
Planning and Scheduling
Data Processing Workflows in the Cloud

with Quality-of-Data Constraints?

Sérgio Esteves and Lúıs Veiga

Instituto Superior Técnico - ULisboa
INESC-ID Lisboa, Distributed Systems Group, Portugal
sesteves@gsd.inesc-id.pt · luis.veiga@inesc-id.pt

Abstract. Data-intensive and long-lasting applications running in the
form of workflows are being increasingly more dispatched to cloud com-
puting systems. Current scheduling approaches for graphs of dependen-
cies fail to deliver high resource efficiency while keeping computation
costs low, especially for continuous data processing workflows, where the
scheduler does not perform any reasoning about the impact new input
data may have in the workflow final output. To face such stark challenge,
we introduce a new scheduling criterion, Quality-of-Data (QoD), which
describes the requirements about the data that worth the triggering of
tasks in workflows. Based on the QoD notion, we propose a novel service-
oriented scheduler planner, for continuous data processing workflows,
that is capable of enforcing QoD constraints and guide the scheduling to
attain resource efficiency, overall controlled performance, and task pri-
oritization. To contrast the advantages of our scheduling model against
others, we developed WaaS (Workflow-as-a-Service), a workflow coordi-
nator system for the Cloud where data is shared among tasks via cloud
columnar database.

1 Introduction

Data-intensive applications generally comprehend several distinct and inter-
connected processing steps that can be expressed through a directed acyclic
graph (DAG) and viewed as a workflow applying various transformations on the
data. Such applications have been used in a large number of fields, e.g., assess-
ing the level of pollution in a given city [17], detecting gravitational-waves [3],
weather forecasting [12], predicting earthquakes [7], among others. The com-
putation of such applications are being increasingly more dispatched to the
Cloud, taking advantage of the utility computing paradigm. In this environ-
ment, scheduling plays a crucial role on delivering high performance, resource
utilization and efficiency, while still meeting budget constraints.

? This work was partially supported by national funds through FCT - Fundação para
a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EIA-
EIA/113613/2009.

Scheduling algorithms for workflows in the Cloud usually try either to min-
imize the overall completion time (or makespan) given a fixed budget, or to
minimize the cost given a deadline. In workflows for continuous processing, re-
sources are often wasted due to the small impact that data given as new input
might have. This happens specially in monitoring activities, e.g., fire risk, air pol-
lution, observing near-earth objects. Moreover, Workflow Management Systems
(WMSs) typically disregard any semantics with respect to the output data, that
could be used to reason about the amount of re-executions needed for a given
data to be processed. As data may not always have the same impact and signif-
icance, we introduce a new scheduling constraint, named Quality-of-Data.

Quality-of-Data (QoD)1 describes the minimum impact that new input data
needs to have in order to trigger processing steps in a workflow. This impact is
measured in terms of data size, magnitude of values, and update frequency. Hav-
ing the QoD notion, we are thus able to change the workflow triggering semantics
to be guided by the volume and importance that data communicated between
processing steps might have on causing significant and meaningful changes in
the values of final output steps. QoD can also be seen as a metric of triggering
relaxation.

From the user (or consumer) point of view, reducing costs while meeting a
deadline is what matters most. In turn, cloud providers are interested in having
low prices and making resource utilization as efficient as possible. This volition
on both sides gains a special importance for long-running tasks, where intelligent
SLAs may come into place. These SLAs can be seen as QoD constraints that
allow cloud providers to give lower costs in exchange of some relaxation.

By allowing QoD-based relaxation, cloud services providing workflow execu-
tion (on a pay-per-execution basis) can define different service-level agreements
(SLA) with lower prices. With cloud consumers specifying QoD constraints for
each task, a WMS would be able to offer reduced prices due to resource sav-
ings, and still give the best possible quality within the QoD to normal-execution
range.

Having the current outlook, we propose the use of a novel workflow model
and introduce a new scheduling algorithm for the Cloud that is guided by QoD,
budget, and time constraints. We also present the design of WaaS (Workflow-as-
a-Service), a WMS platform that portrays our vision of a Cloud service offered at
the PaaS level, on top of of virtualization technology and the HBase [10] noSQL
storage, bridging the gap between traditional WMS and utility computing. Re-
sults show that we are able to reduce costs by the use of our QoD model.

The remainder of this paper is structured as follows. In the next section we
present our scheduling planner. The design and implementation of our framework
follow in Section 3, and its experimental evaluation goes in Section 4. Related
work is discussed in Section 5, and the paper concludes in Section 6.

1 Quality-of-Data is akin to Quality-of-Service, and should not be confused with issues
such as internal data correctness, semantic coherence, data adherence to real-life
sources, or data appropriateness for managerial and business decisions.

2 Scheduling Planner

Scheduling, whether it is located at the IaaS or PaaS level, is a core activity in
cloud computing that impacts the overall system performance and utilization.
Due to the inherent dependencies between computation and data, scheduling
workflow tasks is generally more difficult than scheduling embarrassingly-parallel
jobs. As stated before, most Cloud scheduling approaches for workflows aim at
single-shot workflow executions and only take into account simple constraints on
time and costs. The model we propose, which targets data-intensive workflows
for continuous and incremental processing, also enforces constraints over the data
communicated between tasks, while still fitting the utility paradigm. Our model
implies that data must be shared via NoSQL database, which achieves better
performance, scalability, and availability. We first describe our QoD model, and
then the scheduling planner which coordinates it.

2.1 Workflow Model with Quality-of-Data

Workflow tasks, with typical WMSs, usually communicate data via intermediate
files that are sent from a node to another, or using a distributed file system.
Sharing data through a NoSQL database, like in this work, allows us to reduce
bandwidth and increase reliability in the presence of failing nodes.

Our workflow model [9] is differentiated from the other typical models by
the following: the end of execution of a task A does not immediately trigger
its successor tasks; instead, they should only be triggered when A has gener-
ated output with sufficient impact in relation to the terminal task (outcome) of
the workflow (which can cause a node being executed multiple times with the
successor nodes being triggered only once). For example, a workflow that is con-
stantly processing data coming from a network of temperature sensors, to detect
fires in forests, would not need to be always computing tasks (e.g., calculating
hotspots, updating the risk level) whose output would not change significantly
in the presence of small jitters in temperature. The workflow will only issue a
displacement order to a fire department if more than a certain number of sensors
have detected a steep increase in temperature. This way, tasks would only need
to specify the minimum impact that their input data needs to have that is worth
their execution towards final outcomes.

The level of data changes necessary to trigger a task, denoted by QoD bound
κ, is specified through multi-dimensional vectors that associate QoD constraints
with data containers, such as a column or group of columns in a table of a
given column-oriented database. κ bounds the maximum level of changes through
numeric scalar vectors defined for each of the following orthogonal dimensions:
time (θ), sequence (σ), and value (ν).

Time Specifies the maximum time a task can be on hold (without being
triggered) since its last execution occurred. Considering θ(o) provides the time
(e.g., seconds) passed since the last execution of a task that is dependent on the
availability of data in the object container o, this time constraint κθ enforces
that θ(o) < κθ at any given time.

Sequence Specifies the maximum number of updates that can be applied to
an object container o without triggering a task that depends on o. Considering
σ(o) indicates the number of applied updates over o, this sequence constraint κσ
enforces that σ(o) < κσ at any given time.
Value Specifies the maximum relative divergence between the updated state of
an object container o and its initial state, or against a constant (e.g., top value),
since the last execution of a task dependent on o. Considering ν(o) provides that
difference (e.g., in percentage), this value constraint κν enforces that ν(o) < κν
at any given time. It captures the impact or importance of updates in the last
state.

A QoD bound can be regarded as an SLA (Service-level agreement), defining
the minimum performance required for a workflow application that is agreed
between consumers and providers.

2.2 Abstract Scheduling Planner

Generally, scheduling workflow tasks is a NP-complete problem. Therefore, we
provide here an approximation heuristic that attempts to minimize the costs
based on local optimal solutions. The QoD bounds are involved in this process
to offer price flexibility, which is very important for continuous processing.

We state the problem as a coordinator node attempting to map a workflow
graph G to available worker nodes in a way that minimizes costs and yet respects
time and QoD constraints. A single execution of each workflow graph must
be completed until a specified time limit L (e.g., in minutes). A task T has
a specification in terms of its complexity and tolerated relaxation QoD. This
complexity represents the computational cost a task has for being executed in
relation to a standard task in a standard machine (this section abstracts from
such details, they are given in Section 3). Tolerated relaxation consists in the
QoD constraints that are associated with the input data fed to each task.

Worker machines have a specification in terms of their current capability and
reference price. This capability is the power of the machine with its current load
availability (capability calculation is given in Section 3). Reference price is a
standard value that is then adjusted for current availability and load usage of
each worker.

Fig. 1. Branches in a workflow

The scheduling planning can be divided in two phases. First, tasks are or-
ganized into branches (e.g., Figure 1): connected tasks where each has exactly
one predecessor and one successor, except from the last task which can have
multiple successors (i.e., pipeline). Branches are ordered by their summed com-
plexity. Tasks that do not fit in the pipeline, are still treated as a pipeline, albeit
with a single task within. This means that such tasks will be simply allocated
to workers offering the best cost for them.

Second, inner branch scheduling is performed by starting from the most com-
plex branch to the least complex one. To schedule tasks inside a branch in an
optimal manner, we decompose the problem into a Markov Decision Process
(MDP) [16], since it is a common and proven effective technique for sequential
decision problems (e.g., [23]).

Briefly, a MDP consists of a set of possible states S, a set of possible actions
A, a reward function R(S, a), and a transition model Tr(S, a, S′) describing each
action’s effects in each state. Since R values are guaranteed in our problem, we
use deterministic actions instead of stochastic actions, i.e., for each state and
action we specify a new state (Tr : S × A → S′). The core problem of MDP is
to find an optimal policy π(S) that specifies which action to take for every state
S.

S0

a
1

a
2

S1

S2

S3a
n

a
x

a
y

a
z

.

.

.

.

.

.

.

.

.

...

(Task0,L)

(Task1,L-t1)
t1=...
c1=...

relax1=...

(Task1,L-tn)
tn=...
cn=...

relaxn=...

Fig. 2. Markov Decision Process diagram

Figure 2, depicts a diagram representing the decomposition of the problem.
Each state S in the model corresponds to a task and a time limit to the workflow
makespan. Actions represent the allocation of tasks to VM slots in workers. When
an action is taken, an immediate reward is given, i.e., 3 variables specifying
the time taken for 1 execution, the reference cost per hour, and the minimum
relaxation of data freshness, within specified QoD limits, that assures the lowest
price.

Finding the optimal policy π for each state S (i.e., choosing the right action
a to take when on state S) consists of minimizing the cumulative cost of the

rewards obtained when transitioning from S to a terminal state. Hence, we only
know the reward R(S, a) after following all possible transitions from state S′,
such that S×a→ S′, to a final state. Nonetheless, the processing time, retrieved
from the immediate reward of an action a, is discounted from the time limit L
when transitioning from S to S′ through a. If L is zero or lower in a state S, all
paths going through S are cut and it is necessary to find other paths. If there
is no other path, it means that it is not possible to compute all tasks in the
specified time limit.

To solve this optimization problem and optimally allocate tasks to workers
(i.e., with overall lowest cost and yet respecting time and QoD constraints), we
developed a dynamic programming algorithm, listed as follows.

1 def min cost (tasks , workers , totalTime , t imeLimit) :
2 i f not ta sk s :
3 return 0 , 0 , []
4 t = tasks [0]
5 minCost , minCostTime , minCostPath = f l o a t (’ i n f ’) , None , []
6 for w in workers :
7 i f not w. s l o t s :
8 continue
9 time = ca l c u l a t e t ime (t , w)

10 i f (totalTime + time > t imeLimit) :
11 continue
12 w. s l o t s −= 1
13 v1 , v2 , v3 = min cost (ta sks [1 :] , workers , totalTime + time ,

t imeLimit)
14 w. s l o t s += 1
15 i f v2 == None | totalTime + time + v2 > t imeLimit :
16 continue
17 to ta lCos t = c a l c u l a t e c o s t (t , w) + v1
18 i f to ta lCos t < minCost :
19 minCost = tota lCos t
20 minCostTime = time + v2
21 minCostPath = [w. name] + v3
22 return minCost , minCostTime , minCostPath

Lines 1-5: contain the stop condition, when there are no more tasks/states to
follow; lines 6-13: contain the transition of states, thereby exploring all actions
of a current state (which is represented by task and totalTime); lines 10-11, 15-
16: check for whether the time limit was violated or not, causing the algorithm
to explore other actions at the same level; lines 18-21: store the minimum cost
found for the current state. Additionally, when a slot is locked (line 12) it can
no longer be used by successor tasks.

This algorithm runs in O(wt), where w is the number of workers and t the
number of tasks. Some optimizations were performed, namely caching the re-
wards of states, obtained by roaming the sub-graphs until the terminal state
in the MDP model (they were omitted from the algorithm above due to space
constraints). The whole process of planning and scheduling is synthesized in the
following:
1. Discover available workers and request cost and expected completion time for

every task. These values should be guaranteed for a certain time frame, which
should be higher than the time taken to perform the planning and allocate tasks.
2. Divide the workflow in pipelines.
3. Divide the overall time limit L per each pipeline and weighted by their summed
complexity.
4. Generate scheduling plans for each pipeline, starting from the most complex
and ending with the least complex.
5. Allocate tasks to workers according to the generated plans.
6. Start workflow execution and repeat steps 1, 4, and 5 if any worker fails.

3 WaaS Design and Implementation

In this section, we describe our proposed prototypical middleware framework
that embodies the vision of a WMS at the PaaS level, that we call Workflow-as-
a-Service (or WaaS). We approach its main design choices and the more relevant
implementation details. We address: i) workflow description and WMS integra-
tion, ii) the cost model, and iii) how resource allocation is enforced.

We envision a WaaS distributed network architecture in the Cloud, where
workflows are set up to be executed upon a cluster of worker machines con-
nected through a local, typically high-speed, network. A designated coordinator
machine, running the WaaS server VM instance, is in charge of allocating work-
flow tasks to available worker nodes (according to a scheduling algorithm), and
collect monitoring information regarding node load and capacity.

The input/output data is shared among tasks via a shared columnar noSQL
data store. Each worker node executes the workflow tasks scheduled to it as guest
VM instances, using Xen or QEMU/KVM[1] images, and in particular, a Xen
(or QEMU/KBM) virtual appliance with Linux OS, a JVM and a QoD-enabled
middleware for cloud noSQL storage.

The WaaS middleware carries out three major steps in its operation. First,
according to the workflow descriptions, WaaS performs the planning by exploring
scheduling alternatives for the workflow tasks and branches, carrying out the
algorithm described in Section 2. Then, according to the schedule calculated,
it performs the allocation of resources at nodes, by assigning the corresponding
VMs for tasks at nodes, according to their cost and available capacity. The
workflow is then started, and tasks continually re-executed according the QoD
parameters defined as new input becomes available and considered.

Additionally, all nodes inform the coordinator only of relevant changes in
their available capacity, so that the coordinator can adjust and fine-tune schedul-
ing and allocation decisions, since the coordinator makes use of declarative in-
formation stating resource requirements for tasks. When new nodes are added
to the cluster or become unavailable, the scheduling must also be recalculated.

3.1 Workflow Description and WMS Integration

Workflow specification schemas need to be enhanced to include declarative in-
formation requiring for the scheduling. This is currently defined with special

comments in the workflow descriptions in DAGMan [6] files, that are parsed
by the WaaS framework. They should contain the description of the workflow
graph where each processing step (to be executed as a task) is annotated specify-
ing explicitly the underlying data containers in the noSQL storage (e.g., tables,
columns, rows by ID or predicate, or combinations of any of these) it depends
on for its input.

This approach is used throughout as it preserves transparency and compati-
bility where workflows are deployed in other, non-enhanced WMS. Additionally,
in particular for the last processing step, it is necessary to specify the desired
significance factor: the percentage of variation in the output tabular data that
comprises a minimum semantically level of meaning to the workflow users, e.g.,
5%. The scheduling is repeated after a predefined parameter of N workflow ex-
ecutions.

Regarding failure handling and cluster membership, if a node fails or every
time a node enters or parts, the scheduling is recalculated. Note that all data
is saved in the distributed storage (HBase cluster) and WMS can easily restart
tasks.

3.2 Cost Model

The cost model of WaaS is based on considering task complexity and dynamic
price definition. Assessing task complexity regarding processing and memory
requirements has been explored in previous works [20,19,5]. Regarding CPU
and memory requirements, the base approach is inspired in CloudSim and uses
declarative definitions of MIs (millions of instructions) and MBs of memory
required. Additionally, we leverage previous executions of tasks in a machine
(e.g. one of the nodes) against the requirements from a reference workload, a
unitary cost task, e.g., Linpack benchmark (as used in [20]), that can also be
used to rank the relative capacity of different worker nodes against a reference
one.

Regardless of the approach employed, we can determine an estimate on how
long each task will take to complete with a given capacity awarded in the node
(i.e., time = task complexity/worker capacity). More than one task may share
a node resources for execution, but while ensuring resource and performance
isolation as described in the next subsection.

In the general case where the infrastructure is shared by many users and
workflows, the price of executing each task is calculated depending on the re-
sources required pondered with the overall system load.

There is price elasticity: when resources are scarce or there are many users,
unitary prices increase, otherwise, when resources are overabundant, prices de-
crease, with a reference price, as previously addressed in P2P Grids [15].

Usually, the cost of executing a workflow for the first time, will be the sum
of the cost of executing its tasks. In the continuous execution model of WaaS,
although input is being updated or new input being provided (e.g., sensory
data), tasks are only re-executed when QoD parameters are reached. Therefore,

the saved executions (i.e. task executions that are avoided until QoD is reached)
will imply a lower total cost for a given number of workflow executions.

Additionally, since the interval between consecutive executions of a given
task can be significant, there is no point in paying (regardless of real money or
some form of credits) according to the common cloud cost model of VM hours of
execution, as these may be idle the majority of time. Therefore, we implement
a service where task executions are incurred only for the time of execution,
plus a tax of 10% to account for the overhead of reusing resources by switching
among guest VM instances that execute different tasks, possibly from different
workflows.

3.3 Resource Allocation and Isolation

As already said, resources at nodes are engaged as virtual machine instances, in
particular with images derived from virtual appliances described above. Thus,
when the scheduling decides to allocate a virtual machine based on a task require-
ments and price constrains, it essentially aims at two things: i) allocate enough
resources for the task, and ii) ensure that those resources and their availability
are not hindered by the scheduling of other tasks in the same node. We make
extensive use of virtualization technology to allow such fine-grained allocation
and acceptable performance isolation guarantees.

The VM instances can be preconfigured and prelaunched, ready to execute
a given workload, and by means of the WaaS component installed, can later
execute the workload of another task, without the need of being shutdown and
rebooted, easing resource sharing and reducing the amount of wasted resources.
Therefore, we configure the hypervisor in Xen to cap the percentage of physical
CPU(s) and physical memory awarded to a given VM according to the scheduling
decided. This can be repeated until the node capacity is fully allocated, with a
10% safety quota for middleware own operation. This can also be achieved, albeit
with less flexibility by parameterizing QEMU/KVM. This ensures that when a
task is scheduled to a node, the resources it is expected to make use of, are not
in contention with the resources required by other tasks executing at the same
time. Any degradation will be graceful and only when contention is very high.

Recall that worker top capacity is established assessing the performance of a
reference workload against the performance of the same workload against a ref-
erence machine. Regarding instantaneous available capacity at a node, in order
to fine-tune the information driving the scheduling (that is aware of VM alloca-
tions at each node) we resort to the SIGAR2 library that has enough precision
and is actually platform-independent.

4 Experimental Evaluation

This sections presents experimental evaluation that was carried out to show the
benefits of our approach. In particular, if our model can effectively reduce costs,

2 http://support.hyperic.com/display/SIGAR/Home

http://support.hyperic.com/display/SIGAR/Home

complying with deadlines, and use relaxation (corresponding to the percentage
of saved executions with the enforcement of QoD constraints).

All tests were conducted using 6 machines with an Intel Core i7-2600K CPU
at 3.40GHz, 11926MB of available RAM memory, and HDD 7200RPM SATA
6Gb/s 32MB cache, connected by 1 Gigabit LAN.

We compared three different approaches with our algorithm: Greedy-time,
Greedy-cost, and Random. Greedy-time selects for each task the worker that of-
fers the minimum processing time at that moment. Similarly, Greedy-cost selects
at each step the worker that offers the minimum processing cost. And Random
selects a random worker for each task.

We conducted a simulation, built in Python, to compare our model with dif-
ferent approaches. Note that this simulation corresponds to the isolation of the
coordinator machine, so that it can be properly evaluated without the interfer-
ence (delays) of worker machines (i.e., tasks complexity and workers capacity
are synthetic). We generated hundreds of pipelines with 5, 10, and 15 tasks,
corresponding to workloads A, B, and C respectively. Note that the payload of
the intrinsic tasks were dummy content (i.e., we were only interested in the task
meta-data for the coordinator scheduling). Inside each workload, results were
averaged to reduce noise.

A B C

greedy−time
greedy−cost
random
WaaS

Workload

C
os

t

0
50

0
15

00

A B C

greedy−time
greedy−cost
random
WaaS

Workload

T
im

e
(m

in
ut

es
)

0
20

40

Fig. 3. Cost per hour (left) and time taken for pipeline execution (right)

Figure 3 (left) shows that our model, WaaS, can effectively reduce costs. The
gains are higher when there is more variance in the worker’s cost. The costs
achieved by our model, represent the critical path of the MDP model, and, since
no time limit was imposed, they are undoubtedly the minimum possible costs
for the considered workloads.

Figure 3 (right) shows that the time obtained with WaaS for a single pipeline
execution is not much different from the remaining approaches. Lower costs often
mean that workers with lower capabilities were used, and therefore the makespan
was higher.

Figure 4 illustrates the correlation observed between time (makespan) and
cost for 1000 samples of different pipelines with 10 tasks and in diverse worker
settings. Each sample, consisting of a different set of tasks and workers, was
executed for the 4 different algorithms, and we can observe that the cost increases
with the time. Unsurprisingly, this happens due to the cost and time functions

20 30 40 50

50
0

10
00

15
00

Time (minutes)

C
os

t

WaaS

greedy−time

greedy−cost

random

Fig. 4. Time cost correlation for 1000 samples

being directly proportional with the task complexity. WaaS appears always at
the bottom (blue points) with lower costs, as expected.

Time (minutes)

Ta
sk

 C
om

pl
et

io
n

(%
)

0

20

40

60

80

100

0 10 20 30

Time Limit

greedy−cost
greedy−time
random
WaaS

Fig. 5. Task completion over time

Through Figure 5 we may observe that our algorithm with WaaS exhibits
the highest task completion rate and is able to meet time limits, while others
fail to process the complete workflow inside specified time frames (i.e., roughly
the last 20% of tasks are processed outside of the deadline). However, there is a
price to pay when such time frames are shrunk, as shown in the next figure.

Figure 6 depicts how costs vary with the imposed time limits L1, L2, and
L3. We can see that costs decrease with the expansion of time limits. There
is a point from which expanding more the deadline does not reduce the costs,
which corresponds to the time taken to go through the critical path, the one that
provides the lowest cost, in the MDP graph. Also, when the time limit is lower
than the MDP path with the minimum time, it is not possible to complete the

Time Limit (minutes)

C
os

t

800

820

840

860

28 29 30 31

L1 L2 L3

Fig. 6. Cost variation for different time limits

whole pipeline tasks inside the limit. Thus, there is an interval of time within
which users can adjust the limits.

Number of Tasks

T
im

e
(s

ec
on

ds
)

0
5

10
15
20
25
30
35
40
45
50
55

5 10 15 20

Fig. 7. Time taken for planning

Figure 7 shows the time evolution for planning with pipelines with different
number of tasks and workers (for simplicity, the number of workers is the same
as the number of tasks). Although we performed optimizations with the MDP-
based algorithm, we may see that time follows an exponential tendency with
the number of tasks, like stated in Section 2.2. For less than 15 pipeline tasks
the times obtained are negligible, and for more than 17 tasks the times start
to increase drastically (above 10 seconds). However, workflows containing more
than 10 tasks in pipeline are not common.3 Furthermore, there is still space for
optimization and parallelization on our MDP-based algorithm.

3 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

No relaxation
15%
30%
45%

Relaxation Level

C
os

t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Fig. 8. Cost versus relaxation

We can see in Figure 8 how the cost varies with the level of relaxation for a
pipeline with 10 tasks where each was set to have levels of relaxation of 0 (no
relaxation), 15, 30, and 45%. The cost decreased down to 233 units with 45% of
relaxation.

5 Related Work

Many work has been done regarding scheduling of tasks in grid and cloud set-
tings. A subset of this work targets the scheduling of workflows in particular.
For example, [21,4,13] for Grid computing. Our model inherits from and extends
the traditional workflow model [24]. Next, we describe some solutions that are
closer and more related with our Quality-of-Data model.

In [25], it is proposed a cost-based workflow scheduling algorithm that is
capable of minimizing costs and meeting deadlines for result delivery. A MDP
is also used to perform the scheduling, however over different constraints (e.g.,
tasks can request different services from certain providers). The impact of data
in the results and workflow execution relaxation is not taken into account, unlike
in our model. Nonetheless, it has been a common approach to impose time limits,
instead of minimizing execution times [8].

In [18], authors claim that proposed heuristics for scheduling on heteroge-
neous systems fail by not considering processors with different capabilities. Our
model also takes into account processors with different capabilities for schedul-
ing, since the times and relaxation are calculated based on that within the WaaS
environment, however, data impact is also not taken into account in their so-
lution. Also, [13] presented a novel binding scheme to deal with heterogeneity
presented in grid and cloud environments, and improve performance by attend-
ing to such different characteristics.

In [2], different task scheduling strategies for workflow-based applications
are explored. Authors claim that many existing systems for the Grid use match-
making strategies that do not consider overall efficiency for the set of (depen-
dent) tasks to be run. They compare typical task-based greedy algorithms with

workflow-based algorithms, that search for the entire workflow. Results show that
workflow-based approaches have a potential to work better on data-intensive sce-
narios even when task estimates are inaccurate. This comes to strengthen our
work, as most scheduling done, which is task-based, does not work well for work-
flows.

In [14], authors claim that most auto-scaling scheduling mechanism only con-
sider simple resource utilization indicators and do not consider both user perfor-
mance requirements and budgets constraints. They present an approach where
the basic computing elements are virtual machines (VMs) of various sizes/costs,
and, by dynamically allocating/deallocating VMs and scheduling tasks on the
most cost-efficient instances, they are able to reduce costs. This task-to-VM op-
timization was also tasked in [22], where a hierarchical scheduling strategy was
proposed. Furthermore, advantages of running in a virtual environment, even
remotely, over local environment are highlighted here [11]. We also provide a re-
source utilization metric representing not only the capacity of a worker machine,
but also its current load usage. In addition to this mechanism we also combined
data relaxation which conveys in good cost savings.

6 Conclusion

This paper makes use of a novel workflow model for continuous data-intensive
computing proposing a new Cloud scheduling planner, capable of relaxing prices
and respecting time constraints, is proposed. This platform gains a special impor-
tance in e-science where long-lasting workflows are executed many times with-
out any new significant and meaningful results (many times only getting noise),
wasting monetary funds.

Evaluation results show that our approach is able to reduce costs while re-
specting time constraints. This cost reduction is higher for larger QoD contraints
(which result in larger relaxation). However, larger QoD values can cause higher
result deviations, but that problem is out of the scope of this paper.

To the best of our knowledge, no work in the cloud scheduling literature has
ever before tried to reason about the data impact on processing steps that cause
significant changes on the final workflow outcome for continuous and autonomic
processing. Therefore, we believe we have a compelling advancement over the
state-of-the-art.

References

1. D. Bartholomew. Qemu: a multihost, multitarget emulator. Linux J., 2006(145):3–,
May 2006.

2. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy.
Task scheduling strategies for workflow-based applications in grids. In Proceedings
of the Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGrid’05), CCGRID ’05, pages 759–767, Washington, DC, USA, 2005. IEEE
Computer Society.

3. D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb. A case
study on the use of workflow technologies for scientific analysis: Gravitational wave
data analysis. In I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, editors,
Workflows for e-Science. Springer London.

4. W.-N. Chen and J. Zhang. An ant colony optimization approach to a grid workflow
scheduling problem with various qos requirements. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 39(1):29–43, 2009.

5. F. Costa, J. N. Silva, L. Veiga, and P. Ferreira. Large-scale volunteer computing
over the internet. J. Internet Services and Applications, 3(3):329–346, 2012.

6. P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger. Workflow management
in condor. In I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, editors,
Workflows for e-Science, pages 357–375. Springer London, 2007.

7. E. Deelman et al. Managing large-scale workflow execution from resource provision-
ing to provenance tracking: The cybershake example. In Proceedings of the Second
IEEE International Conference on e-Science and Grid Computing, E-SCIENCE
’06, pages 14–, Washington, DC, USA, 2006. IEEE Computer Society.

8. J. Eder, E. Panagos, and M. Rabinovich. Time constraints in workflow systems.
In M. Jarke and A. Oberweis, editors, Advanced Information Systems Engineering,
volume 1626 of Lecture Notes in Computer Science, pages 286–300. Springer Berlin
Heidelberg, 1999.

9. S. Esteves, J. N. Silva, and L. Veiga. Fluchi: a quality-driven dataflow model for
data intensive computing. Journal of Internet Services and Applications, 4(1):12,
2013.

10. L. George. HBase: The Definitive Guide. O’Reilly Media, 1 edition, 2011.
11. C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman, and

J. Good. On the use of cloud computing for scientific workflows. In eScience, 2008.
eScience ’08. IEEE Fourth International Conference on, pages 640–645, 2008.

12. X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and H. Conover.
Real-time storm detection and weather forecast activation through data mining
and events processing. Earth Science Informatics.

13. A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu, and
L. Johnsson. Scheduling strategies for mapping application workflows onto the
grid. In High Performance Distributed Computing, 2005. HPDC-14. Proceedings.
14th IEEE International Symposium on, pages 125–134, 2005.

14. M. Mao and M. Humphrey. Auto-scaling to minimize cost and meet application
deadlines in cloud workflows. In High Performance Computing, Networking, Stor-
age and Analysis (SC), 2011 International Conference for, pages 1–12, 2011.

15. P. Oliveira, P. Ferreira, and L. Veiga. Gridlet economics: Resource management
models and policies for cycle-sharing systems. In J. Riekki, M. Ylianttila, and
M. Guo, editors, GPC, volume 6646 of Lecture Notes in Computer Science, pages
72–83. Springer, 2011.

16. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

17. M. Richards, M. Ghanem, M. Osmond, Y. Guo, and J. Hassard. Grid-based anal-
ysis of air pollution data. Ecological Modelling, 194(1-3):274 – 286, 2006.

18. Z. Shi and J. J. Dongarra. Scheduling workflow applications on processors with
different capabilities. Future Gener. Comput. Syst., 22(6):665–675, May 2006.

19. J. Simão and L. Veiga. Qoe-jvm: An adaptive and resource-aware java runtime for
cloud computing. In OTM Conferences (2), pages 566–583, 2012.

20. L. Veiga, R. Rodrigues, and P. Ferreira. Gigi: An ocean of gridlets on a ”grid-for-
the-masses”. In CCGRID, pages 783–788. IEEE Computer Society, 2007.

21. M. Wieczorek, R. Prodan, and T. Fahringer. Scheduling of scientific workflows in
the askalon grid environment. SIGMOD Rec., 34(3):56–62, Sept. 2005.

22. Z. Wu, X. Liu, Z. Ni, D. Yuan, and Y. Yang. A market-oriented hierarchical
scheduling strategy in cloud workflow systems. The Journal of Supercomputing,
63:256–293, 2013.

23. Y. Yih and A. Thesen. Semi-Markov Decision Models for Real-time Scheduling.
Research memorandum. School of Industrial Engineering, Purdue University, 1991.

24. J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec., 34(3):44–49, Sept. 2005.

25. J. Yu, R. Buyya, and C. K. Tham. Cost-based scheduling of scientific workflow
application on utility grids. In Proceedings of the First International Conference
on e-Science and Grid Computing, E-SCIENCE ’05, pages 140–147, Washington,
DC, USA, 2005. IEEE Computer Society.

	Planning and SchedulingData Processing Workflows in the Cloudwith Quality-of-Data Constraints

