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Abstract

We introduce transactions into libraries of concurrent data structures; such transactions can be used
to ensure atomicity of sequences of data structure operations. By restricting transactional access to
a well-defined set of data structure operations, we strike a balance between the ease-of-programming
of transactions and the efficiency of custom-tailored data structures. We exemplify this concept by
designing and implementing a library supporting transactions on any number of maps, sets (implemented
as skiplists), and queues. Our library offers efficient and scalable transactions, which are an order of
magnitude faster than state-of-the-art transactional memory toolkits. Moreover, our approach treats
stand-alone data structure operations (like put and enqueue) as first class citizens, and allows them to
execute with virtually no overhead, at the speed of the original data structure library.
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Motivation

Data structures are the bricks and mortar of computer programs. They are generally provided via highly
optimized libraries. Since the advent of the multi-core revolution, many efforts have been dedicated to
building concurrent data structure libraries (CDSLs) [18, 16, 9, 4, 24, 15], which are so-called “thread-
safe”. Thread-safety is usually interpreted to mean that each individual data structure operation (e.g.,
insert, contains, push, pop, and so on) executes atomically, in isolation from other operations on the same
data structure.

Unfortunately, simply using atomic operations is not always “safe”. Many concurrent programs require
a number of data structure operations to jointly execute atomically [23]. As an example, consider a server
that processes requests to transfer money to bank accounts managed in a CDSL. If several threads process
requests in parallel, then clearly, atomicity of individual CDSL operations does not suffice for safety: two
concurrent threads processing transfers to the same account may read the same balance at the start of
their respective operations, causing one of the transfers to be lost.

This predicament has motivated the concept of memory transactions [17], which appear to execute
atomically (all-or-nothing) and in isolation (so no partial effects of on-going transactions are observed).
A transaction can either commit, in which case all of its updates are reflected to the rest of the system,
or abort, whereby none of its updates take effect. Transactions have been used in DBMSs for decades,
and are broadly considered to be a programmer-friendly paradigm for writing concurrent code [22, 14].
Numerous academic works have developed software transactional memory (STM) toolkits [7]. Moreover,
some (limited) hardware support for transactions is already available [6].

Nevertheless, as of today, general-purpose transactions are not practical. STM incurs too high a over-
head [5] and hardware transactions are only “best effort” [6]. And in both cases, abort rates can be an
issue. Thus, with the exception of eliding locks [21] in short critical sections, transactions are hardly used
in industry today. CDSLs, despite their more limited semantics, are far more popular. Efficient CDSL
implementations are available for many programming languages [2, 20, 19, 1] and are widely adopted [23].

Contributions

Our goal in this paper is to provide transaction semantics for CDSLs without sacrificing performance.
We introduce the concept of a transactional CDSL (TDSL), which supports bundling sequences of data
structure operations into atomic transactions. Individual operations are seen as singleton transactions
(singletons for short). TDSLs provide composability ; for example, a transaction may invoke operations on
two different maps and a queue. But unlike STM approaches, atomicity only encompasses the TDSL’s
operations, whereas other memory accesses are not protected.

Restricting the transactional alphabet to a well-defined set of operations (e.g., enqueue, dequeue, insert,
remove, and contains) is the key to avoiding the notorious overhead associated with STM. We show that
we can benefit from this restriction in three ways:

1. First, while a TDSL implementation may use standard STM techniques, it can also apply CDSL-like
custom-tailored optimizations that rely on the specific data structure’s semantics and organization in
order to improve efficiency and reduce the abort rate. For example, it can employ STM-like read-set
tracking and validation [7], but reduce the read-set size to include only memory locations that induce
real semantic conflicts. Another example is to use transactional access to a core data structure that
ensures correctness but does not support fast lookup, and complement it with a non-transactional
index for fast lookup.

2. Second, a TDSL can employ different STM strategies for managing different data structures within
the same library. For example, transactional access to maps is amenable to optimistic concurrency
control, since operations in concurrent transactions are unlikely to conflict. But when queues are
used inside transactions, contention is frequent, and so a pessimistic solution is often more efficient.

3. Third, a TDSL can treat singletons as first class citizens – it can spare them the transaction man-
agement overhead altogether, and save programmers the need to deal with their aborts.
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In our full paper [25] we exemplify these three ideas by presenting example TDSL algorithms for popular
data structures – maps, sets (implemented as skiplists), and queues – as well as compositions thereof. In
addition, we generalize this concept, and discuss a generic approach for composing TDSLs with each other
as well as with STM toolkits such as TL2 [7]. Such a composition can provide, on the one hand, high
performance transactions comprised of data structure operations, and on the other hand, fully general
transactions, including ones that access scalars.

API and semantics

A TDSL is simply a CDSL with added support for transactions. Its API provides, in addition to CDSL
operations (like insert and enqueue), TX-begin and TX-commit operations. The added operations are
delineations – library operations invoked between a TX-begin and the ensuing TX-commit pertain to the
same transaction1. However, other memory accesses made in this span to locations outside the library do
not constitute part of the transaction. We assume that the shared data structure’s state is only manipulated
via the TDSL’s API.

The library may abort a transaction during any of the operations, resulting in an exception. In case of
abort, none of the transaction’s operations is reflected in the data structure. Applications using the library
need to catch abort exceptions, at which point they typically restart the aborted transaction.

We consider transactions that further provide opacity [11], meaning that even transactions that are
deemed to abort are not allowed to see inconsistent states of the data structure partially reflecting concur-
rent transactions’ updates.

It is important to note that a TDSL is, in particular, a CDSL, and legacy code may continue to
use its operations outside of transactions. Library operations invoked outside transactions are treated as
singletons. Singletons cannot abort, and so legacy code can continue to use the original thread-safe library
operations. The semantics of singletons relative to other transactions is preserved. In other words, each
run has a linearization encompassing all of its transactions and singletons.

Support for Library Composition

Here we generalize our concept to allow for composing libraries, that is, supporting transactions that access
multiple TDSLs as well as STM toolkits such as TL2 [7]. Our composition framework is based on the theory
of Ziv et al. [26]. Such composition can provide support for fully general memory transactions, including
ones that access scalars.

API. Generally speaking, a transaction that spans multiple TDSLs begins by calling TX-begin in all of
them, then accesses objects in the TDSLs via their APIs, and finally attempts to commit in all of them.
However, to ensure atomic commitment, we need to split the TX-commit operation into three phases –
TX-lock, TX-verify, and TX-finalize – and perform each phase for all involved TDSLs before moving to the
next phase. Any standard TDSL operation (like get or enqueue) and any TX-lock or TX-verify phase of an
individual TDSL may throw an abort exception, in which case TX-abort is called in all TDSLs partaking
in the transaction (for uniformity, we call TX-abort also in the library that initiated the abort via an
exception). The API that needs to be supported by a composable TDSL is summarized in Table 1.

Intuitively, the first and last phases correspond to the two phases of strict two-phase locking [8], where
TX-lock ensures that the transaction will be able to commit in the TX-finalize phase if deemed successful.
In case commit-time locking is used, it occurs in TX-lock, while with encounter-time locking (as in the case
of our queue implementation’s dequeue), TX-lock simply does nothing. The TX-verify phase is required
when transactional reads are optimisitic (as in our skiplist TDSL and in TL2).

Semantics. A developer building a TDSL has to ensure that the implementation satisfies certain prop-
erties with respect to this API. Defining these formally is beyond the scope of the current paper; instead

1In principle, a transaction may end in a programmer-initiated abort, but we omit this option for simplicity of the exposition.
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Table 1 API supported by a composable TDSL. In certain implementations, some functions will do nothing.

B TX-begin() start a transaction
L TX-lock() make transaction’s updates committable
V TX-verify() verify earlier optimistic operations
F TX-finalize() commit and end the current transaction
A TX-abort() abort and end the current transaction

we give here a semi-formal description of the required properties, and refer the reader to a more formal
treatment by Ziv et al. [26].

For succinctness, when defining the semantics we refer to calls to TX-begin, TX-lock, TX-verify, TX-
finalize, and TX-abort in TDSL i as Bi, Li, V i, F i, and Ai, respectively. We refer to operations invoked
during the transaction via the different TDSLs as op1, op2, . . . opk. Using this notation, the history of a
committed transaction T accessing two TDSLs is the following sequence of steps:

B1, B2, op1, op2, . . . , opk, L
1, L2, V 1, V 2, F 1, F 2.

A transaction may abort at any point before V successfully returns, for example, during some operation
opj , resulting in a history of the form:

B1, B2, op1, op2, . . . , opj , A
1, A2.

Note that the above histories involve a single thread; multiple threads can run transactions concurrently,
so their history sequences are interleaved. In particular, between any two steps (standard TDSL operations
or begin/commit phases) of a given transaction, other transactions (running in other threads) can invoke
arbitrary sequences of steps in the same libraries.

We say that a transaction T is committed in TDSL i and history h if h includes an F i step of T . Given
a history h, we define the clean history of transaction T in TDSL i, denoted hic(T ), as the subseqeunce
of h consisting of steps involving TDSL i by (1) transactions that are committed in h and i; and (2) T .
Henceforth we refer to the requirements a single TDSL needs to satisfy, and so omit the superscript i and
simply refer to steps executed in that TDSL only.

A composable TDSL implementation is required to guarantee the following properties with respect to
its clean histories:

C1: Atomicity window: If F has been invoked for transaction T in history h, then for every point p
between the completion of L and the invocation of V in hc(T ), T can be seen as if it has been atomically
executed in p (i.e., p is a linearization point of T ). In the terminology of Ziv et al. [26], this condition
requires every committed transaction to have a serialization window between the completion of L and
the invocation of V .

Note that although the transaction itself does not invoke any operations on the same TDSL during
this window, other concurrent transactions may access the TDSL during this time. Intuitively, the
L phase “locks” the relevant data objects to avoid interference by concurrent threads, and V verifies
that this is indeed a linearization point for the transaction.

C2: Opacity window: Consider an operation opm by a transaction T that occurs before the transaction
either commits or aborts. Then for every point p in hc(T ) between the invocation of B and the
invocation of op1 (the first TDSL operation invoked by T ), the sequence op1, . . . , opm can be seen as if
it has been atomically executed in p. In other words, this condition requires every active transaction
to have a serialization window between B and the invocation of op1.

This condition guarantees opacity, since op1, . . . , opm can be seen as if it is executed immediately after
the linearization point of the previous committed transaction; hence the values returned to the client
code are based on a consistent shared state (i.e., these values may be returned in a non-concurrent
execution of the transaction).
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Figure 1: Representative results of our TDSL evaluation.

C3: Aborts: A transaction can be aborted by invoking A at any time after B is invoked and until F is
invoked. It cannot abort after F is invoked; in particular, F should never throw an abort exception.
An aborted transaction T leaves the library’s state as if T had never been executed.

C4: Non-blocking: Each operation is non-blocking. This means, for example, that a TDSL operation
should never wait for a lock.

Evaluation

We implement our example transactional library and evaluate its performance. We compare the single-
tons of our transactional skiplist to custom-tailored concurrent skiplist CDSL operations, and evaluate
transactions of skiplist operations using our TDSL relative to a state-of-the-art STM. In both cases, we
run synthetic workloads using the Synchrobench micro-benchmark suite [10]. In addition, we evaluate our
library with Intruder, a standard transactional benchmark that performs signature-based network intrusion
detection. It uses transactions that span multiple queues, maps, and skiplists, as well as singletons.

All implementations are in C++. For our library’s index, we use a standard textbook concurrent
skiplist [18], which is based on [13] and [9], with epoch-based memory reclamation [9]. This is also our
baseline solution, because our transactional skiplist is a direct extension of this skiplist, and can be similarly
implemented atop other baseline skiplists.

For synthetic micro-benchmarking we use the Synchrobench framework [10] configured as follows: Each
experiment is a 10 second run in which each thread continuously executes operations or transactions thereof.
Keys are selected uniformly at random from the range [1, 1,000,000]. Each experiment is preceded by a
warm-up period where 100,000 randomly selected keys are inserted into the skiplist.

We compare our singletons to the baseline in order to assess the overhead inflicted on stand-alone
operations by our transaction support. In the full paper [25], we further compare them to all custom-
tailored implementations available in Synchrobench, which were shown in [10] to outperform alternative
solutions. We compare our transactions to the TL2 implementation provided with Synchrobench, and
we compare an Intruder implementation using our library to the STAMP Intruder, which uses the TL2
implementation from [3].

Our evaluation shows that we can get ten-fold faster transactions than STMs in update-dominated
workloads accessing sets, and at the same time cater stand-alone operations, (i.e., singletons), in par with
state-of-the-art CDSLs. In addition, it shows that Intruder [12] runs up to 17x faster than using a state-
of-the-art STM.

The experiments were run on a dedicated machine with four Intel Xeon E5-4650 processors, each with
8 cores, for a total of 32 threads (with hyper-threading disabled). Figure 1 presents a few of our evaluation
results. More experiments are reported in the full paper [25].
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