TECNICO
LISBOA

U

Multithreading in Android

Mobile and Ubiquitous Computing
MEIC/MERC 2015/16

Nuno Santos



Processes, Threads, and Components

When an app is launched, Android starts a new Linux process
— The process executes a Dalvik virtual machine instance

Dalvik starts a single thread of execution called main thread

The main thread handles all components of the app

If an app component starts and a process exists for that app, then:

— The component is started within that process
— Uses the same thread of execution

Components can be arranged to run in separate processes

It is possible to create additional threads for any process



A thread is a
concurrent unit of
execution

Each thread has its
own call stack

The call stack is
used on method
calling, parameter
passing, and
storage for the
called method’s
local variables

Multithreading

Process 1
(Dalvik Virtual Machine Instance 1)

Common memory resources

Main

Thread 1 Thread 2 Thread




Creating a Thread

* Implement the thread code:

Runnable tLogic= new Runnable {
public void run() {
// do some work

}

e (Create the thread and launch it:

Thread t = new Thread(tLogic, “My Thread”);
t.start();




Main Thread (aka Ul Thread)

Very important thread: handles Ul

— It’s in charge of dispatching events to the appropriate user
interface widgets, including drawing events

The system does not create a separate thread for each
instance of a component

— All components that run in the same process are instantiated in
the Ul thread

System calls to each component are dispatched from that
thread

— Therefore, methods that respond to system callbacks (e.g.,
onKeyDown()) always run in the Ul of the process



Handling Ul Events

Mesg #1
Click Button
Event Mesg #2 onClick()
Mesg #n Mesg ... |
Main
Thread
Message e

Queue



Beware of Long Operations in Ul
Thread!

public void onClick(View v) {
Bitmap b = loadImageFromNetwork(..); // long op
mImageView.setImageBitmap(b) ; // update UI

* Long running operations will block the whole Ul
— No event can be dispatched: the apps appears hung

— If blocked for too much time “application not responding”
dialog pops up



15t Attempt: Long Ops in Worker Thread

public void onClick(View v) {
new Thread(new Runnable() {
public void run() {
Bitmap b = loadImageFromNetwork(..); // do long ops
mImageView.setImageBitmap(b); // update UI

}
}).start(); // execute thr

}

* Good: does not block Ul thread

* Problem: Android Ul toolkit is not thread-safe and must be
always manipulated in the Ul thread
— In this code, ImageView is manipulated on a worker thread
— Could be the source of nasty bugs!



Access Ul Thread from Worker Threads

* Multiple ways, but the code gets pretty complicated...
— Activity.runOnUiThread(Runnable)
— View.post (Runnable)
— View.postDelayed(Runnable, long)
— Handler

public void onClick(View v) {
new Thread(new Runnable() {
public void run() {
final Bitmap b = loadImageFromNetwork() ;
mImageView.post(new Runnable() {
public void run() {
mImageView.setImageBitmap(b) ;
}
1)
}
}).start();

}

Mobile and Ubiquitous Computing 2015/16



Long-Running Tasks with AsyncTask

* Simplify the creation of long-running tasks that need to
communicate with the Ul

public void onClick(View v) {
new DownloadImageTask().execute("http://..");
}

private class DownloadImageTask extends AsyncTask {
protected Bitmap doInBackground(String... urls) {
return loadImageFromNetwork(urls[0]);

}

protected void onPostExecute(Bitmap result) {
mImageView.setImageBitmap(result);

}

Mobile and Ubiquitous Computing 2015/16



AsyncTask

* AsyncTask must be used by subclassing it

* It has to be created in the Ul thread and can be executed only once

e (Qverview:

You can specify the type, using generics, of the parameters, the
progress values and the final value of the task

dolnBackground() executes automatically on a worker thread

onPreExecute(), onPostExecute() and onProgressUpdate() are all
invoked on the Ul thread

The value returned by dolnBackground() is sent to onPostExecute()

You can call publishProgress() at anytime in dolnBackground() to
execute onProgressUpdate() on the Ul thread

You can cancel the task at any time, from any thread

Mobile and Ubiquitous Computing 2015/16



Useful Pointers

* Processes and Threads

— http://developer.android.com/guide/components/processes-and-
threads.html

* Android Thread Model

— http://mcatr.blogspot.pt/2013/06/android-thread-model.html

e Common Tasks and How to Do Them in Android
— http://developer.android.com/guide/fag/commontasks.html#threading

Mobile and Ubiquitous Computing 2015/16



