TECNICO
LISBOA

U

Android Application Components:
Lifecycle and State

Mobile and Ubiquitous Computing
MEIC/MERC 2015/16

Nuno Santos

1. APPLICATION COMPONENTS

Android Components

* Apps are built out of four types of components:
— Activity, Service, Broadcast Receiver, and Content Provider

 Components communicate through Intents

Mobile and Ubiquitous Computing 2015/16

Activity
A typical Android app consists of one or more activities

Launching the app results in executing one predefined activity
(called main activity)

An activity shows a single visual user interface (GUI)

An activity may transfer control and data to another activity
through messages called intents

Control and data transfer may occur between activities of different
apps

Activity Example

* Facebook App:
— Activity A: allows user to login on Facebook
— Activity B: displays user’s Facebook wall

Activity A

ol

facebook

_ o
L n

Mobile and Ubiquitous Computing 2015/16

Activity Wireframe

e Screen map of an app with multiple activities
— Useful to draw before starting to implement the app!

Home
| l |
Category Saved Item
List Photo List List
Saved Saved
Story List Photo View <—— o, to List Story List
Story View =

Taken from: http://developer.android.com/training/design-navigation/wireframing.html

Mobile and Ubiquitous Computing 2015/16

Service

Services are a special type of activity without visual user
interface

Services run in background (usually for indefinite period of
time)

Applications start their own services or connect to services
already active

Service Example

* Background music
— A music service (Pandora Radio) runs in background
— Music heard while other GUIs shown on screen

Background

Foreground

Broadcast Receiver

Is a dedicated listener that waits for system-wide or locally
transmitted messages

Does not display a user interface
Registered with the system by means of a filter acting as a key
Activated when the broadcasted message matches the key

Could respond, e.g., by executing specific activity, or use the
notification mechanism to request the user’s attention

Broadcast Event List

* Full list available in sdk/platforms/android-17/data/broadcast_actions

android.app.action.ACTION PASSWORD CHANGED
android.app.action.ACTION PASSWORD EXPIRING
android.app.action.ACTION PASSWORD FAILED
android.app.action.ACTION PASSWORD SUCCEEDED
android.app.action.DEVICE ADMIN DISABLED
android.app.action.DEVICE ADMIN DISABLE REQUESTED
android.app.action.DEVICE ADMIN ENABLED
android.bluetooth.a2dp.profile.action.CONNECTION STATE CHANGED
android.bluetooth.a2dp.profile.action.PLAYING STATE CHANGED
android.bluetooth.adapter.action.CONNECTION STATE CHANGED
android.bluetooth.adapter.action.DISCOVERY FINISHED
android.bluetooth.adapter.action.DISCOVERY STARTED
android.bluetooth.adapter.action.LOCAL NAME CHANGED
android.bluetooth.adapter.action.SCAN MODE CHANGED
android.bluetooth.adapter.action.STATE CHANGED

Mobile and Ubiquitous Computing 2015/16

Broadcast Receiver Example

* Log incoming phone calls

System Service ‘ ‘ Broadcast Receiver

android.intent.action.PHONE_STATE

Waiting for incoming
phone call event

Foreground Activity

method () {

é log_call() ;

}

Content Provider

Data-centric service that makes persistent datasets available
to any number of applications

Common global datasets include: contacts, pictures,
messages, audio files, emails

Datasets usually stored in an SQLite database

Content provider offers a standard set of “database-like”
methods to enable other apps to retrieve, delete, update, and
insert data items

Decide If You Need a Content Provider

* You need it if you want to provide one of more of the
following features:
— Offer complex data or files to other apps
— Allow users to copy complex data from your app into other
apps
— Provide custom search suggestions using the search
framework

e You don’t need one to use SQLite database if the use
is local to your app

Summary of App Components

Represents

single screen
E.g., show email list

Handles system

broadcasts
E.g., take action if
battery low

Mobile and Ubiquitous Computing 2015/16

Works in

background w/o Ul
E.g., play bg music

Manage access to

data

E.g., manage contact
information

2. APPLICATION LIFECYCLE

Application Lifecycle

* Each Android application runs inside its own instance
of a Dalvik Virtual Machine (DVM)

 An Android application does not completely control

the completion of its lifecycle

— Hardware resources may become critically low and OS
could order early termination of any process

Component Lifecycle

 Components are different points through which the
system can enter an app

 Each component has distinct lifecycle that defines
how the component is created and destroyed

* They all follow a master plan that consists of:
1. Begin: respond to request to instantiate them
2. End: when instances are destroyed
3. In between states: that depend on component type

Activity Lifecycle

* An activity can exist in essentially three states:

Resumed
(aka Running)

The activity is in the foreground of the screen and has user
focus

Paused Another activity is in the foreground and has focus, but this is
still visible (e.g., transparently); it is alive but can be killed
Stopped The activity is completely obscured by another activity (it is

now in background); it can be killed if memory is needed

If an activity is paused or stopped, the system can drop it

from memory
— When the activity is opened again, it must be created all over

Mobile and Ubiquitous Computing 2015/16

Activity Lifecycle Events

* When progressing from one

state to the other, the OS

notifies the app of the changes
by issuing calls to the following

transition methods:
— onCreate

— onStart

— onRestart

— onResume

— onPause

— onStop

— onDestroy

Mobile and Ubiquitous Computing 2015/16

Activity
launched

—

onCreate()
onStart() +—— onRestart()
* A

User navigates -
to the activity onResume()

N :

' Appprocess |

[\ ‘ Activity
killed running
. S/ “
—
Another activity comes
nto the foreground
User returns
* to the activity
Apps with higher priorit
pps with higher priority. ____ onPause()

need memory

|
The activity is
no longer visible)
User navigates
+ to the activity
onStop())

[
The activity is finishing or
being destroyed by the system

v

onDestroy()

:

Activity ‘*‘
shutdown
o/

Back Stack

* Activities are scheduled using a stack named back stack

’, Start Activity 2 1 (Start Activity 3 l F Navigate back —l

Foreground activity
Activity 1 Activity 2 Activity 3 Activity 2
Back Stack Activity 1 ~ Activity 2 I Activity 1
Activity 3
Activity 1 destroyed

— When a new activity is started, it is placed on top of the stack and
becomes the running activity

— Previous activity is pushed-down one level in the stack and changes to
paused / stopped state

— If the user presses the Back Button or the foreground activity
terminates, the next activity is resumed

Mobile and Ubiquitous Computing 2015/16

Tasks

 The system can manage independent back stacks as tasks
 Atask is created first time user touches app icon in Home screen

* Atask can be entirely moved to the background
— E.g., when user presses the Home button

Foreground activity Background

Activity Z Activity Y
Activity Y Activity X
Task B Task A

e Activities in a task’s back stack could belong to different apps
— E.g., sub-activity for sending an email

3. APPLICATION STATE

Activity State

Saving Activity State

* When the system destroys an activity, the system must recreate
the Activity object if the user navigates back to it

 To preserve activity state, implement onSaveInstanceState

. Activity -

[o running ‘
onCreate() or
onRestorelnstanceState() Another activity comes Activity instance is intact;
nto the foreground no need to restore the state
Restore your activity state i |
onSavelnstanceState() onRestart()
Save your activity state f
User navigates to User navigates to
the activity the activity
/ App process Apps with | Activity is
killed® /& higher priority —— 154 visible
_ J need memory

*Activity instance is destroyed, but the
state from onSavelnstanceState() is saved

http://developer.android.com/training/basics/activity-lifecycle/recreating.html

Mobile and Ubiquitous Computing 2015/16

Recovering Activity State

* protected void onCreate(Bundle savedState)

— Called when the activity is first created

— This is where you should do all of your normal static set up: create
views, bind data to lists, etc

— It also provides you with a Bundle containing the activity’s previously
frozen state, if there was one

e protected void onPause()
— Called when the system is about to start resuming a previous activity
— Itis typically used to commit unsaved changes to persistent data, stop
animations, release system resources, etc.

— Implementations of this method must be very quick because the next
activity won’t be resumed until this method returns

Taken from: http://developer.android.com/reference/android/app/Activity.html

Cross-Component Communication

Cross-Component Communication:
Intents

* Intent is a messaging object to request an action
from another app component

e Fundamental use-cases:

Start an activity startActivity(intent)
Start a service startService(intent)
Deliver a broadcast sendBroadcast (intent)

Taken from: https://developer.android.com/guide/components/intents-filters.html

Main Arguments of Intents

1. Action: The built-in action to be performed, such as ACTION VIEW,
or user-created-action

2. Data: The primary data to operate on, such as a phone number to
be called (expressed as a URI)

Intent: {ACTION VIEW, “content://contacts/people/1”}

Activity 1 Activity 2
optional results

Taken from: https://developer.android.com/reference/android/content/Intent.html

Application Context

Application Global State

 Every Android application is hosted by an Application object
— We use the Application object to share global state
— Each app runs in its own process with its own ID and main thread

s N

Process

Application

_
Main Thread

= ©

L Service J ﬁ
[BroadcastReceiver }
wld
J

Mobile and Ubiquitous Computing 2015/16

Using the Application Context

* Either use the default application context or create your own:

— Create a class for holding the app shared state; this class must extend
from class android.app.Application

package pt.ulisboa.tecnico.cmov.globalvariable;
import android.app.Application;
public class GlobalClass extends Application {
private String name;
public String getName() {

return name;

}

public void setName(String aName) {

name = aName;

Using the Application Context

e Declare the new context class in the manifest file

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="pt.ulisboa.tecnico.cmov.globalvariable"
. >

<uses-sdk
. />

<application
android:name="pt.ulisboa.tecnico.cmov.globalvariable.GlobalClass"
. >

<activity
. >

</activity>

</application>

</manifest>

Using the Application Context

* Access the application context object from any
component of the application

— To write:

// Obtain reference to application context
GlobalClass globalVariable = (GlobalClass) getApplicationContext();

// Set name in global/application context
globalvVariable.setName("Android Example context variable");

— To read:

// Obtain reference to application context
GlobalClass globalVariable = (GlobalClass) getApplicationContext();

// Get name from global/application context
String name = globalVariable.getName();

Application Context Lifecycle Methods
* onCreate: called when the Application is started

 onLowMemory: called when the system requests
that apps try to clean up what they can

 onTerminate: sometimes called when the Application
is stopped

* onConfigurationChanged: called when the device
Configuration changes while the app is running

Useful Pointers

e Service lifecycle
— http://developer.android.com/guide/components/services.html

* Broadcast receiver lifecycle

— http://developer.android.com/reference/android/content/
BroadcastReceiver.html

— http://www.grokkingandroid.com/android-tutorial-broadcastreceiver/

e Content provider lifecycle

— http://developer.android.com/guide/topics/providers/content-providers.html

Mobile and Ubiquitous Computing 2015/16

