
Nested parallelism in transactional memory

Ricardo Filipe and João Barreto

Abstract We are witnessing an increase in the parallel power of computers for the
foreseeable future, which requires parallel programming tools and models that can
take advantage of the higher number of hardware threads. For some applications,
reaching up to such high parallelism requires going beyond the typical monolithic
parallel model: it calls for exposing fine-grained parallel tasks that might exist in a
program, possibly nested within memory transactions.
While most current mainstream transactional memory (TM) systems do not yet sup-
port nested parallel transactions, recent research has proposed approaches that lever-
age TM with support for fine-grained parallel transactional nesting. These novel so-
lutions promise to unleash the parallel power of TM to unprecedented levels. This
chapter addresses parallel nesting models in transactional memory from two distinct
perspectives.
We start from the programmer’s perspective, studying the spectrum of parallel-
nested models that are available to programmers, and giving a practical tutorial on
the utility of each model, as well as the languages, tools and frameworks that help
programmers build nested-parallel programs. We then turn to the perspective of a
TM runtime designer, focusing on state-of-the art algorithms that support nested
parallelism.

1 Introduction

Harnessing the parallel power of today’s computers calls for concurrent programs
that expose and exploit as much parallelism as the ever increasing hardware thread
count. More than easily coding concurrent programs that yield some parallelism, we

Ricardo Filipe
Instituto Superior Técnico, Universidade de Lisboa /INESC-ID e-mail: rfilipe@gsd.inesc-id.pt

João Barreto
Instituto Superior Técnico, Universidade de Lisboa /INESC-ID e-mail: jpbarreto@gsd.inesc-id.pt

1



2 Ricardo Filipe and João Barreto

want concurrent programs that expose as much parallelism as the ever increasing
hardware thread count.

This goal becomes dramatically more challenging as affordable multicore ma-
chines include more and more cores each year. While 4-core processors supporting
up to eight simultaneous hardware threads are already regarded as commodity hard-
ware, 8-core, 16-core and even chips with tens or hundreds of cores promise to be
an affordable reality soon [1].

Achieving such parallelism levels will not always be possible with the traditional
monolithic organization of coarse-grained parallel threads. For many real applica-
tions, the programmer may not be able to find enough coarse-grained top-level par-
allelism to fork. Hence, the alternative is to recursively expose the fine-grained par-
allel tasks that might exist within coarser-grain parallel tasks in the program. This
leads to nested-parallel programs.

As a motivational example, let us assume that a programmer building an applica-
tion finds different tasks that, according to the application semantics, can safely run
in parallel threads. Furthermore, inside such tasks, the programmer finds that some
sub-tasks of a same task can also be parallelized in a fork-join fashion. Proceeding
recursively with this approach, the final application will comprise a dynamic tree
of nested fork-join tasks, each of which can run in concurrent threads to exploit
the available hardware resources. This tree can even be deeper if we consider that
some tasks may invoke functions from other modules (e.g., a library call) that may
themselves be implemented by nested-parallel programs.

If the tasks work on shared data, then the above application will most likely have
concurrent accesses to that data. Concurrency in traditional parallel programming is
well known to be a hard problem to tackle, as we need to correctly synchronize ac-
cess to shared data. Shifting to nested-parallel programming can further complicate
synchronization to dantesque levels.

Nested-parallel programs comprise dynamic trees of tasks, running at concurrent
threads, where correct synchronization depends on ancestor-descendant relations.
On the one hand, data contention between concurrent threads needs to be synchro-
nized. But, on the other hand, tasks that are ancestor/descendant of each other need
to be treated differently: for instance, a nested task trying to access some memory
location locked by some ancestor may be allowed to proceed with the access. Fur-
ther, deadlock situations are more likely and harder to prevent, as they may happen
between tasks at any nesting depths.

Relying on the programmer to explicitly solve such intricate synchronization
challenges (e.g., using lock-based programming) is usually unrealistic for the av-
erage programmer. Except for embarrassingly parallel programs, the programmer
is strongly discouraged to explore into the possibilities of nested-parallel program-
ming.

Memory transactions, in contrast, are an elegant and effective solution to hide the
hard synchronization parallel programming, especially if nested, away from the pro-
grammer. This makes transactional memory (TM) a promising paradigm to leverage
fine-grained nested parallelism in tomorrow’s multi/many-core machines.



Nested parallelism in transactional memory 3

Hereafter, let us designate the original non-nested TM programming model as
flat-parallel (in contrast to the nested-parallel counterpart). The key insight is that
the flat-parallel TM programming model is easily extensible to support nested trans-
actions [2], an extension that has been introduced well earlier in the context of
database transactions [3]. Essentially, a nested transaction is one whose execution is
contained inside another transaction’s execution. A program may hence recursively
create nested transaction trees while executing.

When building a parallel-nested program, the programmer simply needs to ap-
ply the same rule that she was required to follow in traditional flat-parallel pro-
gramming: to identify each code region that needs to run atomically and wrap it
inside a transaction. Since transactions are composable [4], if all the atomic regions
in a task have been properly defined, then executing such a task nested within a
nested-parallel program will be correct. This holds true even if some of the tasks in
a nested-parallel program belong to different modules, whose implementation the
programmer does not know about (e.g. a call to a parallelized library function).

Programming in a nested-parallel fashion using TM, when compared to flat-
parallel programming, introduces new challenges that programmers must be aware
of in order to build correct and efficient programs. Firstly, the nested-parallel model
is more complex than the flat one. Secondly, starting nested tasks may be cumber-
some, error-prone and lead to inefficient, slow and not scalable programs if is not
handled correctly. Finally, not of all today’s mainstream TM runtimes support a fully
nested-parallel model. Instead, many TM runtimes support limited nesting models,
which need to be taken into account by the programmer.

This chapter approaches parallel nesting models in TM from two distinct per-
spectives. We start from the programmer’s perspective. Section 2 studies the spec-
trum of parallel-nested models that are available to programmers, and gives a prac-
tical tutorial on the utility of each model. Section 3 then surveys languages, tools
and frameworks that help programmers build nested-parallel programs in TM. Sec-
tion 4 then focuses on the inner works of TM runtimes that support parallel nesting,
describing state-of-the art algorithms. Finally, Section 5 summarizes.

2 Nested parallelism models in transactional memory

In theory, the TM model is extensible to support parallel-nested programs [5]. This
extension implies redefining the correctness guarantees that were originally defined
in the context of flat-parallel programming in TM.

The key insight is that correctness must now consider the ancestor-descendant
relationships between parallel transactions, as we shall detail next.

However, supporting parallel nesting also implies changes to the TM runtime
that may introduce substantial overheads or limit scalability. For this reason, many
current mainstream TM runtimes opt for limited nesting models. For the sake of
efficiency of flat-parallel programs, these typically restrict the nested parallelism
that programmers can actually extract from their programs.



4 Ricardo Filipe and João Barreto

Algorithm 1: Example of parallel nested transactions
1 function sb7-longTraversal(root)
2 atomic {
3 parallel {
4 sb7-traverseComplexAssembly(root.leaf1);
5 sb7-traverseComplexAssembly(root.leaf2);
6 sb7-traverseComplexAssembly(root.leaf3);
7 }
8 }

Hence, the reality is that, instead of a single nested-parallel model, TM runtimes
actually offer a spectrum of models. It is, of course, important that the programmer
understands each model in order to produce programs that, while ensuring correct-
ness, are able to fully exploit the model supported by the underlying runtime.

This section presents and discusses each different model in the spectrum of
nested models for TM. We start by focusing on the pure parallel-nested model, be-
fore delving in restricted variants of such a model in the subsequent subsections.

2.1 Parallel Nesting

Simply put, the nested-parallel model for TM means that the TM runtime supports
nested transactions and allows the child transactions of a common parent to run
in parallel. This model is a straightforward extension of the closed nesting model
proposed by Moss and Hosking [2].

Conceptually, the execution of a nested-parallel program yields a dynamic tree of
active transactions, inter-connected by child-parent relations. At any moment, some
of the transactions will be running, while others will be waiting (for instance, for
some processor to become available, or waiting for their children to commit).

We illustrate with an excerpt taken from a modified long transaction of the popu-
lar STMBench7 benchmark [6], presented in Algorithm 1. Method sb7-longTraversal
includes an atomic region (i.e. encloses a transaction), which calls the sb7-traverseComplexAssembly
method for each leaf of the root data item. The sb7-traverseComplexAssembly
method also executes a transaction inside of it. In this example the programmer
is calling methods within the same program, but they could be calls to an external
library.

In the above example, the programmer calls the sb7-traverseComplexAssembly
methods in parallel threads, thereby building a nested-parallel program. These meth-
ods will perform accesses that may conflict with transactions running concurrently
at other threads. Furthermore, the parallel-nested threads may also contend for
shared memory locations. If that is the case, the programmer should have identi-
fied the code regions at the called methods that need to run atomically and created
transactions to ensure the necessary synchronization.



Nested parallelism in transactional memory 5

The transactions defined by the atomic regions within sb7-traverseComplexAssembly
will compose with the parent transaction initiated at method sb7-longTraversal. In
other words, the sb7-traverseComplexAssembly methods will start nested transac-
tions. We call each such nested transaction a child of the parent transaction from
sb7-longTraversal. By extension, we say that two transactions are siblings if they
have a common parent transaction. Furthermore, we define that transaction t is an
ancestor of transaction s if t is included in the path from s’s node to the root node in
the tree of nested transactions.

For model simplicity, most definitions of the nested-parallel transactional model
(e.g. [5]) assume that the parent transaction halts until all the threads that it spawned
(and the inherent nested transactions) complete. Only after all children tasks finish
does the parent’s execution continue. We adopt such assumption too. Hence, when
a given nested task is running, all its ancestors’ threads are waiting. Accordingly,
when a nested transaction is active, all its ancestor transactions are waiting.

A nested transaction is seen as executing after all the accesses that its ancestors
have performed so far. In particular, when some transaction t reads from a memory
location that has been written by any of its ancestors, t should observe the most
recently written value by its ancestors.

Each nested transaction runs in isolation relatively to any other concurrent trans-
action. More precisely, the concurrent transactions of a given transaction include its
own siblings and all its ancestors’ siblings and their descendants (including the root
transactions that are concurrent to the transaction’s root ancestor).Note that a trans-
action never runs concurrently with its descendants, as it waits for the descendants
to complete.

Conceptually, a nested transaction has its own read set and write set. This en-
ables rolling back the nested transaction without having to roll back its entire root
transaction.

On commit, a nested transaction’s read and write sets are inherited by the trans-
action’s parent. In other words, the reads and writes of the committed nested trans-
action are, from that moment on, considered to have been performed on behalf of
the parent transaction.

Committing a nested transaction does not make its writes visible to the rest of the
world. 1 Instead, committing a nested transaction means that the committed writes
become visible to its active siblings and to its ancestors (which are blocked until all
children commit). Following this rule recursively, the writes of a nested transaction
become gradually visible to other transactions, starting at the set of siblings of the
transaction and then going upwards the nesting tree.

The nested-parallel transactional model is very powerful to ease programmers’
lives when exploiting nested parallelism in their programs. The key insight is that the
nested-parallel model retains the composability of the traditional flat model. Hence,
when shifting from the flat-parallel model to the nested-parallel one, the program-

1 This means that we consider only a closed nesting model. An alternative is the open nesting
model introduced briefly in Section 2.3.2. We leave that alternative out of the scope of this chapter,
since no research work on parallel nesting support includes open nesting. In theory, however, open
nesting is applicable to both parallel and linear nesting models.



6 Ricardo Filipe and João Barreto

mer is required to apply the very same principle as before: to identify regions within
the program that are atomic and wrap them in transactions. Having done that, cor-
rect synchronization is ensured by the TM runtime even for a program that has been
structured in a nested-parallel fashion. This holds true even if some of the tasks in
a nested-parallel program belong to different modules, whose implementation the
programmer does not know about (e.g. a call to a parallelized library function).

However, porting a flat parallel program with monolithic coarse-grained threads
to a nested-parallel alternative that exposes more fine-grained parallelism is not
transparent and requires caution from the programmer. Let us consider a thread that
executes a seguence of tasks. Before parallelizing such tasks, the programmer needs
to carefully confirm that:

• The candidate tasks to parallelize safely commute. Parallelizing them can yield
executions where the serialized order of the transactions within the parallelized
tasks is different than the serial order in the original flat thread’s program.
Whether such a reordering of such tasks is safe or not depends on the seman-
tics of the operations being performed at each candidate task.
When two or more tasks are not commutable, spawning them inside nested-
parallel threads is not a safe choice.

• The tasks to parallelize should be long enough to compensate the overheads as-
sociated with nesting. Namely, the cost of forking/joining the new threads to run
each task in parallel, the costs of beginning and committing nested transactions,
the additional overheads of deeper nesting in the transactional tree, among others.
Nested tasks should only be parallelized when the associated speed-ups clearly
compensate the above costs.

• There are available hardware contexts to run each task in parallel. Of course, ex-
posing additional fine-grained parallelism is advantageous as long as there are
idle hardware contexts to run the spawned nested tasks. Blindly spawning nested
tasks may lead to pathological executions where spawned tasks are actually con-
demned to spend substantial periods waiting for an available core. Furthermore,
it increases thread preemption cost.

Ensuring the above conditions is not trivial and is, perhaps, the key obstacle to
building efficient nested-parallel programs. There are, however, tools, frameworks
and language support that assist the programmer with some of the above issues. We
describe some examples of such items in the following sections.

Although appealing in theory, only a few of today’s state-of-the-art TMs sup-
port this nested-parallel model. As we shall discuss in Section 4, the nested-parallel
model brings about a number of technical challenges that can substantially com-
plicate the implementation of a TM runtime. Hence, many TMs offer support for
nesting but introduce restrictions that do not exist in the pure nested-parallel model
we described previously.

We address such restricted models next.



Nested parallelism in transactional memory 7

2.2 Shallow parallel nesting

Volos et al. [7] define one poorer variant of the nested-parallel model, which they
call shallow nesting. In shallow nesting, a transaction can have several threads exe-
cuting, in parallel, parts of the transaction’s code. However, no nested transactions
are allowed.

The memory accesses performed by the threads running on behalf of a common
(parallelized) transaction are added to the transaction’s read and write set. However,
the TM does not guarantee that such threads run in isolation.

Hence, the programmer’s role is harder, since shallow nesting places the burden
of ensuring correct synchronization among the parallel threads running on behalf
of a same transaction. Shallow nesting is, though, a nice fit for parallelizing long
transactions that perform multiple independent operations (e.g. a loop on disjoint
data).

2.3 Nesting with restricted parallelism

Other variants of the nested-parallel model restrict the allowed parallelism among
nested tasks (and transactions).

2.3.1 Hierarchical Lock Atomicity

One such model consists in disallowing sibling transactions (i.e., nested transactions
descending from a common parent) to run in parallel. Volos et al. [7] define this as
the Hierarchical Lock Atomicity (HLA) model. In concept, it is as if each parent
transaction has a single lock, which the children transactions need to obtain before
proceeding. More precisely, let us consider that some transaction spawned a set of
threads. When any of such threads wishes to begin a (nested) transaction, it needs to
wait until there is no other sibling or any sibling’s descendant transaction running.

Note that, like shallow nesting, HLA also allows a transaction to effectively run
in parallel - as long as such parallel threads do not begin simultaneous nested trans-
actions. Hence, in long transactions that can be parallelized into tasks that contain
few and short transactions, HLA is able to yield parallel executions that resemble
those of the pure nested-parallel model.

2.3.2 Linear nesting

For implementation simplicity, many mainstream TMs support nested transactions
but simply disallow a transaction to spawn any threads. In other words, if some
parent transaction creates child transactions, then the children will run in the same



8 Ricardo Filipe and João Barreto

thread that runs the parent transaction, one after another. This is called the linear
nesting model.

Linear nesting imposes a decisive limitation on the potential parallelism that is
made available to programmers, who can only create threads in code locations that
lie outside atomic blocks. Hence, it severely restricts composability of parallel pro-
grams [16], as a program cannot call a parallel library function from inside a trans-
action without serializing the function [1]. Or, alternatively, the programmer cannot
decompose long transactions into parts that do not conflict among each other (at
least not too much).

We can actually identify three main variants of the linear nesting model, as fol-
lows:

• Flat Nesting.
The parent transaction sees all modifications to program state made by inner
transactions, since child and parent transactions are coupled onto a single trans-
action. This is the simpler approach, since aborting the child transaction will also
abort the parent, but committing the child transaction has no effect until the par-
ent transaction also commits. Flattened transactions are easy to implement, since
there is only one transaction in execution coupled with a nesting depth counter.
However, this is a poor programming abstraction, since if an explicit abort is is-
sued in a library routine that contains transactions, all surrounding transactions
must terminate execution.

• Closed Nesting.
A closed transaction behaves similarly to a flattening one, except the inner trans-
action can abort without terminating its parent transaction. When a closed trans-
action commits or aborts, control passes to its parent. If the inner transaction
commits, its changes become visible to the parent. However, they only become
visible to other threads when the parent transaction commits. Hence, closed nest-
ing ensures the same correctness properties as flat nesting.

• Open Nesting.
When an open transaction commits, its changes become visible to all other trans-
actions in the system, even if the parent transaction is still executing. Further-
more, if the parent transaction aborts, the results of the nested open transactions
remain committed. Thus, open nesting allows greater concurrency between trans-
actions. For example, it allows concurrent transactions to increment a shared
counter without provoking a conflict for the whole parent transaction. While us-
ing open transactions allows for greater concurrency in the application, they can
subvert the isolation of a parent transaction, thus requiring extra care. For in-
stance, consider the case where a child transaction reads data tentatively written
by the parent; then the child transaction commits but the parent transaction later
aborts. Now there is some inconsistent global state which depends on a write op-
eration that actually never occurred. Another problematic case is the one where
the parent transaction reads some location that the child transaction writes to.
The child can commit a new value to that location, and then the parent may abort
and read the value that was updated by its child transaction upon re-execution.



Nested parallelism in transactional memory 9

2.4 Nested-parallelism with thread-level speculation

As discussed earlier in this section, the nested-parallelism model requires careful
reasoning about the semantics of the parent task being parallelized. Namely, the
programmer must assert if the work performed by the parallel children tasks is ac-
tually commutative.

This assertion may not be trivial for all applications. For the average programmer,
this may pose a significant effort and introduce a non-negligible risk of errors due
to parallelizing tasks that, after all, were not semantically commutable. At the end,
most programmers will most likely feel discouraged from exposing fine-grained
parallelism lying within their applications.

Furthermore, some tasks are simply not commutable, as the application’s seman-
tics require them to run accordingly to the sequential program’s order. That is, any
task reordering that leads to different results is simply prohibited by the semantics.
However, this does not mean that running the tasks in parallel will always lead to
such undesirable executions. Consider, for instance, a sequence of tasks that work
on some shared data structure (e.g., a large array or matrix) such that some tasks
may occasionally read or write to the same elements in the shared structure. Any
task reading from an element that other tasks in the sequence write to should obtain
the value updated by the most recent task that, in program order, precedes the reader.
Hence, parallelizing these tasks as sibling nested transactions may violate this con-
dition, as the nested-parallel model may serialize siblings in a different order than
that of the original program.

A recent research direction has proposed a variant of the nested-parallel model
that address the two above issues [8]. This new model combines TM and thread-
level speculation (TLS) [9].

As in the nested-parallel model, the programmer can sub-divide a transaction
into parallel tasks. The key difference in the hybrid TM+TLS model is that runtime
is responsible for ensuring that any data dependencies stemming from the original
sequential program order are respected in the speculatively parallelized execution.

This hybrid model eliminates the two issues discussed above. On the one hand,
the programmer in doubt about task commutativity can conservatively parallelize a
transaction using this hybrid model. Since the underlying runtime guarantees that
the parallelized execution will be equivalent to a sequential execution of the same
transaction, the parallelized program is correct no matter if the tasks were actually
commutable or not. On the other hand, situations where the sequence of tasks in a
transaction is not commutable may now be safely parallelized, since the TM ensures
that such tasks will be serialized according to program order.

It is thus pertinent to compare the the hybrid TM+TLS model with the nested-
parallel model. The TM+TLS model is perhaps more appealing to the average
programmer, as it strongly simplifies programming fine-grained parallel programs
where the tasks do not commute or the programmer simply is not sure that they
commute.

However, the main question is which model is able to actually deliver higher par-
allelism. In fact, each model can, in theory, achieve more parallelism than the other,



10 Ricardo Filipe and João Barreto

Algorithm 2: Example of nested-parallel programs with TFJ
9 function sb7-longTraversal-TFJ(root)

10 transaction(proc, params) {
11 onacid;
12 proc(params);
13 commit;
14 }
15 onacid;
16 spawn transaction(sb7-traverseComplexAssembly, root.leaf1);
17 spawn transaction(sb7-traverseComplexAssembly, root.leaf2);
18 spawn transaction(sb7-traverseComplexAssembly, root.leaf3);
19 commit;
20 }

depending on the program being parallelized. As discussed above, the TM+TLS
model can expose parallelism in situations where the pure nested-parallel model
cannot.

However, in situations where the nested-parallel tasks are commutable, the
TM+TLS model is limited. Whereas the pure nested-parallel model is free to se-
rialize the sibling tasks in any order, the TM+TLS model will always enforce the
sequential program order. Unfortunately, the sequential program order may not be
the serialization order that allows for highest parallelism, when considered among
the remaining possible serialization orderings.

3 Support

In order to aid the programmer in building nested parallel programs it should be
easy for him to: i) create nested tasks in a fork-join pattern; ii) protect the accesses to
regions of shared data using transactions. Recently several frameworks in different
programming languages have added support for such mechanisms, which we will
now address.

The flat-nesting TM API makes use of functions to start and end transactional
code, e.g. tx-begin() and tx-commit(), or simply use an annotation or construct that
surrounds the transactional code, e.g. @Atomic or atomic { }. When using nested
transactions there is, usually, a need for an extended TM API that supports each of
the models described in Section 2.

The first framework support for parallel nested transactions was proposed by
Vitek et al. in Transactional Featherweight Java (TFJ) [10]. TFJ used a spawn key-
word to create a new thread for executing a transaction, an onacid keyword that
represents the start of a transaction and a commit keyword for ending a transac-
tion (example Algorithm 2). They proceed to define the semantics in which such
keywords can be used to program parallel nested applications. Then, they describe



Nested parallelism in transactional memory 11

Algorithm 3: Example of nested-parallel programs with Cilk
21 function sb7-longTraversal-Cilk(root)
22 atomic {
23 parallel {
24 atomic {
25 traverseComplexAssembly(root.leaf1);
26 }
27 atomic {
28 traverseComplexAssembly(root.leaf2);
29 }
30 atomic {
31 traverseComplexAssembly(root.leaf3);
32 }
33 }
34 }

theoretical proofs that validate these keywords as building blocks for any model of
nested transactions.

The work on TFJ was followed by Agrawal et al. [5] implementing similar con-
structs in Cilk, a dynamic multi-threaded language. Cilk already supported exe-
cuting parallel sections of code, using a parallel { } construct, to tell the runtime
that there exists a possibility for parallelism, and transactions, using the atomic { }
construct. The combination of these two constructs allowed for the specification of
parallel nested transactions, with an unbounded nesting depth (example Algorithm
3).

The support for parallel nested transactions on TFJ and Cilk executed all sibling
transactions independently, as most parallel nested transactions’ models require.
However, Ramadan et al. [11] argued that this execution model was not expressive
enough, and that siblings should affect each other’s outcomes. They introduced co-
ordinated sibling transactions in Xfork, a programming construct that allowed TM
programmers to express intra-transaction concurrency. Inside an atomic { } con-
struct, a TM programmer could define parallel transactions with the construct xfork
(form, numForks, xforkProcedure, data), where:

• form : the form of sibling coordination (AND, OR, XOR)
• numForks: the number of concurrent sibling transactions to spawn
• xforkProcedure: a list of procedures to execute inside sibling transactions
• data: a list of arguments for each of the procedures

Xfork supports three forms of coordinated sibling transactions:

• AND: All sibling transactions must succeed, or none succeed
• OR: Sibling transactions succeed or fail independently
• XOR: Only one sibling transaction must succeed

The AND form is used for regular nested parallel transactions (Example Func-
tion 4). The OR form emulates independent nested transactions, where all success-



12 Ricardo Filipe and João Barreto

Algorithm 4: Example of nested-parallel programs with xFork
35 function sb7-longTraversal-xFork(root)
36 atomic {
37 xfork (AND, 3, { traverseComplexAssembly, traverseComplexAssembly,

traverseComplexAssembly }, {root.leaf1, root.leaf2, root.leaf3});
38 }

Algorithm 5: Example of nested-parallel programs with JVSTM
39 @Atomic
40 function sb7-longTraversal-JVSTM(root)
41 @Parallel
42 for each leaf in root do
43 traverseComplexAssembly(leaf);

fully completed siblings will commit. The XOR form allows for speculative parallel
nested transactions, where if some sibling is successful the parent is also successful.
Non-speculatively, the XOR form can execute several transactions in parallel when
the programmer knows that only one sibling will commit successfully (e.g. when
doing a parallel search for an item on a data structure).

Finally, the work by Diegues et al. [12] uses the annotations @Atomic and @Par-
allel, identical to the constructs of Agrawal et al. and DeuceSTM [13], in the Java
programming language. These annotations are enough to fully program parallel
nested transactions, with an unbounded nesting depth, in JVSTM [12] (example
Algorithm 5).

4 Algorithms

Extending a TM runtime with parallel nested transactions support is not trivial. Con-
flict detection, in particular, becomes much more complex. Not only does the TM
need to detect conflicts between concurrent running transactions accessing the same
data object, but now the TM must also allow accesses from child transactions to ob-
jects written to and commited by its siblings. Handling such accesses in an efficient
manner requires a re-organization of the TM data structures.

Therefore, for a TM runtime to fully support nested parallel transactions it has to
tackle several challenges that did not exist in the traditional flat nesting scenario:

1. To support partial rollback of child transactions, without affecting the parent
2. To handle concurrent data structures correctly, such as the parent-child read and

write sets
3. To coordinate the commit or abort of parent and child transactions



Nested parallelism in transactional memory 13

4. To detect conflicts by verifying ancestor-descendant relationships, which may be
complicated for deep nested trees

This section addresses several state of the art algorithms for the nested parallel
transactions models we presented in Section 2. Since this chapter focuses on parallel
nesting models, we omit algorithms that support only linear nesting. A survey of
linear nesting algorithms can be found in the technical report of Diegues [14].

Each of the following algorithms solves some or all of the previous challenges in
different ways, with different complexity degrees. As discussed in Section 2, some
solutions opt for limited models in exchange for better performance or scalability.

4.1 CWSTM

This approach builds on Cilk, a dynamic multi-threaded language that allows the
programmer to use special constructs to create new threads with assigned tasks.
The CWSTM [5] dynamically unfolds the program execution into a computation
tree that is used for conflict detection. This structure serves as the basis for a work-
stealing algorithm that allows the exploration of a transaction’s inner parallelism.

The work-stealing technique is a means of distributing a set of tasks to threads:
Each thread maintains a double-ended queue of tasks; when the thread runs out of
work, it reaches the top of another thread’s dequeue and steals a task to execute
on that thread’s behalf. Given the uniform random access for stealing, there should
never exist any contention in accessing a dequeue, as long as there is work left to be
done.

CWSTM uses the aforementioned computation tree for eager conflict detection,
with a computational intensity that is independent of the nesting depth. Each trans-
actional object has an associated access stack in which entries correspond to ac-
cesses performed by active transactions. The content of these stacks is a form of
multiple-readers-single-writer locking scheme: The last entry always corresponds
to the youngest descendant writer transaction, or a set of reader transactions all de-
scendant of a common writer ancestor. Therefore, below the first stack entry there
may only exist accesses of descendants of the last access owner. This way, as soon
as a transaction accesses an object, that transaction may eagerly detect a conflict.

However, maintaining these per-object stacks is very inefficient. Hence, their ef-
fort only resulted in providing a STM specification and a theoretical upper bound
for the execution time of a parallel nested transaction. No complete implementation
of such design was achieved for this paper, albeit the proposed design solves all of
the challenges we described.



14 Ricardo Filipe and João Barreto

4.2 PNSTM

The Parallel Nesting STM (PNSTM) [15] followed the approach of Agrawal et al.
and succeeded in implementing an algorithm for parallel nested transactions sup-
port. PNSTM provides a simple work-stealing approach with a single global queue,
into which the application’s blocks may be enqueued for concurrent transactional
execution.

Moreover, each transactional object is associated with a stack that contains all
the accesses (both reads and writes) performed by active transactions. To achieve
constant time ancestor queries for eager conflict detection, the per-object stack is
represented by a memory word that has each bit assigned to a transaction (called a
bitnum). When two transactions access the same object, a conflict is easily detected
by performing a bitwise operation on the object’s stack.

By using a memory word for this representation they achieved performance im-
provements but limit the maximum number of transactions on the system at all
times. As a workaround, PNSTM uses a mechanism that allows for new transac-
tions to reuse bitnums of completed transactions.

The system is limited to a determined maximum number of concurrent transac-
tions. However, PNSTM claims that no more parallelism would be achieved over
that limit if it is larger than the maximum number of worker threads.

When a transaction commits, it leaves behind traces in all the objects it accessed,
namely the stack frames stating its ownership. To avoid having to go through all
the objects in the write-set by locking and merging the frame with the previous
entry, PNSTM does that lazily, similarly to Agrawal’s algorithm. This may lead to
false conflicts when some transaction accesses an object and finds an entry in the
stack that corresponds to an already committed but not yet reclaimed transaction.
The authors show that it is possible to avoid it by resorting to a global structure
maintaining data about all committed transactions.

This was the first implementation of parallel nesting with constant time ancestor
queries, for an arbitrary nesting depth. It solves all of the challenges we presented
in a more efficient way, at the cost of a bound in the active threads count.

4.3 NePalTM

The Nested Parallelism for Transactional Memory (NePalTM) [16] provides in-
place updates with strict two-phase locking for writes. Memory addresses are
mapped to transactional records with a granularity of several addresses.

The transactional records may be read in two modes: in pessimistic mode they
have to acquire a lock in read-mode, or by using version timestamps which are
accessed by optimistic readers. Therefore, it actually provides both visible and in-
visible readers.

NePalTM supports the Shallow Nesting model, described in Section 2, by having
each member of an atomic region store its own transactional logs (read, write and



Nested parallelism in transactional memory 15

undo logs). This way, no synchronization is required to access the logs of an atomic
region, and they are all used only at commit time of that atomic region.

NePalTM also supports the Hierarchical Lock Atomicity model, defined in Sec-
tion 2. In this case, NePalTM has a major limitation of requiring such sibling trans-
actions to run in mutual exclusion. Hence, it does not support parallel nesting en-
tirely. Thus, NePalTM solves the first challenge, of supporting partial rollback, since
there is no concurrency between parent and child transactions. It also solves the
second challenge, since in shallow nesting members of an atomic region are concur-
rently logging transactional data.

4.4 NeSTM

The Nested STM (NeSTM) [17] is based on McRT-STM [18]. McRT-STM is a
traditional blocking STM, with eager conflict detection, with undo logs for writes
at the word granularity. In the extension of McRT-STM to support parallel nesting,
the focus point was that it should not interfere with the performance of workloads
in which nesting is not used. They were also driven by the intent of keeping the
memory footprint as close to constant as possible, regardless of the nesting depth in
use.

The original McRT-STM assumed that no other transaction could access a locked
variable. With nested-parallel transactions this is no longer the case: due to the par-
allel nested transactions, other transactions can correctly access the locked object as
long as they are descendants of the owner. When a transaction accesses an object, it
locks such an object. That object’s lock includes a new field with information about
its current owner. This way, when another transaction wishes to access the same
object, it may confirm if it is a descendant of the lock’s owner.

Similarly, the version number of an object must also be visible at all times, in
order to serialize conflicting transactions. Consequently, the lock variable now has
some reserved bits to identify the transaction owning it, and the rest of the bits
are used for the version number. This scheme allows visible readers even when the
object is locked. This leads to two practical consequences: first, there is a maximum
number of concurrent transactions at a given time, since the transaction identifier
is just a few bits long; second, the transaction identifier overflows several orders of
magnitude faster than normal.

At transaction start, the global clock is used to timestamp the transaction. Reads
will cause an abort if an object was written since the transaction started. This might
cause unnecessary aborts: picture two transactions Ti and Tk; Ti did not perform any
access, Tk commits values, Ti reads one of the values and will abort. When writing a
value, the transaction will attempt to acquire the lock corresponding to the variable
and then it will validate the object: The transaction attempting to write, as well as its
ancestors, must not have a timestamp smaller than the object’s timestamp, in case
they read it previously.



16 Ricardo Filipe and João Barreto

To reduce the work needed for this validation, only transactions that were not
ancestors of the previous owner of the object must go through the check. Yet, this
mechanism yields considerable costs in terms of computation at deeper levels.

Given that the nested commit procedure requires validating the reads across the
transaction and its ancestors, followed by the merge of the sets into the parent, this
set of actions must be atomic in the algorithm. This is meant to prevent concur-
rent siblings from committing simultaneously and breaking serializability. This was
solved by introducing a lock at each transaction and making nested transactions
acquire their parent’s lock in mutual exclusion with their siblings.

In addition, NeSTM is subject to livelocks at the level of nested transactions.
Picture two transactions, T1 who writes to x and T2 who writes to y, they will both
have acquired ownership of the respective objects. Now if the T1 spawns T1:1 while
T2 spawns T2:1 and both these nested transactions cross-access y and x, respectively,
they will abort since those variables are neither owned by them or their ancestors.
However, they will have mutually blocked each other unless one of their ancestors
aborts as well and releases the corresponding variable. The authors placed a mecha-
nism to avoid this in which they heuristically count consecutive aborts and abort the
parent as well.

NeSTM solves all of the challenges we identified, in a more efficient manner than
PNSTM, but still with several limitations. Baek et al. [19] and Liu et al. [20] studied
how hardware acceleration could improve the performance of nested transactional
systems, using NeSTM as a baseline.

4.5 HParSTM

The Hierarchy-based Parallel STM (HParSTM) [21] allows a parent to execute con-
currently with its children nested transactions. The advantage of this is that it allows
more nodes in the transactional tree to be active in computations concurrently, which
enhances the distribution of tasks.

The same protocol used for top-level transactions is extended for nesting by repli-
cating most control data structures. The baseline STM design promotes a mixed in-
validation strategy with visible readers and lazy lock acquisition and write-back on
commit time.

To achieve this, a global structure is used to register transactions that are doomed
to abort. This is accomplished by having a transaction’s commit procedure invalidate
active readers of objects that it is writing-back in the aforementioned structure. Any
transaction has to check that it does not belong to the doomed transactions list prior
to commit.

Furthermore, this information is also scattered across the shared objects which
have a forbidden set associated to them, better defined by an example: if T1 read x
and T2 wrote x and y followed by commit, it not only adds T1 to the global doomed
set, but also to the forbidden set of x and y. If T1 attempts to read y it will fail to do
so, in order to prevent an inconsistent view state.



Nested parallelism in transactional memory 17

This procedure is used by nested transactions, except that they must ensure that
these invalidation sets contain neither the nested transaction’s identifier or any of
its ancestors’. The control data structures of nested parallel transactions are merged
into the parent transaction by concurrent siblings (and the parent’s execution itself)
with mutual exclusion.

HparSTM goes even further in the design space of parallel nested transactions al-
gorithms. Although it solves all our challenges, HparSTM still has some limitations
when supporting higher levels of nested transactions.

4.6 JVSTM

The first STM to solve all challenges we described in an efficient manner was the
work by Diegues et al. in JVSTM [12]. They extended the original JVSTM [22]
with parallel nesting support, assuming that each top-level transaction may unfold a
nesting tree in which a transaction performs transactional accesses only when all its
children are no longer active.

Their approach is to extend VBoxes (JVSTM’s placeholders for transactional
locations’ values) such that transactions may now write directly to the VBoxes,
rather than having to maintain a private write set mapping each location written
to its new value. In order to distinguish between globally committed values and
the tentative values of ongoing transactions, a VBox now contains both values. A
permanent value has been consolidated via a commit of some top-level transaction,
whereas a tentative value belongs to an active top-level transaction (or any of its
children nested transactions), and is thus part of its write-set.

Additionally, each tentative write points to an ownership record (orec) that en-
capsulates the transaction that owns it, the version of the write, and the status of
the owner. Each writing transaction creates one such orec and propagates it to the
transaction’s parent when it commits. Through these orecs a nested transaction can
perform the ancestor query, which depends only on the number of tentative writes
on the location.

The algorithm proposed in this work has three major features that make it effi-
cient: a fast path in the read operation that is performed in constant time (indepen-
dently of the nesting depth); a fast mode for writing, backed up by a slow mode for
fallbacks; and a commit operation that is independent of the write-set size.

The fast read path is achieved by checking if the read operation being performed
is not a read-after-write. In that case the read operation can be done directly from
the last permanent write, and avoid the ancestor query. The fast path for writing
occurs when the transaction that is writing to a location already owns that location,
thus it can simply overwrite the tentative value. The commit operation of nested
transactions simply changes the ownership of orecs that the child transaction owns
to its parent. The set of location orecs is usually smaller than the whole write-set.



18 Ricardo Filipe and João Barreto

4.7 TLSTM

TLSTM is the first algorithm to tackle the challenges of nested-parallelism using
thread level speculation. TLSTM extends an existing STM, SwissTM [23]. The key
insight is that a SwissTM transaction is used as the speculative execution unit that
supports two concepts: STM transactions (defined by the user) and TLS specula-
tive tasks (automatically created at compile time). An STM transaction is seen as
a sequence of one or more TLS speculative tasks, which can run out-of-order in a
speculative fashion, until they commit sequentially.

Most of the maintenance load of STM and TLS that typically dominates the asso-
ciated execution overheads is, in fact, common to both approaches. Namely, conflict
detection, speculative reads and writes, read-log and write-log maintenance, commit
and rollback are issues that both STM and TLS must handle. Hence, by combining
both STM and TLS in TLSTM, the overhead associated with the above aspects re-
mains comparable to the overhead of stand-alone STM, rather than doubling.

Cross-transaction conflict detection follows the original approach of SwissTM:
using eager, lock-based conflict detection for write/write conflicts, and lazy counter-
based validation for read/write conflicts. Within each top-level transaction, cross-
task conflict detection relies on the very data structures maintained for cross-
transaction conflict detection, with the addition of a task read-set for speculative
cross-task reads. TLSTM allows only one task to write on each location at a time,
also using eager, lock-based write-write conflict detection. TLSTM validates the
task and transaction read-sets at write and commit time, looking for cross-task Write
after Read conflicts. Furthermore, TLSTM only allow speculative reads from com-
pleted tasks within a transaction.

5 Summary

For many real applications, harnessing the hardware parallelism of modern multi-
and many-core machines calls for exposing fine-grained parallel tasks, possibly
nested within memory transactions. Memory transactions, being a composable ab-
straction, are a promising way to enable the average programmer to exploit nested-
parallel programming.

This chapter has given an insight into the concepts, techniques and challenges
behind nested-parallel programming. We started with a view from the program-
mer’s point of view, describing the nested-parallel model in transactional memory
and its variants. Complementarily, we surveyed available support to build and run
nested-parallel programs. We then turn to the perspective of a TM runtime designer,
studying the state-of-the art algorithms that support currently nested parallelism.



Nested parallelism in transactional memory 19

References

1. J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam, V. Er-
raguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K. Henriss,
T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. Van Der Wijngaart, and T. Mattson, “A 48-core
ia-32 message-passing processor with dvfs in 45nm cmos,” in Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2010 IEEE International, pp. 108 –109, feb. 2010.

2. J. E. B. Moss and A. L. Hosking, “Nested transactional memory: Model and architecture
sketches,” Sci. Comput. Program., vol. 63, pp. 186–201, Dec. 2006.

3. J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1st ed., 1992.

4. T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable memory transactions,”
in Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’05, (New York, NY, USA), pp. 48–60, ACM, 2005.

5. K. Agrawal, J. T. Fineman, and J. Sukha, “Nested parallelism in transactional memory,” in
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’08, (New York, NY, USA), pp. 163–174, ACM, 2008.

6. R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: A benchmark for software transactional
memory,” in Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2007, EuroSys ’07, (New York, NY, USA), pp. 315–324, ACM, 2007.

7. H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy,
“NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems,” in Proceedings of the 23rd European Conference on Object-Oriented Programming
(ECOOP), pp. 123–147, 2009.

8. J. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guerraoui, “Unifying thread-level
speculation and transactional memory,” in Proceedings of the 13th International Middleware
Conference, pp. 187–207, Springer-Verlag New York, Inc., 2012.

9. G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multiscalar processors,” in 25 years of the
international symposia on Computer architecture (selected papers), ISCA ’98, (New York,
NY, USA), pp. 521–532, ACM, 1998.

10. J. Vitek, S. Jagannathan, A. Welc, and A. Hosking, “A semantic framework for designer trans-
actions,” in Programming Languages and Systems (D. Schmidt, ed.), vol. 2986 of Lecture
Notes in Computer Science, pp. 249–263, Springer Berlin Heidelberg, 2004.

11. H. Ramadan and E. Witchel, “The xfork in the road to coordinated sibling transactions,” in
4th ACM SIGPLAN Workshop on Transactional Computing (TRANSACT 2009), 2009.

12. N. Diegues and J. Cachopo, “Practical parallel nesting for software transactional memory,”
in Distributed Computing (Y. Afek, ed.), vol. 8205 of Lecture Notes in Computer Science,
pp. 149–163, Springer Berlin Heidelberg, 2013.

13. G. Korland, N. Shavit, and P. Felber, “Noninvasive concurrency with java stm,” in Third Work-
shop on Programmability Issues for Multi-Core Computers (MULTIPROG), 2010.

14. N. Diegues and J. Cachopo, “Review of nesting in transactional memory,” tech. rep., Technical
Report RT/1/2012, Instituto Superior Técnico/INESC-ID, 2012.

15. J. a. Barreto, A. Dragojević, P. Ferreira, R. Guerraoui, and M. Kapalka, “Leveraging parallel
nesting in transactional memory,” SIGPLAN Not., vol. 45, pp. 91–100, Jan. 2010.

16. H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and R. Narayanaswamy,
“NePaLTM: Design and Implementation of Nested Parallelism for Transactional Memory
Systems,” in Proceedings of the 23rd European Conference on Object-Oriented Programming
(ECOOP), pp. 123–147, 2009.

17. W. Baek and C. Kozyrakis, “NesTM: Implementing and Evaluating Nested Parallelism in Soft-
ware Transactional Memory,” in Proceedings of the 9th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2009.



20 Ricardo Filipe and João Barreto

18. B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg, “Mcrt-stm: A
high performance software transactional memory system for a multi-core runtime,” in Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’06, (New York, NY, USA), pp. 187–197, ACM, 2006.

19. W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun, “Making nested parallel transactions
practical using lightweight hardware support,” in Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 61–71, ACM, 2010.

20. Y. Liu, S. Diestelhorst, and M. Spear, “Delegation and nesting in best-effort hardware transac-
tional memory,” in Proceedings of the twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures, pp. 38–47, ACM, 2012.

21. R. Kumar and K. Vidyasankar, “Hparstm: A hierarchy-based stm protocol for support-
ing nested parallelism,” in the 6th ACM SIGPLAN Workshop on Transactional Computing
(TRANSACT’11), 2011.

22. J. a. Cachopo and A. Rito-Silva, “Versioned boxes as the basis for memory transactions,” Sci.
Comput. Program., vol. 63, pp. 172–185, Dec. 2006.

23. A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching transactional memory,” in Proceed-
ings of the 2009 ACM SIGPLAN conference on Programming language design and implemen-
tation, PLDI ’09, pp. 155–165, ACM, 2009.


