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Abstract. In Platform-as-a-Service clouds (public and private) an effi-
cient resource management of several managed runtimes involves limit-
ing the heap size of some VMs so that extra memory can be assigned
to higher priority workloads. However, this should not be done in an
application-oblivious way because performance degradation must be
minimized. Also, each tenant tends to repeat the execution of appli-
cations with similar memory-usage patterns, giving opportunity to reuse
parameters known to work well for a given workload. This paper presents
SmartGC, a system to determine, at runtime, the best values for critical
heap management parameters of JVMs. SmartGC comprises two main
phases: (1) a training phase where it collects, with different heap resizing
policies, representative execution metrics during the lifespan of a work-
load; and (2) an execution phase where it matches the execution para-
meters of new workloads against those of already seen workloads, and
enforces the best heap resizing policy. Distinctly from other works, this
is done without a previous analysis of unknown workloads. Using repre-
sentative applications, we show that our approach can lead to memory
savings, even when compared with a state-of-the-art virtual machine -
OpenJDK. Furthermore, we show that we can predict with high accu-
racy the best heap policy in a relatively short period of time and with
a negligible runtime overhead. Although we focus on the heap resizing,
this same approach could also be used to adapt other parameters or even
the GC algorithm.

Keywords: Garbage collection · Machine learning · Shared execution
environment · Java Virtual Machine

1 Introduction

Managed runtimes, such as the Java Virtual Machine (JVM), have been
increasingly used in large-scale deployments and, particularly, in cloud environ-
ments [22]. Platform-as-a-Service providers (e.g., Heroku, AppFog and Google
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App Engine) allow the deployment of workloads on high-level language virtual
machines (HLL-VMs) on a multi-tenant environment. In recent years, several
middleware frameworks have been developed for systems that target these run-
times. These frameworks cover several areas, such as, graph processing [9] or
bio-informatics [12,14]. Furthermore, regardless of the language of choice and
the development paradigm (more object-oriented or more functional), in most
cases, the provider will run the resulting components in a JVM-compatible run-
time, or in a runtime that has similar code generation and memory management
challenges, such as the one that supports node.js - the V8 engine.1

Although several resources have elasticity, that is, resources can be removed
or assigned without breaking the application execution, memory is one with high
impact. To take advantage of the resources available in the cluster supporting the
cloud, a managed runtime for these environments needs a synergy of mechanisms
and allocation strategies. These mechanisms should include local adaptations to
the consumption of resources (where memory must have a prominent attention)
and ways to infer application progress (or progress rate).

Uninformed consolidation carries a negative impact on the application per-
formance. With clever choices, providers can therefore consolidate more VMs
on the same hardware, in terms of memory, and save costs (and reduce prices
or increase revenues) without significantly worsen application performance. A
policy with high-impact in the performance of managed runtimes is the one that
manages memory. It has a dual effect: a direct impact on the memory allocated
to the process but also a impact on the progress rate of the application. This
opens the possibility to configure critical parameters of the Garbage Collector
(GC) based on the application signature (i.e. resource usage behaviour profile,
or type profile) and the correlation with a set of configurations that are pre-
viously known as favoring consolidation. The signature can be determined by
metrics obtained from the hardware, operating system and the runtime itself.
During applications execution, different access and usage patterns of memory
and CPU-related structures can be identified. Previous work has reviewed the
performance of programs using low-level performance metrics, namely, hardware
performance counters, such as cache misses and instructions per cycle [16].

There is however no previous work that uses such information to categorize
applications in terms of memory signatures, so that relevant parameters can
be dynamically reconfigured. Because workloads exhibit dynamic patterns, the
reconfiguration of the heap management policy should be designed as an adaptive
process relying on timely collection of performance counters, identification of an
application profile and the choice of the best parameters accordingly.

This paper describes SmartGC , a system that adapts the heap management
policy of managed runtimes based on the identification of an application execu-
tion profile – a signature – and the relation of this signature with parameters that
are known to maximize the execution yield, i.e., the relation between memory
usage and execution time of the application. Although the system can classify
unseen workloads, the offline signatures dataset can be easily extended with

1 http://cloud.google.com/appengine.

http://cloud.google.com/appengine
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new applications. The main contributions include: (i) a low-overhead machine
learning-based classification system, based on a small set of performance coun-
ters, collected during the execution of applications that target the Java VM;
(ii) an adaptive GC control for multi-tenancy to reduce memory footprint of
VMs with small performance impacts, hence improving resource effectiveness
and provider revenue. SmartGC currently supports alternative heap resizing
policies with influence in the allocated memory and application performance.

The paper is organized as follows. Section 2 shows the impact of heap size
management policies in memory savings and execution performance, presenting
a metric that relates these observations. Section 3 describes the most effective
metrics to characterize the execution of an application and how this character-
ization can be represented in what we call a signature. Section 4 describes the
design of SmartGC , including the structure of a workload signature and the
two distinct phases of operation. Section 5 discusses the details of techniques
used in the classification adopted, and Sect. 6 makes an extensive evaluation of
the major components of SmartGC , including the comparison with a widely
deployed JVM, the OpenJDK. Section 7 makes an analysis to the state of the
art and Sect. 8 closes the paper discussing future work.

2 The Case for Execution Yield

SmartGC goal is to reconfigure parameters of managed runtimes, saving memory
while minimizing performance penalties. So, in our system we consider the ratio
between the savings in memory, as a resource (ΔR), and the degradation in
execution performance (ΔP ), when compared with a large enough heap with a
fixed size. We call this ratio the execution yield : ΔR

ΔP .
The parameters to be changed at runtime are JVM-specific. In this work we

focus on experiences with the Jikes RVM [3]. This JVM uses a matrix to control
how the heap size is modified as the application progresses. The matrix relates
the percentage of live objects and the time used in GC operations to determine
whether the heap will grow or shrink to a new size. The default matrix is the
first presented in Fig. 1. It relates the time spent in GC activity (versus mutator
activity) to the ratio of live objects. For each pair of these values, the heap will
grow (positive values) or shrink (negative values) a certain percentage.

We have proposed new alternative matrices, depicted in Fig. 1 [25,26]. These
new matrices explore different shrink/grow percentages across an imaginary four-
quadrant space. For example, Q2 of M1 is more heap conservative, meaning
that, when a small percentage of time is spent on GC and live objects remain
below 30%, the heap will decrease between 30% and 45%, while in M0 the same
situation implies a resizing between −10% and +10%.

Previous work typically only takes into account the heap size as seen from
inside the virtual machine [7,10]. Since we target consolidated execution envi-
ronments, we consider a lower-level metric, the proportional set size (PSS). This
metric is deeply connected with the effective use of physical memory pages, the
actual resource virtual machines compete for in cloud environments. The PSS
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Fig. 1. Matrices options space

is reported by the virtual memory management sub-system. It is described, in
Linux virtual memory documentation, as the set of pages a process has in mem-
ory, where each shared page is divided by the number of processes sharing it.

To find the best matrix, we executed a reference set of applications which use
memory with different patterns. The goal is to correlate each of these reference
applications to the matrix that maximizes the execution yield. These applications
are from the Dacapo benchmark [5]. Each of these applications explore a different
issue of the JIT, GC and micro-architecture, as extensively demonstrated in [5].
We expect these benchmarks represent full applications or their phases, and that
the execution patterns they have regarding the use of memory are representative
of other Java applications.

Figure 2a presents the memory saved by each of the four matrices, which are
used within a dynamically-sized heap, when compared to a heap with a fixed size.

Fig. 2. (a) Proportional set size and (b) Execution time, of several representative
applications using different heap management policies



374 J. Simão et al.

Fig. 3. Percentage of (a) Memory savings and (b) Progress degradation, of several
representative applications using different heap management policies

Figure 2b presents the correspondent progress degradation. Figure 3a details the
percentages of saved memory by each of the four matrices, which are used within
a dynamically-sized heap, when compared to a heap with a fixed size. Figure 3b
shows the correspondent progress degradation. We can see that 4 applications
can save 20% or more of memory, while the vast majority can save between 10%
and 20%. At cloud data centers scale, the potential cumulative savings are very
relevant. We also note that, for example, pmd, a code analysis workload, can
save more than 40%. Regarding progress degradation, it is limited to 20%, and
in most cases it is below 5%, almost at the level of variance in execution times
of several runs. In some few cases, there are a negative value, which means that
the corresponding matrix actually results in a progress gain.

The ratio between saving and degradation results in a different yield for each
pair of reference application and matrix. This yield is an opportunity, for the
provider, to use tailored memory-saving parameters without imposing a signif-
icantly perceivable, or at all, progress penalty in each workload. Larger num-
bers reveal that the resources saved are several times higher than any imposed
penalty. This essentially “releases” resources to other workloads that will be
able to make better progress, allowing to effectively channel resources, at each
moment, to where they will pay out more efficiently. The mapping between appli-
cation and best heap resizing matrix is presented next: (antlr, M1), (bloat,
M0), (eclipse, M3), (fop, M2), (hsqldb, M0), (jython, M2), (luindex, M2),
(lusearch, M3), (pmd, M1), (xalan, M3). This was established by running each
application with a fixed heap of 350 MiBytes (a value for which these applications
exhibit low number of GCs [29]) and with each of the depicted matrices. Com-
mon practices to avoid the non-determinism inherent to the adaptive compiler
were used (e.g. replay compilation).2

After establishing the relationship between each type of workload and the
best matrix, we now need to find a set of execution characteristics to be used
during the runtime identification of any given application.

2 http://jikesrvm.org/Experimental+Guidelines.

http://jikesrvm.org/Experimental+Guidelines
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3 Transparent Profiling of Workloads

There are several runtime characteristics that can be explored to build the profile
of an application. Common indicators include: (i) hardware performance coun-
ters; (ii) operating system performance counters; (iii) managed runtime specific
metrics; (iv) and application specific metrics. From these four indicators, appli-
cation specific metrics are the less reliable. They can typically be either related
to the organization of classes, or to the nature of operations performed (e.g., rate
of transactions processed). Collecting these metrics at the application level is a
cumbersome task and makes difficult the correlation of memory usage patterns
across different applications. Following, we describe the runtime resource indica-
tors used by SmartGC (Sect. 3.1) to characterize and cluster different workloads
according to their memory usage patterns (Sect. 3.2).

3.1 Performance Counters

Modern CPUs support a large set of performance counters, including instructions
per cycle, branch misses and L1 cache misses. Operating systems also report
performance related information, such as page faults and context switches.

Using performance counters introduces some difficulties, namely: (i) selecting
the appropriate number and types of performance counters for our purposes; (ii)
normalizing their values across different workloads.

Regarding the first issue, we must avoid using very processor-specific hard-
ware performance counters so that the profile to be built can be reused with
new hardware. When considering Intel’s c© processor families, the group of archi-
tecture performance events ensure consistent values across different processor
implementations. This group includes counters such as the number of cycles and
the last level cache references. Regarding performance events supported by oper-
ating systems, it is common that counters such as page faults as exported to be
easily consumed in user-space.

Regarding the second issue, normalization of performance counters across
different workloads, it is necessary to capture tendencies and perform regression
so that workloads can be clustered based not on the magnitude of the PCs values,
but on composed relative values (e.g., growth rate).

SmartGC uses several performance counters, collected periodically, mixing
both memory-related and computation-related counters, including, computation-
related counters (instructions, cpu-cycles, ref-cycles); cache statistics (cache-
references, cache-misses); major and minor page faults (major-faults, minor-
faults) and translation lookaside buffer statistics (dTLB-stores, dTLB-loads,
dTLB-load-misses, dTLB-store-misses).

3.2 Workload Signature and Mnemonics

Workloads are clustered using what we call a signature. A signature is an aggre-
gated description computed from the considered PCs that identifies a given work-
load, W , in terms of its resource usage. We assume that performance counters,
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regardless of their nature, report a single value in each read. So, a signature con-
tains an aggregated value for each performance counter that is computed during
a period of time (e.g., lifespan of an application or a shorter period). This aggre-
gated value represents the growth rate of a set of relevant performance coun-
ters (pc1 . . . pcN ), between time ti (initial time) and tf (final time), as depicted
in Eq. 1.

Sw(ti, tf ) = Aggr(pc1, ti, tf ), . . . , Aggr(pcN , ti, tf ) (1)

Currently, we support 2 different forms for aggregating sequences of perfor-
mance counters, both taking into account the values that are available at Δt
intervals. The first one is the mean of differences, as described in Eq. 2.

Diffs(pck, ti, tf ) =
1
m

tf∑

x=ti+Δt

pck(x) − pk(x − 1)where k ∈ [1, N ] (2)

The other option is a geometric mean, as described in Eq. 3.

GMean(pck, ti, tf ) =
( tf∏

x=ti+1

pck(x)
)1/(tf−ti)

where k ∈ [1, N ] (3)

A mnemonic can then be built, associating a signature to the correct best
set of parameters, {P1, P2, . . . , PR}, for the executing application. Equation 4
represents a mnemonic for application W , where signature Sw is associated to
the best set of parameters.

Mw = (Sw → {P1, P2, . . . , PR}) (4)

An example of parameters are the matrices presented in Sect. 2. In this case, a
single parameter, i.e., a matrix number, can capture a multi-dimensional asso-
ciations between ratio of live objects and ratio of time spent in GC operations.
The next section will detail the system design of SmartGC , including its two
main phases – training and runtime operation.

4 System Design

Analytical modelling is a common approach to inform resource-allocation sys-
tems [18,24]. Models can be used to predict the impact of management decisions
on performance, availability, and/or energy consumption. However, construct-
ing a model of a real system is a complex task. As a consequence, not rarely
models are made with over-simplified assumptions so that they can be mathe-
matically manageable. To overcome this, researchers have developed systems for
experiment-based management of virtualized data centers [18]. SmartGC uses
this strategy, and could easily be plugged into such systems. Figure 4 shows the
overall system view. SmartGC acts in two distinct phases: the training phase
and the execution phase. In some cases, a third phase can be used to test and
reinforce the quality of the training.
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Fig. 4. System design

4.1 Training Phase

In the training phase, a set of representative applications are executed while
system metrics are collected (memory and computation-related). This infor-
mation is aggregated to build a training set, i.e., a set of application signa-
tures, where each signature is associated with the heap management matrix
that maximizes the execution yield. During the second phase, also known as
online or execution phase, information about the running workload is collected
to determine, using the training set, which type of application is being executed.
SmartGC then changes the relevant parameters of the JVM according to what
was predicted to be the best case for the running application, if a best parameter
with a distinct confidence level is found. SmartGC relies on a GC system that
can be instructed to change its parameters during the application runtime.

Instead of a strictly analytic model, SmartGC has two challenges for the
training phase: (i) determine the best memory configuration parameters for a
set of representative applications; (ii) use a set of system-related values to char-
acterize the running application.

Regarding the first issue, resource allocation is in most cases a trade-
off between two or more variables. Memory management in managed run-
time is no exception. The system is designed to act on a given parameter.
SmartGC explores the heap management policy described in Sect. 2, but struc-
tural components, such as the GC algorithm itself, can also be targeted.

The training phase can be periodically repeated when new hardware is
acquired or a significant update to the runtime is made. The knowledge base
built during this step can also be extended to incorporate more examples of sig-
natures, so that online decisions can be made with a higher degree of confidence.

4.2 Execution Phase

After constructing a representative set of mnemonics, SmartGC is now ready to
be plugged into a resource management middleware. It assumes that the man-
aged runtime exposes mechanisms to dynamically reconfigure relevant systems,
in our case, the garbage collector. In the online phase of the system, when a new
runtime is started, SmartGC performs the following operations:
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1. collects performance counters, asynchronously with GC and with the execu-
tion of regular threads. We use a separate VM internal thread to periodically
monitor a set of performance counters;

2. each VM reports these values to the oracle (which can be located in another
machine of the cluster);

3. the oracle aggregates these values between consecutive samples through one
of the two metrics described in Sect. 3.2, and uses this information to find a
signature, if that is already possible;

4. if a signature is found, this information is sent to the corresponding heap size
manager which changes the GC-related parameter accordingly, and a GC
execution is forced.

The oracle will make a prediction as good as the size and diversity of
the applications used during the training phase. It may be the case that the
oracle cannot predict a set of parameters with high confidence. In that case,
SmartGC will use the default parameters and schedule a new training phase for
the current application.

4.3 Online Phase

If the matrices confidence level, returned by the classifier for a given workload,
are below a certain threshold (e.g., 50%), it means that the signature of that
workload is not well known to the predictor. In these cases, we consider to
incorporate the new workloads in our learning model, so that we are able to
accurately predict the optimal matrix, should the same workload be exposed to
the system at future times.

To this end, we: (i) run the (before-unseen) workload with each of the avail-
able matrices and assess which one leads to a better execution yield; (ii) include
the values of program counters collected from the workload, along with the cor-
responding optimal matrix, in our knowledge base; and (iii) train a new learning
model with an updated training-set containing the new workload footprint. This
process is similar to our training phase, but it only considers executions of a sin-
gle workload/application. Further, the system can be parametrized on whether
to train a new workload or to use the matrix yielding the highest confidence
(regardless of any defined thresholds).

5 Implementation

To achieve the best reconfiguration, SmartGC has to look for key runtime met-
rics, identify a signature and change the parameters to the appropriate val-
ues. This section describes the details of the runtime metrics collected and the
machine learning algorithms used to classify a running application.
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5.1 Classification Methods and Technologies

The classification process defines how the training set was built and the clas-
sification technology used. SmartGC classification system is organized around
four classes, corresponding to the four matrices described previously. Having a
known key set of workloads with the corresponding optimal matrix for each of
them, we classify new workload runs, which were never seen before, and select
the most appropriate matrices.

The training set is built during the so called training phase, as depicted in
Fig. 4. For each execution of an application, we collect 12 performance counters
(cf. Sect. 3.1) at every specified time interval (currently 100 ms). After a sin-
gle run of an application we aggregate the values of the 12 counters that were
observed over time thereby averaging the differences, or calculating the geo-
metric mean, between consecutive observed values for every counter (i.e., thus
having a single value for each performance counter and application execution).
To stress application behavior in terms of counters variance, we run each of the
10 applications 50 times, resulting in 500 training instances. For this phase, we
use the same matrix (M0) for each execution, so that we have the same refer-
ence when obtaining counters at runtime. In the training set we also include for
each instance of each application the corresponding optimal matrix (which was
assessed beforehand in different trials).

We used a polynomial kernel as a parameter of a Support Vector Machine
(SVM) classifier. Other kernels revealed to be less accurate. The oracle runs
an SVM according to the Platt et al. algorithm [20]. To implement the oracle,
we use the open source Weka framework.3 Random Forests [8] consist of an
ensemble learning, that is, a combination of various learning models to obtain
better predictive performance. In this method, a large collection of tree predictors
are built based on random subsets sampled from a set of training examples. The
generalization capability depends on the strength of individual trees and the
correlation between them. With bootstrap aggregating (also known as bagging)
and a random selection of features to split each node it is possible to control the
variance of the trees.

For pattern recognition, a classifier tries to estimate a function that, given a
set with N-dimensional input data, predicts which of two possible classes form
the output (f : RN → ±1). It is also possible to classify examples in more
than two classes (multiclass classification, as in our case with four classes), by
using strategies like the “One-vs-Rest” that compare confidence values between
pairs of binary-class classifications. The estimation of the SVM function, which
corresponds to the construction of a SVM model, is based on a supplied set of
training examples encompassing tuples with known correct values of input and
corresponding output (i.e., supervised learning). After the model is constructed,
the SVM is then able to assign new unseen examples to one of the possible
multiple classes.

3 http://www.cs.waikato.ac.nz/∼ml/weka/index.html.

http://www.cs.waikato.ac.nz/~ml/weka/index.html
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During the execution of an application, the oracle is queried every time inter-
val with an aggregated value of each PC, at each time instance, since the appli-
cation starts. This aggregated value captures the growth rate of a PC, and
corresponds to the mean of the differences between every two consecutive time
instances, as discussed in Sect. 3.2.

5.2 Collecting Information

The Jikes RVM can be built with support for reading performance counters.4

It calls the PerfMon2 native Linux API.5 In the codebase, performance events
can be collected if the VM is executed in harness mode. This incurs in extra
overhead so we have avoided some of the core code of the readings, and use a
dedicated thread for this monitoring activity, so that the harnessing code path
can be avoided. Periodically (default to 100ms), the JVM collects and reports the
performance counters to the oracle (in another physical machine of our testbed
cluster) and waits for the classification response. If a new matrix is determined
for the current signature, it will be used from then on. In the presence of jittering,
we have a configurable threshold of n equal decisions (currently 5) necessary to
make the change.

6 Evaluation

This section presents the evaluation of the three key aspects that have major
impact in GC and application performance, as well as in the extent of the bene-
fits of our approach. First it discusses the overheads of continuously monitoring
the values of selected performance counters. We then focus on the classification
process. The choices of a classification technology are presented followed by the
confidence levels and stability of the classifier with unseen executions from appli-
cations used in the training set, and executions from applications never presented
to the system. It concludes with memory savings obtained when compared with
a widely used JVM, the OpenJDK.

Our execution environment is based on Jikes RVM 3.1.3, built in production
mode (both in training and online phase), using the generational version of
Immix [6]. We run on Intel Core i7-2600K processors (4 cores with hyper thread-
ing, 8M Cache and 3.40 GHz) with 12 GiBytes of RAM. The OS is Ubuntu
12.04.4 with kernel version 3.2.0-58.

We report on SmartGC overhead when compared with the JikeRVM 3.1.3
codebase (hereafter named as baseline). For each benchmark, both the baseline
and SmartGC were executed 5 times to determine the run with the smallest
execution. To measure this we used the record and replay infrastructure of Jikes
RVM.6 The advice files from the best run were then used in replay compilation.
Each benchmark was executed 10 times, and the execution time was collected
4 Using --with-perfevents parameter in buildit script.
5 http://perfmon2.sourceforge.net/.
6 http://jikesrvm.org/Experimental+Guidelines.

http://perfmon2.sourceforge.net/
http://jikesrvm.org/Experimental+Guidelines
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Table 1. Negligible impact on periodic collection of 12 performance counters. Mean
execution time with confidence interval of 95%. ΔMean is (SmartGC/Baseline) − 1

Base (ms) CI (%) SmartGC (ms) CI (%) ΔMean

xalan 9760.30 ±0.04% 9863.7 ±0.03% 1.06%

lusearch 1867.9 ±0.04% 1887.6 ±0.04% 1.05%

luindex 4304.8 ±0.02% 4324.2 ±0.01% 0.45%

fop 766.3 ±0.12% 765.8 ±0.04% −0.07%

jython 19871.4 ±0.08% 20030.9 ±0.13% 0.80%

pmd 8459.7 ±0.08% 8461.6 ±0.05% 0.02%

bloat 28454.1 ±0.24% 28397.0 ±0.22% −0.20%

antlr 2142.4 ±0.09% 2263.1 ±0.12% 5.63%

hsqldb 3646.1 ±0.04% 3777.6 ±0.03% 3.61%

eclipse 38110.8 ±0.03% 38106.4 ±0.02% −0.01%

from the second iteration. Table 1 shows the mean of these executions along with
the percentage value for a confidence interval of 95%.7 The last column reports
the percentage difference between the means of both systems. This value is very
low for most cases, thus revealing that the proposed approach has a negligible
impact in the execution time of these applications.

To select a good learning approach for our particular problem, we compared
different widely-deployed Machine Learning algorithms thereby using the met-
rics: (i) accuracy; (ii) precision, proportion of instances that are truly of a class
divided by the total instances classified as that class; (iii) recall, proportion of
instances classified as a given class divided by the actual total in that class;
(iv) F-measure, a weighted average of the precision and recall; and (v) ROC
area, performance of the classifier where values approaching 1 mean optimal
classifier and 0.5 being comparable to random guessing (Table 2). We used a
data set with 10 applications and 500 examples of different executions, where
66% were used as the training set, and the remaining as our test set (while pre-
serving instance order in the split). The parameters of all algorithms were tuned
to get the best possible results. We decided to adopt SVM and Random Forest
as our classification models to conduct all the experiences in this paper.

We have established that reading and reporting performance counters to the
oracle (i.e., the online classifier) has a negligible impact on the performance of
applications. We have also shown that, based on values collected in the training
phase, the classifier which provides the best results is the one based on support
vector machines. We now evaluate the confidence the oracle has that an unseen
fragment of execution, either from a known or unknown application, represents
one of the previously identified signatures, so that an appropriate heap resizing
policy m will provide the best execution yield results.
7 Because we have 10 final average samples we used the Students t-distribution to

calculate the confidence interval [13].
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Table 2. ML algorithms comparison

Algorithm Accuracy Precision Recall F-measure ROC area

Bayes 20.58% 0.686 0.206 0.317 0.85

Logistic 52.35% 0.53 0.5224 0.475 0.806

Neuronal 99.41% 0.994 0.994 0.994 0.992

Rnd Forest 97.64% 0.978 0.976 0.976 0.990

J48 Tree 99.41% 0.994 0.994 0.994 0.992

SVM 99.41% 0.994 0.994 0.994 0.998

Fig. 5. Evolution of the classifiers confidence level of the unseen executions of 5 itera-
tions of Dacapo applications

Figure 5 shows how the classification confidence of the oracle evolves while
analyzing unseen performance counters values from the execution of 12 work-
loads. In each chart, the x-axis is time dependent, with a point for each clas-
sification. A classification is made based on the values of performance counters
sent from a given JVM.

In the y-axis we plot the confidence value (between 0.0 and 1.0) the classifier
reports for each possible matrix. This value is higher than 0.6 and there is
always one classification that dominates the remaining ones. Furthermore, this
high confidence levels are reached early in the execution, which is of critical
importance for adaptiveness, fast change of parameters, and maximizing the
overall execution yield.

For the majority of the workloads executions the oracle classifies them cor-
rectly, choosing the matrix that maximizes the execution yield. In cases where
this is not so, like the case of bloat, the classifier classifies it with M2 which is
the one that represents the second best execution yield, very close to M0, and
far from M3 which gives the worst yield for this workload.

Figure 6 also presents the confidence levels for each matrix but when run-
ning eight unseen applications, i.e., application which where not used during the
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Fig. 6. Evolution of classifiers confidence level with unseen applications from
SPECJVM2008 and Dacapo 2009

offline training phase. These applications are a mix of high performance comput-
ing workloads from SPECjvm20088 and two new benchmarks that where intro-
duced in Dacapo 20099. The results have a similar pattern to the ones discussed
regarding Fig. 5, i.e., there is always a dominant matrix chosen by the classifier.
Although in same cases the confidence is around 0.5, there is however a clear
and stable winning choice during the execution of these unseen applications.

Finally we compare the memory saved when running reference applications
with a mainstream OpenJDK 1.8.0, 64 bits, installed from the Ubuntu reposi-
tory, and with SmartGC. OpenJDK was executed in server mode, the one that
according to the documentation provides the best performance. OpenJDK also
has a heap resizing policy, known as Ergonomics. This policy takes into account
the application throughput, a maximum GC pause time and the minimum heap
size.

Figure 7 shows the average memory used by OpenJDK and SmartGC . For
these results, we assume that SmartGC chooses the correct matrix with the
highest confidence. Each execution was iterated 3 times to promote the warm-
up of the JVM. For 56% of the workloads there is a memory saving, which can
reach 23%. This can even be underestimated because JikesRVM uses part of the
heap for its own internal structures, given its meta-circular nature. This shows
that our approach could be integrated with advantage in a widely deployed JVM,
with limited and small changes to its codebase.

8 https://www.spec.org/jvm2008.
9 http://www.dacapobench.org.

https://www.spec.org/jvm2008
http://www.dacapobench.org
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Fig. 7. Average memory used by OpenJDK and SmartGC . Lower is better.

7 Related Work

Memory is a relevant resource management target in cloud-like environments,
typically using system-level virtual machines as in [2,27]. Recently, the need
to involve the application runtime has gained more attention [7,10,22], includ-
ing solutions by industry players such as VMWare’s Elastic Memory for Java -
EM4J.10

Researchers have analyzed garbage collection performance and found it to be
application-dependent [11,30]. Based on these observations, several adaptation
strategies have been proposed, ranging from parameters adjustments (e.g. the
current size of the managed heap [15]) to changing the algorithm itself before
the first execution or at runtime [30]. Other look for ways to minimize the pause
time of stop-the-world garbage collectors [19]. This is an orthogonal effort that
can be complemented with SmartGC operation because these systems are not
meant to save memory that can be transferred to other tenants.

The adjustment of GC parameters to a given workload has been a topic of
intense research [7,17,31], but most of them look for the parameters that give
the highest throughput to a single application, regardless of memory usage. With
SmartGC we explore a trade-off more relevant in consolidated environments -
one that can reduce memory usage of applications without significantly hindering
their usage of available CPU, i.e., without incurring in longer execution times.

Bobroff et al. [7] propose to investigate active memory sharing (AMS) in
virtual environments. It distributes memory fairly to several running HLL-VMs.
Chen et al. study the effect of consolidating HLL-VMs [11] but focus on either
CPU or I/O bounded situations, leaving memory management unattained.

Only a few systems use machine learning techniques to learn the program
behaviour and change the runtime algorithms or parameters. Andreasson et al.
[4] used reinforcement learning techniques, to dynamically learn from GC collec-
tions. The system receives good or bad reinforcements by looking at the through-
put after a GC collection. Singer et al. [28] determine, before execution, which
is the best GC for a given program. It uses a J48 classification tree built from a

10 https://www.vmware.com/support/pubs/vfabric-em4j.html.

https://www.vmware.com/support/pubs/vfabric-em4j.html


SmartGC : Online Memory Management Prediction for PaaS Cloud Models 385

long series of offline executions. Experimentations were made based just on full-
heap collectors. The classification is done only offline, missing the opportunity
for a finer grain adjustment to the different phases that each application might
exhibit. Differently from SmartGC , these systems do not consider generational
collectors with dynamic heap sizes or look at performance counters as a source
of information.

Performance counters are typically used to detect bottlenecks and guide opti-
mizations. Xu et al. [21] proposes to detect resource bottlenecks of multi-tier web
servers, using low-level performance counters, such as, cache misses and instruc-
tions execution rate. Schneider and Gross [23] instrumented a JVM to feed the
JIT compiler with performance counters information, so that more decisions
can be further tailored to the underlying architecture and not only based on
the program behaviour. Adl-Tabatabai et al. [1] uses performance counters to
determine where to insert prefetch instructions in a JVM. This is done auto-
matically within the same execution of the JVM. To the best of our knowledge,
SmartGC is the first system that successfully guides the heap resizing policy of
managed runtimes based on signatures learned from the observation of hardware
performance counters.

8 Conclusion

We developed a low-overhead machine learning-based application classification
that drives an adaptive GC control for cloud multi-tenancy. Our goal is to show
that it is possible to choose at runtime, based on previous executions, the best
GC parameter for a given application, obtaining reductions in the memory foot-
print of virtual machines with limited performance impacts, improving resource
effectiveness and revenue.

The use of workload-aware policies to distribute resources among different ten-
ants needs specific allocation mechanisms and strategies that can act upon the
assets controlled by the managed runtimes, most notably memory. This paper
describes the design rationale to build SmartGC , a system to guide the manage-
ment of memory, to be used by PaaS service providers. The goal is to identify an
application type, during its execution, and reconfigure relevant memory-related
parameters based on the observation of current and performance counter values.
We show that this can be done with low-overhead, applying parameters that can
save physical memory, with minimum impact on the overall progress of applica-
tions. Future work should explore the use of SmartGC to target other tradeoffs in
resource management, including the energy efficiency of different GC algorithms.
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