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ABSTRACT
To extract value from evergrowing volumes of data and to drive
decisionmaking, organizations frequently resort to the composition
of data processing workflows. The typical workflowmodel enforces
strict temporal synchronization across processing steps without
accounting the actual effect of intermediate computations on the
final workflow output. However, this is not the most desirable in
a multitude of scenarios. We identify a class of applications for
continuous data processing where the workflow output changes
slowly and without great significance in a short time window, thus
squandering compute resources with current approaches.

To overcome such inefficiency, we introduce a novel workflow
model, for continuous and data-intensive processing, capable of
relaxing triggering semantics according to the impact that input
data is assessed to have on changing the workflow output. To esti-
mate this impact, learn the correlation between input and output
variation, and guarantee correctness within a given tolerated er-
ror constant, we rely on Machine Learning. The functionality of
this model is implemented in SmartFlux, a middleware framework
which can be integrated with existing workflow managers. Experi-
mental results indicate substantial savings in resource usage, while
not deviating the workflow output beyond a small error constant
with a high confidence level.
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1 INTRODUCTION
Current trends are being characterized by ever-growing volumes
of data flowing over the globe throughout wide-scale networks. In
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this context, new distributed and high-scalable infrastructures are
required to manage and process data efficiently. This includes infras-
tructures enabling workflow composition, denominated Workflow
Management Systems (WMSs), for being highly expressive, flexible
and scalable.

A workflow is usually modeled as a Directed Acyclic Graph
(DAG) to express the dependencies and relations between com-
putation and data. The workflow paradigm has been extensively
used in a number of different settings (e.g., eScience, engineering,
industrial), encompassing activities as diverse as web crawling, data
mining, protein folding, sky surveys, forecasting, RNA-sequencing,
or seismology [10, 19, 30, 44].

Generally, a WMS triggers the execution of an entire workflow
graph based on either time frequency (e.g., every 20 minutes) or
data availability (e.g., when new files show up in a given folder). We
refer to continuous data processing when the same workflow com-
pute graph is executed repeatedly, and in sequence, for a possibly
unbounded number of times.

Traditionally, WMSs enforce strict temporal synchronization
throughout the various dependencies of processing steps (i.e., fol-
lowing the Synchronous Data-Flow (SDF) computing model [32]).
That is, a step is immediately triggered for execution as soon as
all its predecessor steps have finished their execution. Should the
temporal logic be relaxed, for example, to respond to application re-
quirements of latency or prioritization, programmers have no other
choice than to explicitly program non-synchronous behavior. This
ad-hoc programming increases the complexity of the application
and the chance of error occurrence.

In addition, typical WMSs do not take into account the volume
of data arriving at each processing step and its actual impact on
changing the final workflow output (i.e., the output produced by
processing steps that do not have any successor steps). We argue
that such an assessment should be used to control the workflow
execution and drive the triggering of steps towards meaningful
results. This issue is even more important in workflows for data-
intensive and continuous processing where many resources can be
purposelessly wasted if new input and intermediate datasets do not
cause significant changes on the workflow output.

In fact, fully executing a processing step every time a small
fragment of data is received can have a great impact on perfor-
mance and machine load, without actually changing substantially
the workflow output and its significance to the problem being ad-
dressed; as opposed to executing it only when a certain substantial,
relevant (w.r.t. application semantics) quantity of new updated data
is available.

Further, there is a class of workflow applications for continuous
data processing where the output of final processing steps does
not change significantly in a short time window. A natural fit to
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Figure 1: Motivational example: fire risk assessment

this class are monitoring applications, which are commonplace
[17]. For example, a workflow that is constantly processing data
coming from a network of temperature sensors, to detect fires in
forests, would not need to be always computing tasks (e.g. calcu-
lating hotspots, updating the risk level) whose output would not
change significantly in the presence of small jitters in temperature.
The workflow would only issue a displacement order to a fire de-
partment if a significant proportion of the sensors detect a steep
increase in temperature. This way, tasks should have a specification
of the minimum impact that their input data is required to have in
order to make their executions worthy.

As a motivational example, consider the case of assessing the
fire risk in a given forest through a sensor network that captures
temperature, precipitation and wind. Figure 1 depicts a workflow
that, periodically (e.g., every 5 seconds, every half an hour), receives
data from the sensors and executes the following processing steps:
1) updates an internal representation of the forest map; 2) divides
the map into small areas; 3) assesses the fire risk in each area; and
4) assesses the overall risk and contiguous risky areas (hotspots).

The temperature, precipitation and wind measures will probably
not change every half an hour, or at least not significantly to pose a
risk. Changes in the sensor readings will cause increasingly smaller
changes in the data as we go through the steps of the workflow;
e.g., the temperature of an area, one piece of data generated by step
2, which results from the average temperature of its composing
sensors, will only change if a large fraction of sensor readings
change (i.e., more than one piece of data in step 1 should change).
Likewise, the risk of an area, one piece of data generated by step 3,
which consists of the classification of different temperature ranges
into different risk levels, will probably only change after an area
has been updated several times (many more than one piece of data
in the output of step 2). As a result, the output of the workflow,
generated by step 4, will remain almost unchanged during most of
the time. Only output variations higher than a certain threshold will
be deemed as significant. Therefore, we consider that a substantial
amount of resources is wasted in re-executing the entire workflow.

Other examples, that fall in this same application class, include:
measuring the impact of social business [7], detecting gravitational-
waves [16], weather forecasting [29], predicting earthquakes [19],
among others. Even for those applications where the outcome
changes more frequently, such as a web crawler, the impact of
the updated results may become only relevant when the differences
from the previous crawls accumulate significantly (e.g., relevant
change in word counts, page ranking or the number of reverse
links).

In this paper, we address the problem of providing asynchrony
in workflows resorting to the notion of Quality-of-Data. We define

Quality-of-Data (QoD), 1 in this context, as the entirety of features
or characteristics that data must have towards its ability to sat-
isfy the purpose of changing the workflow output significantly
w.r.t. the application specific semantics, following the principle de-
scribed in [27]. By specifying such data requirements that govern
the workflow execution, we are thus able to enforce a certain level
of performance in terms of the number of resources engaged per
time unit and average latency to obtain a result. These require-
ments can be enforced, for example, based on the size, frequency
and magnitude of new updates.

To this end, we introduce a novel workflow model, for continu-
ous and data-intensive processing, that is capable of intelligently
guiding the triggering of processing steps according to patterns
observed in the flow of data, towards a meaningful and signifi-
cant output, while respecting QoD constraints. Hence, we enable
adaptive execution in workflows that is driven by the data charac-
terized impact. To assess how different input data patterns affect
the workflow output, we resort to Machine Learning with Random
Forests [15], which is the classification algorithm that yielded better
performance in general comparing to others (cf. § 3). Specifically,
we learn statistical behaviors of workflows by correlating input
variation with output generated deviation, arising from deferring
the execution of processing steps.

As a proof of concept, we developed SmartFlux, a middleware
framework that enforces our asynchronous model and can be in-
tegrated with existing WMSs. In this work, we integrate it with a
widely-deployed WMS, Apache Oozie [26]. Our experimental re-
sults show that, with SmartFlux, we are able to deliver high resource
efficiency. Specifically, we are able to save a substantial amount
of resources w.r.t. the synchronous model, while not deviating the
workflow output beyond a small error constant with a high confi-
dence level: up to 30% less executions while enforcing a QoD (an
error bound) as low as 5% with a confidence over 95%.

The main contributions of this paper are:
(1) a novel workflow model that enables asynchronous trigger-

ing of processing steps;
(2) a solution modeled with Machine Learning techniques to

enable the adaptive execution of workflows towards mean-
ingful results in a resource-efficient manner;

(3) a framework, that can be coupledwith existingWMSs, and its
extensive experimental evaluation with two realistic bench-
marks as a proof-of-concept.

The remainder of this paper is structured as follows. § 2 details
our workflow model. § 3 describes our learning approach to bound
the output error. § 4 presents the design and architecture of Smart-
Flux and § 5 its experimental evaluation. Related work follows in
§ 6 and § 7 concludes the paper.

2 ABSTRACTWORKFLOWMODEL
In this section, we describe our abstract workflow model that en-
ables temporal asynchrony across processing steps, based on the
predicted impact that observed data patterns in the input will have
on the workflow output.

1Quality-of-Data is akin to Quality-of-Service, and should not be confused with issues
such as internal data correctness, semantic coherence, data adherence to real-life
sources, or data appropriateness for managerial and business decisions.
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Our model is specifically designed for continuous processing and
data-intensive scenarios where long-lasting workflow applications
are regularly fed with new or updated raw data from a given source
(e.g., network of sensors, Internet, social network, radio telescopes).
We refer to each time a workflow is fed with new data as a wave.
We describe how the task model, the data model (QoD), and the
input and output monitoring work together to achieve temporal
asynchrony.

Our workflow model inherits from and extends the traditional
workflow model [45] where strict temporal synchronization is en-
forced. Processing steps communicate data through an underlying
storage system, a data container. It can be a set of directories (filesys-
tems); or keyspaces, tables, columns, rows, or any combination of
these (databases).

The main feature that differentiates our model from the other
typical DAG workflows is its triggering semantics: a processing
step A, in a workflow D, is not necessarily triggered for execution
immediately, when all its predecessors A’ (A′ ≺D A) have finished
their execution. Instead, A should only be triggered as soon as all
predecessor steps A’ have completed at least one execution and
have, also, carried out a sufficient (or significant) level of changes
on the underlying data containers that comply with certain QoD
requirements. This way, a processing step can be re-executed sev-
eral times without necessarily triggering the execution of successor
nodes; i.e., step triggering is guided by the rate of data changes,
and not exclusively by the end of a single execution of predecessor
nodes, as it usually happens in the regular workflow model.

Intuitively, the QoD defines how sensitive a step is to the impact
that new input will have on changing the output after execution.
This establishes how much the input needs to change in order for it
to update the latest output of a step in a significant manner to the
application. If input changes are insufficient, we can simply avoid
the execution and save resources while providing (approximate)
results faster. Further, in many cases (e.g., updating a map grid of
temperatures), a deferred execution of a processing step will process
fresh data that outdates, by overriding, previous input. Hence, the
load of a deferred execution is not increased.

In practice, the QoD defined for a step needs to correspond to
the impact on its input (which comes from the generated output of
predecessor steps) that makes its output reach a maximum defined
tolerated error (with application meaning for decision makers; e.g.,
maximum 10% deviation). Hence, the target impact on input cor-
responds to the input necessary, in terms of quantity and quality
(or significance), for reaching a threshold that specifies the maxi-
mum deviation of the output tolerated for that step. This output
deviation in a step is thus seen as an error introduced by deferring
its re-execution, as opposed to the synchronous model. In return,
skipping executions saves resources from being wastefully engaged.
We now describe the metrics to calculate the input impact and the
output error.

2.1 Input Impact
The input impact ι of a processing step is a metric that captures
the amount and magnitude of changes applied to its associated
data container in relation to a previous state. Every time new data
updates are performed on a data container, that holds the input of a

step, the input impact is calculated based on the new updated data
and its previous versions. The previous versions correspond either
to the state of the data on the previous wave, or the state of the data
on the wave where the latest execution of the step occurred. The
former implies that the input impact is accumulated with the impact
measured for previous waves that occurred after the execution of
the associated step. The latter allows computations to cancel each
other out: if we get the value xi on wavew equal to x ′i on wave y,
regardless the number of waves occurred between y andw without
triggering the associated step, the error comes as zero. Further,
since steps are potentially not all executed in the same wave, the
input impact of a step is only calculated when its predecessors have
generated output, which will possibly not happen in every wave.

Users can define their own functions to capture the impact of
changes in a data container (technical details elaborated in § 4.2).
Nonetheless, we provide, by default, two generic functions that can
serve well a wide set of scenarios according to our experiments.
They are described in the following equations.

ι =
m∑
i=1
|xi − x

′
i | ×m (1) ι =

∑m
i=1 |xi − x

′
i | ×m∑m

i=1max (xi ,x
′
i ) × n

(2)

In Equations 1 and 2, xi is the updated state of the ith element
and x ′i its latest state,m and n are the number of modified elements
and the total number of elements in the associated data container,
respectively, andmax is the function that returns the maximum
between two numbers. If a new element is inserted, its latest state
x ′i is zero (which increases the impact).

Equation 1 captures the differences in magnitude between the up-
dated and latest saved state of elements, multiplied by the number
of modified elements. Equation 2 divides the result of Equation 1 by
the maximum between the updated and latest state of the elements,
multiplied by the total number of elements in the data container.
Hence, it captures the relative impact over a previous state, return-
ing a value between 0 (no changes) and 1 (difference introduced by
new data with higher or equal magnitude to that of the previous
state).

Further, if a processing step receives input from more than one
predecessor step, then we calculate the input impact produced by
each predecessor step and combine them through the geometric
mean by default.

2.2 Output Error
The output error ε of a processing step is a metric that attempts to
measure the error penalty of postponing its execution. Each time a
step is not executed at a given wave of data, it incurs a certain error
that can be seen as the cost of the changes that were missed in the
corresponding data container. Hence, if a step is always executed
at each wave of data the error is zero. Like the input impact, the
output error can be cumulative or not depending on whether error
cancellation is allowed for an application.

Users also have the flexibility of providing their own functions
to compute the output error (cf. § 4.2). Nonetheless, we offer the
following generic functions to calculate the output error, denoted
by ε .
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ε =

∑m
i=1 |xi − x

′
i | ×m∑n

i=1 x
′
i × n

(3) ε =

√∑m
i=1 (xi − x

′
i )
2

m
(4)

In Equations 3 and 4, xi is the updated state of the ith element
and x ′i its latest state,m and n are the number of modified elements
and the total number of elements in the associated data container
respectively.

Equation 3 captures the relative impact of new updates on the
latest state. It returns a value between 0 (no error) and 1 (new data
has higher or equal magnitude to the previous state). Equation 4 cor-
responds to the frequently used Root-Mean-Square Error (RMSE),
which captures the deviation between the updated and previous
states of elements, thereby attenuating the impact of small differ-
ences and further penalizing larger differences. It is up to the user
to decide which function works better for a particular problem.

Having the input impact (ι), output error (ε), and the maximum
tolerated error (maxε ), which can be seen as the decision mak-
ing boundary, for a processing step (s), we trigger its execution
when we predict through ι that ε > maxε . For such prediction, we
learn the statistical correlation between ι and ε during a period of
synchronous execution (see § 3).

2.3 Limitations and Generality of the Model
Our model is suitable for applications that exhibit regular input
patterns over a period of time (i.e., no random or uncorrelated
input/output over time). We show examples of how this class of
applications is actually commonplace in continuous workflow pro-
cessing. As long as there is a correlation between input and output,
our system is able to capture it and predict accurately, with a high
confidence interval, when and which steps should be skipped or
executed. This is a central premise for our system to work.

Following, we briefly describe that there is an intuitive relation
between input and output for three pipeline/workflow applications
(due to space constraints we abstract from the details of processing
steps that perform the computations).
PageRank: Processes the content of crawled documents and builds
an histogram with the differences against previous states of links.
It is only worthy to process the new crawled documents if the
differences in the link counts is sufficient to significantly change
the page rank of documents, according to decision makers.
LIGO [16]: Detects gravitational waves that are linked to the occur-
rence of events in the universe. The output, regarding the detection
of events (like exploding stars), is strongly associated with the input
which corresponds to laser data waveforms. It is only worthy to
explore the input data if the simple characterization of waveforms
can lead to a true inspiral event.
CyberShake [19]: Performs seismic hazard estimation for a given
site. The input corresponds to rupture descriptions and the output
is an hazard map. It is only worthy to recompute parts of the map
if the new probability variations of ruptures are impactful against
a previous state.

In these applications, as well as in a great part of applications
for continuous and incremental processing, there is generally an
association between input and output. The correct characterization
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hour by hour for a day in the Amazon rainforest

of the data input can allow us to predict the significance on the
output.

2.4 Prototypical Scenario
Figure 2 illustrates a workflow, extension of the workflow in Fig. 1,
that assesses the fire risk for a given forest region based on a net-
work of sensors equally distributed. For a normal day in the Amazon
rainforest, for instance, we can see in Figure 3 that temperature,
precipitation, and wind, vary progressively over 24 hours without
major steep slopes (this also holds, even more so, when we assume
higher frequency of sensor readings, e.g., every second). Such char-
acteristics make this scenario propitious for resource reasoning and
savings.

The first processing step (in Figure 2) receives data (temperature,
precipitation, wind) from sensors every time interval, aggregates
it through some function, and stores the result for each sensor in
the corresponding data container. Since this is the first step that
updates a data container, it must always be executed at every wave;
i.e., it is not possible to maintain sensory data across waves without
the execution of this step. Step 2a divides the forest into smaller
areas and combines the measures of all sensors in each area. This
step is only executed when the input impact ι2a is sufficient to
cause the error ε2a to reachmax (ε2a ), which is the user-defined
maximum tolerated error. Step 2b generates a thermal graphical
map for some monitoring station.
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Step 3 assesses the fire risk of each area by comparing the val-
ues calculated in step 2a with some threshold. This step is only
triggered when significant measurement differences in some areas
are perceived or when a sufficient number of areas is updated by
step 2a.

Step 4a, which is the workflow output, assesses the overall fire
risk and identifies groups of areas with highest risk in the forest.
This step is expected to have its output changed slowly over time
andmax (ε4a ) should be set to a value such that the difference in the
overall fire risk across waves is significant to decision makers. Step
4b gathers satellite images in case areas identified in step 3 exhibit
very high temperature levels (on fire). Step 5 issues a displacement
order to a fire department in case the fire is confirmed through the
analysis of satellite images. These two last steps are critical for fire
detection and therefore they do not tolerate error.

To estimate and correlate error with input impact, we learn the
statistical behavior of the workflow with Machine Learning by
executing the workflow synchronously for a restricted period of
time, as we elaborate next.

3 LEARNING APPROACH
This section introduces our learning approach to bound the output
error, arising from the delayed execution of processing steps, and
to provide guarantees about the maximum deviation of workflow
outputs. Specifically, we make use of Machine Learning classifi-
cation techniques to predict how input data affects the output of
processing steps.

Our learning approach is based on predictions that are naturally
not perfect, and therefore the guarantees we refer in this paper are
probabilistic guarantees; i.e., we are able to ensure that error bounds
are respected within a confidence interval. These are the same kind
of guarantees offered by other systems such as the ones proposed
in [9, 40]. This confidence interval is expected to be high (> 90%)
as long as our central premise holds; i.e., that there is a correlation
between input and output (cf., § 2.3). This premise is verified during
a test phase (elaborated later on in this section).

3.1 Classification
Generally, classification algorithms try to estimate a function h(x )
that, given an N -dimensional input data set, predicts which of two
possible classes form the output (h : RN → {±1}). The estimation
of this function, which corresponds to the construction of a model,
is based on a supplied set of training examples encompassing tuples
with known correct values of input and corresponding output; i.e.,
supervised learning. The obtained classifier is then able to assign
new unseen examples to one class or another.

In our particular problem, we need to predict which steps
generate an error exceeding their corresponding maximum bounds
(maxε ) for a given input. Hence, the output of the classifier is no
longer a single binary value, but a set of values representing the
configuration of steps that should be executed or not for each
wave of data; i.e., multi-label classification [41]. As an example,
the matrices below represent, for 5 waves (rows), a pipeline with 3
steps (columns) querying the classifier by sending the input impact
ι calculated for each step (X ); and receiving in return the sequence

of steps that should be executed or not (Y ).

h(



694.86 601.6 498.3
191.24 886.1 498.3
278.13 1071.4 498.3
433.78 233.78 664.24
551.53 523.8 956.52

︸                              ︷︷                              ︸
X

) =



1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

︸       ︷︷       ︸
Y

At the first wave, with the input impact of the 3 steps,
{694.86, 601.6, 498.3}, the classifier estimates that only the first step
should be executed ({1, 0, 0}), so that its error does not exceed the
maximum defined boundmaxε . Then, the second step is executed
at the third wave ({0, 1, 0}); that is, it needs to accumulate input
for 3 waves so that its output changes significantly (i.e., its error
reachesmaxε ). Finally, the third step is executed only at the fifth
wave.

To learn the correlations between input impact and respective
incurred error, it is necessary to train the classifier and construct
a model. Then, in a test phase, the quality of the trained classifier
is assessed and, if the accuracy is not satisfactory, more training
may be required. These two sequential phases, training and test,
can be performed either regularly from time to time or on-demand
(useful if data patterns start to change suddenly). Further, these
phases take place while the workflow is running and producing
results with real datasets, hence making this an online process.

3.2 Classification Algorithm Selection
To select a good Machine Learning classification algorithm for
our problem, we performed several experiments using the appli-
cations described in § 5. Using the ROC area, a metric to assess
the performance of a classifier, we compared the following widely-
deployed algorithms: Bayes Network, J48 tree, Logistic, Neuronal
Network, Random Forest, and Support Vector Machine. Random
Forest (RF) [15] and Support Vector Machine (SVM) [25] yielded
better ROC areas on average for all the experiments: 0.86 and 0.82
respectively (values approaching 1 mean optimal classifier and 0.5
is comparable to random guessing). However, since SVM requires
more parameterization (e.g., selecting a proper kernel to capture
linear or non-linear data correlations, or using cost matrices to
weight unbalanced datasets) [38], and default parameterization in
RF often performs well [15], we adopted RF as our default learning
approach, although they can be switched.
Training Phase. Unless a training set is given beforehand, a train-
ing phase starts taking place when the workflow is executed for the
first time. During this phase, all processing steps of the workflow
are executed synchronously (without any QoD enforcement). The
duration of this phase is configured by users with a specified num-
ber of waves. At each wave, the input impact ι and corresponding
(simulated) output error ε are calculated for each step, and a tuple
containing ι and a binary value, indicating whether the maxε of
that step is reached, is appended to a log (i.e., training-set).
Test Phase. We assess the quality of the trained model measuring:
(i) accuracy, the proportion of instances correctly classified; (ii)
precision, the number of classified instances that are truly of a class
divided by the total number of instances classified as belonging to
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that class; and (iii) recall, the number of instances classified as a
given class divided by the number of instances that are truly of that
class. We perform a 10-fold cross-validation on the training-set.

High values of recall mean that we are avoiding the existence of
false negatives; i.e., the percentage of times the model estimated
incorrectly that the error was belowmaxε . Hence, a good recall
is necessary to ensure that the error stays within maxε . As for
precision, high values mean that we are avoiding to estimate incor-
rectly the error as being abovemaxε , which is necessary to mitigate
resource waste.

Typically, classification algorithms can be adjusted to favor re-
sults on a given metric (e.g., recall), and to specify whether it is
more important to comply with error bounds or save resources.
In RF, this adjustment is performed through two parameters: the
maximum number of trees to be generated, and the maximum depth
of the trees. If results are not satisfactory, w.r.t. defined thresholds,
a training phase takes place again and more instances are collected.
Otherwise, it means that we are able to provide probabilistic guaran-
tees regarding error compliance. As there is a correlation between
input and output, it is always possible to get a satisfactory result
(e.g., over 90% accuracy) with more training.
Application Phase. After a sufficiently accurate model is built,
the application phase takes place and the workflow starts running
asynchronously in an adaptive way. At each wave, the input impact
ι is calculated for each step and fed to the classifier, which in return
indicates which steps should be executed.

4 SMARTFLUX DESIGN & IMPLEMENTATION
SmartFlux is a middleware framework that provides functionality
conforming to theworkflowmodel described previously. It couples a
WMS with a data store by monitoring data transfers and controlling
the triggering of processing steps. With this coupling, SmartFlux
enables the deployment of quality-driven workflow applications,
where processing steps are triggered based on the impact that their
computations are predicted to have in the workflow output.

As we are targeting data-intensive applications, our focus in this
work regarding data communication is put on distributed (colum-
nar) Key-Value stores (e.g., Cassandra [28], HBase [21]), since they
can achieve high performance.

Figure 4 shows the architecture of the SmartFlux middleware
framework, operating between a WMS and a data store. Processing
steps run atop the workflow manager and they share data through
the underlying storage system. These steps may consist of Java
applications, scripts expressed through high-level languages for
data analysis (e.g., Apache Pig [35]), Map-Reduce jobs, or other
off-the-shelf solutions.

SmartFlux can work with either its own provided basic WMS or
existing open-source WMS. Here, we focus on using existing WMS,
to assess to what extent it requires changing its implementation
and triggering mechanisms. To connect our framework with a
WMS, an adaptation component,WMS Adaptation (colored in grey),
needs to be provided with a specific API so that SmartFlux can
issue triggering notifications and receive state information, thereby
orchestrating the execution of the processing steps of a workflow.

Since SmartFlux needs to be aware of the updates that the pro-
cessing steps apply to the data store, we provide three options
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Figure 4: SmartFlux Framework Architecture

(components colored in grey): i) Application Libraries, ii) WMS
shared libraries, and iii) Observer. The Application Libraries com-
ponent corresponds to adapted driver libraries, used by processing
steps to interact directly with the data store via their client APIs.
Although applications may need to be slightly modified (e.g., chang-
ing package names in the imports of Java classes), we provide tools
to completely automate this process.

At the WMS level, WMS Shared Libraries represent adapted
shared libraries that are used by processing steps to interact with
the data store through the WMS (e.g., pig scripts or any other high-
level language that must be interpreted/compiled by the WMS).
Finally, at a lower level, the Observer component corresponds to
custom code that is triggered and executed at the data store level
upon client requests (e.g., co-processors in HBase or triggers in Cas-
sandra). These two last options provide transparency to executing
steps and avoid changes in the application code.

Next, we describe the responsibilities and purpose of each core
component in the SmartFlux framework (in white).
Monitoring: It analyzes, through the adaptation components, all
requests directed to the data store. This involves identifying all
affected data containers and calculating the corresponding input
impact and, during the training phase, also the error. Note that the
simplicity of get-put interfaces works in our favor in this process.
Afterwards, the calculated values are sent to the QoD Engine.
QoD Engine: It maintains the current state of control data (input
impact, error) along with workflow specification and meta-data
defined by the user, such as the error bounds for each step. Based on
this data, and after querying the Predictor, it evaluates and decides
when and which steps should be triggered for execution during the
application phase.
Knowledge Base: It maintains data collected through the Monitoring
component during the training phase: input impact and a binary
value indicating whether ε > maxε for each considered step. This
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data forms the training-set that is used by the Predictor to build a
classification model.
Predictor: It informs the QoD Engine of which steps should be
triggered for execution, thus predicting which error bounds are
exceeded given the input impact of considered steps. For that, it
uses a classifier (RF by default) with a trained model.

4.1 General Operation Flow
We consider two different operating modes: i) training mode; and
ii) execution mode. In the training mode, a workflow is executed
synchronously and we collect metrics about the input impact and
output deviation for each processing step that tolerates error. After
a predetermined number of waves, a classification model is built
with the previous collected data.

The training mode is represented by the white curved arrows
in Figure 4: the Monitoring component, that gets data from the
adaptation components, feeds the Knowledge Base with statistical
information about the data updated in the data store; then, the
Predictor component builds a classification model based on the
data sets with the metrics contained in the Knowledge Base (input
impact, error).

The execution mode is represented by the dark curved arrows:
the Monitoring component collects statistical information from
data store R/W requests, and sends to the QoD Engine computed
input impact metrics at each wave of data; after, the QoD Engine
queries the Predictor with input impact data and gets in return
the configuration of processing steps that should be executed (i.e.,
where ϵ > maxϵ ).

4.2 Adopted Technology and Integration
We integrated our framework with a widely deployed WMS,
Oozie [26]. In effect, we extended Oozie with a notification scheme
that is interfaced with the SmartFlux framework process through
Java RMI. Generally, Oozie only has to notify when a step finishes
its execution, and SmartFlux only has to signal the triggering of a
certain step; naturally, these notifications share the same process-
ing step identifiers. The QoD error bounds are specified along with
standard Oozie XML version 0.2 schemas, and given to SmartFlux
with an associated workflow description. Specifically, we changed
the XSD to accept a new element inside the element action (i.e.,
processing step) which specifies the data containers associated
with steps (table, column, row, or group of any of these) and their
corresponding error bounds, which are values from 0 to 1.

As our underlying distributed Key-Value storage, we adopt
HBase [21], the open-source Java clone of BigTable [18]. This
column-oriented data store is a sparse, multi-dimensional sorted
map, indexed by row, column, and timestamp; the mapped values
are simply an uninterpreted array of bytes. Due to its complexity,
we decided to intercept data store updates by adapting the HBase
client libraries. To this end, we extended the implementation of
some library classes while maintaining their original API; namely,
sending the data containers and respective data to SmartFlux inside
writing methods (e.g., put, delete). Since our API is the same as
the original one, only import declarations need to be modified to
SmartFlux packages in the application code.

Regarding our Machine Learning implementation, we adopted
MEKA [37], a multi-label classification library in Java based on the
well known WEKA [24] Toolkit.
Input Impact andOutput ErrorAPI.Weprovide an API through
which users can implement custom functions to capture the input
impact and corresponding output error. This API comprises 2 main
Java method signatures that need to be implemented: update and
compute. update is called for every element in the corresponding
data container, receiving as arguments the current and previous
values of the element. It relates both values (e.g., calculating their
difference) and updates the metric state, such as summations.

As for compute, it is called to calculate the overall input impact
or output error of a processing step, when no more elements are
expected to be received on the data container. We plan in the future
to provide a high-level DSL language for non-expert users.

Finally, we made available the source code of the prototypes we
developed in the context of this paper [5, 6].

5 EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of our work-
flow model with the SmartFlux framework. We evaluate the follow-
ing aspects:

(1) We show why Machine Learning is needed in our problem.
Specifically, we show that the correlation patterns between
input impact and error are linear and non-linear, making
them difficult to predict with rigid non-statistical methods.

(2) We analyze how accurate is SmartFlux in making predictions.
Specifically, we analyze SmartFlux ability to use resources
efficiently while complying with error bounds. When error
bounds are violated, we quantify the number of violations
and respective deviations, and, with that, we obtain confi-
dence intervals for error compliance.

(3) We assess the benefits of SmartFlux in terms of saved execu-
tions and resources for different error bounds.

(4) We assess the overhead of SmartFlux.

All tests were conducted using 6 machines with an Intel Core
i7-2600K CPU at 3.40GHz, 11926MB of RAM memory, and HDD
7200RPM SATA 6Gb/s 32MB cache, connected by 1 Gbps LAN.

5.1 Test Scenarios
We conducted an in-depth analysis by selecting two interesting ap-
plications, which represent two different and realistic scenarios for
continuous and incremental processing: (i) LRB, a variable tolling
system for an urban expressway structure based on the Linear Road
Benchmark [11]; and (ii) AQHI, a system based on a network of
sensors to classify the quality of the air in a geographic location,
inspired by the Air Quality Health Index (AQHI) used in Canada [2].
LRB. In the first scenario, we have a variable tolling system for a
fictional expressway system where different toll rates are charged.
The data inputted to the workflow is generated by the MIT-SIMLab
(a simulation-based laboratory) [11] and consists of vehicle position
reports and historical query requests. Position reports are emitted
every 30 seconds and they identify a vehicle’s exact location in the
expressway system. Through these reports, we generate statistics
comprising average vehicle speed, number of vehicles and existence
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Figure 5: Workflow of the Linear Road. Rectangles in grey
represent data containers

of accidents, for every segment of every expressway for every
minute. Then, these statistics are used to determine toll rates for
the segments where the vehicles are in.

Historical query requests, by turn, are issued by vehicles to esti-
mate travel time and cost for a journey on an expressway. Figure 5
depicts the workflowwe designed for this tolling system. Processing
steps are described as follows.

Step 1 receives, separates, and stores position reports and queries
from vehicle transponders into different data containers to be pro-
cessed by step 2a and 2b respectively. Step 2a updates vehicle
positions in the urban expressway, which includes updating every
segment of every expressway with new vehicle data. This step is
only staged to execution when there is a sufficient number of po-
sition reports (complying with the QoD of step 2a). Steps 3a, 3b,
and 3c (forking from 2b) assess the average speed for all cars in a
segment in the last 5 minutes, the number of cars, and the existence
of accidents on every segment of every expressway, respectively.
Each of these steps is only triggered when significant differences
(according to predefined error bounds) in vehicle positions are per-
ceived against a previous state. Also, the input impact is maintained
separately for each of these three steps. Step 4 (joining 3a,b,c) com-
putes the level of congestion for every segment of every expressway
based on the average speed and the number of vehicles, as well as
the presence of accidents nearby. This represents the calculation of
the toll in the original benchmark. Step 5a identifies and classifies
areas in the expressway system where the traffic congestion is low,
medium, or high. Step 2b processes and prioritizes queries; and
step 5b estimates travel time and cost for a journey. These two last
steps are executed synchronously since they generate replies to
real time queries.
AQHI. Figure 6 depicts the workflow that calculates the air quality
index (AQHI) on a given geographic region. This index represents
a classification of the potential health risk that comes from air pol-
lution. The workflow input is injected from detectors with three
sensors to gauge the amount of Ozone (O3), Particulate Matter
(PM2.5) and Nitrogen Dioxide (NO2) in the atmosphere. In prac-
tice, each sensor corresponds to a different generating function,
following a distribution with smooth variations across space These
sample variations provide the necessary input data to the workflow

1 2 3a 5
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CONCENTRATION
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HOTSPOTS

QUALITY 

INDEX

Figure 6: Workflow of the Air Quality Health Index

in each wave, corresponding to an hour of the day, for a total of 168
waves for a full week simulated. The generating functions return a
value from 0 to 100, where 0 and 100 are, respectively, the minimum
and maximum known values ofO3, PM2.5 and NO2. The workflow
output corresponds to the generation of an index, a number, that is
mapped into a class of health risk: low (1-3), moderate (4-6), high
(7-10), and very high (above 10).

Step 1 simulates asynchronous and deferred arrival of sensory
data. It continuously receives data from the atmospheric sensors and
feeds the workflow by updating the first data container composed of
3 columns. Step 2 calculates a single value, through a multiplicative
model, representing the combined concentration of the 3 sensors for
each detector. Every single calculated value is written on the column
concentration of the data store. Step 3a divides the considered
region in smaller areas and computes the aggregated concentration
of pollution from detectors in each area. Step 3b processes the
concentration of the area between detectors, thereby averaging the
concentration perceived by surrounding detectors. It also plots a
chart containing a representation of the pollution concentrations
throughout the whole probed area for displaying purposes. Step 4
assesses which of the previous stored zones have a concentration
above a specified reference, which represents a point from which a
zone is considered an hotspot (i.e., zone exhibiting an high level of
pollution). Step 5 reasons about the hotspots previously detected
and, through a simple additive model that combines the number of
hotspots with the average concentration of pollution on hotspots,
it calculates an index that classifies the overall level of pollution in
the given geographic region.

5.2 Learning Effectiveness
Correlation between Input Impact and Error. Fig. 7 shows the
correlation between input impact and error for the main process-
ing steps of LRB (figures 7(a)-7(d)) and AQHI (7(e)-7(g)), using a
maximum tolerated error of 20%. We measure the sample Pearson
correlation coefficient [13], r, which has a value between +1 and
-1, where 1 is total positive linear correlation, 0 is no linear corre-
lation, and -1 is total negative linear correlation. We observe that
the correlations vary across steps and workloads, and that they
are mostly neither linear nor trivial to be simply deduced; i.e., the
coefficient r is closer to zero than to 1 in most cases (and especially
for LRB), indicating that there is not a strong linear correlation. If
they were obvious, other simpler techniques like linear regression
would suffice. Hence, we justify the use of Machine Learning to
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Figure 7: Correlation between input impact and error for the main processing steps of LRB and AQHI

learn these complex patterns, that vary according to the computa-
tions being performed, and ensure the error is bounded, in a generic
and seamless way.
Prediction Accuracy. Figure 8 shows the accuracy, precision, and
recall of our learning model while varying the number of examples
in the training-set, for LRB and AQHI using error bounds of 5, 10,
and 20%. The examples contained in the test-sets were taken in
subsequent waves as those of training-sets. 500 test examples for
LRB and 384 for AQHI (respectively corresponding to a cycle of
a pattern that repeats across time). Since LRB exhibited in gen-
eral more variance in the (ι, ε ) correlation patterns, we decided to
optimize its classifier for recall, hence minimizingmaxε violations.

For figures 8(a)-8(c), we observe that the accuracy of the clas-
sifier for LRB improves as the number of training examples and
error bound increase, up to 80% whenmaxε = 20%. This indicates
that, with 500 examples, our learning model was able to predict
the execution of steps in 60 upto 80% of the times in an optimal
manner. Optimal means thatmaxε was never exceeded and step re-
execution was postponed as much as possible. However, not having
a fully accurate model does not mean thatmaxε is exceeded; e.g.,
re-execution can happen one wave before the ideal one, preventing
maxε from being reached, but also leaving space for one execution
that could have been saved. We can also notice that the recall is
always above 86% for more than 300 examples in the training-set,
meaning that false negatives were reduced and true negatives aug-
mented (i.e., maximizingmaxε compliance). As a consequence of
optimizing for recall, we also get more false positives (less saved
executions), which is represented by the precision metric.

As for AQHI, figures 8(d)-8(f), we observe that, with a bound
of 5%, all metrics yield values equal or higher than 95%, which
constitutes an excellent result (i.e., almost optimal resource savings
and error compliance). The main reason for this is that the error
variation, from wave to wave, was most of the time above 5% for
the first 2 steps, which caused their re-execution in almost every
wave. For an error bound of 10%, accuracy was roughly stable across

different training-sets, and above 90% for more than 100 examples
in training-set. For the same error bound of 10%, recall increased
with the number of training examples upto roughly 100%, showing
thatmaxϵ was almost never violated. Conversely, precision slightly
decreased with the number of examples, showing that the steps
were re-executed more than the ideal necessary to stay within
error limits. Finally, formaxε = 20%, there is an initial accentuated
decline for accuracy and recall until roughly 100 training examples,
probably corresponding to less than a complete pattern cycle. After
that, accuracy goes from roughly 80 to 90%, and recall from 80 to
100%. AQHI is more stable than LRB, as expected since there is more
bias and less variability in the input data, changing overall more
smoothly across time. Therefore, the classifier requires less training
examples to perform accurate predictions on new unseen examples.
Intuitively, the higher the bound (i.e., the slack we allow for data
modification over time), the higher potential for saving resources,
but the less ability to avoid large deviations in the outcome of the
execution.
Measured versus Predicted Errors. Across waves, Figure 9
shows the difference between predicted and measured errors for
the last processing steps (that determine the workflow output) of
LRB and AQHI using error bounds of 5,10, and 20%. The predicted
errors were calculated by accumulating the simulated errors (when
compared against the output of synchronous executions), accord-
ing to the binary values returned by the classifier across waves.
Figures 9(a)-9(c), 9(g)-9(i), show the predicted and measured errors
in absolute value (Error). Figures 9(d)-9(f) and 9(j)-9(l) show the
difference between predicted and measured errors (Prediction De-
viation) for LRB and AQHI, respectively. A negative difference on
a wave means that we were predicting the error below its actual
(measured) value, and thus error bound violation did not happen for
that wave. A positive difference on a wave means that the step was
not executed and the predicted error stayed abovemaxε . Globally,
to maximize the ratio number-of-savings/number-of-violations, the
predicted and measured errors should be as close as possible, so
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Figure 8: Accuracy, Precision, and Recall for LRB and AQHI with error bounds of 5, 10, and 20%

that the prediction deviation is around zero most of the time. Note
that the figures show only markers for the outliers to the global
trend.

For LRB with an error bound of 5 and 10%, we can see that the
predicted error stayed below the measured error for most of the
time, with a deviation down to -0.1 (figures 9(d), 9(e)). Whenmaxε
was violated, 3 and 4 times with a bound of 5 and 10% respectively,
the difference between predicted ε andmaxε was never above 0.3,
and only 1 time above 0.15 (figures 9(d), 9(e)). For a bound of 20%,
figures 9(c)-9(f), the quality of the prediction was degraded: the
predicted error exceededmaxε for a higher number of waves, albeit
the prediction error was below 0.15 for most of the failed waves and
below 0.45 for all waves. Nevertheless,maxε violation occurred in
less than 10% of the 500waves, 82% of whichwithminor violation (<
0.15). Therefore, the potential for resource savings can be leveraged
just at the expense of limited and mostly predictable additional
error.

Regarding AQHI, figures 9(g)-9(l), we can see that, with an error
bound of 5%, the deviation between predicted and measured error
was minimal and maxε violation happened in only 4 waves (<
0.012). With a bound of 10%, more prediction errors arose after 200
waves, albeit never exceeding 0.32 overall and 0.10 for the majority.
Finally, for a bound of 20%, the number of prediction errors increases
with errors staying below 0.6 overall and 0.25 for the majority. In a
separate test, we optimized the classifier for recall, which produced
no prediction errors, but degraded resource efficiency.

To conclude, the larger the error bound is, the higher is the
number and magnitude of the errors obtained for prediction. This
is expected as larger bounds on output difference allow for more
(cumulative) deviation over time.
Confidence Levels. Figure 10 shows, for LRB and AQHI, the
confidence of SmartFlux in complying with defined error bounds,
which corresponds to the normalized cumulative sum of correct
waves wheremaxε was respected. We can see that, apart from the

first 100 waves, the level of confidence was always above 95% for
error bounds of 5 and 10% (i.e., for more than 95% of the times we
are able to comply with error bounds of 5 and 10%). Nevertheless,
with a bound of 20%, the confidence level raised quickly to more
than 95 and 90% in LRB and AQHI respectively. This indicates that
our system is reliable for decision makers. It can provide SLA-like
guarantees stated as a confidence level (in %, that can be regarded
as a probability) of being (consistently) under a given error limit
provided by the user. This is akin to current cloud SLAs that promise
to honor availability (or limits to latency - a limit on time) for a given
percentage of the time, that can also be regarded as a probability.

To show how well SmartFlux makes intelligent decisions, we
compare it with some naive approaches for an error bound of 5%.
This bound was selected in order to get the best possible confidence
from these approaches. The results of this comparison is given
in Figure 11, where random consists of randomly skipping step
execution (executing or not executing a step on a given wave has
equal probability), and seqX consists of executing steps at every
X waves. We observe that, either for LRB or AQHI, none of the
approaches was better than SmartFlux, which offers more than
95% of confidence on error bound compliance. However, the other
approaches revealed higher confidence in LRB than in AQHI, albeit
never above 90% for most part of the waves. Note that a difference
of 1% in confidence is statistically significant. The reason for such
difference in these workloads lies in the fact that LRB can be better
approximated by a linear function than AQHI (seq2 has a pure linear
behavior). However, only a Machine Learning approach can cover
all cases, since polynomials can fit any type of correlation.

5.3 Resource Efficiency and Performance
Figure 12 shows the trade-off between the output error and the
amount of executions (resources engaged), when comparedwith the
synchronous model (SDF), (thus also illustrating resource savings
due to avoided executions). For the cumulative sum of executions
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(c) LRB(20%) Error
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(g) AQHI(5%) Error
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(h) AQHI(10%) Error

0.0

0.2

0.4

0.6

0.8

100 200 300

OOOOO

O

O

O

OO

O

O

OOOO

O

O

O

OO

O

OOO

OOOO

O

O

O

OO

O

OO

OO

OO

OO

O

O

O

O

O

OOOOO

OO

O

OO

OO

OOOO

OO

O

OO

O

OO

OOO

OOOO

O

OO

O

O

OOOO
O

O

O

O

O

O

OO

O

OOOO

OO

O

OO

O

O

O

OOO

OOO

O

O

OO

O

O

OOOO

OO

OOO

OO

O

OOO

O

OO

O

O

O

O

OOOO
OO
OO

O

OO

OO

OOOO

OO

O

OO

O

O

O

OOOOO

O

O

O

O

O

O

O

OOOOO

O

O

O

O

OO

OOOOO

O
OO

O

O

O

O

O

O

OOO
O

OO

O

OO

OO

O

OO

OO

OO

O

OO

O

OO

O

OOO

O
OOO

O

O

OO

OO

O

O

OO

O
OO

OO

O

O

OOO

OO
O
OO

OOOO
OOO

OO

OOO

O

O

OOOO

O

O
OO

O

OO

O

OOOO
OO
OO

O

O

O

OO
OOOO

O
OO

O
OO

OOOOO

O
OO

O

OO

OO

O

OOO
O

O

O

O
OO

OO
OOO

OO

OO
O

O

O

OO

O

O

OO

OO

O
OO

O

OO

O

O

OOO

OO

OOO
OO

OOOO
OO
OOOO
OO

measured

predicted

−

O

(i) AQHI(20%) Error
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Figure 9: Difference between measured and predicted error for the last processing steps of LRB and AQHI with error bounds
of 5, 10, and 20%
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Figure 10: Confidence in respecting error bounds

normalized over waves in LRB (Figure 12(a)), we can see that, with
a bound of 5%, the workflow steps were executed on average less
than 70% of the times in relation to the SDF model; i.e., more than
30% of the executions were saved, even for such a strict error bound.

Wave

C
o

n
fi
d

e
n

c
e

0.7

0.8

0.9

100 200 300 400

smartFlux
random
seq2
seq3
seq5

(a) LRB
Wave

C
o

n
fi
d

e
n

c
e

0.2

0.4

0.6

0.8

1.0

100 200 300

smartFlux
random
seq2
seq3
seq5

(b) AQHI

Figure 11: Comparison of confidence levels for different trig-
gering approaches with an error bound of 5%

With a bound of 10 and 20%, SmartFlux performed roughly 42 and
25% of the executions respectively, leading to resource savings up
to 75%.
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Figure 12: Executions performed with QoD versus synchronous model for LRB and AQHI

Every time an execution is avoided, the latest emitted results are
made available immediately, resulting in very low execution time.
This assessment is almost free by virtue of being several orders of
magnitude faster than the actual execution, e.g., under 1 second
against several minutes or even hours of execution. Therefore, to
applications, it is transparently perceived as faster execution and
entails a reduction in workload average execution times, up to 75%
reduction, which can be considered as a 4x speedup on average.

Nonetheless, in Fig. 12(b) we can observe that we are not opti-
mally efficient w.r.t. saving executions (i.e., delaying step triggering
asmuch as possible without incurring in error violations, as it would
be performed by a perfect fully-accurate predictor). This happened
due to the optimization performed in the classifier to favor recall,
leading to fewer saved executions yet to higher error compliance
(which is more important for confidence in decision-making). With-
out favoring recall, and having a more close to optimal accuracy,
more than 50% of the total predicted executions are saved.

For normalized executions in AQHI (Figure 12(c)), we see that
the workflow is more stable, since the amount of saved executions
is roughly the same across waves for each of the considered bounds.
With amaxε of 5, 10 and 20%, SmartFlux executes roughly 80, 60
and 40% of the times respectively on average against the SDF model;
hence, corresponding to 20, 40 and 60% of saved executions asmaxε
increases. As the correlation between input impact and error was
more uniform over time, the patterns of this workflow were better
predicted, as shown in Figure 12(d): the total number of predicted
executions was very close to the optimal number for each of the
considered bounds.

Once again, since assessment is almost free when compared to
executing the workloads, this entails that 20, 40 and 60% of execu-
tions are perceived as near-zero execution time. On average, this
can be considered as speedups of 1.25x, 1.66x and 2.5x, respectively.
The overhead for each executed task is always close to 0%. Building

the classification model is the only relevant source of overhead, al-
beit less than a second. Retrieving additional metadata from HBase
has negligible overhead, piggybacked in previous requests.

With SmartFlux, we are thus able to save resources in exchange
of allowing the occurrence of small yet bounded errors. As shown,
roughly 20-30% of unnecessary executions are saved for a bound
of 5%, and roughly 20-60% are saved for bounds of 10% and 20%,
which is substantial in a cloud environment, where resources are
paid for or shared among a multitude of users and applications.
Overhead. There are the following sources of overhead: i) moni-
toring accesses to the data store ii) computing the input impact; iii)
computing the output error; iv) writing the training set to disk; v)
building the classification model; vi) persisting previous computa-
tion state; and vii) classifying instances with input impact values.
We relied on Application Libraries to intercept read/write calls to
the data store (cf. § 4) and on the equations presented in § 2 to com-
pute the input impact and output error. For each wave of data, we
measured the running time of tasks that were executed by Smart-
Flux and compared with the time they take using the clean WMS
version (without SmartFlux). The overhead for each task was al-
ways close to 0%. Note that the overall overhead of the system, for a
large bounded period, is negative, since we are skipping executions
with SmartFlux. Building the classification model took the longest
time (among all sources of overhead), albeit less than a second. Also,
persisting previous state took roughly 0% of overhead, since: i) we
set writings to HBase to be non-blocking; and ii) reads were part of
requests to read the actual state; i.e., when retrieving column fami-
lies from HBase, we get the column qualifiers corresponding to the
actual and previous state for the same time as we were requesting
only one column qualifier.
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6 RELATEDWORK
This section reviews relevant proposed solutions, within the current
state-of-the-art, that intersect the main topics approached in this
paper. In the workflow domain, popular WMSs include: DAGMan,
Pegasus, Taverna, Dryad, Kepler, Triana, Galaxy [12]. Since more
complex analytics are extremely cumbersome to code as a giant
set of interdependent MapReduce (MR) applications (i.e., limited
reusability), WMSs running atop MR Hadoop [43], like Oozie [26],
also started to arise, e.g., Azkaban [3], Cascading [4], Tez [1], and
Pig [35]. Asynchronism has been explored in seminal work [42],
but limited to a join operator and with the sole purpose of avoiding
waiting for data from multiple concurrent predecessor tasks.

To avoid recreating web indexes from scratch after each web
crawl, Google Percolator [36] performs incremental processing on
top of BigTable, replacing batch processing of MR. It provides row
and table-wide transactions, snapshot isolation, with locks stored
in special Bigtable columns. Notify columns are set when rows
are updated, with several threads scanning them. Applications are
sets of custom-coded observers. It scales better than MR, but with
30-fold resource overhead over traditional RDBMS. Nova [34] is
similar but has no latency goals, accumulatingmany new inputs and
processing them lazily for throughput. Moreover, Nova provides
data processing abstraction through Pig Latin; and supports stateful
continuous processing of evolving data sets.

Yahoo CBP [31] aims at greater expressiveness by specifying
incremental processing as dataflows with explicit mention when
computation stages are stateless or stateful. Input is split by deter-
mining membership in frames of new records, allowing grouping
input to reduce messaging. CBP offers primitives for explicit control
flow and synchronize execution of multiple inputs, but requires
extended MR implementation and explicit programming to be QoD-
enabled.

Nectar [23] for Dryad links data and the computation that gen-
erated it as unified hybrid cacheable element. On programs reruns,
Nectar replaces results with cached data, which requires cache man-
agement calls that update the cache server. This is transparently
done in InCoop [14], which does caching for MR applications. Map,
combine and reduce phase results are stored and memoized. Some-
how like SmartFlux, this project attempts to reduce the number of
executions; however, it implies that the input/output datasets are
repeated or intersected among each other, whereas the QoD model
fits a broader range of scenarios.

In [33], the authors present a formal model for defining tempo-
ral asynchrony in workflows. The operators have signatures that
describe the types and consistency of the blocks accepted as input
and returned as output. Data channels have a representation of
time to a relation snapshot, with an interval of validity, which are
used to enforce consistency invariants. These constraints, types of
blocks permitted on output, freshness and consistency bounds, are
then used by the scheduler which produces minimal-cost execution
plans. This project shares our goals of exploring non ad-hoc solu-
tions to enable asynchronous behavior in workflows, however, it
does not account with the volume, semantically relevance or impact
of modifications of the inputted data.

In our previous work [20], we propose a workflow model where
task triggering is based on 3 user-defined constraints: i) the time

to trigger a task; ii) the number of updates on the data; and iii) the
magnitude of the updates. This allows flexible data-based execution,
however it is difficult to manually set a combination of constraints
in a workflow in order to keep the error within manageable levels;
and no reasoning is performed about the impact computations have
on varying the output. Thus, such model is not usable for scenarios
where the freshness of the results needs to be guaranteed (like it is
achievable with SmartFlux).

It is important to note that we do not discard any data, like
it happens in load shedding [39]. In load shedding, a fraction of
the input data is shed to alleviate overloaded servers and preserve
low latency for query results. Contrarily to discarding data, we
accumulate it up to the point where it causes significant changes
on the output of the workflow. The observed errors happen not
because we are making computations with incomplete data, but
because we are not performing the computations and generating
new output (i.e., errors come from stale data in the output).

Further, there has also been a recent effort to enable approximate
processing in data processing systems (e.g., MapReduce, Stream
Processing) in order to reduce latency (and possibly resource usage).
However, these systems usually only target specific aggregation
operators (e.g., sum, count) in structured languages [8, 9, 22]. In
our work, we provide approximate results for general-purpose
computations; i.e., we are agnostic to the code that is running on
each processing step and solely observe the data that is inputted
and its effect on modifying the output. Effectively learning the
correlation between input and output allows us to bound the error
and give (probabilistic) guarantees about the correctness of the
results. This makes SmartFlux unique.

7 CONCLUSION
We presented a novel workflow model, for continuous and data-
intensive processing, capable of dynamically controlling the trigger-
ing of processing steps based on the predicted impact that input data
might have on changing the workflow output. This impact, and level
of triggering control provided, represents the QoD that governs the
system to attain resource efficiency, and improved performance,
while maintaining results meaningful. To ensure correctness and
freshness of these results, we bound the output deviation by making
use of Machine Learning with Random Forests.

We also proposed SmartFlux, a middleware framework imple-
menting our workflow model that can be effortlessly integrated
with existing WMSs. Experimental results indicate that we are able
to save a significant amount of resources in exchange of allowing
small bounded errors to exist (up to 30% savings, which results in
up to 1.4x speedups, while adhering to a strict bound of 5%). We
provide compliance with error bounds with a high confidence level
(> 95%).
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[39] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. 2007. Staying FIT: Efficient
Load Shedding Techniques for Distributed Stream Processing. In Proceedings of
the 33rd International Conference on Very Large Data Bases (VLDB ’07). VLDB
Endowment, 159–170. http://dl.acm.org/citation.cfm?id=1325851.1325873

[40] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. 2004. Top-k Query
Evaluation with Probabilistic Guarantees. In Proceedings of the 30th International
Conference on Very Large Data Bases - Volume 30 (VLDB ’04). VLDB Endowment,
648–659. http://dl.acm.org/citation.cfm?id=1316689.1316746

[41] Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining (IJDWM) 3, 3
(2007), 1–13.

[42] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros.
2003. Workflow Patterns. Distrib. Parallel Databases 14, 1 (July 2003), 5–51.
https://doi.org/10.1023/A:1022883727209

[43] Tom White. 2009. Hadoop: The Definitive Guide (1st ed.). O’Reilly Media, Inc.
[44] Donald G. York et al. 2000. The Sloan Digital Sky Survey: Technical Summary.

The Astronomical Journal 120, 3 (2000), 1579.
[45] Jia Yu and Rajkumar Buyya. 2005. A Taxonomy of Workflow Management

Systems for Grid Computing. Journal of Grid Computing 3 (2005), 171–200. Issue
3. http://dx.doi.org/10.1007/s10723-005-9010-8

https://tez.apache.org/
http://www.ec.gc.ca/cas-aqhi/
https://azkaban.github.io/
http://www.cascading.org
https://bitbucket.org/sergioesteves/oozie
https://bitbucket.org/sergioesteves/smartflux
http://www.socialbusinessindex.com/
https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/2588555.2593667
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1109/MCSE.2011.77
http://dl.acm.org/citation.cfm?id=1316689.1316732
https://doi.org/10.1007/978-3-540-68111-3_78
https://doi.org/10.1007/978-3-540-68111-3_78
https://doi.org/10.1145/2038916.2038923
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-1-84628-757-2_4
http://dl.acm.org/citation.cfm?id=1287369.1287389
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dl.acm.org/citation.cfm?id=1267308.1267323
https://doi.org/10.1109/E-SCIENCE.2006.99
https://doi.org/10.1109/E-SCIENCE.2006.99
https://doi.org/10.1186/1869-0238-4-12
http://www.amazon.de/HBase-Definitive-Guide-Lars-George/dp/1449396100/ref=sr_1_1?ie=UTF8&qid=1317281653&sr=8-1
http://www.amazon.de/HBase-Definitive-Guide-Lars-George/dp/1449396100/ref=sr_1_1?ie=UTF8&qid=1317281653&sr=8-1
https://doi.org/10.1145/2694344.2694351
http://dl.acm.org/citation.cfm?id=1924943.1924949
http://dl.acm.org/citation.cfm?id=1924943.1924949
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/2443416.2443420
http://books.google.ca/books?id=beVTAAAAMAAJ
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1145/1582716.1582722
http://dx.doi.org/10.1007/s12145-008-0010-7
https://doi.org/10.1371/journal.pone.0003197
https://doi.org/10.1371/journal.pone.0003197
https://doi.org/10.1145/1807128.1807138
http://daks.ucdavis.edu/~ludaesch/Paper/ch13-preprint.pdf
http://daks.ucdavis.edu/~ludaesch/Paper/ch13-preprint.pdf
https://doi.org/10.1145/1989323.1989439
https://doi.org/10.1145/1989323.1989439
https://doi.org/10.1145/1376616.1376726
https://doi.org/10.1145/1376616.1376726
http://dl.acm.org/citation.cfm?id=1924943.1924961
http://jmlr.csail.mit.edu/proceedings/papers/v17/read11a/read11a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v17/read11a/read11a.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325873
http://dl.acm.org/citation.cfm?id=1316689.1316746
https://doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1007/s10723-005-9010-8

	Abstract
	1 Introduction
	2 Abstract Workflow Model
	2.1 Input Impact
	2.2 Output Error
	2.3 Limitations and Generality of the Model
	2.4 Prototypical Scenario

	3 Learning Approach
	3.1 Classification
	3.2 Classification Algorithm Selection

	4 SmartFlux Design & Implementation
	4.1 General Operation Flow
	4.2 Adopted Technology and Integration

	5 Experimental Evaluation
	5.1 Test Scenarios
	5.2 Learning Effectiveness
	5.3 Resource Efficiency and Performance

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

