On Data Placement in Distributed Systems LADIS'14

João Paiva, Luís Rodrigues {joao.paiva, ler}@tecnico.ulisboa.pt

Instituto Superior Técnico / INESC-ID, Lisboa, Portugal

October 23, 2014

What is Data Placement?

Deciding how to assign data items to nodes in a distributed system in such way that they can be later retrieved.

Data Placement Affects

Data Access Locality

Placing correlated data together can reduce latency of operations

Load Balancing

By knowing the workload, data can be placed in a way to even out the load across all nodes

Availability

Data can be replicated depending on probability of node failure

Constraints to data placement practicality

- Lack of flexibility limits data placement improvements
- Scalability imposes limits on the flexibility of placement

Example

Using a centralized directory is flexible, but not scalable
Using consistent hashing is scalable, but not flexible

Constraints to data placement practicality

- Lack of flexibility limits data placement improvements
- Scalability imposes limits on the flexibility of placement

Example

- Using a centralized directory is flexible, but not scalable
- Using consistent hashing is scalable, but not flexible

Main Goal

Provide better options between

- Strong flexibility, limited scalability
- Limited flexibility, good scalability

Two Scenarios

Internet Scale

- Millions of nodes
- Short term connections
- Asymmetric, inconstant network

Datacenter Scale

- Thousands of nodes
- Stable connections
- Controlled network infrastructure

Two Scenarios: Previous state of the art

Internet Scale

Scalable solutions with little flexibility, concerned with churn

Datacenter Scale

Very flexible solutions, concerned with workload changes

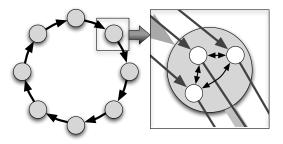
Summary of Findings

Improvements for both scenarios:

- More flexible solution for Internet-Scale
- More scalable solution for Datacenter-Scale

Outline

Introduction


Internet Scale

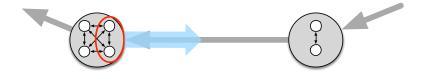
Datacenter Scale

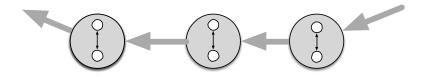
Conclusion

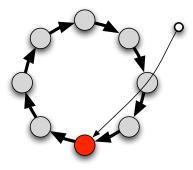
TÉCNICO LISBOA

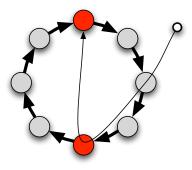
Internet Scale: Rollerchain

- Data assigned to node groups
- Variable replication degree
- Nodes have no fixed position

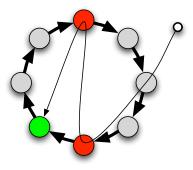








Nodes have no fixed position



Nodes have no fixed position

Nodes have no fixed position

Internet Scale: Implementation

Rollerchain

- Gossip-based and structured overlay
- Better churn resilience than state of the art
- Decreased replication costs

"Rollerchain: a DHT for Efficient Replication", João Paiva, João Leitão and Luís Rodrigues, Symposium on Network Computing and Applications (*IEEE NCA*), August 2013. (*Best student paper award*)

Internet Scale: Implementation

Data Placement Policies

- Avoid-Surplus: Reducing monitoring costs
- Resilient Load-Balancing: Improving load balancing
- Supersize-me: Reducing replication costs

Read the paper to know the best policies:

"Policies for Efficient Data Replication in P2P Systems", João Paiva, and Luís Rodrigues, International Conference on Parallel and Distributed Systems (*IEEE ICPADS*), December 2013.

Internet Scale: Implementation

Data Placement Policies

- Avoid-Surplus: Reducing monitoring costs
- Resilient Load-Balancing: Improving load balancing
- Supersize-me: Reducing replication costs

Read the paper to know the best policies:

"Policies for Efficient Data Replication in P2P Systems", João Paiva, and Luís Rodrigues, International Conference on Parallel and Distributed Systems (*IEEE ICPADS*), December 2013.

Outline

Introduction

Internet Scale

Datacenter Scale

Conclusion

Datacenter scale: AutoPlacer

System where data placement is defined by combining:

- Consistent hashing for most items
- Precise placement for selected items

Locality-improving round-based algorithm for in-memory data grids

"AutoPlacer: scalable self-tuning data placement in distributed key-value stores",
 J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, International Conference on
 Autonomic Computing (USENIX ICAC), June 2013. (Best paper finalist)
 "AutoPlacer: scalable self-tuning data placement in distributed key-value stores",
 J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, ACM Transactions on Autonomous and Adaptive Systems (ACM TAAS)

Datacenter scale: AutoPlacer

System where data placement is defined by combining:

- Consistent hashing for most items
- Precise placement for selected items

Locality-improving round-based algorithm for in-memory data grids

"AutoPlacer: scalable self-tuning data placement in distributed key-value stores",
J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, International Conference on Autonomic Computing (USENIX ICAC), June 2013. (Best paper finalist)
"AutoPlacer: scalable self-tuning data placement in distributed key-value stores",
J. Paiva, P. Ruivo, P. Romano and L. Rodrigues, ACM Transactions on Autonomous and Adaptive Systems (ACM TAAS)

Algorithm overview

Online, round-based approach:

- 1. Statistics: Monitor data access to collect hotspots
- 2. Optimization: Decide placement for hotspots
- 3. Lookup: Encode / broadcast data placement
- 4. Move data

Algorithm overview

Online, round-based approach:

- 1. Statistics: Monitor data access to collect hotspots
- 2. Optimization: Decide placement for hotspots
- 3. Lookup: Encode / broadcast data placement
- 4. Move data

Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

- Lightweight
- Sub-linear space usage
- Inaccurate result... But with bounded error

Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

- Lightweight
- Sub-linear space usage
- Inaccurate result... But with bounded error

Statistics: Data access monitoring

Key concept: Top-K stream analysis algorithm

- Lightweight
- Sub-linear space usage
- Inaccurate result... But with bounded error

Algorithm overview

Online, round-based approach:

1. Statistics: Monitor data access to collect hotspots

2. Optimization: Decide placement for hotspots

- 3. Lookup: Encode / broadcast data placement
- 4. Move data

Optimization

Integer Linear Programming problem formulation:

$$\min \sum_{j \in \mathcal{N}} \sum_{i \in \mathcal{O}} \overline{X}_{ij} (cr^r r_{ij} + cr^w w_{ij}) + X_{ij} (cl^r r_{ij} + cl^w w_{ij})$$
(1)

subject to:

$$orall i \in \mathcal{O}: \sum_{j \in \mathcal{N}} X_{ij} = d \land orall j \in \mathcal{N}: \sum_{i \in \mathcal{O}} X_{ij} \leq S_j$$

Inaccurate input:

- Does not provide optimal placement
- Upper-bound on error

Accelerating optimization

- 1. ILP Relaxed to Linear Programming problem
- 2. Distributed optimization

LP relaxation

• Allow data item ownership to be in [0-1] interval

Distributed Optimization

- Partition by the N nodes
- Each node optimizes hotspots mapped to it by CH
- Strengthen capacity constraint

Algorithm overview

Online, round-based approach:

- 1. Statistics: Monitor data access to collect hotspots
- 2. Optimization: Decide placement for hotspots
- 3. Lookup: Encode / broadcast data placement
- 4. Move data

Lookup: Encoding placement

Probabilistic Associative Array (PAA)

- ► Associative array interface (keys→values)
- Probabilistic and space-efficient
- Trade-off space usage for accuracy

Probabilistic Associative Array: Usage

Building

- 1. Build PAA from hotspot mappings
- 2. Broadcast PAA

Looking up objects

- If item is hotspot, return PAA mapping
- Otherwise, default to Consistent Hashing

Probabilistic Associative Array: Usage

Building

- 1. Build PAA from hotspot mappings
- 2. Broadcast PAA

Looking up objects

- If item is hotspot, return PAA mapping
- Otherwise, default to Consistent Hashing

PAA: Building blocks

Bloom Filter

Space-efficient membership test (is item in PAA?)

Decision tree classifier

Space-efficient mapping (where is hotspot mapped to?)

PAA: Building blocks

Bloom Filter

Space-efficient membership test (is item in PAA?)

Decision tree classifier

Space-efficient mapping (where is hotspot mapped to?)

PAA: Properties

Bloom Filter:

- **No False Negatives**: never return \perp for items in PAA.
- **False Positives**: match items that it was not supposed to.

Decision tree classifier:

- ▶ **Inaccurate** values (bounded error).
- Deterministic response: deterministic (item

 node)
 mapping.

PAA: Properties

Bloom Filter:

- **No False Negatives**: never return \perp for items in PAA.
- **False Positives**: match items that it was not supposed to.

Decision tree classifier:

- ► **Inaccurate** values (bounded error).
- Deterministic response: deterministic (item

 node) mapping.

PAA: Properties

Bloom Filter:

- **No False Negatives**: never return \perp for items in PAA.
- **False Positives**: match items that it was not supposed to.

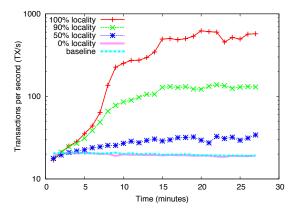
Decision tree classifier:

- Inaccurate values (bounded error).
- Deterministic response: deterministic (item

 node) mapping.

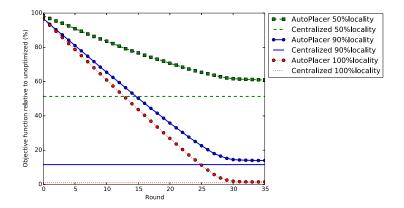
Outline

Introduction


Internet Scale

Datacenter Scale Autoplacer Evaluation

Conclusion Conclusion



Evaluation: Throughput

Evaluation: Optimization

Outline

Introduction

Internet Scale

Datacenter Scale

Conclusion

Conclusions

Internet Scale

- More flexible overlay for data placement
- Policies to improve metrics using added flexibility

Datacenter Scale

- Scalable mechanism for data placement
- Algorithm to improve locality through hotspot placement

Thank you

joao.paiva@tecnico.ulisboa.pt web.tecnico.ulisboa.pt/joao.paiva

