
Future Generation Computer Systems 100 (2019) 674–688

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

GC-Wise: A Self-adaptive approach formemory-performance
efficiency in Java VMs
J. Simão a,c,∗, S. Esteves a,b, André Pires a,b, L. Veiga a,b

a INESC-ID Lisboa, Portugal
b Universidade de Lisboa / Instituto Superior Técnico, Portugal
c Instituto Politécnico de Lisboa / Instituto Superior de Engenharia de Lisboa, Portugal

h i g h l i g h t s

• Managed runtimes have a key role in different kinds of Cloud deployments and cooperative systems.
• Edge Clouds with large pools of devices should maximize resource usage.
• GC-Wise uses an online classification algorithm to select the best memory parameters.
• The approach can lead to memory savings with low-impact on the throughput.
• A server-class server and a single-board computer were used in the evaluation.

a r t i c l e i n f o

Article history:
Received 5 March 2018
Received in revised form 28 April 2019
Accepted 8 May 2019
Available online 17 May 2019

Keywords:
Memory management
Machine learning
Java virtual machine

a b s t r a c t

High-level language runtimes are ubiquitous in every cloud deployment. From the geo-distributed
heavy resources cloud provider to the new Fog and Edge deployment paradigms, all rely on these
runtimes for portability, isolation and resource management. Across these clouds, an efficient resource
management of several managed runtimes involves limiting the heap size of some VMs so that extra
memory can be assigned to higher priority workloads. The challenges in this approach rely on the
potential scale of systems and the need to make decisions in an application-driven way, because
performance degradation can be severe, and therefore it should be minimized. Also, each tenant tends
to repeat the execution of applications with similar memory-usage patterns, giving opportunity to
reuse parameters known to work well for a given workload.

This paper presents GC-Wise, a system to determine, at run-time, the best values for critical heap
management parameters of the OpenJDK JVM, aiming to maximize memory-performance efficiency. GC-
Wise comprises two main phases: 1) a training phase where it collects, with different heap resizing
policies, representative execution metrics during the lifespan of a workload; and 2) an execution phase
where an oracle matches the execution parameters of new workloads against those of already seen
workloads, and enforces the best heap resizing policy. Distinctly from other works, the oracle can also
decide upon unknown workloads. Using representative applications and different hardware setting (a
resourceful server and a fog-like device), we show that our approach can lead to significant memory
savings with low-impact on the throughput of applications. Furthermore, we show that we can predict
with high accuracy the best heap resizing configuration in a relatively short period of time.

© 2019 Published by Elsevier B.V.

1. Introduction

Cloud Computing has been successful in providing large
amounts of resources, as a utility, to deploy scalable and highly
available applications [1]. Most cloud providers today draw their
advantages from massive economies of scale resulting from heavy
centralization around few large data centres [2–4]. This creates

∗ Corresponding author at: INESC-ID Lisboa, Portugal.
E-mail addresses: jsimao@cc.isel.ipl.pt (J. Simão), lveiga@gsd.inesc-id.pt

(L. Veiga).

significant barriers-to-entry for providers, and raises lock-in and
privacy issues for consumers, and environmental concerns re-
garding energy demands. Furthermore, these providers make use
of metadata and behaviour information, putting citizen-generate
data in the hands of a few major actors, which use this data to
monetize their ‘‘free’’ infrastructures. Examples include personal
devices (e.g., to monitor health-related conditions) or smart ap-
pliances, which are part of the increasing family of connected
devices, building the Internet of Things (IoT). With large amounts
of sensitive data being collected and in need to be processed,

https://doi.org/10.1016/j.future.2019.05.027
0167-739X/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.future.2019.05.027
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.05.027&domain=pdf
mailto:jsimao@cc.isel.ipl.pt
mailto:lveiga@gsd.inesc-id.pt
https://doi.org/10.1016/j.future.2019.05.027


J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 675

Fig. 1. From heavy-resourced datacenters to near the user fog computing.

Fig. 2. Emerging computing architectures and the layers of abstraction that need to be adapted.
Source: From [5].

user-centred devices rely on remote cloud storage and compu-
tational services. While this approach is reasonable for many
applications, the ones dealing with sensitive data, or in need for
low latency responses, would benefit from using computation
services in control of the user, or group of users, and closer to
the source of the data (the edge).

While IoT is expanding at huge rate, as stated by CISCO [6],
it is filling the network’s edge with a lot of data production.
Trying to push all of this data into the Cloud, in order to pro-
cess is costly (in terms of bandwidth) and it will saturate the
Internet’s backbone. The development of community networks
and volunteer computing, together with today’s low cost of com-
pute and storage devices, is making the Internet’s edge filled
with a large amount of still under utilized resources [5], such as
laptops, desktops, Raspberry Pi [7,8], computing boxes, routers
and others. As depicted in Fig. 1, a movement, commercial and
academic, is ongoing to leverage this ‘‘Edge Power’’ to provide
services with smaller latencies and cheaper bandwidth to the end
users. Pre-processing data at the edge would reduce the amount
of data needed to be transmitted to the Cloud (to be stored
in permanent storage and/or performing heavier computations),
thus reducing the transmission cost. These new architectures
trends push computation towards the edge, in a paradigm known
as Fog computing [5,9–12], which captures this idea of a cloud
continuum [13]. This computing paradigm expands the classic
vision of a cooperative system as a set of distributed components,
capable of communicate and cooperate to acquire, store, manage,
query data and knowledge [14].

1.1. Virtualized and resource management in the edge

While these new environments are less suited for full system
virtualization, as done in traditional datacenters, they are well
capable of running applications supported by containers [15,16].
Doing so, they continue to benefit from the portability, safety

and rich libraries of high-level languages like Python, Java and
Scala [17,18], providing similar abstraction of the platform-as-a-
service model. Regardless of the language of choice and the de-
velopment paradigm (more object-oriented or more functional),
managed runtimes that support the execution of these languages,
have been increasingly used in cloud environments [19–22]. From
heavier cloud providers (e.g., Heroku, AppFog and Google App
Engine), to the near-the-user devices that make the Fog, all allow
the deployments of workloads on high-level language runtimes
(or high-level virtual machines), including multi-tenant environ-
ments. While the Cloud is getting more decentralized with sev-
eral types of new deployments, all of them rely on runtimes to
support the execution of applications, as depicted in Fig. 2.

One of the challenges in such cooperative systems is the con-
figuration of large pools of devices and their managed runtimes,
to maximize resource usage. Although these runtimes have a
wide range of parameters that can the changed and adapted
to different workloads [20,23,24], doing so is cumbersome and
in many cases infeasible. To avoid this, it is necessary to use
techniques known as asymptotic [25] where the application state
is controlled externally and driven by its dynamic behaviour. In
these resource constrained scenarios, it is paramount to adapt
high-impact resource management policies to the running work-
loads. A policy with high-impact in the performance of managed
runtimes is the one that manages memory. It has a dual effect:
a direct impact on the memory allocated to the process but also
an impact on the progress rate of the application. However, the
best size of the heap remains application-specific. It adds to this
point that, when resources are less abundant, taking memory
from tenant A can have a different impact than when removing
it from tenant B.

Concurrently with the consolidation requirements, we have
considered the usage pattern of these platforms. Although clouds
support the execution of general purpose applications, each user
will most likely use the platform for a specific kind of tasks
(e.g., data analytics [26] or epidemic surveillance [27,28]). This



676 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

opens the possibility to configure critical parameters of the mem-
ory system based on the application’s signature (i.e., resource
usage behaviour profile, or type profile) and the correlation with
a set of configurations that are previously known as favouring
consolidation.

1.2. Contributions and outline

This paper extends SmartGC [29] to also include support for
another production-level runtime, OpenJDK, and new evaluation
assessments of edge cloud environments running experiments
with the Raspberry Pi hardware. We adapt the heap management
policy of managed runtimes based on the identification of an
application’s execution profile – a signature – and the relation of
this signature with parameters that are known to maximize the
memory-performance efficiency, i.e., the relation between memory
usage and execution time of the application. Although the system
can classify unseen workloads, the offline signatures dataset can
be easily extended with new applications. The main contributions
include: (i) a low-overhead machine learning-based classification
system, based on a small set of performance counters, collected
during the execution of applications that target the Java VM; (ii)
an adaptive GC control for multi-tenancy to reduce memory foot-
print of VMs with small performance impacts, hence improving
resource effectiveness and provider revenue. GC-Wise explores
different configurations regarding GC parameters, in a way that
exchange throughput for memory, trying to find the most ef-
ficient use of memory for the current running application; (iii)
deployment at less resourceful servers and hardware widely used
in Fog-like deployments.

The next section makes an analysis to the state of the art.
Section 3 shows the impact of heap size management poli-
cies in memory savings and execution performance, presenting
memory-performance efficiency, a metric that relates these ob-
servations. Section 4 describes the most effective metrics to
characterize the execution of an application and how this char-
acterization can be represented in what we call a signature.
Section 5 describes the design of GC-Wise, including the struc-
ture of a workload’s signature, and the two distinct phases of
operation (learning and classification). Section 6 makes an exten-
sive evaluation of the major components of GC-Wise, including
the comparison with a widely deployed JVM, the OpenJDK and
Section 7 closes the paper discussing future work.

2. Related work

The platform-as-a-service model, where application owners
do not have to manage low-level resources, continues to gain
space in the cloud computing landscape [18,20,22,26,30,31], in-
cluding in Fog deployments [17]. Scheduling of physical resources
to application containers in general, is a widely research topic [1,
16,32–34], ranging from parallel processing architectures typi-
cally related to high-performance computing [35], to the increas-
ingly form of application deployment and execution virtualization
— containers [36].

Resource scheduling improvements in cloud deployment usu-
ally target either energy efficiency or higher application through-
put. In large scale datacenters the energy utilization is a major
concern [3,37–39] because of its impact on the power usage effec-
tiveness [40], i.e., the ratio between total energy consumed by the
facility versus the energy consumed by the hardware/software
infrastructure. However, hardware used in Fog and Edge de-
ployments are in many cases already resource constrained, and
operate under low energy consumption [41]. This leaves to run-
times the configuration choices that maximize gains in applica-
tion throughput, in an efficient manner, making the best usage of
memory for as many applications as possible [41].

2.1. Memory scheduling in Java VMs

Overtime, memory is a resource harder to share than CPU
cores. While context switching the CPU across processes creates
overhead but enables full utilization of available cycles, memory
behaves differently. When memory pages are committed to a
process, even if not accessed over a period of time, it is harder
and slower to exchange them across processes, as they cannot
be shared in an efficient way. This makes optimizing memory
usage a relevant resource management target in cloud-like en-
vironments, which typically use system-level virtual machines as
in [42]. Thus, reducing heap size requirements enables usage of
smaller and cheaper VM cloud instances and allows running more
workloads in the same physical resources.

This is even more pressing in Edge Computing scenarios where
physical nodes are resource constrained devices executing mul-
tiple workloads inside containers. This needs to be as memory-
efficient as possible, since memory can become the resource bot-
tleneck even during periods of less intensive processing. Memory-
efficiency can further enable recent research with orthogonal
goals (latency, energy, etc.). When the optimum status is reached,
it will take less energy, memory and traffic, with less latency. So, a
better performance from the underlying runtime may potentially
contribute to edge computing, and improve overall efforts in
areas such as low-latency workflow-oriented service functions or
efficient traffic engineering [43–45].

Recently, the need to involve the application’s runtime has
gained more attention [19,46,47], including solutions by industry
players such as VMWare’s Elastic Memory for Java — EM4J.1
Uninformed consolidation carries a negative impact on the appli-
cation performance. With clever choices, providers can therefore
consolidate more executions on the same hardware, in terms of
memory, and save costs (and reduce prices or increase revenues)
without significantly worsen application performance. They may
take greater or lower benefit of the physical resources (namely
CPU and memory) allocated to the VMs, in a way that the lack
in one of them will prevent fruitful use of the other. Extreme
situations include trashing (so little available memory, no CPU is
used for useful work) and starvation (despite memory available,
no CPU is available to process application data).

To determine memory allocation in Java VMs, several garbage
collection (GC) algorithms have been developed during the last
decades [48–50]. Concurrent approaches promises to improve
GC in big data processing, but may require increased specific
hardware support [18]. Parallel stop-the-world algorithms are
still widely used, since they can efficiently collect moderate sized
heaps fully within acceptable pauses, favour GC and application
throughput, and do not require constant synchronization with the
mutator, such as with concurrent collection, running on devices
with any amount of resources and no special hardware support.

Garbage collection performance have been found to be
application-dependent [51,52], resulting in several adaptation
strategies, ranging from parameters adjustments (e.g., managed
heap size [53]) to changing garbage collection algorithm be-
fore the first execution [54] or at runtime [51]. Other look for
ways to minimize the pause time of stop-the-world garbage
collectors [22]. This is an orthogonal effort that can be comple-
mented with GC-Wise because these systems are not meant to
save memory that can be transferred to other tenants. On the
other hand, some system explore compiler-level transformations
(e.g., [55]) which are not always possible to use given the massive
deployment effort that would be needed.

The adjustment of GC parameters to a given workload has
been a topic of intense research [30,46,53], but most of them

1 https://www.vmware.com/support/pubs/vfabric-em4j.html.

https://www.vmware.com/support/pubs/vfabric-em4j.html


J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 677

look for the parameters that give the highest throughput to a
single application, regardless of memory usage. With GC-Wise, we
explore a trade-off more relevant in consolidated environments
— one that can reduce memory usage of applications without
significantly hindering their usage of available CPU, i.e., without
incurring in longer execution times. Bobroff et al. [46] propose to
investigate active memory sharing (AMS) in virtual environments.
It distributes memory fairly to several running HLL-VMs. Chen
et al. study the effect of consolidating HLL-VMs [52] but focus on
either CPU or I/O bounded situations, leaving memory manage-
ment unattained. Rodrigues et al. [35] presents Helpar to act upon
threshold-based master–slave parallel applications, where hori-
zontal scaling (e.g., changes to the number of virtual machines)
or vertical scaling (changes on CPU and memory made available
to applications) is controlled by upper and lower bound values.
This is done by instrumenting the application code (with neces-
sary albeit reduced execution overhead), enforcing rules to act
upon these thresholds. GC-Wise targets on mechanisms that are
transparent to the application, demanding no code modifications,
and requiring no hints/guidelines by the programmer.

2.2. Learning application’s patterns

Only a few systems use machine learning techniques to learn
the program behaviour and change the runtime algorithms or
parameters. Andreasson et al. [56] used reinforcement learning
techniques, to dynamically learn from GC collections. The system
receives good or bad reinforcements by looking at the throughput
after a GC collection. Singer et al. [57] determine, before exe-
cution, which is the best GC for a given program. It uses a J48
classification tree built from a long series of offline executions.
Experimentations were made based just on full-heap collectors.
The classification is done only offline, missing the opportunity for
a finer grain adjustment to the different phases that each applica-
tion might exhibit. Differently from Mnemonic, these systems do
not consider generational collectors with dynamic heap sizes or
look at performance counters as a source of information.

Performance counters are typically used to detect bottlenecks
and guide optimizations [58]. Xu et at. [59] propose to detect
resource bottlenecks of multi-tier web servers, using low-level
performance counters, such as, cache misses and instructions
execution rate. Schneider and Gross [60] instrumented a JVM to
feed the JIT compiler with performance counters information, so
that more decisions can be further tailored to the underlying
architecture and not only based on the program behaviour. Adl-
Tabatabai et al. [61] uses performance counters to determine
where to insert prefetch instructions in a JVM. This is done auto-
matically within the same execution of the JVM. To the best of our
knowledge, GC-Wise is the first system that successfully guides
the heap resizing policy of managed runtimes based on signatures
learned from the observation of hardware performance counters.

3. Memory-performance efficiency

GC-Wise goal is to reconfigure key parameters driving the
behaviour of garbage collection in managed runtimes, in order
to save memory while minimizing performance penalties, and so
maximizing memory usage efficiency.

OpenJDK is a production-grade, open-source implementation
of the Java Virtual Machine specification, with builds available
from server-class hardware to ARM-based system, such as the
Raspberry Pi. Across these versions, there is a memory manage-
ment sub-system that can be configured to regulate how heap
grows (the JVM asks more memory to the underlying operat-
ing system) or shrinks (memory is returned) which has impact
on each instance execution but also on the co-located JVMs

Fig. 3. Simplified heap layout of the Parallel Scavenge.

Fig. 4. Time of GC and mutator as a function of GC time ratio.

Table 1
9 configurations used to drive generations resize with memory-conserving
policies.
Id genYinc , genTinc factordec GCr

a 10% 8 10
b 10% 8 1
c 10% 10 10
d 10% 10 1
e 5% 8 10
f 5% 8 1
g 5% 10 10
h 5% 10 1

(e.g., within the same physical machine in a cloud data centre
or an edge cloud node). In fact, other managed runtimes, such as
the Common Language Runtime (CLR) have similar controls.

In this paper we target the Parallel Scavenge (PS), a stop-the-
world, parallel and generational collector [62]. In the past, other
collectors were proposed for the specific case of devices with less
memory [63] but they focus on a single instance and are not
widely available. When compared to the current default collector
of the OpenJDK when running on a server-class machine (G1[64]),
Parallel Scavenge favours throughput over response time. This
makes it better suited for long running data-driven applications
that process incoming data (e.g., stream processing for data ana-
lytics in IoT) as well as better fitting the devices that are increas-
ingly more present in edge clouds. Given the concurrent nature of
G1, it also needs a higher number of hardware cores to maximize
the benefits when compared with PS collector. Furthermore, G1
is still only released as experimental for fog-class hardware such
as the Raspberry Pi ARM system.2

The PS garbage collector organizes the memory heap into
three major generations, (a) young; (b) tenured and (c) perma-
nent, as depicted in Fig. 3. While the latter one is statically sized,
the other two generations have their sizes dynamically adapted
based on a strategy called Ergonomics [65]. This strategy has three
general goals:

2 https://docs.oracle.com/javase/8/embedded/jdk-arm-8u6/index.html, visited
February 24, 2018.

https://docs.oracle.com/javase/8/embedded/jdk-arm-8u6/index.html


678 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

Fig. 5. Memory savings for each of the configurations.

Fig. 6. Standard deviation of the efficiency gained in different applications using
distinct heap aggressiveness options.

• do not exceed a given pause time;
• do not take over a certain fraction of overall time in GC

operations;
• minimize the use of heap.

When the first goal is met (when undefined, this is presumed)
the collector will check the second goal. This is so to keep GC
operations under a certain threshold, which will release the CPU
enough to guarantee a given level of throughput for the ap-
plication. When the second goal is not being met, because GC
operations are taking too long, the heap will be increased in size.

Several parameters participate in this process of decision,
e.g., the ratio between young and old generations. However, the
ones that have the highest impact on the throughput of the
application are:

• The throughput goal itself, which is inversely proportional
to the GC time ratio (GCr);

• young and tenured generations perceptual size increment
(genYinc , genTinc) along with a decrement factor common to
both generations (factordec).

The GC time ratio is a goal used by the JVM to influence the
throughput of the application, and determines a target maxi-
mum time spent in GC operations, expressed as 1

(1+GCr) . Fig. 4
shows how the target percentage of time for GC operations varies
(for each GC time ratio) and, consequently, the variation of the
percentage of time that should be spent in running application
threads (i.e., mutators).

When the throughput is not being met, the size of both gen-
erations will grow. The new size is determined by the relative
contribution of each generation to the total collection time. For
example, if collecting the young generation took 15% of the time,
and the increment genYinc is set to 25%, then the young generation
will grow 3.75%. When the size of a generation can shrink, the
new size is a fraction of the growing increment. For example, if
the young generation can shrink the current size if reduced by
genYinc ×

1
factordec

percent.
GC-Wise compares the automatic memory configuration (c0) of

a JVM where a good execution time for the application (time(c0))
is achieved at the expense of more memory (mem(c0)), with other
configurations (c{i..n}) where memory is saved, possibly at the
cost of more execution time for the garbage collector. For two
configurations, ca and cb, the memory usage efficiency is then
defined as Eq. (1):
mem(ca)/mem(cb)
time(cb)/time(ca)

(1)

Not only implementing a correct collector is difficult and
error-prone [66], choosing the best values for each of the avail-
able parameters is also challenging. Previous work typically only
controls the overall heap size as seen from inside the virtual
machine [46,47], not the specific sizes of each of the generations.
The throughput of the parallel collector is deeply connected with
these dimensions and our system takes into consideration the
parameters that regulates them.

Thus, GC-Wise explores the right-side of Fig. 4, regarding the
parameters presented: GCr , genYinc , genTinc and factordec . The base
configuration uses a very high GCr (i.e., 199), meaning that the
JVM should aim for the highest throughput, leaving the remaining
values with the ‘‘factory’’ default base values, 20%, 20% and 4,
respectively. The first configuration to compare with this one is
called the ‘‘default’’, and only changes one parameter, the GCr ,
to 99, indicating the JVM should keep GC operations below 1%.
The remaining 8 configurations to guide the generations resizing
process are described in Table 1.

The goal is to correlate each application from a reference set to
the configuration that maximizes the memory usage efficiency.
These applications are from the 2009 version of Dacapo bench-
mark [67].3 Each of these applications explores a different issue of
the JIT, GC and micro-architecture, as extensively demonstrated
in [67]. We rely on these widely used benchmarks to represent
the behaviour of full applications (or specific phases during ap-
plications’ execution), and thus, that the execution patterns they

3 Maintenance release of Jan. 12, 2018.



J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 679

exhibit regarding the use of memory are representative of other
Java applications.

Fig. 5 presents the memory saved when running 9 different
configurations in representative workloads, with different mem-
ory patterns, and setting the maximum heap size to 400 MB. We
can see that all configurations save memory (except tradesoap
with ‘‘default-99’’). However, when comparing the ‘‘default-99’’
configuration with the remaining configurations, the savings vary
not only among workloads, but more relevant, under the same
workload. This shows there is significant room to modify (and
reduce) the memory usage of applications running on the JVM.
The challenge is to do so while hurting performance in a less
significant reduced way.

Fig. 6 presents the standard deviation of the memory-
performance efficiency obtained for each reference application.
The ratio between relative memory savings and relative per-
formance degradation leads to a different memory-performance
efficiency variations for each pair of reference application and
configuration. This memory-performance efficiency is an oppor-
tunity, for the provider, to use tailored memory-saving parame-
ters without imposing a significantly perceivable, or at all, perfor-
mance (i.e, application progress or throughput) penalty in each
workload. Larger numbers reveal that the resources saved are
several times higher than any imposed relative penalty. This
essentially enables ‘‘releasing’’ resources to other workloads that
will be able to make better progress, allowing to effectively
channel resources, at each moment, to where they will pay off
more efficiently.

After establishing the relationship between each type of work-
load and the best configuration suiting it, we now need to find a
set of execution’s characteristics, to be used during run-time, to
identify the profile of running applications.

4. Transparent profiling of workloads

There are several runtime characteristics that can be explored
to build the profile of an application. Common indicators in-
clude: (i) hardware performance counters; (ii) operating system
performance counters; (iii) managed runtime specific metrics;
(iv) and application specific metrics. From these four indica-
tors, application specific metrics are the less reliable. They can
typically be either related to the organization of classes, or to
the nature of operations performed (e.g., rate of transactions
processed). Collecting these metrics at the application level is a
cumbersome task and makes difficult the correlation of mem-
ory usage patterns across different applications. Following, we
describe several metrics that have the potential to characterize
a workload, including runtime metrics resource indicators used
by GC-Wise (Section 4.1.1), and how to characterize and cluster
different workloads according to their patterns (Section 4.2).

4.1. Profiling metrics

This section discusses different sensors, at system and
application-level, which can be used to learn a profile about a
running application.

4.1.1. Performance counters
Modern CPUs support a large set of performance counters, in-

cluding instructions per cycle, branch misses and L1 cache misses.
Operating systems also report performance related information,
such as page faults and context switches.

Using performance counters introduces some difficulties,
namely: (i) selecting the appropriate number and types of per-
formance counters for our purposes; (ii) normalizing their values
across different workloads.

Regarding the first issue, we must avoid using very processor-
specific hardware performance counters so that the profile to be
built can be reused with new hardware. When considering Intel’s

′

processor families, the group of architecture performance events
ensure consistent values across different processor implementa-
tions. This group includes counters such as the number of cycles
and the last level cache references. This type of information is also
available in different architectures, including ARM-based devices
used to build Fog and Edge solutions.4 Regarding performance
events supported by operating systems, it is common that coun-
ters such as page faults as exported to be easily consumed in
user-space.

Regarding the second issue, normalization of performance
counters across different workloads, it is necessary to capture
tendencies and perform regression so that workloads can be
clustered based not on the magnitude of the PCs values, but on
composed relative values (e.g., growth rate).

GC-Wise uses several performance counters, collected peri-
odically, mixing both memory-related and computation-related
counters, including, computation-related counters (instructions,
cpu-cycles, ref-cycles); cache statistics (cache-references, cache-
misses); major and minor page faults (major-faults, minor-faults)
and translation lookaside buffer statistics (dTLB-stores, dTLB-
loads, dTLB-load-misses, dTLB-store-misses).

4.1.2. Static code analysis
Other metrics can be explored in the future, both static (i.e.,

structure of the program) and dynamic (i.e., metrics collected at
runtime). One of the most cited set of static metrics regarding
object-oriented programs are the ones proposed by Chidamber
et al. [68]. For example, lack of cohesion of methods (LCOM) indi-
cates whether a class represents a single abstraction or multiple
abstractions. This is obtained by static analysis of the code, mean-
ing that the application needs not to be executed. Examples
include the number of methods defined in a class and the number
of immediate sub-classes of a class. However this metrics do not
have a direct impact on the working set of the application or its
dynamic behaviour. The application working set is determined by
how objects are created and left unreferenced.

4.1.3. Garbage collection
Regarding dynamic metrics, three relevant characteristics re-

lated to the garbage collection process have been identified [57]:
(i) number of allocated arrays during program execution; (ii)

mean size of objects in bytes; (iii) number of allocated bytes
during program execution. Some modification is necessary to
Jikes RVM code to get (i) and (ii). The metrics used by memory
usage analysers are also interesting to determine a profile of the
running application. Elephant Tracks [69] produces an in-order
trace of (i) object allocation and death; (ii) method entry and
exit; (iii) pointer update events. [(i)] It uses a native Java agent
that loads along with the JVM. It depends on the availability of
the JVMTI and does some bytecode rewriting. Metrics (i) and
(ii) should be helpful to characterize the application in a way
dependent on the behaviour of the GC. Metric (iii) is used in
the Dacapo paper to describe the dynamic characteristics of each
benchmark. However, these approaches do not target production
running VMs because they impose a significant overhead given
their intrusion on the regular execution of a program.

4 https://community.arm.com/iot/embedded/b/embedded-blog/posts/using-
the-arm-performance-monitor-unit-pmu-linux-driver, visited Feb. 24, 2018.

https://community.arm.com/iot/embedded/b/embedded-blog/posts/using-the-arm-performance-monitor-unit-pmu-linux-driver
https://community.arm.com/iot/embedded/b/embedded-blog/posts/using-the-arm-performance-monitor-unit-pmu-linux-driver


680 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

Fig. 7. System design.

4.2. Workload signature and mnemonics

Workloads are clustered using what we call a signature. A
signature is an aggregated description computed from the con-
sidered PCs that identifies a given workload, W , in terms of its
resource usage. We assume that performance counters, regardless
of their nature, report a single value in each read. So, a signature
contains an aggregated value for each performance counter that
is computed during a period of time (e.g., lifespan of an appli-
cation or a shorter period). This aggregated value represents the
growth rate of a set of relevant performance counters (pc1. . .pcN ),
between time ti (initial time) and tf (final time), as depicted
in Eq. (2).

Sw(ti, tf ) = Aggr(pc1, ti, tf ), . . . , Aggr(pcN , ti, tf ) (2)

Currently, we support 2 different forms for aggregating se-
quences of performance counters, both taking into account the
values that are available at ∆t intervals. The first one is the mean
of differences, as described in Eq. (3).

Diffs(pck, ti, tf ) =
1
m

tf∑
x=ti+∆t

pck(x)−pk(x−1) where k ∈ [1,N] (3)

The other option is a geometric mean, as described in Eq. (4).

GMean(pck, ti, tf ) =

( tf∏
x=ti+1

pck(x)
)1/(tf−ti)

where k ∈ [1,N] (4)

After building a representative signature, a mnemonic can then
be set, associating a signature to the correct best set of param-
eters (i.e., a configuration), {P1, P2, . . . , PR}, for the application.
Eq. (5) represents a mnemonic for applicationW , where signature
Sw is associated to the best set of parameters (P1, P2, . . . , PR).

Mw = (Sw → {P1, P2, . . . , PR}) (5)

An example of parameters are the matrices presented in Sec-
tion 3. In this case, a single parameter, i.e, a matrix number, can
capture a multi-dimensional associations between ratio of live
objects and ratio of time spent in GC operations. The next section
will detail the system design of GC-Wise , including its two main
phases — training and runtime operation.

5. System design

Analytical modelling is a common approach to inform
resource-allocation systems [70,71]. Models can be used to pre-
dict the impact of management decisions on performance, avail-
ability, and/or energy consumption. However, constructing a

model of a real system is a complex task. As a consequence,
not rarely models are made with over-simplified assumptions
so that they can be mathematically manageable. To overcome
this, researchers have developed systems for experiment-based
management of virtualized data centres [70]. GC-Wise uses this
strategy, and could easily be plugged into such systems. Fig. 7
shows the overall system view. GC-Wise acts in two distinct
phases: the training phase and the execution phase. In some cases,
a third phase can be used to test and reinforce the quality of the
training.

In order to address the challenges of having a large number of
elements in the network to configure, we based our approach on
asymptotic configuration techniques [9,25], using an oracle which
asserts the desired configuration of the memory management
system.

5.1. Training phase

In the training phase, a set of representative applications
are executed while system metrics are collected (memory and
computation-related). This information is aggregated to build a
training set, i.e., a set of application’s signatures, where each
signature is associated with the heap management configurations
that maximizes the memory-performance efficiency. During the
second phase, also known as online or execution phase, informa-
tion about the running workload is collected to determine, using
the training set, which type of application is being executed. GC-
Wise then changes the relevant parameters of the JVM according
to what was predicted to be the best case for the running applica-
tion, if a best parameter with a distinct confidence level is found.
GC-Wise relies on a GC system that can be instructed to change
its parameters during the application runtime.

Instead of a strictly analytic model, GC-Wise has two chal-
lenges for the training phase: (i) determine the best memory
configuration parameters for a set of representative applications;
(ii) use a set of system-related values to characterize the running
application.

Regarding the first issue, resource allocation is in most cases a
trade-off between two or more variables. Memory management
in managed runtime is no exception. The system is designed to
act on a given parameter. GC-Wise explores the heap management
policy described in Section 3, but structural components, such as
the GC algorithm itself, can also be targeted.

The training phase can be periodically repeated when new
hardware is acquired or a significant update to the runtime is
made. The knowledge base built during this step can also be
extended to incorporate more examples of signatures, so that
online decisions can be made with a higher degree of confidence.



J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 681

Fig. 8. Confidence levels for the Dacapo 9 benchmarks.

5.2. Execution phase

After constructing a representative set of mnemonics, GC-
Wise is now ready to be plugged into a resource management
middleware. It assumes that the managed runtime exposes mech-
anisms to dynamically reconfigure relevant systems, in our case,
the garbage collector. In the online phase of the system, when a
new runtime is started, GC-Wise performs the following opera-
tions, as numbered in Fig. 7:

1. collects performance counters, asynchronously with GC
and with the execution of regular threads. We use a sep-
arate VM internal thread to periodically monitor a set of
performance counters;

2. each VM reports these values to the oracle (which can be
located in another machine of the cluster);

3. the oracle aggregates these values between consecutive
samples through one of the two metrics described in Sec-
tion 4.2, and uses this information to find a signature, if
that is already possible;

4. if a signature is found, this information is sent to the corre-
sponding heap size manager which changes the GC-related
parameter accordingly, and a GC execution is forced.

The oracle will make a prediction as good as the size and
diversity of the applications used during the training phase. It
may be the case that the oracle cannot predict a set of parameters
with high confidence. In that case, GC-Wise will use the default



682 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

Fig. 9. Confidence levels for the SPECJVM 2008 benchmarks.

parameters and schedule a new training phase for the current
application.

5.3. Online phase

If the matrices’ confidence level, returned by the classifier for
a given workload, are below a certain threshold (e.g, 50%), it
means that the signature of that workload is not well known to
the predictor. In these cases, we consider to incorporate the new
workloads in our learning model, so that we are able to accurately
predict the optimal configuration, should the same workload be
exposed to the system at future times.

To this end, we: (i) run the (before-unseen) workload with
each of the available matrices and assess which one leads to a
better memory-performance efficiency; (ii) include the values of
program counters collected from the workload, along with the
corresponding optimal configuration, in our knowledge base; and
(iii) train a new learning model with an updated training-set
containing the new workload footprint. This process is similar to
our training phase, but it only considers executions of a single
workload/application. Further, the system can be parametrized
on whether to train a new workload or to use the configura-
tion yielding the highest confidence (regardless of any defined
thresholds).



J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 683

5.4. Classification

To achieve the best reconfiguration, GC-Wise has to look for
key runtime metrics, identify a signature and change the pa-
rameters to the appropriate values. This section describes the
details of the runtime metrics collected and the machine learning
algorithms used to classify a running application.

The classification process defines how the training set was
built and the classification technology used. GC-Wise classification
system is organized around different classes, corresponding to
the configuration of parameters described in Section 3. Having
a known key set of workloads with the corresponding optimal
parameters for each of them, we classify new workloads runs,
which were never seen before, and select the most appropriate
configuration.

5.4.1. Building the training set
The training set is built during the so called training phase, as

depicted in Fig. 7. For each execution of an application, we collect
12 performance counters (cf. Section 4.1.1) at every specified time
interval (currently 100 ms). After a single run of an application we
aggregate the values of the 12 counters that were observed over
time thereby averaging the differences, or calculating the geomet-
ric mean, between consecutive observed values for every counter
(i.e., thus having a single value for each performance counter
and application execution). To stress application behaviour in
terms of counters variance, we run each of the 10 applications
50 times, resulting in 500 training instances. For this phase, we
use the JVM’s default configuration for each execution, so that
we have the same reference when obtaining counters at runtime.
In the training set we also include for each instance of each
application the corresponding optimal parameters (which was
assessed beforehand in different trials).

5.4.2. Online classifier
We used a polynomial kernel as a parameter of a Support

Vector Machine (SVM) classifier [72], and a classification based
on Random Forests [73]. The oracle runs an SVM according to the
John Platt et al. algorithm. To implement the oracle, we use the
open source Weka framework.5

Random Forests [73] consist of an ensemble learning, that
is, a combination of various learning models to obtain better
predictive performance. In this method, a large collection of tree
predictors are built based on random subsets sampled from a
set of training examples. The generalization capability depends
on the strength of individual trees and the correlation between
them. With bootstrap aggregating (also known as bagging) and a
random selection of features to split each node it is possible to
control the variance of the trees.

For pattern recognition, a classifier tries to estimate a function
that, given a set with N-dimensional input data, predicts which
of two possible classes form the output (f : RN

→ ±1). It is also
possible to classify examples in more than two classes (multiclass
classification, as in our case with four classes), by using strategies
like the ‘‘One-vs-Rest’’ that compare confidence values between
pairs of binary-class classifications. The estimation of the SVM
function, which corresponds to the construction of a SVM model,
is based on a supplied set of training examples encompassing
tuples with known correct values of input and corresponding
output (i.e., supervised learning). After the model is constructed,
the SVM is then able to assign new unseen examples to one of
the possible multiple classes.

During the execution of an application, the oracle is queried
every time interval with an aggregated value of each PC, at each

5 http://www.cs.waikato.ac.nz/~ml/weka/index.html.

time instance, since the application start. This aggregated value
captures the growth rate of a PC, and corresponds to the mean of
the differences between every two consecutive time instances, as
discussed in Section 4.2.

6. Evaluation

This section presents the evaluation of two key aspects of
GC-Wise : the machine learning classification process and the
benefits of the choices made for different types of applications.
The choices of a classification technology are presented followed
by the confidence levels and stability of the classifier with un-
seen executions from applications used in the training set, and
executions from applications never presented to the system.

Our execution environment is based on two distinct hardware
profiles. The following is the specific hardware used for each of
these profiles:

• Profile 1 – Intel Core i7-6700 processors (4 cores with hyper
threading, 8M Cache and 3.40 GHz) with 16 GB of RAM. The
OS is Ubuntu 16.04.3 with kernel version 4.4.0–112.

• Profile 2 – A Raspberry Pi 3 (ARMv7 Processor rev 4), 4 cores
each with 1.2 GHz and 1 GB of RAM. The OS is Raspbian
GNU/Linux 8.0 (jessie).

Regarding the JVM, both systems use a OpenJDK-based dis-
tribution. The Intel-based system uses a tailored build of the
OpenJDK 9, 64-bit. The ARM-based system runs with the default
JVM for the Raspbian system, the OpenJDK Zero VM.

6.1. Unseen executions

Fig. 8 shows how the classification confidence of the ora-
cle evolves while analysing unseen performance counters values
from the execution of 11 workloads. In each chart, the x-axis
is time dependent, with a point for each classification. A clas-
sification is made based on the values of performance counters
collected from a given JVM. In the y-axis we plot the confidence
value (between 0.0 and 1.0) the classifier reports for each possible
matrix. This value is always very high, in most cases above 80%
confidence about the best configuration. Furthermore, there is
always one classification that dominates the remaining ones. Also,
the high confidence levels are reached early in the execution,
which is of critical importance for adaptiveness, fast change of
parameters. For the majority of the workloads’ executions the
oracle classifies them correctly, choosing the class corresponding
to the configuration that maximizes the memory-performance
efficiency.

6.2. Unseen applications

Fig. 9 also presents the confidence levels for each configura-
tion but when running 11 unseen applications, i.e., applications
which where not used during the offline training phase. These
applications are a mix of high performance computing work-
loads, a database and XML schema transformations, all from
SPECjvm2008.6

The results show that for 9 of the 11 applications there is al-
ways a dominant configuration chosen by the classifier. The XML
transformation and validation benchmarks are the exceptions.
This indicates that the classification model is not trained enough
with this class of applications — XML transformers. In fact, the
base training set includes only 1 application of this type, fop,
and it is the one which produces the smaller number of samples
because of its execution time.

6 https://www.spec.org/jvm2008/, vistied Feb. 24, 2018.

http://www.cs.waikato.ac.nz/~ml/weka/index.html
https://www.spec.org/jvm2008/


684 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

Fig. 10. Dacapo applications running on server-class hardware.

Although in same cases the confidence is below 0.5, there is
however a clear and stable winning choice during the execu-
tion of these unseen applications. Another point taken from the
observations is that the scimark family of benchmarks are all
classified as configuration g. This family of benchmarks deals with
matrix operations, except for the monte carlo integration
benchmarks.7 Finally, note that SPECjvm also uses part of the
sunflow code as a benchmark (sub-figure (i) of Fig. 9) and the
classifier determines the same class of Fig. 8, with very high
confidence.

7 https://math.nist.gov/scimark2/about.html, visited Feb. 24, 2018.

6.3. Measuring the memory-performance efficiency

The first set of results were obtained with the hardware from
Profile 1. Fig. 10.a and b present the memory savings and exe-
cution time, respectively, of Dacapo benchmarks when running
on the class identified by the classification system. The JVM was
parametrized with a 400 MB maximum heap across all configu-
rations. The series default-199 and default-99 differ in the
GC time ratio (i.e. GCr , Section 3), using the values 199 and 99. In
the latter case, the JVMwill try to minimize the GC operation time
to less than 1% of the overall time, freely expanding the heap as
necessary, eventually until the maximum value defined. In both
series, the generations resizing parameters are the JVM’s default
ones. Fig. 10.c depicts the corresponding memory-performance
efficiency comparing the two competitive configuration (⁀default-
99 and GC-Wise) with the base one (default-199). GC-Wise can
improve memory savings across all applications, in most case
having at least 50% more memory-performance efficiency than
the default-199 base configuration, while in 5 of them it more
than doubles.

Fig. 11 does the same study but using the set of application
not used to train the model. In this set of applications the saved
heap is larger because the default parameters are too generous
regarding the memory committed to each process, unnecessarily
using resources that would either have to be overcommitted or
simply refused to new tenants sharing the same hardware.

To conclude the evaluation we run a sub-set of the application
in an hardware of Profile 2. The OpenJDK Zero VM was set with
a maximum heap size of 200 MB, and an initial size of 25 MB.
Before each run, the system had approximately 320 MB of RAM
available for user space processes. Fig. 12 shows the results of
using the best values identified by the classifier for each of the
tested application. In this case, GC-Wise operates as well as the
default configuration for 4 applications, but more than doubles
the memory-performance efficiency for the remaining four. In a
device with so many memory limitations, having the possibility
to choose a more memory-efficient solution, even for a sub-
set of applications, without harming performance or the other
applications, is extremely important. This is a key enabling result
for Fog and Edge computing with Java.

7. Conclusions

In recent years we have seen a growing interest on the process
of migrating from heavy-resourced datacenters to the edge of the
network. This vision of edge clouds, when fulfilled, is a complex
cooperative system where parties communicate and cooperate in
order to process and manage both data and knowledge. While
these new deployments will continue to enjoy the portability,
safety, and high-level programming simplicity of managed run-
times, they face new resource scheduling challenges because
of the number of devices involved and their less resourceful
hardware, particularly memory [17,41].

We developed a low-overhead machine learning-based appli-
cation classification that drives an adaptive memory management
control, useful across different cloud deployment. Our goal is to
show that it is possible to choose at run-time, based on previ-
ous executions, the best GC parameters for a given application,
obtaining reductions in the memory footprint of virtual ma-
chines with limited performance impacts, improving resource
effectiveness and revenue. The use of workload-aware policies
to distribute resources among different tenants needs specific
allocation mechanisms and strategies that can act upon the assets
controlled by managed runtimes, most notably memory. This
paper describes the design rationale to build GC-Wise, a system
to guide the management of memory in systems where certain

https://math.nist.gov/scimark2/about.html


J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 685

Fig. 11. SPECjvm application running on server-class hardware.

classes of application are frequently executed given the chance
to learn the best parameters and use that knowledge in the
future. GC-Wise identifies an application type and reconfigures
relevant memory-related parameters based on the observation
of performance counter values. We show that this can be done
with low-overhead, applying parameters that can save physical
memory, with minimum impact on the overall progress of appli-
cations. The techniques presented in this paper can be applied to
other adaptation points, if the manage runtime exports them to
be used by an autonomous adaptation middleware. Examples in-
clude the garbage collection algorithm itself. Furthermore, future

Fig. 12. Dacapo applications running on Raspberry Pi class hardware.

work should explore the use of GC-Wise to target other trade-
offs in resource management, including the energy efficiency of
different GC algorithms.

Acknowledgements

This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia, Portugal with reference
PTDC/EEI-SCR/6945/2014 and PTDC/EEI-COM/30644/2017, and by
the ERDF through COMPETE 2020 Programme, within project
POCI-01-0145-FEDER-016883. This work was supported by na-
tional funds through Fundação para a Ciência e a Tecnologia,



686 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

Portugal with reference UID/CEC/50021/2019. This work was par-
tially supported by Instituto Superior de Engenharia de Lisboa and
Instituto Politécnico de Lisboa.

Declaration of competing interest

None

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.

[2] R. Buyya, S.K. Garg, R.N. Calheiros, SLA-Oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions, in: Proceedings
of the 2011 International Conference on Cloud and Service Computing, in:
CSC ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 1–10.

[3] A. Khosravi, S.K. Garg, R. Buyya, Energy and Carbon-efficient placement of
virtual machines in distributed cloud data centers, in: F. Wolf, B. Mohr, D.
an Mey (Eds.), Euro-Par, in: Lecture Notes in Computer Science, vol. 8097,
Springer, 2013, pp. 317–328.

[4] S. Singh, I. Chana, A survey on resource scheduling in cloud computing:
Issues and challenges, J. Grid Comput. 14 (2) (2016) 217–264, http://dx.
doi.org/10.1007/s10723-015-9359-2.

[5] B. Varghese, R. Buyya, Next generation cloud computing: New
trends and research directions, Future Gener. Comput. Syst.
79 (2018) 849–861, http://dx.doi.org/10.1016/j.future.2017.09.020,
http://www.sciencedirect.com/science/article/pii/S0167739X17302224.

[6] Cisco Systems, Fog Computing and the Internet of Things: Extend the Cloud
to Where the Things Are, White Paper, 2016, 6, http://dx.doi.org/10.1109/
HotWeb.2015.22, http://www.cisco.com/c/dam/en_us/solutions/trends/iot/
docs/computing-overview.pdf.

[7] C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A container-based edge
cloud paas architecture based on raspberry pi clusters, in: Proceedings -
2016 4th International Conference on Future Internet of Things and Cloud
Workshops, W-FiCloud 2016, 2016, pp. 117–124, http://dx.doi.org/10.1109/
W-FiCloud.2016.36.

[8] P. Bellavista, A. Zanni, Feasibility of fog computing deployment based
on docker containerization over raspberrypi, in: Proceedings of the 18th
International Conference on Distributed Computing and Networking -
ICDCN ’17, 2017, pp. 1–10, http://dx.doi.org/10.1145/3007748.3007777,
http://dl.acm.org/citation.cfm?doid=3007748.3007777.

[9] L.M. Vaquero, L. Rodero-Merino, Finding your way in the fog: Towards
a comprehensive definition of fog computing, ACM SIGCOMM Comput.
Commun. Rev. 44 (5) (2014) 27–32, http://dx.doi.org/10.1145/2677046.
2677052, http://dl.acm.org/citation.cfm?id=2677046.2677052.

[10] P. Varshney, Y. Simmhan, Demystifying fog computing: Characterizing
architectures, applications and abstractions, in: 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), 100, 2017, http://dx.doi.
org/10.1109/ICFEC.2017.20, http://arxiv.org/abs/1702.06331.

[11] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, D.S. Nikolopoulos,
Challenges and opportunities in edge computing, in: Proceedings - 2016
IEEE International Conference on Smart Cloud, SmartCloud 2016, 2016, pp.
20–26, http://dx.doi.org/10.1109/SmartCloud.2016.18.

[12] R. Buyya, S.N. Srirama, G. Casale, R.N. Calheiros, Y. Simmhan, B. Varghese, E.
Gelenbe, B. Javadi, L.M. Vaquero, M.A.S. Netto, A.N. Toosi, M.A. Rodriguez,
I.M. Llorente, S.D.C. di Vimercati, P. Samarati, D.S. Milojicic, C.A. Varela,
R. Bahsoon, M.D. de Assunção, O.F. Rana, W. Zhou, H. Jin, W. Gentzsch,
A.Y. Zomaya, H. Shen, A manifesto for future generation cloud computing:
Research directions for the next decade, CoRR abs/1711.09123 (2017)
http://arxiv.org/abs/1711.09123, arXiv:1711.09123.

[13] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado,
L. Villas, L. DaSilva, C. Lee, O. Rana, The internet of things, fog and cloud
continuum: Integration and challenges, Internet Things 3–4 (2018) 134–
155, http://dx.doi.org/10.1016/j.iot.2018.09.005, http://www.sciencedirect.
com/science/article/pii/S2542660518300635.

[14] E. Bertino, B. Catania, V. Gervasi, A. Raffaet, A logical approach
to cooperative information systems, J. Logic Programm. 43 (1)
(2000) 15–48, http://dx.doi.org/10.1016/S0743-1066(99)00024-2,
http://www.sciencedirect.com/science/article/pii/S0743106699000242.

[15] R. Morabito, J. Kjllman, M. Komu, Hypervisors vs. lightweight virtual-
ization: A performance comparison, in: Proceedings of the 2015 IEEE
International Conference on Cloud Engineering, in: IC2E ’15, IEEE Computer
Society, Washington, DC, USA, 2015, pp. 386–393, http://dx.doi.org/10.
1109/IC2E.2015.74.

[16] M.A. Rodriguez, R. Buyya, Container-based cluster orchestration sys-
tems: A taxonomy and future directions, Softw: Pract. Exp. 0 (0)
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2660, http://dx.
doi.org/10.1002/spe.2660, https://onlinelibrary.wiley.com/doi/abs/10.1002/
spe.2660.

[17] A. Brogi, S. Forti, Qos-aware deployment of iot applications through the
fog, IEEE Internet Things J. 4 (5) (2017) 1185–1192, http://dx.doi.org/10.
1109/JIOT.2017.2701408.

[18] M. Maas, K. Asanović, J. Kubiatowicz, Return of the runtimes: Rethinking
the language runtime system for the cloud 3.0 era, in: Proceedings of the
16th Workshop on Hot Topics in Operating Systems, in: HotOS ’17, ACM,
New York, NY, USA, 2017, pp. 138–143, http://dx.doi.org/10.1145/3102980.
3103003, http://doi.acm.org/10.1145/3102980.3103003.

[19] T.-I. Salomie, G. Alonso, T. Roscoe, K. Elphinstone, Application level bal-
looning for efficient server consolidation, in: Proceedings of the 8th ACM
European Conference on Computer Systems, in: EuroSys ’13, ACM, New
York, NY, USA, 2013, pp. 337–350.

[20] R. Bruno, P. Ferreira, A study on garbage collection algorithms for big
data environments, ACM Comput. Surv. 51 (1) (2018) 20:1–20:35, http:
//dx.doi.org/10.1145/3156818, http://doi.acm.org/10.1145/3156818.

[21] L.M. Vaquero, L. Rodero-Merino, R. Buyya, Dynamically scaling applications
in the cloud, SIGCOMM Comput. Commun. Rev. 41 (1) (2011) 45–52.

[22] M. Maas, K. Asanović, T. Harris, J. Kubiatowicz, Taurus: A holistic language
runtime system for coordinating distributed managed-language applica-
tions, in: Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems,
in: ASPLOS ’16, ACM, New York, NY, USA, 2016, pp. 457–471.

[23] M. Hauswirth, P.F. Sweeney, A. Diwan, M. Hind, Vertical profiling: Under-
standing the behavior of object-priented applications, in: Proceedings of
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, in: OOPSLA ’04, ACM, New
York, NY, USA, 2004, pp. 251–269.

[24] S. Oaks, Java Performance: The Definitive Guide, first ed., O’Reilly Media,
Inc., 2014.

[25] G. Pollock, D. Thompson, J. Sventek, P. Goldsack, The Asymptotic Configura-
tion of Application Components in a Distributed System, Technical report,
University of Glasgow, Glasgow, UK, 1998, http://eprints.gla.ac.uk/79048/.

[26] Y. Bu, V. Borkar, G. Xu, M.J. Carey, A bloat-aware design for big data
applications, in: Proceedings of the 2013 International Symposium on
Memory Management, in: ISMM ’13, ACM, New York, NY, USA, 2013, pp.
119–130.

[27] D. Gront, A. Kolinski, Utility library for structural bioinformatics,
Bioinformatics 24 (4) (2008) 584–585.

[28] A. Francisco, C. Vaz, P. Monteiro, J. Melo-Cristino, M. Ramirez, J. Carrico,
Phyloviz: phylogenetic inference and data visualization for sequence based
typing methods, BMC Bioinformatics 13 (1) (2012) 87.

[29] J. Simão, S. Esteves, L. Veiga, Smartgc: Online memory management
prediction for paas cloud models, in: On the Move To Meaningful Internet
Systems. OTM 2017 Conferences - Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2017, Rhodes, Greece, October 23-27, 2017,
Proceedings, Part I, 2017, pp. 370–388, http://dx.doi.org/10.1007/978-3-
319-69462-7_25.

[30] R. Bruno, D. Patricio, J. Simão, L. Veiga, P. Ferreira, Runtime object lifetime
profiler for latency sensitive big data applications, in: Proceedings of the
Fourteenth EuroSys Conference 2019, in: EuroSys ’19, ACM, New York, NY,
USA, 2019, pp. 28:1–28:16, http://dx.doi.org/10.1145/3302424.3303988,
http://doi.acm.org/10.1145/3302424.3303988.

[31] B. Dantas, C. Fleitas, A. Almeida, J.a. Forja, A.P. Francisco, J. Simão, C.
Vaz, Ngspipes: Fostering reproducibility and scalability in biosciences, in:
Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology,and Health Informatics, in: ACM-BCB ’17, ACM, New
York, NY, USA, 2017, p. 603, http://dx.doi.org/10.1145/3107411.3108213,
http://doi.acm.org/10.1145/3107411.3108213.

[32] A. Lèbre, J. Pastor, M. Bertier, F. Desprez, J. Rouzaud-Cornabas, C. Tedeschi,
A.-C. Orgerie, F. Quesnel, G. Fedak, Beyond the clouds, how should next
generation utility computing infrastructures be designed?, in: Z. Mah-
mood (Ed.), Cloud Computing: Challenges, Limitations and R&D Solutions,
Springer, 2014, https://hal.inria.fr/hal-01067888.

[33] A.G. Garca, I. Espert, G. Hernndez, SLA-Driven dynamic cloud resource
management, Future Gener. Comput. Syst. 31 (2014) 1–11, http://dx.doi.
org/10.1016/j.future.2013.10.005.

[34] J. Simão, L. Veiga, A taxonomy of adaptive resource management mech-
anisms in virtual machines: Recent progress and challenges, in: Cloud
Computing, Principles, Systems and Applications, Springer, 2017, pp.
59–98, Ch. 3.

[35] V.F. Rodrigues, R. da Rosa Righi, G. Rostirolla, J.L. Victória Barbosa, C.
André da Costa, A.M. Alberti, V. Chang, Towards enabling live thresholding
as utility to manage elastic master-slave applications in the cloud, J.
Grid Comput. 15 (4) (2017) 535–556, http://dx.doi.org/10.1007/s10723-
017-9405-3.

[36] B. Liu, P. Li, W. Lin, N. Shu, Y. Li, V. Chang, A new container scheduling
algorithm based on multi-objective optimization, Soft Comput. (2018)
http://dx.doi.org/10.1007/s00500-018-3403-7.

http://refhub.elsevier.com/S0167-739X(18)30489-8/sb1
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb1
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb1
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb1
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb1
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb2
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb3
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1007/s10723-015-9359-2
http://dx.doi.org/10.1016/j.future.2017.09.020
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://dx.doi.org/10.1109/HotWeb.2015.22
http://dx.doi.org/10.1109/HotWeb.2015.22
http://dx.doi.org/10.1109/HotWeb.2015.22
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://dx.doi.org/10.1109/W-FiCloud.2016.36
http://dx.doi.org/10.1109/W-FiCloud.2016.36
http://dx.doi.org/10.1109/W-FiCloud.2016.36
http://dx.doi.org/10.1145/3007748.3007777
http://dl.acm.org/citation.cfm?doid=3007748.3007777
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
http://dx.doi.org/10.1145/2677046.2677052
http://dl.acm.org/citation.cfm?id=2677046.2677052
http://dx.doi.org/10.1109/ICFEC.2017.20
http://dx.doi.org/10.1109/ICFEC.2017.20
http://dx.doi.org/10.1109/ICFEC.2017.20
http://arxiv.org/abs/1702.06331
http://dx.doi.org/10.1109/SmartCloud.2016.18
http://arxiv.org/abs/1711.09123
http://arxiv.org/abs/1711.09123
http://dx.doi.org/10.1016/j.iot.2018.09.005
http://www.sciencedirect.com/science/article/pii/S2542660518300635
http://www.sciencedirect.com/science/article/pii/S2542660518300635
http://www.sciencedirect.com/science/article/pii/S2542660518300635
http://dx.doi.org/10.1016/S0743-1066(99)00024-2
http://www.sciencedirect.com/science/article/pii/S0743106699000242
http://dx.doi.org/10.1109/IC2E.2015.74
http://dx.doi.org/10.1109/IC2E.2015.74
http://dx.doi.org/10.1109/IC2E.2015.74
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2660
http://dx.doi.org/10.1002/spe.2660
http://dx.doi.org/10.1002/spe.2660
http://dx.doi.org/10.1002/spe.2660
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2660
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1145/3102980.3103003
http://dx.doi.org/10.1145/3102980.3103003
http://dx.doi.org/10.1145/3102980.3103003
http://doi.acm.org/10.1145/3102980.3103003
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb19
http://dx.doi.org/10.1145/3156818
http://dx.doi.org/10.1145/3156818
http://dx.doi.org/10.1145/3156818
http://doi.acm.org/10.1145/3156818
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb21
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb21
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb21
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb22
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb23
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb24
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb24
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb24
http://eprints.gla.ac.uk/79048/
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb26
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb27
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb27
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb27
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb28
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb28
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb28
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb28
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb28
http://dx.doi.org/10.1007/978-3-319-69462-7_25
http://dx.doi.org/10.1007/978-3-319-69462-7_25
http://dx.doi.org/10.1007/978-3-319-69462-7_25
http://dx.doi.org/10.1145/3302424.3303988
http://doi.acm.org/10.1145/3302424.3303988
http://dx.doi.org/10.1145/3107411.3108213
http://doi.acm.org/10.1145/3107411.3108213
https://hal.inria.fr/hal-01067888
http://dx.doi.org/10.1016/j.future.2013.10.005
http://dx.doi.org/10.1016/j.future.2013.10.005
http://dx.doi.org/10.1016/j.future.2013.10.005
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb34
http://dx.doi.org/10.1007/s10723-017-9405-3
http://dx.doi.org/10.1007/s10723-017-9405-3
http://dx.doi.org/10.1007/s10723-017-9405-3
http://dx.doi.org/10.1007/s00500-018-3403-7


J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688 687

[37] C.C. Lin, P. Liu, J.J. Wu, Energy-aware virtual machine dynamic provision
and scheduling for cloud computing, in: Proceedings - 2011 IEEE 4th
International Conference on Cloud Computing, CLOUD 2011, 2011, pp.
736–737, http://dx.doi.org/10.1109/CLOUD.2011.94.

[38] W. Lin, H. Wang, Y. Zhang, D. Qi, J.Z. Wang, V. Chang, A cloud server energy
consumption measurement system for heterogeneous cloud environments,
Inform. Sci. 468 (2018) 47–62, http://dx.doi.org/10.1016/j.ins.2018.08.032,
http://www.sciencedirect.com/science/article/pii/S0020025518306364.

[39] L. Sharifi, L. Cerdà-Alabern, F. Freitag, L. Veiga, Energy efficient cloud
service provisioning: Keeping data center granularity in perspective, J.
Grid Comput. 14 (2) (2016) 299–325, http://dx.doi.org/10.1007/s10723-
015-9358-3.

[40] ISO/IEC, Information technology Data centres Key performance indica-
tors Part 2: Power usage effectiveness (PUE), 2016, https://www.iso.org/
standard/63451.html.

[41] A. Musaddiq, Y.B. Zikria, O. Hahm, H. Yu, A.K. Bashir, S.W. Kim, A survey
on resource management in iot operating systems, IEEE Access 6 (2018)
8459–8482, http://dx.doi.org/10.1109/ACCESS.2018.2808324.

[42] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda, A. Schuster, A.
Mu’alem, Ginseng: Market-driven memory allocation, in: Proceedings of
the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, in: VEE ’14, ACM, New York, NY, USA, 2014, pp.
41–52.

[43] G. Sun, Y. Li, Y. Li, D. Liao, V. Chang, Low-latency orchestration for
workflow-oriented service function chain in edge computing, Future
Gener. Comput. Syst. 85 (2018) 116–128, http://dx.doi.org/10.1016/
j.future.2018.03.018, http://www.sciencedirect.com/science/article/pii/
S0167739X18300153.

[44] P. Kathiravelu, P. Van Roy, L. Veiga, Composing network service chains
at the edge: A resilient and adaptive software-defined approach, Trans-
actions on Emerging Telecommunications Technologies 29 (11) (2018)
e3489, http://dx.doi.org/10.1002/ett.3489, https://onlinelibrary.wiley.com/
doi/abs/10.1002/ett.3489, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.
1002/ett.3489, e3489 ett.3489.

[45] J. Sun, S. Sun, K. Li, D. Liao, A.K. Sangaiah, V. Chang, Efficient
algorithm for traffic engineering in cloud-of-things and edge comput-
ing, Comput. Electr. Eng. 69 (2018) 610–627, http://dx.doi.org/10.1016/
j.compeleceng.2018.02.016, http://www.sciencedirect.com/science/article/
pii/S0045790617333876.

[46] N. Bobroff, P. Westerink, L. Fong, Active control of memory for Java
virtual machines and applications, in: 11th International Conference on
Autonomic Computing (ICAC 14), USENIX Association, Philadelphia, PA,
2014, pp. 97–103.

[47] C. Cameron, J. Singer, We are all economists now: Economic utility
for multiple heap sizing, in: Proceeding of Implementation, Compilation,
Optimization of OO Languages, Programs and Systems (ICOOOLPS), 2014.

[48] S.M. Blackburn, P. Cheng, K.S. McKinley, Myths and realities: the per-
formance impact of garbage collection, in: Proceedings of the Joint
International Conference on Measurement and Modeling of Computer
Systems, 2004, pp. 25–36, http://dx.doi.org/10.1145/1005686.1005693.

[49] S.M. Blackburn, K.S. McKinley, Immix: a mark-region garbage collector with
space efficiency, fast collection, and mutator performance, in: Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design
and Implementation, in: PLDI ’08, ACM, New York, NY, USA, 2008, pp.
22–32.

[50] R. Shahriyar, S.M. Blackburn, X. Yang, K.S. McKinley, Taking off the gloves
with reference counting immix, in: A.L. Hosking, P.T. Eugster, C.V. Lopes
(Eds.), OOPSLA, ACM, 2013, pp. 93–110.

[51] S. Soman, C. Krintz, Application-specific garbage collection, J. Syst. Softw.
80 (2007) 1037–1056.

[52] L. Chen, G. Serazzi, D. Ansaloni, E. Smirni, W. Binder, What to expect
when you are consolidating: effective prediction models of application
performance on multicores, Cluster Comput. 17 (1) (2014) 19–37.

[53] D.R. White, J. Singer, J.M. Aitken, R.E. Jones, Control theory for principled
heap sizing, in: Proceedings of the 2013 International Symposium on
Memory Management, in: ISMM ’13, ACM, New York, NY, USA, 2013, pp.
27–38.

[54] J. Singer, G. Kovoor, G. Brown, M. Luján, Garbage collection auto-tuning
for java mapreduce on multi-cores, in: Proceedings of the International
Symposium on Memory Management, 2011, pp. 109–118.

[55] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, G.H. Xu, FACADE: a compiler
and runtime for (almost) object-bounded big data applications, in: ASPLOS,
ACM, 2015, pp. 675–690.

[56] E. Andreasson, F. Hoffmann, O. Lindholm, To collect or not to collect?
machine learning for memory management, in: Proceedings of the 2nd Java
Virtual Machine Research and Technology Symposium, USENIX Association,
Berkeley, CA, USA, 2002, pp. 27–39.

[57] J. Singer, G. Brown, I. Watson, J. Cavazos, Intelligent selection of
application-specific garbage collectors, in: Proceedings of the 6th Inter-
national Symposium on Memory Management, in: ISMM ’07, ACM, New
York, NY, USA, 2007, pp. 91–102.

[58] M. Hauswirth, P.F. Sweeney, A. Diwan, Temporal vertical profiling, Softw.
Pract. Exp. 40 (8) (2010) 627–654.

[59] J. Rao, C.-Z. Xu, Online Capacity identification of multitier websites using
hardware performance counters, IEEE Trans. Parallel Distrib. Syst. 22 (3)
(2011) 426–438.

[60] F.T. Schneider, M. Payer, T.R. Gross, Online optimizations driven by hard-
ware performance monitoring, in: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2007,
pp. 373–382.

[61] A.-R. Adl-Tabatabai, R.L. Hudson, M.J. Serrano, S. Subramoney, Prefetch
injection based on hardware monitoring and object metadata, in: Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, in: PLDI ’04, ACM, New York, NY, USA, 2004,
pp. 267–276, http://dx.doi.org/10.1145/996841.996873.

[62] R. Jones, A. Hosking, E. Moss, The Garbage Collection Handbook: The Art
of Automatic Memory Management, first ed., Chapman & Hall/CRC, 2011.

[63] N. Sachindran, J.E.B. Moss, E.D. Berger, Mc2: High-performance garbage
collection for memory-constrained environments, in: Proceedings of the
19th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, in: OOPSLA ’04, ACM, New York, NY,
USA, 2004, pp. 81–98, http://dx.doi.org/10.1145/1028976.1028984, http:
//doi.acm.org/10.1145/1028976.1028984.

[64] D. Detlefs, C. Flood, S. Heller, T. Printezis, Garbage-first garbage collection,
in: Proceedings of the 4th International Symposium on Memory Manage-
ment, in: ISMM ’04, ACM, New York, NY, USA, 2004, pp. 37–48, http://
dx.doi.org/10.1145/1029873.1029879, http://doi.acm.org/10.1145/1029873.
1029879.

[65] J. Singer, R.E. Jones, G. Brown, M. Luján, The economics of garbage col-
lection, in: Proceedings of the 2010 International Symposium on Memory
Management, in: ISMM ’10, ACM, New York, NY, USA, 2010, pp. 103–112.

[66] D. Pavlovic, P. Pepper, D.R. Smith, Formal derivation of concurrent garbage
collectors, in: C. Bolduc, J. Desharnais, B. Ktari (Eds.), Mathematics of
Program Construction, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,
pp. 353–376.

[67] S.M. Blackburn, R. Garner, C. Hoffmann, A.M. Khang, K.S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S.Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J.E.B. Moss, B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, B. Wiedermann, The daCapo benchmarks:
Java benchmarking development and analysis, in: OOPSLA ’06: Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, ACM, New York, NY, USA,
2006, pp. 169–190.

[68] S. Chidamber, C. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (6) (1994) 476–493.

[69] N.P. Ricci, S.Z. Guyer, J.E.B. Moss, Elephant tracks: Portable production of
complete and precise gc traces, in: Proceedings of the 2013 International
Symposium on Memory Management, in: ISMM ’13, ACM, New York, NY,
USA, 2013, pp. 109–118.

[70] G.J. Janakiraman, J.R. Santos, Y. Turner, Justrunit: Experiment-
based management of virtualized data centers, in: G.M. Voelker,
A. Wolman (Eds.), 2009 USENIX Annual Technical Conference,
San Diego, CA, USA, June 14-19, 2009, USENIX Association, 2009,
https://www.usenix.org/conference/usenix-09/justrunit-experiment-
based-management-virtualized-data-centers.

[71] L. Sharifi, N. Rameshan, F. Freitag, L. Veiga, Energy efficiency dilemma:
P2p-cloud vs. datacenter, in: IEEE 6th International Conference on Cloud
Computing Technology and Science, CloudCom 2014, Singapore, December
15-18, 2014, IEEE, 2014, pp. 611–619, http://dx.doi.org/10.1109/CloudCom.
2014.137.

[72] J. Platt, Fast training of support vector machines using sequential minimal
optimization, in: B. Schoelkopf, C. Burges, A. Smola (Eds.), Advances in
Kernel Methods - Support Vector Learning, MIT Press, 1998.

[73] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32, http://dx.
doi.org/10.1023/A:1010933404324.

J. Simão is a Professor Adjunto at the Engineering
School of the Polytechnic Institute of Lisbon (ISEL),
where he lectures about programming methodologies,
virtualization technologies and is regent of the com-
puter security and cloud computing courses. He is
part of the coordination board for bachelor and master
courses in Computer Science and Engineering courses
at ISEL. He is an Associate Researcher at INESC-ID
Lisboa. Holds a Ph.D. in Computer Engineering, since
2015, from University of Lisbon (IST) with the thesis
‘‘Economics inspired Adaptive Resource Allocation and

Scheduling for Cloud Environments". He has a MSc also from ULisboa, in 2008,
with a dissertation about privacy enhanced location services. His main research
interests include resource management in clusters and cloud infrastructures,

http://dx.doi.org/10.1109/CLOUD.2011.94
http://dx.doi.org/10.1016/j.ins.2018.08.032
http://www.sciencedirect.com/science/article/pii/S0020025518306364
http://dx.doi.org/10.1007/s10723-015-9358-3
http://dx.doi.org/10.1007/s10723-015-9358-3
http://dx.doi.org/10.1007/s10723-015-9358-3
https://www.iso.org/standard/63451.html
https://www.iso.org/standard/63451.html
https://www.iso.org/standard/63451.html
http://dx.doi.org/10.1109/ACCESS.2018.2808324
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb42
http://dx.doi.org/10.1016/j.future.2018.03.018
http://dx.doi.org/10.1016/j.future.2018.03.018
http://dx.doi.org/10.1016/j.future.2018.03.018
http://www.sciencedirect.com/science/article/pii/S0167739X18300153
http://www.sciencedirect.com/science/article/pii/S0167739X18300153
http://www.sciencedirect.com/science/article/pii/S0167739X18300153
http://dx.doi.org/10.1002/ett.3489
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3489
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3489
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3489
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3489
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3489
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ett.3489
http://dx.doi.org/10.1016/j.compeleceng.2018.02.016
http://dx.doi.org/10.1016/j.compeleceng.2018.02.016
http://dx.doi.org/10.1016/j.compeleceng.2018.02.016
http://www.sciencedirect.com/science/article/pii/S0045790617333876
http://www.sciencedirect.com/science/article/pii/S0045790617333876
http://www.sciencedirect.com/science/article/pii/S0045790617333876
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb46
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb47
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb47
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb47
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb47
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb47
http://dx.doi.org/10.1145/1005686.1005693
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb49
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb50
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb50
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb50
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb50
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb50
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb51
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb51
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb51
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb52
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb52
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb52
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb52
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb52
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb53
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb54
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb54
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb54
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb54
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb54
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb55
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb55
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb55
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb55
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb55
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb56
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb57
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb58
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb58
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb58
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb59
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb59
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb59
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb59
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb59
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb60
http://dx.doi.org/10.1145/996841.996873
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb62
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb62
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb62
http://dx.doi.org/10.1145/1028976.1028984
http://doi.acm.org/10.1145/1028976.1028984
http://doi.acm.org/10.1145/1028976.1028984
http://doi.acm.org/10.1145/1028976.1028984
http://dx.doi.org/10.1145/1029873.1029879
http://dx.doi.org/10.1145/1029873.1029879
http://dx.doi.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/1029873.1029879
http://doi.acm.org/10.1145/1029873.1029879
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb65
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb65
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb65
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb65
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb65
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb66
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb67
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb68
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb68
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb68
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb69
https://www.usenix.org/conference/usenix-09/justrunit-experiment-based-management-virtualized-data-centers
https://www.usenix.org/conference/usenix-09/justrunit-experiment-based-management-virtualized-data-centers
https://www.usenix.org/conference/usenix-09/justrunit-experiment-based-management-virtualized-data-centers
http://dx.doi.org/10.1109/CloudCom.2014.137
http://dx.doi.org/10.1109/CloudCom.2014.137
http://dx.doi.org/10.1109/CloudCom.2014.137
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb72
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb72
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb72
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb72
http://refhub.elsevier.com/S0167-739X(18)30489-8/sb72
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324


688 J. Simão, S. Esteves, A. Pires et al. / Future Generation Computer Systems 100 (2019) 674–688

with a special focus on scheduling algorithms and virtualization technologies,
both at language and system level. He also has an interest in computer security,
having participated in a project for the National Security Office to develop new
cryptographic services using the Portuguese Public Key Infrastructure, as well as
short-term training and specialized consulting for the software industry.

L. Veiga is an Associate Professor (tenured), and
Executive Director for Faculty Affairs in the Computer
Science and Engineering Department at Instituto Su-
perior Técnico, Universidade de Lisboa. He teaches
courses on Middleware for Distributed Internet Ap-
plications, Virtual Execution Environments and Cloud
Computing and Virtualization. He is a Senior Researcher
at INESC-ID, Group Manager for Distributed Systems
Group, and Vice-Coordinator for Computing Systems
and Computer Networks. He coordinates locally at
INESC-ID FP7 project CloudForEurope, and National

project ContexTWA, on context-aware pervasive sensing Portugal Telecom. He
has coordinated 4 other concluded National projects since 2010, on resource
management and data processing in decentralized P2P systems, scheduling for
cloud & virtualization, multi-core programming and replicated data consistency.

He led Tasks in FP7 project Timbus on digital preservation and virtualization,
and leads Tasks in H2020 TRACE project on privacy-enabled mobile and sensor
tracking services, and evaluated EU FP7 and third-country project proposals
(Belgium). He has over 100 peer-reviewed scientific publications in journals,
conferences, book chapters, workshops (Best Paper Award at Middleware 2007,
Best-Paper Award Runner Up at IEEE CloudCom 2013, Best-Paper Candidate at
CloudCom 2014). He was General Chair for Middleware 2011, and belonged
to Middleware Steering and Program Committee. He was Virtualization track
co-Chair for IEEE CloudCom 2013, Local Chair for Euro-Par 2014 Track on
Distributed Systems and Algorithms, and Program Chair for IEEE CSE 2015.
He is Associate Editor, Lead of the Emerging Middleware Thematic Series, in
Springer Journal of Internet Services and Applications (JISA). He is Workshops
Chair for ACM EuroSys 2016. He was an ‘‘Excellence in Teaching in IST" mention
recipient (2008, 2012, 2014), and awarded Best Researcher Overall at INESC-ID
Prize (2014, nominated 2013, 2015) and Best Young Researcher at INESC-ID
Prize (2012, nominated 2010, 2011). He is a member of the Scientific Board of
the MSc in Computer Engineering and Telecommunications, of Erasmus Mundus
European Master and Joint Doctorate in Distributed Computing. He is Member of
ACM, and Senior Member, Chair of IEEE Computer Society Chapter, IEEE Section
Portugal for 2014–2016. He has served terms on CS Department Council, CS-
Ph.D. Management Board, and University Assembly. He belongs to the Permanent
Committee of the IST School Assembly.


	GC-Wise: A Self-adaptive approach for memory-performance efficiency in Java VMs
	Introduction
	Virtualized and resource management in the edge
	Contributions and outline

	Related work
	Memory scheduling in Java VMs
	Learning application's patterns

	Memory-performance efficiency
	Transparent profiling of workloads
	Profiling metrics
	Performance counters
	Static code analysis
	Garbage collection

	Workload signature and mnemonics

	System design
	Training phase
	Execution phase
	Online phase
	Classification
	Building the training set
	Online classifier


	Evaluation
	Unseen executions
	Unseen applications
	Measuring the memory-performance efficiency 

	Conclusions
	Acknowledgements
	Declaration of competing interest
	References


