
Mumak: Efficient and Black-Box Bug Detection for
Persistent Memory

João Gonçalves

Instituto Superior Técnico

(ULisboa) / INESC-ID

Miguel Matos

Instituto Superior Técnico

(ULisboa) / INESC-ID

Rodrigo Rodrigues

Instituto Superior Técnico

(ULisboa) / INESC-ID

Abstract
The advent of Persistent Memory (PM) opens the door to

novel application designs that explore its performance and

durability benefits. However, there is no free lunch, and to

program PM applications, developers need to be aware of

potential inconsistent application state upon machine or ap-

plication crashes. To overcome this difficulty, several tools

have been proposed to detect the presence of the so-called

crash-consistency bugs. While these are effective in detect-

ing a variety of bugs, they present several key limitations,

namely relying on application-specific semantics, requir-

ing the programmer to manually annotate the program or

modify the PM library, and relying on techniques with poor

scalability, making them impractical for production code.

In this paper, we introduce Mumak, a tool that detects

bugs in PM applications in an efficient and black-box man-

ner. Our key insight to reduce the search space is to use a

two-pronged approachwith a first pass that is highly efficient

by focusing only on key, error-prone code points without

exhaustively testing all possible persistence orderings, and a

second pass based on heuristics that try to compensate the

shortcomings of the initial approach. Furthermore, we avoid

application-specific knowledge or annotations by relying on

the application’s own recovery procedure as an (imperfect)

consistency oracle. Our experimental results, with different

applications and libraries, show that Mumak has bug cover-

age on par with the other state-of-the-art tools, while being

up to 25× faster. We also found four new crash-consistency

bugs, two in PMDK and two in Montage, three of which have

already been acknowledged and fixed by the developers.

CCS Concepts: • Hardware → Emerging technologies;
• Software and its engineering→ Software testing and
debugging.

Keywords: Persistent Memory, Bug Detection, Crash Con-

sistency, Testing, Scalability

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9487-1/23/05.

https://doi.org/10.1145/3552326.3587447

ACM Reference Format:
João Gonçalves, Miguel Matos, and Rodrigo Rodrigues. 2023. Mu-

mak: Efficient and Black-Box Bug Detection for Persistent Memory.

In Eighteenth European Conference on Computer Systems (EuroSys
’23), May 8–12, 2023, Rome, Italy.ACM, NewYork, NY, USA, 17 pages.

https://doi.org/10.1145/3552326.3587447

1 Introduction
Persistent memory (PM) is a recent technology that promises

to deliver performance in-between HDD/SSDs and DRAM,

combined with data persistence guarantees across program

and machine restarts. By acting as a mid tier between DRAM

and SSD/HDD, PM opens the opportunity for programmers

to explore novel designs to improve both raw and per-dollar

performance [14, 21, 23, 24, 26, 28–30, 36, 39, 41, 49, 58–60].

Despite these opportunities, there are also limitations that

can hinder PM adoption. Notably, upon crashes the appli-

cation state can become inconsistent due to PM’s limited

support for failure-atomic writes. This means that developers

need to take into account two considerations. First, the ap-

plication must rely on carefully placed hardware constructs

such as memory fences and cache flushing instructions, to en-

sure a crash-consistent snapshot in PM. To make this process

less error-prone, namely when performing large update op-

erations (e.g., updating complex data structures that require

multiple operations), developers may rely on auxiliary tech-

niques, such as write-ahead logging, consolidated long ago

in areas such as databases or file systems [4, 18, 38, 44, 52, 57].

Second, upon restarting the application must run a recovery

procedure to attempt to fix potential state inconsistencies.

Despite the use of such techniques, developing PM pro-

grams and libraries that fully exploit the performance po-

tential of PM, and remain correct under crashes, is very

challenging. In fact, it has been shown that several recently

proposed PM programs and libraries are plagued with crash-

consistency bugs [19, 29, 34]. To counter this state of affairs,

developers might fall back on an extremely conservative

approach (e.g., flushing and fencing more often than neces-

sary), which may result in safer programs but substantially

degrades performance, resulting in performance bugs.

In order to mitigate this problem, a growing body of re-

search has been dedicated to developing tools and techniques

to find crash-consistency bugs in PM programs [13, 15, 19,

22, 27, 29, 34, 35, 43]. However, and as we detail in §3, the

https://doi.org/10.1145/3552326.3587447
https://doi.org/10.1145/3552326.3587447

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

available state-of-the-art tools suffer from some key limita-

tions. Some tools [13, 34, 35] require the developer to manu-

ally annotate the code, which is not only a time-consuming

and error prone task, but it also requires expert knowledge

about the PM semantics and underlying hardware guaran-

tees, which is arguably not within the reach of most de-

velopers. In particular, PMTest [35] is very efficient, but it

requires the programmer to heavily annotate both the un-

derlying PM library and the target application to identify

stores to PM or detect flush and fence instructions, among

others. Alternatives such as XFDetector [34] and PMDebug-

ger [13] mostly annotate the library itself; however, they still

require manual annotations to detect some bugs specific to

the application semantics, namely enforcing ordering con-

straints. Yat [27] automatically records all PM operations

at execution time and later replays them in all permissible

orderings without requiring programmer input. However,

due to the very large search space, and because it relies on

virtualization for recording and replay, Yat is extremely slow.

Other tools achieve better scalability by guiding the space

exploration and relying on model checking [19], symbolic

execution [43] or application-specific semantics [15]. How-

ever, and as we will show in the evaluation, these approaches

still scale poorly to large codebases.

Given this state of affairs, we argue that there is a press-

ing need for tools that are agnostic to both application and

libraries, do not require manual user input and can analyze

large applications in useful time – namely fast enough so that

they could be integrated into existing development workflow

pipelines. To fill this gap, we introduce Mumak, an efficient

and black-box bug detection system for PM applications.

Designing Mumak in a way that is practical for large code-

bases requires searching a very large space of possible failure

points and persistence orderings. We address this challenge

through a two-pronged approach that reduces the required

instrumentation to a minimum: first, we rely on fault injec-

tion in key points while also avoiding exploring multiple

combinations for the order in which persistent writes are

applied; then, we use a trace analysis based on simple rules

that try to identify the bugs that may evade the first pass. In

addition, one of the key challenges faced by this class of tools

is understanding, given the extremely large set of all possible

persistent states, which are consistent from the standpoint of

the application and which ones correspond to bugs – and to

do so without relying on annotations or application-specific

semantics. To address this, we rely on the observation that

PM applications already come with a mechanism for differ-

entiating valid and invalid states – the recovery procedure.

When the recovery procedure is unable to fix inconsistencies

and bring the application to a valid state, we flag this as a

potential bug, thus building a reasonably reliable bug oracle

without knowing the application semantics or relying on

additional manual input such as annotations.

Our experimental evaluation of Mumak shows that, de-

spite reducing the search space and relying on an imperfect

oracle, it can detect bugs in variety of large, real-world appli-

cations using different libraries. Using only the application

binary as input, Mumak detects 90% of the bugs found by

the most complete tool in the state of the art [15] – which

is dependent on precise key-value store semantics – in less

than one tenth of the time and in a fully automated way.

Furthermore, we demonstrate the generality of Mumak by

analyzing Montage [58], a general system for buffered per-

sistent data structures, which does not depend on PMDK,

and finding two new crash-consistency bugs which lead to

loss of data [55, 56]. Both were confirmed and fixed by the

authors. In addition to this, Mumak also detected two new

crash-consistency bugs in the latest version of PMDK, one

of which has been confirmed as high-priority and already

fixed by the maintainers [46, 47]. Finally, Mumak also has

ergonomic concerns, by providing programmers with suc-

cinct bug reports and minimizing the impact on the existing

development workflow.

Contributions. In summary, this paper makes the following

contributions:

• The design and implementation of Mumak
1
, a system

that detects performance and crash-consistency bugs

in PM programs in an efficient and black-box manner,

which is key to allowing Mumak to be included in

development pipelines, such as continuous integration

approaches, thus contributing decisively towards bug-

free and performant PM applications;

• A bug taxonomy that captures Intel-x86 PM seman-

tics and is used to compare Mumak with the other

state-of-the-art tools. This taxonomy is used to iden-

tify common patterns of misuse, which are used by

Mumak for bug detection;

• A detailed evaluation of Mumak comparing it with

other state-of-the-art tools and across libraries and

versions, showing an order of magnitude better per-

formance, and finding new bugs in large production

codebases.

The rest of paper is organized as follows. §2 provides

background on the persistency guarantees of x86 and defines

a general taxonomy that captures easily identifiable patterns

of PM misuse. §3 discusses the related work and compares it

in light of this taxonomy. §4 introduces the design of Mumak

and how it addresses the limitations of the state-of-the-art,

and §5 discusses the implementation details. §6 evaluates

Mumak, comparing it to state-of-the-art tools in a wide range

of scenarios. Finally, §7 concludes the paper.

1https://github.com/task3r/mumak

https://github.com/task3r/mumak

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

2 Persistent Memory Semantics
There are many different non-volatile memory technology

specifications, as well as processor architectures. For the

purposes of this paper, the implementation and technical dis-

cussion focuses on Intel Optane DC memory, running on an

Intel-x86 architecture. Nevertheless, this work is applicable

to any persistent storage technology that shares the basic

semantics of Optane, namely: i) writes not being immedi-

ately persisted (because they are buffered in a cache), and

ii) the only way to guarantee this persistence is by calling

an instruction that forces the data to be propagated to the

persistent storage device. This is the case, for instance, for

ARM’s persistent memory technology and we believe that, in

the future, other persistent memory technologies that appear

are likely to share these semantics, as caches will always be

an important instrument to ensure good performance.

Focusing the discussion on Intel Optane, it is possible to

configure the memory module in two modes (which may

operate concurrently). Memory mode uses PM as a volatile

extension to main memory and leaves data placement and

management to the memory controller; whereas App Di-
rect mode exposes the memory module as persistent and

byte-addressable memory and allows applications to explic-

itly control allocations and placements. In this paper, we

only consider the latter, since using PM as cheaper volatile

Memory [31, 49, 51] forgoes the need for crash-consistency

requirements since the data is deemed volatile.

Furthermore, PM can be accessed either through a block

device interface, such as a file system, as a regular disk,

or through direct memory access using loads and stores

as if it were main memory (DAX). In this paper, we focus

on the latter since PM-enabled file systems already address

many of the issues associated with crash-consistency [23, 59].

Note that accessing PM with DAX bypasses the kernel, and

hence the techniques used to detect crash-consistency in

PM-enabled file systems cannot generally be applied.

Upon a machine crash, PM is only able to provide failure

atomicity for groups of 8 bytes, i.e., either all the updates

in the group persist after the crash or none does. Therefore,

auxiliary techniques, such as write-ahead logging or check-

sums [2, 17, 32, 40], must be employed to ensure the crash-

consistency of larger updates. To ensure crash-consistency,

all these techniques require that stores to PM are persisted in

a specific order. Regardless of the techniques used, PM appli-

cations require a recovery procedure to be executed after a

crash, which attempts to bring the application to a consistent

state, either fixing it or flagging it as unrecoverable.

Different CPU architectures follow different persistency

models. These can be classified as either strict or relaxed, and

either buffered or unbuffered [48]. The first classification re-

lates to the order in which writes are persisted relative to the

order in which they become visible to other threads. Under

strict persistency these orders match, whereas relaxed per-

sistency removes this constraint. By allowing these orders

to differ, and thus allowing persistent write instructions to

be reordered by the hardware, relaxed persistency achieves

better performance. However, it is also makes it impossible

to predict the order in which stores are persisted (without ad-

ditional constraints, as we will detail next) and thus makes it

more difficult to reason about the crash-consistency guaran-

tees of the code running on those architectures. The second

property relates to the moment when the persistent writes

occur. Under unbuffered persistency, persistent writes oc-

cur synchronously, meaning execution is stalled until these

complete, which hinders performance. In contrast, buffered

persistency allows for asynchrony, by queuing writes and

proceeding with the execution.

The x86 architecture follows a relaxed, buffered persis-

tency model [48]. In practice, when a store is performed,

it is first queued in a store buffer and later reaches the

volatile CPU caches, where it can remain indefinitely. For

that store to be persisted, it needs to reach the Write Pend-

ing Queue (part of the PM memory controller). This can

happen non-deterministically, as the cache evicts lines to

load new data depending on a specific policy. However, this

non-determinism can result in inconsistent states in case of a

crash. In order for programmers to control the order in which

stores are persisted, they need to employ special persistency

instructions that enforce additional ordering constraints:

flush instructions, which asynchronously write cache lines

to memory, and, since flushes can be buffered, there are also

fence instructions, which ensure the execution of buffered

flushes and impose ordering guarantees between them. In

particular, the x86 architecture offers clflush, clflushopt,
clwb, mfence and sfence instructions. clflush persists a

single cache line and cannot be reordered in relation to other

stores. clflushopt and clwb persist a cache line but can be

reordered until a fence instruction is executed. Moreover,

clflushopt invalidates the cache line it acts upon, while

clwb does not, allowing for better performance in certain

workloads. Next, mfence imposes an order over buffered

loads, stores, and flushes, while sfence orders only stores

and flushes. Atomic updates such as compare-and-swap or

fetch-and-add, commonly referred to as read-modify-write
(RMW) instructions, also act as memory fences by flushing

the store buffer in order to ensure their atomicity. Finally, x86

offers non-temporal stores, which bypass the cache entirely.

However, these are still buffered and could be reordered, un-

less properly fenced. Throughout the paper, we will use the

terms flush and fence when the difference in semantics is

not relevant and use the x86 instruction name otherwise.

The improper use of the instructions discussed thus far,

or its absence, can lead to a variety of bugs. To better guide

the design choices of Mumak, we next present a taxonomy

of PM bugs, divided into two main categories.

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

Correctness Bugs. Correctness, or crash-consistency bugs,

cover situations where a crash might leave the PM in an

inconsistent state. These bugs are the result of a violation

of the durability and/or the ordering guarantees required

by the application. Durability bugs are the simplest form

of a crash-consistency bug. These include missing flush or

fence instructions for a particular store, or relying solely on

the non-deterministic cache eviction policies. But this does

not mean that each store needs to be explicitly flushed. As

flush instructions act on an entire cache line, in practice, and

depending on the memory arrangement of a given applica-

tion, a single flush can act on multiple stores. Additionally,

applications may also exhibit dirty overwrites. These consist

of persisting a store that overwrites previous stores to the

same address that have not been persisted. In other words,

writing to an address multiple times without persisting it,

is a strong indication that the associated variable or data

structure should be in volatile memory rather than in PM.

Similarly to other works, we consider this a bug [13].

Correctness bugs also encompass ordering bugs. These
are more complex to reason about, as they depend on the

application semantics and the patterns used to recover after

a crash. To define it generally, the ordering imposed over

the persisted writes should be such that the application can

successfully recover after a crash. A subset of these bugs can

be defined as atomicity bugs, meaning that a set of stores

should be performed atomically (at least from a logical stand-

point). The hardware itself does not support these atomic

transactions, although there are several software solutions

that address this issue [2, 12, 17, 32].

Performance Bugs. Performance bugs do not affect the

program’s correctness, even in the presence of crashes, but

result in degraded performance due to the excessive use of

persistency instructions. The simplest forms of performance

bugs are redundant flushes and redundant fences. A flush is

redundant if the content of that address was not overwritten

since it was most recently flushed. Additionally, a flush can

also be considered superfluous if it acts on a volatile memory

address, if the store was non-temporal (bypassing the cache),

or if the memory alignment is such that multiple stores fit in

the same cache line, thus requiring a single flush. A fence can

also be considered redundant if there were no flush or non-

temporal stores performed since the last fence instruction.

Finally, another example of a performance bug is the use of
PM to store transient data. This can be the intended behavior,

as existing works explore the use of PM as a larger and more

affordable volatile memory for large-scale computing [31, 49,

51]. However, outside this scenario, this represents a misuse

of PM as those accesses could be replaced by volatile memory,

resulting in a performance improvement.

eADR. Enhanced Asynchronous DRAM Refresh (eADR) [6]

extends the persistent domain up to the CPU caches, thus

removing the need to perform cache line flushes. Yet, this

does not guarantee crash-consistency by itself, since stores

are persisted once globally visible, and thus fence operations

need to be used to maintain store order correctness [53]. Ad-

ditionally, extending the persistence domain to the CPU

caches requires batteries (or an external uninterruptible

power supply), which not only represent significant cost but

also introduce additional maintenance given their shorter

lifespan when compared to the other server components. In

sum, it is unlikely that eADR will be used across all machines

running PM applications, which means that applications

should still tolerate the classic ADR domain [16, 53].

3 Related Work
In this section, we discuss the state-of-the-art in PM bug

detection. We divide existing proposals in two major cate-

gories: those that rely on developer annotations, and those

that perform automatic space exploration.

Annotation-based Debugging. Some proposals leverage

manual code annotations to guide the bug detection process.

These annotations can, for example, give hints about the

semantic of the application (for instance, commit variables)

or impose persistent ordering assertions. pmemcheck [7],

which is part of PMDK, checks if both the library and ap-

plications built on top of it satisfy the expected persistence

and order requirements. The library itself is extensively an-

notated, but user applications still require manual effort to

complement the annotations according to the application

semantics. PMTest [35] provides assert-like instructions that

allow for assessing the safety of generic PM software (i.e.,

not necessarily developed with PMDK). It uses a record and

replaymechanism decoupled from program execution. XFDe-

tector [34] employs shadow memory, which traces and in-

tercepts all PM accesses during the pre-failure phase, and,

during post-failure executions, checks the persistency status

of the addresses read by the application. Due to the execu-

tion of instrumented code for every failure point, both pre-

and post-failure, as well as the management of the shadow

memory, XFDetector is very slow. Moreover, detecting cer-

tain ordering bugs requires manual annotations. PMDebug-

ger [13] builds upon a study, which concluded that, for most

stores, data durability is guaranteed by the nearest fence.

This means that most of the bookkeeping data is short-lived.

While other tools [34, 35] organize all the information in

a tree-like structure, PMDebugger initially stores the infor-

mation in an array for quicker insertion. Later, when it en-

counters a fence, it clears persisted addresses and moves the

remaining addresses to an AVL tree for the long-term benefit

of quicker search. Yet, its efficiency is directly correlated to

its dependence on pmemcheck’s annotations, thus requiring

annotations for any application that does not use PMDK.

Moreover, it also requires annotations to detect ordering-

based bugs even for applications built with PMDK.

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

Table 1. Tool classification according to the taxonomy presented in §2. The ✓* symbol denotes the need for manual annotations

and ✓†
denotes tools that detect the use of PM as transient data but do not distinguish it from durability bugs.

Tool

Bug Taxonomy Application Library

Durability Atomicity Ordering Redundant Flush Redundant Fence Transient Data Agnostic Agnostic

pmemcheck ✓* ✓ ✓†

PMTest ✓* ✓* ✓* ✓
XFDetector ✓* ✓* ✓* ✓ ✓

PMDebugger ✓ ✓* ✓* ✓ ✓†

Yat ✓ ✓ ✓
Jaaru ✓ ✓ ✓ ✓

Agamotto ✓ PMDK TXs ✓ ✓ ✓† ✓
Witcher ✓ ✓ ✓ ✓ ✓

Mumak (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

In general, annotation-based debugging shifts the com-

plexity from the tool to the programmer. This entails a man-

ual task that is prone to errors, and requires a substantial

effort which might discourage adoption, especially for large

production codebases.

Automatic Space Exploration. This class of tools automat-

ically explores the state space and identifies crash-consistency

violations. This is achieved through the use of either exter-

nal crash-consistency checkers, employing the application’s

recovery as an oracle, defining custom application oracles, or

inferring consistency oracles based on previous knowledge

of the application’s semantics. Yat [27] records PM instruc-

tions while the program is running and, later, replays the

recorded stores in all permissible orderings and relies on

a file system checker to verify if correctness is preserved.

Because it relies on virtualization for recording and replay-

ing all permissible orderings, Yat can be very slow. In fact,

it is expected to require several years to provide 100% cov-

erage in a program with a few thousand operations [27].

Jaaru [19] relies on model checking techniques to verify

the crash-consistency guarantees of PM programs. It instru-

ments memory and cache operations, simulating those in-

structions with full support for persistency semantics. This

allows Jaaru to impose constraints on the possible values

that a persistent variable can have in a post-failure execu-

tion depending on the last time that a cache line was flushed

relative to the failure. In contrast to Yat, which eagerly enu-

merates all possible post-failure memory states, Jaaru uses a

lazy approach that considers only the stores that were read

by actual loads in the post-failure scenario. This allows Jaaru

to reduce the search space for certain persistency patterns

(namely the commit store pattern); however, it still results
in an exponential search for many others. Agamotto [43]

leverages symbolic execution (SE) to detect correctness and

performance bugs in PM applications. SE is used to track

the PM state across all different execution paths and then

the tool relies on bug oracles to detect common patterns

that might lead to anomalous behavior. The set of oracles

provided by the authors is limited and needs to be extended

by developers in order to detect other classes of bugs. Once

more, this is a complex and time-consuming task, prone to

human errors. Moreover, due to the nature of SE, the number

of paths to explore can grow exponentially and therefore

lead to impractical running times when analyzing large pro-

grams. However, it is important to note that Agamotto is

capable of detecting a significant proportion of bugs in a

reasonable amount of time, due to the exploration policy it

employ, which prioritizes the paths that lead to PM accesses.

Witcher [15] instruments memory operations to collect a

trace of PM accesses in key-value store applications. It infers

likely invariants from the collected trace and also through an

analysis of the source code of the target application. These

are based on patterns that include possible ordering and

atomicity violations. Using deterministic test cases, it gener-

ates PM crash images that violate those likely invariants and

applies output equivalence checking to determine whether

they constitute a crash-consistency bug. This process has

the upside of not reporting false positives. Nevertheless, it

is an order of magnitude slower than other systems, and

it is unclear how well the generation of deterministic test

cases (which is not automatic) or output equivalence check-

ing generalizes to applications with semantics different from

key-value stores.

Other Systems. We now discuss some recent proposals that

target related but different problems. PMFuzz [33] is a fuzzer

that generates test cases and PM state images, mutating

seed inputs based on a PM path coverage metric. It pri-

oritizes inputs that result in executions that explore new

code paths containing PM accesses. This is orthogonal to

the actual bug detection, and thus PMFuzz can be used in

conjunction with other systems and provide better bug cov-

erage. RECIPE [29] presents a method for testing the crash-

consistency of PM indexes by simulating faults for each

8-byte atomic store and testing the consistency by perform-

ing operations on top of the crash state, keeping track of the

expected values for each key and finally checking if each key

contains the correct value. The approach is efficient but also

tailored to specific semantics (indexes), making it not gen-

eralizable. DURINN [16] and PMRace [3] target a subclass

of ordering bugs in which concurrent reads of unpersisted

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

writes might lead to durable/observable side effects. PM-

Race employs fuzzing and timer-based race detection, while

DURINN infers potential bugs through trace analysis and

constructs adversarial states and thread schedules to expose

them. Yashme [20] focuses on a subclass of atomicity bugs

in which compilers can implement a non-atomic store with

multiple store instructions — store tearing — or generate

new store instructions to store temporary values — store

inventing – resulting in well-timed crashes to cause non-

atomic stores to be made partially persistent. It employs

model-checking with sampling, for scalability, and a con-

straint refinement mechanism similar to Jaaru [19], in order

to extend the window in which these bugs are observable.

DeepMC [50] uses static and dynamic analysis techniques,

together with a set of predetermined rules, to check whether

a given program respects some PM memory model such as

strict, epoch or strand [45]. DeepMC works at a high abstrac-

tion level, following one of the models above, and hence can

be very efficient, while Mumak relies only on the underly-

ing hardware model. Moreover, DeepMC does not support

programs with mixed memory models while Mumak is ag-

nostic to the concrete model. Vinter [25] is a system to find

bugs in full-systems, i.e., it considers a system as a whole

including both user and kernel-space components. It relies

on virtualization and dynamic binary translation to capture

accesses to PM. Vinter focuses on PM file systems and, like

Mumak, is fully automated. It is however unclear how it

could be applied to PM applications that do not rely on a PM

file system. Moreover, the overhead imposed by virtualizing

a full system can become problematic when analysing sys-

tems that require large workloads (see §6.1). SafePM [1] is

a PM memory safety mechanism to detect safety violations

such as dangling pointers or buffers overflows. It relies on

shadow memory techniques and AddressSanitizer [54]. Fi-

nally, Hippocrates [42] uses the output of PM bug finding

tools to create bug fixes, using heuristics that automatically

compute the effective location for interprocedural fixes, and

doing so in a safe manner that guarantees the bug fixes do

not introduce new bugs. Overall, these proposals target or-

thogonal problems to those we focus on this paper and hence

we consider them complementary to Mumak.

Summary. Table 1 summarizes the most closely related

work (corresponding to the first two paragraphs of this

section) according to the taxonomy introduced in §2. The

columns on the left side capture the types of bugs that each

tool is able to uncover, and the last two columns indicate the

generality of the tools, namely, which ones are agnostic to

application and library semantics. This table highlights that

Mumak is significantly more general than the state of the

art, both in terms of range of bug types and independence

from the application and library semantics. Furthermore, as

§6 will highlight, it scales to large production codebases.

4 Mumak
In this section we describe the design of Mumak. Recall that

our goal is to design a tool that is efficient, scalable to large

codebases, and that treats the target application as a black-

box, i.e., it does not requiremanual annotations or knowledge

about the application semantics. These goals result in some

tension as, in principle, application-specific knowledge or an-

notations could allow us to perform optimizations to reduce

the search space, which our black-box approach foregoes.

We address this tension with a two pronged approach that

comprises a fault injection and a trace analysis phase. The

key intuition behind the fault injection phase is to execute

the program, crash it at judiciously selected points in the

execution, and run the recovery procedure. When the recov-

ery procedure identifies an invalid state or fails to bring the

program to a valid state, we are in the presence of a correct-

ness bug. By using the recovery procedure as a correctness

oracle, we forego the need for annotations and to know the

application semantics, as these are implicitly encoded in the

recovery procedure logic. Fault injection can be done very

efficiently (see §4.1) allowing Mumak to be fast and scale

to large codebases. However, this approach is not a silver

bullet, as it can miss certain bugs, namely some instances

of durability bugs and all performance bugs. Therefore, we

complement fault injection with a trace analysis phase that

identifies patterns of PM misuse and reports them (see §4.2).

The general Mumak pipeline is illustrated in Figure 1. The

user must provide the application binary and a workload to

drive the application. Similarly to all other tools, with the

exception of Agamotto [43], Mumak requires a workload

to test the application and exercise the different code paths.

Therefore, bug coverage is limited by the coverage of the

workload itself. It is possible to increase coverage by relying

on automatic workload generators (such as PMFuzz [33]) but

we consider this orthogonal to our contributions.

Given the application binary 1 , Mumak automatically

instruments it to generate the output required by the fault

injection and trace analysis phases 2 , after which it uses

the user provided workload 3 and runs the instrumented

application 4 . This step generates two by-products: a failure

point tree 5 and a PM access trace 6 . Using the tree, Mumak

executes the provided workload until reaching an unvisited

failure point, marks it as visited in tree, injects the fault 7 ,

recovers 8 , and, if the recovery status determines so, reports

the bug 9 . Steps 6–8 are repeated in this order until all leaves

in the tree are marked as visited. In parallel, Mumak analyzes

the trace 10 and identifies patterns of misuse, generating

bug reports or warnings 11 . When both phases complete,

Mumak combines the reports and presented them to the user.

4.1 Fault Injection
The main goal of this phase is to expose atomicity and order-

ing bugs by generating crash states in an efficient, automatic,

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

For each detected
Failure Point

Automatically
Instrument PM

Accesses

2

Run the Instrumented
Binary

Analyze Trace

Input
Binary

1

Generate Report
of Bugs and Warnings

4

1110

6

PM Access Trace

5

Failure Point Tree

Inject Failure

7

If Recovery fails,
generate Bug Report

9

Recover

8

Workload

3

Figure 1. Mumak’s analysis pipeline.

and reproducible manner. This raises several conceptual and

practical challenges.

Conceptual Challenges. Designing Mumak’s fault injec-

tion entails two main challenges: i) how to define the failure

points, i.e., the points at which the application should crash,

and ii) what should comprise the fault injection process itself.

We define a failure point as an instruction address in the

original binary that we consider potentially prone to leaving

the system in an inconsistent persistent state, if the system

crashed at that point. This definition is intentionally generic

and allows for further refinements, as we discuss later.

There are different policies to determine the set of failure

points with different trade-offs. Approaches such as Yat and

Jaaru [19, 27] opt to systematically check all possible post-

failure states (taking into account the different valid orders

for stores to be persisted) which do not scale, as shown in

their respective evaluations. Consequently, we decided to

only explore post failure states that respect program order

for some prefix of the execution. This guarantees that our

approach scales with the number of detected failure points,

as each one will correspond to a single post-failure execution.

In other words, a failure point materializes in a post-failure

state from which the recovery procedure will attempt to

recover. With that in mind, we can consider two different

granularity levels for failure points: at the store level or at

the persistency instruction level (flushes and fences). Con-

sidering each store as a failure point offers the best coverage

of post-failure states, but can result in exploring many equiv-

alent post-failure executions, depending on the recovery

mechanisms employed. In contrast, only considering persis-

tency instructions as failure points substantially reduces the

pm.c

_start at
pm.elf

main at
pm.c:16

main at
pm.c:19

persist at
pm.c:2

main at
pm.c:20

redundant_loop
at pm.c:8

persist at
pm.c:2

Figure 2. Sample program and corresponding failure point

tree.

number of faults injected. While this approach might seem

too coarse, it is extremely efficient and covers all atomicity

bugs and the vast majority of ordering bugs discovered by

the state-of-the-art tools, as we show in §6.2. Additionally,

we further reduce the number of failure points by only con-

sidering a persistency instruction if there was at least one

store performed to PM since the last failure point, thus omit-

ting equivalent post-failure states. In summary, the decision

to only explore post-failure states that respect program or-

der is key to the scalability of our approach, but also omits

several possible combinations that do not respect this order,

especially when developers impose few ordering constraints

between stores. This is due to the fact that the persistence

order does not necessarily respect program order, as detailed

in §2. The trace analysis phase, which is further detailed in

§4.2 addresses this limitation.

Regarding the fault injection process itself, the objective is

to have a deterministic procedure to guarantee reproducibil-

ity. State-of-the-art solutions, such as XFDetector [34] or

Jaaru [19], guarantee this by intercepting all PM accesses

and controlling the values read by the application in the post-

crash execution using some version of a shadow memory.

However, this approach comes at a great instrumentation

cost, which hinders scalability [34]. As such, we judiciously

control the contents of the PM after each failure and execute

vanilla recovery code (i.e., without any instrumentation).

In detail, we crash the application gracefully, by killing the

process after guaranteeing that pending stores are persisted

before each failure point, as opposed to "pulling the power

cord" and having to deal with non-deterministic post-failure

states. This is also a key feature to ensure bug reproducibility,

as we precisely control the contents of the PM after a crash.

Practical Challenges. Given the approach described above,

a few challenges remain: i) how to automatically detect fail-

ure points in a black-box fashion, ii) how to guarantee that

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

faults are injected only at unique failure points, and iii) how

to determine the consistency of a post-failure state.

We address the first challenge by treating the application

binary as a black-box and considering only the instructions

executed. As such,Mumak instruments the binary at the level

of the assembly instructions by capturing their opcodes and

respective arguments (when applicable). In detail, we capture

stores, flushes and fences, as well as atomic instructions that

have fence semantics. This allows Mumak to be agnostic of

concrete application semantics and libraries.

For the second challenge, we want to guarantee that we

inject faults at every failure point such that we explore all

the code paths leading to that failure point. A naive approach

that injects a fault only the first time the execution reaches a

failure point (which corresponds to an assembly instruction)

would miss many potential code paths that reach that failure

point but have a different state. Conversely, an approach

that injects a fault every time the execution reaches a fail-

ure point would explore many equivalent states and hence

would not be efficient. Furthermore, the fact that developers

often abstract the persistency calls (e.g., through the use

of libraries) reinforces the point that both approaches have

important shortcomings.

Our goal is therefore to find all unique code paths that

reach a failure point. To reason about how this can be done

efficiently, consider the code snippet of Figure 2, and assume

we are injecting faults at the the persistency instruction

granularity. This means that we must consider all unique

code paths that reach line 2 and line 16, and ignore line

3 and line 17 since these generate equivalent post-failures

states according to our granularity level. To achieve this, we

start with a failure point tree, initially empty. During the

execution of the application (step 4 of Figure 1), when the

execution reaches a failure point, we collect the call stack

and add it, address by address, to the tree, if not already there.

Each node in the tree corresponds to an instruction address

and each unique path from the root to a leaf corresponds to

the call stack of a unique failure point. When the execution

terminates, we have a tree composed of unique code paths

(from the root to the leafs) leading to the failure points at

the leafs. For the code snippet of Figure 2 the corresponding

failure point tree is shown on the right side of the figure and

it includes all the unique code paths leading to a persistency

instruction that could originate different post-failure states.

Then, we execute the application (steps 7 – 9 of Figure 1)

and when the execution reaches a failure point, we obtain

the call stack and search it in the tree. If the corresponding

leaf is unvisited, we mark it as visited and inject a fault,

otherwise execution continues until all leaves are visited.

Using a tree guarantees the uniqueness of each leaf and

optimizes search and comparison. This is relevant since this

approach performs many more comparisons than insertions.

It is worth noting that this approach does not consider the

parameters passed to each function, which in turn might

skip potential failure points. This limitation stems from the

need to achieve good scalability to large codebases.

Finally, to determine the consistency of the post-failure

state, and as discussed above, we use the recovery procedure

as an oracle. As such, we run the application in recovery

mode without any instrumentation and, if it either fails or

considers the state as unrecoverable, we report a bug and

provide the path leading to that failure point. Additionally, if

the recovery fails abruptly (e.g., with a segmentation fault),

Mumak provides debug information for the recovery process

including the recovery call trace that led to that failure. Note

that this oracle is potentially imperfect. In particular, if the

oracle fails to flag an inconsistent state then Mumak may

incur in false negatives. However, it is in the best interest of

the application developers for this procedure to be tailored to

the application and its semantics, and for it to be as thorough

as possible, as it increases the safety of the application in case

of faults. The more complete the recovery is, the safer the

application is and at the same time the fewer false negatives

will occur in Mumak.

In summary, Mumak’s fault injection phase has three main

steps: i) automatically detect failure points and construct the

failure point tree, ii) inject a fault, for each unique failure

point and deterministically generate the corresponding post-

failure state, and, iii) run the application in recovery mode

and report bugs accordingly. Notably, each phase requires

less instrumentation than the previous one, resulting in an

efficient pipeline.

4.2 Trace Analysis
Despite reducing the search space for efficiency and scalabil-

ity reasons, the fault injection approach described previously

exposes the vast majority of the atomicity and ordering bugs

that were found by previous approaches with much longer

running times (see §6.2). The trade-off is that fault injection

is unable to detect the remaining classes of bugs from our

taxonomy (see §2). This stems from three main reasons. First,

performance bugs do not originate an inconsistent state and

hence cannot be detected by that approach. Second, some

durability bugs might be masked by other correctly persisted

operations. This is because durability bugs originate from

the absence of proper persistency primitives, and since we

only consider persistency primitives as failure points (in or-

der to achieve better scalability), we cannot guarantee that

the states that lack the proper durability are exposed. Finally,

some ordering bugs are not observable if the post-failure

state where they can be identified does not respect some

prefix of program order.

We address these limitations of the fault injection phase

with a trace analysis phase that efficiently detects the re-

maining classes of bugs. The approach is generally simple

but differs from prior work [13, 34, 35] by being black-box

and agnostic of specific libraries or application semantics.

The trace analysis phase is composed of four stages, where

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

the first two are shared with the fault injection phase (Fig-

ure 1): i) automatic instrumentation of PM accesses (stores

to PM, flushes, fences), ii) dynamic collection of a trace of

PM accesses during the execution of the provided workload,

iii) analysis of the trace by identifying possible patterns of

PM misuse, and iv) report of those misuses accordingly.

Patterns. The trace analysis relies on a selection of well-

defined patterns that can detect specific cases of PM misuse.

For efficiency reasons, all patterns have been designed to

require only a single pass through the trace. This fact, cou-

pled with our black-box approach that foregoes the need

for annotations or reliance on application semantics comes

with the cost that, for some detected patterns, we cannot

confidently state whether we are in the presence of a bug, as

we detail below. We report those situations as warnings to

guide the developer to reason about the intended semantics.

Next, we present the set of patterns that are detected and

how Mumak handles them.

▶ Store instruction that is not explicitly persisted. From our

bug taxonomy, this might entail one of two bugs. Either

this store should be explicitly persisted, or this is transient

data that should be stored in volatile memory. Since it is

impossible to provide a definitive answer without additional

context information, we employ a simple rule: if the address

in question is ever flushed during the execution, we report

it as a durability bug, otherwise; we warn the developer for

the potential use of PM to store transient data.

▶ Flush instruction that acts on volatile address(es), or whose
address(es) have not been written to the cache since the most
recent flush. In those cases, the flush instruction is not needed,
and thus we report it as a bug.

▶ Flush instruction that acts on more than one store. If multiple

stores fit in the same cache line, a single flush is enough, and

therefore this is never a correctness bug. But in this case,

subsequent flushes acting on the same stores, if any, are

redundant and reported as such. However, this depends on

the memory arrangement, which might change between

platforms, compilers and compiler optimizations. As such,

we warn the developer about a possible performance bug.

▶ Fence instruction without pending flush or non-temporal
stores. In those instances the fence instruction is not needed,

and thus we report it as a bug.

▶ Fence instruction that acts on more than one clflushopt,
clwb, or non-temporal store. In these instances, the order in

which those addresses are persisted is not deterministic. The

fault injection phase already checks for possible inconsisten-

cies when program order is respected, but that leaves out

other possible combinations. These increase super linearly

with the number of instructions on which the fence in ques-

tion acts upon, and hence exploring all possible post-failure

states is not scalable. Therefore, and with efficiency in mind,

we warn the developer that, although we have not found a

bug, we cannot guarantee that all possible orderings result

in consistent post-failure states.

4.3 Discussion
Any tool to find bugs in PM applications needs to deal with

a very large search space of failure points and persistence

orderings. Existing approaches rely on manual annotations

or application-specific semantics to reduce this space, but are

prone to human errors or apply only to a subset of applica-

tions or libraries, respectively. Moreover, existing techniques

scale poorly to large codebases, as they rely on heavy instru-

mentation and/or expensive program analysis.

We designed Mumak to be efficient and black-box. The

key idea is to use a two-pronged approach that reduces the

required instrumentation to a minimum. First, we rely on

fault injection in key points in the program execution while

intentionally avoiding the exploration of combinations of

stores and persistency instructions that do not follow pro-

gram order. Second, we rely on trace analysis to look for

specific PM accesses that might result in bugs not identified

in the fault injection phase.

Previous approaches [15, 16, 25] leverage their knowledge

of the well-defined operations and semantics of their target

applications to automatically find deviations from the ex-

pected post-failure state. However, by doing so, they limit

their applicability to systems that follow those semantics.

In contrast, Mumak’s use of the application’s own recovery

procedure as a consistency oracle leads to a general approach

that is independent of the underlying application semantics.

Regarding eADR systems [6], it is important to note that

crash-consistency bugs can still occur, as the binary’s in-

struction order might lead to inconsistent states and weakly-

ordered non-temporal stores may still be reordered. For this

reason, the atomicity and ordering bugs reported by Mu-

mak’s fault injection component would still be present in an

eADR system. However, the trace analysis patterns would

need to account for the different persistency semantics, oth-

erwise they would wrongly report, for instance, durability

bugs for stores that were not explicitly persisted.

Overall, and as we show in the evaluation, the design

presented in this section results in a bug coverage that is

on par with other state-of-the-art tools while being up to

25× faster. This is key to allowing Mumak to be included

in development pipelines, such as continuous integration

approaches, thus contributing decisively towards bug-free

and performant PM applications.

5 Implementation
Mumak is implemented as a set of Intel Pin [37] tools, writ-

ten in C++, and a Bash script that coordinates the analysis

and acts as the frontend for the user. It is worth noting that,

although Mumak’s implementation uses Pin, our approach is

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

generic and can be applied to other instrumentation frame-

works and methodologies. Pin uses dynamic compilation to

instrument executables while they are running. This means

that, in practice, steps 2 and 4 from Figure 1 are performed

simultaneously. However, they are conceptually independent

and could execute as such using a different instrumentation

framework. Finally, using Pin enables Mumak to analyze

both the target applications and their dynamically linked

dependencies. However, this implementation choice makes

Mumak limited limited to user-space code.

When Pin instruments the application, it allocates mem-

ory in the address space of the application, which may cause

application code, shared libraries, and dynamically allocated

data to move. This raises a problem, if the memory alloca-

tions are not consistent between the phases of our pipeline,

as we will detail next. Mumak creates a failure point tree

using the call stack addresses for the failure points detected

in the application. The tree is later serialized and stored in a

file such that in a future fault injection execution it can be

deserialized. For this approach to work, the addresses need to

be the same during the tree construction and fault injection

phases. However, because Pin dynamically allocates memory

in the address space of the application, deserializing the tree

causes shifts in the addresses of the application, which in

turn would lead the same instruction to have a different ad-

dress in each phase. To address this, we preemptively allocate

memory for the tree before instrumenting, ensuring that the

offset is the same in both phases and thus the same execution

paths are assigned to the same addresses. This means that

the pre-allocated memory (a configurable parameter) needs

to be large enough to fit the entire tree.

Another important benefit of using Pin is that it offers an

API to obtain a backtrace that filters out the calls made to

instrumentation routines, thus showing only the relevant

addresses that correspond to calls made by the application

under analysis. This facilitates the debugging process when

compared with tools that use LLVM, which produce very

verbose outputs (see §6.5).

Additionally, to increase the determinism of applications

and enhance the reproducibility of our fault injection process,

we instrument non-deterministic calls (e.g., random number

generators) and replace them with deterministic outputs.

In the early stages of the implementation, we observed

that calls to PIN_Backtrace represented a significant por-

tion of our execution time. As such, we optimized the tracing

by only collecting the type of instruction, its argument(s) (in

the case of flushes and stores), and an instruction counter

(a monotonically increasing counter that uniquely identi-

fies each traced instruction). This information is sufficient

to identify bugs and their type during trace analysis. How-

ever, this approach requires an additional step to obtain the

debug information. For that, we execute the target applica-

tion once more using minimal instrumentation to collect

the relevant backtraces according to the instruction counter.

Unfortunately, due to the use of the instruction counter, this

optimization depends on the determinism of the application.

To analyze nondeterministic applications, we disable it.

6 Evaluation
In this section we evaluate Mumak along several dimensions

and compare it with other state-of-the-art tools.

Evaluation Settings. We evaluated Mumak on a 128 core

Intel(R) Xeon(R) Gold 6338N CPU @ 2.20GHz, with 256 GB

of RAM, and 1 TB Intel DCPMM in App Direct mode. As

for software, we used Ubuntu 22.04, Linux kernel 5.15, Intel

Pin 3.14, and Docker 20.10. The use of Docker allows us to

have an unmodified host environment and keep tool-specific

configurations inside the respective container images. To

avoid the overhead of Docker’s layered filesystem, we rely

on volumes to store the outputs.

6.1 Performance Benchmarks

Baselines. We compare Mumak with four state-of-the-art

solutions for PM bug detection. We selected Agamotto [43],

XFDetector [34], PMDebugger [13], and Witcher [15] as

these systems represent recent advances that use a variety of

different approaches to tackle the problem at hand, namely

symbolic execution, fault-injection and trace analysis.

Targets and Workloads. Like previous works, we used a

set of PMDK’s libpmemobj example applications that imple-

ment different data structures in PM, namely Btree, Rbtree

and Hashmap Atomic. Since all prior approaches, with the

exception of Agamotto, require a workload to drive the ex-

ploration, we conducted a preliminary study to determine the

workload size required to provide sufficient coverage. To this

end, we determine the number of unique execution paths

that lead to persistency instructions (flushes and fences)

and stores to PM. The results, for a workload with an equal

number of puts, gets and deletes, are depicted in Figure 3a

and Figure 3b for persistency instructions and stores, re-

spectively. We observe that smaller workloads exercise few

unique paths and therefore we need larger workloads to

have good code coverage and, consequently, bug coverage.

Based on these results, we evaluate the systems with work-

loads consisting of 150 000 operations, equally distributed

among puts, gets and deletes. Another observation is that

the number of unique code paths when considering stores

to PM (Figure 3b) is roughly one order of magnitude larger

than when considering persistency instructions (Figure 3a).

This supports our decision of targeting the latter for fault

injection, as otherwise the very large search space would pre-

vent our approach from scaling. Still, as we show later, this

is enough to detect most bugs identified by state-of-the-art

tools. Finally, we note that the original applications perform

all put operations inside a single PMDK transaction. Some

systems [15, 34] changed this behavior by performing each

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

 0

 50

 100

 150

 200

3000 6000 15000 30000 75000 150000 300000U
n

iq
u

e
 e

x
e

c
u

ti
o

n
 p

a
th

s

Workload Size (ops)

Btree
Rbtree

Hashmap
Atomic

(a) PM persistency instructions

 0

 500

 1000

 1500

 2000

 2500

3000 6000 15000 30000 75000 150000 300000U
n

iq
u

e
 e

x
e

c
u

ti
o

n
 p

a
th

s

Workload Size (ops)

Btree
Rbtree

Hashmap
Atomic

(b) Stores to PM

Figure 3. PMDK data store coverage based on workload size. Note that the x scale is not linear.

put inside a different transaction. This has an impact on the

bug detection performance and, as such, we consider both

alternatives, annotating the latter with "SPT", for "single put

per transaction". In the case of Witcher and XFDetector,

we only consider the latter alternative since their analysis

depends on such behavior and/or annotations.

PMDK Versions. We perform the evaluation across two

PMDK versions, namely 1.6 and 1.8. This stems from the fact

that two of the systems, XFDetector and PMDebugger, re-

quire not only annotations to the application code but also to

the underlying library. Therefore, evaluating all systems in

the same PMDK version would not only require a substantial

manual effort of porting the PMDK changes and application

annotations to a specific PMDK version – one of the key limi-

tations of annotation-based approaches – but could also lead

to the inadvertent introduction of incorrect modifications

to PMDK or the applications leading to the incorrect report-

ing of bugs not flagged in the original works. Hence, we

compare Mumak with the other tools using the PMDK ver-

sion used in their respective papers, namely: PMDK 1.6 for

XFDetector and Agamotto, and PMDK 1.8 for PMDebugger

andWitcher. In sum, this guarantees a fair comparison and

highlights Mumak’s agnostic design and implementation.

Metrics. We use the following metrics: analysis time (the

total execution time of the tool), average CPU load, and peak

memory overhead (volatile and persistent memory overhead

relative to peak usage during vanilla execution).

Results. Total analysis times are shown in Figure 4a and

Figure 4b, for PMDK 1.6 and PMDK 1.8, respectively. Note

that Hashmap Atomic does not work correctly with PMDK

1.8 and hence we exclude it from that version. We restrict the

analysis time to 12 hours (represented as ∞ in the figures)

since we believe this to be a reasonable maximum time for a

tool to assess the application for the presence of bugs.

The main observation is that Mumak is substantially faster

than all other approaches, in all but one case. In fact, Mu-

mak took significantly less than ∼1 hour to analyze each

application. In more detail, XFDetector and Witcher did

not complete the analysis within the 12 hours period for any

of the applications. XFDetector takes a long time to analyze

each operation (the original paper acknowledges it takes 40.6

seconds to analyze a single insert operation [34]) and hence,

for large workloads such as the ones we used, it would take

over 1000 hours to finish (on estimate). Witcher also failed

to reach the scale of the workloads selected in our evalua-

tion, despite aggressively parallelizing its analysis. In fact,

this aggressive parallelization justifies some of the results,

as we will discuss shortly. Agamotto required consider-

ably more time than Mumak to finish its symbolic execution.

However, we point out that, thanks to its search heuristic

that prioritizes PM accesses, it detects a significant portion

of the bugs within the first hour of the analysis. Finally,

PMDebugger shows somewhat surprising results: it takes

considerably longer than Mumak to analyze the original ap-

plications (close to 10×), but it takes only a couple of minutes

to analyze the SPT variant. This is due to the annotations,

which break the bookkeeping into segments corresponding

to each transaction, hence, shorter transactions lead to less

bookkeeping and faster analysis.

In terms of resource usage, Table 2 presents the peak CPU

load and memory overheads for all experiments.Witcher

is a clear outlier, as it tries to parallelize its analysis across

all available cores. However, by not taking into account the

memory required to do so, it exhausted the available memory

(256GB). This helps justify why it was unable to analyze the

target applications inside the predefined 12 hour timeout. It is

worth noting that this behavior is not configurable and could

only be altered by modifying the tool’s code. Aside from

Witcher, PMDebugger also consumes significantly more

memory than the remaining tools. This is closely related to

the trace analysis approach and the amount of information

that it needs to bookkeep. Next up, Agamotto consumes

3.8−5.8×more memory than the target application requires,

which is to be expected since symbolic execution is known

to be resource intensive. XFDetector, which follows a fault

injection-based approach, has the lowest volatile memory

requirements of all tools. It is also the only tool that relies

on PM to store analysis metadata. Although in these experi-

ments this represents about 1 GB, if the trend is consistent

across applications (close to 2× overhead), it could bottleneck

the analysis of applications that use large amounts of PM.

Overall, Mumak requires the least resources and performs

the fastest analysis of the tools in this comparison.

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

Table 2. Average CPU load, peak RAM and PM overheads relative to vanilla executions. Agamotto does not execute the

applications and thus does not use PM. Hashmap Atomic does not operate correctly in PMDK 1.8.

PMDK Tool

Hashmap Atomic Btree Rbtree Hashmap Atomic (SPT) Btree (SPT) Rbtree (SPT)

CPU RAM PM CPU RAM PM CPU RAM PM CPU RAM PM CPU RAM PM CPU RAM PM

1.6

Mumak (this work) 1.25 2.5× 1× 1.20 2.5× 1× 1.23 2.4× 1× 1.44 1.5× 1× 1.42 2.5× 1× 1.38 2.4× 1×
XFDetector — — — — — — — — — 1.03 1.5× 1.9× 1.03 1.6× 1.9× 1.03 1.6× 1.9×
Agamotto 1.56 3.8× — 1.56 4.9× — 1.56 4.8× — 1.56 3.8× — 1.56 5.8× — 1.56 5.8× —

1.8

Mumak (this work) — — — 1.22 2.5× 1× 1.23 2.4× 1× — — — 1.20 2.5× 1× 1.28 2.5× 1×
PMDebugger — — — 1.35 8.9× 1× 1.29 8.7× 1× — — — 1.07 8.9× 1× 1.10 9.0× 1×
Witcher — — — — — — — — — — — — 138 232× — 148 232× —

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16

Btree Rbtree Hashmap
Atomic

Btree
(SPT)

Rbtree
(SPT)

Hashmap
Atomic
(SPT)

T
im

e
 (

h
)

Mumak
AGAMOTTO

XFDetector

∞ ∞ ∞

(a) PMDK 1.6

 0.125
 0.25
 0.5

 1
 2
 4
 8

 16

Btree Rbtree Btree
(SPT)

Rbtree
(SPT)

T
im

e
 (

h
)

Mumak
PMDebugger
WITCHER

∞ ∞

(b) PMDK 1.8

Figure 4. Analysis time of libpmemobj benchmarks. ∞ denotes instances where the time needed to analyze the target

application exceeded the defined 12 hour limit.

6.2 Coverage
In this section, we show howMumak’s design choices impact

bug coverage.We usedWitcher’s bug list as a baseline, since

it is the most complete and most recently published, and

it covers several applications, namely PMDK’s data stores,

Recipe [29], Redis [10], WORT [28], Level Hashing [60],

FAST&FAIR [21], and CCEH [41], comprising a total of 43

correctness bugs and 101 performance bugs. Overall, Mumak

detects 90% of the bugs (and as shown earlier, does so in

significantly less time thanWitcher) while being agnostic

to library and application semantics, unlikeWitcher. The

interpretation of these results should take the characteristics

of our analysis into account. All correctness bugs detected by

Mumak are found by the fault injection component. The trace

analysis component detects performance bugs and potential

correctness bugs, which we report as warnings and do not

consider in our reported coverage. Finally, we find all the

performance bugs reported by the state of the art, hence, the

percentage of bugs we do not find are correctness bugs.

Moreover, Mumak achieves this coverage without report-

ing false positives. The reason is twofold. First, in the fault

injection phase, Mumak generates crash states that the ap-

plication can reach (i.e., possible states) but from which it

cannot recover. Necessarily, this behavior represents a bug.

Second, in the trace analysis phase, the heuristics employed

define patterns of misuse that always correspond to real bugs.

In other words, instances where a store is not flushed/fenced,

or a flush/fence is redundant, cannot represent a false pos-

itive. The exceptions are the warnings, but those were not

considered as positives when measuring coverage.

Interestingly, we observed that for Level Hashing Mumak

failed to detect all but one bug out of the 17 reported by

Witcher. After further investigation, we pinpointed the

cause to the lack of a recovery procedure in Level Hashing,

which compromised our oracle. Therefore, we decided to

implement a recovery procedure. This required less than 20

lines of simple C code to traverse the structure, count the

reachable items and compare the result with the counters

that were already maintained and persisted in the original

code. This small change increased Mumak’s bug coverage

to 90% and highlights that our requirements regarding the

recovery procedure can be easily met, but also serves as a

motivation for developers to invest in the recovery code, not

only for making the application robust in the presence of

unexpected failiures, but also to aid testing tools that use the

recovery procedure to help in finding bugs.

6.3 Scalability
We now study Mumak’s scalability by analyzing larger code-

bases, with the goal of showing that Mumak’s analysis time

is not proportional to the size of the codebase under test. To

that end, we selected two hashtable implementations from

Montage [58] (LfHashtable and Hashtable), two persistent
engines from pmemkv [9] (cmap and stree), and PM-aware

implementations of Redis [10] and RocksDB [11]. As before,

we performed a preliminary experiment to determine the

size of the workload required to achieve sufficient coverage

(omitted due to space constraints) and once more opted to

perform 150 000 operations equally split among puts, gets

and deletes. Figure 5 presents the analysis time in relation to

the size of the codebase. We measured the size of the code-

base as the number of lines ending in a semicolon for the

target and their PM dependencies (for example, PMDK). We

can conclude that Mumak’s analysis has good scalability, as

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

Table 3. Qualitative analysis of the output and ease-of-use of state-of-the-art PM bug detection tools.

Tool Presents complete bug path Filters unique bugs Runs any generic workload Changes target code Changes build process

XFDetector No No Yes Yes Yes

PMDebugger Yes No Yes Yes No*
Agamotto Yes Yes No (Symbolic Execution) No Yes

Witcher No No No Yes Yes

Mumak (this work) Yes Yes Yes No No
* PMDebugger uses pmemcheck’s annotations, which are part of PMDK. This means that these annotations are available to developers that use the library.

However, it also means that PMDebugger cannot be used by applications that are not built on top of PMDK.

 0.125

 0.25

 0.5

 1

 2

 4 8 16 32 64 128 256

A
n

a
ly

s
is

 t
im

e
 (

h
)

Code size (thousand lines)

cmap

stree

Hashtable

LfHashtable

Redis

RocksDB

Figure 5. Mumak analysis time relative to code size.

the time required to analyze each target is not correlated

with its code size. Mumak’s fast analysis time allows it to

be included in development pipelines, such as continuous

integration approaches, hence contributing towards bug-free

and performant PM applications.

6.4 New Bugs
Mumak discovered two crash-consistency bugs in Montage,

which lead to data loss or corruption. The first one stemmed

from the incorrect use of their persistent allocator, which

broke the recoverability of the structures built on top of it.

The second bug originated from a crash in a much narrower

window during the destruction of the allocator object, once

again potentially corrupting the structure’s data. Both bugs

were confirmed and fixed by the authors [55, 56].

We also analyzed the latest release of PMDK, at the time

of writing, version 1.12.0 [8]. We found a bug by running the

Btree data store workload described in §6.1. Interestingly,

this is not a bug of the data store itself but of the actual li-

brary. In detail, this bug is triggered by a fault injected when

committing a large transaction, which in turn leads to the

possibility of a subsequent (post-failure) large transaction

that needs to dynamically allocate extra undo log space to

also crash the application. This bug was only exposed when

performing a large number of operations, reinforcing the

need for large workloads to provide sufficient coverage. This

issue was classified as "high priority" and has since been

resolved [47]. We also discovered a crash-consistency bug

in the ART data structure. In particular, a fault injected dur-

ing the commit of an insert operation leaves the tree in an

inconsistent state, leading a post-crash insertion to fail an

assertion as it tries to allocate too many children to the same

node. This issue was confirmed but not yet resolved, at the

time of writing [46].

In sum, Mumak is able to detect new bugs due to two

main reasons. First, many previous works focus on PMDK

and make assumptions based on the use of that library, lim-

iting their applicability when the target applications do not

use it. This contrasts with Mumak’s black-box approach that

enabled it to analyze Montage, which has its own PM al-

locator and does not leverage PMDK. Second, some bugs

are only triggered when the target application is submitted

to large workloads, and Mumak is much better equipped

than the rest of the state-of-the-art to handle them within

an acceptable timeframe (as shown in §6.1).

6.5 Ergonomics
This section provides a qualitative analysis of the output

and ease-of-use of each tool. Table 3 summarizes the results,

according to the following criteria that specify whether the

system: i) provides a stack trace detailing the code path

taken to reach the bug, ii) filters unique bugs, i.e., does not

report multiple instances of the same bug, iii) can use a

generic workload or if, instead, it requires a specially crafted

workload, iv) requires changes to the application code, and

v) requires changes to the build process.

XFDetector reports the bugs it detects without providing

sufficient information to pinpoint their specific cause, and it

does not filter duplicates. For example, if a bug is detected

in a given annotation, it simply reports the line of that anno-

tation. Besides requiring developer annotations, XFDetector

requires the post-failure execution to terminate without er-

rors, otherwise, it reaches an infinite loop. In addition to

this, the publicly available artifact does not offer an intuitive

interface to analyze generic applications, requiring users to

script the analysis themselves.

PMDebugger reports enough information to pinpoint the

root cause of bugs, but it also reports all occurrences of every

bug, leading to a large amount of redundant information.

Agamotto provides complete paths and removes dupli-

cate bugs from its output. However, it also introduces noise

due to the KLEE’s symbolic execution engine, along with

references to LLVM’s bitcode. Moreover, to use Agamotto,

developers need to convert the target application to a single-

file LLVM bitcode. Besides this, the oracles provided are

generic yet limited (Table 1). The authors instruct develop-

ers to create application-specific oracles to achieve better

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

coverage. Once again, this is a complex and time-consuming

task, prone to human errors.

Finally, according to the selected criteria, Witcher has

the worst ergonomics from the tools used in this comparison.

It generates large amounts of output (4 − 5GB in the ex-

periments performed) without a clear summary of the bugs

discovered nor instructions on how to analyze the results. In

addition to this, Witcher requires developers to implement

a driver (similarly to YCSB [5]) that interacts with their tar-

get application. This is a time-consuming task and restricts

the tool to key-value store applications.

Mumak provides a stack trace of the code path leading to

the bug, only reports unique bugs, supports any workload,

does not requires changes to the application’s code or build

process, and, with the exception of warnings (that can be

disabled), does not report false positives.

7 Conclusion
We presented Mumak, a tool for detecting correctness and

performance bugs in PM applications. Our design detects

90% of the bugs reported byWitcher, the most recent and

complete state-of-the art tool, while being up to 25× faster

thanWitcher, Agamotto, XFDetector and PMDebugger, in

most scenarios. Unlike other tools, this is achieved without

relying on manual annotations, specific libraries, or applica-

tion semantics. Mumak also detected new bugs in complex

software, namely the latest version of PMDK and Montage.

The efficient and black-box nature of Mumak, together

with its ergonomic concerns, makes it amenable to be inte-

grated in existing continuous integration pipelines, which,

we believe, is a crucial step towards bug-free and performant

PM applications.

Acknowledgments
We thank our shepherd, Baptiste Lepers, and the anonymous

reviewers for their feedback. We also thank João Margaço

and Shady Issa for the exploratory work, and the authors

of Montage for their help confirming and fixing bugs. This

work was supported by Fundação para a Ciência e a Tecnolo-

gia (FCT) under grants 2021.07401.BD, UIDB/50021/2020,

PTDC/CCI-COM/4485/2021 (Ainur), PTDC/CCI-INF/6762/

2020 (MS3).

References
[1] Kartal Kaan Bozdoğan, Dimitrios Stavrakakis, Shady Issa, and Pramod

Bhatotia. SafePM: A sanitizer for persistent memory. In Proceedings of
the Seventeenth European Conference on Computer Systems, EuroSys’22,
page 506–524. ACM, 2022. doi:10.1145/3492321.3519574.

[2] Daniel Castro, Paolo Romano, and João Barreto. Hardware trans-

actional memory meets memory persistency. In IEEE International
Parallel and Distributed Processing Symposium, IPDPS’18, pages 368–

377, 2018. doi:10.1109/IPDPS.2018.00046.
[3] Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. Effi-

ciently detecting concurrency bugs in persistent memory programs.

In Proceedings of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASP-
LOS’22, page 873–887. ACM, 2022. doi:10.1145/3503222.3507755.

[4] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-

jesh K. Gupta, Ranjit Jhala, and Steven Swanson. Nv-heaps: Making

persistent objects fast and safe with next-generation, non-volatile

memories. SIGARCH Computure Architure News, 39(1):105–118, 2011.
doi:10.1145/1961295.1950380.

[5] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking cloud serving systems with YCSB. In

Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC’10,
pages 143–154, 2010.

[6] Intel Corporation. eADR: New opportunities for persistent memory

applications. URL: https://www.intel.com/content/www/us/en/
developer/articles/technical/eadr-new-opportunities-for-persistent-
memory-applications.html.

[7] Intel Corporation. Enhanced valgrind for persistent memory. URL:

https://github.com/pmem/valgrind.
[8] Intel Corporation. Pmdk version 1.12.0. URL: https://github.com/

pmem/pmdk/releases/tag/1.12.0.
[9] Intel Corporation. pmem/pmemkv: Key/value datastore for persistent

memory. URL: https://github.com/pmem/pmemkv.
[10] Intel Corporation. pmem/redis: Redis adapted to use persistent mem-

ory. URL: https://github.com/pmem/redis.
[11] Intel Corporation. pmem/rocksdb: A version of rocksdb that uses

persistent memory. URL: https://github.com/pmem/redis.
[12] Intel Corporation. Persistent memory development kit, 2022. URL:

https://pmem.io/pmdk/.
[13] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and compre-

hensive bug detection for persistent memory programs. In Proceedings
ofthe 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’21, pages
503–516, 2021. doi:10.1145/3445814.3446744.

[14] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan

Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten

Schwan. Data tiering in heterogeneous memory systems. In Pro-
ceedings of the Eleventh European Conference on Computer Systems,
EuroSys’16. ACM, 2016. doi:10.1145/2901318.2901344.

[15] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad

Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher:

Systematic crash consistency testing for non-volatile memory key-

value stores. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP’21, page 100–115. ACM, 2021. doi:
10.1145/3477132.3483556.

[16] Xinwei Fu, Dongyoon Lee, and Changwoo Min. DURINN: Adversarial

memory and thread interleaving for detecting durable linearizability

bugs. In 16th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’22, pages 195–211. USENIX Association, 2022.

URL: https://www.usenix.org/conference/osdi22/presentation/fu.
[17] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu. Crafty: Ef-

ficient, htm-compatible persistent transactions. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI’20, page 59–74. ACM, 2020. doi:
10.1145/3385412.3385991.

[18] E. R. Giles, K. Doshi, and P. Varman. Softwrap: A lightweight frame-

work for transactional support of storage class memory. In 31st Sympo-
sium on Mass Storage Systems and Technologies, MSST’15, pages 1–14,

2015. doi:10.1109/MSST.2015.7208276.
[19] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru : Effi-

ciently Model Checking Persistent Memory Programs. In Proceedings
ofthe 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’21, pages
879–892. ACM, 2021. URL: https://doi.org/10.1145/3445814.3446735,
doi:10.1145/3445814.

https://doi.org/10.1145/3492321.3519574
https://doi.org/10.1109/IPDPS.2018.00046
https://doi.org/10.1145/3503222.3507755
https://doi.org/10.1145/1961295.1950380
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://github.com/pmem/valgrind
https://github.com/pmem/pmdk/releases/tag/1.12.0
https://github.com/pmem/pmdk/releases/tag/1.12.0
https://github.com/pmem/pmemkv
https://github.com/pmem/redis
https://github.com/pmem/redis
https://pmem.io/pmdk/
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/2901318.2901344
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://www.usenix.org/conference/osdi22/presentation/fu
https://doi.org/10.1145/3385412.3385991
https://doi.org/10.1145/3385412.3385991
https://doi.org/10.1109/MSST.2015.7208276
https://doi.org/10.1145/3445814.3446735
https://doi.org/10.1145/3445814

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

[20] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Yashme:

Detecting persistency races. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’22, page 830–845. ACM, 2022.

doi:10.1145/3503222.3507766.
[21] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.

Endurable transient inconsistency in Byte-Addressable persistent B+-

Tree. In 16th USENIX Conference on File and Storage Technologies,
FAST’18, pages 187–200. USENIX Association, 2018. URL: https://
www.usenix.org/conference/fast18/presentation/hwang.

[22] Louis Jenkins and M. Scott. Persistent memory analysis tool (pmat).

2019.

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,

Aasheesh Kolli, and Vijay Chidambaram. Splitfs: Reducing software

overhead in file systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, SOSP’19, page
494–508. ACM, 2019. doi:10.1145/3341301.3359631.

[24] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and

Young ri Choi. SLM-DB: Single-Level Key-Value store with persistent

memory. In 17th USENIX Conference on File and Storage Technologies,
FAST’19, pages 191–205. USENIX Association, 2019. URL: https://www.
usenix.org/conference/fast19/presentation/kaiyrakhmet.

[25] Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa. Vinter: Auto-

matic Non-Volatile memory crash consistency testing for full systems.

In 2022 USENIX Annual Technical Conference, ATC’22, pages 933–950.
USENIX Association, 2022. URL: https://www.usenix.org/conference/
atc22/presentation/werling.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett

Witchel, and Thomas Anderson. Strata: A cross media file system.

In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP’17, page 460–477. ACM, 2017. doi:10.1145/3132747.3132770.

[27] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,

and Jeff Jackson. Yat: A validation framework for persistent memory

software. In Proceedings of the 2014 USENIX Conference on USENIX An-
nual Technical Conference, ATC’14, page 433–438. USENIX Association,

2014. URL: https://dl.acm.org/doi/10.5555/2643634.2643678.
[28] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and

Sam H. Noh. WORT: Write optimal radix tree for persistent mem-

ory storage systems. In 15th USENIX Conference on File and Stor-
age Technologies, FAST’17, pages 257–270. USENIX Association, 2017.

URL: https://www.usenix.org/conference/fast17/technical-sessions/
presentation/lee-se-kwon.

[29] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and

Vijay Chidambaram. Recipe: Converting Concurrent DRAM Indexes

to Persistent- Memory Indexes. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, SOSP’19, page 462–477. ACM,

2019. doi:10.1145/3341301.3359635.
[30] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding

Yuan. ctFS: Replacing file indexing with hardware memory trans-

lation through contiguous file allocation for persistent memory. In

20th USENIX Conference on File and Storage Technologies, FAST’22,
pages 35–50. USENIX Association, 2022. URL: https://www.usenix.org/
conference/fast22/presentation/li.

[31] Lei Liu, Shengjie Yang, Lu Peng, and Xinyu Li. Hierarchical hybrid

memory management in os for tiered memory systems. IEEE Trans-
actions on Parallel and Distributed Systems, 30(10):2223–2236, 2019.
doi:10.1109/TPDS.2019.2908175.

[32] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yong-

wei Wu, Weimin Zheng, and Jinglei Ren. Dudetm: Building durable

transactions with decoupling for persistent memory. SIGPLAN Not.,
52(4):329–343, 2017. doi:10.1145/3093336.3037714.

[33] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. PMFuzz:

test case generation for persistent memory programs. In Proceedings
ofthe 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS’21, pages
487–502. ACM, 2021. doi:10.1145/3445814.3446691.

[34] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,

Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in

persistent memory programs. In Proceedings ofthe 25th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’20, pages 1187–1202, 2020.
doi:10.1145/3373376.3378452.

[35] Sihang Liu, YizhouWei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.

PMTest: A Fast and Flexible Testing Framework for Persistent Memory

Programs. In Proceedings ofthe 24th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’19, pages 411–425, 2019. doi:10.1145/3297858.
3304015.

[36] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. Dash:

Scalable hashing on persistent memory. Proc. VLDB Endow.,
13(8):1147–1161, 2020. doi:10.14778/3389133.3389134.

[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. Pin: Building customized program analysis tools with dy-

namic instrumentation. SIGPLAN Not., 40(6):190–200, 2005. doi:
10.1145/1064978.1065034.

[38] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker . Rethinking

main memory oltp recovery. In IEEE 30th International Conference
on Data Engineering, pages 604–615, 2014. doi:10.1109/ICDE.2014.
6816685.

[39] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris.

Persistent memcached: Bringing legacy code to Byte-Addressable

persistent memory. In 9th USENIX Workshop on Hot Topics
in Storage and File Systems, HotStorage’17. USENIX Association,

2017. URL: https://www.usenix.org/conference/hotstorage17/program/
presentation/marathe.

[40] Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia,

Parthasarathy Ranganathan, and Nathan Binkert. Consistent, durable,

and safe memory management for byte-addressable non volatile main

memory. In Proceedings of the First ACM SIGOPS Conference on Timely
Results in Operating Systems, TRIOS’13. ACM, 2013. doi:10.1145/
2524211.2524216.

[41] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and

Beomseok Nam. Write-Optimized dynamic hashing for persistent

memory. In 17th USENIX Conference on File and Storage Technolo-
gies, FAST’19, pages 31–44. USENIX Association, 2019. URL: https:
//www.usenix.org/conference/fast19/presentation/nam.

[42] Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: Healing

persistent memory bugs without doing any harm. In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’21, page
401–414. ACM, 2021. doi:10.1145/3445814.3446694.

[43] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon,

Simon Peter, and Baris Kasikci. AGAMOTTO: How persistent is

your persistent memory application? Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation, pages
1047–1064, 2020. URL: https://www.usenix.org/conference/osdi20/
presentation/zhang-quanlu.

[44] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan Miller. Reducing

NVMwrites with optimized shadow paging. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems, HotStorage’18. USENIX Asso-

ciation, 2018. URL: https://www.usenix.org/conference/hotstorage18/
presentation/ni.

[45] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory per-

sistency. In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA’14, page 265–276. IEEE Press, 2014.

[46] pmem/pmdk. Crash-consistency bug within libart. URL: https://github.
com/pmem/pmdk/issues/5512.

https://doi.org/10.1145/3503222.3507766
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast18/presentation/hwang
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/atc22/presentation/werling
https://www.usenix.org/conference/atc22/presentation/werling
https://doi.org/10.1145/3132747.3132770
https://dl.acm.org/doi/10.5555/2643634.2643678
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://doi.org/10.1145/3341301.3359635
https://www.usenix.org/conference/fast22/presentation/li
https://www.usenix.org/conference/fast22/presentation/li
https://doi.org/10.1109/TPDS.2019.2908175
https://doi.org/10.1145/3093336.3037714
https://doi.org/10.1145/3445814.3446691
https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/ICDE.2014.6816685
https://doi.org/10.1109/ICDE.2014.6816685
https://www.usenix.org/conference/hotstorage17/program/presentation/marathe
https://www.usenix.org/conference/hotstorage17/program/presentation/marathe
https://doi.org/10.1145/2524211.2524216
https://doi.org/10.1145/2524211.2524216
https://www.usenix.org/conference/fast19/presentation/nam
https://www.usenix.org/conference/fast19/presentation/nam
https://doi.org/10.1145/3445814.3446694
https://www.usenix.org/conference/osdi20/presentation/zhang-quanlu
https://www.usenix.org/conference/osdi20/presentation/zhang-quanlu
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://github.com/pmem/pmdk/issues/5512
https://github.com/pmem/pmdk/issues/5512

EuroSys ’23, May 8–12, 2023, Rome, Italy João Gonçalves, Miguel Matos, and Rodrigo Rodrigues

[47] pmem/pmdk. Crash-consistency bug within pmemobj_tx_commit.

URL: https://github.com/pmem/pmdk/issues/5461.
[48] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Per-

sistency semantics of the intel-x86 architecture. In Proceedings of
the ACM on Programming Languages, volume 4 of PACMPL’20, 2020.
doi:10.1145/3371079.

[49] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon

Peter. HeMem: Scalable Tiered Memory Management for Big Data
Applications and Real NVM, page 392–407. SOSP’21. ACM, 2021. URL:

https://doi.org/10.1145/3477132.3483550.
[50] Benjamin Reidys and Jian Huang. Understanding and detecting deep

memory persistency bugs in nvm programs with deepmc. In Pro-
ceedings of the 27th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, PPoPP’22, page 322–336. ACM, 2022.

doi:10.1145/3503221.3508427.
[51] Jie Ren, Jiaolin Luo, Ivy Peng, Kai Wu, and Dong Li. Optimizing large-

scale plasma simulations on persistent memory-based heterogeneous

memory with effective data placement across memory hierarchy. In

Proceedings of the ACM International Conference on Supercomputing,
ICS’21, page 203–214. ACM, 2021. doi:10.1145/3447818.3460356.

[52] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,

and Onur Mutlu. Thynvm: Enabling software-transparent crash con-

sistency in persistent memory systems. In Proceedings of the 48th In-
ternational Symposium on Microarchitecture, MICRO’15, page 672–685.

ACM, 2015. doi:10.1145/2830772.2830802.
[53] Steve Scargall. Persistent Memory Architecture, pages 11–30. Apress,

2020. doi:10.1007/978-1-4842-4932-1_2.
[54] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and

Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In Pro-
ceedings of the 2012 USENIX Conference on Annual Technical Conference,
ATC’12, page 28. USENIX Association, 2012.

[55] urcs sync/Montage. Fix allocator destruction.

URL: https://github.com/urcs-sync/Montage/commit/
3384e50105348fab6d80e897bfb4a0efdd8aa825.

[56] urcs sync/Montage. Fix for automatic recoverability. URL: https:
//github.com/urcs-sync/Montage/pull/36.

[57] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:

Lightweight persistent memory. In Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’11, page 91–104. ACM, 2011.

doi:10.1145/1950365.1950379.
[58] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin

Valpey, and Michael L. Scott. A fast, general system for buffered

persistent data structures. In 50th International Conference on Parallel
Processing, ICPP’21. ACM, 2021. doi:10.1145/3472456.3472458.

[59] Jian Xu and Steven Swanson. NOVA: A log-structured file system

for hybrid Volatile/Non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies, FAST’16, pages 323–338.
USENIX Association, 2016. URL: https://www.usenix.org/conference/
fast16/technical-sessions/presentation/xu.

[60] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-

Performance hashing index scheme for persistent memory. In 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI’18, pages 461–476. USENIX Association, 2018. URL: https:
//www.usenix.org/conference/osdi18/presentation/zuo.

A Artifact Appendix
A.1 Abstract
This appendix contains instructions to obtain the source

code, build, and evaluate Mumak, a tool that detects bugs

in Persistent Memory applications in an efficient and black-

box manner. The repository includes the source code and

instructions on how to build and run the experiments.

A.2 Description & Requirements
A.2.1 How to access. The artifact is available at
https://github.com/task3r/mumak , or as a persistent DOI at

10.5281/zenodo.7737117.

A.2.2 Hardware dependencies. The evaluation of this

artifact depends on the use of a machine equipped with an

Intel x86 processor with support for clwb, clflushopt, clflush
and sfence instructions, and a physical persistent memory

module (e.g., Intel Optane DCPMM) mounted using a DAX-

enabled file system.

A.2.3 Software dependencies. The system requirements

to evaluate this artifact are:

• Linux (tested with Ubuntu 22.04 LTS, kernel 5.15.0)

• Docker (tested with version 20.10)

• gnuplot (tested with version 5.4)

The repository contains Dockerfiles that install the depen-

dencies for each system evaluated.

A.2.4 Benchmarks. All relevant benchmarks are included

in the repository. Experimental results are reproduced with

these benchmarks as described next.

A.3 Set-up
The evaluation of this artifact depends on the use of a ma-

chine equipped with an Intel x86 processor with support for

clwb, clflushopt, clflush and sfence instructions, and

a physical persistent memory module (e.g., Intel Optane

DCPMM) mounted using a DAX-enabled file system. To

format and mount the drive (assuming the device name is

/dev/pmem0), follow the instructions below:

sudo mkdir /mnt/pmem0
sudo mkfs.ext4 /dev/pmem0
sudo mount -t ext4 -o dax /dev/pmem0 /mnt/pmem0
sudo chmod -R 777 /mnt/pmem0

Additionally, Mumak uses an auxiliary tmpfs mount to

store temporary data. Create it as follows:

sudo mkdir /mnt/ramdisk
sudo mount -t tmpfs -o rw,size =50G tmpfs /mnt/ramdisk
sudo chmod -R 777 /mnt/ramdisk

To obtain Mumak’s artifact, run:

git clone git@github.com:task3r/mumak.git
cd mumak && git submodule update --init

Finally, make sure to disable address space randomization,

as the analysis depends on it:

https://github.com/pmem/pmdk/issues/5461
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3477132.3483550
https://doi.org/10.1145/3503221.3508427
https://doi.org/10.1145/3447818.3460356
https://doi.org/10.1145/2830772.2830802
https://doi.org/10.1007/978-1-4842-4932-1_2
https://github.com/urcs-sync/Montage/commit/3384e50105348fab6d80e897bfb4a0efdd8aa825
https://github.com/urcs-sync/Montage/commit/3384e50105348fab6d80e897bfb4a0efdd8aa825
https://github.com/urcs-sync/Montage/pull/36
https://github.com/urcs-sync/Montage/pull/36
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/3472456.3472458
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo
https://github.com/task3r/mumak
10.5281/zenodo.7737117

Mumak: Efficient and Black-Box Bug Detection for Persistent Memory EuroSys ’23, May 8–12, 2023, Rome, Italy

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Additionally, you should also configure the coredump nam-

ing convention to obtain better debugging information:

echo '/tmp/core -%e.%p.%h.%t' | \
sudo tee /proc/sys/kernel/core_pattern

These last two steps can be automated by running:

./ scripts/setup_host.sh

A.4 Evaluation workflow
A.4.1 Major Claims.

• (C1) Workload coverage: Experiment E1 shows that

large workloads are required in order to increase cov-

erage during bug detection, contrasting with the evalu-

ation presented by previous works. The results should

resemble Figure 3a and Figure 3b.

• (C2) Performance: Mumak out-performs the state-of-

the-art in PM bug detection by up to 25×, as proven by

experiment E2. The results should resemble Figure 4a,

Figure 4b, and Table 2.

• (C3) Scalability: Mumak’s analysis is scalable, in the

sense that the analysis time is not proportional to the

size of the system under analysis, as proven by experi-

ment E3, making it fit for real-world applications. The

results should resemble Figure 5.

A.4.2 Experiments. To reproduce the experiments, nav-

igate to the artifact-evalution directory of repository

and build the docker images required:

cd artifact -evaluation
./ build_images.sh

The automated scripts assume that the set-up was performed

and that /mnt/pmem0/ is the directory where PM is mounted.

Experiment (E1): [Workload coverage] [5 human-minutes +
1 compute-hour]:

This experiment measures the coverage based on the size

of the workloads imposed. It uses PMDK’s btree, rbtree,
and hashmap_atomic as benchmarks. The results are used

to produce Figure 3a and Figure 3b.

[Preparation] None.
[Execution] The automated script will analyze the PM cover-

age of different workload sizes. Run it by issuing:

./ run_coverage.sh

[Results] To plot the results, run:

./ plot_coverage.sh

The plots will be generated in the plots folder in eps for-

mat. The resulting graphs should resemble Figure 3a and

Figure 3b.

Experiment (E2): [Performance] [5 human-minutes + 140
compute-hours]:

This experiment compares the analysis performance of Mu-

mak with the rest of the state-of-the-art. It uses PMDK’s

btree, rbtree, and hashmap_atomic as benchmarks for PMDK

1.6 and PMDK’s btree, rbtree for PMDK 1.8. Each test will

run 3 times, with the exception of XFDetector andWitcher,

which are expected to reach the 12h threshold. The results

are used to produce Figure 4a and Figure 4b.

[Preparation] None.
[Execution] The automated scripts will analyze each target

using each PM bug detection tool. Run them by issuing:

./ run_all_pmdk1dot6.sh

./ run_all_pmdk1dot8.sh

Or alternatively, run each system separately:

./ run_mumak_pmdk1dot6.sh

./ run_agamotto.sh

./ run_xfdetector.sh

./ run_mumak_pmdk1dot8.sh

./ run_pmdebugger.sh

./ run_witcher.sh

[Results] To plot the results, run:

./ plot_pmdk1dot6.sh

./ plot_pmdk1dot8.sh

The plots will be generated in the plots folder in eps for-

mat. The resulting graphs should resemble Figure 4a and

Figure 4b.

Experiment (E3): [Scalability] [5 human-minutes + 12 compute-
hours]:

This experiment analyzes larger code-bases, to show that Mu-

mak ’s analysis time is not proportional to the size of the code-

base under test. As benchmarks, it uses LfHashtable and

Hashtable, from Montage, cmap and stree, from pmemkv,

and PM-aware implementations of Redis and RocksDB. Each

test will run 3 times. The results are used to produce Figure 5.

[Preparation] None.
[Execution] The automated scripts will analyze each target

using Mumak. Run them by issuing:

./ run_all_scalability.sh

Or alternatively, run each system separately:

./ run_pmemkv.sh

./ run_montage.sh

./ run_redis.sh

./ run_rocksdb.sh

[Results] To plot the results, run:

./ plot_scalability.sh

The plot will be generated in the plots folder in eps format.

The resulting graph should resemble Figure 5.

	Abstract
	1 Introduction
	2 Persistent Memory Semantics
	3 Related Work
	4 Mumak
	4.1 Fault Injection
	4.2 Trace Analysis
	4.3 Discussion

	5 Implementation
	6 Evaluation
	6.1 Performance Benchmarks
	6.2 Coverage
	6.3 Scalability
	6.4 New Bugs
	6.5 Ergonomics

	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation workflow

