Space-Constrained Structures for HTM

Nick Armstrong Vincent Gramoli Pascal Felber
University of Sydney University of Sydney University of Neuchatel
narm6003Quni.sydney.edu.au vincent.gramoli@sydney.edu.au pascal.felberQunine.ch
Abstract

Up to now, most of the research efforts to improve performance of programs based on hardware
transactions were devoted to designing new hybrid transactional memories and transactional lock
elision algorithms to speedup software fallback paths. Unfortunately hardware transactions remain
insufficiently exploited, limited especially on microarchitectures where the access set is particularly
limited, like the IBM POWERS.

By contrast, we propose a novel class of concurrent data structures, called space-constrained data
structures, especially designed to boost programs based on hardware transactions. To illustrate
our idea we propose a concurrent sorted tree with insertions and deletions of time complexity
O(loglogm) where m is the size of the key range. Preliminary experiments on the Synchrobench
benchmark suite show that our space-constrained tree leads to a 5-fold speedup over a traditional
red-black tree on a 10-core IBM POWERS.

1 Introduction

Transactional memory is now supported in hardware in modern processors, ranging from Intel Haswell
and Skylake to IBM POWERS microarchitectures. Hardware support means unprecedented performance
compared to the traditional software transactional memory libraries. Since hardware transactions are
inherently limited by physical capacities, a software fallback mechanism is necessary. The solution
is to use either hybrid transactional memory [5] with best-effort hardware transaction and software
transaction or transactional lock elision [16] that consists of trying to speculatively execute a critical
section in a fast path hardware transaction before reverting potentially to a fallback path that handles
the synchronization in software.

Unfortunately, the cost of the software fallback is prohibitive, and sometimes annihilates the benefit
of the hardware transaction. A naive implementation of the software fallback path consists of acquiring
a global lock that serializes the critical section similar to an irrevocable transaction. The hardware
transaction simply has to start by reading (or subscribing to) the lock to make sure conflicts with the
software path will be detected during the course of its execution. Unfortunately, this naive approach
suffers from contention issues, like the lemming effect in which a lock acquirement, caused by an abort
of a hardware transaction, forces all other transactions to abort and to try to acquire the lock in
turn [7].

Numerous improvements were proposed in the past years to cope with the cost of the software
path [1,4,6,8,10]. Lazy subscription [4] lets the hardware transaction postpone its subscription to the
lock, however, this may lead to inconsistencies [6]. Read-write lock-elision exploits the suspend/resume
features of the POWERS to avoid using hardware transactions and to guarantee progress of read-side
critical sections [10]. Amalgamated lock elision exploits fine-grained locks in the fallback path to detect
conflicts with the fast path [1]. Allowing only one software thread to hold the lock [8] simplifies the
software path to offer a middle-ground between hybrid transactional memory and transactional lock
elision. Most of these solutions have shown promising performance improvements on binary search
trees, either used as micro-benchmarks [17] or as database tables of more elaborate applications [14].

In contrast with this body of work, we propose to improve performance by devising space-constrained
data structures accessed by hardware transactions. The challenge lies in constraining the data structure
size to maximize the success of hardware transactions while avoiding the need to revert to the slow
software fallback path. In particular, we suggest the exploration of data structures whose universe
is constrained appropriately to fit within the hardware boundaries [18]. Besides the perfect fit for
hardware transactions, these data structures offer asymptotically better time complexity in O(log logm)
than the classically used O(logn) data structures with n < m the number of elements taken from the
range of size m. Note that the previous attempts to limit the size of software transactions in data
structures [3,9] did not reduce the step complexity of accesses but rather split accesses in multiple
transactions.

To illustrate our proposal, we present a space-constrained tree resulting from a concurrent variant of
a van Emde Boas tree [18] that leverages the POWERS hardware transactions. To this end, we started
adding hardware transactional memory to Synchrobench [11], a benchmark-suite to evaluate synchro-
nization techniques. Until now, Synchrobench has compared algorithms synchronized with lock-based
techniques, lock-free techniques, read-copy-update and copy-on-write, or software-only transactional
memories. Our preliminary performance evaluation shows that our space-constrained tree can achieve
up to 5x higher performance than a classic red-black tree.

2 Constraints of Hardware Transactions

In this section, we illustrate the importance of minimizing the size of hardware transactions to maximize
their chance of committing.

A hardware transaction accesses a series of memory
locations, whose values get recorded in what is called
the read set or the write set of the transaction. Dur-
ing the execution of the hardware transaction, these read
and write sets are progressively stored in a hardware ded-
icated structure that has a limited storage capacity. At
runtime, if a new access cannot be recorded in the data
structure, then the corresponding hardware transaction
aborts.

The IBM POWERS is particularly sensitive to the
length of the hardware transaction as it offers a data
structure relatively small in comparison to the size of the
caches used by the Intel Haswell to store the read and Figure 1: Abort rate of read-only hardware
write sets. To measure empirically the probability for a transactions on IBM POWERS
hardware transaction to abort depending on its size, we reused the capacity benchmark of Hasenplaugh,
Nguyen and Shavit [12] and plotted the frequencies of abort while we increased the transaction size in
cache lines and cache line strides. A stride of k indicates that only the first of k& consecutive cache lines
are accessed. Depending on the associativity of the structure, a stride of k > 2 increases the chances
of abort.

Figure 1 depicts the capacity of the POWERS simply under read-only workloads and confirms that
the read set of hardware transactions cannot span 64 cache lines, regardless of the placement of cache
lines as 100% of the hardware transactions would abort. In addition, we observe that hardware trans-
actions start aborting when they use 8 cache lines depending on the accessed cache lines, illustrating
the effects of associativity.

abort rate (%)

stride 2 1 2 cache lines read

3 A Space-Constrained Tree

The space-constrained data structure we explore is a van Emde Boas tree [18] (VEB tree), a recursive
tree structure capable of holding elements in the range [0, m — 1] where m = 2 for integral k. A vEB

tree of size m consists of v/m child vEB trees, each of size /m. Additionally, each tree maintains an
auxiliary vEB tree of size \/m to keep track of nonempty children. The minimum and maximum values
stored in a tree are only stored in the root of the tree and not in any of its children. These properties
are the key to the O(loglogm) time complexity of the search, insert and delete operations.

Naively, this structure will take O(m) space as memory must be allocated for every possible value
in our universe of m elements. We improve on this by only allocating memory to child and auxiliary
trees when they are needed, so in practice the memory usage is reduced for trees holding few elements.

To evaluate the performance of the vEB tree with HTM, we implement a sequential version of the
tree and simply wrap the sequential operations in hardware transactions. This allows us to use the
HTM capabilities of the POWERS8 with minimal extra programming effort.

4 Evaluation

We added our space-constrained tree to Synchrobench [11] to compare its performance against the
red-black tree on the same ground. We also implemented support for HTM in Synchrobench as this
benchmark suite was originally designed to compare synchronization techniques including software
transactions but not hardware transactions. The code used for the hardware transaction and the
software fallback is relatively simple and similar to [15]. Increasing retries from 5 to 15 before acquiring
the fallback lock was found to improve the performance of the HTM implementation [2].

The IBM POWERS consists of 10 cores running at 3.4 GHz up to 8 simultaneous threads each for
a total of 80 hardware threads, 32 GB of memory and gcc v4.9.2. A hardware transaction aborts if
(i) it issues a load or store to a cache line that is in another transaction’s store footprint, (i) another
thread issues a store to a cache line that is in its load footprint, (iii) a non-transaction load is issued
on a cache line that is in its load footprint, or (iv) the nesting level exceeds 62 [13].

—o— Red-black tree —@— Space-constrained tree

—9— Red-black tree —@— Space-constrained tree
100

80
60
40

20

Millions operations per second
Millions operations per second

0 T T T T T hd hd hd 0 T T T T ? ? ? ? ?
0 10 20 30 4 5 60 70 80 o 10 20 30 40 5 60 70 80
Number of threads Number of threads
(a) 215 elements and 0% update (b) 21% elements and 1% update

—&— Red-black tree —@— Space-constrained tree

—&— Red-black tree —@— Space-constrained tree

Millions operations per second
Millions operations per second
N
o

0 0 o
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Number of threads Number of threads
(c) 215 elements and 5% update (d) 223 elements and 0% update

Figure 2: Throughput of the space-constrained tree and the red-black tree

Figure 2 depicts the throughput as the number of operations per second averaged over four runs of
Synchrobench when executing the red-black tree and our space-constrained concurrent tree with pa-
rameters -i{2%%, 223}-r{216, 2241-u{0,1,5}-t{1,5,10,20,30,40,50,60,70,80}. The universe of

—&— rbt_aborts_capacity ©— rbt_aborts_locked Vv veb_aborts_capacity > veb_aborts_locked

—&— rbt_aborts_conflict —e— rbt_fallbacks <+ veb_aborts_conflict —a— veb_fallbacks

c

L2 10% 4

-]

g 10" 4 o = a2

2 10° 3 8 8 8

o 4 3

= 107 3 ﬁ\Q\.

5 E

2 1072 4

£ 10° 3 -

S 10% - <

© . 5]

w 107 4

° .1

= 107

[]

2 107 4

€. 51

g 10 T T T T T T T 1
0 10 20 30 40 50 60 70 80

Number of threads

Figure 3: Cause of aborts for trees with 2!° elements and 0% update

the space-constrained tree is set to the range of each experiment, so that the actual number of elements
is the half of the range in expectation [11]. We observe that the performance of the space-constrained
concurrent tree scales to higher number of threads than the red-black tree in all scenarios. As expected,
the larger the data structure as in Figure 2(d) or a higher update rate, as in Figure 2(c) translates into
lower performance. Finally, on a read-only workload and 2'° elements, the peak performance of our
tree is 5.01x higher than the peak performance of the red-black tree (cf. Figure 2(a)).

Figure 3 shows a breakdown of the causes of abort in a read-only workload with 2!® elements. Also
shown is the number of times the process had to fallback to the software lock to complete a transaction.
We look at three abort reasons: (i) conflict, where two transactions have conflicting read/write sets;
(ii) capacity, where the transaction exceeds the size of the transactional cache structure; (iii) locked,
where the fallback lock has already been locked so the HTM fast path cannot be utilised. There are
significantly fewer aborts in the vEB tree tests at all thread counts compared to the red-black tree.

We observe a drop in the number of capacity aborts at high thread counts for the red-black tree.
This appears related to the increase in conflict aborts which is expected with increasing thread count.
We also see for the red-black tree that the number of conflict aborts increases above one per operation
and above around 40 threads we see the fallback lock acquired for every operation, severely limiting
the performance as in Figure 2(a).

5 Conclusion

We explored the use of HTM with a van Emde Boas tree, a type of space-constrained data structure, to
implement an integer set and evaluated its concurrent performance compared to an existing red-black
tree. Our experiments show that we can obtain a 5.01-fold speedup in peak throughput (operations
per second) when run using the HTM implementation of an IBM POWERS processor. Not only does
the peak performance increase, but this peak comes at a much higher thread count when compared to
the red-black tree. Similar space-constrained data structures should be able to be tuned for particular
applications.

Acknowledgments

This research was supported under Australian Research Council’s Discovery Projects funding scheme
(project number 160104801) entitled “Data Structures for Multi-Core”. Vincent Gramoli is the recip-
ient of the Australian Research Council Discovery International Award.

References

[1]

[12]

[13]

Yehuda Afek, Alexander Matveev, Oscar R. Moll, and Nir Shavit. Amalgamated lock-elision. In
Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9,
2015, Proceedings, pages 309-324, 2015.

Trevor Brown, Alex Kogan, Yossi Lev, and Victor Luchangco. Investigating the performance of
hardware transactions on a multi-socket machine. In Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’16, 2016.

Tyler Crain, Vincent Gramoli, and Michel Raynal. A speculation-friendly binary search tree.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2012, pages 161-170, 2012.

Luke Dalessandro, Francois Carouge, Sean White, Yossi Lev, Mark Moir, Michael L. Scott, and
Michael F. Spear. Hybrid norec: A case study in the effectiveness of best effort hardware transac-
tional memory. In Proceedings of the Sizteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVI, pages 39-52, 2011.

Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark Moir, and Daniel Nuss-
baum. Hybrid transactional memory. In Proceedings of the Thirteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XIII, 2006.

Dave Dice, Timothy L. Harris, Alex Kogan, Yossi Lev, and Mark Moir. Pitfalls of lazy subcription.
In 6th Workshop on the Theory of Transactional Memory (WTTM), 2014.

Dave Dice, Maurice Herlihy, Doug Lea, Yossi Lev, Victor Luchangco, Wayne Mesard, Mark Moir,
Kevin Moore, and Dan Nussbaum. Applications of the adaptive transactional memory test plat-
form. In 3rd ACM SIGPLAN Workshop on Transactional Computing (Transact), 2008.

Dave Dice, Alex Kogan, and Yossi Lev. Refined transactional lock elision. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2016, pages 19:1-19:12, 2016.

Aleksandar Dragojevi¢ and Tim Harris. Stm in the small: Trading generality for performance in
software transactional memory. In Proceedings of the Tth ACM European Conference on Computer
Systems, EuroSys ’12, pages 1-14, 2012.

Pascal Felber, Shady Issa, Alexander Matveev, and Paolo Romano. Hardware read-write lock
elision. In Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016,
London, United Kingdom, April 18-21, 2016, page 34, 2016.

Vincent Gramoli. More than you ever wanted to know about synchronization: Synchrobench,
measuring the impact of the synchronization on concurrent algorithms. In Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2015,
pages 1-10, 2015.

William Hasenplaugh, Andrew Nguyen, and Nir Shavit. Quantifying the capacity limitations
of hardware transactional memory. In 7th Workshop on the Theory of Transactional Memory
(WTTM), 2015.

H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J. Starke, C. May,
R. Odaira, and T. Nakaike. Transactional memory support in the IBM POWERS processor. IBM
Journal of Research and Development, 59(1), 2015.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stanford
transactional applications for multi-processing. In IISWC, pages 35-46. IEEE, 2008.

[15]

[17]

[18]

Takuya Nakaike, Rei Odaira, Matthew Gaudet, Maged M. Michael, and Hisanobu Tomari. Quan-
titative comparison of hardware transactional memory for Blue Gene/Q, zEnterprise EC12, Intel
Core, and POWERS. In Proceedings of the 42Nd Annual International Symposium on Computer
Architecture, ISCA 15, pages 144-157, New York, NY, USA, 2015. ACM.

Ravi Rajwar and James R. Goodman. Speculative lock elision: Enabling highly concurrent multi-
threaded execution. In Proceedings of the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, MICRO 34, pages 294-305, 2001.

Dimitrios Siakavaras, Konstantinos Nikas, Georgios Goumas, and Nectarios Koziris. Performance
analysis of concurrent red-black trees on HTM platforms. In 10th ACM SIGPLAN Workshop on
Transactional Computing (Transact), 2015.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings of
the 16th Annual Symposium on Foundations of Computer Science, FOCS ’75, pages 75-84, 1975.

	Introduction
	Constraints of Hardware Transactions
	A Space-Constrained Tree
	Evaluation
	Conclusion

