
Linearizability of Persistent
Memory Objects

Michael L. Scott
Joint work with

Joseph Izraelevitz & Hammurabi Mendes

www.cs.rochester.edu/research/synchronization/
Workshop on the Theory of Transactional Memory

Chicago, IL, July 2016

brief announcement at SPAA’16; full paper to appear at DISC’16

MLS 2

Fast Nonvolatile Memory
● NVM is on its way

» PCM, STT-MRAM, memristors, ...

● Tempting to put some long-lived data directly in
NVM, rather than the file system

● But registers and caches are likely to remain
transient, at least on many machines

● Have do we make sure what we get in the wake
of a crash is consistent?

MLS 3

Problem: Early Writebacks
● Could assume HW tracks dependences and

forces out earlier stuff
» [Condit et al., Pelley et al., Joshi et al.]

● But real HW not doing that any time soon;
have to explicitly force things out in order
» ARM, Intel ISAs

● Buffering?
» Can be done in SW now, with shadow memory
» Likely to be supported in HW eventually

MLS 4

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 5

Theory Review
● Focus on objects that we can put in libraries

» data abstractions defined in terms of API (methods)
» stack, queue, deque, set, mapping, priority queue, ...

● Many possible implementations (data structures)
» Correctness = safety + liveness
» Focus on safety in today’s talk

(DISC paper also looks at liveness)

MLS 6

Object Histories
● Interleavings of operations (method invocations)

performed by a set of threads
» Concrete history: all the instructions
» Abstract history: invocations and responses only

(calls & returns)

I . . I . R . . . I I R . . R I . . I R . R .
● Sequential = every invocation followed immediately

by its response
● Well formed = every thread subhistory is sequential

MLS 7

Safety
● Implementations generate concrete histories
● Implementation is safe if every realizable

(single-object) concrete history corresponds to a
(well-formed) safe abstract history

● Safe abstract history = linearizable (next slide)
● Object semantics defined as a set of abstract

sequential histories
» e.g., a queue is an object with enqueue & dequeue

methods, where the nth dequeue yields the value passed
to the nth enqueue, if there has been one, else ⟘

MLS 8

Linearizability [Herlihy & Wing 1987]

● Standard safety criterion for transient objects
● History H is safe if well-formed and equivalent (same

invocations and responses, inc. args) to some sequential
history S that respects

1. object semantics (legal)
2. “real-time” order (res(A) <H inv(B) ⇒ A <S B)

(subsumes per-thread program order)

● Programs, of course, generate multi-object concrete histories
● Linearizability is nice because it's a local property: safety of

individual objects implies safety of multi-object programs
» Follows from respect of real-time order

● Need an extension for persistence

MLS 9

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 10

Prior Work on Persistency

● Strict linearizability [Aguilera and Frølund 2003]
» At a crash, every pending operation has happened or it hasn't
» Too restrictive — can't leave anything hanging (e.g., announce array)

● Persistent atomicity (linearizability) [Guerraoui et al. 2004]
» Every pending operation happens before its thread invokes anything

post-crash
» Gives up on locality — have to reason across objects

● Recoverable linearizability [Berryhill et al. 2015]
» Every pending operation happens before its thread invokes anything

on the same object post-crash
» Gives up on program order around a crash — thread can perform an

op on some other object before “coming back to” the pending op

MLS 11

Comparing These Conditions

● Where must T1’s pending op linearize?

● Persistent and Recoverable Linearizability are the same if
threads don’t survive a crash — and they don’t in real life!

● We use Recoverable Linearizability for the merged condition,
under a full-system–crash failure model

O2 O1

O1O2O1

MLS 12

Durable Linearizability

● (Abstract) history H is durably linearizable iff
1. it's well formed (no thread survives a crash) and
2. ops(H) is linearizable (elide the crashes)

● But that requires every op to persist before returning
● Want a buffered variant
● Say A “happens before” B (A ≺ B) in an abstract history

H if A.res precedes B.inv in H
● A ≺-consistent cut of a crash-free history H is a prefix P

of H such that if V∈P and V’ ≺ V in H, then V’∈P, with
V’ ≺ V in P.

MLS 13

Buffering

● (Abstract) history H is buffered durably linearizable iff
for each era Ei we can identify a ≺-consistent cut Pi

such that P0... Pi-1 Ei is linearizable∀0 ≤ i ≤ c, where
c is the number of crashes.
» That is, we may lose something at each crash, but what's

left makes sense. (Again, buffering may be in HW or in SW.)

● NB: Because actual persistence is delayed, and must
be controlled across objects, buffered durable
linearizability is not a local property.

MLS 14

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 15

Memory Model Background

● Sequential consistency: memory acts as if there was a total
order on all loads and stores across all threads
» Conceptually appealing, but only IBM z still supports it

● Relaxed models: separate ordinary and synchronizing accesses
» Latter determine cross-thread ordering arcs
» Happens-before order derived from program order and synchronizes-

with

● Release consistency (ARM v8): each store-release synchronizes
with the following load-acquire of the same location
» Each local access happens after each previous load-acquire and before

each subsequent store-release in its thread

● But none of this addresses persistence

MLS 16

Persistence Instructions

● Explicit write back (“pwb”); persistence fence (“pfence”);
persistence sync (“psync”)

● We assume E1 ⋖ E2 if
» they're in the same thread and

– E1 = pwb & E2 ∈ {pfence, psync}
– E1 ∈ {pfence, psync} and E2 ∈ {pwb, st, st_rel}
– E1, E2 ∈ {st, st_rel, pwb} and access the same location
– E1 ∈ {ld, ld_acq}, E2 = pwb, and access the same location
– E1 = ld_acq and E2 ∈ {pfence, psync}

» they’re in different threads and
– E1 = st_rel, E2 = ld_acq, and E1 synchronizes with E2

MLS 17

Concrete Histories

● H is well-formed iff
» abstract(H) is well-formed
» all instructions are between inv. and res. (or crash or end)
» loaded values respect the reads-see-writes relation

– return a most recent or unordered store under happens-before

● NB: Implementations (programs) give us sets of
possible histories — possible interleavings.

● A history is data-race–free if conflicting accesses are
never adjacent; an implementation is DRF if all of its
realizable histories are DRF.

MLS 18

Extensions for Persistence

● H is well-formed iff all previous requirements and
» for each variable x, at most one store is labeled “persisted” in

each era
» no unpersisted store of x between the persisted store of x and

(1) a psync or (2) the persisted store of any other location y

● NB: reads-see-writes augmented to allow returning the
persisted store of the previous era in the wake of a crash

● Key problem: you see a write, act on it, and persist what
you did, but the original write doesn't persist before we
crash.

MLS 19

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 20

Persistence Transform

● st → st; pwb
st_rel → pfence; st_rel; pwb
ld_acq → ld_acq; pwb; pfence
cas → pfence; cas; pwb; pfence
ld → ld

● Can prove: if the original code is DRF and linearizable, the
transformed code is durably linearizable.
» Key is the ld_acq rule

● But: not all stores have to be persisted
» elimination/combining, announce arrays for wait freedom

● How do we build a correctness argument for more general,
hand-written code?

MLS 21

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 22

Linearization Points

● Every operation “appears to happen” at some individual
instruction, somewhere between its call and return.

● Proofs commonly leverage this formulation
» In lock-based code, could be pretty much anywhere
» In simple nonblocking operations, often at a distinguished CAS

● In general, linearization points
» may be statically known
» may be determined by each operation dynamically
» may be reasoned in retrospect to have happened
» (may be executed by another thread!)

MLS 23

Persist Points

● Proof-writing strategy (again, challenge is make sure nothing
new persists before something old on which it depends)

● Implementation is (buffered) durably linearizable if
1. somewhere between linearization point and response, all stores

needed to "capture" the operation have been pwb-ed and pfence-d;
2. whenever M1 & M2 overlap, linearization points can be chosen s.t.

either M1’s persist point precedes M2’s linearization point, or M2’s
linearization point precedes M1’s linearization point.

● NB: nonblocking persistent objects need helping: if an op
has linearized but not yet persisted, its successor in
linearization order must be prepared to push it through to
persistence.

MLS 24

Objects from the Literature

● Many strictly linearizable
» trees [Chen & Jin, VLDB’15; Venkataraman et al.,

FAST’11; Yang et al., FAST’15]
» hash maps [Schwalb et al., IMDM’15]
» file system metadata [Condit et al., SOSP’09]

● Also a few buffered strictly linearizable [Moraru et al.,
TRIOS’13]

● And a few durably (but not strictly) linearizable
» JustDo Logging [Izraelevitz et al., ASPLOS’16]
» Hope to see more!

MLS 25

Outline
● Theory review — linearizability of (transient) concurrent

object histories
● Extension of theory to persistence — durable linearizability
● Explicit epoch persistency at the hardware level

» to explain the behavior of implementations

● Automatic transform to convert a (correct) transient
nonblocking object into a (correct) persistent one

● Methodology to prove safety for more general objects
● Future directions

MLS 26

Ongoing Work

● More optimized, nonblocking persistent objects
● Integrity in the face of buggy (Byzantine) user

threads
» File system no longer protects metadata!

● Integration w/ transactions

● Suggestions welcome!

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

MLS 28

Liveness

● Nonblocking sync — bounded # of own steps
● Bounded completion — in the wake of a crash, for

each operation m that was pending on object O,∃k
s.t. if some post-crash era has at least k
instructions executed in O, m has completed or it
never will.

