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Abstract

In multi-version transactional memory read-only transactions do not have to abort, while update transactions may abort.
There are situations where system delays do not allow to have precise consistency, such as in large scale network and database
applications, due to network delays or other factors. In order to cope with such systems, we introduce here the notion of
approximate consistency in transactional memory. We define K-opacity as a relaxed consistency property where read instructions
in a read-only transaction may read one of K most recent written values, while read instructions in an update transaction read
always the latest value. The relaxed consistency for read-only transactions has two benefits: (i) it reduces space requirements,
since a new object version is saved once every K object updates, which reduces the total number of saved object versions
by a factor of K, and (ii) it reduces the number of aborts, since there is smaller chance for read-only transactions to abort
update transactions. This framework allows to have worst-case consistency guarantees and simultaneously good performance
characteristics. In addition to correctness proofs, we demonstrate the performance benefits of our approach with experimental
analysis. We tested our algorithm for different values of K using different benchmarks and we observed that when we increase
K the number of aborts decreases and at the same time the throughput increases.

I. INTRODUCTION

Software Transactional Memory (STM) is a very important paradigm that supports parallel computing [11]. STMs use the
principle of shared memory transaction which is a finite sequence of instructions that read or write local and shared memory
[8]. Read-only transactions have only read instructions, while update transactions have at least one write instruction. When
all instructions are executed, a transaction commits or aborts depending on shared memory conflicts.

For many applications and algorithms it is beneficial to avoid the abort of read-only transactions since they do not affect
directly the consistency of the memory. In order to minimize aborts, multi-version STMs keep multiple versions for each
object in the memory [2]. In this way, when an update transaction commits, it creates new versions for the objects in its
write set. With object versions read-only transactions do not have to abort, while transactions that update objects may abort.
However, using multi-version STMs increases significantly the systems’ space complexity.

Correctness in transactional memory is proven with opacity [7], which is a consistency property that requires a legal
serialization of an execution such that transaction intervals do not overlap (atomicity), and read instructions always return
the most recent value (legality). In order to improve the performance of multi-version STMs, we propose to relax the
definition of opacity in a way that allows read instructions to access stale versions.

Actually, relaxing opacity to avoid some aborts is sometimes necessary on non-sensitive data and non-sensitive systems,
or where data changes frequently. In large scale network systems when an update happens to an object in a local memory, it
takes some time to update the object’s global view. In fact, some read instructions might be executed on other local copies
during such delay (between the updates of local and global memory) which makes them illegal and causes aborts. Also long
read-only transactions may cause many aborts. In addition, in real life, there are some types of systems that do not require
precise computations [12][10]. For example inventory queries, such as through Online Analytical Processing (OLAP), can
return approximated results to nested and complicated database queries [3][12][6]. Decision Support Systems also work
with approximated results such as queries about average income and the percentage of newborns in the country [1]. There
is also no risk for advertising and recommendation systems to have approximated results (suggesting inaccurate restaurant
or song would not harm). Moreover, sensors (for temperatures or weather forecasting) usually give approximated reads and
that satisfy the specification of some systems.

In this paper we introduce the notion of approximately opaque consistency in order to design a multi-version transactional
memory algorithm, where transactions are still atomic, but read instructions in read-only transactions may return one of
the K most recent written values. We say that that these read instructions are K-legal, and also the respective execution is
K-opaque. This allows to create a new object version once every K committed updates on the object, which reduces the
total number of saved object versions by a factor of K. Moreover, K-opacity reduces the chance to abort transactions that
update objects as the concurrent read instructions in read-only transactions may return one of the K − 1 older values. In
our algorithm we apply K-opacity on read-only transactions, while update transactions access only the latest value of an



object (they are precise), which is necessary to avoid propagation of wrong values. This is beneficial in applications which
do not require precise results from read-only transactions (for example, inventory checking).

We give a formal proof that our algorithm is K-opaque for read-only transactions and opaque (1-opaque) for update
transactions. We also demonstrate the performance benefits of our approach with experimental analysis. We tested our
algorithm for different values of K using different benchmarks and we observed that when we increase K the number of
aborts decreases and at the same time the throughput increases.

II. SYSTEM MODEL

In our algorithm, when a transaction T arrives, it gets a unique timestamp i which is also used as an identifier, namely Ti.
Each instruction within a transaction corresponds to two events, its invocation and response. Every event is instantaneous
and it has a real time that it occurs. The time between the invocation and its response is the instruction interval.

A history H is a sequence that includes all events of the involved transactions. H is called complete if all transactions
within H are either committed or aborted [7]. With respect to history H we can define the order <H of the transactions
such that for each two transactions Ti and Tj in H , Ti <H Tj if all events of Ti appear before all events of Tj . We say
that the relation <H respects the real time order of the transactions. Note that the relation <H may be a partial order on
Ti and Tj in H if there is an execution overlap between the transactions.

A history S is sequential if it is complete, and <S is a total order. Also, we say that two histories are equivalent if they
have the same set of events. Suppose that S is equivalent to H . We say that S preserves the real time order of H if for
any two transactions Ti and Tj , Ti <H Tj implies Ti <S Tj .

Now, to define the legality, a legal read instruction is the one that reads the last written value to an object and that value
was written by a committed transaction with a smaller timestamp. However, a K-legal read instruction is one that reads
the value of the object from any of the K last writes to that object with respect to the transaction timestamp (means those
last K writes that belong to transactions with timestamps smaller than the timestamp of the reader transaction). Thus, the
execution of transaction Ti is K-legal, if all read instructions in Ti are K-legal. Then, S is K-legal if all transactions in
S are K-legal. Consequently, a legal history is a special case of K-legal history by taking K = 1. (We will distinguish
between K-legality and 1-legality for read-only and update transactions, respectively, in our algorithm analysis below.)

A history H is opaque if it can be transformed to a complete history H ′ (by handling pending transactions) which has an
equivalent legal sequential history S which further preserves the real time order <H′ for the involved transactions. Similarly,
H is K-opaque if it can be transformed to a complete history H ′ which has an equivalent K-legal sequential history S
which preserves the real time order <H′ for the involved transactions.

III. DESIGN OF THE ALGORITHM

Our multi-version algorithm (Algorithm 1 in appendix) is timestamp-based as in previous works that do not consider
approximate opacity [9][4]. Each object o has multiple versions that are stored in a list o.vl. We denote a version of object
o as vi = (ts, data, rl), where ts is the timestamp of the transaction that creates (writes) this version, data is the value
of o, and rl is a reader list that includes the timestamps of all transactions that have been reading this version. In our
algorithm, we create a new version of o each K commits and we save it in o.vl. The last written value is maintained in
o.lastCommit = (ts, data, rl) which is an independent version that is overwritten with each commit on o to record the
last written value.

In many systems, the kinds of transactions (read-only or update) are identified at the beginning such as read balance and
bank statements in bank systems, or product quantities in inventory systems. The read instruction in read-only transaction Ti
tries to read the last written value in o.lastCommit if o.lastCommit.ts is smaller than its own (in Algorithm 2 in appendix).
Otherwise, if o.lastCommist.ts > i, then it reads from a suitable saved version in o.vl. Also, it adds Ti timestamp to that
version’s rl. When Ti finishes the execution of all instructions, it commits directly.

For an update transaction Ti, for any read instruction it checks only o.lastCommit and adds i to o.lastCommit.rl
(Algorithm 2). Then, as shown in Algorithm 1, if o.lastCommit.ts > i, Ti aborts immediately. Otherwise, it gets
o.lastCommit.ts (for validation) and reads the data of o. For the write instructions the transaction Ti just writes to its local
memory and it maintains its own write set wSet during the execution.

When the update transaction Ti finishes the execution of all instructions, it attempts to commit by calling TryC (Algotithm
3 in appendix). For any object o that was read by Ti, if the o.lastCommit has been overwritten, then Ti aborts. Moreover,
Ti aborts if it has a write that invalidates another transaction Tm where m > i (Algorithm 4 in appendix). In TryC, Ti locks
each object o in its wSet and if it commits it overwrites the o.lastCommit version and updates o.lastCommit.ts = i. We
create a new version in o.vl only every K commits of the object o. We let the new version’s ts to be equal to i. After that,
we release all locks. In our algorithm read-only transactions never abort, while update transactions may abort. We have also
implemented a garbage collection algorithm for unneeded object versions (see appendix).



IV. CORRECTNESS OF THE ALGORITHM

In the correctness analysis we prove that our algorithm is opaque for update transactions, and K-opaque for read-only
transactions. Let H be an arbitrary execution history, and H ′ the respective complete history. Consider the sequential
execution S which is a serialization of the transactions in H ′ such that the order of transactions is determined by the
timestamps of the transactions, such that if in H ′ for any two transaction Ti and Tj , i < j, then Ti <s Tj .

Lemma 1: S preserves the real time order of H ′.
Proof: According to Algorithm 1, for a transaction Ti the timestamp i is obtained through an atomic operation i ←

timestamp.getAndInc(); If Ti <H′ Tj then, it has to be that i < j. Since S orders transactions in the timestamp order, then
we also have that Ti <S Tj , as needed.

We continue to prove that S is K-legal with respect to any object o for read-only transactions, and then we prove that it
is 1-legal for update transactions.

Lemma 2: For any object o, the history S is K-legal with respect to read-only transactions accessing o.
Proof: Let Ti be a read-only transaction. Note that in our algorithm read-only transactions do not abort, and hence

Ti does not abort. Suppose Ti executes instruction o.ri(y). According to function GetLatestVersion(), we have that Ti
observes either o.lastCommit.ts < i or o.lastCommit.ts > i. We examine these two cases separately.

i. o.lastCommit.ts < i:
then GetLatestVersion() returns o.lastCommit and data y = o.lastCommit.data, which is the latest version of
the object at that moment when o is accessed by Ti. Let Tj be the transaction that committed the value, that is,
j = o.lastCommit.ts < i. Since S preserves the timestamp order, Tj appears before Ti in S. Suppose that there is
another transaction Tk, with j < k < i, that commits a value to object o. If Tk commits after o.ri(y) locks o (in
GetLatestVersion()), then according to function Validate(), Tk has to abort because Ti is in the reader list of o when
Tk attempts to commit. On the other hand, if Tk commits before o.ri(y) locks o, then Ti must have read the value
committed by Tk, or in other words Tk = Tj .

ii. o.lastCommit.ts > i:
then GetLatestVersion() returns a version v, and data y = v.data, where v belongs to version list o.vl and it is the
latest version of o with timestamp v.ts = j < i. Let Tj be the transaction that created version v. We need to prove
that there cannot be more than K − 1 other committed transactions for object o between the time that Tj commits and
Ti starts in H ′. We observe that any transaction Tk that commits a value for o after Tj must have timestamp k > j,
since otherwise the interval of Tk would contain the interval of Tj in H ′, and according to function Validate() Tk
would abort. We have that in S, Tj appears before Ti, since j < i. Let X be the set of transactions which appear in S
between Tj and Ti and commit a value for o (for any Tk ∈ X it holds j < k < i). We want to show that |X| ≤ K−1.
Similar to the reasons explained above in case i, X cannot contain any transaction which commits after o.ri(y) locks o.
Moreover, X cannot contain any transaction Tk that commits before Tj , since in H ′ interval Tj would contain interval
Tk and according to function Validate() Tj would abort. Hence, all the transactions in X must have timestamp greater
than j and must commit in H ′ after Tj . If |X| ≥ K, according to our algorithm, a newer version v′ of o must have
been saved (in o.vl) after Tj commits and before Ti starts, by some transaction Tζ ∈ X . However, this is impossible,
since Ti would have read v′ and not v.

Therefore, we have that in case i execution S is 1-legal, while in case ii the execution S is K-legal.
Lemma 3: For any object o, the history S is 1-legal with respect to update transactions accessing o.

Proof: Now consider the update transactions that access object o. Let Ti be an update transaction that invokes instruction
o.ri(y). According to the algorithm, if o.lastCommit.ts > i, then Ti is aborted and instruction o.ri(y) never completed. On
the other hand, if o.lastCommit.ts < i then o.ri(y) completes with y = o.lastCommit.data. Let j = o.lastCommit.ts,
namely, Ti reads the value written by Tj , with j < i. Similar to the proof of Lemma 2, any transaction Tk that commits a
value for o after Tj must have timestamp k > j.

In S transaction Tj appears before Ti. We only need to show that in S there is no other committed transaction between
Tj and Ti for object o. Suppose that there is a transaction Tk, with j < k < i, which appears between Tj and Ti in S and
commits a value to o. If Tk commits before Tj in H ′, function Validate() would cause to abort Tj . If Tk commits before
o.ri(y) locks object o, then Ti must have used the value committed by Tk. On the other hand, if Tk commits after o.ri(y)
locks object o, then according to function Validate() Tk has to abort, since Ti is in the reader list of o when Tk attempts
to commit, and i > k.

Since H ′ respects the real time order of H , considering all objects used in H , from Lemmas 1, 2 and 3 we obtain the
following theorem.

Theorem 4: Any execution history H of our algorithm is K-opaque with respect to read-only transactions and 1-opaque
with respect to update transactions.



Figure 1: (a) Compare the Throughputs (Committed Transactions Per Time) of Opaque, 2-opaque, 4-opaque and 8-opaque
Using Bank, Linked-list and Red-black Tree Benchmarks, (b) Compare the Number of Committed Updates to the Number
of the Saved Versions in Opaque, 2-opaque, 4-opaque and 8-opaque Using Linked-list Benchmark

It is easy to check that the proposed algorithm does not deadlock, since function GetLatestVersion() accesses one object
at a time, and function TryC() accesses objects in a predetermined order, avoiding racing situations.

Lemma 5: Our algorithm does not deadlock.
Assume that the transactions in our algorithm access the set of objects O = (o1, o2, ..., on). Let V be the set of all

committed versions (updating oi.lastCommit) and V ′ the set of all saved versions (saved in oi.vl).
Theorem 6: In any execution of our Algorithm, the total number of saved object versions is |V ′| = Θ(|V |/K + |O|).

Proof: Throughout the execution, for any object oi let the number of committed versions be voi (updating
oi.lastCommit). The total number of committed versions for all objects is |V | =

∑n
i=1 voi . Our algorithm saves a new

version for object oi each K object commits. Thus, the total number of saved versions for object oi (saved in oi.vl) is
voi/K, and consequently, the total number of saved versions |V ′| for all objects will be |V |/K. In addition, each object
has a lastCommit version which adds a number of |O| versions to |V |/K.

Now, if we exclude the last committed versions, the total version space of regular (not ours) multi-version transactional
memory is Θ(|V |), since every version is saved at some point of time. On the other hand, from Theorem 6, with our
approximately opaque multi-version algorithm we only create a new version each K commits reducing this number to
Θ(|V |/K), a reduction by a factor of K. Furthermore, with the garbage collector, old versions are deleted which reduces
the active number of |V ′| at any point of the execution.

V. EXPERIMENTAL RESULTS

In our experimental analysis, we simulate Bank, Linked-list and Red-black Tree Benchmarks from TinySTM-1.0.5 [5], but
we modify the structure of the object to match our specification. We run the experiments on a machine with dual Intel(R)
Xeon(R) CPU E5-2630 (6 cores total) clocked at 2.30 GHz. Each run of the benchmark takes about 5500 milliseconds using
10 threads. In Bank benchmark, there are three kinds of operations which are read balance, write amount and transfer. In the
Linked-list and Red-black Tree benchmarks, we have search operations, add and delete node. Read balance (in Bank) and
search (in Linled-list and Red-black Tree) are read-only, but write, transfer (in Bank) and add/delete node (in Linled-list and
Red-black Tree) are update transactions. In our execution we generate 50% reads-only transactions and 50% update ones.

In Figure 1(a), we compare the throughput (commits per time) of an opaque execution (1-opaque), 2-opaque, 4-opaque
and 8-opaque using the three benchmarks. Clearly, the relaxed opacity in 2-opaque, 4-opaque and 8-opaque helps to avoid
some aborts and to improve the throughput. Furthermore, in 1-opaque all read-only transactions are precise but in 2-opaque,
4-opaque and 8-opaque the percentage of approximated read-only transactions is smaller than the percentage of the precise
ones. We note that there is an increase in the number of committed updates since relaxing the opacity of a read-only
transaction sometimes allows to avoid many aborts; as 1-opaque read-only transaction may conflict with many update ones.

Figure 1(b) shows a comparison between the number of committed updates and the number of the saved versions using
Linked-list Benchmark. In 1-opaque the number of committed updates and the number of the saved versions are the same,
since we save a new version with each committed update. In 2-opaque and 4-opaque, the number of saved version increases
because such relaxations allow to commit very large number of updates. However, in 8-opaque the number of committed
updates increases but the number of non-saved versions is very large (as we save 1 version every 8 commits), so the number
of saved versions decreases.
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APPENDIX

A. The Algorithm

Algorithm 1: K-opaque Algorithm
/* global variable initialization */
timestamp← 0;
liveT ← ∅;
foreach transaction Ti do

/* i gets a unique timestamp */
i← timestamp.getAndInc();
Ti.status← active;
Ti.wSet← ∅;
while there is an unexecuted instruction x do

/* if instruction is read */
if x = o.r(y) then

v ← GetLatestVersion(i, o);
if v.ts > i then

/* this check only for read instruction in update transaction to have immediate abort */
Ti.status← aborted;
return;

y ← v.data;
olocal.ts← v.ts; //olocal is the object o in the local memory

else
/* x = o.w(y); write local copy */
olocal.data← y;
Ti.wSet← o ∪ Ti.wSet;

if TryC(i) then
Ti.status← committed;

else
Ti.status← aborted;

return;



Algorithm 2: GetLatestVersion(i, o)
last← null;
Lock o;
if Ti.kind = readonly then

if o.lastCommit.ts < i then
last← o.lastCommit;
Add i to list o.lastCommit.rl;

else
v ← the most recent version in o.vl with timestamp smaller than i;
last← v;
Add i to list v.rl;

else
/* update transaction */
last← o.lastCommit;
Add i to list o.lastCommit.rl;

Unlock o;
return last;

Algorithm 3: TryC(i, o)
/* check if Ti is readonly */
if Ti.kind = readonly then

/* remove Ti from liveT */
liveT ← liveT \ i;
return true;

/* Ti has to be update transaction */
L← ∅;
/* assume a predetermined order for the objects */ forall the o ∈ i.wSet do

Lock o;
L← L ∪ o;
if Validate(i, o) = false then

liveT ← liveT \ i;
unlock all locked objects in L;
return false;

forall the o in i.wSet do
o.versionCounter.getAndInc();
if o.versionCounter mod k = 0 then

/* add new version to o.vl */
Add (i, olocal.data, nil) to o.vl;

/* overwrite o.lastCommit */
o.lastCommit← (i, olocal.data, nil);

Unlock all objects in L;
return true;

Algorithm 4: Validate(i, o)
/* Check if lastCommit has been overwritten */
if o.lastCommit.ts > olocal.ts then

return false;

/* Check if some other transaction Tm has read the same version read by Ti, where m > olocal.ts */
if o.lastCommit.rl contains a transaction Tm, where m > i then

return false;
return true;


