentially be aged byε time units by the timeq receives it. Whenlatency is also
bounded below, a method developed by Verissimo (briefly presented below) can achieve clock precisions
bounded by thevariation in latency. In light of the high speed of modern communication systems, these
limits represent a remarkably high degree of synchronization: it is rarely necessary to time events to
within accuracy’s of a millisecond or less, and these limits tell us that it should be possible to synchronize
clocks to that degree if desired.

MARS: A Distributed Systems for Real-Time Control

The MARS system uses clock synchronization as the basis of an efficient fault-tolerance method,
implemented using pairs of processing components interconnected by redundant communication
links. The basic approach is as follows [DRSK89, KO87, KV93].

A very high quality of clock synchronization is achieved using a synchronization method that resides
close to the hardware (a broadcast-style bus). Implemented in part using a special purpose device
controller, clocks can be synchronized to well under a millisecond, and if a source of accurate timing
information is available, can be both precise and accurate to within this degree of precision.

Applications of MARS consist of directly controlled hardware, such as robotic units or components
of a vehicle. Each processor is duplicated as is the program that runs on it, and each action is taken
redundantly. Normally, every message will be sent four times: once by each processor on each
message bus. The architecture is completely deterministic in the sense that all processes see the
same events in the same order and base actions on synchronized temporal information in such a way
that even clock readings will be identical when identical tasks are performed. Software tools for
scheduling periodic actions and for performing actions after a timer expires are provided by the
MARS operating system, which is a very simple execution environment concerns primarily with
scheduling and message passing.

MARS is designed for very simple control programs, and assumes that these programs fail by
halting (the programs are expected to self-check their actions for “sanity” and shut down if an error
is detected). In the event that a component does fail, this can be detected by the absense of messages
from it, or their late arrival. Such a failed component is taken off line for replacement, and
reintegrated back into the system the next time it is restarted from scratch. These assumptions are
typical of in-flight systems for aircraft and of factory-floor process control systems.

Although MARS is not a particularly elaborate or general technology, it is extremely effective
within its domain of “intended use.” The assumptions made are felt to be reasonable ones for this
class of applications, and although there are limitations on the classes of failures that MARS can
tolerate, the system is also remarkably simple and modular, benefiting precisely from those
limitations and assumptions. The performance of the system is extremely good for the same reasons.

Kenneth P. Birman - Building Secure and Reliable Network Applications386

386

Modern computing systems face a form of clock synchronization problem which is easier to solve
than the most general version of the problem. If such systems make use of time at all, it is common to
introduce two or more GPS receivers, in this manner creating some number of system time sources.
Devices consisting of nothing more than a GPS receiver and a network interface can, for example, be
placed directly on a shared communication bus. The machines sharing that bus will now receivetime
packets at some frequency, observing identical values at nearly identical time.

If the device driver associated with the network device is able to identify these incoming time
packets, it can be used to set the local clock of the host machine to extremely high precision; even if not,
an application should be able to do so with reasonable accuracy. Given data for the average access and
propagation delays for packets sent over the communications hardware, the associated latency can be
added to the incoming time value, producing an even more accurate result. In such a manner, systems in
which real-time is important can synchronize processor clocks to within milliseconds,obviating the need
for any more sophisticated application-level synchronization algorithm. After all, the delays associated
with passing a message through an operating system up to the application, with scheduling the application
process if it was in a blocked state, and with paging in the event of a possible page fault, are all large
compared with the clock accuracy achievable in this manner. Moreover, it is very unlikely that a GPS

time source would fail other than by
crashing. Were non-crash failures a
concern, a simple solution would be to
collect sets of readings from three GPS
sources, exclude the outlying values, and
take the remaining value as the correct
one.

In light of this development, it
has become desirable to consider
distributed computing systems as falling
into two classes. Systems in which time
is important for reliability can readily
include accurate time sources and should
do so. Systems in which time is not
important for reliability should be
designed to avoid all use of workstation
clock values, using elapsed time on a

Figure 20-1: The global positioning system is a satellite network
that broadcasts highly accurate time values worldwide. Although
intended for accurate position location, GPS systems are also
making accurate real-time information available at low cost.

Accuracy is a characterization of the degree to which a correct clock can differ from an external
clock that gives the “true” time. A clock synchronization protocol that guarantees highly accurate
clocks thus provides the assurance that a correct clock will return a value within some known
maximum error of the value that the external clock would return. In some settings, accuracy is
expressed as an absolute bound; in others, accuracy is expressed as a maximum rate of drift: in this
latter case, the accuracy of the clock at a given time is a function of how long the clock has been
free-running since the last round of the synchronization protocol.

Skewis a measure of the difference between clock readings for a pair of processes whose clocks have
been sampled at the same instant in real-time.

Precision is a characterization of the degree to which any pair of correct clocks can differ over
time. Like accuracy, a precision may be given as a constant upper bound on the skew, or as a
maximum rate of drift of the skews for pairs of correct clocks.

Figure 20-2: Definitions of accuracy, skew, and precision for synchronized clocks in distributed settings.

Chapter20: Clock Synchronization and Synchronous Systems 387

387

local clock to trigger timer based events such as retransmission of messages or timeout, but not
exchanging time values between processes or making “spurious” use of time. For the purposes of such
elapsed timers, the clocks on typical processors are more than adequate: a clock that is accurate to a few
seconds per day will measure a 100ms timeout with impressive accuracy.

Where clocks are known to drift, Verissimo and Rodriguez have suggested an elegant method for
maintaining very precise clocks [VR92,see alsoCM96]. This protocol, calleda-posteriori clock
synchronization, operates roughly as follows. A process other than the GPS receiver initiates clock
synchronization periodically (for fault-tolerance, two or more processes can run the algorithm
concurrently). Upon deciding to synchronize clocks, this process sends out aresynchronizemessage,
including its own clock value in the message, and setting this value as close as possible to when the
message is transmitted on the wire. For example, the device driver can set the clock field in the header of
an outgoing message just before setting up the DMA transfer to the network.

Upon arrival in destination machines, each recipient notes its local clock value, again doing this
as close as possible to the wire. The recipients send back messages containing their clock values at the
time of the receipt. The difference between these measured clock values and that of the initiator will be
latency from the initiator to the receivers plus the drift of the recipient’s clock relative to the clock of the
initiator. Thus, if the initiator believes it to be three o’clock and the latency of communication is 1ms, the
value -31ms would correspond to a recipient whose clock was showing 32ms before three o’clock when
the initiator sent the message, while the value 121ms would be returned by a process whose clock read
three o’clock plus 120ms at the time the initiator sent the message. Variations in latency will cause these
values to be slightly higher or lower than in this example: perhaps -31.050ms or 120.980ms.

The synchronization algorithm now selects one of the participant’s as the “official clock” of the
system. It does so either by selecting a value returned from a process with a GPS receiver, if one is
included, or by sorting the returned differences and selecting the median. It subtracts this value from the
other differences. The vector will now have small numbers in it if, as assumed, the latency from initiator
to participants is fairly constant over the set. The values in the vector will represent the distance that the
corresponding participant’s clock has drifted with respect to the reference clock. Given an estimate of the
message latency between the reference process and the initiator, the initiator can also compute the drift of
its own clock. For example, a process may learn that its clock has drifted by -32ms since the last
synchronization event. Any sort of reliable multicast protocol can be used to return the correction factors
to the participants.

To actually correct a clock that has drifted, it is common to use an idea introduced by Srikanth
and Toueg. The approach involves gradually compensating for the drift under the assumption that the
rate of drift is constant. Thus, if a process has drifted 120ms over a 1 minute period, the clock might be
modified in software to introduce a compensating drift rate of -240ms over the next minute, in this
manner correcting both the original 120ms and overcoming the continuing 120ms drift of its clock during
the period. Such an adjustment occurs gradually, avoiding noticeable jumps in the clock value that might
confuse an application program.

The above discussion has oversimplified the protocol: the method is actually more complicated
because it needs to account for a variety of possible failure modes; this is done by running several rounds
of the protocol and selecting, from among the “candidate clocks” that appears best in each round, that
round and clock for which the overall expected precision and accuracy is likely to be best.

Verissimo and Rodriguez’s algorithm is optimally precise but not necessarily the best for
obtaining optimal accuracy: the best known solution to that problem is the protocol of Srikanth and Toueg
mentioned above. However, when a GPS receiver is present in a distributed system that has a standard

Kenneth P. Birman - Building Secure and Reliable Network Applications388

388

broadcast-style LAN architecture, the a-posteriori method will be optimal in both respects: accuracy and
precision, with clock accuracies that are comparable in magnitude to the variation in message latencies
from initiator to recipients. These variations can be extremely small: numbers in the tens of microseconds
are typical. Thus, in a world-wide environment with GPS receivers one canimagine an inexpensive
software and hardware combination that permits processes, anywhere in the world, to measure time
accurately to a few tens of microseconds. Accuracies such as this are adequate for even very demanding
real-time uses.

Unfortunately, neither of these methods is actually employed by typical commercial computing
systems. At the time of this writing, the situation is best characterized as a transitional one. There are
well known and relatively standard software clock synchronization solutions available for most networks,
but the standards rarely span multiple vendor systems. Heterogeneous networks are thus likely to exhibit
considerable time drift from processor to processor. On the other hand, most workstations have time
sources available that can be trusted in a crude way, at a resolution of seconds or tens of seconds. This is
fortunate, because the use of time is growing in applications such as security systems, where session keys
and other generated secrets are normally viewed as having limited lifetimes. Thus, security systems may
depend upon their time sources for correct behavior. Meanwhile, vendors seem to be closer and closer to
including GPS recievers as a standard component of network servers, making cheap and accurate time
more and more standard. The a-posteriori protocol, if used widely, could result in a situation where all
computers world-wide would share clocks synchronized to within a few hundred microseconds, a
development that would facilitate major advances in communication support for video-on-demand and
group conferencing systems.

20.2 Timed-asynchronous Protocols
Given a network of computers that share an accurate time source, it is possible to design broadcast
protocols that guarantee real-time properties as well as other properties, such as failure atomicity or totally
ordered delivery. The best known work in this area is that of Cristian, Arghili, Strong and Dolev and is
widely cited as the CASD protocol suite or the∆-T atomic broadcast protocols [CASD85, CSDA90].
These protocols are designed for a static membership model, although Cristian later extended the network
model to dynamically track the formation and merging of components in the event of network partitioning
failures, again with real-time guarantees on the resulting protocols. In the remainder of this section, we
present these protocols in the simple case where processes fail only by crashing or by having clocks that
lie outside of the acceptable range for correct clocks, and where messages are lost but not corrupted. The
protocols have often been called “synchronous” ones in the literature, but Cristian currently favors the
term timed asynchronous[CS95], and this is the one we use here.

The CASD protocols seek to guarantee that during a period of time during which some set of
processes arecontinuously operationaland connected, they will deliver the same messages at the same
time and in the same order. There is a subtlety here, to which we will return below: a process may not be
able to detect that it has been non-operational for a period of time, and hence that it may not be
guaranteed to see correct behavior from the protocols. But we start by considering the simple scenario of
a network consisting of a collection ofn processes,k of which may be faulty. Moreover, “same time” must
be understood to be limited by the clock skew: because processor clocks may differ by as much asε, two
correct processors that undertake to perform the same action at the same time may in fact do so as much
asε time-units apart.

The CASD protocol is designed for a network in which packets must be routed; the network
diameter,d, is the maximum number of hops that a packet may have to take to reach a destination node
from a source node. It is assumed that failures will not cause the network to become disconnected.
Although individual packets can be lost in the network, it is assumed that there is a known limit on the

Chapter20: Clock Synchronization and Synchronous Systems 389

389

number of packets that will actually be lost in any single run of the protocol. Finally, multicast networks
are not modeled as such: an ethernet or FDDI is treated as a set of point to point links.

The CASD protocol operates as follows. A process (which may itself be faulty) creates a message
and labels it with a timestampt (from its local clock) and with its process identifier. It then forwards the
message to all processors reachable over communication links directly connected to it. These processes
accept incoming messages. A message isdiscardedif it is a duplicate of a message that has been seen
previously or if the timestamp on the message falls outside a range of currently feasible valid timestamps.
Otherwise, the incoming message isrelayedover all communication links except the one on which it was
received. This results in the exchange ofO(n2) messages, as illustrated in Figure 20-3.

A process holding a message waits until timet+∆ on its local clock (here,t is the time when the
message was sent), and then delivers it in the order determined by the sender’s timestamp, breaking ties
using the processor id of the sender. For suitable validity limits and∆, this protocol can be shown to
overcome crash failures, limited numbers of communication failures, incorrect clock values on the part of
the sender or intermediary relay processes.

The calculation of this parameter is based on the following reasoning: for the range of behaviors
possible in the system, there corresponds a maximum latency after which a message that originates at a
faulty process and has been forwarded only by faulty processes finally reaches a correct process and is
accepted as valid. From this point forward, there is an additional maximum latency before the message
has reached all correct processes, limited by the maximum number of network packet losses that can
occur. Finally, any specific recipient may consider itself to be the “earliest” of the correct processes to
have received the message, and will assume that other correct processes will be the “last” to receive a
copy. From this reasoning, a value can be asssigned to∆ such that at timet+∆, every correct process will
have a copy of the message and will know that all other correct processes also have a copy. It is therefore
safe to deliver the message at timet+∆: the other processes will do so as well, within a time skew ofε
corresponding to the maximum difference in clock values for any two correct processes. This is illustrated
in Figure 20-3, where timet+b corresponds tot+∆-ε/2 andt+c to t+∆+ε/2.

Kenneth P. Birman - Building Secure and Reliable Network Applications390

390

Although we will not develop the actual formulas here, because the analysis would be fairly long,
it is not hard to develop a basic intuition into the reasoning behind this protocol. If we are safe in
assuming that there are at mostf faulty process in the network, and that the network itself loses no more
than k packets during a run of the protocol, it must follow that a broadcast will be reach at least one
operational processes which will forward it successfully to every other operational process withinf+k
rounds. A process using the protocol simply waits long enough to be able to deduce that every other
process must have a copy of the message, after which it delivers the message in timestamp order.

Because all the operational processes will have received the same messages and use the same
timestamp values when ordering them for delivery, the delivered messages are the same and in the same
order at all correct processes. However, this may not be the case atincorrect processes, namely those for
which the various temporal limits and constants of the analysis do not hold, or those that failed to send or
receive messages that the protocol requires them to send or receive.

p0

p5

p4

p3

p2

p1

t t+a t+b t+c

*

*

*

*

*

Figure 20-3: In the CASD protocol, messages are delivered with real-time guarantees despite a variety of possible
failures. In this example for a fully connected network (d=1), processes p0 and p1 are faulty and send the message
only to one destination each. p2 and p3 are correct, but experience communication failures that prevent the
message from being forwarded to the full set of correct processors. Eventually, however, the full set of possible
failures has been exhausted and the message reaches all correct destinations even if the execution is a worst-case
one. In this example, the message finally reaches its last destination at time t+a. The processors now delay
delivery of the message under a best case/worst case analysis whereby each process reasons that it may have
received the message in the minimum possible time but that others may receive it after the maximum possible time,
and yet assume that they too had received the message after a minimal delay. When this delay has elapsed, all
correct processes know that all other correct processes have the message and are prepared to deliver it; delivery
then takes place during a period bounded above and below by the clock synchronization constantε (shown as
[t+b,t+c] in the figure). Incorrect processes may fail to deliver the message, as in the case of p1, may deliver
outside of the window, as does p0, or may deliver messages rejected by all correct processes.

Chapter20: Clock Synchronization and Synchronous Systems 391

391

Clearly, when a protocol such as this one is used in a practical setting, it will be advantageous to
reduce the value of∆ as much as possible, since∆ is essentially a minimum latency for the protocol. For
this reason, the CASD protocol is usually considered in a broadcast network for which the network
diameter,d, is 1, processes and communication are assumed to be quite reliable (hence, these failure
limits are reduced to numbers like 1), and clocks are assumed to be very closely synchronized for the
operational processes in the network. With these sorts of assumptions,∆, which would have a value of
about 3 seconds in the local area network used by the Computer Science Department at Cornell, can be
reduced into the range of 100 to 150ms. Such a “squeezing” of the protocol leads to runs like the one seen
in Figure 20-5.

We noted that there is a subtle issue associated with the definition of “operational” in the goals of
the CASD protocol. The problem is arises when we consider a process that is technically faulty because
its clock has drifted outside the limits assumed for a correct process; with the clock synchronization
methods reviewed above, this is an unavoidable risk, which grows as the assumedlimits become tighter
(this is also true when using Cristian’s recommended clock synchronization protocol [Cri89]). That is,
the same actions that we took to reduce∆ also have the side-effect of making it more likely that a process
will be considered faulty.

p0

p5

p4

p3

p2

p1

t t+a t+b t+c

*

*

*

*

*

*

Figure 20-4: A run of the CASD protocol in which no failures occur. After a flurry of message exchanges during
which O(n2) messages are sent and received, the protocol lies quiescent until delivery occurs. The delay to delivery
is unaffected by the "good fortune” of the protocol in having reached all the participants so rapidly. Notice that as
normally presented, the protocol makes no use of broadcast hardware.

p0

p5

p4

p3

p2

p1

t t+a t+b t+c

*

*

*

*

*

*

Figure 20-5: More aggressive parameter settings and assumptions can substantially reduce the delay before
delivery occurs.

Kenneth P. Birman - Building Secure and Reliable Network Applications392

392

Such a process is only faulty in a technical sense. Viewed from “above”, we can see that its clock
is slightly too fast or too slow, perhaps only 5 or 10 milliseconds from the admissible range. Internally,
the process considers itself quite operational, and would be unable to detect this type of “fault” even if it
tries to do so. Yet, because it is faulty in the formal sense of violating our conditions on correct processes,
the guarantees of the protocol may no longer hold for such a process: it may deliver messages that no
other process delivered, or fail to deliver messages that every other process delivered successfully, or
deliver messages outside of the normal time range within which delivery should have occurred. Even
worse, the process may then drift back into the range considered normal and hence recover to an
operational state immediately after this condition arises. The outcome might be a run more like the one in
Figure 20-6.

Thus, although the CASD protocol offers strong temporal and fault-tolerance properties to
correct processes, the guarantees of these protocols may appear weaker to a process that uses them,
because such a process has no way to know, or to learn, whether or not it is one of the correct ones. In
some sense, the protocol has a notion of system membership built into it, but this information is not
available to the processes in the system themselves. The effect is to relax all of the properties of the
protocol suite, which is perhaps best understood as being probabilistically reliable for this reason.

A stronger statement could be made if failures were detectable so that such a process could later
learn that its state was potentially inconsistent with that of other processes. There has been some
encouraging work on strengthening the properties of this protocol by layering additional mechanisms over
it. Gopal et. al. for example, have shown how the CASD protocols can be extended to guarantee causal
ordering and to overcome some forms of inconsistency [GSTC90]. In Chapter 22 we will see how a
CASD-like protocol can be made to offer stronger guarantees under a slightly different system model, in
which probabilistic information is available in regard to the properties of communication channels.

p0

p5

p4

p3

p2

p1

t t+a t+b t+c

*

*

*

*

Figure 20-6: In this case, overly aggressive parameter settings have caused many processes to be "incorrect" in the
eyes of the protocol, illustrated by bold intervals on the process time lines (each process is considered “incorrect”
during a bold interval, for example because its clock has drifted too far from the global mean). The real-time and
atomicity properties are considerably weakened; moreover, participating processes have no way to determine if they
were “correct” or “incorrect” on a given run of the protocol. Here, the blue messages are considered as valid by
the protocol; the red ones arrive “too late” and are ignored by correct processes.

Chapter20: Clock Synchronization and Synchronous Systems 393

393

Within the Portuguese NavTech project, Almeida and Verissimo have explored a class of
protocols that superimpose a background “state exchange” mechanism on a CASD-like protocol structure.
In this approach, processes within the system periodically send snapshots of aspects of their state to one-
another use unreliable all-to-all message exchanges over dedicated but low bandwidth links. The
resultingn2 message exchange leaves the correct processes with accurate information about one-another’s
states prior to the last message exchange, and partially accurate information as of the current exchange
(the limitation is due to the possibility that messages may be lost by the communication subsystem). In
particular, the sender of a CASD-style broadcast may now learn that it has reached all its destinations.
During the subsequent exchange of messages, information gained in the previous one can be exploited, for
example to initiate an early delivery of a timed broadcast protocol. Unfortunately, however, the
mechanism does not offer an obvious way to assist the correct processes inmaintaining mutually
consistent knowledge concerning which processes are correct and which are not: to accomplish that goal,
one would need to go further by implementing a process group membership service “superimposed” on the
real-time processes in the system. This limitation is apparent when one looks at possible uses for
information that can be gathered though such a message exchange: it can be used to adjust protocol
parameters in limited ways, but generally cannot be used to solve problems in which the correct processes
must have mutually consistent views of shared parameters or other forms of replicated state.

It would be interesting to explore an architecture in which real-time protocols are knowingly
superimposed on virtually synchronous process groups, using a high priority background channel such as
the one introduced in Almeida’s work to support the virtually synchronous group. With such a hybrid
approach, it would be possible to exclude faulty processes from a system within a known delay after the
fault occurs, adjust protocol parameters such as the delay to delivery by correct processes, so that the
system will adaptively seek out the best possible delay for a given configuration, or combine the use of
coherently replicated data and state with real-time updates to other forms of data and state. An approach
that uses reserved-capacity high priority channels, such as the ones introduced by Almeida, could be used
to support such a solution. At the time of this writing, however, the author is not aware of any project that
has implemented such an architecture.

This brings us back to the normal implementation of the CASD protocol suite. The user of such
a protocol must expect that the distributed system as a whole may contain processes that are contaminated
by having updated their states on the basis of messages that were handled differently than at the correct
processes. Such processes are not in any way prevented from initiating new messages that will be

p0

p5

p4

p3

p2

p1

t

*

*

*

*

Figure 20-7: In the NavTech protocol suite developed by Almeida and Verissimo, periodic background exchanges
of state (dark intervals) cut through the normal message traffic, permitting such optimizations as early message
delivery and offering information for use in overcoming inconsistency. However, short of running a group
membership protocol in the background communication channel, there are limits to the forms of inconsistency that
this method can actually detect and correct.

Kenneth P. Birman - Building Secure and Reliable Network Applications394

394

received by all processes, and which will presumably reflect this inconsistent state in direct or subtle ways.
Indeed, over time, almost any process may be viewed as incorrect for one or another run of the protocol,
hence such contamination is likely to be pervasive and capable of spreading. Mechanisms for ensuring
that such a system will converge back into a mutually consistent state should a divergence of states occur
are needed when these protocols are used. Alternatively, one can restrict the use of the protocols to forms
of information that need not be absolutely correct or use them only as input to algorithms that are tolerant
of a certain level of “noise” in their inputs. One should not, for example, use them as the basis for a
coherently replicated cache or as the basis of a safety critical decision that must be made consistently at
multiple locations in a system.

The CASD protocols represent an interesting contrast with the virtual synchrony protocols we
discussed earlier in this text. Those protocols tolerate similar types of failures, but lack any notion of time
and offer no temporal delivery guarantees. On the other hand, they do offer strong logical guarantees: the
“consistency” properties that we stressed at the time we discussed them. CASD, as we have now seen,
lacks this notion of consistency, but has a very strong temporal guarantee when used by processes that are
operational within its model. CASD is weakened by the sorts of optimizations that improve its temporal
responsiveness, but would be very unlikely to “misbehave” if a large value of∆ were considered
acceptable. Thus, we have what appears to be a basic tradeoff between logical guarantees and temporal
ones. It is intriguing to speculate that such tradeoffs may be fundamental ones.

The tradeoff is also noticeable in the delay of the protocol. For large values of∆ the CASD
protocol provides very strong guarantees, but also has a very large latency to delivery. This is the
converse of the situation for the virtually synchronousfbcastor cbcastprotocol, which has a very low
latency to delivery in the usual case and very stronglogical guarantees, but no meaningful real-time
guarantees. Indeed, the installation of new views of a process group can delay acbcastfor a period of
time that grows with the size of the group, and that also will be affected by the level of communication
traffic in the group at the time of the view installation. Thus,cbcastcan be understood as rushing to
deliver its messages and often doing so in far less time and with far fewer messages than a protocol such
as CASD. However, if correct temporal behavior by the correct processes is critical to the application,
cbcast is not able to offer this guarantee in better than a probabilistic sense (and even a probabilistic
argument would involve an analysis ofcbcastprotocols outcomes and their relative likelihood’s that we
are not prepared to undertake in this textbook).

Stepping back one might characterize the basic difference here as one of pessimism versus
optimistism. Thecbcaststyle of protocols are generally optimistic in their expectations from the system:
they expect that failures will be relatively uncommon events and are optimized for the earliest possible
delivery when this case in fact arises. These protocols can give extremely low latency (two or more orders
of magnitude better than the CASD style of protocol) and can be extremely predictable in their behavior
provided that the network load is light, paging and other delays do not occur, and failures are genuinely
infrequent. Indeed, if one could becertain that these conditions held, a protocol such ascbcastcould be
the basis of a real-time system, and it would perform perhaps thousands of times better than the timed-
asynchronous style of system. But hoping that a condition holds and proving that it holds are two
different matters.

The CASD suite of protocols and other work by Cristian’s group on the timed asynchronous
model can be viewed as relatively pessimistic, in the sense that for a given set of assumptions, these
protocols are designed to expect and to overcome a worst-case execution. If CASD is used in a setting
where it is known that the number of failures will be low, the protocol can be optimized to benefit from
this. As we have seen, however, the protocol will only work to the degree that the assumptions are valid
and that most operational processes will be considered as correct. When this ceases to be the case, the
CASD protocols break down and will appear to behave incorrectly from the point of view of processes

Chapter20: Clock Synchronization and Synchronous Systems 395

395

that, in the eyes of the system model, are now considered to dance in and out of the zone of “correct
behavior.” But the merit of this protocol suite is that if the assumptions are valid ones, the protocols are
guaranteedto satisfy their real-time properties.

As noted above, Cristian has also worked on group membership in the timed asynchronous
model. Researchers in the Delta-4 project in Europe have also proposed integrated models in which
temporal guarantees and logical guarantees were integrated into a single protocol suite [Pow91, RV89,
RVR93, Ver93, Ver94]. For brevity, however, we will not present these protocols here.

20.3 Adapting Virtual Synchrony for Real-Time Settings
Friedman has developed a real-time protocol suite for Horus that works by trying to improve the expected
behavior of the virtual synchrony group protocols rather than by starting with temporal assumptions and
deriving provable protocol behaviors as in the case of CASD [FR95b]. Although in a preliminary state,
this work has yielded some interesting results. Among these, Friedman has developed a view installation
and message delivery architecture for Horus that draws on the Transis idea of distinguishing “safe” from
“unsafe” message delivery states [FR95b]. In Freidman’s protocols, “safe” states are those for which the
virtual synchrony properties hold while “unsafe” ones are states for which real-time guarantees can be
offered but in which weaker properties than the usual virtual synchrony properties hold.

One way to understand Friedman’s approach is to think of a system in which each message and
view is delivered twice (he implements this behavior, however, with a more efficient upcall mechanism).
The initial delivery occurs with real-time guarantees of bounded latency from sending to reception, or
bounded delay from when an event that will change the group view occurs to when that view is delivered.
However, the initial delivery may occur before the “virtually synchronous” one. The second delivery has
the virtual synchrony properties and may report a group view that is different from the initial one, albeit
in limited ways (specifically, such a view can be smaller than the original one but never larger
processes can fail but not join). The ideas is that the application can now select between virtual synchrony
properties and real-time ones, using the real-time delivery event for time-critical tasks and the virtually
synchronous event for tasks in which logical consistency of the actions by group members are critical.
Notice that a similar behavior could be had by placing a Horus protocol stack running a real-time protocol
side by side in the same processes as a Horus protocol stack supporting virtual synchrony, and sending all
events through both stacks. Friedman’s scheme also guarantees that event orderings in the two stacks will
be the same unless the time constraints make this impossible; two side-by-side stacks might differ in their
event orderings or other aspects of the execution.

Kenneth P. Birman - Building Secure and Reliable Network Applications396

396

In support of this work, Vogels and Mosse have investigated the addition of real-time scheduling
features to Horus, message and thread priorities, and pre-allocation mechanisms whereby resources
needed for a computation can be pinned down in advance to avoid risk of delaying if a needed resource is
not available during a time-critical task.

A major goal of the research community is to develop reliable distributed systems for real-time
applications. Such a system would have the ability to perform time-critical tasks with guarantees
that deadlines will be respected, and that other required levels of performance will be achieved,
even if failures of various sorts occur while the system is running.

A distributed real-time system would be built from real-time components: operating systems that
support task priorities, preallocation of resources, special-purpose scheduling, and time-driven
mechanisms permitting the user to implement real-time applications and to be sure that there is
nothing in the operating system that can prevent critical tasks from occuring on time.

Over this, one would layer real-time communications protocols coupled to a failure detection
mechanism of known maximum delay. Since messages may need to be buffered while the failure
detection mechanism has yet to “kick in”, an analysis of worst-case buffering requirements would
also be required, so that if a failure does occur, the system doesn’t become overloaded due to the
accumulation of data being sent to the failed node before reconfiguring itself to exclude that node.

Finally, such a system would need to demonstrate a viable methodology for actually building real-
time distributed applications that demonstrably tolerate failures while continuing to preserve
response guarantees within the envelope specified by the designer.

A system like Horus, with real-time protocols and synchronized clocks, may be suitable for solving
problems such as these if they are not excessively demanding. If such a system is used “far” from its
maximum capacity and with very large amounts of memory, and if the real-time limits are relatively
weak ones, Horus will predictably operate within the desired bounds. An open problem of
considerable interest to the author is to pin down just what those bounds might be, so that we can
strengthen such a statement and say that Horus canguarantee real-time behavior while also
providing fault-tolerance and consistency.

Chapter20: Clock Synchronization and Synchronous Systems 397

397

An early application of this real-time fault-tolerance technology is to the problem of building a
telecommunications switch in which a cluster of computers control the actions taken as telephone calls are
received (Figure20-8). Such an application has a very simple architecture: the switch itself (based on the
SS7 architecture) sees the incoming call and recognizes the class of telephone numbers as one requiring
special treatment, as for the case of an 800 or 900 number in the United States. The switch creates a
small descriptive message giving the caller’s telephone number, the destination, billing information, and a
call identification number, and forwards this to a what is called anintelligent network coprocessoror IN
coprocessor. The coprocessor (traditionally implemented using a fault-tolerant computer system) is
expected to perform a database query based on the telephone numbers and to determine the appropriate
routing for the call, responding within a limited amount of time (typically, 100ms). Typically, the switch
will need to handle as many as 10,000 to 20,000 calls per second, dropping no more than some small
percentage, and doing this randomly even during periods when a failure is being serviced. That is, the
switch must never be “down” for more than a few seconds per year, although individual calls may
sometimes have a small probability of not going through and needing to be redialed.

The argument in favor of using a cluster of computers for this purpose is that such a system
potentially has greater computing power (and much aggregate main memory) than any single processor
could have. This may translate to the ability to keep a very large database in memory for rapid access
(spread among the nodes), or of executing a more sophisticated query strategy. Moreover, whereas the
upgrading of a fault-tolerant coprocessor may require that the switch be shut down, one can potentially
upgrade a cluster style computer one node or one program at a time.

SS7 switch
EA

EA

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

QE

IN Coprocessor based on cluster architecture

Figure 20-8: Friedman has experimented with the use of a cluster of computing systems in support of a
demanding real-time telecommunications application. On the left is a single switch that handles telephone
calls in the SS7 switching architecture. Somewhat simplifying the actual setup, we see local telephones
connected to the switch from below, and lines connecting to other switches above. SS7-compatible switches can
be connected to adjunct processors, called IN coprocessors, which provide intelligent routing functionality and
implement advanced services on behalf of the switch itself. For example, if an 800-number call is received, the
coprocessor would determine which line to route the call on, and if call forwarding was in use, the coprocessor
would reroute forwarded calls. Friedman’s architecture uses Horus to support a cluster configuration within
the IN coprocessor, an approach that provides very large scalable memory for the query element’s (which
would typically map a telephone directory into memory), load-balancing, and fault-tolerance.

Kenneth P. Birman - Building Secure and Reliable Network Applications398

398

Without getting into the details, Friedman has demonstrated that systems like Horus can indeed
be used to support such a model. In [FB96], he describes a system that emulates this configuration of
telephone switch, servicing 22,000 calls per second while dropping no more than 1-3% even when a
failure or recovery is actually being serviced. Friedman’s design involves a pair of external adaptor nodes
(EA’s) which sense incoming calls and dispatch the corresponding query onto pairs of query processing
nodes (QE’s). Friedman batches requests and uses an innovative real-time fault-tolerance protocol to
optimize for the very high processing loads that characterize the application.

To solve this problem, Friedman’s work combines the real-time mechanisms cited above with a
number of other innovations, and it is fair to say that the application is not a straightforward one.
However, the benefits of being to use a cluster-style computing system in this manner could be dramatic:
such systems are quite inexpensive, and yet they may bring a great deal of performance and flexibility to
the application, which would otherwise be very constrained by the physical limitations typical of any
single-processor solution. Friedman’s initial work focuses on memory scalability, but he is now extending
the approach to seek a performance benefit from scale as well as the possibility of benefit from memory-
mapping the database.

Although cast in the context of a telephone switching application, it should be noted that the type
of real-time client-server architecture being studied in Friedman’s work is much more general. We have
seen in earlier sections of this text that the great majority of distributed systems have a client-server
architecture, and this is also true for real-time systems, which typically look like client-server systems
with time-critical response deadlines superimposed upon an otherwise conventional architecture. Thus,
Friedman’s work on telephone switching could also be applicable to process control systems, air-traffic
control systems, and other demanding applications that combine fault-tolerance and real-time constraints.

Other work in this area includes Marzullo’s research on the CORTO system, which includes such
features asperiodic process groups. These are process groups whose members periodically and within a
bounded period of real-time initiate synchronized actions. Marzullo has studied minimizing the
communication overhead required in support of this periodic model, integrating real-time communication
with other periodic or real-time actions, priority inversion in communication environments, and other
topics in the area.

20.4 Related Readings
On clock synchronization see the review in [SWL90], other references include [Lam84, Mar84, LM85,
KO87, ST87, Cri89]. On the a-posteriori method: [VR92, CM96]. On the CASD protocol: [CASD85,
CSDA90, CS95, Cri96, CSTC90]. On the MARS system: [KO87, DRSK89, KV93]. On Delta-4:
[Pow91, Pow94, RV89, RVR93, Ver93, Ver94]. On real-time work with Horus: [FR95b, FB96].

Chapter21: Transactional Systems 399

399

21. Transactional Systems
We first encountered the transactional execution model in Chapter 7, in conjunction with client-server
architectures. As noted at that time, the model draws on a series of assumptions to arrive at a style of
computing that is uniquely well suited to applications that operate on databases. In this chapter we
consider some of the details that Chapter 7 did not cover, notably the issues involved in implementing
transactional storage mechanisms, and the problems that arise when transactional architectures are
extended to encompass transactional access to distributed objects in a reliable distributed system.

Without repeating the material covered earlier, it may be useful to start by reviewing the
transactional model in light of what we have subsequently learned about other styles of distributed
computing and distributed state. Notice first that the assumptions underlying the transactional approach
are quite different from those that underly the virtual synchrony model. Transactional applications are
expected to be structured in terms of the basic transactional constructs:begin, read, update,andcommitor
abort. They are assumed to have been written in isolation, so that they will operate correctly when
applied to an idle database system in an initially consistent state. Each transaction, in effect, is a function
that transforms the database from a consistent state into a new consistent state. The database, for its part,
is a well defined entity that manages data objects, has a limited interface by which transactions operate on
it, and manages information using operations with well understood semantics.

General purpose distributed systems, and many client-server applications, match such a model
only to a limited degree. The computations performed may or may not act upon saved data in a database,
and even when they are, it will be difficult to isolate “data access operations” from other types of message-
based interactions and operations.

Additionally, the basic reliability goals of the transactional model are tied closely to its
programming model. The transactional reliability guarantees are basically that if a server or client
crashes, prior to the commit point of a transaction, a complete rollback of the server state will occur: it is
as if the transaction had never been executed. There is a strong emphasis on recoverability of the database
contents after a crash: any committed transaction will have effects that survive repeated server crashes and
restarts. This strong separation of computation from data, coupled with an emphasis on recoverability (as
opposed, for example, to continuous availability), distinguishes the transactional approach from the
process group replication schemes we have studied in the preceding chapters of this text.

One could ask whether general purpose distributed programs couldn’t be considered as
transactional programs, in this manner mapping the general case to the transactional one. This turns out
to be very hard to do. General purpose distributed programs lack a well-definedbeginor commitpoint,
and it would not always be practical to introduce such a structure sometimes one could do so, but often
it would be difficult. They lack a well defined separation of program (transactional client) from persistent
state (database); again, some applications could be represented this way, but many could not. Indeed, it is
not unreasonable to remark that because of the powerful support that exists for database programming on
modern computer systems, most database applications are in fact implemented using database systems.
The applications that are left over are the ones where a database model either seems unnatural, fails to
match some sort of external constraint, or would lead to extremely inefficient execution. This perspective
argues that the distributed applications of interest to us will probably split into the transactional ones, and
others that are unlikely to match the transactional model even if one tries to force them into it.

Kenneth P. Birman - Building Secure and Reliable Network Applications400

400

Nonetheless, the virtual synchrony model shares some elements of the transactional one: the
serialization ordering of the transactional model is similar to the view-synchronous addressing and
ordered delivery properties of a multicast to a process group20. Virtual synchrony can be considered as
having substituted the notion of a multicast for the concept of the transaction itself: in virtual synchrony
one talks about a single operation that affects multiple processes, while in transaction systems one talks
about a sequence ofreadandupdateoperations that are treated as a single atomic unit. The big difference
is thus that whereas explicit data semantics are natural in the context of a database, they are absent in the
communication-oriented world that we considered in studying the virtual synchrony protocols.

As we examine the transactional approach in more detail, it is important to keep these
similarities and differences in mind. One could imagine using process groups and group multicast to
implement replicated databases, and in fact there have been several research projects that have done just
this. A great many distributed systems combine transactional aspects with non-transactional ones, using
transactions where a database or persistent data structure is present, and using virtual synchrony to
maintain consistently replicated in-memory structures, to coordinate the actions of groups of processes,
and so forth. The models are different in their assumptions and goals, but not incompatible. Indeed, there
has been work on merging the execution models themselves, although we will not present that work here.

Perhaps the most important point is the one stated at the start of this chapter: transactions focus
primarily on recoverability and serializability, while virtual synchrony focuses primarily on order based
consistency guarantees. This shift in emphasis has pervasive implications, and even if one could
somehow merge the models, it is likely that they would still be used in different ways. Indeed, it is not
uncommon for distributed systems engineers to try and simplify their lives by using transactions
throughout a complex distributed system, as its sole source of reliability, or by using virtual synchrony
throughout, exploiting dynamically uniform protocols as the sole source of external consistency. Such
approaches, in this author’s experience, are rarely successful.

In the former direction, it can be difficult to use transactions as the basic model for
communications based systems because the interactions between transactional applications are necessarily
structured into invocations of operations and manipulation of persistent data. To send a message, a
process will potentially need to write the message into a database, from which the destination process is
expected to read it. Moreover, there is the need to arrange that the transaction begin, that the operations
issued by identifiable as part of the same transaction (they need some form of unique transaction id), and
that it commit in a well defined way. Finally, the application itself needs a sensible way to deal with
abort.

While this matches well with database access, it is hard to map such a model to an air traffic
application in which a controller works with a continuously updated screen, interacting with pilots, other
controllers, and various services. These applications will typically involve running more than one
program at a time; logically some of the actions taken are part of the “same transaction”, but for long
running programs it may not be clear which actions belong to which transaction, nor may it be clear when
the transaction should begin or end. For example, it would make sense that operations associated with
different flights be treated as different transactions, but it is not clear how the database system (if one is

20 For example, one can imagine doing a multicast byreading the view of the group and then writing to the group
members,and updating the view of the group bywriting to the group view.Such a transactional implementation of
virtual synchrony would address some aspects of the model, such as view synchronous addressing, although it
would not deal with others, such as the ordered gap-freedom requirement. More to the point, it would result in an
extremely inefficient style of distributed computing, because every multicast to a process group would now require
a database update. The analogy, then, is useful because it suggests that the fundamental approaches are closely
related and differ more at the level of how one engineers such systems to maximize performance than in any more
basic way. However, it is not an architecture that one would want to implement!

Chapter21: Transactional Systems 401

401

present) would recognize this distinction, unless the operations were entirely structured as transactional
accesses to a shared database server.

Transactions pay a high price to guarantee the recoverability of persistent data. But in a
distributed setting that replicates critical data, recovering a very old and stale copy of the state of some
server may be pointless; only very large databases would be worth the trouble of recovering into a known
state. The idea that transactions are coded to execute against an idle system and to run in isolation is
fundamentally at odds with the notion of a system in which long-running services cooperate explicitly
both to load-balance work internally and to coordinate actions with one-another. And then there is the
issue of aborts: precisely what should an air-traffic controller do if a necessary action is aborted for
reasons internal to the execution model? Worse, if an abort occurs “deep within” a system, how should
the program recover: many systems have no obvious notion of an operator and must automatically recover
from all conditions that can arise during execution.

Similar objections can be raised for the case where virtual synchrony is applied to what are
basically transactional databases. Here, the issue is perhaps less one of a constraining programming style
than that the specific programming tools we have discussed seem disconnected from the specific needs of
a distributed database system. In fact, there has been considerable interest in applying process group
concepts to replication and other aspects of distributed data management, notably through the Newtop
protocol of the Arjuna system [EMS95], and we will point to some of the special requirements that arise
from such explorations. To the application developer, though, the point is that if an application contains
what are logically “databases”, transactional access to them may be highly appropriate, while if it contains
groups of dynamically adaptive, highly available, processes and servers, those may be more appropriately
treated using virtual synchrony. Virtual synchrony is also a more natural way tomanagecomplex
distributed systems; transactions seem poorly matched to this goal. Very elaborate reliable distributed
systems will probably need both technologies.

In the remainder of this chapter we move beyond these philosophical issues to more detailed
technical ones, concerning the implementation of transactional systems for distributed environments.

21.1 Implementation of a Transactional Storage System
In this section we briefly review some of the more important techniques used in implementing
transactional storage systems. Our purpose is not to be exhaustive or even to try and present the “best”
techniques known, as this area is such an important one for database searchers that to cover it in detail
would require another textbook! Moreover, that textbook has already been written [GR93, Gra79,
BHG87]. Rather, we focus on basic techniques with the purpose of building insight into the reliability
mechanisms needed when implementing transactional systems.

21.1.1 Write-ahead logging
A write ahead logis a data structure used by a transactional system as a form of backup for the basic data
structures that compose the database itself. Transactional systemsappend to the log by writing log
recordsto it. These records can record the operations that were performed on the database, their outcome
(commit or abort), and can include “before” or “after” images of data that an operation updated. The
specific content of the log will depend upon the transactional system itself.

We say that a log satisfies awrite aheadproperty if there is a mechanism by which records
associated with a particular transaction can be safely and persistently flushed to disk before (ahead of)
updates to data records being done by that transaction. In a typical use of this property, the log will record
before images (old values) of the records a transaction updates, and commit records for that transaction.
When the transaction does an update, the database system will first log the old value of the record being

Kenneth P. Birman - Building Secure and Reliable Network Applications402

402

updated, then update the database record itself on disk. Provided that the write-ahead property is
respected, the actual order of I/O operations done can potentially be changed to optimize use of the disk.
Should the server crash, it can recover by reviewing the uncommitted transactions in the log and
reinstalling the original values of any data records that these had modified. The transactions themselves
will now be forced to abort, if they have not already done so. Such a process rolls back the transactions
that have not committed, leaving the committed ones in place. Later, the log can be garbage collected by
cleaning out records for committed transactions (which will never need to be rolled back) and those for
uncommitted transactions that have been successfully aborted (and hence need not be rolled back again).

Although a write-ahead log is traditionally managed on the disk itself, there has been recent
research on the use of non-volatile RAM memory or active replication techniques to replace the log with
some form of less expensive structure [LGGJ91]. Such trends are likely to continue as the relative
performance gap between disks (which seem to have reached a performance limit at approximately 10ms
per disk access for a fast disk, and as much as 40 to 50ms per access for a slow one) and communication
continues to grow.

21.1.2 Persistent data seen “through” an updates list
Not all transactional systems perform updates to the persistent database at the time they are first issued.
The decision to do updates directly depends on several factors, among which are the frequency with which
transactions are expected to abort, and the likelihood that the transaction will rewrite the same record
repeatedly. The major alternative to performing direct updates on the database itself are to maintain some
form of updates listin which database records that have been updated are saved. Each access to the
database is first filtered through this updates storage object, and if the record being accessed has changed,
the changed version is returned. The database itself is only accessed if the updates list does not contain
the desired item, and any update made to the database is instead applied to this updates list.

application

cache (volatile)

updates (persistent)

database

lock records

log

Figure 21-1: Overview of a transactional database server. Volatile data is used to maintain a high speed cache of
database records and for storage of lock records for uncommitted transactions. Anupdates list and the database
itself store the data, while a write-ahead log is used to enable transactional rollback if an abort occurs, and to
ensure that updates done by committed transactions will be atomic and persistent. The log saves before- or after-
images of updated data and lock records associated with a transaction that is running its commit protocol. Log
records can be garbage collected after a transaction commits or aborts and the necessary updates to the database
have been applied or rolled out.

Chapter21: Transactional Systems 403

403

The advantage of such a structure is that the database itself can be maintained in a very efficient
search and access structure without requiring costly structuralupdates as each operation occurs.
Periodically, the database can be updated to merge the committed updates from the update list into the
persistent part of the database, but this need not be done until a convenient time, perhaps while the
database as a whole is under very light load. Moreover, as we will see shortly, the updates list can be
generalized to deal with the “nested” transactions that arise when transactional databases are constructed
using abstract data types.

The updates list data structure, if present, should not be confused with a cache or “buffer pool”.
A database cache is a volatile data structure used to accelerate access to frequently used data items by
maintaining them in high speed memory. The updates list is a persistent data structure that is logically
part of the database itself. Its role is provide the database system with a way of doing database updates
without reorganizing the secondary index and other access structures needed to rapidly access items in the
main portion of the database.

21.1.3 Non-distributed commit actions
To commit a transaction, it is necessary to ensure that its effects will be atomic even if the database server
or client program fails during the commit procedure. In the non-distributed case, the required actions are
as follows. First, all log records associated with updates done by the transaction are forced to the disk, as
are lock recordsrecording the locks currently held by the transaction. Once these actions are taken the
transaction isprepared to commit.A log record containing thecommit bitis now written to disk; once it
is recorded in a persistent manner in the log the transaction is said to havecommitted.

Next, updates done by the transaction are applied to the updates list or database. In many
transactional system this updating is done while the transaction is running, in which case this step (and
the forcing of log records to disk, may have already occurred before the transaction reached the commit
point.

Finally, when the updates have all been performed, the locks associated with the transaction are
released and any log records associated with the transaction are freed for reuse by other transactions. The
transaction is now said to bestable.

To abort a transaction, the log records associated with it are scanned and used to roll back any
updates that may have been performed. All locks associated with the transaction are released, and the log
records for the transaction are freed.

In the event that the client process should crash before requesting that the transaction commit or
abort, the database server mayunilaterally abort the transaction. This is done by executing the abort
algorithm and later, if the client ever presents additional requests to the server, refusing them and
returning analready abortedexception code.

Finally, in the event that the database server should crash, when it recovers it must execute a log
recovery procedure before re-enabling access to the database. During this process, any transactions that
are not shown as committed are aborted, and any updates that may have been done are backed out. Notice
that if the log stored before-images, backing out updates can be done by simply reinstalling the previous
values of any records that were written by the transaction, and this operation can be done as many times as
necessary if the database server crashes repeatedly before recovering (that is, the recovery operation is
idempotent,meaning that it can be performed repeatedly with the same effect as if it were performed only
once).

Kenneth P. Birman - Building Secure and Reliable Network Applications404

404

For transactions shown as committed in the log, the database server recovers by completing the
commit procedure and then freeing the log records. Abstractly, the database server can be thought of as
recovering in a state where the committed transactions continue to hold any locks that they held at the
time of the commit; this will be useful in the case of a distributed transaction on multiple databases.

21.2 Distributed Transactions and Multi-Phase Commit
When a transaction operates on multiple database, it is said to be adistributed transaction.The commit
problem now becomes the multiphase commit problem we studied in Section 13.6.1. To commit, each
participating database server is first asked toprepare to commit.If the server is unable to enter this state,
it votes for abort, and otherwise flushes log records and agrees that it is prepared. The transaction
commits only if all the participating servers are prepared to commit, and otherwise aborts. For this
purpose, the transactional commit protocols presented earlier can be used without any modifications at all.

In the case of a database server recovery into the prepared state of a transaction, it is important
for the server to act as if that transaction continues to hold any locks that it held at the time that it first
became prepared to commit (including read locks, and even if the transactions was a read-only one from
the perspective of the database server in question). These locks should continue to be held until the
outcome of the commit protocol is known and the transaction can complete by committing or aborting.
When a transaction has read data at a server that subsequently crashes and recovers, having lost its read
locks, before the transaction is prepared to commit, the transaction must be aborted: otherwise, these
“broken” read locks can permit some other transaction to acquire update locks and to commit that should
have been serialized after the transaction that first held the read locks. Such a behavior is easily seen to
result in non-serializable executions. Thus, a distributed transaction must include all database servers it
has accessed in its commit protocol, not just the ones at which it performed updates.

21.3 Transactions on Replicated Data
A transactional system can replicate data by applying updates to all copies of the database, while load-
balancing queries across the available copies (in a way that will not change the update serialization order
that is used!). In the most standard approach, each database server is treated as a separate database, and
each update is performed by updating at least a quorum of replicas. The transaction aborts if fewer than a
quorum of replicas are operational. It should be noted that this method of replication, although much
better known than other methods, performs poorly in comparison with a more sophisticated method
described in Section 21.6.

The reality is that few existing database servers make use of replication for high availability, and
hence the topic is primarily of academic interest. Transactional systems that are concerned with
availability more often use primary-backup schemes in which a backup server periodically is passed a log
of committed actions that were performed on a primary server. Such a scheme is faster (because the
backup is not included in the commit protocol) but also has a window during which updates by committed
transactions can be temporarily lost (e.g. if the log records for a committed transaction have not yet
reached the backup when the primary crashes). When this occurs, the lost updates are rediscovered later,
after the primary recovers, and are either merged into the database or, if this would be inconsistent with
the database state, human intervention is requested.

Another option is to use a spare computer connected by a dual ported disk controller to a highly
reliable RAID style disk subsystem. If the primary computer on which the database is running fails, it can
be restarted on the backup computer with little delay. The RAID disk system provides a degree of
protection against hardware failures of the stored database in this case.

Chapter21: Transactional Systems 405

405

Although database replication for availability remains uncommon, there is a small but growing
commercial market for systems that support distributed transactions. The limiting factor for widespread
acceptance of these technologies remains performance. Whereas a non-replicated, non-distributed
transactional system may be able to achieve thousands or tens of thousands of short update transactions
and short read transactions per second, distributed transactional protocols and replication slows such
systems to perhaps hundreds of updates per second. Although such performance levels are adequate to
sustain a moderately large market of customers who value high availability or distributed consistency
more than performance, the majority of the database marketplace remains focused on scaleable high
performance systems. Such customers are apparently prepared to accept the risk of downtown because of
hardware or software crashes to gain an extra factor of ten to one hundred in performance. These things
said, however, it should again be noted that process group technology may offer a compromise that
combines high performance with replication for increased availability or scaleable parallelism. We will
return to this issue below, in Section 21.5.5.

21.4 Nested Transactions
Recall that at the outset of this textbook, we suggested that object oriented distributed systems
architectures are a natural match with client-server distributed systems structures. This raises the
question of how transactional reliability can be adapted to object-oriented distributed systems.

As we saw in Chapter 6, object oriented distributed systems are typically treated as being
composed ofactive objectsthat invoke operations onpassive objects.To some degree, of course, the
distinction is an artificial one, because some passive objects have active computations associated with
them, for example to rearrange a data structure for better access behavior. However, to keep this section
simple, we will accept the division. We can now ask if the active objects cannot be treated as transactions,
and the passive ones as small database servers.

Such a step leads to what are callednested transactions[Mos82]. The sense in which these
transactions are nested is that when an active object invokes an operation on an abstract object stored
within an object-oriented database, that object may implement the operation by performing a series of
operations on some other, more primitive, database object. For example, an operation that inserts a name
into a list of names maintained in a name server may be implemented by performing a series of updates on
a file server in which the name list and associated values are actually stored. One now will have a tree-
structured perspective on the transactions themselves, in which each “level” of object performs a
transaction on the objects below it.

In such a tree, only the top-most level corresponds to an active object or “program” in the
conventional sense. The intermediate levels of code correspond to the execution of methods (procedures)
defined by the passive objects in the database. For these passive objects, transactions begin with the
operation invocation by the invoking object, and end when a result is returned. That is, procedure
executions (operation invocations) are treated as starting with an implicitbegin and ending with an
implicit commit in the normal return case. Error conditions can be mapped to anabort outcome. The
active object at the very top of the tree, in contrast, is said tobegin a top-level transactionwhen it is
started, and tocommitwhen it terminates normally. A nested transaction is shown in Figure 21-2.

Kenneth P. Birman - Building Secure and Reliable Network Applications406

406

The nested transaction model can be used for objects that are co-located on a single object
repository, or for objects distributed among multiple repositories. In both cases, the basic elements of the
resulting system architecture are similar to the approach used for a single-level transaction system. The
details differ, however, because of the need to extend the concurrency control mechanisms to deal with
nesting.

The easiest way to understand nested transactions is to view each subtransaction as a transaction
that runs in a context created by its parent transaction and any committed sibling subtransactions that the
parent executed prior to it. Thus, operationop21 in Figure 21-2 should see a database state that
corresponds to having executed the subtransaction belowop1 and committing it, even though the effects
of that subtransaction will not in fact become permanent and “globally visible” until the main transaction
commits. This approach can be extended to deal with internal concurrency, for example ifop1 were
executed in parallel withop2, but this issue lies outside of the scope of topics of this text.

Moss proposed a notion of lock and data version inheritance that accomplishes this goal. In his
approach, each subtransaction operates by creating new versions of data items and acquiring locks which
areinheritedby the subtransactions’s immediate parent when the subtransaction commits, or return to the
state prior to when the subtransaction began if it aborts. These inherited locks and data values are
accessible to other subtransactions of the parent that now retains them, but remain inaccessible to
transactions outside of its scope. Moss’ doctoral dissertation includes a proof that this approach yields a
nested version of 2-phase locking that guarantees serializable executions.

To implement a nested transaction system, it is usual to start by extending the update list and
locking subsystems of the database so that it will know about transactional nesting. Abstracting, the
resulting architecture is one in which each lock and each data item is represented as astackof locks or
data items. When a new subtransaction is spawned, the abstract effect is to push a new copy of each lock
or data item onto the top of the stack. Later, as the subtransaction acquires locks or updates these data
items, the copy at the top of the stack is changed. Finally, when the subtransaction aborts, the top-most
stack element is discarded, whereas if it commits, the top-most stack item is popped, and the one below it
is too, and then the top-most item is pushed back onto the stack. In a similar manner, the stack of lock
records is maintained; the one difference being that if a subtransaction obtains a different class of lock
than was held by the parent transaction, the lock is left in the more restrictive of the lock modes.

In practice, nested transactional systems are designed to be lazy, so that the creation of new
versions of data items or new lock records is delayed until absolutely necessary. Thus, the stack of data
items and lock records is not actually generated unless it is needed to perform operations.

begin op1 op2 opn commit

begin op21 op22 commit

begin op111 op112.... op11n commit

begin op11 commit

Figure 21-2: Nested transaction. The operations are numbered hierarchically: opijk thus represents the k'th
suboperation initiated by the j'th suboperation initiated by operation i at the "top level". Commit andabort
becomes relative in this model, which is due to Moss and Liskov.

Chapter21: Transactional Systems 407

407

A similar abstraction is used to handle the commit and abort mechanisms. Abstractly, as a
nested transaction executes, each level of the transaction tracks the data servers that it visits, maintaining
a list of commit participants. To commit or abort, the transaction will interact with the servers on this
list. In practice, however, such an approach would require repeated execution of the of multiphase
commit protocols, which will have to run once for each internal node in the transaction tree and once
more time for the root! Clearly, this would be unacceptably costly.

To avoid this problem, Liskov’s ARGUS group proposed an approach in which commit decisions
are deferred, so that only the top-level commit protocol is actually executed as a multiphase protocol
[LS83, LLSG90, LCJS87]. Intermediate commits are optimistically assumed successful, while aborts are
executed directly by informing the commit participants of the outcome. Now, the issue arises of how to
handle an access by a subtransaction to a lock held by a sibling subtransaction or to a data itemupdated by
a sibling. When this occurs, a protocol is executed by which the server tracks down a mutual parent and
interrogates it about the outcomes, commit or abort, of the full transaction stack separating the two
subtransactions. It then updates the stacks of data items and locks accordingly and allows the operation to
proceed. In the case where a transaction rarely revisits data items, such a strategy reduces the cost of the
nest transactional abstraction to the cost of a flat one-level transaction; the benefit is smaller as the degree
of interference increases.

The reader may recall that Liskov’s group also pioneered in the use of optimistic (or “lazy”)
concurrency control schemes. Such approaches, which can be recognized as analogous to the use of
asynchronous communication in a process group environment, allow a system to achieve high levels of
internal concurrency, improving performance and processor utilization time by eliminating unneeded wait
states, much as an asynchronous multicast eliminates delay when a multicast is sent in favor of later
delays if a message arrives out of order at some destination. In the limit, these approaches converge upon
one in which transactions on non-replicated objects incur little overhead beyond that of the commit
protocol run at the end of the top-level transaction, while transactions on replicated objects can be done
largely asynchronously, but with a similar overhead when the commit point is reached. These costs are
low enough to be tolerable in many distributed settings, and it is likely that at some future time, a
commercially viable high performance object-oriented transaction technology will emerge as a serious
design option for reliable data storage in distributed computing systems.

21.4.1 Comments on the nested transaction model
Nested transactions were first introduced by the ARGUS project at MIT [Mos82] and rapidly adopted by
several other research projects, such as CLOUDS at Georgia Institute of Technology and CMU’s TABS
and CAMELOT systems [Spe85] (predecessors of ENCINA, the commercial product marketed by
Transarc). The model proved elegant but also difficult to implement efficiently, and sometimes quirky.
The current view of this technology is that it works best on object-oriented databases which reside mostly
on a single storage server, but that it is less effective for general purpose computing in which objects may
be widely distributed and in which the distinction between active and passing objects can become blurred.

It is worthy of note that the same conclusions have been reached about database systems. During
the mid 1980’s, there was a push to develop database operating systems, in which the database would take
responsibility for more and more of the tasks traditionally handled by a general purpose operating system.
This trend culminated in systems like IBM’s AS/400 database server products, which achieve an
extremely high level of integration between database and operation systems functionality. Yet there are
many communications applications which suffer a heavy performance penalty in these architectures,
because direct point to point messages must be largely replaced by database updates followed by a read.
While commercial products that take this approach offer optimizations that can equal the performance of
general purpose operating systems, users may require special training to understand how and when to
exploit them. The trend at the time of this writing seems to be to integrate database servers into general

Kenneth P. Birman - Building Secure and Reliable Network Applications408

408

purpose distributed systems by including them on the network, but running non-database operating
systems on the general purpose computing nodes that support application programs. This is sometimes
called the “open systems” approach to networked computing.

The following example illustrates the sort of problems that can arise when transactions are
applied to objects that fit poorly with the database computing model. Consider a file system directory
service implemented as an object-oriented data structure: in such an approach, the directory would be a
linked list of “named” objects, associating a name with some sort of abstract object corresponding to what
would be a file in a conventional file system. Operations on a directory include searching it, scanning it
sequentially, deleting and inserting entries, and updating the object nodes. Such a structure is illustrated
by Figure 21-3.

A typical transaction in such a system might be a program that displays a graphical interface by
which the user enters a name, and then looks up the corresponding object. The contents of the object
could then be displayed for the user to edit, and the changes, if any, saved into the object, when the user
finishes. Interfaces such as this are common in modern operating systems, such as Microsoft’s Windows
95 or some of the more advanced versions of UNIX.

Viewed as an instance of a nested transaction, this program begins a transaction and then reads a
series of directory records looking for the one that matches the name the user entered. The corresponding
node would then be locked for update while the user scrutinizes its contents and updates it. The
transaction commit would occur when the record is saved in its changed state. An example of such a
locked record is highlighted in gray in Figure 21-3.

But now consider the situation if the system has any concurrency at all. While this process is
occurring, the entire data structure may potentially be locked against operations by other transactions,
even if they are not interested in the same record as the user is preparing to update! The problem is that
any simplistic application of the nested transaction concurrency control rules will leave the top-level
records that bind names to objects locked for either read or update, and will leave all the directory records
scanned while searching for the name entered by the user locked for reads. Other transactions will be

adrian

sarah

daniel

Figure 21-3: While a directory is being updated (in this case, the entry corresponding to "daniel"), other
transactions may be prevented from scanning the associated directory node by locks upon it, even if they are
searching for some other record such as the one corresponding to "sarah" or “adrian.” Although a number of
schemes can be used to work around such problems, they require sophistication by the developer, who must
consider cases that can arise because of concurrency and arrange for concurrent transactions to cooperate
implicitly to avoid inefficient patterns of execution. Such meta-design considerations, the author argues, run
counter to the principle of independent design on which transactions are based, and make the overall approach
hard to use in general purpose operating system settings.

Chapter21: Transactional Systems 409

409

unable to acquire conflicting forms of locks on these records and may thus be delayed until the user (who
is perhaps heading down the hall for a cup of coffee!) terminates the interaction.

Many extensions to the nested transaction model have been proposed to cope with this sort of
problem. ARGUS, for example, offers a way to perform operations outside of the scope of a transaction,
and includes a way for a transaction to spawn new “top level” transactions from deep within a nested
execution. Weihl argues for a relaxation of the semantics of objects such as directory servers: in his view
of the problem, overspecification of the interface of the directory service is the cause of this sort of
problem, and he suggests extensions such as unordered queues and non-deterministic interfaces that
correspond to implementations that give better performance. In his approach one would declare the
directory to be an unordered semi-queue (an unordered set) and would implement a non-transactional
search mechanism in which the search order is non-deterministic and hence need not involve an access to
the locked record until all other records have been scanned [Weixx]. Shasha has developed families of
concurrent data structures, in which semantic information is exploited to obtain highly concurrent
transactional implementations of operations specific to the data type [Shaxx]. Still other researchers have
proposed that such problems be addressed by mixing transactional and non-transactional objects, and
offered various rules to adapt the ACID properties to such an environment.

The example we gave above arises in a data structure of unsurpassed simplicity. Similar issues
would also be encountered in other data structures, such as doubly linked lists where orderdoesmatter,
trees, hash tables, stacks, and so forth. In each case, a separate set of optimizations are needed to achieve
optimal levels of concurrency.

This author and many others who have worked with transactions have concluded that although
the model works very well for databases, there are simply problems for which the transaction model is
poorly matched. The argument is basically that although the various solutions suggested in the literature
do work, they have complicated side-effects (interested readers may want to track down the literature
concerned with terminating what are called “orphans of an aborted nested transaction”, a problem that
arises when a nested transaction that has active subransactions aborts, eliminating the database state in
which those subtransactions were spawned and exposing them to various forms of inconsistency). The
resulting mechanisms are complex to work with, and many users would have problems using them
correctly; some developers of nested transaction systems have suggested that only experts would be likely
to actually build transactional objects, while most “real” users would work with libraries of preconstructed
objects. Thus, even if mechanisms for overcoming these issues do exist, it seems clear that nested
transactions do not represent an appropriate general purpose reliability solution for non-database
applications.

The commercial marketplace seems to have reached a similar decision. Transactional systems
consist largely of relational databases (which may be used to store abstract data types, but in which the
relationships between the objects are represented in the transactional tables), or transactional file-
structured systems. Although many distributed, object-oriented, transactional systems have been
developed, few seem to have made the transition from research prototype to the wider commercial use.

In particular, many of the problems that are most easily solved using process groups are quite
hard to solve using transactional solutions. The isolation property of transactions runs counter to the idea
of load-balancing in a service replicated at several nodes, or of passing a token within a group of
cooperating processes. Conversely, however, notice that transactional mechanisms bring a considerable
infrastructure to the problem of implementing the ACID properties for applications that act upon
persistent data stored in complex data structures, and this infrastructure is utterly lacking in the virtual
synchrony model.

Kenneth P. Birman - Building Secure and Reliable Network Applications410

410

To this author, the implication is that while both models introduce reliability into distributed
systems, they deal with very different reliability goals: recoverability on the one hand, and availability on
the other. While the models can be integrated so that one could use transactions within a virtual
synchrony context and vice versa, there seems to be little hope that the could be merged into a single
model that would provide all forms of reliability in a single, highly transparent environment. Integration
and co-existence is for this reason a more promising direction, and seems to be the one favored by
industry and research groups.

21.5 Weak Consistency Models
There are some applications in which one desires most aspects of the transactional model, but where
serializability in the strict sense is not practical to implement. Important among these are distributed
systems in which a database must be accessed from a remote node that is sometimes partitioned away from
the system. In this situation, even if the remote node has a full copy of the database, it is potentially
limited to read-only access. Even worse, the impossibility of building a non-blocking commit protocol for
partitioned settings potentially prevents these read-only transactions from executing on the most current
state of the database, since a network partitioning failure can leave a commit protocol in the “prepared”
state at the remote site.

In practice, many distributed systems treat remote copies of databases as a form of second-class
citizen. Such databases are often updated by periodic transfer of the log of recent committed transactions,
and used only for read-only queries. Update transactions execute on aprimary copyof the database. This
approach avoids the need for a multi-phase commit but has limited opportunity to benefit from the
parallelism inherent in a distributed architecture. Moreover, the delay before updates reach the remote
copies may be substantial, so that remote transactions will often execute against a stale copy of the
database, with outcomes that may be inconsistent with the external environment inobvious ways. For
example, a remote banking system may fail to reflect a recent deposit for hours or days.

In the subsections that follow we briefly present some of the mechanisms that have been proposed
as extensions to the transactional model to improve its usefulness in settings such as these.

21.5.1 Epsilon serializability
Originally proposed by Pu, this is a model in which a pre-agreed strategy is used to limit the possible
divergence between a primary database and its remote replicas [Pu93]. The “epsilon” refers to the case
where the database contains numeric data, and it is agreed that any value read by a transaction is withinε
of the correct one.

For example, suppose that a remote transaction is executed to determine the current value of a
bank balance, and the result obtained is $500. Ifε=$100, we can conclude that the actual balance in the
database (in the primary version) is no less than $400 and no more than $600. The benefit of this
approach is that it relaxes the need to run costly synchronization protocols between remote copies of a
database and the primary: such protocols are only needed if an update might violate the constraint.

Continuing our example, suppose that we know that there are two replicas and one primary copy
of the database. We can now allocate ranges within which these copies can independently perform update
operations without interacting with one another to confirm that it is safe to do so. Thus, the primary copy
and each replica might be limited to a maximum cumulative update of $50 (larger updates would require
a standard locking protocol). Even if the primary and one replica perform maximum increments to the
balance of $50 respectively, the remaining replica still sees a value that is within $100 of the true value,
and this remains true for any update that the third replica might undertake. In general, the rule for this

Chapter21: Transactional Systems 411

411

model is that the minimum and maximum cumulative updates done by “other copies” must be bounded by
ε to ensure that a given copy will see a value withinε of the true one.

21.5.2 Weak and strong consistency in partitioned database systems
During periods when a database system may be completely disconnected from other replicas of the same
database, we will in general be unable to determine a safe serialization order for transactions originating
at that disconnected copy.

Suppose that we want to implement a database system for use by soldiers in the field, where
communication may be severely disrupted. The database could be a map showing troop positions, depots,
the state of roads and bridges, and major targets. In such a situation, one can imagine transactions of
varying ranges of urgency. A fairly routine transaction might be to update the record showing where an
enemy outpost is located, indicating that there has been “no change” in the status of the outpost. At the
other extreme would be an emergency query seeking to locate the closest medic or supply depot capable of
servicing a given vehicle.

Serializability considerations underlie the consistency and correctness of the real database, but
one would not necessarily want to wait for serializability to be guaranteed before making an “informed
guess” about the location of a medical team. Thus, even if a transactional system requires time to achieve
a completely stable ordering on transactions, there may be cases in which one would want it to process at
least certain classes of transactions against the information presently available to it.

In his doctoral thesis, Amir addressed this problem using the Transis system as a framework
within which he constructed a working solution [Ami95;see alsoCGS85, AKA93, TTPD95]. His basic
approach was to consider only transactions that can be represented as a single multicast to the database,
which is understood to be managed by a process group of servers. (This is a fairly common assumption in
transactional systems, and in fact most transactional applications indeed originate with a single database
operation that can be represented in a multicast or remote procedure call). Amir’s approach was to use
abcast (the dynamically uniform or “safe” form) to distribute update transactions among the servers,
which were designed to use a serialization order that is deterministically related to the incomingabcast
order. Queries were implemented as local transactions requiring no interaction with remote database
servers.

As we saw earlier, dynamically uniformabcastprotocols must wait during partitioning failures
in all but the primary component of the partitioned system. Thus, Amir’s approach is subject to blocking
in a site that has become partitioned away from the main system. Such a site may, in the general case,
have a queue of undeliverable and partially orderedabcasts that are waiting either for a final
determination of their relative ordering, or for a guarantee that dynamic uniformity will be achieved.
Each suchabcastcorresponds to an update transaction that could change the database state, perhaps in an
order-sensitive way, and which cannot be safely applied until this information is known.

What Amir does next depends on the type of request presented to the system. If a request is
urgent, it can be executed either against the last known completely safe state (ignoring these incomplete
transactions), or against an approximation to the correct and current state (by applying these transactions,
evaluating the database query, and then aborting the entire transaction). Finally, a normal update can
simply wait until the safe and global ordering for the corresponding transaction is known, which may not
occur until communication has been reestablished with remote sites.

Amir’s work is not the only effort to have arrived at this solution to the problem. Working
independently, a group at Xerox Parc developed a very similar approach to disconnected availability in the

Kenneth P. Birman - Building Secure and Reliable Network Applications412

412

Bayou system [TTPD95]. There work is not expressed in terms of process groups and totally ordered,
dynamically uniform, multicast, but the key ideas are the same. In other ways, the Bayou system is more
sophisticated than the Transis-based one: it includes a substantial amount of constraint checking and
automatic correction of inconsistencies that can creep into a database if urgent updates are permitted in a
disconnected mode. Bayou is designed to support distributed management of calendars and scheduling of
meetings in large organizations, a time-consuming activity that often requires approximate decision
making because some desired participants may be on the road or otherwise unavailable at the time a
meeting must be scheduled.

21.5.3 Transactions on multi-database systems
The Phoenix system [Mal96], developed by Malloth, Guerraoui, Raynal, Schiper and Wilhelm, adopts a
similar philosophy but considers a different aspect of the problem. Starting with the same model as is
used in Amir’s work and in Bayou, where each transaction is initiated from a single multicast to the
database servers, which form a process group, this effort asked how transactions that operate upon
multiple objects could be accommodated. Such considerations lead them to propose a generalized multi-
group atomic broadcast that is totally ordered, dynamically uniform, and failure atomic over multiple
process groups to which it is sent [SR96]. The point of using this approach is that if a database is
represented in fragments that are managed by separate servers, each of which is implemented in a process
group, a single multicast would not otherwise suffice to do the desired updates. The Phoenix protocol
used for this purpose is similar to the extended three-phase commit developed by Keidar for the Transis
system, and is considerably more efficient than sending multiple concurrent and asynchronous multicasts
to the process groups and then running a multi-phase commit on the full set of participants. Moreover,
whereas such as multi-step protocol would leave serious unresolved questions insofar as the view-
synchronous addressing aspects of the virtual synchrony model are considered, the Phoenix protocol can
be proved to guarantee this property within all of the destination groups.

21.5.4 Linearizability
Herlihy and Wing studied consistency issues from a more theoretical perspective [HW90]. In a paper on
the linearizability model of database consistency, they suggested that object oriented systems may find the
full nested serializability model overly constraining, but still benefit from some forms of ordering
guarantee. A nested execution is linearizable if the invocations ofeach object, considered independently
of other objects, leave that object in a state that could have been reached by some sequential execution of
the same operations, in an order consistent with the causal ordering on the original invocation sequence.
In other words, this model says that an object may reorder the operations upon it and interleave their
execution provided that it behaves as if it had executed operations one by one, in some order consistent
with the (causal) order in which the invocations were presented to it.

Linearizability may seem like a very simple andobvious idea, but there are many distributed
systems in which servers might not be guaranteed to respect this property. Such servers can allow
concurrent transactions to interfere with one another, or may reorder operations in ways that violate
intuition (for example by executing a read-only operation on a state that is sufficiently old to be lacking
some updates that were issued before the read by the same source). At the same time, notice that
traditional serializability can be viewed as an extention of linearizability (although serializability does not
require that the causal order of invocations be respected, few database systems intentionally violate this
property). Herlihy and Wing argue that if designers of concurrent objects at least prove them to achieve
linearizability, the objects will behave in an intuitive and consistent way when used in a complex
distributed system; should one then wish to go further and superimpose a transactional structure over such
a system, doing so simply requires stronger concurrency control. This author is inclined to agree:
linearizability seems like an appropriate “weakest” consistency guarantee for the objects used in a
distributed environment. The Herlihy and Wing paper develops this idea by presenting proof rules for
demonstrating that an object implementation achieves linearizability; however, we will not discuss this
issue here.

Chapter21: Transactional Systems 413

413

21.5.5 Transactions in Real-Time Systems
The option of using transactional reliability in real-time systems has been considered by a number of
researchers, but the resulting techniques have apparently seen relatively little use in commercial products.
There are a number of approaches that can be taken to this problem. Davidson is known for work on
transactional concurrency control subject to real-time constraints; her approach involves extending the
scheduling mechanisms used in transactional systems (notably, timestamped transactional systems) to
seek to satisfy the additional constraints associated with the need to perform operations before a deadline
expires.

Amir, in work on the Transis project, has looked at transactional architectures in which data is
replicated and it may be necessary to perform a transaction with weaker consistency than the normal
serializability model because of temporal or communication constraints [Ami95]. For example, Amir
considers the case of a mobile and disconnected user who urgently requires the results of a query, even at
the risk that the database replica on which it will be executed is somewhat out of date. The Bayou
project, descibed below, uses a similar approach. These methods can be considered “real-time” to the
degree to which they might be used to return a result for a query that has a temporal constraint
inconsistent with the need to run a normal concurrency control algorithm, which can delay a transaction
for an unpredictable period of time.

Broadly, however, the transactional model is fairly complex and consequently ill-suited for use in
settings where the temporal constraints have fine granularity with regard to the time needed to execute a
typical transaction. In environments where there is substantial “breathing room” transactions may be a
useful technique even if there are real-time constraints that should be taken into account, but as the
temporal demands on the system rise, more and more deviation from the pure serializability model is
typically needed in order to continue to guarantee timely response.

21.6 Advanced Replication Techniques
Looking to the future, one of the more exciting research directions of which the author is aware involves
the use of process groups as a form of coherently replicated cache to accelerate access to a database. The
idea can be understood as a synthesis of Liskov’s work on the Harp file system [LGGJ91], the author’s
work on Isis [BR94], and research by Seltzer and others on log-structured database systems [Sel93].
However, this author is not aware of any publication in which the contributions of these disparate systems
are unified.

To understand the motivation for this work, it may help to briefly review the normal approach to
replication in database systems. As was noted earlier, one can replicate a data item by maintaining
multiple copies of that item on servers that will fail independently, and updating the item using a
transaction that either writes all copies or at least writes to a majority of copies of the item. However,
such transactions are slowed by the quorum read and commit operations: the former will now be a
distributed operation and hence subject to high overhead, while the latter is a cost not paid in the non-
distributed or non-replicated case.

For this reason, most commercial database systems are operated in a non-distributed manner,
even in the case of technologies such as Tuxedo or Encina that were developed specifically to support
distributed transactional applications. Moreover, many commercial database systems provide a weak form
of replication for high availability applications, in which the absolute guarantees of a traditional
serializability model are reduced to improve performance. The specific approach is often as follows. The
database system is replicated between a primary and backup server, whose roles will be interchanged if the
primary fails and later is repaired and recovers. The primary server will, while running, maintain a log of

Kenneth P. Birman - Building Secure and Reliable Network Applications414

414

committed transactions, periodically transmitting it to the backup, which applies the corresponding
updates.

Notice that this protocol has a
“window of vulnerability”. If a primary
server is performing transactions rapidly,
perhaps hundreds of them per second, the
backup may lag by hundreds or thousands
of transactions because of the delay
associated with preparing and sending the
log records. Should the primary server now
crash, these transactions will be trapped in
the log records: they are committed and the
client has potentially seen the result, but the
backup will take over in a state that does not
yet reflect the corresponding updates.
Later, when the primary restarts, the lost
transactions will be recovered and,
hopefully, can still be applied without
invalidating other actions that occurred in
the interim; otherwise, a human operator is
asked to intervene and correct the problem.
The benefit of the architecture is that it
gives higher availability without loss of

performance; the hidden cost, however, is the risk that transactions will be “rolled back” by a failure,
creating noticeable inconsistencies and a potentially difficult repair problem.

As it happens, we can do a less costly job of replicating a database using process groups, and may
actuallygain performance by doing so!

The idea is the following. Suppose that one were to consider a database as being represented by a
checkpoint and a log of subsequent updates. At any point in time, the state of the database could be
constructed by loading the checkpoint and then applying the updates to it; if the log were to grow too long,
it could be truncated by forming a new checkpoint. This isn’t an unusual way to actually view database
systems: Seltzer’s work on log-structured databases [Sel93] in fact implemented a database this way and
demonstrated some performance benefits by doing so, and Liskov’s research on Harp (a non-transactional
file store that was implemented using a log-based architecture) employed a similar idea, albeit in a system
with non-volatile RAM memory. Indeed, within the file system community, Rosenblum’s work on LFS (a
log-structured file system) revolutionized the architecture of many file system products [RO91]. So, it is
entirely reasonable to adopt a similar approach to database systems.

Now, given a a checkpoint and log representation of the database, a database server can be
viewed as a process that caches the database contents in high speed volatile memory. Each time the server
is launched, it reconstructs this cached state from the most recent checkpoint and log ofupdates, and
subsequently transactions are executed out of the cache. To commit a transaction in this model, it suffices
to force a description of the transaction to the log (perhaps as little as the transactional request itself and
the serialization order that was used). The database state maintained in volatile memory by the server can
safely be discarded after a failure, hence the costly disk access associated with the standard database server
architecture are avoided. Meanwhile, the log itself becomes an append-only structure that is almost never
reread, permitting a very efficient storage on disk. This is precisely the sort of logging studied by
Rosenblum for file systems and Seltzer for database systems, and is known to be very cost effective for

primary backup

logi

logi+1

client

Figure 21-4: Many commercial database products achieve high
availability using a weak replication policy that can have a
window of vulnerability. In this example, the red transactions
have not been logged to the backup and hence can be lost if the
primary fails; the green transactions, on the other hand, are
“stable” and will not be lost even if the primary fails. Although
lost transactions will be recovered when the primary restarts, it
may not be possible to reapply the updates automatically. A
human operator intervenes in such cases.

Chapter21: Transactional Systems 415

415

small to moderate sized databases it can work well. Subsequent research has suggested that this approach
can also be applied to very large databases.

But now our process group technology offers a path to further performance improvements
through parallelism. What we can do is to use the lightweight replication methods of Chapter 15 to
replicate the volatile, “cached” database state within a group of database servers, which can now use one
of the load-balancing techniques of Section 15.3.3 to subdivide the work of performing transactions.
Within this process group, there isno need to run a multi-phase commit protocol!To see this, notice that
just as the non-replicated volatile server is merely a cache of the database log, so the replicated group is
merely a volatile, cached database state.

When we claim that
there is no need to run a
multiphase commit protocol
here, it may at first seem that
such a claim is incorrect, since
the log records associated with
the transaction do need to be
forced to disk (or to NVRAM if
we use the Harp approach), and
if there is more than one log,
there will need to be a
coordination of this activity to
ensure that either all logs reflect
the committed transaction, or
that none does. For availability,
it may actually be necessary to
replicate the log, and if this is
done, a multi-phase commit

would be unavoidable. However, in many settings it might make sense to use just a single log server; for
example, if the loging device is itself a RAID disk, then the intrinsic fault-tolerance of the RAID
technology could be adequate to provide the degree of availability desired for our purposes. Thus, it may
be better to say that there is noinherent reason for a multiphase commit protocol here, although in
specific cases one may be needed.

The primary challenge associated with this approach is to implement a suitable concurrency
control scheme in support of it. While optimistic methods are favored in the traditional work on
distributed databases, it is not clear that they represent the best solution for this style of group-structured
replication married to a log-structured database architecture. In the case of pessimistic locking, a solution
is known from the work of Joseph and this author in the mid 1980’. In the approach developed by Joseph,
data is replicated within a process group [Jos86]. Reads are done from any single local copy and writes
are done by issuing an asynchronouscbcastto the full group. Locking is done by obtaining local read
locks and replicated write locks, the latter using a token-based scheme. The issue now arises of read locks
that can be broken by a failure; this is addressed byre-registeringread locks at an operational database
server if one of the group members fails. In the scheme Joseph explored, such re-registration occurs
during the flush protocol used to reconfigure the group membership.

Next, Joseph introduced a rule whereby a write lock must be granted in the same process group
view in which it was requested. If a write lock is requested in a group view where processp belongs to the
group, andp fails before the lock is granted (perhaps because of a read lock some transaction held at
processp), this forces the transaction requesting the write lock to release any locks it successfully acquired
and to repeat its request. The repeated request will occur after the read-lock has been re-registered,

checkpoint
log

Figure 21-5: Future database systems may gain performance benefits by
exploiting process groups as scaleable "parallel" front-ends that cache the
database in volatile memory and run transactionsagainst this coherently
cached state in a load-balanced manner. A persistent log is used to provide
failure atomicity; because the log is a write-only structure it can be
optimized to give very high performance. The log would record a description
of each update transaction and the serialization order that was used; only
committed transactions need be logged in this model.

Kenneth P. Birman - Building Secure and Reliable Network Applications416

416

avoiding the need to abort a transaction because its read locks were broken by a failure. In such an
approach, the need to support unilateral transaction abort is eliminated, because the log now provides
persistency, and locks can never be lost within the process group (unless all its members fail, which is a
special case). Transaction commit becomes an asynchronouscbcast, with the same low cost as the
protocol used to do writes.

Readers familiar with transactional concurrency control may be puzzled by the similarity of this
scheme to what is called theavailable copiesreplication method, an approach that is known to yield non-
serializable executions [BHG87]. In fact, however, there is a subtle difference between Joseph’s scheme
and the available copies scheme, namely that Joseph’s approach depends on group membership changes to
trigger lock reregistration, whereas the available copies scheme does not. Since group membership, in the
virtual synchrony model, involves a consensus protocol that provides consistent failure notification
throughout the operational part of a system, the inconsistent failure detections that arise in the available
copies approach do not occur. This somewhat obscure observation does not seem to be widely known
within the database community.

Using Joseph’s pessimistic locking scheme, a transaction that does not experience any failures
will be able to do local reads at any copy of the replicated data objects on which it operates. The update
and commit protocols both permit immediate local action at the group member where the transaction is
active, together with an asynchronouscbcastto inform other members of the event. Only the acquisition
of a write lock and the need to force the transaction description and commit record (including the
serialization order that was used) involve a potential delay. This overhead however is counterbalanced by
the performance benefits that come with scaleable parallelism.

The result of this effort represents an interesting mixture of process group replication and
database persistence properties. On the one hand, we get the benefit of high-speed memory-mapped
database access, and can use the very lightweight non-uniform replication techniques that achieved such
good performance in previous chapters. Moreover, we can potentially do load-balancing or other sorts of
parallel processing within the group. Yet the logging method also gives us the persistence properties
normally associated with transactions, and the concurrency control scheme provides for traditional
transactional serializability. Moreover, this benefit is available without special hardware (such as
NVRAM), although NVRAM would clearly be beneficial if one wanted to replicate the log itself for
higher available. To the author, the approach seems to offer the best of both worlds.

The integration of transactional constructs and process groups thus represents fertile territory for
additional research, particularly of an experimental nature. As noted earlier, it is clear that developers of
reliable distributed systems need group mechanisms for high availability and transactional ones for
persistence and recoverability of critical data. Integrated solutions that offer both options in a clean way
could lead to a much more complete and effective programming environment for developing the sorts of
robust distributed applications that will be needed in complex environments.

21.7 Related Readings
Chapter 26 includes a review of some of the major research projects in this area, which we will not
attempt to duplicate here. For a general treatment of transactions, this author favors [GR93, BHG87]. On
the nested transaction model, [Mos82]. Disconnected operation in transactional systems [Ami95, CGS85,
AKA93, TTPD95]. Log-based transactional architectures [LGGJ91, Jos86, Sel93, BR94].

Chapter22: Probabilistic Protocols 417

417

22. Probabilistic Protocols
The protocols considered in previous chapters of this textbook share certain basic assumptions concerning
the way that a distributed behavior or a notion of distributed consistency is derived from the local
behaviors of system components. Although we have explored a number of styles of protocol, the general
pattern involves reasoning about the possible system states observable by a correct process, and
generalizing from this to properties that are shared by sets of correct processes. This approach could be
characterized as a “deductive” style of distributed computing, in which the causal history prior to an event
is used to deduce system properties, and the possible deductions by different processes are shown to be
consistent in the sense that, through exchanges of messages, they will not encounter direct contradictions
in the deduced distributed state.

In support of this style of computing we have reviewed a type of distributed system architecture
that is hierarchical in structure, or perhaps (as in Transis) composed of a set of hierarchical structures
linked by some form of wide-area protocol. There is little doubt that this leads to an effective technology
for building very complex, highly reliable distributed systems. One might wonder, however, if there are
other ways to achieve meaningful forms of consistent distributed behavior, and if so, whether the
corresponding protocols might have advantages that would favor their use under conditions where the
protocols we have seen up to now, for whatever reason, encounter limitations.

This line of reasoning has motivated some researchers to explore other styles of reliable
distributed protocol, in which weaker assumptions are made about the behavior of the component
programs but stronger ones are made about the network. Such an approach results in a form of protection
against misbehavior whereby a process fails to respect the rules of the protocol but is not detected as
having failed. In this chapter we discuss the use of probabilistic techniques to implement reliable
broadcast protocols and replicated data objects. Although we will see that there are important limitations
on the resulting protocols, they also represent an interesting design point that may be of practical value in
important classes of distributed computing systems. Probabilistic protocols are not likely to replace the
more traditional deductive protocols anytime soon, but they can be a useful addition to our repertoire of
“tools” for constructing reliable distributed systems, particularly in setting where the load and timing
properties of the system components are extremely predictable.

22.1 Probabilistic Protocols
The protocols we will be looking at in this section are scaleable andprobabilistically reliable. Unlike the
protocols presented previously, they are based on a probabilistic system model somewhat similar to the
“synchronous” model that we considered in our discussion of real-time protocols. In contrast to the
asynchronous model, no mechanism for detecting failure is required.

These protocols are scaleable in two senses. First, the message costs and latencies of the
protocols grow slowly with the system size. Second, the reliability of the protocols, expressed in terms of
the probability of a failed run of a protocol, approaches 0 exponentially fast as the number of processes is
increased. This scaleable reliability is achieved through a form of gossip protocol which is strongly self-
stabilizing. Such a system has the property that if it is disrupted into an inconsistent state, it will
automatically restore itself to a consistent one given a sufficient period of time without failures. Our
protocols (particularly for handling replicated data) also have this property.

Kenneth P. Birman - Building Secure and Reliable Network Applications418

418

The basic idea with which we will work is illustrated in Figure 22-1, which shows a possible
execution for a form ofgossipprotocol developed by Demers and others at Xerox Parc [DGHI87]. In this
example of a “push” gossip protocol, messages are diffused through a randomized flooding mechanism.
The first time a process receives a message, it selects some fixed percentage of destinations from the set of
processes that have not yet received it. The number of such destinations is said to be thefanout of the
protocol, and the processes selected are picked randomly (a bit vector, carried on the messages, indicates
which processes have received them). As these processes receive the message, they relay it in the same
manner. Subsequently, if a process receives aduplicate copy of a message it has seen before, it discards
the message silently.

Gossip protocols will typically flood the network within a logarithmic number of rounds. This
behavior is very similar to that of a biological epidemic, hence such protocols are also known asepidemic
ones [Bai75]. Notice that although each process may receive a message manytimes, the computational
cost of detecting duplicates and discarding them is likely to be low. On the other hand, the cost of
relaying them is a fixed function of the fanout regardless of the size of the network; this is cited as one of
the benefits of the approach. The randomness of the protocols has the benefit of overcoming failures of
individual processes, in contrast with protocols where each process has a specific role to play and must
play it correctly, or fail detectably, for the protocol itself to terminate correctly. Our figure illustrates a
push protocol, in the sense that processes with data push it to other processes that lack data by gossiping.
A “pull” style of gossip can also be defined: in this approach, a process periodically solicits messages from
some set of randomly selected processes. Moreover, the two schemes can be combined.

Demers and his colleagues have provided an analysis of the convergence and scaling properties
of gossip protocols based on pushing, pulling, and combined mechanisms, and shown how these can
overcome failures [DGHI89]. They prove that both classes of protocols converge towards flooding
exponentially quickly, and demonstrate that they can be applied to real problems. The motivation for
their work was a scaling problem that arose in the wide-area mail system that was developed at Parc in the
1980’s. As this system was used on a larger and larger scale, it began to exhibit consistency problems and
had difficulties in accommodating mobile users. Demers and his colleagues showed that by
reimplementing the email system to use a gossip broadcast protocol they could overcome these problems,
helping ensure timely and consistent email services that were location independent and inexpensive.

p0 p1 pn

Figure 22-1: A "push" gossip protocol. Each process that receives a message picks some number of destinations
(the "fanout", 3 in the example shown) randomly among the processes not known to have received it. Within a few
rounds, the message has reached all destinations (above, a process that has received a message is shown in gray).
A “pull” protocol can be used to complement this behavior: a process periodically selects a few processes and
solicits messages from them. Both approaches exhibit exponential convergence typical of epidemics in densely
populated biological systems.

Chapter22: Probabilistic Protocols 419

419

22.2 Other applications of gossip protocols
The protocol of Demers is not the first or the only to explore gossip-style information dissemination as a
tool for communication in distributed systems. Other relevant work in this area includes [ABM87], an
information diffusion protocol that uses a technique similar to the one presented above, and [Gol91a,
GT92], which uses gossip as a mechanism underlying a group membership algorithm for wide-area
applications. For reasons of brevity, however, we will not treat these papers in detail in the current
chapter.

22.3 Hayden’s pbcast primitive
In the style of protocol explored at Xerox, the actual rate with which messages will flood the network is
not guaranteed because of failures. Instead, these protocols guarantee that, given enough time, eventually
either all or no correct processes will deliver a message. This property is calledeventual convergence.
Although eventual convergence is sufficient for many uses, the property is weaker than the guarantees of
the protocols we used earlier to replicate data and perform synchronization, because eventual convergence
does not provide bounds on message latency or ordering properties. Hayden has shown how gossip
protocols can be extended to have these properties [HB93], and in this section we present the protocol he
developed for this purpose. Hayden calls his protocolpbcast,characterizing it as a probabilistic analog of
theabcastprotocol for process groups.

The pbcastprotocol is based on a number of assumptions about the environment, which may not
hold in typical distributed systems. Thus, after presenting the protocol, we will need to ask ourselves
when the protocol could appropriately be applied. If used in a setting where these assumptions are not
valid, pbcastmight not perform as well as the analysis would otherwise suggest.

Specifically, pbcastis designed for a static set of processes that communicate synchronously over
a fully connected, point-to-point network. The processes have unique, totally ordered identifiers, and can
toss weighted, independent random coins. Runs of the system proceed in a sequence of rounds in which
messages sent in the current round are delivered in the next.

There are two types of failures, both probabilistic in nature. The first are process failures. There
is an independent, per-process probability of at mostfp that a process has a crash failure during the finite
duration of a protocol. Such processes are called faulty. The second type of failures are message omission
failures. There is an independent, per-message probability of at mostfm that a message between non-faulty
processes experiences a send omission failure. The union of all message omission failure events and
process failure events are mutually independent. In this model, there are no malicious faults, spurious
messages, or corruption of messages. We expect that bothfp andfm are small probabilities. (For example,
unless otherwise stated, the values used in the graphs in this section arefm =0.05 andfp =0.001.)

The impact of the failure model above can be visualized by thinking of the power that would be
available to an adversary who seeks to cause a run of the protocol to fail by manipulating the system
within the bounds of the model. Such an adversary has these capabilities and restrictions:

• An adversary cannot use knowledge of future probabilistic outcomes, interfere with random coin
tosses made by processes, cause correlated (non-independent) failures to occur, or do anything not
enumerated below.

• An adversary has complete knowledge of the history of the current run of the protocol.
• At the beginning of a run of the protocol, the adversary has the ability to individually set process

failure rates, within the bounds [0..fp].
• For faulty processes, the adversary can choose an arbitrary point of failure.

Kenneth P. Birman - Building Secure and Reliable Network Applications420

420

• For messages, the adversary has the ability to individually set send omission failure probabilities
within the bounds of [0..fm].

Note that although probabilities may be manipulated by the adversary, doing so can only make
the system “more reliable” than the bounds,fp andfm.

The probabilistic analysis of the properties of thepbcastprotocol are only valid in runs of the
protocol in which the system obeys the model. In particular, the independence properties of the system
model are quite strong and are not likely to be continuously realizable in an actual system. For example,
partition failures in the sense of correlated communication failures do not occur in this model. Partitions
can be “simulated” by the independent failures of several processes, but are of vanishingly low probability.
However, the protocols we develop usingpbcast, such as our replicated data protocol, remain safe even
when the system degrades from the model. In addition,pbcast-based algorithms can be made self-
healing. For instance, our replicated data protocol has guaranteed eventual convergence properties
similar to normal gossip protocols: so if the system recovers into a state that respects the model and
remains in that state for sufficiently long, the protocol will eventually recover from the “failure” and
reconverge to a consistent state.

22.3.1 Unordered pbcast protocol
We begin with an unordered version ofpbcastwith static membership (see Figure 22-2). The protocol
itself extends a basic gossip protocol with a quorum-based ordering algorithm inspired by the ordering
scheme in CASD [CASD85, CT90]. What makes the protocol interesting is that it is tolerant of failures
and that, under the assumptions of the model, it can be analyzed formally.

The protocol consists of a fixed number of rounds, in which each process participates in at most
one round. A process initiates apbcastby sending a message to a random set of other processes. When
other processes receive a message for the firsttime, they gossip the message to some other randomly
chosen members. Each process only gossips once: the first process does nothing after sending the initial
messages and the other processes do nothing after sending their set of gossip messages. Processes choose
the destinations for their gossip by tossing a weighted random coin for each other process to determine
whether to send a gossip message to that process. Thus, the parameters of the protocol are:

• P: the set of processes in the system.n = |P|.

• k, the number of rounds of gossip to run

• r, the probability that a process gossips to each other process (the “weighting” of the coin mentioned
above).

The behavior of the gossip protocol mirrors a class of disease epidemics which nearly always
infect either almost all of a population or almost none of it. Below, we will show thatpbcasthas a
bimodal delivery distribution stems from the “epidemic” behavior of the gossip protocol. The normal
behavior of the protocol is for the gossip to flood the network in a random but exponential fashion. Ifr is
sufficiently large, most processes will usually receive the gossip within a logarithmic number of rounds.

Chapter22: Probabilistic Protocols 421

421

22.3.2 Adding Total Ordering
In the protocol shown above, thepbcastmessages are unordered. However, because the protocol runs in a
fixed number of rounds of fixed length, it is trivial to extend it using the same method as was proposed in
the CASD protocols. By delaying the delivery of a message until it is known that all correct processes
have a copy of that message, totally ordered delivery can be guaranteed. This yields a protocol similar to
abcastin that it has totally ordered message delivery and reliability within the fixed membership of the
process group that invokes the primitive. It would not be difficult to introduce a further extention of the
protocol for use in dynamic process groups, but we will not address that issue here.

(* State kept per pbcast: have I received a message regarding this pbcast yet? *)
let received_already = false

(* Initiate a pbcast. *)
to pbcast(msg):

deliver_and_gossip(msg,k)

(* Handle message receipt. *)
on receive Gossip(msg,round):

deliver_and_gossip(msg,round)

(* Auxiliary function. *)
to deliver_and_gossip(msg,round):

(* Do nothing if already received it. *)
if received_already then return

(* Mark the message as being seen and deliver. *)
received_already := true
deliver(msg)

(* If last round, don't gossip. *)
if round = 0 then return

foreach p in P:
do with probability r:

sendto p Gossip(msg,round-1)

Figure 22-2: Unordered pbcast protocol. The function time() returns the current time expressed in rounds since the
first round. Message receipt and pbcast are executed as atomic actions.

Kenneth P. Birman - Building Secure and Reliable Network Applications422

422

22.3.3 Probabilistic Reliability and the Bimodal Delivery Distribution
Hayden has demonstrated that when the system respects the model, a pbcast is almost always delivered to
“most” or to “few” processes, and almost never to “some” processes. Such a delivery distribution is called
a “bimodal” one, and is depicted in Figure 22-4. The graph shows that varying numbers of processes will
deliver apbcast. For instance the probability that 26 out of the 50 processes deliver apbcastis around 10-
28. Such a probabilistic guarantee is, for most practical purposes, a guarantee that the outcome cannot
occur. This bimodal distribution property is presented here informally, but later we discuss the method

(* Local state: message buffer and counter for generating unique identifiers. *)
let buffer = {}
let id_counter = 0

(* Initiate a pbcast. *)
to pbcast(msg):

(* Create unique id for each message. *)
let id = (my_id, id_counter)
id_counter := id_counter + 1

do_gossip(time(),id,msg,k)

(* Handle message receipt. *)
on receive Gossip(timesent,id,msg,round):

do_gossip(timesent,id,msg,round)

(* Handle timeouts. *)
on timeout(time):

(* Check for messages ready for delivery.Assumes buffer is
* scanned in lexicographic order of (sent,id). *)

foreach (sent,id,msg) in buffer:
if sent + k + 1 = time then

buffer := buffer \ (sent,id,msg)
deliver(msg)

(* Auxiliary function. *)
to do_gossip(timesent,id,msg,rnd):

(* If have seen message already, do nothing. *)
if (timesent,id,msg) in buffer then

return

(* Buffer the message for later delivery, and then gossip. *)
buffer := buffer ∪∪∪∪(timesent,id,msg)
set_timer timesent + k + 1

(* If last round, do nothing more. *)
if rnd = 0 then return

foreach p in P
with probability r

send p Gossip(timesent,id,msg,rnd-1)

Figure 22-3: Ordered pbcast protocol, using the method of CASD.

Chapter22: Probabilistic Protocols 423

423

used by Hayden to calculate the actual probability distributions for a particular configuration of pbcast. In
keeping with the generally informal tone of this textbook, we omit the detailed analysis he employed.

A bimodal distribution is useful for voting-style protocols where, as an example, updates must be
made at a majority of the processes to be valid; we saw examples of such protocols when discussing
quorum replication. Problems occur in these sorts of protocols when failures cause a large number of
processes to carry out an update, but not a majority.Pbcastovercomes this difficulty through its bimodal
delivery distribution by ensuring that votes will almost always be weighted strongly for or against an
update, and very rarely be evenly divided. By counting votes, it can almost always be determined whether
an update was valid or not, even in the presence of some failed processes.

With pbcast, the “bad” cases are when “some” processes deliver thepbcastand these are the
cases that pbcast makes unlikely to occur. We will callpbcaststhat are delivered to “some” processes
failed pbcasts, and pbcasts that are delivered to “few” processesinvalid pbcasts. The distinction
anticipates the replicated data protocol presented below, in which invalidpbcastsare inexpensive events,
whereas failed ones are potentially costly.

To establish thatpbcast indeed has a bimodel delivery distribution, Hayden used a mixture of
symbolic and computational methods. First, he computed a recurrence relation that expresses the
probability that apbcastwill be received bya processes at the end of roundj given that the message had
been received byb processes at the end of roundj-1, c of these for the first time. In the terminology of a
biological infection,b denotes the number of processes that were infected during roundj-1 and hence are
infectious; the difference betweena andb thus represents the number ofsusceptibleprocesses that had not
yet received a gossip message and that are successfully infected during roundj.

The challenging aspect of this analysis is to deal with the impact of failures, which has the effect
of making the variables in the recurrence relation random ones with binomial distributions. Hayden
arrives at a recursive formula but not a closed form solution. However, such a formula is amenable to
computational solutions, and by writing a program to calculate the various probabilities involved, he is
able to arrive at the delivery distributions shown in the figures.

Include Hayden’s
graphs of pbcast
performance and

scale here

Figure 22-4: Graphs showing pbcast reliability, performance and scaling.

Kenneth P. Birman - Building Secure and Reliable Network Applications424

424

A potential risk in the analysis of pbcast is to assume, as may be done for many other protocols,
that the worst case occurs when message loss is maximized. Pbcast's failure mode occurs when there is a
partial delivery of a pbcast. A pessimistic analysis must consider the case where local increases in the
message delivery probability decrease the reliability ofthe overall pbcast protocol. This makes the
analysis quite a bit more difficult than the style of worst-case analysis that can be used in protocols like
the CASD one, where the worst case is the one in which the maximum number of failures occur.

22.3.4 An Extension to Pbcast

When the process which initiates a pbcast is not faulty, it is possible to provide stronger
guarantees for the pbcast delivery distribution. By having the process which starts a pbcast send more
messages, an analysis can be given that shows that if the sender is not faulty the pbcast will almost always
be delivered at “most” of the processes in the system. This is useful because an application can potentially
take some actions knowing that its previous pbcast is almost certainly going to reach most of the processes
in the system. The number of messages can be increased by having the process that initiates a pbcast use
a higher value forr for just the first round of the pbcast. This extension is not used in the computations
that are presented below. Had the extention been included, the distributions would have favored bimodal
delivery with even higher probabilities.

22.3.5 Evaluation and Scalability
The evaluation of pbcast is framed in the context of its scalability. As the number of processes increases,
pbcast scales according to several metrics. First, the reliability of pbcast grows with system size. Second,
the cost per participant, measured by number of messages sent or received, remains at or near constant as
the system grows. Having made these claims, it must be said that the version of pbcast presented and
analyzed makes assumptions about a network that become less and less realizable for large systems. In
practice, this issue could be addressed with a more hierarchically structured protocol, but Hayden’s
analysis has not been extended to such a protocol. In this section, we will address the scaling
characteristics according to the metrics listed above, and then discuss informally how pbcast can be
adapted for large systems.

22.3.5.1 Reliability
Pbcast has the property that as the number of processes participating in a pbcast grows, the protocol
becomes more reliable. In order to demonstrate this, we present a graph (Figure 22-4(b)) of pbcast
reliability as the number of processes are varied between 10 and 60, fixing fanout and failure rates. For
instance, the graph shows that with 20 processes the reliability is around 10-13. The graph almost fits a
straight line with slope =- 0.45, thus the reliability of pbcast increases almost ten-fold with every two
processes added to the system.

22.3.5.2 Message cost and fanout.
Although not immediately clear from the protocol, the message cost of the pbcast protocol is roughly a
constant multiple of the number of processes in the system. In the worst cast, all processes can gossip to
all other processes, causingO(n2) messages per pbcast.r will be set to cause some expectedfanout of
messages, so that on average a process should gossip to aboutfanout other processes, wherefanout is
some constant, in practice at most 10 (unless otherwise stated,fanout=7 in the graphs presented in this
section). Figure 22-4(c) shows a graph of reliability versesfanoutwhen the number of processes and other
parameters is held constant. For instance, the graph shows that with a fanout of 7.0, pbcast's reliability is
around 10-13. In general, the graph shows that the fanout can be increased to increase reliability, but
eventually there are diminishing returns for the increased message cost.

On the other hand,fanout (and hence cost) can be decreased as the system grows, keeping the
reliability at fixed level. In Figure 22-4(d), reliability of at least “twelve nines” (i.e. the probability of a
failed pbcastis less than or equal to 10-12) is maintained, while the number of processes is increased. The

Chapter22: Probabilistic Protocols 425

425

graph shows that with 20 processes afanout of 6.63 achieves twelve-nines reliability, while with 50
processes afanoutof 4.32 is sufficient.

22.4 An Unscalable System Model
Although the protocol operating over the system model is scaleable, the system model is not. The model
assumes a flat network in which the cost of sending a message is the same between all pairs of processes.
In reality, as a real system scales and the network loses the appearance of being flat, this assumption
breaks down. There are two possible answers to this problem. The first is to consider pbcast suitable for
scaling only to mid-sized systems (perhaps with as many as 100 processes). Certainly, at this size of
system, pbcast provides levels of reliability that are adequate for most applications. The second possible
solution may be to structure pbcast's message propagation hierarchically, so that a weaker system model
can be used which scales to larger sizes. The structure of such a protocol, however, would likely
complicate the analysis. Investigating the problem of scaling pbcast to be suitable for larger numbers of
processes is an area of future work.

More broadly, thepbcastsystem model is one that would only be reasonable in certain settings.
General purpose distributed systems are not likely to guarantee clock synchronization and independence
of failures and message delays, as assumed in the model. On the other hand, many dedicated networks
would have the desired properties and hence could supportpbcastif desired. For example, the networks
that control telecommunications switches and satellite systems are often designed with guarantees of
capacity and known maximum load; in settings such as these the assumptions required bypbcastwould
hold. An interesting issue concerns the use ofpbcastfor high priority, infrequent tasks in a network that
uses general purpose computing technologies but supports a notion of message priority. In such settings
the pbcastprotocol messages might be infrequent enough to appear as independent events, permitting the
use of the protocol for special purposes although not for heavier loads or more frequent activities.

22.5 Replicated Data using Pbcast

In presenting other reliable broadcast protocols, we used replicated data as our primary “quality”
metric. How would a system that replicates data usingpbcastbe expected to behave, and how might such
a replicated data object be used? In this section we briefly present a replication and synchronization
protocol developed by Hayden and explore the associated issues.

22.5.1 Representation of replicated data
It is easiest to understand Hayden’s scheme if the replicated data managed by the system is stored in the
form of a history of values that the replicated data took on, linked by the updates that transformed the
system data from each value to the successive one. In what follows, we will assume that the system
contains a single replicated data object, although the generalization to a multi-object system is trivial.

22.5.2 Update protocol
Hayden’s scheme usespbcast to transmit updates. Each process applies these updates to its local data
copy as they are successfully delivered, in the order determined by the protocol. Were it not for the small
but non-zero probability of afailed pbcast, this would represent an adequate solution to our problem.
However, we know thatpbcast is very sensitive to the assumptions made in developing the model, hence
there is some risk that if the system experiences a brief overload or some other condition that pushes it
away from its basic model, failedpbcastsmay occur with unexpected high frequency, leaving the
processes in the system with different update sequences: the updates will be ordered in the same way
throughout, but some may be missing updates and others may have an update that in fact reflects a failed
pbcast and hence is not visible to many processes in the system..

Kenneth P. Birman - Building Secure and Reliable Network Applications426

426

To deal with this, we will use areadprotocol that can stabilize the system if it has returned to its
normal operational mode (the resulting algorithm will be said to beself-stabilizing for this reason).
Specifically, associated with each update in the data queue we will also have a distribution of the
probability that the update and all previous ones is stable, meaning that the history of the queue prior to
that update is believed to be complete and identical to the update queues maintained by other processes.
For an incoming update, this distribution will be just the same as the basicpbcastreliability distribution;
for older updates, it can change as thereadalgorithm is executed.

22.5.3 Read protocol
Hayden’s read algorithm distinguishes two types ofread operation. A local read operation returns the
current value of the data item, on the basis of the updates received up to the present. Such an operation
has a probability of returning the correct value that can be calculated using the reliability distributions of
the updates. If each update rewrites the value of the data item, the probability will be just that of the last
update; if updates are in some way state sensitive (such as an increment or decrement operation), this
computation involves a recurrence relation.

Hayden also supports asafe read, which operates by using a gossippull protocol to randomly
compare the state of the process at which the read was performed with that of some number of other
processes within the system. As the number of sampled states grows, it is possible to identify failed
updates with higher and higher probability, permitting the processes that have used a safe read to clean
these from their data histories. The result is that a read can be performed with any desired level of
confidence at the cost of sampling a greater number of remote process states. Moreover, each time asafe
read is performed, the confidences associated with updates that remain on the queue will rise. In practice,
Hayden finds that by sampling even a very small number of process states, a read can be done with what is
effectively perfect safety: the probability of correctness soars to such a high level that it essentially
converges to unity.

Conceptually, the application process that uses an unsafe “local” read should do so only under
circumstances where the implications of an erroneous result are not all that serious for the end-user.
Perhaps these relate to current positions of aircraft “remote” from the one doing the read operations and
hence are of interest but not a direct threat to safe navigation. In contrast, a process would use a safe read
for operations that have an external consistency requirement. A safe read is only risky if the network
model is severely perturbed, and even then, in ways that may be very unlikely. Thus a safe read might be
used to obtain information about positions and trajectories of flights “close” to an aircraft of interest, so as
to gain strong confidence that the resulting aircraft routing decisions are safe in a physical sense.
However, the safe read may need to sample other process states, and hence would be a slower operation.

One could question whether a probabilistic decision is ever “safe”. Hayden reasons that even a
normal, non-probabilistic distributed system is ultimately probabilistic because of the impracticality of
proving complex systems correct. The many layers of software involved (compiler, operating system,
protocols, applications) and the many services and servers involved introduce a probabilistic element to
any distributed or non-distributed computing application. Inpbcastthese probabilisties merely become
part of the protocol properties and model, but this is not to say that they were not previously “present” in
any case, even if unknown to the developer.

22.5.4 Locking protocol
Finally, Hayden presents apbcastbased locking protocol that is always safe and is probabilistically live.
His protocol works by usingpbcastto send out locking requests. A locking request that is known to have
reached more than a majority of processes in the system is considered to be granted in the order given by
the pbcastordering algorithm. If thepbcast is unsuccessful or has an uncertain outcome, the lock is
released (using any reliable point to point protocol, or anotherpbcast), and then requested again (this may

Chapter22: Probabilistic Protocols 427

427

mean that a lock is successfully acquired but, because the requesting process is not able to confirm that a
majority of processes granted the lock, released without having been used). It is easy to see that this
scheme will be safe, but also that it is only probabilistically live. After use of the lock, the process that
requested it releases it. If desired, a timeout can be introduced to deal with the possibility that a lock will
be requested by a process that subsequently fails.

22.6 Related Readings
Probabilistic protocols are an esoteric area of research, on which relatively little has been published. For
gossip protocols, [DGHI87, ABM87, Gol91a, GT92]. The underlying theory, [Bai75]. Hayden’s work
[HB93], which draws on [CASD85, CT90].

Kenneth P. Birman - Building Secure and Reliable Network Applications428

428

23. Distributed System Management
In distributed systems that are expected to overcome failures, reconfigure themselves to accommodate
overloading or underloading, or to modify their behavior in response to environmental phenomena, it is
helpful to consider the system at two levels. At one level, the system is treated in terms of its behavior
while the configuration is static. At the second level, issues of transition from configuration to
configuration are addressed: these include sensing the conditions under which a reconfiguration is needed,
taking the actions needed to reconfigure the physical layout of the system, and informing the components
of the new structure.

Most of the material in this chapter is based loosely on work by Wood and Marzullo on a
management and monitoring system calledMeta,and on related work by Marzullo on issues of clock and
sensor synchronization and fault-tolerance [Mar84, Mar90, MCBW91, Woo91]. The Meta system is not
the only one to have been developed for this purpose, and in fact has been superseded by other systems
and technologies since it was first introduced. However, Meta remains unusual for the elegance with
which it treats the problem, and for that reason is particularly well suited for presentation in this text.
Moreover, Meta is one of the only systems to have dealt with reliability issues.

Marzullo and Wood treat the management issue as a form of programming problem, in which the
inputs are events affecting the system configuration and the outputs areactionsthat may be applied to the
environment, sets of components, or individual components.Meta programmingis the problem of
developing the control rules used by the meta system to manage the underlying controlled system.

In developing a system management structure, the following tasks must be undertaken:

• Creation of a system and environment model.This establishes the conventions for naming the objects
in the system, identifies the events that can occur for each type of object, and the actions that can be
performed upon it.

• Linking the model to the real system.The process of instrumenting the managed system so that the
various control points will be accessible to the meta program.

• Developing the meta programs.The step during which control rules are specified, giving the
conditions under which actions should be taken and the actions required.

• Interpreting the control rules.Developing a meta-program that acts upon the control rules, with the
degree of reliability required by the application. A focus of this chapter will be onfault-tolerance of
the interpretation mechanismsand onconsistency of the actions taken.

• Visualizing the resulting meta environment.A powerful benefit of using a meta description and meta
control language is that the controlled system can potentially be visualized using graphical tools that
show system states in an intuitive manner and permit operators to intervene when necessary.

The state of the art for network management and state visualization is extremely advanced, and
tools for this purpose represent an important and growing software market. Less well understood is the
problem of managing reliable applications in a consistent and fault-tolerant manner, and this is the issue
on which our discussion will focus in the sections that follow.

23.1 A Relational System Model
Marzullo uses a relational database both to model the system itself and the environment in which it runs.
In this approach, the goal of the model is to establish the conventions by which the controlled entities and

Chapter23: Distributed System Management 429

429

their environment can be referenced, to provide definitions of the relationships between them, and to
provide definitions of the sensors and actuators associated with each type of component.

We assume that most readers are familiar with relational databases: they have been ubiquitous in
settings ranging from personal finance to library computing systems. Such systems represent the basic
entities of the database in the form oftabular relationswhose entries are calledtupleseach of which
contains a unique identifier. Relationships between these entities are expressed by additional relations
giving the identifiers for related entities.

For example, suppose that we want to manage a system containing two types of servers:
file_serversand database_servers. These servers execute onserver_nodes. A varying number of
client_programsexecute onclient_nodes.For simplicity, we will assume that there are only these three
types of programs in the system and these two types of nodes. However, for reliability purposes, it may be
that the file servers and database servers are replicated within process groups, and the collection of client
programs may vary dynamically.

Such a system can be represented by a collection of relations, or tables, whose contents change
dynamically as the system configuration changes. If we temporarily defer dynamic aspects, such a system
state may resemble the one shown in Figure 23-1. The relations that describe client systems are:

• client_programs.This relation has an entry (tuple) for each client program. The fields of the relation
specify the unique identifier of the client (clid), its user-id (uid), the last request issued by the client
program (last_req), the current size of the client program process (sz), and so forth. The field called
nid gives the client node on which the client is running. That is, this field “relates” the
client_program entity to the client_node entity having that node id.

clid uid nid sz lreq
1 13/7 102 2201 READ
3 15/7 106 1840 READ
4 22/8 106 3103 WRITE

client_program

nid load memused vmemused memavail IP addr. protocol
102 3.5 4574 18544 642 128.13.71.2 SNMP
106 4.7 6620 24321 0 128.13.71.11 SNMP

client_nodes

fsid load nid sz uptime
13 12.2 67 1702 16:20:03
6 .30 33 620 12:22:11
27 3.5 25 980 1:02:19

file_servers

dbid load nid sz uptime
1 7.5 67 1888 16:21:02
2 6.2 25 9590 12:11:09
5 3.1 33 2890 1:21:02

database_servers

nid load memused vmemused memavail IP addr protocol
67 18.1 6541 16187 6151 128.13.67.1 SNMP
25 9.6 6791 21981 6151 128.13.67.2 SNMP
33 10.7 5618 17566 4371 128.13.67.5 SNMP

server_nodes

Figure 23-1: Relational database used to represent system configuration.

Kenneth P. Birman - Building Secure and Reliable Network Applications430

430

• client_nodes.This relation has an entry for each node on which a client program might be running
and, for that node, gives the current load on the node (load), physical memory in use (memused),
virtual memory used (vmemused), and physical memory available (memavail).

• File_servers.A relation describing the file server processes, similar to that for client processes.

• Database_servers.A relation describing the database server processes, similar to that for client
processes.

• Server_nodes.A relation describing the nodes on which file server and database server processes
execute.

Notice that the dependency relationships between the entities are encoded directly into the tuples
of the entity relations in this example. Thus, it is possible to query the “load of the compute node on
which a given server process is running” in a simple way.

Additionally, it is useful to notice that there are “natural” process group relationships represented
in the table. Although we may not chose to represent the clients of a system as a process group in the
explicit sense of our protocols from earlier in the text, such tables can encode groups in several ways. The
entities shown in any given table can be treated as a group, as can the subsets of entities sharing some
value in a field of their tuples, such as the processes residing on a given node. Marzullo uses the term
aggregateto describe these sorts of process groups, recalling similar use of this term in the field of
database research.

23.2 Instrumentation Issues: Sensors, Actuators
The instrumentation problem involves obtaining values to fill in the fields of our modeled distributed
system. For example, our server nodes are shown as having “loads”, as are the servers themselves. One
aspect of the instrumentation problem is to define a procedure for sampling these loads. A second
consideration concerns the specific properties of each sensor. Notice that these different “load” sensors
might not have the same units or be computed in the same way: perhaps the load on a server is the
average length of its queue of pending requests during a period of time, whereas a load on a server node is
the average number of runnable programs on that node during some other period of time. Accordingly,
we adopt the perspective that values that can be obtained from a system are accessed throughsensors,
which havetypesandproperties. Examples of sensor types include numeric sensors, sensors that return
strings, and set-valued sensors. Properties include the continuity properties of a numeric sensor (e.g.
whether or not it changes continuously), the precision of the sensor, and its possible modes of values.

23.3 Management Information Bases, SNMP and CMIP
A management system will require a way to obtain sensor values from the instrumented entities. It is
increasingly popular to do this using a standard called the Simple Network Management Protocol (SNMP)
which defines procedure calls for accessing information in a Management Information Base or MIB.
SNMP is an IP-oriented protocol and uses a form of extended IP address to identify the values in the MIB:
if a node has IP address 128.16.77.12, its load might, for example, be available as 128.16.77.12:45.71. A
mapping from ascii names to these IP address extensions is typically stored in the Domain Name Service
(DNS) so that such a value can also be accessed as gunnlod.cs.cornell.edu:cpu/load. A trivial RPC
protocol is used to query such values. Application programs on a node, with suitable permissions, use
system calls to update the local MIB; the operating system is also instrumented and maintains the validity
of standard system-level values.

Chapter23: Distributed System Management 431

431

The SNMP standard has become widely popular but is not the only such standard in current use.
CMIP is a similar standard developed by the telecommunications industry; it differs in the details but is
basically similar in its ability to represent values.SNMP and CMIP both standardize a great variety of
sensors as well as the protocol used to access them: at thetime of this writing, theSNMP standard
included more than 4000 sensor values that might be found in a MIB. However, any particular platform
will only export some small subset of these sensors and any particular management application will only
make use of a small collection of sensors, often permitting the user to reconfigure these aspects. Thus, of
the 4000 standard sensors, a typical system may in fact be instrumented using perhaps a dozen sensors of
which only 2 or 3 are in fact critical to the management layer.

A monitoring system may also need a way to obtain sensor values directly from application
processes, because both SNMP and CMIP havelimitations on the nature of data that they can represent
and both lack synchronization constructs that may be necessary if a set of sensors must be updated
atomically. In such cases, it is common to use RPC-oriented protocols to talk to specialmonitoring
interfacesthat the application itself supports; these interfaces could provide anSNMP-like behavior, or a
special-purpose solution. However, such approaches to monitoring are invasive and entail the
development use of wrappers with monitoring interfaces or other modifications to the application. In light
of such considerations, it is likely that to the degree thatSNMP and CMIP information bases will continue
to be the more practical option for representing sensor values in distributed settings.

23.3.1 Sensors and events
The ability to obtain a sensor’s value is only a first step in dealing with dynamic sensors in a distributed
system. The problem of computing with sensors also involves dealing with inaccuracy and possible sensor
failures, developing a model for dealing with aggregates of sensors, and dealing with the issue of time and
clock synchronization. Moreover, there are issues of dynamicism that arise if the group of instrumented
entities changes of time. We need to understand how these issues can be addressed so that, given an
instrumented system, we can define a meaningful notion ofeventswhich occur when a condition
expressed over one or multiple sensors becomes true after having been false or becomes false after having
been true.

For example, suppose that Figure 23-2 represents the loads on a group of database servers. We
might wish to define an event called “database overloaded” that will occur if more than 2/3 of the servers
in the group have loads in excess of 15. It can be seen that the servers in this group briefly satisfied this
condition. Yet the sensor samples were taken in such a manner that this condition cannot be detected.

L
O
A
D

p0

p2

p1

TIME

25

20

15

10

5

Figure 23-2: Imprecision in time and sensor values can confuse a monitoring system. Here, sensor readings
(shaded boxes) are obtained from a distributed system. Not only is there inaccuracy in the values and time of the
reading, but they are not sampled simultaneously. To ensure that its actions will be reasonable, a management
system must address these issues.

Kenneth P. Birman - Building Secure and Reliable Network Applications432

432

Notice that the sensor readings are depicted as boxes. This is intended to reflect the concept of
uncertainty in measurements: temporal uncertainty yields a box with horizontal extend and value
uncertainty yields a box with horizontal extent. Also visible here is the lack of temporal synchronization
between the samples taken from different processes: unless we have a real-time protocol and the
associated infrastructure needed to sample a sensor accurately at a precise time, there is noobvious way to
ensure that a set of data points represent a simultaneous system state. Simply sending messages to the
database servers asking that they sample their states is a poor strategy for detecting overloads, since they
may tend to process such requests primarily when lightly loaded (simply because a heavily loaded
program may be too busy to update the database of sensor values or to notice incoming polling requests).
Thus we might obtain an artificially low measurement of load, or one in which the servers are all sampled
at different times and hence the different values cannot really be combined.

This point is illustrated in Figure 23-
3, where we have postulated the use of a high-
precision clock synchronization algorithm and
some form of periodic process group
mechanism that arranges for a high-priority
load-checking procedure to be executed
periodically. The sampling boxes are reduced
in size and tend now to occur at the same point
in time. But notice that some samples are
missing. This illustrates yet another limitation
associated with monitoring a complex system:
certain types of measurements may not always
be possible. For example, if the “load” on our
servers is computed by calculating the length
of a request queue data structure, there may be
periods of time during which the queue is
locked against access because it is being
updated and is temporarily in an inconsistent
state. If a sampling period happens to fall
during such a lock-out period, we would be
prevented from sampling the load for the
corresponding server during that sampling
period. Thus, we could improve on our

situation by introducing a high priority monitoring subsystem (perhaps in the form of a Horus-based
wrapper, which could then take advantage of real-time protocols to coordinate and synchronize its
sampling), but we would still be confronted with certain fundamental sources of uncertainty. In
particular, we may now need to compute “average load” with one or even two missing values. As the
desired accuracy of sampling rises the probability that data will be missing will also rise; a similar
phenomenon was observed when the CASD protocols were operated with smaller and smaller values of∆
corresponding to stronger assumptions on the execution environment.

In the view of the monitoring subsystem, these factors blur the actual events that took place. As
seen in Figure 23-4, the monitoring system is limited to an approximate notion of the range of values that
the load sensor may have had, and this approximation may be quite poor (this figure is based on the
samples from Figure 23-2). A higher sampling rate and more accurate sensors would improve upon the
quality of this estimate, but missing values would creep in to limit the degree to which we can guarantee
“accuracy”.

L
O
A
D

p0

p2

p1

TIME

25

20

15

10

5

Figure 23-3: Sampling using a periodic process group. Here
we assume that a wrapper or some form of process-group
oriented real-time mechanism has been introduced to
coordinate sampling times. Some samples are missing,
corresponding to times at which the load for the
corresponding process was not well defined or in which that
process was unable to meet the deadlines associated with the
real-time mechanism. In this example the samples are well
synchronized but there are often missing values, raising the
question of how a system can calculate an average given just
two out of three or even one out of three values..

Chapter23: Distributed System Management 433

433

With these limitations in mind, we
now move on to the question of events. To
convert sensor values into events, a monitoring
system will define a set ofevent trigger
conditions. For example, a very simple
overload condition might specify:

trigger overload when avg(s∈∈∈∈
db_servers: s.load) > 15

Here, we have used an informal
notation to specify the aggregate consisting of
all server processes and then computed the
average values of the corresponding “load”
fields. If this average exceeds 15, the overload
“event” will occur; it will then remain disabled
until the average load falls back below 15, and
can then be triggered by the next increase
beyond the threshold. Under what conditions
should this event be triggered?

In our example, there was a brief period during which 2/3 of the database servers exceeded a load
of 15 and during this period, the “true” average load may well have also crossed the threshold. A system
sampled as erratically as this one, however, would need to sustain an overload for a considerable period of
time before such a condition would definitely be detectable. Moreover, even when the condition is
detected, uncertainty in the sensor readings makes it difficult to know if the average actually exceeded the
limit: one can in fact distinguish three cases: definitely below the limit, possibly above thelimit, and
definitely above thelimit. Thus there may be conditions under which the monitoring system will be
uncertain of whether or not to trigger the overload event.

Circumstances may require that the interpretation of a condition be done in a particular manner.
If an “overload” might trigger a catastrophic failure, the developer would probably prefer an aggressive
solution: should the load reach a point where the threshold might have been exceeded, the event should be
raised. On the other hand, it may be that the more serious error would be to trigger the overload event
when the load might actually be below the limits, or might fall below soon. Such a scenario would argue
for the more conservative approach.

To a limited degree, one could address such considerations by simply adjusting the limits. Thus
if we seek an aggressive solution but are working with a system that operates conservatively, we could
reduce the threshold value by the expected imprecision in the sensors. By signaling an overload if the
average definitely exceeds 12, one can address the possibility that the sensor readings were too low by 3
and that the true values averaged 15. However, a correct solution to this problem should also account for
the possibility that the value might change more rapidly than the frequency of sampling, as in Figure 23-
2. Knowing the maximum possible rate of change and “assuming the worst”, one might arrive at a system
model more like the one in Figure 23-5. Here, the possible rate of change of the various sensor values
permits the system to extrapolate the possible envelope within which the “true” value may lie. These
curves are discontinuous because when a new reading is made, the resulting concrete data immediately
narrows the envelope to the uncertainty built into the sensors themselves.

L
O
A
D

p0

p2

p1

TIME

25

20

15

10

5

Figure 23-4: By interpolating between samples a monitoring
system can approximate the true behavior of a monitored
application. But important detail can be lost if the sensor
values are not sufficiently accurate and frequent. From this
interpolated version of Figure 23-2 it is impossible to
determine that the database system briefly became
“overloaded” by having two servers that both exceeded loads
of 15.

Kenneth P. Birman - Building Secure and Reliable Network Applications434

434

Marzullo and Wood have developed
a comprehensive theoretical treatment of
these issues, dealing both with estimation of
values and performing imprecise comparisons
[Woo93]. Their work results both in
algorithms for combining and comparing
sensor values, and the suggestion that
comparison operators be supported in two
modes: one for the “possible” case and one
for the “definite” one. They also provide
some assistance on the problem of selecting
an appropriate sampling rate to ensure that
critical events will be detected correctly.
Because some applications require rapid
polling of sensors, they develop algorithms
for transforming a distributed condition over
a sensor aggregate into a set of local

conditions that can be evaluated close to the monitored objects, where polling is comparatively
inexpensive and can be done frequently. For purposes of this text we will not cover their work in detail,
but interested readers will find discussion of these topics in [Woo91, Mar90, MCWB91, BM93].

23.3.2 Actuators
An actuator is the converse of a sensor: the management system assigns a value to it, and this causes some
action to be taken. Actuators may be physical (for example a controller for a robot arm), logical (a
parameter of a software system), or may be connection to abstract actions (an actuator could cause a
program to be executed on behalf of the management system). In the context of SNMP, an actuator can be
approximated by having the external management program set a value in the MIB that is periodically
polled by the application program. More commonly, a monitoring program will place a remote agent at
the locations where it may take actions, and trigger those actions by RPC to it.

Thus, an actuator is the logical abstraction corresponding to any of theactions that a control
policy can take. The policy will determine what action is desired, and then the action is performed by
placing an appropriate value into the appropriate actuator or actuators. Actuators can be visualized as
buttons that can be pushed and formfill menus that can be filled in and executed. Whereas a human
might do these things through a GUI, a system control rule does so by “actuating” an actuator or a set of
actuators.

Whereas the handling of faulty sensors is a fairly simple matter, dealing with potentially faulty
actuators is quite a bit more complex. Marzullo and Wood studied this issue as part of a general treatment
of aggregated actuators: groups of actuators having some type. For example, one could define the group
of run a programactuators associated with a set of computers (in practice, such an actuator would be a
form of RPC interface to a remote execution facility: by placing a value into it, the remote execution
facility could be asked to run the program corresponding to that value -- e.g. the program with the same
name that was written to the actuator, or a program identified by an index into a table). One could then
imagine a rule whereby, if one machine was unable to run the desired program, some other machine
would be asked to do so: “run on any one of these machines”, in effect. Rules for load-balanced execution
could be superimposed on such an actuator aggregate. However, although the Meta system implemented
some simple mechanisms along these lines, the author is not aware of any use of the idea in commercial
system.

L
O
A
D

TIME

25

20

15

10

5

Figure 23-5: By factoring in the possible rate of change of a
continuous sensor, the system can estimate possible sensor
values under "worst case" conditions. This permits a very
conservative interpretation of trigger conditions.

Chapter23: Distributed System Management 435

435

Marzullo and Wood have noted that in the limit, fault-tolerant actuator aggregates will need to
run a protocol much like Byzantine consensus, an analogy that brings to mind the large body of research
that has been conducted on what are calledembedded systems, in which a control program is placed close
to a hardware subsystem and used to manage or control some form of external process. However,
although this is a rich area of literature, brevity will prevent us from treating it in the current text.

In most commercial monitoring and management systems, actuators are limited to very simple
tasks, such as executing a program, changing a priority for a scheduling algorithm, and so-forth. In
effect, the actuator model is used to link the management policy to the external world, but not to
superimpose any sort of more sophisticated abstractions upon it. The topic thus remains an intriguing
area for future study.

23.4 Reactive control in Distributed Settings
Having addressed the issues associated with modeling a distributed system and with interpreting its
sensors, we turn the problem ofreactive controlthat arises when triggered events are used to drive
management policies.

Marzullo and Wood recommend that management policies be viewed as a database of control
rules, which are “bound” to system components and become active when those components are active.
Thus, a policy for managing a database server would be instantiated once for each database server in the
system, and each rule would manage its own server as long as that server keeps running. A policy for the
aggregate of database servers would be instantiated the first time a database server is started, and would
remain active as long as there are one or more servers in the system.

Each of these policies is
described in the form of a script
giving the control rules to use for
the corresponding component and
the conditions under which those
rules should apply. Policies are in
this sense similar to astate
machine. Each state defines a set
of events for which it is
monitoring, and if the event
occurs, the machine transitions to
a new state and takes some
management action.

Thus, for our database server example, we might define a policy for managing the aggregate of
database servers whereby anoverloadevent, detected in thenormal state, causes the system to add servers
up to a maximum of 4, after which it might move to adegraded operationstate, remaining in this state
until a load okevent is detected (Figure 23-6). As it moves from state to state, such a policy might write
values to actuators. For example, the rule shown here requires a means of launching and shutting down
servers, and for placing the group in a degraded mode. The actuators for the first of these cases would be
an execute processactuator on the least loaded machine, which can be picked by a simple operation on
the server_nodesrelation. To shut down a process one would probably send that process a termination
message, or perhaps even sending it a SIGTERM signal. To switch the servers into adegraded query
mode, one would probably want an out-of-band signaling mechanism, since the message queues may be

normal

degraded

load ok

>4 servers

add server

load ok

overload

drop server

load ok

underload

Figure 23-6: State machine for database server management. In the
normal mode of operation, if overload is detected a server is added.
However, if this would cause the server group to exceed 4 servers, the
system degrades its quality of service until normal loading is restored. If
the system is “underloaded” for a period of time, a server is dropped.

Kenneth P. Birman - Building Secure and Reliable Network Applications436

436

congested when this condition arises. Thus, a degraded query actuator might simply be a bit that can be
set in the MIB associated with the database server; the server itself would check this bit periodically and
switch in and out of degraded query mode accordingly. This illustrates that the concept of an actuator
needs to be interpreted in a very flexible way.

Approaches such as this raise a number of hard problems. One major issue is to pick an
appropriate language in which to specify these rules. Marzullo and Wood proposed two such languages: a
high-level language that looked similar to a database query language, and a low-level one into which these
high level language rules could be compiled; the low-level language was similar to the postscript language
used for printers. Other work in this area has focused on popular command script languages, such as Perl.
Questions of the appropriate execution environment for a rule, and methods by which a rule can interact
with the system configuration, are all potentially difficult. For the purposes of this chapter, however, we
will not delve into the details of these language proposals, viewing the topic as one that remains open for
further research, and that is somewhat outside of the primary scope of this textbook.

23.5 Fault-tolerance by State Machine Replication
Having reduced our problem to one of interpreting a state machine, two classes of issues arise. The first is
associated with the efficiency of our monitoring mechanism. If rules are evaluated at some computer
which is remote from the place where the managed components are running, polling the sensors may
become a costly source of overhead. Marzullo and Wood solve this problem in their Meta system using an
elegant technique: they compile conditions into “local triggers” that can be evaluated entirely local to the
monitored or managed component. Only potentially significant events need to be communicated to the
state machine that is actually interpreting the rule. Thus, if we are indeed concerned about load, we might
find that the current average load is 10. If we ask the components to report their load to us if it rises by
more than 1.333, we will certain learn of any condition in which the load average has reached 15. Yet we
can do so without reporting every intermediate value through which the servers pass, and indeed no
communication may be needed at all in the normal case.

A second concern is that of ensuring the availability of the management environment. Using a
process group (Meta was implemented over the Isis Toolkit), it was possible to implement this approach
fault-tolerantly. Events reported by a sensor to the policy were sent asabcastmessages to a process group
running replicas of the policy state machine. In this manner, the control policies needed to manage the
system could remain operational even if some of the platforms on which the control software was running
failed. Marzullo and Wood argue that availability is important in management systems: the control
policies often tell a system how to reconfigure after a failure, and hence must be running if the system
itself is to reconfigure after a failure. One implication of this observation is that embedding monitoring
and management functionality directly into the application itself may be a good idea, when it is practical
to do so. In this manner, if any portion of the application survives a failure, so will the corresponding
portion of the replicated management framework; one can then design the system so that if a sufficient
amount of it remains operational, the management policies needed to recover will also be available and
can be executed to reconfigure the system. Such a system can be said to be “self managed.”

23.6 Visualization of Distributed System States
A benefit of system management is that the existence of a system model and of a database of sensor values
can support elegant visualization tools. Such tools go beyond the scope of this text, hence we will not
discuss the challenges of building them here. However, it worthwhile to pause and stress the value of such
a management interface. When building a reliable distributed system, one sets out to identify the potential
causes of unreliability and to counter them systematically. A management infrastructure with suitable
visualization tools will let an operator quickly and effectively understand the cause of such problems that
may slip through the original hardening process, intervening to correct problems that arise at runtime and

Chapter23: Distributed System Management 437

437

providing invaluable information for improvements of the systems self-management policies and
technologies.

23.7 Correlated Events
It is common to assume that failures, recoveries, and other events that require management actions are
relatively infrequent and independent within a system. This avoids a number of thorny issues that would
be raised by the potential for a sudden “storm” of events triggered when several things go wrong at the
same time in a distributed system. We haven’t talked about the concurrent execution of a set of rules
(linearizability or serializability of the actions taken might be a sensible objective), and there is a broader
issue of whether or not one even wants the same policy to be used while a system is operated in a
“routine” manner as in the case where multiple events occur simultaneously.

Unfortunately, in a complex system, this assumption of independent failures and events is rather
unlikely to be satisfied. A power outage, for example, may cause half the nodes in a cluster computer to
fail, and the management rules for the applications on that cluster will now be triggered simultaneously
for many components of the surviving parts of the system. Moreover, if a system has complex
dependencies between its components, the failure of a single component can cascade, resulting in a storm
of secondary events and secondary failures that are in fact symptoms of the original event. Attempting to
correct these secondary problems will probably not be successful unless the core problem is identified and
resolved.

For example, suppose that our database servers make use of the file servers. If a file server
crashes, the database servers may hang until the file server subsystem has reconfigured itself to reallocate
workload for which the failed machine was originally responsible. During this period it is likely that we
will detect an “overload”, but the overload is in fact purely a consequence of the file server
reconfiguration. The correct management policy is toinhibit the overload condition for database servers
while file server reconfiguration is underway. Yet, to understand this one needs to start by characterizing
the dependencies of components upon one another, and then to pass from such a characterization to one
giving dependent failure modes of the system as a whole. From this, it becomes clear that the correct way
to deal with independentoverload of the database server may be to add servers or to move to a degraded
query mode, but that the best way to deal withdependentoverload is entirely different; perhaps such a
condition should be addressed by telling the client systems to stop submitting queries!

Traditional hardware engineering involves the development offault trees by which such
conditions can be characterized and appropriate solutions for diagnosis of events that occur and
intervening to respond can be charted and implemented. At the time of this writing, there has been little
research on the use of analogous techniques in complex distributed systems, and the issues that would
arise if one were to provide software support for a fault-tree analysis and problem resolution remain
unknown. Looking to the future, it is likely that the development of increasingly critical distributed
systems will require that we develop increasingly sophisticated fault models, including techniques by
which fault trees can be “compiled” into policies. The sorts of management policies described above
would then be typical of those that might be used in a normal mode of operation, while other mechanisms
design to deal with correlated failures or failures triggered by complex dependencies within the system
would be addressed through other policies that might operate in very different ways. This area appears to
be a potentially fertile one for future study.

23.8 Information Warfare and Defensive Tactics
In the introduction of this textbook we discussed the potential emergence of aggressive threats that could
include outright attack on the critical information assets on which the military or major segments of
industry depend. One can confront such problems through security measures such as firewalls and access

Kenneth P. Birman - Building Secure and Reliable Network Applications438

438

authorization. However, there is always the possibility that the security techniques will themselves depend
upon an underlying technology that can be compromised, leaving the system defenseless.

To take the most obvious example, many distributed systems use firewalls for protection,
mounting their primary defense against attack at the points where communication interfaces from the
system to the outside world are placed. Yet such systems are rarely located at a single physical site, and
may have complex internal network topologies that include communication lines provided by
telecommunications or internet service providers. These lines are not perceived as connections to the
external world and hence are often unprotected.

In practice, however, such a perspective places considerable trust in at least one external
technology: that used to implement the dedicated lines themselves. If the internet provider or
telecommunications company is itself compromised, it may be that these dedicated lines can be tapped or
even accessed freely by intruders. Such an intruder will now have circumvented the firewall protection
and will find him or herself free to act within the protected system itself. The consequences of such a
break-in can be very serious. Early in this textbook we noted that the complexity of telecommunications
systems and internet architectures is risely sharply. Thus the opportunities to compromise the underlying
architectures used to support these dedicated lines are also rising. Should the service provider itself be
compromised, breaking into the network of a large organization may be much easier than doing so
through the firewalls it has placed at its connections to the external world.

Recall the example of an NFS system used within a firewall, from Section 19.1. When an NFS is
operated within a firewall, we saw that it is typical to disable its security mechanisms to improve
performance. But an intruder may now be able to spoof in a manner that would trick the NFS system into
granting requests by pretending to be a legitimate user on a legitimate machine. We saw that, once
through the firewall, there is little that an intruder into an unprotected NFS environment would be
prevented from doing: files can potentially be read, rewritten, and dates and times even reset with relative
ease. Our challenge is to erect barriers that would convincingly detect and protect against such events.

The steps to repelling aggressive attacks, whether they threaten critical military assets or merely
seek to falsify financial transfers from a large bank, will be todetectthe intrusion,quantify the event by
identifying the methods used and the system components under attack, andrespondby modifying the
behavior of the system, shutting down components, or disabling access points until the system itself can be
made tolerate to the form of attack in question.

For purposes ofdetection, a “DIW” (defensive information warfare) monitoring system will
typically rely upon audit trails that trace sensitive operations and permit comparison between patterns of
access and authorized or “typical” patterns of activity. Such trails monitor classes of events that are of
potential concern, such as file open operations, and are then filtered through programs that maintain
historical information regarding permissible and typical patterns of access. (“Vice President Smith is
permitted to access all account records but in practice very rarely accesses any records except those for
customers with whom she works directly”, or “Admiral Walker normally reads and sends memos
associated with naval operations in the southern Atlantic”). When violations of these normal patterns are
detected, responses can be initiated, and if an intruder successfully penetrates a system, the audit trail will
later permit the penetration to be localized and further problems to be prevented.

Chapter23: Distributed System Management 439

439

In the case of our NFS example, such a policy would involve intercepting fileopen requests
somewhere on the path to the NFS server and comparing them with normal file access profiles.
Suspicious patterns could be signaled to an operator, or simply discarded. Vice President Smith would
merely issue some sort of command to disable the protection system and then resume her unusual pattern
of activity; an attacker would be much less likely to surmount this obstacle. These sorts ofapplication
specific wrappers would substantially raise the barrier to an attack on the system, without necessarily
paying the cost of general purpose encryption or authentication, which can be high.

Wrappers can be a valuable tool for compiling audit databases and for filtering messages in this
manner. In general, such technologies are addedafter the factto a system that will have been built
without knowledge that it would later be wrapped. Thus even if the system is compromised, it may not be
able to anticipate and compensate for the protective mechanisms that will be used against it. The wrapper
enjoys the advantage of “stealth”, provided of course that its performance impact is minimal. A wrapper
can be used to control the actions of the wrapped component, to oversee those actions non-intrusively, or

NFSclient

(a)

NFS
client

(b)

fake

Figure 23-7: (a) The NFS protocol, when security is not enabled, involves trust in the IP address of client systems
and the user/group id's presented by clients as part of each request. (b) Should an intruder break into the network it
may be possible to mascarade as a legitimate client by killing some existingnode with a poison pill or some other
tactic, and then sending faked NFS packets to the serve. In this scenario, the NFS is unable to protect itself and
may provide essentially unrestricted access to the files it manage. Wrappers around the client, the network, or the
NFS unit could filter messagesagainst a behavioral profile that would permit such behavior to be detected or
prevented.

NFSclient NFSclient

Figure 23-8: Application-specific wrappers surround various classes of system components in this hardened
environment. The wrappers (gray) can intervene in lightweight ways that are potentially less costly than strong
security (encryption and authentication technologies), and yet can represent a significant barrier to intrusion. One
can imagine a great variety of possible techniques that could be incorporated into such wrappers; for the NFS case
they might maintain profiles of typical behavior which would constitute a database exploited by the wrapper group
to detect unusual access patterns and to intervene. Here we have wrapped the clients, database servers and network
itself. Each wrapper might represent an intervention at a different place in the technology (the router of a network,
the file I/O library on a client workstation, the network interface of an NFS server), and each might function in a
different way.

Kenneth P. Birman - Building Secure and Reliable Network Applications440

440

to build up profiles of typical behavior with which a new behavior can be compared. Moreover, a single
system can support more than one form of wrapper for the same purpose, selecting the wrapper used
randomly, and arranging that a countermeasure to one wrapper will be detected as unusual behavior by
another wrapper. Even an insider might have trouble overcoming such an approach. Work on wrappers
for this purpose could be of great value in DIW management applications.

With regard toquantifying attacks, the clear challenge is to find ways of synthesizing patterns
out of information gathered from physically dispersed components, and to do so without excessively
perturbing the performance or correctness of the monitored subsystems. One approach is to timestamp
audit records and to send them to a central site for analysis; such a technology will depend upon
bandwidth to the central site and heavy computing power to build up a centralized model of the
decentralized behavior of the system from which patterns can be extracted. A second, distributed,
approach would draw upon the natural process-group structures present in reliable distributed systems and
visible through the system model. In this approach the wrappers for a set of components would be
programmed to detect unusual patterns of behavior in a distributed manner, operating close to the
components themselves and basically “compiling” a pattern into its local “sub pattern”. With the growing
availability of high performance process group support and clock synchronization technologies it may be
increasingly practical to use such approaches, which have the benefit of imposing much reduced loads on
the communication system and exploiting decentralized and hence coarsely parallel computing power.
Again, much research will be needed in this area.

Turning to the problem ofresponsewhen an attack has been detected, it is appealing to consider
the introduction of wrappers for the purpose of placing selective firewalls close to groups of components.
Suppose for example that every meaningful group of components was ringed by a firewall specifically
tuned to the patterns of behavior seen in members of that group, and capable of filtering incoming and
outgoing messages under criteria associated with the message source and destination. Such a system
could be visualized as having a potentially large number of superimposed firewalls intersecting in various
ways.

Any given computation would now generate communication that traverses one or many of these
firewall boundaries, all implemented by wrappers in a lightweight manner. Now, if a threat was detected,
the firewalls could be dynamically reprogrammed to inhibit communication to and from the compromised
system components, or to restrict such communication in a way that is believed sufficient to filter out the
compromised traffic. Whereas the intruder in a conventional system needs only to violate a single firewall
to gain free run of the system, the intruder in such a multi-level security containment environment would
confront obstacle after obstacle, with each layer of firewalls implementing its own containment policy
based on the normal patterns of communication for that subsystem or application. It seems likely that this
would result in significant improvements in the robustness of critical systems against attacks.

Recalling our NFS example, one could imagine a solution in which the NFS traffic passes
through filters that do simple sanity checks on the origin and destination of packets and the degree to
which such packets correspond to the expected network topology (Figure 23-8). By embedding such
functionality into a packet router or the low levels of the network communication software used on the
NFS itself, one could protect against many forms of NFS attacks even when the NFS security policy is not
in place. Of course, protection against an attack requires that the attack be anticipated as a possible threat
and that a suitable response be formulated, but at least the tools are available to potentially protect against
such threats if the will exists to begin to exploit them. With few changes to the methodology by which
distributed systems are typically constructed, it may be possible to introduce monitoring and protection
mechanisms after the fact that would make such systems far more robust against a great variety of possible
threats and attacks. Moreover, by customizing the behavior of a technology, such as a firewall, to match it
closely to the normal mode of operation of the protected system component or components, the complexity
of breaking through that firewall can be greatly increased.

Chapter23: Distributed System Management 441

441

To summarize, if we face a growing threat of outright attacks on critical technologies and
systems, the good news is that we also have a growing technology base on which to draw for solutions to
the problems of detecting those attacks (or explaining them in a post-mortum analysis) and for developing
flexible and powerful responses. Wrapper technologies may permit the stealthy introduction of the
resulting solutions into applications and subsystems that were not designed with such defensive abilities in
mind, and whose designers may not even be trustworthy: to the degree that the wrappers can be trusted,
the resulting wrapped application may be trusted for specific purposes. While much work remains to be
done before such a vision can be called a practical reality, it is clear that we have a growing number of
powerful tools for use in the task. More research is needed, but we could already harden systems against a
great number of simple attacks that many systems are now unable to defend against.

23.9 Related Readings
This chapter drew primarily from [Mar84, Mar90, MCBW91, Woo91, BM93].

Kenneth P. Birman - Building Secure and Reliable Network Applications442

442

24. Cluster Computer Architectures
A new generation of hardware is emerging in support of client-server applications: the so-calledcluster
server architectures, in which a collection of relatively standard compute nodes and storage nodes are
interconnected using a high speed communications device, often similar to a fast CSMA or ATM
interconnect. Such cluster computers can be viewed as smaller cousins of the massively parallel
supercomputers that emerged in the 1980’s and now dominate the supercomputing market. However,
they are more similar in many respects to distributed systems. In this chapter we look at the similarities
and differences and ask what impact these have on the solutions needed for reliability.

The specific definition of a “cluster architecture” remains elusive at the time of this writing:
many vendors offer computers that might be considered clusters, yet the term is sometimes applied to what
might more property be termed a multiprocessor, while some cluster computing systems are characterized
by the press as coarse-grained parallel machines. Some vendors have applied the term cluster to primary-
backup systems that employ trivial (and potentially incorrect) failover technologies and that lack any tools
for maintaining the consistency of the backup and the primary. Thus the term is not merely disputed, but
is also potentially misused.

For the purposes of this chapter, a cluster architecture is one based on:

• Standard components.A basic idea of cluster architectures is to take advantage of the price
advantage associated with mass production of PC’s and workstations, hence clusters are typically
built from completely standard components of these sorts, albeit without displays and perhaps
packaged in a non-standard chassis. Typically cluster computers support at least two sorts of
components: compute nodes and disk nodes. Some may also support network interface nodes and
other sorts of special-purpose attachments.

• High speed interconnect.The internal communications “bus” that connects the components is
typically message-oriented and may be based on a standard ATM or high speed CSMA connection
device.

• Cluster infrastructure. This includes the chassis and cabling connecting components, the power
supplies and communication adapters, and so forth.

• Management subsystem.A cluster is more than a rack-mounted pile of components, and the
management subsystem plays what is often the dominant role in creating the abstraction of an
integrated entity.

• Cluster API. This is a debatable term, but refers to the collection of system interfaces, available to
programs and system administrators, by which applications can take advantage of the clustered nature
of the system. The API will typically include ways of determining the set of nodes on the cluster and
monitoring their states, launching applications on nodes and monitoring them while the run,
accessing the management functions of the cluster, and so forth.

Perhaps the most important attribute of cluster is that a separate copy of the operating system
runs on each node. This is in contrast to more integrated multi-node computers in which a single copy of
the operating system controls many nodes at the same time: such systems are best understood as true
multiprocessors, and will typically include special purpose hardware supporting shared memory and
permitting the operating system to control the multiple processors comprising the system. At the other
end of the spectrum, a cluster is distinguished from a parallel computing system by having fewer nodes
(normally 4-32, with configurations of 8 to 16 processors being common), and running a full operating

Chapter24: Cluster Computer Architectures 443

443

system on each node, unlike the very stripped “slave” operating systems often used on nodes of parallel
computers.

Our interest in this text is in reliability, and hence it makes sense to focus on cluster computing
systems intended for reliable or mission critical applications. These include the Stratus RADIO computer
(the author played a role in developing that system and hence knows it best), Compaq’s Proliant line of
cluster PC systems, the DECsafe Available Server Environment [DEC95], SUN Microsystem’s Solaris
MC system [KBMS95], other products from HP, Microsoft, Tandem, and certain configurations of IBM’s
SP product line. Cluster computers that have a reliability concern must address many of the same
replication and consistency issues we have considered in previous chapters; it makes sense to ask if we
cannot adapt our solutions to a cluster computing environment. A more complete treatment of cluster
computing can be found in [Pfi95].

24.1 Inside a High Availability Cluster Product: The Stratus Radio
The Stratus Radio (Reliable Architecture for Distributed I/O) product is a good example of a cluster
computer designed for high availability applications. Radio consists of a rack-mounted collection of
between 6 and 24 compute and storage nodes. An individual “rack” of Radio nodes can contain up to 6 of
these nodes, and will also have 2 communications nodes, its own power supplies, and so forth.21

The compute nodes are dual processors based on a standard PC architecture, with substantial on-
board memory, small swap disks, and a fast clock cycle time. Each runs a standard PC operating system:
UNIX or NT, and communicates with the other nodes over the internal communications network using
completely standard communication protocols such as TCP/IP or the ISO protocol stack. Each node has
its own IP address and runs its own copy of the operating system. These nodes are thus free-standing
computers that share a hardware environment with one-another but are capable of independent operation.

RADIO disk nodes are based on standard high speed disk technology, but run a non-standard
operating system that functions as a form of front-end to the network. This permits Radio nodes to share
disks (much liken-way multi-ported disks on a more conventional computing system), and software
functionality for mirroring segments of disks is supported for high availability. The possibility of
attaching other types of highly available disk technologies, such as RAID or SSA disk clusters, is also
present. Any compute node can access any disk node within the cluster.

21 We describe this system with some hesitation; as one of the developers of a commercial product, this author is
sensitive to the perception of a possible conflict of interest. To avoid such issues, the discussion is limited to the
RADIO product on which the author worked, and no attempt is made to compare this product with other products.
Similar considerations entered into the review of distributed programming environments and transactional systems
in previous chapters.

Kenneth P. Birman - Building Secure and Reliable Network Applications444

444

Radio communication is over an internal
bus consisting of a fast ethernet interface or an
ATM switching interconnect. The network adapter
nodes handle interconnection of multiple Radio
systems into a large, scaleable system, as well as
interconnection of the Radio system with external
networks connected to client systems. For
availability reasons, the internal network is a dual
one and the system can function transparently with
either network out of service; similarly, dual
connections to the client systems are assumed.
Radio also has a redundant power supply, and can
function normally with one or both power supplies
in operation, and has an internal management
network which is used to monitor the status of the
nodes and to provide the system administrator with
control of the “operator console” interfaces to the
PC’s that comprise the cluster. Such access can be
from a local console or remotely over a
communications interconnect from a central
management site that can be physically far from the
Radio as a whole.

An interesting property of the Radio
management network is that it can detect a node
going off-line (because of a self-diagnosed failure or
because it was removed) or that has just gone online
within milliseconds. This is in striking contrast to

the situation in a general distributed environment where the same event may not be safely detectable until
an extended period of pinging has occurred, because of the relatively high frequency of communication
outages and minor partitioning failures. Thus a type of failure detection that can take many seconds in a
general setting is reduced to perhaps one hundredth of a second in this architecture.

All aspects of the Radio architecture were designed with the avoidance of single-points of failure
in mind. Every component can be “hot swapped”, meaning that each module is capable of being removed
for service without disrupting normal operation of the remainder of the cluster, and plugged back in after
servicing or upgrading is complete. Moreover, the technology includes provisions for upgrades to new
versions of the software or hardware, also without disrupting continuous operations.

The software used with a cluster product such as Radio depends a great deal upon the goals of the
application designer. Radio itself is designed to be self-managed and includes a software infrastructure
that exploits the Isis Distributed Computing Toolkit for this purpose. The application manager uses the
general approach we discussed in Chapter 23, and operates by executing scripts written in the Perl
command language using a fault-tolerant state-machine approach.

Applications can be run on the cluster without change (in which case they benefit from the
hardware availability and management aspects of the platform but must be “placed” on the nodes by hand
and will fail if the node on which they are running fails). Alternatively, an application can be managed by
the Radio application management technology, which involves developing management scripts indicating
the aspects of the application state to monitor and what actions to take if a problem is detected. A Radio
system can also manage applications running external to it on client workstations or PC’s.

Figure 24-1: The Radio cluster marketed by Stratus
computer was designed for high availability. All
components are duplicated for redundancy, and the
compute and storage nodes are hot-pluggable without
disrupting availability of critical applications.
Illustrated is a 6-node cluster of compute or storage
nodes, the management network (black, on the left), and
the dual internal networks (red and green, right). The
bottom 2 nodes contain the network hardware,
interfaces to external networks, power supplies, and
other cluster management technology. Slots on the
compute and storage node are for high capacity floppy
disks.

Chapter24: Cluster Computer Architectures 445

445

A second way to benefit from a continuously available cluster is to use special purpose
applications designed specifically to take advantage of it. The Radio system can run a variety of actively
replicated software systems based upon the Isis Toolkit technology, including a continuously available
database system, a continuously available version of the UNIX NFS server technology, a message bus
product supporting a publish/subscribe interface; all of these technologies are designed to gain
performance as the size of the cluster is increased (“scaleable parallelism”).

Of course, there will always be applications that require the development of new continuously
available servers. For this purpose, the Radio user can draw upon the same active replication techniques
presented earlier in this text. In particular, Orbix+Isis is available for the platform, offering a simple way
to exploit replication and load-balancing in new applications, and Horus has been ported to the platform,
providing a flexible and reconfigurable process group technology base for it.

The author is less familiar with the details of some of the other cluster products available from
other vendors, and will not attempt to present any form of comparison of these products here. The
experience of participating in the Radio design, however, made it clear that there are many ways a cluster
server can fail to be highly available, adequately manageable, or adequately functional. Striking the
correct balance is considerable challenge. There are no standard cluster architectures at this time, and
existing cluster products employ very varied hardware and software availability strategies and
management technologies: some are clearly deficient, while others are very impressive while also
reflecting different design tradeoffs than the ones that were made in developing Radio. The developer of a
critical application must therefore approach the selection of a cluster server architecture with considerable
care, evaluating all aspects of the system design relative to the reliability goals of the application before
selecting an appropriate server.

24.2 Reliability Goals for Cluster Servers
Cluster servers, if appropriately designed, have special properties that can be exploited in the
communication and management software of the system. The motivation for these properties is best
understood by looking at some of the goals that typical application developers would be expected to have.
These include the following:

• Continuous availability. Not all clusters are intended for critical applications, but in those that are,
continuous availability is typically an important design goal. This objective has implications at all
levels of the cluster architecture, including the hardware and interconnection technologies used, the
cluster management technologies, the operating systems functions offered to users through the
“cluster API”, and the technologies used to implement applications on the cluster. Indeed,
availability goals extend from the cluster into the surrounding network, because of considerations
stemming from the environmental dependencies we identified as early as Figure 1-6.

• Rapid failure detection.This property is required if applications are to “failover” quickly when a
node crashes or is removed for servicing.

• Ease of management.In critical settings, it is important to be able to rapidly localize sources of
failures in order to fix the faulty system component or components, and to have easily used tools for
upgrading system components and performing routine service. Cluster management environments
must therefore include automated “self-management” solutions and must provide for remote
management access to the cluster, over a modem or computer network from which a remote operator
is working.

• Single system image.Although this goal is debatable, many clusters seek to provide the application
developer with the illusion that the cluster is “really” a traditional single-processor running a
traditional operating system such as UNIX. The danger in such an approach is that unless some form
of transparent availability technology is provided to the application designer, the application itself

Kenneth P. Birman - Building Secure and Reliable Network Applications446

446

may not wish to view the cluster as a single system: placement of replicas of critical services on
failure-independent nodes, for example, requires that it be possible to distinguish the nodes in the
clusters and to be able to separate them based on hardware properties of the machine. Yet at the same
time, the application developer would clearly prefer not to deal with artificial barriers to
programming the cluster as a single machine. Cluster designers struggle with the resulting dual
goals: transparency and a single system image on the one hand, and yet easy of developing an
extremely reliable application on the other hand. It sometimes comes as a surprise to the vendor that
the first may not imply the second!

 Some aspects of the single-system image concept considered in modern cluster designs are task
migration and automated load balancing, support for a coherent disk buffer cache on each node,
direct paging and disk block access from the online memory of a different node, shared memory for
processes running on different nodes, UNIX process id and “signal group” functionality across nodes,
and a single IP address for the cluster as a whole. Each of these can be beneficial in some settings
and yet undesirable in others.

• Load balancing tools. The major benefits of a cluster are the redundancy of hardware, permitting
high availability, but also the possibility of exploiting scaleable parallelism. The application designer
will be looking for tools that can assist in this process, by helping place new tasks on lightly loaded
nodes.

• Task migration tools.Another debatable aspect of the cluster debate. Some cluster technologies seek
to automate the migration of application programs from node to node: a desirable property from the
perspective of load balancing and performance management, but potentially problematic if there are
availability concerns that govern task placement, or if the functionality associated with this feature is
extremely complex to support. Task migration support can vary from a process group mechanism
whereby the user can migrate a task (by adding a group member and doing a state transfer, and then
killing the old memory) to completely automated solutions that transfer the virtual memory pages of a
running application and in this way migrate its full state from node to node. The bias of the author
favors simpler solutions: full fledged transparent migration seems costly, non-standard, and poses the
risk that application programs intended to operate independently for increased reliability will instead
find themselves on the same node and hence exposed to correlated failures.

• Scaleable parallelism tools. Many applications will benefit from cluster architectures without
requiring any changes to the code itself at all: for example, it may be that the application involves
running large numbers of small processes (perhaps each command by a client on a workstation results
in the execution of a process for that client on the server), and the placement policy for these
processes is already sufficient to provide a benefit from the parallelism of the cluster. However, some
servers will need to exploit parallelism in an explicit way, using tools like the process group
computing tools we discussed earlier. For users who need such tools, the cluster should provide well
integrated and highly “tuned” solutions that take advantage of any special properties of the hardware.

• Online upgrades. Many clusters are designed to permit “hot plugging” of hardware and software
components, permitting repair of problems without disruption of the remainder of the cluster and
offering a path whereby software revisions and bug fixes or entirely new versions of the operating
system or other major components can be installed non-disruptively. Technology permitting such
upgrades within software used by the application programs can be a difficult challenge.

• Clock synchronization.Many clusters have the capability of supporting highly synchronized clocks;
not all take the step of actually providing this support.

• Reliable communication.Many clusters use communications hardware that can guarantee reliability
if appropriately configured. Not all clusters offer this functionality to the application, however, even
if the hardware is capable of supporting it: modern operating systems are designed to discard
messages when they become heavily loaded.

Chapter24: Cluster Computer Architectures 447

447

• Security features. Within the cluster, nodes may consider themselves to be in a shared security
enclave, trusting one-another in ways that would be unwise for applications on widely separated
nodes in a general distributed environment.

• No single point of failure.Developers of reliable applications need to be sure that their system will
not have any single point of failure. Cluster designers who develop highly available cluster products
must adopt the same point of view to ensure that their products will be robust against all possible
single failures, and that this property extends from the lowest level hardware components up to the
software services that operate each node and that provide management functionality.

These properties make cluster architectures extremely interesting for a number of applications.
As an example, recall Friedman’s work on cluster support for a telephone system that uses a centralized
switch to handle some classes of calls, such as “800” number calls. Potentially, there may be as many as
107 telephone numbers in the associated database, each record of which will encode the correct action to
take if the corresponding number is called. If these records require 100 each to store, the database will
contain perhaps 1 gigabyte of data. To guarantee rapid response time for incoming calls (typically a
switch must route a call in no more than 100ms), one would like this data to reside in memory. However,
the amount of memory here considerably exceeds what a typical computer can accommodate. A cluster
architecture could easily provide memory-mapped access to a multi-gigabyte database, together with the
fault-tolerance properties required for critical applications like telephone switching.

This review has focused on positive aspects of the cluster approach, but there are also negatives.
A cluster offers thepotential for improved performance and availability, but actually achieving scaleable
parallelism in a specific application or implementing a highly available solution to a specific problem may
be a very difficult undertaking. Moreover, a cluster will be physically located at a single site, and if the
roof leaks or the power supply to the building is cut, the availability features of the cluster may be of little
benefit. A distributed system that replicates critical state between sites that are widely separated could
well survive such disruptions with little or no interruptions in service. Thus while it is safe to say that a
cluster offers exciting options to the developer of a critical application, it is also clear that many issues
must be addressed to achieve critical reliability, and clusters may or may not match the needs of a specific
system.

24.3 Comparison with Fault-Tolerant Hardware
The reliability goals of a cluster computer are in many ways similar to those traditionally addressed
through special purpose fault-tolerant hardware. In practice, however, the properties of cluster solutions
are in some ways very different from what hardware fault-tolerance typically provides. Although this text
has not considered hardware fault-tolerance up to now, it may be useful to point out some of these
differences.

Hardware fault-tolerance is usually achieved by building some form of self-checking logic into
the basic hardware modules of a computer and off-lining a module that fails. A backup module continues
operations on behalf of the failed one. For example, the same company that developed the Radio system
also manufactures a line of fault-tolerant computers called “Continuum”. The machines in this product
line use a paired architecture in which each processor or memory component is duplicated twice. Pairs of
CPU’s and memories form a single module: by comparing the memory contents and CPU actions
continuously, a module can be taken off-line instantly if any problem is detected. The remaining pair of
processors remains operational until the damaged module is repaired, at which point the system is
restored to its fully symmetric fault-tolerance mode.

Kenneth P. Birman - Building Secure and Reliable Network Applications448

448

Hardware fault-tolerance of this sort offers protection against data integrity errors, such as
undetectable multi-bit memory corruption, as well as protecting against other forms of hardware failure.
Application programs are continuously available without even a “flicker” when a failure does occur. But
if a software failure occurs or a component of the system must be upgraded, there is no alternative but to
take the system off-line to accomplish the repair. A cluster system will lack data integrity checks and may
not detect hardware errors, permitting serious data corruption to occur and to spread. Failures thatare
detectable may not be detected very quickly: the software techniques used to detect some classes of failures
and to reconfigure to recover from them may take many seconds to complete. However, cluster systems d
offer a plausible story on the issues of software failure and upgrade, through the use of process group
technologies and state transfer. Moreover, in a redundant hardware system, one pays for the extra
hardware needed to gain reliability, but gains no improvement in performance; a cluster will be less
reliable but is also more cost-effective, since the processors can be kept busy doing non-identical tasks
while they also back one-another up.

One sees from this that there is no single story in fault-tolerance. Fault-tolerant hardware has
found important roles in process-control settings where a failure that results in system downtime will have
immediate and costly implications. Telephone switching is a case of this sort, and represents one of the
largest applications of modern fault-tolerant computers; other examples arise in air traffic control,
avionics, machine control, power systems, and so forth. These “applications” can’t tolerate any downtime
at all, even briefly. Clusters are a compromise offering scalability at a price: weaker fault-tolerance
potential and slower reaction time. But they are also inexpensive and very flexible. It is likely that each
class of computers will play a major role in future reliable systems, but that the associated markets will be
different ones.

24.4 Protocol Optimizations
We noted earlier that is appealing to consider the use of process-group and transactional technologies on
cluster computing systems. When this is done, a number of optimizations can potentially be introduced
that greatly simplify these technologies and also hold the potential for improved performance.

In particular, a cluster system may have anaccurate means of sensing failures.For example, the
Stratus Radio cluster has a management network that can rapidly sense hardware failures of nodes and
can rapidly sense the introduction of a new node. A failure can thus be detected within a few milliseconds
and the necessary reconfiguration actions triggered almost immediately. The operating system itself will
detect most forms of application failures. Thus, with the exception of failures that leave the operating
system alive but unable to do useful work (hung), and similar failures in the application programs, a
cluster system may be able to use a greatly simplified system membership management protocol. Even if
the GMS protocol is used without change, its performance will improve because false failure detections
are not a concern, and the risk of partitioning is completely eliminated, permitting progress even when a
small set of nodes are the only ones to survive a failure.

A cluster may have alossless message capability.If present, such a capability can eliminate the
need for positive and negative acknowledgements. In an architecture like that of Horus, this allows a
major protocol layer to be omitted and offers potential performance benefits. Of course, the ability to
exploit such a feature will depend upon the nature of flow control done in the application program: if data
sources can outrun data sinks, message loss will be unavoidable.

A cluster may haveaccurately synchronized clocks.Such functionality would permit the
introduction of real-time features and protocols, and enable processes to cooperate in performing time-
critical or periodic tasks.

Chapter24: Cluster Computer Architectures 449

449

A cluster will typically haveextremely uniform hardware properties.These permit protocols to
be tuned for better performance. For example, with knowledge of the true point to point latency, the
decision to send acknowledgment and flow control messages can be finely tuned, and timeouts can be
closely matched to the true expected response time of a critical service. Notice, however, that the ability
to exploit this feature will be limited by the properties of the operating system.

A cluster will have powerfulmanagement capabilities.These permit the development of rich
and sophisticated software for system and application management, going well beyond what can be done
in a distributed environment where the heterogeneity of platforms used forces a least-common-
denominator approach in the management subsystem.

We thus see that although
the same abstractions we considered
in discussing reliability issues for
general distributed computing
systems may be extremely valuable
in a cluster computing system, their
implementation could be
considerably affected by these
properties. When using a layered
protocol architecture such as the
one favored in Horus, the
implications may be as minor as the
need or lack thereof for a particular
Horus layer. More broadly,
however, clusters offer the potential
to exploit the uniformity of the
system architecture to achieve better
performance, improved
management, and quicker response
times.

The bad news, of course, is
that the cluster is not a isolated
entity. Most cluster systems are
integrated into heterogeneous

distributed environments, and the same software that runs on the cluster will often include components
that reside outside of it, in client workstations or other components of the surrounding environment. We
are now reminded of Figure 1-6, where some of the many technology dependencies present in a typical
network were illustrated: the same dependencies will limit the effectiveness of our network as a whole,
even if they have a somewhat reduced impact on the availability and reliability properties of the cluster
itself. The designer who includes a cluster server into a large distributed system has not necessarily
guaranteed high availability: a broader technology solution is needed. However, if a technology such as
Horus can be used both on and off the cluster, a satisfactory response to this concern may emerge from the
resulting software environment. The view will be one of software that is able to benefit from the local
environment within the cluster, but that offers uniform features and a uniform programming model both
on the cluster and off of it.

24.5 Cluster API Goals and Implementation
At the time of this writing in 1995, there has been considerable interest in the formation of a standards
organization to develop and prototype potential standards for a cluster API. Such an API would provide

name servicename service

authen. mgr.

app. mgr.

config. info

clients

Figure 24-2: When a cluster is used to implement a highly available
client-server system, information will be needed regarding independent
failure properties of the component nodes (white and gray here),
connections to clients (again red and green), and of dependencies that the
application may have on other services in the enclosing network
environment. There may be substantial simplification possible by
assuming that a technology such as Horus is available on all nodes in the
cluster and the client nodes: the resulting uniformity of infrastructure
could go a long way towards creating the context within which powerful
applications can be supported. However, additional services would also
be needed, such as services for determining the configuration of the
network and cluster, for programming management policies, and so forth.
A “cluster API” would standardize these services and the interfaces by
which they can be accessed, while also standardizing access to internal
cluster communication and management mechanisms.

Kenneth P. Birman - Building Secure and Reliable Network Applications450

450

the developer with a predictable set of primitives, available on clusters from multiple vendors, that could
be exploited in building highly portable cluster applications. Such a solution would free the developers of
“layered products” from dependencies on any single cluster vendor.

The most appropriate content for a cluster API is clearly debatable. From the review of
technologies we have undertaken in this text, one can quickly see that if the cluster includes availability
and reliability as an important goal, the API could potentially include every technology we have studied
up to now. At a minimum, a cluster API should address the following:

• It should provide software access to system configuration and management interfaces. That is, the
API should permit an application to learn the topology of the cluster, failure and performance
characteristics of components, and access to the various status monitoring features provided by the
hardware. Standards should be specified for such properties as load and status (operational or failed)
of cluster components, for naming the most standard components (compute and storage nodes,
communication paths), and for specifying performance properties (speed, latency, etc). Notice that
some aspects of this could be addressed by mandating the use ofSNMP or CMIP management
information bases (MIB’s) with standardized content; other aspects would not be resolved by such an
approach.

• It should provide a simple architecture for exploiting the hardware features of the cluster. For
example, it should address such issues as notification when system membership changes,
communication among applications on nodes, and so forth.

• It should provide a uniform means of addressing applications. This is likely to require a two-level
solution, in which the cluster as a whole can be accessed using a single IP address but its component
systems have secondary “true” IP addresses.

• It should provide O/S level primitives for such aspects as launching an application on a node,
monitoring the application as it runs, task migration (if supported), remote disk access (if supported),
and so forth. The API should standardize these aspects even if they are considered “optional”
depending upon the particular architecture used by a given vendor. Thus, there might be an API for
shared memory across cluster nodes but also a way to determine whether or not the vendor actually
supports this feature.

• It should deal easily with off-cluster applications and not be restricted to issues internal to the cluster.

This brief review points to what is clearly a very large topic. A system like Horus might make a
good starting point on a cluster API for dealing with system management and communication issues.
However, doing so would still leave important open topics. For example, existing distributed systems lack
any way to interrogate the network about its topology and performance properties. Absent standards for
this type of information, cluster applications would need to have their own proprietary configuration
schemes, making them less easily portable and less standard. The problem is thus similar in many ways
to the one tackled by the OMG group that developed CORBA or the OSF group that developed DCE, and
it may require a similar scale of effort to resolve it.

24.6 Related Readings
Most of the information in this chapter was drawn from materials available from Stratus Computer Inc.
For more general treatment of cluster computing, see [Pfi95]. Other clusters cited here include [DEC95,
KBMS95].

Chapter25: ReasoningAbout Distributed Systems 451

451

25. Reasoning About Distributed Systems
The preceding sections have established a technology base with which existing distributed systems can be
hardened, by selectively replacing components with versions that have been modified to withstand some
class of anticipated threats, and with which new distributed systems can be constructed to be robust by
design. Yet these tools are purely practical, in the sense that they represent software solutions to specific
potential problems. Lacking is a broader conceptual framework that would let the designer characterize
the behavior of a given system in a particular environment, reason about how that system might fail under
various conditions, and predict the impact of a given robustness intervention on properties such as
performance, security, and availability.

Early in the text we noted that it was not our intention to delve into the theory of distributed
computing here, and this remains true now. Yet the ability to specify the behavior of a system and to
reason about it, while representing a fairly “formal” activity, is not necessarily a theoretical one. In
developing non-distributed systems, it is common practice to develop specifications that characterize the
behavior of critical software modules, and to use these specifications as an input to large scale system
design and visualization technologies.

In the remainder of this chapter, we review some of the options for describing a complex
distributed system and specifying the technologies it uses to achieve robust behavior. Such specifications
necessarily extend to the environment (upon which the system may impose requirements) and the
application (which may be assumed to respect various constraints or to behave in specified ways). We
then look at the issue of exploiting these specifications to reason about the large-scale behavior of a
distributed system by using its small-scale behavior as an input to an overall system model. We also
explore some recent work on automatic synthesis of robust distributed systems by plugging application-
specific data handling methods into general purpose frameworks; such steps can be viewed as offering
methods for compiling robustness into a system that is specified using a high level language. All of these
areas are in need of additional study, and the sober-minded conclusion of our review will be that the
technology base for reasoning about distributed systems is very tentative at the time of this writing.
However, the longer term potential for the area is considerable.

25.1 Dimensions of the Systems Validation Problem
The distributed systems properties treated by this text can be understood as operating in a multi-
dimensioned “space” of potential systems properties. Viewing a system in this manner can be a userful
step in sorting out the critical properties of a specific application and beginning to demonstrate rigorously
that they hold.

Consider, for example, a process group system such as Horus. Horus operates over the lower
levels of the ISO hierarchy, and hence draws upon point-to-point properties of the routing subsystem and
data-link layers of the transport subsystem. The correct function of Horus ultimately depends upon the
correct function of these lower layers: if packets cease to be routed to their destinations, or corrupted
packets are passed up to the application layer without detection by the data-link layer, Horus will begin to
malfunction. Taking just one instance, the protocol used by UDP to reassemble fragmented packets into
larger arbitrary sized packets, and the methods used by the device driver and device controller to manage
packet chains. These are non-trivial software procedures, and are entirely capable of malfunctioning in
subtle ways.

In the author’s direct experience (just to emphasize that there is already a non-trivial problem
here), protocols and systems have been observed to fail because of hardware that experienced an extremely

Kenneth P. Birman - Building Secure and Reliable Network Applications452

452

high error rate for certain sizes of data packet (multiples of 204 bytes, if memory serves), because of an
accidental configuration error that could cause an network to partition in a partial way, delivering only
packets associated with certain protocols and losing others, and operating systems interfaces have failed,
for example by rejecting all UDP packets. (Since UDP is not guaranteed to be reliable, the vendor may
have actually considered this behavior to be a “correct” one!). Othr researchers have shown that network
routing can malfunction, so that processa can communicate normally with processb andb with both a
andc, but so thata andc are incapable of direct communication. Such a behavior directly violates what
we are told to assume about routing, and yet it arises with disturbing frequency in the modern internet! In
one memorable event, the compiler malfunctioned in a way that caused a low-level Isis protocol to
deadlock, despite the fact that the protocol as coded was actually correct. And now the question arises:
how can we possibly build reliable systems, if we can’t trust our own assumptions?

One could argue that the point-to-point properties of the communication environment represents
what is just a first dimension for potential analysis and formal verification. Moreover, actually writing
down the properties of a communication environment will clearly represent an extremely difficult task.
To first approximation, we expect a message passing subsystem to route packets safely and correctly to
their destinations, discarding corrupted ones, to be non-generative (i.e. to deliver only packets that were
legitimately produced by the application), and to be free of very delayed replays. In practice, we often
make a further assumption that the network has short, bounded delivery delays. But to what degree are
such assumptions actually valid? Like the routing assumption, it may be that these assumptions
sometimes will break down.

Moving on, the point-to-point properties of a network will now be extended by higher level
protocols into end-to-end properties. For the ISO hierarchy, these correspond to stream protocols. Were
we to verify such a protocol, we would need to first express the properties of the underlying system, and
then to characterize the desired protocol properties. For example, a stream protocol typically will detect
and reject duplicated packets, and place out-of-order packets back into the order of generation. Such
protocols also handle retransmission, detection of failures, and may dynamically vary such parameters are
window size or data flow rate to match the properties of the sender, receiver and network. Again,
although the problem of actually doing this may seem simple at first glance, both the properties
themselves and the task of validating them grow much more difficult when the true nature of the
assumptions made and of the guarantees offered are really pinned down. TCP, for example, uses a finite
counter that wraps when the field is full. If packet numbers can be reused, the protocol will not be correct
in a network that may replay packets after long delays. The assumption that the network doesn’t behave
in this way is implicit in the typical TCP implementation, but would need to become explicit if we wanted
to prove that TCP really works as desired. And then one would need to ask whether or not we really have
grounds to trust this assumption. For example, what would happen if a router node somehow jammed up
for a few hours but then suddenly resumed operation. Might it then replay packets hours after they were
first sent?

In fact, there has been research on proving TCP correct under various assumptions, but to do so
under realistic assumptions would be a daunting undertaking. This illustrates one of the points we will
want to reconsider below: correctness analyses of protocols should probably not undertake to model the
environment and protocol in excessive detail. Doing so is likely to load up the proof with a tremendous
amount of detail, and yet may ultimately yield only limited insight. Moreover, when the proof is finished,
the developer may still be left facing a number of assumptions in which one can have no better than
probabilistic confidence.

The problem grows still more complex as we consider group communication protocols. Not only
do these protocols depend upon point-to-point and end-to-end assumptions at the level of communication
channels over which they run, they also depend upon the abstraction created by the group membership
protocol (which may operate in a partitionable environment), and there may be further assumptions about

Chapter25: ReasoningAbout Distributed Systems 453

453

the application itself. It is helpful to consider these protocols as having system-wide properties, such as
the group abstraction itself, or the dynamic uniformity guarantee of a protocol having this property:
another “dimension” to the spectrum of properties. It turns out that even if we assume a very simple
environmental model, capturing this system-wide perspective can be tremendously challenging. What
does it “mean” to say that a group manages a replicated data object, or that its members behave in a
mutually consistent manner? Questions such as these remain active research topics today. Researchers
work on them because there is considerable reason to hope that they can be solved, and because we gain
considerable insight even from partition solutions. However, it may be some time before solutions begin
to take on the character of useful tools that practitioners might exploit. We’ll have more to say about
work in this area below.

We observed that properties can be thought of as existing in a multidimensional space:
multidimensional because there is a sense in which, for example, group properties seem to be orthogonal
from the channel properties over which the group is implemented. Similarly, the real-time assumptions
and guarantees of a real-time protocol suite represent a different “dimension” along which a system may
seek to provide guarantees, as do the security properties of the environment and system, and its self-
management abilities and guarantees.

If it is extremely hard provide a formal proof that a TCP protocol guarantees the stream
properties, it will be neatly impossible to do so for a complex system that seeks to “guarantee” a range of
reliability properties such as these. Of course, by isolating a question about a protocol, we can often
provide a formal proof that under some set of conditions, the protocol provides a desired property or that it
will always make progress. When we talk about “reasoning about a distributed system”, this is typically
what we have in mind: the systematic analysis of some aspect of the system, under what may seem like
extreme simplifying assumptions, to establish that when those assumptions hold, the system has the
desired property.

Such a point of view can now lead us in any of several directions. Below, we will review the
state of affairs in some of the major research areas that take this sort of approach. Quite a bit is known,
and the rate of progress is extremely encouraging. Over time, there is reason to expect that formal tools
may emerge to assist the developer in putting together a system that has a desired property or behavior,
using the sort of narrow and highly targetted analysis of properties that emerges from this approach.

It should be stressed, however, that one can also adopt a more skeptical view of the whole area.
If it will ultimately be impossible to prove that systems have desired properties because of the complexity
of the assumptions involved and the risk that, ultimately, these assumptions will not hold, we should
seriously consider the possibility that, ultimately, reliable systems are “fated” to be unreliable -- but that,
hopefully, this will not occur frequently. In the experience of the author, this is not an unrealistic
perspective.

There is a community that takes this skepticism to an extreme degree: feeling that reliability
guarantees are ultimately meaningless, these developers make no effort to achieve reliability at all. More
specifically, they resort to completely ad-hoc methods, test their systems heavily, and accept as inevitable
the reliability and security loopholes that may remain. To this author, such an approach seems to go too
far: in effect, this community abandons all hope for any meaningful form of reliability at all because
perfection is not attainable.

In particular, the sorts of techniques we have presented in the preceeding 24 chapters really do
lead to systems that have useful properties and that can automatically adapt themselves to such accidents
as infrequent failures and restarts, communication lines that break and later are reconnected, or limited
security intrusions. They can guarantee real-time behavior, as long as the clocks are working well

Kenneth P. Birman - Building Secure and Reliable Network Applications454

454

enough, the communication lines are responding the way they are expected to respond, and the
applications themselves are not overloaded. And, most of the time, such assumptions are reasonable and
the systems build this way can be considered as very reliable ones. It seems a bit extreme to throw out
these benefits simply because we doubt that the reliability of the resulting applications will achieve some
absolute standard of perfection!

Sometimes, however, we must expect that our assumptions will prove to be incorrect and that the
correctness of the system as a whole will indeed be compromised. Thus, while on the one hand it makes
sense to invest using these tools to build systems, and to invest effort in proving (to the extent that we can)
that our techniques work, we should also design our systems to heal themselves when the unexpected
occurs and the system state becomes corrupted as a result. That is, we can derive considerable benefit
from reasoning about systems and using powerful tools, provided that we take the whole approach with a
grain of salt.

Indeed, even if our assumptions were completely correct, we would still face this problem for
other reasons. A system like Horus is fairly complex: a typical protocol stack and its runtime support
involves perhaps 25,000 lines of active code, not considering the code embedded into the operating
system, compiler, and the issues raised by communication with other machines that may be running other
systems or other revision levels of the same system. Thus, even if one were ready to “bet the bank” that a
certain data replication protocol provides consistency and fault-tolerance, it wouldn’t hurt to design the
system to either periodically reset the group members to have some known value for that replicated data,
or to at least periodically have the group check itself to detect errors.

Such a view argues, ultimately, that reliable distributed systems should be constructed to be as
modular as possible: not only will module boundaries serve as a natural place at which to specify behavior
and undertake to prove that it will hold, but they will also serve as a natural firewall within which
inconsistency or unexpected failures can be contained and repaired, and within which self-checking
mechanisms can operate. Recall that we discussed the controversy associated with extending group
properties across group boundaries. Here, we now see a concrete reason not to do so casually: by
attempting to extend properties across a broad system, we link the correctness of the groups involved
together. In effect, we break down what might otherwise have been a form of protection boundary for
properties. The same groups, with properties limited to communication that remains inside them, would
be much more isolated from one-another and hence much less likely to experience a system-wide failure if
one of our assumptions turns out to have been invalid in some isolated corner of the system.

25.2 Process and Message-Oriented Models
In discussing the protocols presented in previous chapters, we developed execution models (the
asynchronous model, the transactional model, the virtual synchrony model) which were expressed at the
level of processes, messages, time, data objects, and relationships over these primitive elements. Today,
such models are the ones most commonly used to formalize and reason about distributed systems. They
are seen to be deficient, however, when one tries to apply them to a complex distributed application,
composed of multiple subsystems having non-trivial properties and relationships among the components.

Most work on modelling distributed systems and protocols has focused on the use of very
simplified formal descriptions of the network, the protocol itself, and the application, and using those
descriptions to build up what might be called a “formal system” with provable properties. Although, as
we commented above, it appears to be impractical to treat every aspect of a system in this manner, this
type of formal systems research can still increase the confidence of the developer that a protocol does what
it is supposed to do, does it when it is supposed to do it, and that it isn’t subject to deadlock or other
undesired problems in the normal course of events.

Chapter25: ReasoningAbout Distributed Systems 455

455

Speaking broadly, work in this area can be understood as falling into three categories. There is a
community of researchers who are focused on developing “distributed algorithms”, which generally take
the form of simple and very high level techniques for solving specific problems that are expressed in terms
of a distributed computing model. We have brushed against some of this work in the text, but in fact have
presented very little of what is is a dynamic and extremely productive body of research. Problems that
have been studied by this community include the detection of deadlock and other stable conditions in
distributed systems, distributed discovery of graphs and computation of subgraphs (for example, to
identify optimal routes in a routed network), consensus and leader election, various forms of load-
balanced execution, evaluation of predicates whose variables make reference to the states of processes in a
distributed setting, and so forth. Recently, the group membership problem and virtual synchrony model
has become a focus of attention for this community.

In building reliable distributed systems, one sometimes encounters problems such as these, and it
can be very useful to gain background and insight by following the literature of the distributed algorithms
community. Although we haven’t covered much of this work in tis textbook, there are other texts on the
market that do this in a very effective way. Books that the reader might want to look at include Lynch’s
recent text [Lyn96], Andrew’s text [And91], and Schneider forthcomingbook [Sch97]. In addition, the
interested reader should consider following academic conferences such as theACM Proceedings on
Distributed Systems(PODC) and theWorkshop on Distributed Algorithms(WDAG). Many papers from
this community appear in Spinger-Verlag’s journal,Distributed Computing.

A second category of research in this area is concerned with the logical foundations of the
systems and languages that are used to reason about distributed computing systems. The problem here is
that we are only just beginning to find ways to express the properties of the sorts of reliability technologies
this book has treated in some depth. For example,although the virtual synchrony model can be described
in terms of a set of rules that such systems should follow, there is always a significant risk that such rules
are somehow imprecise, leave open trivial solutions that don’t have the properties desired in the formal
specification, or otherwise flawed. What one would ideally want is a highly expressive “language” in
which such rules could be expressed rigorously -- a logic for distributed computing systems.

In fact, there has been a great deal of research on logic used to reason about computing systems
in general, and distributed systems in particular. Leslie Lamport, for example, whose work was cited in
connection with notions of time and consistency, is in fact best known for his research on temporal logics
which he uses to express concurrent algorithms and to reason about complex distributed protocols and
systems. Other researchers have looked at notions of “knowledge” as they arise in distributed systems.
For example, Halpern and Moses proposed what have become known as “knowledge logics” for
distributed computing several years ago, and showed that one can sometimes understand distributed
protocols better by thinking in terms of facts that the system is able to deduce on the basis of messages that
the processes making up the system have exchanged. Lynch has suggested that a type of logic automata
might be used to understand the behavior of certain protocols and algorithms. And these are just a few
instances from a very broad and vigorous field of study.

Overall, it seems clear that we have yet to see the definitive language or formal approach for
describing properties of the sorts of reliable distributed systems treated in this text. Existing languages
continue to be fairly far from the actual software that one writes, so that protocols must be translated into
the formalism (with the risk of mistakes or mistranslations), and it can be very difficult to reason about
failures using formal tools. For example, the author has tried to formalize the properties of the group
membership component of the virtual synchrony model, with mixed results (see Chapter 13 and 14). To a
large extent, the difficulty here seems to be that the temporal logic used to write down properties of the
GMS has difficulty dealing with what might be called “branching” future executions.

Kenneth P. Birman - Building Secure and Reliable Network Applications456

456

Suppose that one were to write down the rule that a process communicating with the GMS sees
the same sequence of events as do other processes in the system. This sounds simple until one considers
that such a rule needs to be evaluated “at” a time and “on” a set of process states. But the purpose of the
GMS is to maintain the set of processes for the system, and this set evolves dynamically through time.
Morover, since we lack accurate ways of detecting failures, any given process may suffer the misfortune of
being partitioned away from the system and classified as having failed. The system as a whole may
partition into two or more component subsystems that experience different sequences of events. Thus,
what looked like a very simple goal suddenly becomes extremely complex: our “rule” must somehow be
written in a way that can express all of these possible events. Worse still, at any given point in time for a
process one may wish to say something about the state of that process, and yet the actual status of that
process relative to the other processes in the system may not be known until a complex consensus protocol
has run long in the future. Perhaps, at timet, processp believes that replicated variablex has value 17.
But at timet+10 the system may conclude that processp was actually faulty at timet and thatx never
had this value.

In effect, the formal interpretation of an event that has already occured in the past will not be
decided until some sort of protocol runs. How should one deal with this form of uncertainty? One could
write down a very complex property:either p will turn out to be operational, in which case x is truely 17,
or p will later prove to be partitioned away from the system, in which the official value of x may not be 17
after all. But this will clearly be awkward; moreover, once the “fate” ofp is finally decided, the correct
explanation of its behavior will suddenly become much simplified. Existing systems for formalizing the
behavior of distributed algorithms lack a good way to deal with this issue.

Thus, while research is making valuable inroads into the tools for formalizing the behavior of
distributed systems, we still seem to be fairly far from having the right set of tools for dealing with some
of the more complex mechanisms that were considered in this text. A consequence is that those of us who
work with reliability are forced to use relatively informal methods to specify our goals, and hence at
constant risk of mishap. On the one hand, it would be desirable to be more formal, but one finds that the
languages and logics themselves are awkward for our purposes. On the other hand, one hesitates to
abandon formality, because of the very big risk that mistakes will now enter our work.

Finally, there is a third major direction for research into distributed systems specifications and
formalisms. Were one to approach a logician with the comments seen above, the obvious first questiont o
be posed would concern our ultimate goals: do we actually know what sort of systems we are trying to
model? And ironically, the answer would have to be negative. At least at the time of this writing, the
distributed systems community has yet to reach real agreement on the most appropriate system models to
use. For example, as we saw in the text, Cristian works in a timed asynchronous model [Cri96], while
Babaoglu favors a model based on “reachibility” [BDGB94, BDM95], and the author’s own work has
focused increasingly on Chandra and Toueg’s approach of augementing an asynchronous system with a
failure detector [CT91,FKMBD95]. Clearly, the language won’t do us a great deal of good unless we
have some idea of what we want to do with it. The good news here is that all of these approaches seem to
work, in the sense that all three can be used to express the properties of the protocols and systems build
and to show that they hold under various realistic conditions. But these models are also quite different
from one-another and without some degree of consensus, we may not learn enough about any single model
to begin to have a handle on what might be called a “distributed theory of everything.” Indeed, the model
we know the most about is the pure asynchronous model, and yet what we know is that this model is too
weak to support the types of reliability that interest us here, and also that real systems are quite different
from the ones described by the model.

This discussion has focused on logical properties of distributed systems, but could equally well
have looked at security properties or temporal ones, with largely the same conclusions. In the area of
security, for example, there has been some very important work on security logics [LABW92], which have

Chapter25: ReasoningAbout Distributed Systems 457

457

been used to reason about the protocol used in Kerberos and other similar authentication subsystems. But,
this work doesn’t consider issues such as failures and partitioning, and focuses on the simplest non-
replicated case of the authentication servers that are considered. So on the one hand we have some
encouraging success, but on the other, we face a major challenge in extending the same work to the more
complex systems that are used in the “real world”.

For the case of systems with temporal properties, we have seen that the style of reasoning used in
the CASD protocol was ultimately too conservative for its intended users [CASD85]. Yet we know very
little about this sort of protocol, in a formal sense, if we try to run it “fast” enough so that its properties
start to become probabalistic ones in the manner seen in Chapter 20. Friedman’s work has shown how
Horus can be used to obtain very predictable response time in a scalable, load-balanced server. But it
seems impractical toprove that this approach should work in the manner that it is observed to work! By
and large, the formal tools available for reasoning about temporal properties of fault-tolerant systems
focus on systems that can be described conservatively. When we try to push predictability and
performance close to their joint limits, we appear to enter a less conservative world in which those formal
tools no longer will serve us.

Traditionally, when formal models and tools fail us, computer scientists have turned to
simulation studies. Yet reliable distributed systems can be too complex to model using simulations.
Kalantar, whose work was reported in connection with scalability [Kal95], encountered just this problem
in his doctoral research. Although he was able to gain significant insight into the fine-grained behavior of
a complex protocol using a simulation study, he was not able to simplify the model enough to let him
simulate the large-scale behavior of such systems: the simulation became swamped with detail and too
slow. This is one reason that researchers like Friedman have tended to build mock-ups of real
applications and to study those mock-ups in great detail: because they draw on the real technology, at least
one can be sure they are not simplistic in some basic way. But one is also limited by such an approach,
because it can be hard to study the impact of specific parameters on real systems. How can one vary the
latencies or bandwidths of a network used in a real system, for example, or arrange for a process to fail at
a particularly awkward stage of a protocol? Real systems are notoriously difficult to test, and their use in
this type of analysis represents a problem of at least comparable difficulty.

25.3 System Definition Languages
The first part of this textbook can be understood, in retrospect, as a study of client-server computing.
Readers will recall that we started by looking at some of the underlying technical issues, such as the
mechanisms by which messages can be addressed and transported, associated reliability issues, and
computing models. But we then argued that the successful use of such technologies requires the
development of computing environments within which the interfaces between the “objects” distributed
over the network are published and standardized. This lead to a review of CORBA, which has become
widely standard as the best available technology for documenting interfaces and managing systems that
are modeled as collections of cooperating objects.

As we moved beyond these technologies into a broader collection of tools and protocols for
replicating data, load-balancing, fault-tolerance, and for guaranteeing low latency and high data
throughput, we lost the connection to specifications. It is clear how one can specify that a service
manages 2-dimensional tables, but not at all clear how to specify that the service is replicated on three
sites which must be selected to fail independently, accessible over two communication paths which
similarly fail independently, load-balanced, and capable of providing 100ms response times to queries.
This form of information, although potentially necessary for the purpose of describing a system correctly,
is nowhere represented in a typical system.

Kenneth P. Birman - Building Secure and Reliable Network Applications458

458

To a limited degree, we saw that one can model a distributed system using a form of relational
model similar to that used in relational database systems. Were this done, the kinds of properties listed
above could be written down in the relational calculus much as one expresses consistency constraints in a
database setting. Doing so would represent initial steps towardssystem definition languageswithin which
the necessary, desired, or typical characteristics of a computing system could be specified and reasoned
about.

How might one use such information, if a system were to make it explicit? One option would be
to construct tools for automatically generating management policies permitting the system to be monitored
and controlled so as to enforce the desired behavior through appropriate interventions. Another
possibility would be to use such information to preprogram the communication subsystem so that it can
allocate the resources needed to assure that a necessary quality of service will be provided and, if that level
of service cannot be guaranteed, that an upcall will be issued to warn the system that it is operating in a
degraded mode. One could use this information to protect the system against attacks that seek to create an
environment that violates one or another of the basic assumptions to force the system itself to fail. And,
information of this sort could be used to simulate and model the system, permitting intelligent comparison
of alternative hardware configurations, management policies, and calculation of likely peak loading.

For example, in his work on Horus, Robbert van Renesse was able to chacterize the virtual
synchrony stack in terms of a fairly small set of properties that the application might or might not require.
One could imagine wiring Horus to some form of system definition language, so that the user would
merely specify the expectations of the system, and the actual construction of an appropriate protocol stack
could then be completely automated. A similar approach might be possible with the RMP system which,
as will be observed below, also makes use of a formal specification language and hence could potential
associate specific properties with specific needs of the user.

At the time of this writing, the author is not aware of any work on systems definition languages,
but such a direction seems like a logical path for the CORBA community to pursue as the basic elements
of CORBA become more form and their practical implications better understood. This topic, then, would
appear to be a good one for near-term research within the language community or distributed systems
management community.

25.4 High Level Languages and Logics
In our review of the Horus system, the reader may have been puzzled by the repeated references to the ML
programming language [MMH90], which is one of the options for specifying Horus layers. ML is a Lisp-
like high level language that has traditionally been interpreted, although compilers for ML are now
entering general use, and mechanisms for translation from ML to C exist (indeed, Horus layers coded in
ML are currently translated to C and then compiled from that form). Nonetheless, given that C and C++
offer greater control over performance, why would we consider implementing large parts of Horus in ML?

We have seen that the protocols implemented within Horus layers are potentially complex, both
in their own terms, and also in terms of their interactions. As a consequence, it may be difficult to reason
about the expected properties of a Horus stack that combines several layers in a non-trivial way. When
programming languages such as C or C++ are used to implement a Horus stack, our ability to reason
about such layerings is potentially limited by the lack of automated tools for doing so. We are forced to
express the behavior of the layers in English or in some form of temporal logic, and may make mistakes in
doing so (we cited, for example, some serious problems that arose when the author and a colleague tried to
express the GMS service using a temporal logic language that turned out to be ill-suited to the purpose).
An argument can be made that such an approach will lead to unconvincing correctness and behavioral
arguments.

Chapter25: ReasoningAbout Distributed Systems 459

459

When a Horus layer is specified in ML, on the other hand, the situation is somewhat brighter in
just these respects. ML is a very high level language, and a substantial body of applied mathematics and
logic has evolved around the language. In particular, there exist sophisticated proof tools for ML:
programming environments that assist the user in proving things about programs written in ML, or in
deriving ML programs that “illustrate” the technique used to prove a purely mathematical property.
By coding Horus in ML, we can benefit from both of these automated theorem proving techniques.

In the first direction, if a Horus layer is expressed in ML, we can potentially claim something
about that layer (for example, that its synchronization mechanism is deadlock-free) and establish the
precise assumptions that must be made about layers above and below it for these condition to be true. The
NuPrl (pronounced “New Pearl”) environment is a particularly powerful tool for this sort of application,
and is designed to accept ML as an input. At Cornell, the Horus project has already been successful in
using NuPrl this way to establish simple properties of Horus layers. The potential of taking this work
further and reasoning about composition of layers or complex properties of layers is very exciting. In
particular, because NuPrl is automated, it can track very complex properties and automatically complete
tedious aspects of such proofs. The degree of confidence one can express in the result is consequently
much higher than for a hand-developed proof, and the nature of the questions one can undertake to ask is
much expanded.

At the same time, one can imagine going from the bottom up and developing a formal logic
within which a Horus protocol suite would be proved “possible” under a set of assumptions about the
environment. With this direction, it would (at least in theory) be practical to extract the Horus layers that
implement the proofs directly from the proofs. Such a process is similar to one whereby the proof that,
given a pair of positive integers, one can find their least common multiple, embodies an algorithm for
doing so. NuPrl is designed to extract algorithms for this form of constructive proof, and hence could
potentially extract Horus layers that are intrinsically trustworthy because they would be backed by a
rigorous mathematical foundation extending down to the first principles upon which the system is based.

While ambitious, we believe that such a goal is also eventually achievable, albeit in limited ways.
More broadly, such a direction points to the potential for compiling protocols from descriptions of the
system behavior that is desired. For applications requiring, for example, security and trust, one would be
much more likely to trust the resulting protocols than protocols that were hand coded and proved correct
after the fact, because such proofs are only as good as the developer’s ability to formalize the behavior of
the layer.

There are, unfortunately, serious obstacles to both of these directions. Earlier, we cited the
difficulty of expressing a problem such as the group membership problem in the most widely used
temporal logic for distributed systems. As we saw at the time, the core difficulty lies in the fact that at
time an event occurs within a process, one may not yet know if that process will remain a member of the
system or be excluded from it as faulty. Indeed, one may not even know if the system as a whole will
continue to make progress. Thus, one is forced to make the claim thatif the system makes progress, either
this process will be considered asfaulty, in which case some set of conditions holds upon the events that
took place before it failed, or it will be considered ascorrect, in which case some other set of conditions
holds. This is a very clumsy way to express the behavior of a distributed system, but seems to be the only
possible way to do so in the usual temporal logic. Lacking progress on this problem, it is unlikely that
NuPrl would be able to fully model the process group mechanisms implemented by Horus, and hence
unlikely that we could fully verify Horus.

Yet there may be considerable benefit from less ambitious uses of NuPrl. For example, we have
begun to make use of security layers that integrate Horus with the Fortezza standard. It may be entirely
practical to formalize the resulting authentication and trust properties of the system, and in this manner to

Kenneth P. Birman - Building Secure and Reliable Network Applications460

460

use NuPrl to convince ourselves that certain styles of distributed service are safe against attack. There
appears to be considerable potential for such “lightweight” uses of NuPrl, even if the larger challenge of
using such a system to verify all of Horus remains far in the future.

It should be noted that Horus is not at all the first to explore the use of ML for improving the
clarity of distributed protocols. Earlier work includes [Kru91, BHL93, HL94, Bia94]. Also, although the
author is more familiar with the work on hardening Horus, interested readers should also look at Nasa’s
work on formalizing the protocols and properties of the RMP (Reliable Multicast Protocol) system. As
reported in [Mon94, MW94, CM96a, Wu95], the RMP group has achieved considerable success both in
expressing properties of their protocol and in formally verifying that these properties actually hold.

Chapter26: Other Distributed and Transactional Systems 461

461

26. Other Distributed and Transactional Systems
In this chapter we review some of the advanced research efforts in the areas covered by the text. The
first section focuses on message-passing and group-communication systems and the second on
transactional systems. The review is not intended to be exhaustive, but we do try to include the major
activities that contributed to the technology areas stressed in the text itself.

26.1 Related Work in Distributed Computing
There there have been many distributed systems in which group communication played a role. We now
review some of these systems, providing a brief description of the features of each, and citing sources of
additional information. Our focus is on distributed computing systems and environments with support for
some form of process group computing. However, we do not limit ourselves to those systems
implementing virtually synchronous process groups or a variation on the model. Our review presents
these systems in alphabetical order. Were we to discuss them chronologically, we would start by
considering V, then the Isis Toolkit and Delta-4, and then we would turn to the others in a roughly
alphabetical ordering. However, it is important to understand that these systems are the output of a
vigorous research community, and that each of the systems cited included significant research innovations
at the time it was developed. It would be simplistic to say that any one of these systems came first and
that the remainder are somehow secondary. More accurate would be to say that each system innovated in
some areas and borrowed ideas from prior systems in other areas.

Readers interested in learning more about this area may want to start by consulting the papers
that appeared inCommunications of the ACMin a special section of the April 1996 issue (Vol. 39, No. 4).
David Powell’s introduction to this special section is both witty and informative [Pow96], and there are
papers on several of the systems touched upon in this text [MMABL96, DM96, R96, RBM96, SR96,
Cri96].

26.1.1 Ameoba
During the early 1990’s, Ameoba [RST88, RST89, MRTR90] was one of a few micro-kernel based
operating systems proposed for distributed computing (others include V [CZ85], Mach [Ras86], Chorus
[RAAB88, RAAH88] and QNX [Hil92]). The focus of the project when it was first launched was to
develop a distributed system around a nucleus supporting extremely high performance communication,
with the remaining system services being implemented using a client-server architecture. In our area of
emphasis, process group protocols, Ameoba supports a subsystem developed by Frans Kaashoek that
provides group communication using total ordering [Kaa92]. Message delivery is atomic and totally
ordered, and implements a form of virtually synchronous addressing. During the early 1990’s, Ameoba’s
sequencer protocols set performance records for throughput and latency, although other systems
subsequently bypassed these using a mixture of protocol refinements and new generations of hardware and
software.

26.1.2 Chorus
Chorus is an object-oriented operating system for distributed computing [RAAB88, RAAH88]. Developed
at INRIA during the 1980’s, the technology shifted to a commercial track in the early 1990’s and has
become one of the major vehicles for commercial UNIX development and for real-time computing
products. The system is notable for its modularity and comprehensive use of object-oriented programming
techniques. Chorus was one of the first systems to embrace these ideas, and is extremely sophisticated in
its support for modular application programming and for reconfiguration of the operating system itself.

Kenneth P. Birman - Building Secure and Reliable Network Applications462

462

Chorus implements a process group communication primitive which is used to assist applications
in dealing with services that are replicated for higher availability. When an RPC is issued to such a
replicated service, Chorus picks a single member and issues an invocation to it. A feature is also available
for sending an unreliable multicast the members of a process group (no ordering or atomicity guarantees
are provided).

In its present commercial incarnation, the Chorus operating system is used primarily in real-time
settings, for applications that arise in telecommunications systems. Running over Chorus is an object-
request broker technology called Cool-ORB. This system includes a variety of distributed computing
services including a replication service capable of being interconnected to a process group technology,
such as that used in the Horus system.

26.1.3 Delta-4
Delta-4 was one of the first systematic efforts to address reliability and fault-tolerance concerns [Pow94].
Launched in Europe during the late 1980’s, Delta-4 was developed by a multinational team of companies
and academic researchers [Pow91, RV89]. The focus of the project was on factory floor applications,
which combine real-time and fault-tolerance requirements. Delta-4 took an approach in which a trusted
module was added to each host computer, and used to run fault-tolerance protocols. These modules were
implemented in software but could be included onto a specially designed hardware interface to a shared
communication bus. The protocols used in the system included process group mechanisms similar to the
ones now employed to support virtual synchrony, although Delta-4 did not employ the virtual synchrony
computing model.

The project was extremely successful as a research effort and resulting in working prototypes that
were indeed fault-tolerant and capable of coordinated real-time control in distributed automation settings.
Unfortunately, however, this stage was reached as Europe entered a period of economic difficulties, and
none of the participating companies was able to pursue the technology base after the research funding of
the project ended. Ideas from Delta-4 can now be found in a number of other group-oriented and real-
time distributed systems, including Horus.

26.1.4 Harp
The “gossip” protocols of Ladin and Liskov were mentioned in conjunction with our discussion of
communication from a non-member of a process group into that group [LGGJ91, LLSG92]. These
protocols were originally introduced in a replicated file system project undertaken at MIT in the early
1990’s. The key idea of the Harp system was to use a lazy update mechanism as a way of obtaining high
performance and tolerance to partitioning failures in a replicated file system. The system was structured
as a collection of file servers, consisting of multiple processes each of which maintained a full copy of the
file system, and a set of clients that issue requests to the servers, switching from server to server to balance
load or to overcome failures of the network or of a server process. Clients issue read operations, which the
system handled locally at which ever server received the request, andupdate operations, which were
performed using a quorum algorithm. Any updates destined for a faulty or unavailable process were
spooled for later transmission when the process recovered or communication to it was reestablished. To
ensure that when a client issues a series of requests, the file servers perform them at consistent (e.g.
logically advancing) times, each response from a file server process to a client included a timestamp,
which the client could present on subsequent requests. The timestamp was represented as a vector clock,
and could be used to delay a client’s request if it was sent to a server that had not yet seen some updates
on which the request might be dependent.

Harp made extensive use of a hardware feature not widely used in modern workstations, despite
its low cost and off-the-shelf availability. A so-called non-volatile or battery-backed RAM (NVRAM) is a
small memory that preserves its contents even if the host computer crashes and later restarts. Finding that

Chapter26: Other Distributed and Transactional Systems 463

463

the performance of HARP was dominated by the latency associated with forced log writes to the disk,
Ladin and Liskov purchased these inexpensive devices for the machines on which HARP runs and
modified the HARP software to use the NVRAM area as a persistent data structure that could hold commit
records, locking information, and a small amount of additional commit-related data. Performance of
HARP increased sharply, leading these researchers to argue that greater use should be made of NVRAM
in reliable systems of all sorts. However, NVRAM is not found on typical workstations or computing
systems, and vendors of the major transactional and database products are under great pressure to offer the
best possible performance on completely standard platforms, making the use of NVRAM problematic in
commercial products. The technology used in HARP, on the other hand, would not perform well without
NVRAM storage.

26.1.5 The Highly Available System (HAS)
The Highly Available System was developed by IBM’s Almaden research laboratory under the direction of
Cristian and Strong, with involvement by Skeen and Schmuck, in the late 1980’s and subsequently
contributed technology to a number of IBM products, including the ill-fated Advanced Automation
System (AAS) development that IBM undertook for the American Federal Aviation Agency (FAA) in the
early 1990’s [CD90, Cri91a]. Unfortunately, relatively little of what was apparently a substantial body of
work was published on this system. The most widely known results include thetimed asynchronous
communication model,proposed by Cristian and Schmuck [CS95] and used to provide a precise
semantics for their reliable protocols. Protocols were proposed for synchronizing the clocks in a
distributed system [Cri89], managing group membership in real-time settings [Cri91b] and for atomic
communication to groups [CASD85, CDSA90], subject to timing bounds, and achieving totally ordered
delivery guarantees at the operational members of groups. Details of these protocols were presented in
Chapter 20. A shared memory model calledDelta-Common Storagewas proposed as a part of this
project, and consisted of a tool by which process group members could communicate using a shared
memory abstraction, with guarantees that updates would be seen by all operational group members (if by
any) within a limited period of time.

26.1.6 The Isis Toolkit
Developed by the author of this textbook and his colleagues during the period1985-1990, the Isis Toolkit
was the first process group communication system to use the virtual synchrony model [BJ87a, BJ87b,
BR94]. As its name suggests, Isis is a collection of procedural tools that are linked directly to the
application program, providing it with functionality for creating and joining process groups dynamically,
multicasting to process groups with various ordering guarantees, replicating data and synchronizing the
actions of group members as they access that data, performing operations in a load-balanced or fault-
tolerant manner, and so forth [BR96]. Over time, a number of applications were developed using Isis, and
it became widely used through a public software distribution. These developments lead to the
commercialization of Isis through a company, which today operates as a wholly owned subsidiary of
Stratus Computer Inc. The company continues to extend and sell the Isis Toolkit itself, as well as an
object-oriented embedding of Isis called Orbix+Isis (it extends Iona’s popular Orbix product with Isis
group functionality and fault-tolerance [O+I95]), products for database and file system replication, a
message bus technology supporting a reliable post/subscribe interface, and a system management
technology for supervising a system and controlling the actions of its components.

Isis introduced the primary partition virtual synchrony model, and thecbcastprimitive. These
steps enabled it to support a variety of reliable programming tools, which was unusual for process group
systems at the time Isis was developed. Late in the “life cycle” of the system it was one of the first (along
with the Harp system of Ladin and Liskov) to use vector timestamps to enforce causal ordering. In a
practical sense, the system represented an advance merely by being a genuinely useable packaging of a
reliable computing technology into a form that could be used by a large community.

Kenneth P. Birman - Building Secure and Reliable Network Applications464

464

Successful applications of Isis include components of the New York and Swiss stock exchanges,
distributed control in AMD’s FAB-25 VLSI fabrication facility, distributed financial databases such as
one developed by the World Bank, a number of telecommunications applications involving mobility,
distributed switch management and control, billing and fraud detection, several applications in air-traffic
control and space data collection, and many others. The major markets into which the technology is
currently sold are financial, telecommunications, and factory automation.

26.1.7 Locus
Locus is a distributed operating system developed by Popek’s group at UCLA in the mid 1980’s
[WPEK93]. Known for such features as transparent process migration and a uniform distributed shared
memory abstraction, Locus was extremely influential in the early development of parallel and cluster-style
computing systems. Locus was eventually commercialized and is now a product of Locus Computing
Corporation. The file system component of Locus was later extended into the Ficus system, which we
discussed earlier in conjunction with other “stateful” file systems.

26.1.8 Sender-Based Logging and Manetho
In writing this text, the author was forced to make certain tradeoffs in terms of the coverage of topics.
One topic that was not included is that of log-based recovery, whereby applications create checkpoints
periodically and log messages sent or received. Recovery is by rollback into a consistent state, after which
log replay is used to regain the state as of the instant when the failure occured.

Manetho [EZ92] is perhaps the best known of the log-based recovery systems, although the idea
of using logging for fault-tolerance is quite a bit older [BBG83, KT87, JZ90]. In Manetho, a library of
communication procedures automates the creation of logs that include all messages sent from application
to application. An assumption is made that application programs are deterministic and will reenter the
same state if the same sequence of messages is played into them. In the event of a failure, a rollback
protocol is triggered that will roll back one or more programs until the system state is globally consistent,
meaning that the set of logs and checkpoints represents a state that the system could have entered at some
instant in logical time. Manetho then rolls the system forward by redelivery of the logged messages..
Because the messages are logged at the sender, the technique is calledsender-based logging[JZ87].
Experiments with Manetho have confirmed that the overhead of the technique is extremely small.
Moreover, working independently, Alvisi has demonstrated that sender-based logging is just one of a very
general spectrum of logging methods that can store messages close to the sender, close to the recipient, or
even mix these options [AM93].

Although conceptually simple, logging has never played a major role in reliable distributed
systems in the field, most likely because of the determinism constraint and the need to use the logging and
recovery technique system-wide. This issue, which also makes it difficult to transparently replicate a
program to make it fault-tolerant, seems to be one of the fundamental obstacles to software-based
reliability technologies. Unfortunately, non-determinism can creep into a system through a great many
interfaces. Use of shared memory or semaphore-style synchronization can cause a system to be non-
deterministic, as can any dependency on the order of message reception, the amount of data in a pipe or
the time in the execution when the data arrives, the system clock, or the thread scheduling order. This
implies that the class of applications for which one can legitimately make a determinism assumption is
very small.

For example, suppose that the servers used in some system are a mixture of deterministic and
non-deterministic programs. Active replication could be used to replicate the deterministic programs
transparently, and the sorts of techniques discussed in previous chapters employed in the remainder.
However, to use a sender-based logging technique (or any logging technique), the entire group of
application programs needs to satisfy this assumption, hence one would need to recode the non-

Chapter26: Other Distributed and Transactional Systems 465

465

deterministic servers before any benefit of any kind could be obtained. This obstacle is apparently
sufficient to deter most potential users of the technique.

The author is aware, however, of some successes with log-based recovery in specific applications
that happen to have a very simple structure. For example, a popular approach to factoring very large
numbers involves running very large numbers of completely independent factoring processes that deal
with small ranges of potential factors, and such systems are very well suited to a log-based recovery
technique because the computations are deterministic and there is little communication between the
participating processes. Broadly, log-based recovery seems to be more applicable to scientific computing
systems or problems like the factoring problem than to general purpose distributed computing of the sort
seen in corporate environments or the Web.

26.1.9 NavTech
NavTech is a distributed computing environment built using Horus [BR96, RBM96], but with its own
protocols and specialized distributed services [VR92, RV93, Ver93, Ver94, RV95, Ver96]. The group
responsible for the system is headed by Verissimo, who was one of the major contributors to Delta-4, and
the system reflects many ideas that originated in that earlier effort. NavTech is aimed at wide-area
applications with real-time constraints, such as banking systems that involve a large number of
“branches” and factory-floor applications in which control must be done close to a factory component or
device. The issues that arise when real-time and fault-tolerance problems are considered in a single
setting thus represent a particular focus of the effort. Future emphasis by the group will be on the
integration of graphical user interfaces, security, and distributed fault-tolerance within a single setting.
Such a mixture of technologies would result in an appropriate technology base for applications such as
home banking and distributed game playing, both expected to be popular early uses of the new generation
of internet technologies.

26.1.10 Phoenix
Phoenix is a recent distributed computing effort that was launched by C. Malloth and Andre Schiper of
the Ecole Polytechnique de Lausanne jointly with Ozalp Babaoglu and Paulo Verissimo [Mal96,see also
SR96]. Most work on the project is currently occurring at EPFL. The emphasis of this system is on issues
that arise when process group techniques are used to implement wide-area transactional systems or
database systems. Phoenix has a Horus-like architecture, but uses protocols specialized to the needs of
transactional applications, and has developed an extention of the virtual synchrony model within which
transactional serializability can be treated elegantly.

26.1.11 Psync
Psync is a distributed computing system that was developed by Peterson at the University of Arizona in
the late 1980’s and early 1990’s [Pet87, PBS89,MPS91]. The focus of the effort was to identify a
suitable set of tools with which to implement protocols such as the ones we have presented in the last few
chapters. In effect, Psync sets out to solve the same problem as the Express Transfer Protocol, but where
XTP focuses on point to point datagrams and streaming style protocols, Psync was more oriented towards
group communication and protocols with distributed ordering properties. A basic set of primitives was
provided for identifying messages and for reasoning about their ordering relationships. Over these
primitives, Psync provided implementations of a variety of ordered and atomic multicast protocols.

26.1.12 Relacs
The Relacs system is the product of a research effort headed by Ozalp Babaoglu at the University of
Bologna [BDGB94, BDM95]. The activity includes a strong theoretical component, but has also
developed an experimental software testbed within which protocols developed by the project can be
implemented and validated. The focus of Relacs is on the extention of virtual synchrony to wide-area

Kenneth P. Birman - Building Secure and Reliable Network Applications466

466

networks in which partial connectivity disrupts communication. Basic results of this effort include a
theory that linksreachabilityto consistency in distributed protocols, and a proposed extention of the view
synchrony properties of a virtually synchronous group model that permits safe operation for certain classes
of algorithms despite partitioning failures. At the time of this writing, the project was working to identify
the most appropriate primitives and design techniques for implementing wide-area distributed
applications that offer strong fault-tolerance and consistency guarantees, and to formalize the models and
correctness proofs for such primitives [BBD96].

26.1.13 Rampart
Rampart is a distributed system that uses virtually synchronous process groups in settings where security
is desired even if components fail in arbitrary (Byzantine) ways [Rei96]. The activity is headed by Reiter
at AT&T Bell Laboratories, and has resulted in a number of protocols for implementing process groups
despite Byzantine failures as well as a prototype of a security architecture that employs these protocols
[RBG92, Rei93, RB94, Rei94a, Rei94b, RBR95]. We discuss this system in more detail in Chapter 19.
Rampart’s protocols are more costly than those we have presented above, but the system would probably
not be used to support a complete distributed application. Instead, Rampart’s mechanisms could be
employed to implement a very secure subsystem, such as a digital cash server or an authentication server
in a distributed setting, while other less costly mechanisms were employed to implement the applications
that make use of these very secure services.

26.1.14 RMP
The RMP system is a public-domain process group environment implementing virtual synchrony, with a
focus on extremely high performance and simplicity. The majority of the development on this system
occurred at U.C. Berkeley, where graduate student Brian Whetten needed such a technology for his work
on distributed multimedia applications [MW94, Mon94, Whe95, CM96a]. Over time, the project became
much broader, as West Virginia University / Nasa researchers Jack Callahan and Todd Montgomery
became involved. Broadly speaking, RMP is similar to the Horus system, although less extensively
layered.

The major focus of the RMP project has been on embedded systems applications that might arise
in future space platforms or ground-based computing support for space systems. Early RMP users have
been drawn from this community, and the long term goals of the effort are to develop technologies
suitable for use by Nasa. As a result, the verification of RMP has become particularly important, since
systems of this sort cannot easily be upgraded or services while in flight. RMP has pioneered the use of
formal verification and software design tools in protocol verification [CM96a, Wu95], and the project is
increasingly focused on robustness through formal methods, a notable shift from its early emphasis on
setting new performance records.

26.1.15 StormCast
Researchers at the University of Tromso, within the Arctic circle, launched this effort, which seeks to
implement a wide area weather and environmental monitoring system for Norway. StormCast is not a
group communication system per-se, but rather is one of the most visible and best documented of the
major group communication applications [AJ95, JH94, Joh94;see alsoBR96 and JvRS95a, JvRS95b,
JvRS96]. Process group technologies are employed within this system for parallelism, fault-tolerance, and
system management.

The basic architecture of StormCast consists of a set of data archiving sites, located throughout
the far north. At the time of this writing, StormCast had roughly a half-dozen such sites, with more
coming on line each year. Many of these sites simply gather and log weather data, but some collect radar
and satellite imagery, and others maintain extensive datasets associated with short and long-term weather

Chapter26: Other Distributed and Transactional Systems 467

467

modeling and predictions. StormCast application programs typically draw on this varied data set for
purposes such as local weather prediction, tracking of environmental problems such as oil spills (or
radioactive discharges from within the ex-Soviet block to the east), research into weather modelling, and
other similar applications.

StormCast is interesting for many reasons. The architecture of the system has received intense
scrutiny [Joh94, JH94], and evolved over a series of iterations into one in which the application developer
is guided to a solution using tools appropriate to the application, and by following templates that worked
successfully for other similar applications. This notion of architecture driving the solution is one that has
been lost in many distributed computing environments, which tend to be architecturally “flat” (presenting
the same tools, services and API’s system-wide even if the applications themselves have some very clear
architecture, like a client-server structure, in which different parts of the system need different forms of
support). It is interesting to note that early versions of StormCast, which lacked such a strong notion of
system architecture, were much more difficult to use than the current one, in which the developer actually
has less “freedom” but much stronger guidence towards solutions.

StormCast has encountered some difficult technical challenges. The very large amounts of data
gathered by weather monitoring systems necessarily must be “visited” on the servers where they reside; it
is impractical to move the data to the place where the user who requests a service, such as a local weather
forecast, may be working. Thus, StormCast has pioneered in the development of techniques for sending
computations to data: the so-calledagentarchitecture [Rei94] we discussed in Section 10.8 in conjunction
with the Tacoma system [JvRS95a, JvRS95b, JvRS96].

In a typical case, an airport weather prediction for Tromso might involve checking for incoming
storms in the 500-km radius around Tromso, and then visiting one of several other data archives
depending upon the prevailing winds and the locations of incoming weather systems. The severe and
unpredictable nature of arctic weather makes these computations equally unpredictable: the data needed
for one prediction may be primarily archives in the south of Norway while that needed for some other
prediction is archived in the north, or on a system that collects data from trawlers along the coast. Such
problems are solved by designing Tacoma agents that travel to the data, preprocess it to extract needed
information, and then return to the end-user for display or further processing. Although such an approach
raises challenging software design and management problems, it also seems to be the only viable option
for working with such large quantities of data and supporting such a varied and unpredictable community
of users and applications.

It should be noted that StormCast maintains an unusually interesting web page,
http://www.cs.uit.no. Readers who have a web browser will find interactive remote controlled cameras
focused on the ski trails near the University, current environmental monitoring information including data
on small oil spills and the responsible vessels, 3-dimensional weather predictions intended to aid air-
traffic controllers in recommending the best approach paths to airports in the region, and other examples
of the use of the system. One can also download a version of Tacoma and use it to develop new weather
or environmental applications that can be submitted directly to the StormCast system, load permitting.

26.1.16 Totem
The Totem system is the result of a multi-year project at U.C. Santa Barbara, focusing on process groups
in settings that require extremely high performance and real-time guarantees [MMABL96, see also
MM89, MMA90a, MMA90b, MM93, AMMA93, Aga94, MMA94]. The computing model used is the
extended virtual synchrony one, and was originally developed by this group in collaboration with the
Transis project in Isreal. Totem has contributed a number of high performance protocols, including a
innovative causal and total ordering algorithm based on transitive ordering relationships between
messages and a totally ordered protocol with extremely predictable real-time properties. The system

Kenneth P. Birman - Building Secure and Reliable Network Applications468

468

differs from a technology like Horus in focusing on a type of distributed system that would result from the
interconnection of clusters of workstations using broadcast media within these clusters and some form of
bridging technology between them. Most of the protocols are optimized for applications within which
communication loads are high and either uniformly distributed over the processes in the system, or in
which messages originate primarily at a single source. The resulting protocols are very efficient in their
use of messages but sometimes exhibit higher latency than the protocols we presented in earlier chapters
of this textbook. Intended applications include parallel computing on clusters of workstations and
industrial control problems.

26.1.17 Transis
The Transis system [DM96] is one of the best known and most successful process group-based research at
the time of this writing. The group has contributed extensively to the theory of process group systems and
virtual synchrony, repeatedly set performance records with its protocols and flow-control algorithms, and
developed a remarkable variety of protocols and algorithms in support of such systems [ADKM92a,
ADKM92b, AMMA93, AAD93, Mal94, KD95, FKMBD95]. Many of the ideas from Transis were
eventually ported into the Horus system. Transis was, for example, the first system to show that by
exploiting hardware multicast, a reliable group multicast protocol could scale with almost no growth in
cost or latency. The “primary” focus of this effort was initially partitionable environments, and much of
what is known about consistent distributed computing in such settings originated either directly or
indirectly from this group. The project is also known for its work on transactional applications that
preserve consistency in partitionable settings.

Recently, the project has begun to look at security issues that arise in systems subject to
partitioning failures. The effort seeks to provide secure autonomous communication even while
subsystems of a distributed system are partitioned away from a central authentication server. As we will
see in the next Chapter, the most widely used security architectures would not allow secure operations to
be initiated in such a partitioned system component and would not be able to deal with the revalidation of
such a component if it later reconnected to the system and wanted to merge its groups into others that
remained in the primary component. Mobility is likely to create a need for security of this sort, for
example in financial applications and in military settings, where a team of soldiers may need to operate
without direct communication to the central system from time to time.

As noted earlier, another interesting direction under study by the Transis group is that of building
systems that combine multiple protocol stacks in which different reliability or quality-of-service properties
apply to each stack [Idixx]. In this work, one assumes that a complex distributed system will give rise to a
variety of types of reliability requirement: virtual synchrony for its control and coordination logic,
isochronous communication for voice and video, and perhaps special encryption requirements for certain
sensitive data, each provided through a corresponding protocol stack. However, rather than treating these
protocol stacks as completely independent, the Transis work (which should port easily into Horus) deals
with the synchronization of streams across multiple stacks. Such a step will greatly simplify the
imlementation of demanding applications that need to present a unified appearance and yet cannot readily
be implemented within a single protocol stack.

26.1.18 The V System
In the alphabetic ordering of this chapter, it is ironic that the first system to have used process groups is
the last that we review. The V System was the first of the micro-kernel operating systems intended
specifically for distributed environments, and pioneered the “RISC” style of operating systems developed
that later swept the research community in this area. V is known primarily for innovations in the virtual
memory and message passing architecture used within the system, which achieved early performance
records for its RPC protocol. However, the system also included a process group mechanism, which was

Chapter26: Other Distributed and Transactional Systems 469

469

used to support distributed services capable of providing a service at multiple locations in a distributed
setting [CZ85, Dee88].

Although the V system lacked any strong process group computing model or reliability
guarantees, its process group tools were considered quite powerful. In particular, this system was the first
to support a publish/subscribe paradigm, in which messages to a “subject” were transmitted to a process
group whose named corresponded to that subject. As we saw earlier, such an approach provides a useful
separation between the source and destination of messages: the publisher can send to the group without
worrying about its current membership, and a subscriber can simply join the group to begin receiving
messages published within it.

The V style of process group was not intended for process-group computing of the sorts we explored in
this textbook; reliability in the system was purely on a “best effort” basis, meaning that the group
communication primitives made an effort to track current group membership and to avoid high rates of
message loss, but without providing real guarantees. When Isis introduced the virtual synchrony model,
the purpose was precisely to show that with such a model, a V-style of process group could be used to
replicate data, balance workload, or provide fault-tolerance. None of these problems were believed
solvable in the V system itself. V set the early performance standards against which other group
communication systems tended to be evaluated, however, and it was not until a second generation of
process group computing systems emerged (the commercial version of Isis, the Transis and Totem
systems, Horus and RMP) that these levels of performance were matched and exceeded by systems that
also provided reliability and ordering guarantees.

26.2 Systems That Implement Transactions
We end this chapter with a brief review of some of the major research efforts that have explored the use of
transactions in distributed settings. As in the case of our review of distributed communications systems,
we present these in alphabetical order.

26.2.1 Argus
The Argus system was an early leader among transactional computing systems that considered
transactions on abstract objects. Developed by a team lead by Liskov at MIT, the Argus system consists of
a programming language and an implementation that was used primarily as a research and
experimentation vehicle [LS83, LCJS87, LLSG90]. Many credit the idea of achieving distributed
reliability through transactions on distributed objects to this project, and it was a prolific source of
publications on all aspects of transactional computing, theoretical as well as practical, during the decade
or so of peak activity,

The basic Argus data type is theguardian: a software module that defines and implements some
form of persistent storage, using transactions to protect against concurrent access and to ensure
recoverability and persistence. Similar to a CORBA object, each guardian exports an interface that
defines the forms of access and operations possible on the object. Through these interfaces, Argus
programs (actors) invoke operations on the guarded data. Argus treats all such invocations as
transactions and also provides explicit transactional constructs in its programming language, including
commit and abort mechanisms, a concurrent execution construct, top-level transactions, and mechanisms
for exception handling.

The Argus system implements this model in a transparently distributed manner, with full nested
transactions and mechanisms to optimize the more costly aspects, such as nested transaction commit. A
sophisticatedorphan terminationprotocol is used to track down and abort orphaned subtransactions,
which can be created when the parent transaction that initiated some action fails and hence aborts, but

Kenneth P. Birman - Building Secure and Reliable Network Applications470

470

leaves active child transactions which may now be at risk of observing system states inconsistent with the
conditions under which the child transaction was spawned. For example, a parent transaction might store
a record in some object and then spawn a child subtransaction that will eventually read this record. If the
parent aborts and the orphaned child is permitted to continue executing, it may read the object in its prior
state, leading to seriously inconsistent or erroneous actions.

Although Argus never entered into widespread practical use, the system was extremely
influential. Not all aspects of system were successful, in the sense that many commercial transactional
systems have rejected distributed and nested transactions is requiring an infrastructure that is relatively
more complex, costly, and difficult to use than flat transactions in standard client-server architecture.
Other commercial products, however, have adopted parts of this model successfully. The principle of
issuing transactions to abstract data types remains debatable. As we saw above, transactional data types
can be very difficult to construct, and expert knowledge of the system will often be necessary to achieve
high performance. The Argus effort ended in the early 1990’s and the MIT group that built the system
began work on Thor, a second-generation technology in this area. The author is not sufficiently familiar
with Thor, however, to treat it within the current text.

26.2.2 Arjuna
Whereas Argus explores the idea of transactions on objects, Arjuna is a system that focuses on the use of
object-oriented techniques to customize a transactional system. Developed by Shrivistava at Newcastle,
Arjuna is an extensible and reconfigurable transactional system, in which the developer can replace a
standard object-oriented framework for transactional access to persistent objects with type-specific locking
or data management objects that exploit semantic knowledge of the application to achieve high
performance or special flexibility. The system was one of the first to focus on C++ as a programming
language for managing persistent data, an approach that later became widely popular. Recent
development of the system has explored the use of replication for increased availability during periods of
failure using a protocol calledNewtop; the underlying methodology used for this purpose draws on the
sorts of process group mechanisms discussed in previous chapters [MES93, EMS95].

26.2.3 Avalon
Avalon was a transactional system developed at Carnegie Mellon University by Herlihy and Wing during
the late 1980’s. The system is best known for its theoretical contributions. This project proposed the
linearizability model, which weakens serializability in object-oriented settings where full nested
serializability may excessively restrict concurrency [HW90]. As noted briefly earlier in the chapter,
linearizability has considerable appeal as a model potentially capable of integrating virtual synchrony with
serializability. A research project, work on Avalon ended in the early 1990’s.

26.2.4 Bayou
Bayou is a recent effort at Xerox Parc that uses transactions with weakened semantics in partially
connected settings, such as for the management of distributed calendars for mobile users who may need to
make appointments and schedule meetings or read electronic mail while in a disconnected or partially
connected environment [TTPD95]. The system provides weak serialization guarantees by allowing the
user to schedule meetings even when the full state of the calendar is inaccessible due to a partition. Later,
when communication is reestablished, such a transaction is completed with normal serializability
semantics.

Bayou makes the observation that transactional consistency may not guarantee that user-specific
consistency constraints will be satisfied. For example, if a meeting is scheduled while disconnected form
some of the key participants, it may later be discovered that the time conflicts with some other meeting.
Bayou provides mechanisms by which the designer can automate both the detection and resolution of

Chapter26: Other Distributed and Transactional Systems 471

471

these sorts of problems. In this particular example, Bayou will automatically attempt to shift one or the
other rather than requiring that a user become directly involved in resolving all such conflicts. The focus
of Bayou is very practical: rather than seeking extreme generality, the technology is designed to solve the
specific problems encountered in paperless offices with mobile employees. This domain-specific approach
permits Bayou to solve a number of distributed consistency problems that, in the most general sense, are
not even tractable. This reconfirms an emerging theme of the textbook: theoretical impossibility results
often need to be reexamined in specific contexts; what cannot be solved in the most general sense or
setting may be entirely tractable in a particular application where more is known about the semantics of
operations and data.

26.2.5 Camelot and Encina
This system was developed at Carnegie Mellon University in the late 1980’s, and was designed to provide
transactional access to user-developed data structures stored in files [Spe85]. The programming model
was one in which application programs perform RPC’s on servers. Such transactions become nested if
these servers are clients of other servers. The ultimate goal is to support transactional semantics for
applications that update persistent storage. Camelot introduced a variety of operating system
enhancements for maximizing the performance of such applications, and was eventually commercialized
in the form of the Encina product from Transarc Corporation. Subsequent to this transition, considerable
investment in Encina occurred at Transarc and the system is now one of the leaders in the market for
OLTP products. Encina provides both non-distributed and distributed transactions, nested transactions if
desired, a variety of tools for balancing load and increasing concurrency, prebuilt data structures for
common uses, and management tools for system administration. The distributed data mechanisms can
also be used to replicate information for high availability.

Industry analysts have commented that although many Encina users select the system in part for
its distributed and nested capabilities, in actual practice most applications of Encina make little or no use
of these features. If accurate, this observation raises interesting questions about the true characteristics of
the distributed transactional market. Unfortunately, however, the author is not aware of any systematic
study of this question.

Readers interested in Encina should also look at IBM’s CICS technology, perhaps the world’s
most widely used transactional system, and at the Tuxedo system, an OLTP product developed originally
at AT&T, which became an industry leader in the UNIX OLTP market. Similar to Encina, CICS and
Tuxedo provide powerful and complete environments for client-server styled applications that require
transactional guarantees, and Tuxedo includes real-time features required in telecommunications settings.
This text, however, has generally avoided treatment of commercial technologies with which the author is
not extremely familiar, and hence we will not discuss CICS or Tuxedo in any detail here.

Kenneth P. Birman - Building Secure and Reliable Network Applications472

472

Appendix: Problems

This text is intended for use by professionals or advanced students, and the material presented is at a level
for which simple problems are not entirely appropriate. Accordingly, most of the problems in this section
are intended as the basis for essay-style responses or for programming projects that might build upon the
technologies we have treated up to now. Some of these projects are best undertaken as group exercises for
a group of three or four students, others could be undertaken by individuals.

Professionals may find these problems interesting from a different perspective. Many of them are
the sorts of questions that one would want to ask about a proposed distributed solution, and hence could be
useful as a tool for individuals responsible for the development of a complex system. The author of this
text is sometimes asked to comment on proposed systems designs, and like many others, has found that it
can be difficult to know where to start when the time for questions finally arrives after a two-hour
technical presentation. A reasonable suggestion is to begin to pose simple questions aimed at exposing
the reliability properties and non-properties of the proposed system, the assumptions it makes, the
dependencies embodied in it, and the cost/benefit tradeoffs reflected in the architecture. Such questions
may not lead to a drastically changed system, but they do represent a path towards understanding the
mentality of the designer and the philosophical structure of the proposed system. Many of the questions
below are of the same nature that might be used in such a situation.

1. Write a program to experimentally characterize the packet loss rate, frequency of out-of-order
delivery, send-to-receivelatency, and byte throughput of the UDP and TCP transport protocols
available on your computer system. Evaluate both the local case (source and destination on the same
machine) and the remote case (source and destination on different machines).

2. We discussed the concept of a “broadcast storm” in conjunction with ethernet technologies. Devise
an experiment that will permit you to quantify the conditions under which such a storm might arise
on the equipment in your laboratory. Use your findings to arrive at a set of recommendations that
should, if followed, minimize the likelihood of a broadcast storm even in applications that make
heavy use of broadcast.

3. Devise a method for rapidly detecting the failure of a process on a remote machine and implement it.
How rapidly can your solution detect a failure without risk of inaccuracy. Your work should consider
one or more of the following cases: program that runs a protocol of your own devising implemented
over UDP, program that is monitored by a parent program, program on a machine that fails or
becomes partitioned from the network. For each case, you may use any system calls or standard
communication protocols that are available to you.

4. Suppose that it is your goal to develop a network “radio” service that transmits identical data to a
large set of listeners, and that you need to pick the best communication transport protocol for this
purpose. Evaluate and compare the UDP, TCP and IP multicast transport protocols on your computer
(you may omit IP multicast if this is not available in your testing environment). Your evaluation
should look at throughput and latency (focusing on variability of these as a function of throughput
presented to the transport). Can you characterize a range of performance within which one protocol
is superior to the others in terms of loss rate, achievable throughput, and consistently low latency?
Your results will take the form of graphs showing how these attributes scale with increasing numbers
of destinations.

Chapter26: Other Distributed and Transactional Systems 473

473

5. Develop a simple ping-pong program that bounces a UDP packet back and forth between a source and
destination machine. One would expect such a program to give extremely consistent latency
measurements when run on idle workstations. In practice however, your test is likely to reveal
considerable variation in latency. Track down the causes of these variations and suggest strategies for
developing applications with highly predictable and stable performance properties.

6. One challenge to timing events in a distributed system is that the workstations in that system may be
running some form of clock synchronization algorithm that is adjusting clock values even as your test
runs, leading to potentially confusing measurements. From product literature for the computers in
your environment or by running a suitable experiment, determine the extent to which this
phenomenon occurs in your testing environment. Can you propose ways of measuring performance
that are immune to distortions of this nature?

7. Suppose that you wish to develop atopology servicefor a local area network, usingonly two kinds of
information as “input” with which to deduce the network topology: IP addresses for machines, and
measured point-to-point latency (for lightly loaded conditions, measured to a high degree of
accuracy). How practical would it be to solve this problem? Ideally, a topology service should be able
to produce a map showing how your local area network is interconnected, including bridges,
individual ethernet segments, and so forth.

8. (Moderately difficult). If you concluded that you should be able to do a good job on the previous
problem, implement such a topology service using your local area network. What practical problems
limit the accuracy of your solution? What forms of use could you imagine for your service?

9. In Chapter 5, we saw that streams protocols could fail in inconsistent ways. Develop an application
that demonstrates this problem by connecting two programs with multiple TCP streams, running
them on multiple platforms, and provoking a failure in which some of the streams break and some
remain connected. To do this test you may need to briefly disconnect one of the workstations from
the network, hence you should obtain the permission of your network administration staff.

10. Propose a method for passing pointers to servers in an RPC environment, assuming that the source
and destination programs are coded in C++ and that pointers are an abstract data type. What costs
would a user of your scheme incur? Can you recommend programming styles or new programming
constructs to minimize the impact of these costs on the running application? Contrast your solutions
with those in Culler and Von Eicken’s Split C programming environment.

11. (Requires sophistication in C++). Suppose that a CORBA implementation of the UNIX compression
and decompression utilities is needed, and you have been asked to build it. Your utility needs to
operate on arbitrary C++ objects of varied types. The types are not known in advance. Some of these
objects will have acompress_selfand adecompress_selfinterface but others will not. How could this
problem be solved?

12. Can a CORBA application see a difference between CORBA remote invocations implemented directly
over UDP and CORBA remote invocations implemented over a TCP-style reliable stream?

13. Suppose one were building a CORBA-based object oriented system for very long lived applications.
The system needs to remaincontinuously operationalfor years at a time. Yet it is also expected that
it will sometimes be necessary to upgrade software components of the system. Could such a problem
be solved in software? That is, can a general purpose “upgrade” mechanism be designed as part of an
application so that objects can be dynamically upgraded? To make this concrete, you can focus on a
system ofk objects,O1, Ok and consider the case where we want to replaceOi with Oi’ while the
remaining objects remain unchanged. Express your solution by describing a proposed upgrade
mechanism and the constraints it imposes on applications that use it.

14. Suppose that a CORBA system is designed to cache information at the clients of a server. The clients
would be bound toclient objectswhich would handle the interaction with the remote server. Now,
consider the case where the data being cached can be dynamically updated on the server. What

Kenneth P. Birman - Building Secure and Reliable Network Applications474

474

options exist for maintaining the coherency of the cached data within the clients? What practical
problems might need to be overcome in order to solve such a problem reliably? Does the possibility
that the clients, the server, or the communication system might fail complicate your solution?

15. In CORBA we saw that it is possible to trap error conditions, such as server failure. Presumably, one
would want to standardize the handling of such conditions. Suppose that you are designing a general
purpose mechanism to handle “fail over” whereby a client connected to a serverS will automatically
and transparently rebind itself to serverS’ in the event thatS fails. Under what conditions would this
be easy? How would you deal with the possibility that the state ofS’ might not be identical to that of
S? Could one detect such a problem and recover from it transparently?

16. Propose a set of extensions to the C++ IDL used in CORBA for the purpose of specifying reliability
properties of a distributed server, such as fault-tolerance, real-time guarantees, or security.

17. Discuss options for handling the case where a transactional CORBA application performs operations
on a non-transactional CORBA server.

18. (Moderately difficult; term project for a group). Build a CORBA-based web server and browser.
What benefits or disadvantages might result from using a replication technology such as Orbix+Isis to
replicate the server state and load-share clients among the servers in a process group?
Experimentally test your expectations.

19. Each of the following is a potential reliability exposure for CORBA-based applications. Discuss the
nature of the problem and the possible remedies. Do you feel that any of these is a “show stopper” for
a typical large potential user, such as a bank with world-wide operations or a telecommunications
company managing millions of lines of code and application programs?

• Operator overloading and “unexpected consequences” of simple operations, likea := b

• Exception handling when communicating with remote objects

• The need to use CORBA “throughout” the distributed environment in order to benefit from
the technology in a system-wide manner. Here, the implication might be that large amounts
of old or commercially obtained code (some of which may not be well documented or even
easily recompiled) may have to be modified to support CORBA IDL-style interface
declarations and remotely accessible operations.

20. Suppose that a CORBA rebinding mechanism is to be used to automatically rebind CORBA
applications to a working server if the server being used fails. What constraints on the application
would make this a “safe” thing to do without notifying the application when rebinding occurs?
Would this form of complete transparency make sense, or are the constraints too severe to use such an
approach in practice?

21. A protocol that introduces tolerance to failures will also make the application that uses it more
complex than one that makes no attempt to tolerate failures. Presumably, this complexity carries with
it a cost in decreased application reliability. Discuss the pros and cons of building systems to be
robust, in light of the likelihood that doing so will increase the cost of developing the application, the
complexity of the resulting system, and the challenge of testing it. Can you suggest a principled way
to reach a decision on the appropriateness of hardening a system to provide a desired property?

22. Suppose that you are using a conventional client-server application for a banking environment, and
the bank requires that there beabsolutely no riskof authorizing a client to withdraw funds beyond the
limit of the account. Considering the possibility that the client systems may sometimes crash and
need to be repaired before they restart, what are the practical implications of such a policy? Can you
suggest other policies that might be less irritating to the customer while bounding the risk to the
bank?

Chapter26: Other Distributed and Transactional Systems 475

475

23. Suppose that you are developing a medical computing system using a client-server architecture, in
which the client systems control the infusion of medication directly into an IV line to the patient.
Physicians will sometimes change medication orders by interacting with the server systems. It is
absolutely imperativethat the physician be confident that an order he or she has given will be carried
out, or that an alarm will be sounded if there isany uncertainty whatsoeverabout the state of the
system. Provide an analysis of possible failure modes (client system crashes, server crashes) and the
way that they should be handled to satisfy this reliability goal.Assume that the software used in the
system is correct and that the only failures experienced are due to hardware failures of the machines
on which the client and server systems run, or communication failures in the network.

24. Consider an air-traffic control system in which each flight is under the control of a specific individual
at any given point in time. Suppose that the system takes the form of a collection of client-server
distributed networks, one for each of a number of air traffic control centers. Design a protocol for
handing off a flight from one controller to another, considering first the case of a single center and
then the case of a multicenter system. Now, analyze the possible failure modes of your protocol under
the assumption that client systems, server systems, and the communications network may be subject
to failures.

25. (Term project) Using the Web, locate the specifications of the web server protocol (HTTP) over the
network. Make a list of thecritical dependenciesof a typical web browser application. That is, list
the technologies and servers that the browser “trusts” in its normal mode of operation. Now, suppose
that you were concerned with possiblepunningattacks, in which a trusted server is replaced with a
non-trustworthy server that mimics the behavior of the true one but in fact sets out to compromise the
user. What methods could be used to reduce the exposure of your browsers to such attacks?

26. (Term project; team of two or more) Copy one of the public-domain web server sources to your
system. In this textbook we have explored technologies for increasing distributed systems reliability
using replication, fault-tolerance in servers, security tools, and coherent caching. Using protocols of
your own, or Cornell’s public Horus distribution, extend the web server to implement one or more of
these features. Evaluate the result of your effort by comparing the before and after behavior of the
server in the areas that you modified.

27. (Term project; team of two or more) Design a wide-area service for maintaining directory-style
information in very large environments. Such systems implement a mapping fromnameto valuefor
potentially large numbers of names. Implement your architecture using existing distributing
computing tools. Now evaluate the quality of your solution in terms of performance, scaling, and
reliability attributes. To what degree can your system be “trusted” in critical settings, and what
technology dependencies does it have? Note: the X.500 standard specifies a directory service
interface and might be a good basis for your design.

28. Use Horus to implement layers based on two or more of the best knownabcastordering protocols.
Compare the performance of the resulting implementations as a function of load presented and the
number of processes in the group receiving the message.

29. Suppose that a Horus protocol stack implementing Cristian’s real-time atomic broadcast protocol will
be used side-by-side with one implementing virtual synchronous process groups withabcast,both in
the same application. To what degree might inconsistency be visible to the application when group
membership changes because of failures of some group members? Can you suggest ways that the two
protocol stacks might be “linked” to limit the time period during which such inconsistencies can
occur? (Hard problem: implement your proposal).

30. Some authors consider RPC to be an extremely successful protocol, because it is highly transparent,
reasonably robust, and can be optimized to run at very high speed so high that if an application
wants stronger guarantees, it makes more sense to layer a protocol over a lower-level RPC facility
than to build it into the operating system at potentially high cost. Discuss the pros and cons of this
point of view. In the best possible world, how would you design a communication subsystem?

Kenneth P. Birman - Building Secure and Reliable Network Applications476

476

31. Research theend to end argument.Does the goal of building reliable distributed systems bring
aspects of this argument into question? Explain.

32. Review flow control options for multicast environments in which a small number of data sources send
steady streams of data to large numbers of data sinks over hardware that supports a highly (but not
perfectly) reliable multicast mechanism. How does the requirement that data be reliably delivered to
all data sinks change the problem?

33. A protocol is said to be “acky” if most packets area acknowledged immediately upon reception.
Discuss some of the pros and cons of this property. Suppose that a streams protocol could be switched
in and out of an acky mode. Under what conditions would it be advisable to operate that protocol
with frequent acks?

34. Suppose that a streaming style of multi-destination information service, such as the one in Problem
32, is to be used in a setting where a small subset of the application programs can be unresponsive for
periods of time. A good example of such a setting would be a network in which the client systems
run on PC’s, because the most popular PC operating systems allow applications to preempt the CPU
and inhibit interrupts, a behavior that can delay the system from responding to incoming messages in
a timely manner. What options can you propose for ensuring that data delivery will be reliable and
ordered in all cases but that small numbers of briefly unresponsive machines will not impact
performance for the much larger number of highly responsive machines?

35. Several of the operating system technologies we reviewed gained performance by eliminating copying
on the communication path between the communications device and the application that generates or
consumes data. Suppose that you were building a large-scale distributed system for video-playback of
short video files on demand. For example, such a system might be used in a large bank to provide
brokers and traders with current projections for the markets and trading instruments tracked by the
bank. What practical limits can you identify that might make it hard to use “zero copy” playback
mechanisms between the file servers on which these video snippets are stored and the end-user who
will see the result? Assume that the system is intended to work in a very general heterogeneous
environment shared with many other applications.

36. Consider the Group Membership Protocol of Section 13.9. Suppose that this protocol was
implemented in the address space of an application program, and that the application program
contained a bug causing it to infrequently but randomly corrupt a few cells of memory. To what
degree would this render the assumptions underlying the GMS protocol incorrect? What behaviors
might result? Can you suggest practical countermeasures that would overcome such a problem if it
was indeed very infrequent?

37. (Difficult) Again, consider the Group Membership Protocol of Section 13.9. This protocol has the
property that all participating processes observeexactly the same sequenceof membership views.
The coordinator can add unlimited numbers of processes in each round, and can drop any minority of
the members each time it updates the system membership view; in both cases, the system is provably
immune from partitioning. Would this protocol be simplified by eliminating the property that
processes must observe the same view sequence? (Hint: try to design a protocol that offers this
“weaker” behavior). What about the partition freedom property: would the protocol be simpler if this
was not required?

38. Suppose that the processes in a process group are managing replicated data. Due to a lingering bug,
it is known that although the group seems to work well for periods of hours or even days, over very
long periods of time the replicated data can become slightly corrupted so that different group
members have different values. Discuss the pros and cons of introducing a “stabilization” mechanism
whereby the members would periodically exchange values and, if an inconsistency is developed,
arbitrarily switch to the most common value or to the value of an agreed upon “leader.” What issues
might this raise in the application program, and how might they be addressed?

Chapter26: Other Distributed and Transactional Systems 477

477

39. Implement a very simple banking application supporting accounts into which money can be deposited
and permitting withdrawals. Have your application support a form ofdisconnected operationbased
on the two-tiered architecture, in which each branch system uses its own set of process groups and
maintains information for local accounts. Your application should simulate partitioning failures
through a command interface. If branches cache information about remote accounts, what options are
there for permitting a client to withdraw funds while the local branch at which the account really
resides is unavailable? Consider both the need for safety by the bank and the need for availability, if
possible, for the user. For example, it would be silly to refuse a user $250 from an account that has
thousands of dollars in it moments earlier when connections were still working! Can you propose a
policy that is always safe for the bank, and yet also allows remote withdrawals during partition
failures?

40. Design a protocol by which a process group implemented using Horus can solve the asynchronous
consensus problem. Assume that the environment is one in which Horus can be used, that processes
only fail by crashing, and the network only fails by losing messages with some low frequency. Your
processes should be assumed to start with a variableinputi that, for each processpi is initially 0 or 1.
After deciding, each process should set a variableoutputi to its decision value. The solution should be
such that the processes all reach the same decision valuev, and this value is the same as at least one
of the inputs.

41. In regard to your solution to Problem 40, discuss the sense in which your solution “solves the
asynchronous consensus problem”. Would Horus be guaranteed to make progress under the stated
conditions? Do these conditions correspond to the conditions of the asynchronous model used in the
FLP and Chandra/Toueg results?

42. Can the virtual synchrony protocols of a system like Horus be said to guarantee safety and liveness in
the general asynchronous model of FLP or the Chandra/Toueg results?

43. Suppose that you were responsible for porting the Horus system to a cluster-style processor known to
consist of between 16 and 32 identical high speed computing nodes interconnected by a high speed
ATM-style communications bus, and with a reliable mechanism for detecting hardware failures of
nodes within a few microseconds after such events occur. Your goal in undertaking this port is to
implement a “cluster API” providing standard cluster-oriented operating system services to
applications developers. How would you consider changing Horus itself to adapt it better to this
environment? Would the Horus Common Protocol Interface (HCPI) be a suitable cluster API, or
would you implement some other layer over Horus; if the latter, what would your API include?
Assume that an important goal is that the cluster be highly available, easily serviced and upgraded,
and that it be possible to support highly available application programs with relative ease.

44. Can the virtual synchrony protocols of a system like Horus be said to guarantee safety and liveness in
a cluster-style computer architecture such as the one described in Problem 43?

45. The Horus “stability” layer operates as follows. Each message is given a unique id, and is transmitted
and delivered using the stack selected by the user. The stability layer expects the processes that
receive the message to issue a downcall when they consider the message “locally stable.” This
information is relayed within the group, and each group member can obtain a matrix giving the
stabilization status of pending messages originated within the group as needed. Could the stability
layer be used in a way that would add the dynamic uniformity guarantee to messages sent in a group?

46. Suppose that a process group is created in which three member processes each implement different
algorithms for performing the same computation (so-called “implementation redundancy”). You may
assume that these processes interact with the external environmentonly using message send and
receive primitives.Design a wrapper that compares the actions of the processes, producing a single
output if two out of the three or all three processes agree on the action to take for a given input, and
signaling an exception if all three processes produce different outputs for a given input. Implement

Kenneth P. Birman - Building Secure and Reliable Network Applications478

478

your solution using Horus and demonstrate it for a set of fake processes that usually copy their input
to their output, but with small probability make a random change to their output before sending it.

47. A set of processes in a group monitor devices in the external environment, detectingdevice service
requeststo which they respond in a load-balanced manner. The best way to handle such requests
depends upon the frequency with which they occur. Consider the following two extremes: requests
that require long computations to handle but that occur relatively infrequently, and requests that
require very short computations to handle but that occur frequently on the time scale with which
communication is done in the system.Assuming that the processes in a process group have identical
capabilities (any can respond to any request), how would you solve this problem in the two cases?

48. Design a locking protocol for a virtually synchronous process group. Your protocol should allow a
group member torequesta lock, specifying the “name” of the object to be locked (the name can be an
integer to simplify the problem), and toreleasea lock that it holds. What issues arise if a process
holding a lock fails? Recommend a good, general way of dealing with this case, and then give a
distributed algorithm by which the group members can implement therequestandreleaseinterfaces
as well as your solution to the broken lock case.

49. (Suggested by Jim Pierce) Suppose that we want to implement a system in whichn process groups
will be superimposed much like the petals of a flower. Some small set ofk processes will belong to
all n groups, and each group will have additional members that belong only to it. The problem now
arises of how to handlejoin operations for the processes that belong to the overlapping region, and in
particular how to deal with state transfers to such a process.Assume that the group states are only
updated by “petal” processes that do not belong to the overlap region. Now, the virtually synchronous
state transfer mechanisms we discussed in Section 15.3.2 would operate on a group by group basis,
but it may be that the states of the processes in the overlap region are a mixture of information
arriving from all of the petal processes. For such cases one would want to do asinglestate transfer to
the joining process reflecting thejoint state of the overlapped groups. Propose a fault-tolerant
protocol for joining the overlap region and transferring state to a joining process that will satisfy this
objective.

50. Discuss the pros and cons of using aninhibitory protocol to test for a condition along a consistent cut
in a process group. Describe a problem or scenario where such a solution might be appropriate, and
one where it would not be.

Figure 26-1: Overlapping process groups for the case of Problem 49. In this example there is only a single process
in the overlap region; the problem concerns state transfer if we wanted to add another process to this region.
Assume that the state of the processes in the overlap region reflects messages sent to it by the outer processes that
belong to the “petals” but not the overlap area. Additionally, assume that this state is not cleanly decomposed
group by group and hence that is necessary to implement a single state transfer for the entire structure.

Chapter26: Other Distributed and Transactional Systems 479

479

51. Suppose that the processes in a distributed system share a set of resources, which they lock prior to
using and then unlock when finished. If these processes belong to a process group, how could
deadlock detection be done within that group? Design your deadlock detection algorithm to be
completely idle (with no background communication costs) when no deadlocks are suspected; the
algorithm should be one that can be launched when a time-out in a waiting process suggests that a
deadlock may have occurred. For bookkeeping purposes, you may assume that a process that is
waiting for a resource calls the local procedurewaiting_for(resource),that a process that holds
exclusive access to a resource calls the procedureholding(resource),and that a process that releases a
resource callsrelease(resource),where the resources are identified by integers. Each process thus
maintains a local database of its “resource status”. Notice that you are not being asked to implement
the actual mutual exclusion algorithm here: your goal is to devise a protocol that can interact with the
processes in the system as needed, to accurately detect deadlocks. Prove that your protocol detects
deadlocks if and only if they are present.

52. Suppose that you wish to monitor a distributed system for an overload condition, defined as follows.
The system state is considered normal if no more than 1/3 of the processes signal that they are
overloaded, heavily loaded if more than 1/3 but less than 2/3 of the processes signal that they are
overloaded, and seriously overloaded if 2/3 or more processes are overloaded. Assume further that
the loading condition does not impact communication performance. If the processes belong to a
process group, would it be sufficient to simply send a multicast to all members asking their states, and
then to compute the state of the system from the vector of replies so obtained? What issues would
such an approach raise, and under what conditions would the result be correct?

53. (Joseph and Schmuck). What would be the best way to implement apredicate addressing
communication primitive for use within virtually synchronous process groups (assume that the group
primitives are already implemented and available for you). Such a primitive sends a message toall
the processes in the group for which some acceptance criteria holdsand does soalong a consistent
cut. You may assume that each process contains a predicateaccept()that, at the time it is invoked,
returnstrue if the process wishes to accept a copy of the message andfalseif not. (Hint: it is useful to
consider two separate cases here: one in which the criteria that determine acceptance change “slowly”
and one in which they change “rapidly”, relative to the speed of multicasting in the system).

54. In discussing the notion of wrappers, we developed the example of aworld wide memorysystem, in
which shared memory primitives are redefined to permit programs to share access to very large scale
distributed memories maintained over an ATM-style network. Suppose that you were implementing
such a system using Horus over the Unet system on a wide-area ATM, and that you knew the
expected application to be as an in-memory server for web pages. These pages will in some cases be
updated rapidly (at video speeds) and for that purpose your browser will have the ability to memory
map video imageobjects directly to the display of the viewing computer. What special design
considerations are implied by this intended application? Recall that the memory architecture we
developed had a notion ofprefetchingbuilt into it, much like a traditional virtual memory subsystem
would have. How should prefetching be implemented in your mapped memory system.

55. (Difficult; team programming project). Implement the architecture you proposed in Problem 54,
focusing however on the case of side-by-side computers with a high speed link between them.

56. (Difficult, research topic). Implement a world-wide memory system such as the one discussed in
Problem 54 and develop a detailed justification and evaluation of the architecture you used.

57. (Schneider). We discussed two notions of clock synchronization:accuracyandprecision. Consider
the case of aircraft that operate underfree flight rules, where each pilot makes routing decisions on
behalf of his (her) plane, but using a shared trajectory “mapping” system. Suppose that you faced a
fundamental tradeoff between using clocks with high accuracy for such a mapping system, or clocks
with high precision. Which would you favor, and why? Would it make sense to implement two such
solutions, “side by side”?

Kenneth P. Birman - Building Secure and Reliable Network Applications480

480

58. Suppose that a-posteriori clock synchronization using GPS receivers becomes a world-wide standard
in the coming decade. The use of temporal information now represents a form of communication
channel that can be used in indirect ways. For example, processp, executing in Lisbon, can wait
until processq performs a desired operation in New York (or fails) using timer events. Interestingly,
such an approach communicates “information” faster than messages could possibly have done so.
What issues do these sorts of hidden information channels raise in regard to the protocols we explored
in the textbook? Could temporal information create hidden causality relationships?

59. Show how tightly synchronized real-time clocks can be made to reflect causality in the manner of
Lamport’s logical clocks. Would such a clock be preferable in some ways to a purely logical clock?
Explain, giving concrete examples to illustrate your points.

60. (Difficult) In discussion of the CASD protocols, we saw that if such protocols are used to replicate the
state of a distributed system, a mechanism would be needed to overcome inconsistencies that can arise
when a process is technically considered “incorrect” according to the definitions of the protocols, and
hence does not benefit from the normal guarantees of atomicity and ordering seen by “correct”
processes. In an IBM technical report, Skeen and Cristian once suggested that the CASD protocols
could be used in support of an abstraction called∆-common storage;the basic idea being to
implement a distributed shared memory which can be read by any process and is updated using the
CASD style of broadcast protocol. Such a distributed shared memory would reflect an update within
∆ time units after it is initiated, plus or minus a clock skew factor ofε. How might the inconsistency
issue of the CASD protocol be visible in a∆-common storage system? Propose a method for detecting
and eliminating such inconsistencies. (Note: this issue was not considered in the technical report).

61. (Marzullo and Sabel) Suppose that you wish to monitor a distributed system to detect situations in
which a logical predicate defined over the states of the member processes holds. For example, the
predicate may state that processpi holds a token and that processpj is waiting to obtain the token.
Under the assumption that the states in question change very slowly in comparison to the
communication speeds of the system, design a solution to this problem. You may assume that there is
a function,sample_local_state(),that can be executed in each process to sample those aspects of its
local state referenced in the query, and that when the local states have been assembled in one place, a
function evaluatecan determine if the predicate holds or not. Now, discuss the modifications needed
if the rate of state changes is increased enough so that the state can change in the same order of time
as your protocol needs to run. How is your solution affected if you are required to detectevery state
in which the predicate holds, as opposed to just detectingstates in which the predicate happens to
hold when the protocol is executed.Demonstrate that your protocol cannot falsely detect satisfying
states.

62. There is increasing interest in building small multiprocessor systems for use in inexpensive
communications satellites. Such systems might look similar to a rack containing a small number of
conventional workstations or PC’s, running software that handles such tasks as maintaining the
proper orientation of the satellite by adjusting its position periodically, turning on and off the control
circuits that relay incoming messages to outgoing channels, and handle other aspects of satellite
function. Now, suppose that it is possible to put highly redundant memory modules on the satellite to
protect extremely critical regions of memory, but costly to do so. However, unprotected memory is
likely to experience a low level of corruption arising from the harsh conditions in space, such as
cosmic rays and temperature extremes. What sorts of programming considerations would such a
model raise? Propose a software architecture that minimizes the need for redundant memory, but also
minimizes the risk that a satellite will be completely lost (for example, a satellite might be lost if it
erroneously fires its positioning rockets and thereby exhausts its supply of fuel). You may assume
that the actual rate of corruption of memory is low, but not completely insignificant, and that program
instructions are as likely as data to be corrupted. Assume that the extremely reliable memories,
however, never experience corruption.

Chapter26: Other Distributed and Transactional Systems 481

481

63. Continuing on the topic of Problem 62, there is debate concerning the best message routing
architecture for these sorts of satellite systems. In one approach, the satellites maintain a routing
network among themselves; a relatively small number of ground stations interact with whatever
satellite happens to be over them at a given time, and control and data messages are then forwarded
satellite to satellite until they reach the destination. In a second approach, satellites communicate
only with ground stations and mobile transmitter/receiver units: such satellites require a larger
number of ground systems but do not depend upon a routing transport protocol that could be a source
of unreliability. Considering the conditions cited in Problem 62 and your responses, what would be
best design for a satellite-to-satellite routing network? Can you suggest a scientifically sound way to
make the design tradeoff between this approach and the one that uses a larger number of potentially
costly ground-stations?

64. We noted that the theoretical community considers a problem to be “impossible” in a given
environment if, for all proposed solutions to the problem, there exists at least one behavior consistent
with the environment that would prevent the proposed solution from terminating, or would lead to an
incorrect outcome. Later we considered probabilistic protocols, which may be able to guarantee
behaviors to very high levels of reliability higher, in practice, than the reliability of the computers
on which the solutions run. Suggest a definition ofimpossiblethat might reconcile these two
perspectives on computing systems.

65. If a message must be taked hops to reach its destination and the worst-case delay for a single link is
δ, it is common to assume that the worst-case transit time for the network will be d*δ. However, a
real link will typically exhibit a distribution of latencies, with the vast majority clustered near some
minimum latencyδmin and only a very small percentage taking as long asδmax to traverse the link.
Under the assumption that the links of a routed network provide statistically independent and
identical behavior, derive the distribution of expected latencies for a message that must traversed
links of a network. You may assume that the distribution of delays has a “convenient” form for your
analysis.

66. Suppose that a security architecture supportsrevocationof permissions. Thus: XYZ was permitted to
access resource ABC, but now has finished the task for which permission was granted and we want to
disable future accesses. Would it be safe to use a remote procedure call from the authentication server
to the resource manager for resource ABC to accomplish this revocation? Explain.

67. (Ethical problem). Suppose that a medical system does something that a human would not be able to
do, such as continuously monitoring the vital signs of a patient and continuously adjusting some form
of medication or treatment in response to the measured values. Now, imagine that we want to attach
this device to a distributed system so that physicians and nurses elsewhere in the hospital can
remotely monitor the behavior of the medical system, and so that they can change the rules that
control its actions if necessary (for example by changing the dosage of a drug). In this text we have
encountered many practical limits to security and reliability. Identify some of the likely limits on the
reliability of a technology such as this. What are the ethical issues that need to be balanced in
deciding whether or not to build such a system?

68. (Ethical problem). Anethical theoryis a set of governing principles or rules for resolving ethical
conflicts such as the one in the previous problem. For example, an ethical theory might stipulate that
decisions should be made to favor the “maximum benefit for the greatest number of individuals.” A
theory governing the deployment of technology could stipulate that “machines must not replace
humans if the resulting system is at risk of making erroneous decisions that a human would have
avoided.” Notice that these particular theories could be in conflict, for example if a technology that
would normally be beneficial sometimes has life-threatening complications. Discuss the issues that
arise in developing an ethical theory for the introduction of technologies in life- or safety-critical
settings, and, if possible, propose such a theory. What tradeoffs are required, and how would you
justify them?

Kenneth P. Birman - Building Secure and Reliable Network Applications482

482

Bibliography

[AAD93] O. Amir, Yair Amir and Danny Dolev. A Highly Available Application in the Transis
Environment. InProceedings of the Workshop on Hardware and Software Architectures for Fault-
Tolerance.Springer-Verlag Lecture Notes in Computer Science 774 (June 1993), 125139.

[ABHN91] Mustaque Ahamad, James Burns, Phillip Hutto and Gil Neiger. Causal Memory. Technical
Report, College of Computing, Georgia Institute of Technology. July 1991

[ABLL91] Tom Anderson, Brian Bershad, Ed Lazowska and Hank Levy. Scheduler Activations:
Effective Kernel Support for the User-Leve; Management of Parallelism. InProceedings of the 13th ACM
Symposium on Operating Systems Principles(Oct. 1991), 95109.

[ABM87] Noga Alon, Amnon Barak and Udi Manber. On Disseminating Information Reliably Without
Broadcasting. Proceedings of the 7th International Conference on Distributed Computing Systems
(Berlin, Sept. 1987), 7481. IEEE Computer Society Press.

[ACP95] Tom E. Anderson, David E. Culler and David A. Patterson. A Case for NOW (Networks of
Workstations).IEEE Micro, Feb. 1995.

[ACBM95] Emmanuelle Anceaume, Bernadette Charron-Bost, Pascale Minet and Sam Toueg. On the
Formal Specification of Group Membership Services. Technical Report 95-1534, Dept. of Computer
Science, Cornell University. Aug. 1995.

[ADKM92a] Yair Amir, Danny Dolev, Shlomo Kramer, Dalia Malki. Transis: A Communication
Subsystem for High Availability. InProceedings of the 22nd Symposium on Fault-Tolerant Computing
Systems;(Boston, MA; July 1992). IEEE. 7684

[ADKM92b] Yair Amir, Danny Dolev, Shlomo Kramer, Dalia Malki. Membership Algorithms in
Broadcast Domains. InProceedings of the 6th WDAG;(Isreal, 1992). Springer Verlag Lecture Notes in
Computer Science 647, 292312.

[ADNP95] Tom Anderson, Michael Dahlin,et al. Serverless Network File Systems. InProceedings of
the 15th Symposium on Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). ACM.
(109126). Also appearing in the special issue ofACM Transactions on Computing Systems,13:1 (Feb.
1996).

[AE84] Baruch Awerbuch and Shimon Even. Efficient and Reliable Broadcast is Achievable in an
Eventually Connected Network.Proceedings of the 3rd ACM Symposium on Principles of Distributed
Computing(Vancouver, CA; 1984), 278281.

[AGHR89] Francois Armand, Michel Gien, Frederic Herrmann and Marc Rozier. Revolution 89, o
Distributing UNIX Brings it Back to Its Original Virtues. Technical Report CS/TR-89-36-1, Chorus
Systemes, Paris, France. Aug. 1989.

[AJ95] Jo Asplin and Dag Johansen. Performance Experiments with the StormView Distributed Parallel
Volume Renderer. Computer Science Technical Report 95-22, June 1995, University of Tromso.

[AK93] R. Alonso and F. Korth. Database Issues in Nomadic Computing.Proceedings ACM SIGMOD
International Conference on Management of Data.(Washington D.C; May 1993), 388392.

[Ami95] Yair Amir. Replication Using Group Communication Over a Partitioned Network. PhD thesis,
Hebrew University of Jerusalem, 1995.

Chapter26: Other Distributed and Transactional Systems 483

483

[AM95] Lorenzo Alvisi and Keith Marzullo. Message Logging: Pressimistic, Causal and Optimistic.
Proceedings 15th IEEE Conference on Distributed Computing Systems(Vancouver, CA; 1995). 229-236.

[AMMA93] Yair Amir, Louise Moser, P.M. Melliar-Smith, et. al. The Totem Single-Ring Ordering and
Membership Protocol. InACM Transactions on Computer Systems,to appear.

[And91] Andrews, Gregory R. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, Redwood City, CA, 1991.

[ANSA89] The Advanced Networked Systems Architecture: An Engineer’s Introduction to the
Architecture. Architecture Projects Management Limited TR-03-02, November 89.

[ANSA91a] The Advanced Networked Systems Architecture: A System Designer’s Introduction to the
Architecture. Architecture Projects Management Limited RC-253-00, April 1991.

[ANSA91b] The Advanced Networked Systems Architecture: An Application Programmer’s Introduction
to the Architecture. Architecture Projects Management Limited TR-017-00, November 1991.

[AP93] Mark Abbott and Larry Peterson. Increasing Network Throughput by Integrating Protocol Layers.
IEEE/ACM Transactions on Networking1:5 (Oct. 1993), 600610.

[Aga94] D. A. Agarwal. Totem: A Reliable Ordered Delivery Protocol for Interconnected Local Area
Networks. PhD Thesis, U.C. Santa Barbara Dept. of Electrical and Computer Engineering, 1994.

[Bac90] Thomas C. Bacheet. al. The Intelligent Monitoring System.Bulletin of the Seismological
Society of America,80:6 (Dec. 1990), 5977.

[Bai75] Normal Bailey. The Mathematical Theory of Epidemic Diseases.Charles Griffen and Company,
London. Second edition, 1975.

[Bar81] Joel F. Bartlett. A NonStop Kernel. InProceedings of the 8th ACM Symposium on Operating
Systems Principles;(Pacific Grove, CA; Dec. 1981). ACM. 2229.

[BALL89] Brian Bershad, Tom Anderson, Ed Lazowska and Hank Levy. Lightweight Remote Procedure
Call. In Proceedings of the 11th ACM Symposium on Operating Systems Principles(Litchfield Springs,
AX; Dec. 1989). 102113. AlsoACM Transactions on Computer Systems8:1 (Feb. 1990), 3755.

[BAN89] Michael Burrows, Martin Abadi, Roger Needham. A Logic of Authentication. InProceedings
of the 11th ACM Symposium on Operating Systems Principles(Litchfield Springs, AX; Dec. 1989).
ACM. 113.

[BBG83] Anita Borg, J. Baumbach and S. Glazer. A Message System for Supporting Fault-Tolerance.
In Proceedings 9th Symposium on Operating Systems Principles(Bretton Woods, NH; Oct. 1993).
9099.

[BBG96] Ozalp Babaoglu, Alberto Bartoli, Gianluco Dini. Enriched View Synchrony: A Paradigm for
Programming Dependable Applications in Partitionable Asynchronous Distributed Systems. Technical
Report, Dept. of Computer Science, University of Bologna. May 1996.

[BBGH85] Anita Borg,et. al. Fault Tolerance Under UNIX.ACM Transactions on Computer Systems.
3:1 (Feb. 1985). 123.

[BBMS93] N. Budhiraja,et. al. The Primary-Backup Approach. In S.J. Mullender, editor.Distributed
Systems (second edition).ACM-Press (Addison-Wesley), 1993.

[BCLF94] T. Berners-Lee,et. al. The World-Wide Web. Communications of the ACM37:8 (August
1994), 7682.

Kenneth P. Birman - Building Secure and Reliable Network Applications484

484

[BCLF95] T. Berners-Lee,et. al. Hypertext Transfer Protocol HTTP 1.0.IETF HTTP Working Group
Draft 02 (Best Current Practice), Aug. 1994.

[BCGP92] T. Berners-Lee, . Calliau, J-F. Groff and B. Pollermann. World-Wide Web: The Information
Universe. Electronic Networking Research, Applications and Policy2:1 (1992), 5258.

[BD85] Ozalp Babaoglu and Rogerio Drummond. The Streets of Byzantium: Network Architectures for
Fast, Reliable Broadcasts.IEEE Transactions on Software Engineering.11:6 (June 1985), 546554.

[BD87] Ozalp Babaoglu and Rogerio Drummond. (Almost) No Cost Clock Synchronization. In
Proceedings 17th International Symposium on Fault-Tolerant Computing.(Pittsburgh, PA; July 1987).

[BD95] T. Braun and C. Diot. Protocol Implementation Using Intergrated Layer Processing. In
Proceedings of SIGCOMM-95(Sept. 1995).

[BDGB94] Ozalp Babaoglu, Renzo Davoli, Luigi-Alberto Giachini and Mary Gray Baker.RELACS: A
Communications Infrastructure for Constructing Reliable Applications in Large-Scale Distributed
Systems.BROADCAST Project Deliverable Report 1994. Department of Computing Science, University
of Newcastle upon Tyne, UK.

[BDM95] Ozalp Babaoglu, R. Davoli, A. Montresor. Failure Detectors, Group Membership and View-
Synchronous Communication in Partitionable Asynchronous Systems, Technical Report UBLCS-95-18,
Department of Computer Science, University of Bologna, Italy, November 1995.

[Be83] Michael Ben-Or. Fast Asynchronous Byzantine Agreement.Proceedings of the 4th ACM
Symposium on Principles of Distributed Computing(Minaki, CA; Aug. 1985), 149151.

[BEM91] Anupam Bhide, Elmootazbellah N. Elnozahy and Stephen P. Morgan. A Highly Available
Network File Server. InProceedings of the USENIX Winter Conference.USENIX, Dec. 1991.
199205.

[BG95] Kenneth P. Birman and Bradford B. Glade. Consistent Failure Reporting in Reliable
Communications Systems.IEEE Software,Special Issue on Reliability, April 1995.

[BGH87] Joel Bartlett, Jim Gray and B. Horst. Fault Tolerance in Tandem Computing Systems. In
Evolution of Fault-Tolerant Computing.Springer-Verlag, 1987. 5576.

[BHG87] Philip E. Bernstein, Vassos Hadzilacos and Nat Goodman.Concurrency Control and Recovery
in Database Systems.Addison Wesley, 1987.

[BHKSO91] Mary Bakeret. al. Measurements of a Distributed File System.Proceedings of the 13th
ACM Symposium on Operating Systems Principles(Orcas Island, WA; Nov. 1991), 198-212.

[BHL93] Edoardo Biagioni, Robert Harper and Peter Lee. Standard ML Signatures for a Protocol Stack.
Department of Computer Science Technical Report CS-93-170, Carnegie Mellon University, Oct. 1993.

[Bia94] Edoardo Biagioni. A Structured TCP in Standard ML. InProceedings of the 1994 Symposium
on Communications Architectures and Protocols;(London, Aug. 1994). ACM.

[Bir85] Andrew Birrell. Secure Communication Using Remote Procedure Calls.ACM Transactions on
Computer Systems;3:1 (Feb. 1985), 114.

[Bir93] Kenneth P. Birman. The Process Group Approach to Reliable Distributed Computing.
Communications of the ACM;36:12 (Dec. 1993).

[Bir94] Kenneth P. Birman. A Response to Cheriton and Skeen’s Criticism of Causal and Totally
Ordered Communication.Operating Systems Review 28:1(Jan. 1994), 11-21.

Chapter26: Other Distributed and Transactional Systems 485

485

[BJ87a] Kenneth P. Birman and Thomas A. Joseph. Exploiting Virtual Synchrony in Distributed
Systems. InProceedings of the 11th Symposium on Operating Systems Principles(Austin, TX, Nov.
1987). ACM. 123138.

[BJ87b] Kenneth P. Birman and Thomas A. Joseph. Reliable Communication in the Presense of Failures.
ACM Transactions on Computer Systems5:1 (February 1987), 4776.

[BKT90] Henri E. Bal, Robbert van Renesse and Andrew S. Tanenbaum. Implementing Distributed
Algorithms Using Remote Procedure Call. InProceedings of the 1987 National Computer Conference
(Chicago, IL; June 1987). ACM. 499506.

[BKT92] Henri E. Bal, M. Frans Kaashoek and Andrew S. Tanenbaum. Orca: A Language for Parallel
Programming of Distributed Systems.IEEE Trans. on Software Engineering(Mar. 1992), 190205.

[BM90] S. M. Bellovin and Michael Merritt. Limitations of the Kerberos Authentication System.
Computer Communication Review,20:5 (Oct. 1990), 119132.

[BM93] Ozalp Babaoglu and Keith Marzullo. Consistent Global States of Distributed Systems:
Fundamental Concepts and Mechanisms. InDistributed Systems (2nd Edition),S.J. Mullender, editor.
ACM Press (Addison-Wesley), 1993.

[BMP94] L. Brakmo, Sean O’Malley, Larry Peterson. TCP Vegas: New Techniques for Congestion
Detection and Avoidance.Proceedings ACM SIGCOMM ‘94(London, England; 1994).

[BMRS94]. Kenneth P. Birman, Dalia Malki, Aleta Ricciardi, Andre Schiper. Uniform Action in
Asynchronous Dist Sys. Cornell University Dept. of Computer Science Technical Report TR 94-1447,
1994.

[BN84] Andrew Birrell and Bruce Nelson. Implementing Remote Procedure Call.ACM Transactions on
Programming Languages and Systems2:1 (February 1984), 3959.

[BNJL86] Andrew Black, Norm Hutchinson, Eric Jul and Hank Levy. Object Structure in the Emerald
System. InACM Conference on Object-Oriented Programming Systems, Languages and Applications
(Portland, OR; Oct. 1986).

[BNOW93] Andrew Birrell, Greg Nelson, Susan Owicki and T. Wobber. Network Objects. In
Proceedings of the 14th Symposium on Operating Systems Principles(1993), 217230.

[BR94] Kenneth P. Birman, Robbert van Renesse, eds.Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

[BR96] Kenneth P. Birman and Robbert van Renesse. Software for Reliable Networks. Scientific
American274:5 (May 1996), 64-69.

[Bro94] K. Brockschmidt. Inside OLE-2.Microsoft Press, 1994.

[BS95] Thomas C. Bressoud, Fred B. Schneider. Hypervisor-based Fault-tolerance. InProceedings of the
15th Symposium on Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). ACM.
(111). Also appearing in the special issue ofACM Transactions on Computing Systems,13:1 (Feb.
1996).

[BSPS95] Brian Bershadet. al. Extensibility, Safety and Performance in the SPIN Operating System. In
Proceedings of the 15th Symposium on Operating Systems Principles(Copper Mountain Resort, CO; Dec.
1995), 267284.

[BSS91] Kenneth P. Birman, Andre Schiper and Patrick Stephenson. Lightweight Causal and Atomic
Group Communication.ACM Transactions on Computing Systems,9:3 (August 1991), 272314.

Kenneth P. Birman - Building Secure and Reliable Network Applications486

486

[BW92] Anita Borr and Carol Wilhelmy. Highly Available Data Services for UNIX Client-Server
Networks: Why Fault-Tolerant Hardware Isn’t the Answer. . InHardware and Software Architectures for
Fault-Tolerance,Michel Banatre and Peter Lee,eds.Springer Verlag Lecture Notes in Computer Science
vol. 774. 385-304.

[Car93] John Carter. Efficient Distributed Shared Memory Based on Multi-Protocol Release Consistency.
PhD thesis, Rice University, August 1993.

[CASD85] Flaviu Cristian, Houtan Aghili, Ray Strong, and Danny Dolev. Atomic Broadcast: From
Simple Message Diffusion to Byzantine Agreement. InProceedings of the 15th International Symposium
on Fault-Tolerant Computing,IEEE, 1985. 200206. Revised as IBM Technical Report RJ5244.

[CB94] Kenjiro Cho and Kenneth P. Birman. A Group Communication Approach for Mobile Computing.
Computer Science Department Technical Report TR94-1424, Cornell University, May 1994.

[CD90] Flaviu Cristian andRobert Delancy. Fault-Tolerance in the Advanced Automation System. IBM
Technical Report RJ7424; IBM Research Laboratories, San Jose, Calfornia, April 1990.

[CD95] David R. Cheriton and K. J. Duda. Logged Virtual Memory. InProceedings of the 15th
Symposium on Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). 2639.

[CDK94] George Coulouris, Jean Dollimore and Tim Kindberg.Distributed Systems: Concepts and
Design. Addison-Wesley, 1994.

[CDSA90] Flaviu Cristian, Danny Dolev, Ray Strong and Houtan Aghili. Atomic Broadcast in a Real-
Time Environment. InFault Tolerant Distributed Computing. Springer-Verlag Lecture Notes in
Computer Science 448, 1990. 5171.

[Chau81] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms.
Communications of the ACM, 24(2):84-88, February 1981.

[Chill92] Ram Chillaragee. Top Five Challenges Facing the Practice of Fault-Tolerance. InHardware
and Software Architectures for Fault-Tolerance,Michel Banatre and Peter Lee,eds. Springer Verlag
Lecture Notes in Computer Science vol. 774. 3-12.

[CHT92] Tushar D. Chandra, Vassos Hadzilacos and Sam Toueg. The Weakest Failure Detector for
Solving Consensus. InACM Symposium on Principles of Distributed Computing(Aug. 1992).
147158.

[CHTC96] Tushar Chandra, Vassos Hadzilacos, Sam Toueg and Bernadette Charron-Bost. On the
Impossibility of Group Membership.Proceedings ACM Symposium on Principles of Distributed
Computing(May 1996).

[CJRS89] David Clark, Van Jacobson, J. Romkey, H. Salwen. An Analysis of TCP Processing Overhead.
IEEE Communications27:6 (June 1989), 2329.

[CG90] Doug Comer and J. Griffioen. A New Design for Distributed Systems: The Remote Memory
Model. In Proceedings of the 1990 Summer USENIX Conference(June 1990), 127135.

[CF94] Flaviu Cristian and C. Fetzer. Fault-Tolerant Internal Clock Synchronization.Proceedings of the
13th Symposium on Reliable Distributed Systems.Oct, 1994.

[Cha91] B. Charron-Bost. Concerning the Size of Logical Clocks in Distributed Systems.Information
Processing Letters39:1 (Jul. 1991), 1116.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States of
Distributed Systems.ACM Transactions on Computer Systems;3:1 (Feb. 1985), 6375.

Chapter26: Other Distributed and Transactional Systems 487

487

[CLFL94] Jeff Chase, Hank Levy, M. Feeley and Ed Lazowska. Sharing and Protection in a Single-
Address-Space Operating System.ACM Transactions on Computer Systems12:4 (Nov. 1994), 271307.

[CLJK94] Peter Chen,et. al. RAID: High Performance, Reliable, Secondary Storage.ACM Computing
Surveys26:2 (June 1994), 4585.

[CM84] Jo-Mei Chang and Nick Maxemchuk. Reliable Broadcast Protocols.ACM Transactions on
Computer Systems;2:3 (August 1984), 251273.

[CM96a] Callahan, J. and T. Montgomery, Approaches to verification and validation of a reliable
multicast protocol, in Proceedings of the1996 ACM International Symposium on Software Testing and
Analysis, January 1996, San Diego, CA, pp. 187-194. Also appears as ACM Software Engineering Notes,
May 1996, Volume 21, Number 3, pp. 187-194.

[CM96b] Matthew Clegg and Keith Marzullo. Clock Synchronization in Hard Real-Time Distributed
Systems. University of California, San Diego, Dept. of Computer Science Technical Report, March 1996.

[COK86] Brian Coan, B.M. Oki, and E.K. Kolodner. Limitations on Database Availability When
Networks Partition. Proceedings of the 5th ACM Symposium on Principles of Distributed Computing.
(Calgary, CA; August 1986) 187194.

[Com91] Doulas E. Comer.Internetworking With TCP/IP. Volume I: Principles, Protocols and
Architecture. Prentice-Hall, 1991.

[Coo94] Robert Cooper. Experience with Causally and Totally Ordered Group Communication Support --
A Cautionary Tale.Operating Systems Review 28:1(Jan. 1994), 28-32.

[Coo85] Eric Cooper. Replicated Distributed Programs. InProceedings of the 10th ACM Symposium on
Operating Systems Principles(Orcas Island, WA; Dec. 1985). ACM. 6378.

[Coo95] David A. Cooper and Kenneth P. Birman. The design and implementation of a private message
service for mobile computers.Wireless Networks, 1(3):297-309, October 1995.

[CP88] John Crowcroft and K. Paliwoda. A Multicast Transport Protocol.Computer Communication
Review18:4 (Aug. 1988), 247256.

[Cri89] Flaviu Cristian. Probabilistic Clock Synchronization.Distributed Computing 3:3, 1989
(146158).

[Cri91a] Flaviu Cristian. Understanding Fault-Tolerant Distributed Systems.Communications of the
ACM 34:2 (Feb. 1991), 5778.

[Cri91b] Flaviu Cristian. Reaching Agreement on Processor Group Membership In Synchronous
Distributed Systems.Distributed Computing4:4 (April 1991), 175187.

[Cri96] Flaviu Cristian. Synchronous and Asynchronous Group Communication.Communications of
the ACM39:4 (April 1996), 88-97.

[CS91] Doulas E. Comer and David L. Stevens. .Internetworking With TCP/IP.Volume II: Design,
Implementation and Internals.Prentice-Hall, 1991.

[CS93] Doulas E. Comer and David L. Stevens. .Internetworking With TCP/IP.Volume III: Client-
Server Programming and Applications.Prentice-Hall, 1991.

[CS93] David Cheriton and Dale Skeen. Understanding the Limitations of Causally and Totally Ordered
Communication. InProceedings of the 13th ACM Symposium on Operating Systems Principles(Dec.
1993). ACM. 4457.

Kenneth P. Birman - Building Secure and Reliable Network Applications488

488

[CS95] Flaviu Cristian and Frank Schmuck. Agreeing on Process Group Membership in Asynchronous
Distributed Systems. Technical Report CSE95-428, Department of Computer Science and Engineering,
U.C. San Diego. 1995.

[CT87] D. Clark and M. Tennenhouse. Architectural Considerations for a New Generation of Protocols.
In Proceedings of SIGCOMM-87(Aug. 1987), 353359.

[CT90a] Brian A. Coan and G. Thomas. Agreeing on a Leader in Real-Time. InProceedings of the 11th
Real-Time Systems Symposium(Dec. 1990), 166172.

[CT90b] Tushar Chandra and Sam Toueg. Time and Message Efficient Reliable Broadcasts. Cornell
University Dept. of Computer Science, TR 90-1094, February 1990.

[CT91] Tushar Chandra and Sam Toueg. Unreliable Failure Detectors for Asynchronous Systems.
Journal of the ACM.To appear, previous version in PODC 1991, 325340.

[Cus93] Helen Custer.Inside Windows NT.Microsoft Press, Redmond, WA. 1993.

[CZ85] David R. Cheriton and Willy Zwaenepoel. Distributed Process Groups in the V Kernel.ACM
Transactions on Computer Systems,3:2 (May 1985), 77107.

[CT90] David D Clark and David L. Tennenhouse. Architectural Considerations for a New Generation of
Protocols. In.Proceedings of the 1990 Symposium on Communication Architectures and Protocols
(Philadelpha, PA; Sept. 1990). ACM. 200208.

[DB93] Rogerio Drummond and Ozalp Babaoglu. Low-Cost Clock Synchronization.Distributed
Computing6:, 1993. 193-203.

[DB96] Dorothy Denning and Dennis Branstad. A Taxonomy for Key Escrow Encryption Systems.
Communications of the ACM 39:3(March 1996), 34-40.

[DC90] Stephen E. Deering and David R. Cheriton. Multicast Routing in Datagram Internetworks and
Extended LANs.ACM Transactions on Computer Systems8:2 (May 1990), 85110.

[DCE94] Open Software Foundation.Introduction to OSF DCE, Prentice Hall, Englewood Cliff, NJ,
1994.

[DEC95] Digital Equipment Corporation. A Technical Description of the DECsafe Available Server
Environment (ASE).Digital Equipment Corporation Technical Journal 7:4,(Sept. 1995). 89-100.

[Dee88] Steve E. Deering. Multicast Routing in Internetworks and Extended LANs. Computer
Communications Review18:4 (Aug. 1988), 5564.

[Dee89] Steve E. Deering. Host Extensions for IP Multicasting. RFC 1112, SRI Network Information
Center, August 1989.

[Den84] Dorothy Denning. Digital Signatures With RSA and Other Public-Key Cryptosystems.
Communications of the ACM,27:4 (April 1984), 388392.

[DEFJ88] C. Anthony DellaFeraet. al. The Zephyr Notification Service. InProceedings of the Winter
USENIX Conference.USENIX. Dec. 1988.

[DES77] Data Encryption Standard.National Bureau of Standards, Federal Information Processing
Standards Publication 46, Government Printing Office, Washington DC 1977.

[Des88] Y. Desmedt. Society and Group-Oriented Cryptography: A New Concept. InAdvances in
Cryptology  CRYPTO ‘87 Proceedings.Springer-Verlag Lecture Notes in Computer Science 293
(1988). 120127.

Chapter26: Other Distributed and Transactional Systems 489

489

[DFW90] Bert Dempsey, John C. Fenton and Alfred C. Weaver. The MultiDriver: A Reliable Multicast
Service Using the Xpress Transfer Protocol. InProceedings 15th Conference on Local Computer
Networks(1990), IEEE Computer Society, 351358.

[DFY92] Y. Desmedt, Y. Frankel and M. Yung. Multi-Receiver / Multi-Sender Network Security:
Efficient Authenticated Multicast / Feedback. InProceedings of IEEE INFOCOM,May 1992.

[DGHI87] A. Demerset. al. Epidemic Algorithms for Replicated Data Management.Proceedings of the
6th Symposium on Principles of Distributed Computing.(Vancouver, CA; Aug. 1987) 112. Also
Operating Systems Review22:1 (Jan. 1988), 832.

[DGS85] S. Davidson, H. Garcia-Molina and D. Skeen. Consistency in a Partitioned Network: A Survey.
ACM Computing Surveys17:3 (Sept. 1985), 341370.

[DH79] W. Diffie and M. E. Hellman. Privacy and Authentication: An Introduction to Cryptography.
Proceedings of the IEEE,67:3 (March 1979), 397427.

[Dif88] W. Diffie. The First Ten Years of Public-Key Cryptography.Proceedings of the IEEE.76:5
(May 1988), 56o577.

[DM96] Danny Dolev and Dalia Malki. The Transis Approach to High Availability Cluster
Communication.Communications of the ACM39:4 (April 1996), 64-70.

[DMS95] Danny Dolev, Dalia Malki, and Ray Strong. A Framework for Partitionable Membership
Service. TR 95-4, The Hebrew University of Jerusalem, Institute of Computer Science. March 1995.

[DP93] Peter Drushel and Larry L. Peterson. Fbufs: A High-Bandwidth Cross-Domain Transfer Facility.
In Proceedings of the 13th ACM Symposium on Operating Systems Principles(Dec. 1993). ACM.
189202.

[DRSK89] A. Damm, J. Reisinger, W. Schwabl and H. Kopetz. The Real-Time Operating System of
Mars. ACM Operating Systems Review22:3 (July 1989), 141157.

[EBBV95] Thorsten von Eicken, Anindya Basu, Vineet Buch and Werner Vogels. U-Net: A User-Level
Network Interface for Parallel and Distributed Computing. InProceedings of the 15th Symposium on
Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). ACM. 4053.

[ECGS92] Thorsten von Eicken, David E. Culler, S. C. Goldstein and K.E. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. InProceedings of the 19th International
Symposium on Computer Architecture(May 1992), 256266.

[EKO95] Dawson R. Engler, M. Frans Kaashoek and James O’Toole. Exokernel: An Operating System
Architecture for Application-Level Resource Management. InProceedings of the 15th Symposium on
Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). ACM. 251266

[EMS95] Ezhilhelvan, P., Macedo, R. and Shrivastava, S. Newtop: A Fault-Tolerant Group
Communication Protocol. InProceedings of the 15th International Conference on Distributed Systems
(Vancover, CA; May 1995).

[EZ92] E. N. Elnozahy and Willy Zwaenepoel. Manetho: Transparent Rollback-Recovery With Low
Overhead, Limited Rollback and Fast Output Control.IEEE Transactions on Computers, Special Issue on
Fault-Tolerant Computing.May 1992.

[FB96] Roy Friedman and Kenneth P. Birman. Using Group Communication Technology to Implement a
Reliable and Scalable Distributed IN Coprocessor. To appear:TINA ‘96: The Convergence of
Telecommunications and Distributed Computing Technologies(Heidelberg, Germany; Sept. 1996). Also
available as a Cornell University Dept. of Computer Science Technical Report; March 1996.

Kenneth P. Birman - Building Secure and Reliable Network Applications490

490

[FD92] Y. Frankel and Y. Desmedt. Distributed Reliable Threshold Multisignature. Technical Report
TR-92-0402, Dept. of EECS, University of Wisconsin at Milwaukee.

[Fid88] C. Fidge. Timestamps in Message-Passing Systems That Preserve the Partial Ordering. In
Proceedings of the 11th Australian Computer Science Conference,1988.

[FJML95] Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang. A Reliable
Multicast Framework for Light-weight Sessions and Application Level Framing. InProceedings of the
'95 Symposium on Communication Architectures and Protocols.ACM. August 1995, Cambridge MA.

[FKMBD95] Roy Friedman, Idit Keider, Dalia Malki, Kenneth P. Birman and Danny Dolev. Deciding in
Partitionable Networks. Cornell University Computer Science Technical Report, 95-1554, Oct. 1995.

[FLP85] Michael J. Fischer, Nancy A. Lynch, Michael S. Patterson. Impossibility of Distributed
Computing With One Faulty Process.Journal of the ACM,32:2 (April 1985), 374382.

[Fort95] Fortezza Application Developers Guide. Version 3.0 July 1995. US Government. Available at
web site www.armadillo.de.us

[FMPK95] Michael Feeley,et. al. Implementing Global Memory Management in a Workstation Cluster.
In Proceedings of the 15th ACM SIGOPS Symposium on Operating Systems Principles(Copper Mountain
Resort, CO; Dec. 1995), 201-212.

[FR95a] Roy Friedman and Robbert van Renesse. Packing Messages as a Tool for Boosting the
Performance of Total Ordering Protocols. Cornell University Dept. of Computer Science Technical
Report No. 95-1527, July 1995.Submitted to IEEE Transactions on Networking.

[FR95b] Roy Friedman and Robbert van Renesse. Strong and Weak Virtual Synchrony in Horus. Cornell
University Dept. of Computer Science Technical Report 95-1537 (Aug. 1995).

[Fra89] Y. Frankel. A Practical Protocol for Large Group-Oriented Networks. InAdvances in Cryptology
 EUROCRYPT ‘89.Springer-Verlag Lecture Notes in Computer Science 434, 1989. 5661.

[FV95] Roy Friedman and Robbert van Renesse. Strong and Weak Virtual Synchrony in Horus. Cornell
University Dept. of Computer Science Technical Report TR95-1537, 1995.

[FWB85] Ariel Frank, Larry Wittie and Arthur Bernstein. Multicast Communication on Network
Computers.IEEE Software(May 1985).

[FZ91] Ed Felton and John Zahorjan. Issues in the Implementation of a Remote Memory Paging System.
Technical Report 91-03-09, Univ. of Washington, Dept. of Computer Science and Engineering, Mar.
1991.

[GA91] Ramesh Govindran and David P. Anderson. Scheduling and IPC Mechanisms for Continuous
Media. In Proceedings of the 12th ACM Symposium on Operating Systems Principles(Asilomar, CA;
Oct. 1991). ACM. 6880.

[GBCR92] Bradford B. Glade, Kenneth P. Birman, Robert C. Cooper and Robbert van Renesse. Light-
weight Process Groups in the Isis System.Distributed Systems Engineering Journal,July 1993.

[GBH87] Jim Gray, Joel Bartlett and Robert Horst. Fault-Tolerance in Tandem Computer Systems. In
The Evolution of Fault-Tolerant Computing.Edited by A. Avizienis, H. Kopetz and J.C. Laprie,
Springer-Verlag 1987.

[GDBJ94] Geist, G.A.et. al. PVM: A User’s Guide and Tutorial for Networked Parallel Computing.MIT
Press, Cambridge, MA 1994.

Chapter26: Other Distributed and Transactional Systems 491

491

[GDS86] Robert F. Gurwitz, Michael Dean and Richard E. Schantz. Programming Support in the
Chronus Distributed Operating System.Proceedings of the Sixth International Conference on Distributed
Computing Systems(IEEE, 1986), 486-493.

[Gib94] B. Wayt Gibbs. Software’s Chronic Crisis.Scientific American.Sept. 1994.

[Gif79] David Gifford. Weighted Voting for Replicated Data. InProceedings of the 7th ACM Symposium
on Operating Systems Principles(Pacific Grove, CA; Dec. 1979). ACM. 150162.

[GK92] Richard Golding and Kim Taylor. Group Membership in the Epidemic Style. U.C. Santa Cruz,
Dept. of Computer and Information Sciences, TR CRL-92-13 (May 1992).

[Gla96] Bradford B. Glade.A Scalable Architecture for Reliable Publish/Subscribe Communication in
Distributed Systems.Cornell University Ph.D. dissertation, Department of Computer Science, May 1996.

[Gle94] Barry Gleeson. Fault Tolerant Computer System With Provision for Handling External Events.
U.S. Patent 5,363,503 (Nov. 1994).

[GLLG90] K. Gharachorloo,et. al. Memory Consistency and Event Ordering in Scalable Shared-
Memory Multiprocessors. InProceedings of the 17th Anual International Symposium on Computer
Architecture(Seattle, WA; May 1990). 1526.

[GMS91] Hector Garcia-Molina and Annemarie Spauster. Ordered and Reliable Multicast
Communication.ACM Transactions on Computer Systems9:3 (August 1991). 242271.

[GM95a] James Gosling and H. McGilton. The Java Language Environment: A White Paper. Sun
Microsystems Inc. October 1995. Available as http://java.sun.com/langEnv/index.html

[GM95b] James Gosling and H. McGilton. The Java Programmer’s Guide: A White Paper. Sun
Microsystems Inc. October 1995. Available as http://java.sun.com/progGuide/index.html

[Gol91] Richard A. Golding. Distributed Epidemic Algorithms for Replicated Tuple Spaces. Technical
report HPL-CSP-91-15, June 1991. Concurrent systems project, Hewlett-Packard Laboratories.

[Gol92] Richard A. Golding. Weak Consistency Group Communication and Membership.PhD thesis,
Computer and Information Sciences Department, U.C. Santa Cruz, 1992.

[Gon89] Li Gong. Securely Replicating Authentication Services. InProceedings of the 9th International
Conference on Distributed Computing Systems,8591.

[GR93] Jim Gray and A. Reuter.Transaction Processing: Concepts and Techniques.Morgan Kaufmann,
San Mateo CA, 1993.

[Gra79] Jim Gray. Notes on Database Operating Systems.Operating Systems: An Advanced Course.
Springer-Verlag Lecture Notes in Computer Science 60, 1978. 393481.

[Gra90] Jim Gray. A Census of Tandem System Availability Between 1985 and 1990. Technical Report
90.1, Tandem Computer Corporation, Sept. 1990.

[Gra91] Jim Gray. High Availability Computer Systems.IEEE Computer, Sept. 1991.

[GSTC90] Ajei Gopal, Ray Strong. Sam Toueg and Flaviu Cristian. Early-Delivery Atomic Broadcast. In
Proceedings of the 9th ACM Symposium on Principles of Distributed Computing,ACM, New York,
297309.

[GT92] Richard Golding and Kim Taylor. Group Membership in the Epidemic Style. Technical report
UCSC-CRL-92-13, University of California at Santa Cruz, May 1992.

[GS96] Rashid Guerraoui, Andre Schiper. Gamma-Accurate Failure Detectors. Technical Report, EPFL,
Dept d'Informatique, 1996.

Kenneth P. Birman - Building Secure and Reliable Network Applications492

492

[Gue95] Rashid Guerraoui. Revisiting the Relationship Between Non-Blocking Atomic Commitment and
Consensus. InInternational Workshop on Distributed Algorithms (WDAG)(Sept. 1995), 87100.

[Hag87] Robert Hagmann. Reimplementing the Cedar File System Using Logging and Group Commit.
In Proceedings of the 11th ACM Symposium on Operating Systems Principles(Austin, TX; Nov. 1987).
ACM. 155171.

[Ham84] K.G. Hamilton. A Remote Procedure Call System.PhD Thesis, Computing Laboratory,
University of Cambridge, Cambridge England. December1984. Available as Technical Report 84-70.

[HB93] Mark Hayden and Kenneth P. Birman. Achieving Critical Reliability with Unreliable
Components and Unreliable Glue. Cornell University Dept. of Computer Science, TR95-1493, March
1995. (This paper was subsequently substantially revised; a new version will be released in 1996).

[HBJM90] Andrew Hisgen,et. al. Granularity and Semantic Level of Replication in the Echo File
System. InProceedings of the Workshop on Management of Replicated Data(Houston, TX; Nov. 1990).
IEEE CS Press. 510.

[Her84] Maurice Herlihy.Replication Methods for Abstract Data Types.Ph.D. Thesis, MIT. May 1984.
Available as Technical Report LCS-84-319.

[HGDG94] J. Heinlein, K. Garachorloo, S. Dresser and A. Gupta. Integration of Message Passing and
Shared Memory in the Stanford FLASH Multiprocessor. In6th International Conference om
Architectural Support for Programming Langues and Operating Systems(Oct. 1994), 3850.

[HHS94] Rainer Handel, Manfred Huber and Stefan Schroder. ATM Networks: Concepts, Protocols,
Applications. Addison-Wesley, 1994.

[Hil92] Dan Hildebrand. An Architectural Overview of QNX. In1st USENIX Workshop on Microkernels
and Other Kernel Architectures(Seattle, WA; April 1992). 113126.

[HKMN87] J. Howardet al. Scale and Performance in a Distributed File System. InProceedings of the
11th ACM Symposium on Operating Systems Principles(Austin, TX; Nov. 1987). ACM. Also appearing
in the special issue ofACM Transactions on Computing Systems,5:1 (Feb. 1988).

[HL94] Robert Harper and Peter Lee. The Fox Project in1994. Department of Computer Science
Technical Report CS-94-01, Carnegie Mellon University, 1994.

[HO93] John H. Hartman and John K. Ousterhout. The Zebra Striped Network File System. In
Proceedings of the 13th ACM Symposium on Operating Systems Principles(Dec. 1993). ACM. 2943.

[HP94] J. Heidemann and G. Popek. File System Development With Stackable Layers.Communications
of the ACM12:1 (Feb. 1994), 5889.

[HP95] J. Heidemann and G. Popek. Performance of Cache Coherence in Stackable Filing. In
Proceedings of th 15th ACM Symposium on Operating Systems Principles(Copper Mountain Resort, CO;
Dec. 1995), 127142.

[HT87] Maurice P. Herlihy and J. Doug Tygar. How to Make Replicated Data Secure. InAdvances in
Cryptography, Proceedings of the 1987 CRYPTO,Springer-Verlag Lecture Notes in Computer Science,
293. 379391.

[Hun95] Guerney D. Hunt. Multicast Flow Control on Local Area Networks. PhD thesis, Dept. of
Computer Science, Cornell University, Feb. 1995. Also available as TR-95-1479.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems12:3 (July 1990), 463-492.

[IETF95] Secure Sockets Layer Version 3.0Internet Engineering Task Force, 1995.

Chapter26: Other Distributed and Transactional Systems 493

493

[Jac88] Van Jacobson. Congestion Avoidance and Control. InProc. ACM SIGCOMM ‘88(Palo Alto,
CA; 1988).

[Jac90] Van Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 114, Network
Working Group, February 1990.

[Jal94] Pankaj Jalote,Fault-Tolerance in Distributed Systems.Prentice Hall, 1994.

[JB86] Thomas A. Joseph and Kenneth P. Birman. Low Cost Management of Replicated Data in Fault-
Tolerant Distributed Systems.ACM Transactions on Computer Systems4:1 (Feb. 1986), 5470.

[JH93] Alan Jones and Andrew Hopper. Handling Audio and Video Streams in a Distributed
Environment. InProceedings of the 13th ACM Symposium on Operating Systems Principles(Dec. 1993).
ACM. 231243.

[JH94] Dag Johansen and Gunnar Hartvigsen. Architecture issues in the StormCast System. Springer
Verlag Lecture Notes in Computer Science, LNCS 938, 1-16.

[JKW95] Kirk Johnson, M. Frans Kaashoek and Deborah Wallach. CRL: High-Performance All Software
Distributed Shared Memory. InProceedings of the 15th ACM Symposium on Operating Systems
Principles(Copper Mountain Resport, CO; Dec. 1995), 213228.

[Joh94] Dag Johansen. Stormcast: Yet Another Exercise in Distributed Computing. InDistributed Open
Systems in Perspective.Johansen and Brazier,eds. IEEE. 1994.

[Jon93] Michael B. Jones. Interposition Agents: Transparent Interposing User Code at the System
Interface. InProceedings of the 14th ACM Symposium on Operating Systems Principles(Dec. 1993).
ACM. 8093.

[Jos86] Thomas A. Joseph.Low Cost Management of Replicated Data.Ph.D. thesis, Cornell University,
1986. Available as a Cornell University Dept. of Computer Science Technical Report.

[JvRS95a] Dag Johansen, Robbert van Renesse and Fred Schneider. Operating System Support for
Mobile Agents. InProceedings of the 5th Workshop on Hot Topics in Operating Systems.(Orcas Island;
May 1995). IEEE. 42-45.

[JvRS95b] Dag Johansen, Robbert van Renesse and Fred Schneider. An Introduction to the TACOMA
Distributed System (Version 1.0). Computer Science Technical Report 95-23, June 1995, University of
Tromso.

[JvRS96] Dag Johansen, Robbert van Renesse and Fred Schneider. Supporting Broad Internet Access to
TACOMA. Technical report. Feb. 1996.

[JZ87] David B. Johnson and Willy Zwaenepoel. Sender-Based Message Logging. InProceedings of the
17th Annual International Symposium on Fault-Tolerant Computing,(June 1987). IEEE. 1419.

[Kaa92] Frans Kaashoek.Group Communication in Distributed Computer Systems.PhD thesis, Vrije
Universiteit, 1992.

[Kal95] Michael Kalantar. Issues in Ordered Multicast Performance: A Simulation Study. Cornell
University Department of Computer Science Ph.D. thesis. Available as TR-95-1531, Aug. 1995.

[Kay94] Jonathan S. Kay.PathIDs: A Mechanism for Reducing Network Software Latency. PhD thesis,
University of California, San Diego. May 1994.

[KBMS95] Yousef A. Khalidi, et. al. Solaris MC: A Multi-Computer OS. Sun Microsystems
Laboratories, Technical Report 95-48, November 1995.

Kenneth P. Birman - Building Secure and Reliable Network Applications494

494

[KC94] Vijay Karamcheti and Andrew A. Chien. Software Overhead in Messaging Layers: Where Does
the Time Go? InProceedings of the 6th ACM Symposium on Principles of Programming Languages and
Operating Systems;(San Jose, CA; Oct. 1994). ACM.

[KCZ92] P. Keleher, A.L. Cox, and Willy Zwaenepoel. Lazy Release Consistency for Software
Distributed Shared Memory. InProceedings of the 19th Annual International Symposium on Computer
Architecture,(May 1992), 1321.

[KD95] Idit Keidar and Danny Dolev. Increasing the Resilience of Atomic Commit at No Additional
Cost. In Proceedings of the 1995 ACM Symposium on Principles of Database Systems(May 1995),
245254.

[KLS85] Nancy Kronenberg, H. Levy, W. Strecker. VAXClusters: A Closely-Coupled Distributed
System. InProceedings of the 10th ACM Symposium on Operating Systems Principles(Orcas Island,
WA; Dec. 1985). ACM. Appears in ACM Transactions on Computer Systems,4:2 (May. 1986),
130146.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in Distributed Real-Time
Systems.IEEE Transactions on ComputersC36:8 (Aug. 1987), 933940.

[Kop92] H. Kopetz. Sparce Time Versus Dense Time in Distributed Systems. InProceedings of the 12th
International Conference on Distributed Computing Systems.(Yokohama, Japan; June 1992). IEEE.

[KP93] Jon Kay and J. Pasquale. The Importance of Non-Data Touching Processing Overheads. In
Proceedings of SIGCOMM-93(Aug. 1993), 259269.

[KRU91] Clifford Krumvieda. DML: Packaging High Level Distributed Abstractions in SML. In
Proceedings of the 3rd International Workshop on Standard ML.(Pittsburgh, PA. Sept. 1991). IEEE.

[Kru92] Clifford D. Krumvieda. Expressing Fault-Tolerant and Consistency Preserving Programs in
Distributed ML. In Proceedings of the ACM SIGPLAN Workshop on ML and its Applications.June
1992. 157162.

[KS91] James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System. In
Proceedings of the 12th ACM Symposium on Operating Systems Principles(Asilomar, CA; Oct. 1991).
ACM. 213225. AlsoACM Transactions on Computing Systems10:1 (Feb. 1992), 325.

[KT87] Richard Koo and Sam Toueg. Checkpointing and Rollback-Recovery for Distributed Systems.
IEEE Transactions on Software Engineering,SE-13:1 (Jan. 1990), 23-31.

[KT91] M. Frans Kaashoek and Andrew S. Tannenbaum. Group Communication in the Amoeba
Distributed Operating System. InProceedings of the 11th Internation Conference on Distributed
Computing Systems.IEEE. 222230.

[KTFH89] M. Frans Kaashoeket. al. An Efficient Reliable Broadcast Protocol.Operating Systems
Review23:4 (july 1978). 519.

[KV93] Hermann Kopetz and Paulo Verissimo. Real-Time Dependability Concepts. In S.J. Mullender,
editor, Distributed Systems (2nd Edition),ACM-Press (Addison-Wesley), 1993. 411446.

[LABW92] Butler Lampson, Martin Abadi, Michael Burrows and E. Wobber. Authentication in
Distributed Systems: Theory and Practice.ACM Transactions on Computer Systems,10:4 (November
1992), 265434.

[Lam78a] Leslie Lamport. The Implementation of Reliable Distributed Multiprocess Systems.
Computing Networks2, 95114.

Chapter26: Other Distributed and Transactional Systems 495

495

[Lam78b] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM21:7 (July 1978), 558565.

[Lam83] Butler Lampson. Hints for Computer System Design. InProceedings of the 9th Symposium on
Operating Systems Principles(Bretton Woods, NH; Oct. 1993), 3348.

[Lam84] Leslie Lamport. Using Time Instead of Timeout For Fault-Tolerant Distributed Systems.ACM
Transactions on Programming Languages and Systems6:2 (April 1984), 254280.

[Lam86] Butler Lampson. Designing a Global Name Service.Keynote presentation at the 1985 ACM
PODC, published in Proceedings of the 6th ACM Symposium on Principles of Distributed Computing
(Calgary, CA; 1986), 110.

[LCJS87] Barbara Liskov, D. Curtis, P. Johnson and Richard Scheifler. Implementation of Argus. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles(Austin, TX; Nov. 1987).
ACM. 111122.

[Ler93] Xavier Leroy. The Caml Light System Release 0.7.INRIA, France. July 1993.

[LH89] Kai Li and Paul Hudak. Memory Coherence in a Shared Virtual Memory System.ACM
Transactions on Computer Systems7:4 (Nov. 1989), 321359.

[LH91] C. S. Laih and L. Harn. Generalized Threshold Cryptosystems. InProceedings of ASIACRYPT
‘91. 1991.

[LM85] Leslie Lamport and P.M. Melliar-Smith. Synchronizing Clocks in the Presense of Faults.
Journal of the ACM32:1 (Jan. 1985).

[LLGW92] D. Lenoski et. al. The Stanford DASH Multiprocessor. Computer25:3 (March 1992),
6379.

[LLSG90] Rivka Ladin, Barbara Liskov, Liuba Shrira and S. Ghemawat. Lazy Replication: Exploiting
the Semantics of Distributed Services. InProceedings of the 10th ACM Symposium on Principles of
Distributed Computing,(Quebec, CA; Aug. 1990). ACM. 4358.

[LLSG92] Rivka Ladin, Barbara Liskov, Liuba Shrira and S. Ghemawat. Providing Availability Using
Lazy Replication.ACM Transactions on Computer Systems10:4 (Nov. 1992), 360391.

[LGGJ91] Barbara Liskovet. al. Replication in the Harp File System. InProceedings of the 12th ACM
Symposium on Operating Systems Principles(Asilomar, CA; Oct. 1991). ACM. 226238.

[Lis93] Barbara Liskov. Practical Uses of Synchronized Clocks in Distributed Systems.Distributed
Computing6:4 (Nov. 1993), 211-219.

[LL86] Barbara Liskov and Rivka Ladin. Highly Available Distributed Services and Fault-Tolerant
Garbage Collection. InProceedings of the 5th ACM Symposium on Principles of Distributed Computing,
(Calgary, CA. Aug. 1986), ACM, 2939.

[LM85] Leslie Lamport and Peter Melliar-Smith. Synchronizing Clocks in the Presense of Faults.
Journal of the ACM.32:1, Jan. 1985. 52-78.

[LMKK89] Samuel J. Leffler, Marshall K. McKusick,et. al. 4.3BSD UNIX Operating System.Addison-
Wesley Publishing Company, Reading MA, 1989.

[LS83] Barbara Liskov and Robert Scheifler. Guardians and Actions: Linguist Support for Robust,
Distributed Programs.ACM Transactions on Programming Languages and Systems.5:3 (July 1983),
381404.

[Lyn96] Nancy Lynch. Distributed Algorithms.Morton-Kaufman Publishing Company, 1996.

Kenneth P. Birman - Building Secure and Reliable Network Applications496

496

[Lyu95] Michael R. Lyu,ed. Software Fault Tolerance.John Wiley and Sons, 1995.

[Maf95] Silvano Maffeis. Adding Group Communication and Fault-Tolerance to CORBA.In
Proceedings of the 1995 USENIX Conference on Object-Oriented Technologies.USENIX. June 1995,
Monterey CA.

[Mal94] Dalia Malkhi. Multicast Communication for High Availability.PhD thesis, The Hebrew
University of Jerusalem, 1994.

[Mal96] C. Malloth. Conception and Implementation of a Toolkit for Building Fault-Tolerant Distributed
Applications in Large Scale Networks. PhD Thesis. Swiss Federal Institute of Technology, Lausanne
(EPFL), 1996.

[MAMA94] Louise E. Moser, Yair Amir, P.M. Melliar-Smith, and D.A. Agarwal. Extended Virtual
Synchrony. InProceedings of the 14th International Conference on Distributed Computing Systems
(June 1994). IEEE. 5665. Additional details are included in the Technical Report version: TR-93-22,
U.C. Santa Barbara, Dept. of ECE, Dec. 1993.

[Mar84] Keith Marzullo. Maintaining the Time in a Distributed System.PhD thesis, Stanford University,
Dept. of Electrical Engineering. June 1984.

[Mar90] Keith Marzullo. Tolerating Failures of Continuous Valued Sensors.ACM Transactions on
Computer Systems8:4 (Nov. 1990), 284304.

[Mat89] Freidemann Mattern. Time and Global States in Distributed Systems. InProceedings of the
International Workshop on Parallel and Distributed Algorithms.North-Holland, 1989.

[Mat91] David C. Matthews. A Distributed and Concurrent Implementation of Standard ML. Technical
Report ECS-LFCS-91-174, Laboratory for Foundations of Computer Science, University of Edinburgh,
August 1991.

[Mar90] Keith Marzullo. Tolerating Failures of Continuous-Valued Sensors.ACM Transactions on
Computer Systems,8:4 (Nov. 1990), 284304.

[MB90] Messac Makpangou and Kenneth P. Birman. Designing Application Software in Wide Area
Network Settings. Cornell University Dept. of Computer Science Technical Report 90-1165. 1990.

[MBRS94] Dalia Malki, Kenneth P. Birman, Aleta Ricciardi and Andre Schiper. Uniform Actions in
Asynchronous Distributed Systems. Cornell University Department of Computer Science Technical
Report TR 94-1447, Sept. 1994.

[MCWB91] Keith Marzullo, Robert Cooper, Mark Wood and Kenneth P. Birman. Tools for Distributed
Application Management.IEEE Computer.August 1991.

[Merxx] Reference needed: Merritt’s easy proofs of byzantine bounds

[MES93] R.A. Macedo, P. Ezhilchlvan and Santash Shrivastava. Newtop: A Total Order Multicast
Protocol Using Causal Blocks. BROADCAST Project Technical Reports, Volume I, Oct. 1993. Available
from Dept. of Computer Science, University of Newcastle upon Tyne, UK.

[MES95] L.B. Mummert, M.R. Ebling and M. Satyanarayanan. Exploiting Weak Connectivity for Mobile
File Access. InProceedings of the 15th Symposium on Operating Systems Principles;(Copper Mountain
Resort, CO; Dec. 1995). ACM. (143155). Also appearing in the special issue ofACM Transactions on
Computing Systems,13:1 (Feb. 1996).

[MM89] P.M. Melliar-Smith, L.E. Moser. Fault-Tolerant Distributed Systems Based on Broadcast
Communication. InProceedings of the 9th International Conference on Distributed Computing Systems
(June 1989), 129133.

Chapter26: Other Distributed and Transactional Systems 497

497

[MM93] P. M. Melliar-Smith, L.E. Moser. Trans: A Reliable Broadcast Protocol.IEEE Transactions on
Communications140:6 (Dec. 1993), 481493.

[MMA90] P. M. Melliar-Smith, L.E. Moser and V. Agrawala. Broadcast Protocols for Distributed
Systems.IEEE Transactions on Parallel and Distributed Systems1:1 (Jan. 1990), 1725.

[MMA94] L. E. Moser, P.M. Melliar-Smith and V. Agarwala. Processor Membership in Asynchronous
Distributed Systems.IEEE Transactions on Parallel and Distributed Systems5:5 (May 1994), 459473.

[MMABL96] L.E. Moser, P.M. Melliar-Smith, D. A. Argarwal, R.K. Budhia, C.A. Lingley-
Papadopoulos. Totem: A Fault-Tolerant Multicast Group Communication System.Communications of
the ACM39:4 (April 1996), 54-63.

[Mon94] Montgomery, T.,Design, Implementation, and Verification of the Reliable Multicast Protocol,
M.S. Thesis, Department of Electrical and Computer Engineering, West Virginia University,
Morgantown, WV, December1994.

[Mos82] J. E. Moss. Nested Transactions and Reliable Distributed Computing. InProceedings of the 2nd
Symposium on Reliability in Distributed Software and Database Systems.1982. 33-39.

[MPS91] Shivakan Mishra, Larry L. Peterson and Richard D. Schlichting. A Membership Protocol Based
on Partial Order. InProceedings of the IEEE International Working Conference on Dependable
Computing for Critical Applications(Feb 1991). 137145.

[MPS93] Shivakan Mishra, Larry L. Peterson and Richard D. Schlichting. Experience with Modularity in
Consul.SoftwarePractice and Experience,23:10 (Oct 1993), 10501075.

[MRA87] Jeff Mogul, Rick Rashid and M. Accetta. The Packet Filter: An Efficient Mechanism for User-
Level Network Code. InProceedings of the 11th ACM Symposium on Operating Systems Principles
(Austin, TX; Nov. 1987). ACM. 3951.

[MSMA90] P. M. Melliar-Smith, L. E. Moser and V. Agrawala. Broadcast Protocols for Distributed
Systems.IEEE Transactions on Parallel and Distributed Systems1:1 (Jan 1990).

[MSMA91] P. M. Melliar-Smith, L. E. Moser and V. Agrawala. Membership Algorithms for
Asynchronous Distributed Systems. InProceedings of the IEEE 11th ICDCS(May 1991). 480488.

[MRTR90] Sape J. Mullender,et. al. Amoeba A Distributed Operating System for the 1990’s.IEEE
Computer23:5 (May 1990), 4453.

[MSV91] S. Meldal, S. Sankar and J. Vera. Exploiting Locality in Maintaining Potential Causality. In
Proceedings of the 10th Symposium on Principles of Distributed Computing.1991. 231239.

[MTH90] Robin Milner, Mads Tofte and Robert Harper.The Definition of Standard ML.The MIT
Press, 1990.

[MW91] Keith Marzullo and Mark Wood. Tools for Constructing Distributed Reactive Systems.
Technical Report TR91-1193, Cornell University Dept. of Computer Science, Feb. 1991.

[MW94] Montgomery, T. and B. Whetten, The Reliable Multicast Protocol Application Programming
Interface, NASA/WVU Software Research Laboratory Technical Report, NASA-IVV-94-007, August
1994.

[MWBC91] Keith Marzullo, Mark Wood, Kenneth P. Birman,Robert Cooper. Tools for Monitoring and
Controlling Distributed Applications. InSpring 1991 Conference Proceedings(May 1991). EurOpen.
185196. Revised and extended asIEEE Computer24:8 (Aug. 1991), 4251.

[Nei96] Gil Neiger. A New Look at Membership Services.To appear, 15th ACM Symposium on
Principles of Distributed Computing, 1996.

Kenneth P. Birman - Building Secure and Reliable Network Applications498

498

[NS78] Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication in Large
Networks of Computers.Communications of the ACM,21:12 (Dec. 1988), 993999.

[NWO87] M. Nelson, Brent Welsh and John Ousterhout. Caching in the Sprite Network File System. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles(Austin, TX; Nov. 1987).
ACM. Also appearing in the special issue ofACM Transactions on Computing Systems,6:1 (Feb. 1988).

[OCDN88] John Ousterhoutet. al. The Sprite Network Operating System.Computer21:2 (Feb. 1988),
2336.

[ODHK85] John Ousterhoutet. al. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In
Proceedings of the 10th ACM Symposium on Operating Systems Principles(Orcas Island, WA; Dec.
1985). ACM. 1524.

[O+I95] An Introduction to Orbix+Isis. Iona Ltd and Isis Distributed Systems Inc. 1995. (info@iona.ie)

[O+T95] Information about Object Transaction Services for Orbix. Iona Ltd, 1995. (info@iona.ie)

[OMG91] Common Object Request Broker: Architecture and Specification. Published by the Object
Management Group and X/Open. Reference OMG 91.12.1 (1991).

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel and Dale Skeen. The Information Bus An
Architecture for Extensible Distributed Systems. InProceedings of the 13th ACM Symposium on
Operating Systems Principles(Dec. 1993). ACM. 5868.

[Ous90] John Ousterhout. Why Aren’t Operating Systems Getting Faster as Fast as Hardware? In
USENIX Summer Conference Proceedings(Anaheim, CA; 1990). 247256.

[Ous94] John Ousterhout.Tcl and the Tk Toolkit.Addison-Wesley, Reading MA. 1994.

[PA95] Dhiraj Pradhan and Dimiter Avresky,ed. Fault-Tolerant Parallel and Distributed Systems.IEEE
Computer Society Press, 1995.

[PBS89] Larry Peterson, N.C. Buchholz and Richard D. Schlicting. Preserving and Using Context
Information in Interprocess Communication.ACM Transactions on Computing Systems,7:3 (August
1989), 217246.

[Pet87] Larry Peterson. Preserving Context Information in an IPC Abstraction. In6th Symposium on
Reliability in Distributed Software and Database Systems(March 1987). IEEE. 2231.

[Pet95] Ivars Peterson.Fatal Defect: Chasing Killer Computer Bugs.Time Books / Random House,
1995.

[PGK88] David Patterson, Garth Gibson and Randy Katz. A Case for Redundant Arrays of Inexpensive
Disks (RAID). In Proceedings of the 1988 ACM Conference on Management of Data (SIGMOD).
(Chicago, IL; June 1988), 109116.

[PHMA89] Larry Peterson, Norm Hutchinson, Sean O'Malley, and Mark Abbott. RPC in thex-Kernel:
Evaluating New Design Techniques. InProceedings of the 12th Symposium on Operating Systems
Principles,ACM, Nov. 1989 (Litchfield Park, AZ), 91101.

[Pfi95] Gregory F. Pfister.In Search of Clusters. Prentice-Hall, 1995.

[Pit87] Boris Pittel. On Spreading of a Rumor.SIAM Journal of Applied Mathematics.47:1 (1987),
213223.

[Pow91] David Powell,ed. Delta-4: A Generic Architectue for Dependable Distributed Computing (vol.
I). Springer-Verlag ESPRIT Research Reports, 1991. Project 818/2252.

[Pow94] David Powell. Lessons Learned from Delta-4.IEEE Micro 14:4 (Feb. 1994), 36-47.

Chapter26: Other Distributed and Transactional Systems 499

499

[Pow96] David Powell. Introduction to Special Section on Group Communication.Communications of
the ACM39:4 (April 1996), 50-53.

[PP83] Michael L. Powell and David L. Presotto. Publishing: A Reliable Broadcast Communication
Mechanism. InProceedings of the 9th Symposium on Operating Systems Principles(Bretton Woods, NH;
Oct. 1993), 100109.

[PP93] Craig Partridge and Steve Pink. A Faster UDP.IEEE/ACM Transactions on Networking1:4
(Aug. 1993), 429440.

[Pra96] Dhiraj Pradhan.Fault-Tolerant Computer System Design.Prentice Hall, 1996.

[Pu93] Calton Pu. Relaxing the Limitations of Serializable Transactions in Distributed Systems.
Operating Systems Review27:2 (special issue on the Workshop on Operating Systems Principles at Le.
Mont St. Michel),66-71. April 1993.

[RAAB88a] Marc Rozier,et. al. Chorus Distributed Operating System.Computing Systems Journal1:4
(Dec. 1988), 305370.

[RAAH88b] Marc Rozier et al. The Chorus Distributed System.Computer Systems,Fall 1988.
299328.

[Rab83] Michael Rabin. Randomized Byzantine Generals.24th Annual Symposium on Foundations of
Computer Science.IEEE Computer Society, 1983. 403409.

[Ras86] Rick F. Rashid. Threads of a New System.UNIX Review4 (August 1986), 3749.

[RB91] Aleta Ricciardi and Kenneth P. Birman. Using Process Groups to Implement Failure Detection in
Asynchronous Environments. InProceedings of the 11th ACM Symposium on Principles of Distributed
Computing,(Quebec, CA; Aug. 1991). ACM. 341351.

[RB94] Michael K. Reiter and Kenneth P. Birman. How to Securely Replicate Services.ACM
Transactions on Programming Languages and Systems,16:3 (May 1994), 9861009.

[RBCG92] Robbert van Renesse, Kenneth P. Birman, Robert Cooper, Brad Glade and Patrick Stephenson.
Reliable Multicast Between Microkernels. InProceedings of the USENIX Workshop on Micro-Kernels
and Other Kernel Architectures(Seattle, WA; April 1992). USENIX.

[RBFH95] Robbert Van Renesse, Kenneth P. Birman, Roy. Friedman, Mark. Hayden, David Karr. A
Framework for Protocol Composition in Horus. InProceedings of the 14th Symposium on the Principles
of Distributed Computing,(Ottawa, Ontario; Aug. 1995). ACM. 8089.

[RBG92] Michael Reiter, Kenneth P. Birman, and Li Gong. Integrating Security in a Group-Oriented
Distributed System. InProceedings of the IEEE Symposium on Research in Security and Privacy,IEEE,
May 1992, Oakland CA. 1832.

[RBM96] Robbert van Renesse, Kenneth P. Birman, Silvano Maffeis. Horus: A Flexible Group
Communication System.Communications of the ACM39:4 (April 1996), 76-83.

[RBR95] Michael K. Reiter, Kenneth P. Birman and Robbert van Renesse. A Security Architecture for
Fault-Tolerant Systems.ACM Transactions on Computing Systems,May 1995.

[Rei93] Michael K. Reiter. A Security Architecture for Fault-Tolerant Systems.PhD thesis, Cornell
University, August 1993. Available as a Department of Computer Science Technical Report.

[Rei94a] Michael K. Reiter. Secure Agreement Protocols: Reliable and Atomic Group Multicast in
Rampart. InProceedings of the 2nd ACM Conference on Computer and Communications Security.Nov.
1994, Oakland CA. 6880.

Kenneth P. Birman - Building Secure and Reliable Network Applications500

500

[Rei94b] Michael K. Reiter. A Secure Group Membership Protocol. InProceedings of the 1994
Symposium on Research in Security and Privacy.IEEE.

[Rei96] Michael K. Reiter. Distributing Trust with the Rampart Toolkit.Communications of the ACM
39:4 (April 1996), 71-75.

[Ren93] Robbert van Renesse. Causal Controversy at Le Mont St.-Michel.Operating Systems Review,
27:2 (April 1993), 4453.

[Ren94] Robbert van Renesse. Why Bother With CATOCS?Operating Systems Review 28:1(Jan. 1994),
22-27.

[RHRS94] Peter Reiher,et. al. Resolving File Conflicts in the Ficus File System. InProceedings of the
Summer USENIX Conference(June 1994), 183195.

[Ric92] Aleta M. Ricciardi. The Group Membership Problem in Asynchronous Systems. PhD Thesis,
Cornell University, 1992.

[Ric93] Aleta M. Ricciardi. The Asynchronous Membership Problem.PhD thesis, Cornell University,
January 1993. Available as a Department of Computer Science Technical Report.

[Ric96] Aleta Ricciardi. The Impossibility of (Repeated) Reliable Broadcast. Technical report TR-PDS-
1996-003, April 1996. Department of Electrical and Computer Engineering, University of Texas at
Austin.

[Rie94] Riecken, D. Intelligent Agents.Communications of the ACM, 37:7(July 1994), 19-21.

[Rit84] Dennis M. Ritchie. A stream input-output system.Bell Laboratories Technical Journal, AT&T.
63:8 (1984), 18971910.

[RK79] D. P. Reed and R. K. Kanodia. Synchronization with Eventcounts and Sequencers.
Communications of the ACM,22:2 (Feb 1979), 115123.

[RO91] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-
Structured File System. InProceedings of the 12th ACM Symposium on Operating Systems Principles
(Asilomar, CA; Oct. 1991). ACM. 115. Also ACM Transactions on Computing Systems10:1 (Feb.
1992), 2652.

[RS92] Lawrence A. Rowe and Brian C. Smith. A Continuous Media Player. InProceedings of the Third
International Workshop on Network and Operating Systems Support for Digital Audio and Video,Nov
1992, San Diego, CA.

[RSA78] Ron L. Rivest, Adi Shamir and L. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems.Communications of the ACM22:4 (December1978), 120126.

[RST88] Robbert van Renesse, Hans van Staveren, and Andrew Tanenbaum. Performance of the World’s
Fastest Operating System.Operating Systems Review22:4 (Oct. 1988), 2534.

[RST89] Robbert van Renesse, Hans van Staveren, and Andrew Tanenbaum. The Performance of the
Ameoba Distributed Operating System.Software-Practice and Experience19:3 (March 1989), 223234.

[RV89] Luis Rodrigues and Paulo Verissimo.xAMP: A MultiPrimitive Group Communications Service.
In Proceedings of the 11th Symposium on Reliable Distributed Systems(Houston, TX; October 1989).
IEEE.

[RV91] P. Venkat Rangan and Harrick M. Vin. Designing File Systems for Digital Video and Audio. In
Proceedings of the 12th ACM Symposium on Operating Systems Principles(Asilomar, CA; Oct. 1991).
ACM. 8194.

Chapter26: Other Distributed and Transactional Systems 501

501

[RV95] Luis Rodrigues and Paulo Verissimo. Causal Separators for Large-Scale Multicast
Communication. InProceedings 15th International Conference on Distributed Computing Systems(May
1995), 8391.

[RVR93] Luis Rodrigues, Paulo Verissimo and J. Rufino. A Low-Level Processor Group Membership
Protocol for LANs. In Proceedings of the 13th International Conference on Distributed Computing
Systems(May 1993), 541550.

[Sat89] M. Satyanarayanan. Integrating Security in a Large Distributed System.ACM Transactions on
Computer Systems7:3 (Aug. 1989), 247280.

[SB89] Michael Shroeder and Michael Burrows. Performance of Firefly RPC. InProceedings of the 11th
ACM Symposium on Operating Systems Principles(Litchfield Springs, AX; Dec. 1989). 8390. Also
ACM Transactions on Computing Systems8:1 (Feb. 1990), 117.

[SBM89] Alex Siegel, Kenneth P. Birman and Keith Marzullo. Deceit: A Flexible Distributed File
System. Technical Report 89-1042, Department of Computer Science, Cornell University. 1989.

[Sch82] Fred B. Schneider. Synchronization in Distributed Programs.ACM Transactions on
Programming Languages and Systems.4:2 (April 1982), 179195.

[Sch84] Fred B. Schneider. Byzantine Generals in Action: Implementing Fail-Stop Processors.ACM
Transactions on Computer Systems,2:2 (May 1984), 145154.

[Sch88a] Frank Schmuck.The Use of Efficient Broadcast Primitives in Asynchronous Distributed
Systems.PhD thesis, Cornell University, August 1988. Available as a Department of Computer Science
Technical Report.

[Sch88b] Fred. B. Schneider . The State Machine Approach: A Tutorial. InProceedings of the Workshop
on Fault-Tolerant Distributed Computing.Springer-Verlag Lecture Notes on Computer Science, 1988.

[Sch90] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach.
ACM Computing Surveys22:4 (Dec. 1990), 299319.

[Sch97] Fred B. Schneider.On Concurrent Programming. To appear: Springer-Verlag, New York, 1997

[Sch94] Jeffrey I. Schiller. Secure Distributed Computing.Scientific American(Nov. 1994), 7276.

[SDW92] W. T. Strayer, B.J. Dempsey and A.C. Weaver.XTP: The Xpress Transfer Protocol.Addison
Wesley, 1992.

[Sel93] Margo Seltzer. Transaction Support in a Log-Structured File System.Proceedings 9th
International Conference on Data Engineering.1993.

[SES89] Andre Schiper, J. Eggli and Alain Sandoz. A New Algorithm to Implement Causal Ordering.
In Proceedings of the 3rd International Workshop on Distributed Algorithms.Springer-Verlag Lecture
Notes in Computer Science 392, 1989. 219232.

[SGS84] Fred B. Schneider, David Gries and Richard D. Schlicting. Fault-Tolerant Broadcasts.Science
of Computer Programming.3:2 (March 1984), 115.

[SHNS85] M. Satyanarayananet al. The ITC Distributed File System: Principles and Design. In
Proceedings of the 10th ACM Symposium on Operating Systems Principles(Orcas Island, WA; Dec.
1985). ACM. 3550.

[Sie92] Alex Siegal. Performance in Flexible Distributed File Systems.PhD thesis, Cornell University,
February 1992. Available as C.S. Department Technical Report TR-92-1266.

Kenneth P. Birman - Building Secure and Reliable Network Applications502

502

[Ske82a] Dale Skeen. A Quorum-Based Commit Protocol. InProceedings of the Berkeley Workshop on
Distributed Data Management and Computer Networks6 (Feb. 1982), 6980.

[Ske82b] Dale Skeen.Crash Recovery in a Distributed Database System.PhD thesis, University of
California at Berkeley, Department of EECS. June 1982.

[Ske85] Dale Skeen. Determining the Last Process to Fail.ACM Transactions on Computer Systems.
3:1 (Feb. 1985), 1530.

[SL87] S.K. Sarin and Nancy A. Lynch. Discarding Obsolete Information in a Replicated Database
System. IEEE Transactions on Software Engineering13:1 (1987), 3947.

[SM89] V. Srinivasan and Jeff Mogul. Spritely NFS: Experiments with Cache Consistency Protocols. In
Proceedings of the 11th ACM Symposium on Operating Systems Principles(Litchfield Springs, AX; Dec.
1989). 4557.

[SM91] R. Schwarz and F. Mattern. Detecting Causal Relationships in Distributed Computations.
Technical Report 215-91, Department of Computer Science, University of Kaiserslautern, Germany
(1991).

[SM94] Laura Sabel and Keith Marzullo. Simulating fail-stop in asynchronous distributed systems. In
Proceedings. 13th Symposium on Reliable Distributed Systems(Dana Point, CA; Oct. 1994). IEEE.
138147.

[SNS88] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An Authentication
Service for Open Network Systems. InProceedings of the 1998 USENIX Winter Conference.USENIX.
Feb. 1988, Dallas TX. 191202.

[Spe85] Alfred Spector. Distributed Transactions for Reliable Systems. InProceedings of the 10th ACM
Symposium on Operating Systems Principles(Orcas Island, WA; Dec. 1985), 12146.

[SRC84] J.H. Saltzer, D.P. Reed and D.D. Clark. End-to-End Arguments in System Design.ACM
Transactions on Computer Systems39:4 (April 1990).

[SR96] Andre Schiper and Michel Raynal. From Group Communication to Transactions in Distributed
Systems.Communications of the ACM39:4 (April 1996), 84-87.

[SS83] Richard D. Schlicting and Fred. B. Schneider. Fail-Stop Processors: An Approach to Designing
Fault-Tolerant Computing Systems.ACM Transactions on Computer Systems1:3 (August 1983),
222238.

[SS93] Andre Schiper and Alain Sandoz. Uniform Reliable Multicast in a Virtually Synchronous
Environment. InProceedings of the 13th International Conference on Distributed Computing Systems
(May 1993), IEEE. 561568.

[SS96] Marjana Spasojevic and M. Satyanarayanan. An Emperical Study of a Wide-Area Distributed File
System.ACM Transactions on Computer Systems14:2 (May 1996).

[SSC94] W. T. Strayer, G. Simon and R.E. Cline, Jr. An Object Oriented Implementation of the Xpress
Transfer Protocol. XTP Forum Research Affiliate Annual Report, 1994. 5366.

[ST87] T. K. Srikanth and Sam Toueg. Optimal Clock Synchronization.Journal of the ACM34:3 (July
1987), 626645.

[STB86] Richard E. Schantz, Robert H. Thomas and Girome Bono. The Architecture of the Chronus
Distributed Operating System.Proceedings of the Sixth International Conference on Distributed
Computing Systems(IEEE, 1986), 250-259/

Chapter26: Other Distributed and Transactional Systems 503

503

[Ste91] Patrick Stephenson.Fast Causal Multicast. PhD thesis, Cornell University, Feb. 1991.
Available as a Dept. of Computer Science Technical Report.

[Sto81] Michael Stonebreaker. Operating Systems Support for Database Management.Communications
of the ACM24:7 (July 1981), 412418.

[SW91] Frank Schmuck and Jim Wyllie. Experience with Transactions in Quicksilver. InProceedings of
the 12th ACM Symposium on Operating Systems Principles(Asilomar, CA; Oct. 1991). ACM. 239252.

[SWL90] Barbara Simons, Jennifer N. Welch, and Nancy Lynch. An Overview of Clock Synchronization.
In Fault-Tolerant Distributed Computing(Simons and Spector,eds), Springer Verlag Lecture Notes in
Computer Science 448, 1990, 8496.

[Tan88] Andrew S. Tanenbaum.Computer Networks.Prentice Hall, Second Edition, 1988.

[Ten90] David Tennenhouse. Layered Multiplexing Considered Harmful. InProtocols for High Speed
Networks.Elsevier Publishers, BV. 1990.

[TH90] Joseph Torrellas and John Hennessey. Estimating the Performance Advantages of Relaxing
Consistency in a Shared-Memory Multiprocessor. Technical Report CSL-TN-90-265, Stanford University
Computer Systems Laboratory, Feb. 1990.

[Tho79] Robert Thomas. A Majority Concensus Approach to Concurrency Control for Multiple Copy
Databases.ACM Transactions on Database Systems4:2 (June 1979), 180209.

[TL93] C. A. Thekkanth and H.M. Levy. Limits to Low-Latency Communication on High-Speed
Networks. ACM Transactions on Computer Systems11:2 (May 1993), 179203.

[TNML93] C. Thekkath, T. Nguyen, E. Moy and Ed Lazowska. Implementing Network Protocols at User
Level. IEEE Transactions on Networking1:5 (Oct. 1993), 554564.

[TR88] Andy Tanenbaum and Robbert van Renesse. A Critique of the Remote Procedure Call Paradigm.
In Proceedings of the EUTECO ‘88 Conference(Vienna, Austria; April 1988), 775783.

[TS92] John Turek and Dennis Shasha. The Many Faces of Consensus in Distributed Systems.IEEE
Computer25:6 (1992), 817.

[TTPD95] Doug B. Terryet. al. Managing Update Conflicts in a Weakly Connected Replicated Storage
System. InProceedings of the 15th Symposium on Operating Systems Principles;(Copper Mountain
Resort, CO; Dec. 1995). ACM. 172183.

[Ver93] Paulo Verissimo. Real-Time Communication. In S.J. Mullender, editor.Distributed Systems
(2nd Edition).ACM-Press (Addison Wesley), 1993. 447490.

[Ver94] Paulo Verissimo. Ordering and Timeliness Requirements of Dependable Real-Time Programs.
Journal of Real-Time Systems7:2 (sept. 1994), 105128.

[Ver96] Paulo Verissimo. Causal Delivery in Real-Time Systems: A Generic Model.Real-Time Systems
Journal10:1 (Jan. 1996).

[VK83] V.L. Voydock and Steve T. Kent. Security Mechanisms in High-Level Network Protocols.ACM
Computing Surveys15:2 (June 1983), 135171.

[Vog96] Werner Vogels. The Private Investigator. Cornell University Department of Computer Science
Technical Report, April 1996.

[VR92] Paulo Verissimo, Luis Rodrigues. A Posteriori Agreement for Fault-Tolerant Clock
Synchronization on Broadcast Networks. InProceedings 22nd International Symposium on Fault-
Tolerant Computing(Boston, MA; July 1992).

Kenneth P. Birman - Building Secure and Reliable Network Applications504

504

[WLAG93] Robert Wahbe, Steven Lucco, Tom Anderson and Susan Graham. Efficient Software-Based
Fault Isolation. InProceedings of the 13th ACM Symposium on Operating Systems Principles(Dec.
1993). ACM. 203216.

[Whe95] Brian Whetten. A Reliable Multicast Protocol. InTheory and Practice in Distributed Systems,
Birman, Mattern and Schiper,eds., Springer-Verlag Lecture Notes on Computer Science, 938 (July
1995).

[WGSS95] John Wilkes,et. al. The HP AutoRAID Hierarchical Storage System. InProceedings of the
15th Symposium on Operating Systems Principles;(Copper Mountain Resort, CO; Dec. 1995). ACM.
(96108). Also appearing in the special issue ofACM Transactions on Computing Systems,13:1 (Feb.
1996).

[WOE92] John Warne, E. Oskiewicz and N. Edwards. A Lightweight Group Execution Protocol.
Technical Report RC.439, APM Ltd., Cambridge UK, October 1992.

[Won95] Ted Wong.Private communication.May, 1995.

[Woo91] Mark D. Wood. Fault-Tolerant Management of Distributed Applications Using a Reactive
System Architecture.PhD thesis, Cornell University (Dec. 1991). Available as Department of Computer
Science Technical Report TR 91-1252.

[Woo93] Mark D. Wood. Replicated RPC Using Amoeba Closed-Group Communication. InProceedings
of the 12th International Conference on Distributed Computing Systems(Pittsburgh, PA; 1993).

[WPEK93] B. Walter, G. Popek,et. al.The Locus Distributed Operating System. InProceedings of the
9th ACM Symposium on Operating Systems Principles(Bretton Woods, NH; Oct. 1993); 4970.

[Wu95] Wu, Y., Verification-Based Analysis of RMP,NASA/WVU Software Research Laboratory
Technical Report NASA-IVV-95-003, December1995.

[XTP95] XTP Forum. Xpress Transfer Protocol Specification.XTP Rev. 4.0, 95-20, March 1995.

Chapter26: Other Distributed and Transactional Systems 505

505

Index

—A—
abcast, 273, 296

locally total and globally total order, 270
locally total and globally total ordering, 281

access control technologies, 374
accidental failures compared to attack, 198
accuracy (of a synchronized clock), 386
ACID properties of a database system, 139
acknowledgment implosion, 368
actions (transactional), 469
active messages, 151
active replication, 210
actuators, 429, 430
addressing, 59
Advanced Automation System (AAS), 463
AFS, 130, 131, 132, 133, 134, 135, 143, 374, 376,

378
agent programming languages, 180
Ameoba, 461
analysis of buying patterns, 173, 182
Andrew File System.SeeAFS
ANSA project, 104
a-posteriori clock synchronization, 387
application-level proxy (in firewalls), 191
architectural structures for reliable systems, 349
Argus, 407, 469
Arjuna, 470
AS/400 database server product, 407
ASN.1, 81
assumptions about environments, 453
asynchronous consensus problem, 227
asynchronous message agent technology, 189
asynchronous message passing (for MOMS), 188
asynchronous model, 31, 203, 226
Asynchronous Transfer Mode. SeeATM
at least once semantics, 90
at most once semantics, 90
ATM, 45, 53, 155
atomic broadcast.Seemulticast
atomic rename operation, 143
atomicity, 139, 257
authentication, 38, 64, 85, 130, 165, 171, 172, 173,

183, 185, 191, 192, 316, 370, 371, 374, 375, 376,
377, 378, 379, 381, 382, 383, 439, 466, 468, 481
in AFS, 130
in Kerberos, 370
in ONC security, 380
with Fortezza, 381

authentication (with wrappers), 322
authentication server (in Kerberos), 378
authentication services, 39
authorization, 199

automatic order handling, 182
availability

continuous, 445
in secure systems, 379, 382
versus consistency (tradeoff), 310

available copies replication method, 416
Avalon, 470
avatars, 166
avoiding unilateral abort in transactional systems,

415

—B—
backflow of information to sender, 368
bandwidth allocation (for ATM), 55
Basic Communication Services, 59
Bayou, 470
binding, 74, 79, 113, 119
Black Widow applets, 179
body (of a message), 35
Bohrbugs, 195
broadcast, 48.See alsomulticast

hardware, 36
broadcast storm, 48
broken read locks, 415
buffering, 68
bulk data transfer tools, 325
Byzantine Agreement, 224, 435
Byzantine failure model, 30, 208, 209, 223, 224, 225,

226, 231, 260, 285, 371, 382, 466, 485, 487, 500,
502
lower bounds, 225

—C—
cache coherency in Sprite, 131
caching, 74, 127.See alsoreplicated data
caching in the NFS system, 126
caching web proxies

consistency options, 331
Camelot, 471
Capstone, 377, 381
CASD, 420
CASD protocols, 388
CASE tools, 179
CASE tools for distributed computing, 182
CASE tools for reliability, 202
causal gap freedom, 279
causal order, 203

controversy, 311
in overlapping process groups, 279
with multiple, overlapping groups, 268

cbcast, 261, 273, 296, 311, 463
compared to synchronous multicast protocol, 394

Kenneth P. Birman - Building Secure and Reliable Network Applications506

506

in overlapping process groups, 279
checkpoints, 311, 464
Chorus, 461
CICS (IBM's transactional product), 471
class D internet address, 60
clientsof a process group.Seecommunication from

non-members to a group
client-server computing, 73, 95, 121, 235
Clipper chip, 381
clock synchronization, 384
closely synchronous execution, 286
Clouds, 407
cluster API, 442, 450
cluster computer architectures, 442
cluster computing used in telecommunications

coprocessor, 398
CMIP, 430
Coda, 131
coherent caching Web proxy, 330
Common Request Broker Architecture.SeeCorba
communication from a group to a non-member, 273
communication from non-members to a group, 271
communication technologies, 44
communications segment, 154
complexity as a threat to reliability, 196
components of a reliable distributed computing

system, 32
components off the shelf (COTS), 316
Computer Aided Software Engineering Tools, 179,

182
computer aided software engineering tools (CASE),

202
computer network, 29
concurrency control, 139
concurrency control tools, 325
connection establishment (ATM), 55
conservative scheme, 279
Consistency, 29, 100, 183, 200, 303, 304, 305, 410,

487, 490, 492, 495, 503, 504
consistency in caching web proxies, 349
consistent and inconsistent cuts, 204, 266
consistent and inconsistent states of a client-server

system, 93
consistent caching, 322
consistent cuts in log-based recovery, 464
continuous availability, 29, 445
Continuous Media Toolkit (CMT), 357
convoy phenomenon in reliable systems, 367
coordinator-cohort algorithm, 301
Corba, 14, 20, 22, 40, 43, 68, 76, 78, 104, 106, 107,

108, 109, 112, 113, 114, 115, 116, 117, 118, 119,
190, 191, 197, 320, 359, 360, 450, 457, 458, 469,
473, 474
event notification service, 117, 189
hardening applications with Horus/Electra, 359
interface definition language, 114
interface definition language (IDL), 108
inter-object broker protocol (IOP), 118
introducing reliability technologies with, 318

life cycle service, 118
naming service, 116
object request broker, 116
object request broker (ORB), 107
Orbix example, 111
persistent object service, 118
rebinding to a different server after failure, 113
reference model, 107
reliability issues, 114
reliability properties of Corba solutions, 119
replication services, 114
transaction service, 118
transactional services, 113
viewed as a wrapper technology, 318

CORBA event notification service, 188
Correct specification, 29
correlated events, 437
COTS (Components off the shelf), 316
Critical Dependencies, 41
Cyclic UDP, 357

—D—
data access patterns in distributed file systems, 131
data replication.Seereplicated data
DCE, 14, 40, 76, 81, 85, 106
defense against intrusion and attack, 198
Delta-4, 462
denial of access in secure systems, 379
DES, 377
detecting failures, 197
dialback security mechanisms, 372
digital signatures (used in firewalls), 191
dimensions of the systems validation problem, 451
Dining Philosophers problem, 281
distorted timelines, 206
distributed CASE tools, 179
distributed commit problem, 210
distributed computing environments, 39.See also

DCE
distributed computing system, 29
distributed database systems, 137

abort viewed as a "tool", 140
ACID properties, 139
concurrency control, 138, 404
nested transactions, 405
serializability, 137
state shared by clients and server, 140
transactional model, 137, 399
write-ahead log, 401

distributed objects abstraction, 105
distributed programming languages, 325
distributed shared memory, 342, 346
distributed system management, 428
distributed transaction, 404
DNS, 83.SeeDomain Name Service
Domain name service, 60
DSM, 346
dynamic membership model, 208, 231, 245, 303

Chapter26: Other Distributed and Transactional Systems 507

507

dynamic uniformity, 233, 234, 235, 246, 248, 249,
252, 260, 270, 274, 287, 292, 295, 296, 305, 310,
411, 477
performance implications, 307

—E—
Electra, 359
electronic mail, 185
email, 185
embedded systems, 435
Encina, 144, 407, 413, 471
encryption used in virtual private networks, 373
End-to-End Argument, 67, 312
ENS.SeeCorba
enterprise web servers, 349
equity trading system based on Horus, 368
Ethernet, 46
event dispatch, 86, 87
event notification service, 189.SeeCorba
exactly once semantics, 90
exponential convergence of gossip protocols, 418
extended virtual synchrony, 288
External Data Representation, 81

—F—
F/C field and bits (ATM header), 54
failover in Corba, 318
Fail-stop failures, 30
failstop model, 208, 245
failure detectors, 197
failures, 30, 194
false sharing, 346
Fault-tolerance, 29, 100, 162, 322, 347, 436, 486
fault-tolerance tools, 325
fault-tolerant real-time control, 385
fbcast, 261, 273
fbufs, 149
FDDI, 48
Ficus, 134
file transfer protocols, 185
Firefly RPC costs, 147
firewall protection (with wrappers), 322
firewalls, 191, 316, 372
flow control, 368
flush, 282
Fortezza, 380, 381, 382, 491
fourth-generation languages (4GL's), 326
fragmentation, 35

—G—
gap freedom guarantee, 287
gateway, 191
GIF, 170
Global Positioning System.SeeGPS receivers
globally total order, 281
GMS. Seegroup membership service

GMS property summary, 259
gossip protocols, 417
GPS receivers, 84, 384, 386, 388, 480
group address, 355
group communication and Java applets, 349
group communication in Web applications, 330
group membership protocol, 95, 237, 311
group membership service, 235, 246, 259, 393

extensions to allow partition and merge, 244
primary partition properties, 243
summary of properties, 259

group object, 355
groupware video protocols, 248
guaranteed execution tools, 325
guardians, 469
GUI builders, 179, 182

—H—
halting failures, 30, 208
hardware cryptographic protection, 373
hardware fault-tolerance, 448
Harp, 128, 414, 462
HAS, 463
HCPI, 356
header (of a message), 35
Heisenbugs, 195, 286
high availability, 29
Horus system, 366

basic performance, 360
Horus Common Protocol Interface (HCPI), 356
protocol accelerator, 362
real-time protocols, 395
replication in the Web, 351
robust groupware application, 356
scalability, 366
story behind name, 349

hostile environments, 198
HotJava, 175
how computers fail, 194
HTML, 166
HTTP, 167
HTTP commands, 168
Hyper-Text Markup Language, 166
Hyper-Text Transport Protocol, 167

—I—
ID-90, 153
IDL. SeeCorba, remote procedure call
impossibility results for the asynchronous model,229,

308
IN coprocessor fault-tolerance, 398
inconsistent failure detection in available copies

replication, 416
information warfare, 198, 437
instrumentation of a distributed system, 430
integration of process groups with database

properties, 416

Kenneth P. Birman - Building Secure and Reliable Network Applications508

508

intentional threats, 198
Internet Protocols, 59
IP addresses, 60
IP Multicast, 65
IP multicast and scalability of reliable group

protocols, 368
IP over ATM (reliability issues raised), 56
IP protocol, 63
ISDN, 50
Isis Toolkit, 463

story behind name, 349
ISO protocol model, 32
iterated multicast, 271

—J—
Java, 175

groupware opportunities, 330
integrated with group communication tools, 349
Java applets structured as object groups, 330

JPEG, 170

—K—
Kerberos, 85, 130, 370, 371, 376, 377, 378, 379, 380,

382, 486, 503
key escrow, 377, 381

—L—
layered protocol architectures (pros and cons), 33
LFS, 135
lightweight process groups, 283
Lightweight remote procedure call, 147, 148, 149
lightweight tasks.Seethreads
lightweight threads, 87
limitations on formal methods, 451
load balancing, 298
load balancing tools, 325
local procedure call, 90
locally total order, 281
Locus, 464
log-based database representation, 414
log-based recovery, 464
logging tools, 325
logical clock, 203.See alsovector clock

used to implementcbcast, 262
log-structured file system, 135
long-haul connection (security exposures), 373
Lotus Notes, 136
LPC. Seelocal procedure call

—M—
Mach, 461
management information base (MIB), 430
Manetho, 464
MARS, 385
marshalling, 81

master-slave parallel programming style, 153
mbufs, 68
measurements of distributed file systems, 131
message, 29
message bus architectures, 189
message oriented middleware, 187
message-oriented middleware (MOMS), 143
Meta system, 428
MIB used for failure detection, 197
MOMS, 187
MOMS (message-oriented middleware), 143
monitoring and logging (with wrappers), 322
monitoring tools, 325
MPEG, 170
multicast, 48, 247

consistency issues, 311
hardware, 36
ordering domains, 281
ordering options, 249
ordering protocols (causal and total), 260
stability, 279
totally ordered, 269

multicast for video data, 248
multi-level architecture for group computing tools,

349
multi-phase commit, 404
multiple protocol stacks in Transis, 468

—N—
nack implosion, 368
naming service, 38
NavTech, 465
Negative-Acknowledgement, 100
nested transaction model

problems with concurrent data structures, 408
nested transactions, 405
network bulletin boards, 186
network database server, 73, 136.See alsodistributed

database system, transactions
network database servers, 136
Network file server, 73, 125.See alsoNFS
network file servers

replication for high availability, 128
Network File System.SeeNFS
Network Information Service, 83
network OLE, 107
Network partitioning, 30, 288
newsgroups, 186
Newtop, 470
NFS, 14, 74, 81, 94, 122, 123, 126, 127, 128, 129,

131, 132, 133, 135, 143, 161, 173, 312, 374, 375,
376, 380, 438, 439, 440, 445, 503
prefetching, 127
reliability of, 127
security of, 380
security problems with, 375

NIS, 83
NNTP, 186

Chapter26: Other Distributed and Transactional Systems 509

509

non-determinism (sources), 323
non-volatile memory, 414
non-volatile RAM (NVRAM) (used in HARP), 462
NT/Exchange, 107
NT/Server, 107

—O—
object code editing

as a tool in Web agent applications, 179
object groups, 318, 359
object orientation

groupware solutions. See Orbix+Isis, Electra
technologies supporting. See CORBA, OLE-2,

Orbix
viewed as a form of wrapper, 318

Object Request Broker, 107
off the shelf components (COTS), 316
OLE-2, 107

introducing reliability technologies with, 318
viewed as a wrapper technology, 318

omission failures, 30
ONC, 14, 40, 76, 325, 380

security of, 380
Open Network Computing, 40
Open Systems Interconnect Protocols, 59
Operating System Support for High Performance

Communication, 146
optimal clock synchronization, 387
Orbix, 111
Orbix+Isis, 114, 359, 463
Orbix+Isis viewed as a CASE tool, 202
orphan termination (in Argus), 469
overhead of layered protocols, 363

—P—
packet filter, 316
Packet loss rates (UDP over UNIX), 69
packet sniffers, 372
packets, 35
parallel computing (communication support), 153
parallel programming support, 57
parallel shared memory systems, 32
partition failures, 288
passwords, 372
payment security, 182
pbcast, 417
PC distributed computing architectures, 107
performance, 30
performance issues in file systems, 131
persistent data, 399
Phoenix, 465
potential causality, 203
potential groupware uses of the Web, 330
Power Builder, 179
precision (of a synchronized clock), 386
prefetching in NFS, 127
prefetching versus whole-file transfer, 127

Presentation (layer in ISO hierarchy), 32
primary component of a partitioned network,288,

308
primary-backup fault-tolerance, 101, 299

in transactional systems, 414
Privacy, 29, 172
private investigator (failure detection scheme), 197
probabilistic clock synchronization, 387
probabilistic protocols, 417
process groups.Seevirtually synchronous process

groups
protocol, 29
protocol compilation, 156
protocol stack, 352
protocol verification, 468
Psync, 465
PTI field (ATM header), 54
publish-subscribe paradigm, 189
push and pull agent models compared, 180
PVM, 57

—Q—
quality of service (for ATM), 55
quality of service guarantees in Transis, 468
quality of service negotiation (with wrappers), 323
QuickSilver, 143
quorum replication, 295, 404

—R—
RADIO product, 442
RAID, 128
Rampart, 466
reactive control, 435
real-time, 385

CASD protocol, 388, 463
fault-tolerant, in MARS, 385
Horus protocols, 395

real-time virtual synchrony, 398
reasoning about distributed systems, 451, 453
Recoverability, 29,208, 399
Relacs, 465
relational model of a system, 428
Release consistency, 344
reliability in distributed computing systems, 29
reliability of IP protocols over ATM, 56
reliability of NFS, 127
reliable communications channel, 96
reliable multicast

in synchronous systems, 388
multicast, 36
probabilistic protocols, 417
scalability, 366

Remote procedure call, 73, 75
authentication service, 85
binding, 79
burst protocol, 90
error handling, 79

Kenneth P. Birman - Building Secure and Reliable Network Applications510

510

lightweight, 148
marshalling, 81
naming service, 83
over a stream, 102
performance issues, 147
primary-backup replication, 93
protocol, 89
replay problem, 91
time services, 84
use in reliable distributed systems, 92

remote procedure call stub generation, 77
rename (atomic operation), 143
replicated data, 128, 209, 235, 285, 292

best solution, 295
caching in web proxies, 174
high performance transactional scheme, 413
in transactional systems,404
performance of quorum algorithm, 223
probabilistic, usingpbcast, 425
quorum algorithm, 221
with Byzantine failures, 223

replicated data tools, 325
replication and load-balancing in Web servers, 330
replication of web servers, 349
representations of image data, 170
rich text format, 170
RMP, 466
rollback, 464
Routing, 66
RPC.SeeRemote procedure call
RSA, 376

—S—
safeatomic multicast.Seedynamic uniformity
sandbox approach to agent security, 179
scalability of reliable distributed systems, 366
secure electronic transfer, 173, 182
secure socket layer, 182
secure sockets layer, 173
Security, 29, 46, 84, 85, 91, 119, 165, 172, 183, 187,

191, 347,370, 447, 490, 500, 501, 502, 504
Security (with wrappers), 322
Security and Availability, 382
security enclave, 322
security of agent systems, 179
self-healing systems, 453
self-stabilizing systems, 453
sender-based logging, 464
sensors, 429, 430
Session (layer in ISO hierarchy), 32
shared memory

used for ATM communication in U-Net, 154
shared memory tools, 325
shared nothing model, 442
skew (of a synchronized clock), 386
Sliding Window Protocols, 96
smart cards.SeeFortezza
SMTP, 185

snapshot of a distributed system.Seeconsistent and
inconsistent cuts

SNMP, 430
SPIN project, 156
Split C, 153
split secret schemes, 382
Sprite, 131
SS7 telecommunications protocol, 398
SSL encryption, 173, 182
stability of a multicast, 279
stability of group communication performance, 368
state machine approach, 285
state machine replication

for reactive control, 436
state transfer, 272, 296
state transfer tools, 325
stateful client-server systems, 123, 137
Stateful File Servers, 129
stateless client-server systems, 122
static membership model, 209, 231, 303
stock trading system based on Horus, 368
StormCast system, 180
streams, 96

burst transmission, 99
dynamic adjustment of window size, 98
error correction, 97
flow control, 98
reliability, consistency and fault-tolerance, 100
sliding window protocol, 96
unbreakable (wrapped for reliability), 332
used to support remote procedure call, 102

strong and weak virtual synchrony in Horus, 398
synchronous model, 31, 224

—T—
TACOMA, 180
Tcl/Tk, 356
TCP protocol, 64, 96
TCP protocol (over U-Net), 155
telecommunications coprocessor, 398
testing for liveness of an application, 197
The Web, 16, 18, 61, 73, 74, 122, 159, 165, 173, 185,

326
agent programming languages, 180
agent-based browsers, 175
architectural structures and reliability tools, 349
banking on the web, 182
basic authentication protocol, 171
commerce servers, 182
commercial use, 161
commercial use of, 173
consistency issues, 183
database servers, 182
exchange servers, 182
fault-tolerance and load-balancing, 330
firewalls, 191
groupware tools and solutions, 330
Hot Java Browser, 175

Chapter26: Other Distributed and Transactional Systems 511

511

HTML, 166
HTTP, 167
Java, 175
Java applets structured as object groups, 330
military use, 162
other agent languages, 179
reliability, 162
replicated data, 210
replication and reliability, 351
search enginers and web crawlers, 181
secure sockets layer, 172
security, 162, 187
security and privacy issues, 172
security with digital signatures, 330
transactional uses, 182
URLs, 166
web browser technologies, 165
web proxies, 174
web proxy, 165

The World Wide Web.SeeThe Web
Thor system, 470
threads, 85
threads (versus event dispatch), 87
three-dimensional web interfaces, 166
three-phase commit, 218, 404
ticket granting server (in Kerberos), 378
time in distributed systems, 203
time service, 39
timed asynchronous model, 388, 463
timeliness, 30
Timing failures, 30
TINA, 114
toolkits, 316, 323
tools for consistent caching, 349
top-level transactions, 409
topological knowledge used incbcast, 268
Totem, 467
transactional actors, 469
transactional commit protocols, 404
transactional model

compared to virtual synchrony, 399
problems encountered in distributed uses, 408
systems that implement transactions, 469
weak consistency, 410

transactional system architectures, 399
transactions.See alsodistributed database systems
Transis, 468
Transport (layer in ISO hierarchy), 32
Tuxedo, 119, 144, 413, 471
two-phase commit, 211, 404

avoiding need using process group, 415
two-phase commit (final version of protocol), 218
two-phase locking, 138

—U—
UDP protocol, 64

over U-Net, 155
unauthorized use of resources, 199

U-Net, 153
unintentional threats, 198
Universal Resource Indentifier, 167
Universal Resource Locators, 166
URL. SeeUniversal Resource Locator

—V—
V System, 461, 468
VCI field (ATM header), 54
vector clock, 206, 463

causal communication with non-members of a
group, 276

timestamp compression, 265
used to implementcbcast, 263

verification of protocols, 468
video groupware multicast properties, 248
view (of a process group), 256, 355
view synchronous multicast delivery, 288
virtual memory used in communication architecture,

150
virtual private network, 321
virtual private networks, 55, 178, 198, 373
virtual reality meta languages, 166
virtually synchronous execution model, 284
virtually synchronous process groups, 246, 351

algorithms and tools, 292
compared to transactional model, 399
execution model, 284
extended virtual synchrony, 288
flush protocol, 258
guarantees compared to synchronous model, 394
in Horus, 355
Isis Toolkit, 463
replicated data, 292
reporting membership through "views", 256
security, 382
summary of membership properties, 259
used in complex systems, 316

virus, 198
Visual Basic, 179
VPI field (ATM header), 54
VRML, 166

—W—
Web.SeeThe Web
web proxy, 174, 351
web server

wrapped for fault-tolerance, 326
Web servers (replication and load-balancing), 330
White-Pages, 84
whole file transfer compared with prefetching, 127
wide-area group communication for the Web, 330
worm, 198
wrappers, 316, 320
write-ahead log, 401

Kenneth P. Birman - Building Secure and Reliable Network Applications512

512

—X—
X.500, 84, 381, 475
XDR, 81
x-Kernel, 43, 149, 150, 352, 356, 363, 499

Xpress Transfer Protocol (XTP), 70

—Y—
Yellow Pages, 83

