
Sapienza University of Rome HPDCS Research Group

On Exploring Markov Chains for Transaction Scheduling

Optimization in Transactional Memory

Pierangelo Di Sanzo, Marco Sannicandro,
Bruno Ciciani, Francesco Quaglia

DIAG, Sapienza University of Rome

WTTM 2015

7th Workshop on the Theory of Transactional Memory

Sapienza University of Rome HPDCS Research Group

Effects of Concurrent Execution of Transactions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Throughput

Concurrency Level

T
ra

n
sa

ct
io

n
s

p
e

r
se

co
n

d

Transaction concurrency
level too low:

performance is
penalized due to limitation of

parallelism and underutilization of
hardware resources

Transaction concurrency
level too high:

loss of performance due
to high data contention causing

abort and re-run of
transactions.

Optimal
transaction

concurrency level

Sapienza University of Rome HPDCS Research Group

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Throughput

Concurrency Level

tr
a

n
sa

ct
io

n
s

p
e

r
se

co
n

d
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Throughput

Concurrency Level

tr
a

n
sa

ct
io

n
s

p
e

r
se

co
n

d
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Throughput

Concurrency Level

tr
a

n
sa

ct
io

n
s

p
e

r
se

co
n

d
s

The workload profile may
change during the execution of
the application

optimal concurrency level: 10

Application execution phase 1

optimal concurrency level: 6 optimal concurrency level: 14

The optimal concurrency level depends on:

- transaction/workload profile (transaction length, data access
distribution, read/write ratio, ...)
- hardware architecture

Identifying the optimal concurrency level ...

the optimal concurrency level
may change during the
execution of the application

Application execution phase 2 Application execution phase 3

Sapienza University of Rome HPDCS Research Group

Transaction Scheduling

Transaction Scheduling: Transactions are blocked or allowed to

run depending on some scheduling policy

The workload profile may
change during the

execution of the application

Adaptive scheduling
approach: the scheduler
takes decisions on basis
of run-time observations

Sapienza University of Rome HPDCS Research Group

Transaction Scheduling in TM

Transaction
Scheduling policies

Based on system
performance prediction models

Heuristic-based
approaches

• Analytical model-based approaches [1]
• Parametric system performance models [2]
• Machine learning-based approaches [3]
• Interpolating functions [4]

• Hill-climbing [5]
• Pro-active transaction

scheduling: serializing
transactions when the abort
probability is (estimated to
be) high [6,7,8]

Sapienza University of Rome HPDCS Research Group

Pros: the ability of predicting the system throughput for different
system configurations allows at run-time to quickly “jump” to the
best scheduler configuration

Cons: these approaches require a priori analysis phases (e.g.
training phases), during which various parameters have to be
measured while running the application with different workload
profiles and/or different scheduler configurations (in terms of, e.g.,
number of admitted transactions).

Pros and Cons of Performance Prediction-based Approaches

Sapienza University of Rome HPDCS Research Group

Pros: no a priori analysis phases of the application are required

Cons:

• the optimal solution is not guaranteed
• time to converge
• the user has to configure some parameters (e.g. conflict

rate/abort probability thresholds) on the basis of which the
scheduler takes decisions

Pros and Cons of Heuristic-based Approaches

Sapienza University of Rome HPDCS Research Group

0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

35

40

45

50

Intruder (Scheduler: Shrink)

Yada (Scheduler: Shrink)

Intruder (Scheduler:ATS)

Yada (Scheduler:ATS)

Contention Intensity Threshold

A
p

p
lic

a
tio

n
 E

xe
cu

tio
n

 T
im

e

Application configuration:
Intruder - input: -a10 -l128 -n262144

Yada - input: -a15 -i yada/inputs/ttimeu1000000.2

Hardware configuration:
16-cores HP ProLiant server, equipped with 2GHz
AMD Opteron 6128 processors, 64 GB of
RAM and the Linux operating system (kernel version
2.7.32-5-amd64).

Effects of Different Thresholds of Scheduling Algorithms

References:
Shrink [7]
ATS [8]

Sapienza University of Rome HPDCS Research Group

Getting the best of the two worlds ...

A system performance model ...

• for predicting the system throughput depending on the concurrency
level, ...

• that can be instantiated on-the-fly (no a priori observation phases
required), …

• easy to be re-configured when the workload profile changes, ...

 and

• that does not require a “skilled” user for setting up the optimal
scheduler configuration.

Sapienza University of Rome HPDCS Research Group

• N running threads

• each thread can execute both transactions or non-transactional code (ntc)
blocks.

• a transaction is aborted and restarted upon conflict

• Transaction scheduling policy:

• the scheduler accepts at most m (with m ≤ N) concurrent transactions
(other transactions are blocked)

• a blocked transaction is allowed to run when another running transaction
commits.

Target System Model

Sapienza University of Rome HPDCS Research Group

• state k of the CTMC represents a state of the system when there are k
threads executing transactions (both running or blocked transactions)

 →when the system is in state k there are N-k threads executing ntc blocks.

A lightweight Markov Chain-based Performance Prediction Model

Continuous-time homogeneous Markov Chain (CTMC) with N states (finite
state space)

Modelling the system behaviour through a set of states and states transitions

Sapienza University of Rome HPDCS Research Group

• A transition from state k to k+1 occurs when a threads starts a new transaction

• A transition from state k to state k-1 occurs upon the commit of whichever
running transaction

A lightweight Markov Chain-based Performance Prediction Model

Sapienza University of Rome HPDCS Research Group

 t
ntc:

: average execution time of ntc blocks →

inter-arrival rate of transactions along any thread:

→ transition rate from state k to k+1:

A lightweight Markov Chain-based Performance Prediction Model

Sapienza University of Rome HPDCS Research Group

t
k:
: average transaction execution time when there are k executing

transactions →

A lightweight Markov Chain-based Performance Prediction Model

transaction execution rate of a thread for state k:

Sapienza University of Rome HPDCS Research Group

• for any state k ≤ m, since exactly k transactions are running (i.e. none is

blocked), the transition rate from state k to state k − 1 is

• for any state k > m, the there are m running transactions (the other k − m
transactions are blocked →

for all states such that k > m, the transition rate from the state k to the
state k − 1 is

A lightweight Markov Chain-based Performance Prediction Model

Sapienza University of Rome HPDCS Research Group

Transaction execution time when the system is in state k:

Average time to execute all
aborted runs (wasted time) of a

transaction
Average time to execute the

last run of a transaction
(useful time), i.e. the run that

successfully commits

average time to
execute an aborted

transaction run

average number of
aborts (or re-runs)

of a transaction : transaction abort
probability for the state k

A lightweight Markov Chain-based Performance Prediction Model

Sapienza University of Rome HPDCS Research Group

A lightweight Markov Chain-based Performance Prediction Model

{ :0<=k<N} stationary probability vector of the CTMC

System throughput thr
m
 when the scheduler admits at most m running

transactions:

Sapienza University of Rome HPDCS Research Group

Model Instantiation and What-if Analysis

Model Instantiation
To instantiate the model, values of parameters , , and have
to be known.
They can be can be measured, for each k, by observing the system running
with a fixed scheduler configuration (i.e., admitting at most m concurrent
transactions)

What-if Analysis
Once above parameters have been measured, we can use the model for
predicting the system throughput for different scheduler configurations (i.e.
for different values of m). This can be done by modifying the value of m of the
CTMC and solving the model.

Sapienza University of Rome HPDCS Research Group

Experimental Evaluation: model validation with STAMP and TinySTM

Model validation

- 8 threads
- scheduler configuration: m=4
- observation period: 1000 executed
transactions

Average Relative Prediction Error:

Intruder: 8.9%

Yada 2.5%

Vacation 2.7%

Sapienza University of Rome HPDCS Research Group

Throughput prediction for m=2 and m=5
based on system observation for m=4

Average Relative Prediction Error:

Intruder: 8.8% (m=2), 9.2% (m=5)

Yada: 7.2% (m=2), 5.9 % (m=5)

Vacation: 2.6% (m=2), 1.9% (m=5)

What-if Analysis with STAMP and TinySTM

What-if Analysis

Sapienza University of Rome HPDCS Research Group

References

[1] Diego Rughetti, Pierangelo di Sanzo, Bruno Ciciani, and Francesco Quaglia. Machine learning-based self-
adjusting concurrency in software transactional memory systems. In Proc. 20th Int. Symposium on 4Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, pages 278–285. IEEE, 2012.
[2] Aleksandar Dragojevi c and Rachid Guerraoui. Predicting the scalability of an stm a pragmatic approach.
In Proc. 5th ACM Workshop on Transactional Computing. ACM, 2010.
[3] Pierangelo Di Sanzo, Francesco Del Re, Diego Rughetti, Bruno Ciciani, and Francesco Quaglia. Regulating
concurrency in software transactional memory: An effective model-based approach. In Proceedings of the Seventh
IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013.
[4] Pierangelo Di Sanzo, Francesco Del Re, Diego Rughetti, Bruno Ciciani, Francesco Quaglia Regulating
Concurrency in Software Transactional Memory: An Effective Model-based Approach. In Proc. Seventh IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2013)
[5] Diego Didona, Pascal Felber, Diego Harmanci, Paolo Romano, and Joerg Schenker. Identifying the optimal level
of parallelism in transactional memory systems. In Proc. International Conference on Networked Systems, NETYS.
Springer, 2013.
[6] Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luj an, Chris Kirkham, and Ian Watson. Advanced
concurrency control for transactional memory using transaction commit rate. In Proc. 14Th Int. Euro-Par Conference
on Parallel Processing, pages 719–728. Springer-Verlag, 2008.
[7] Aleksandar Dragojevi c, Rachid Guerraoui, Anmol V. Singh, and Vasu Singh. Preventing versus curing: avoiding
conflicts in transactional memories. In Proc. 28th ACM Symposium on Principles of Distributed Computing, pages 7–
16. ACM, 2009.
[8] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling for transactional memory
systems. In Proc. 20th Symposium on Parallelism in Algorithms and Architectures, pages 169–178.
ACM, 2008.

Thank you

What-if Analysis with STAMP and TinySTM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

