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Effects of Concurrent Execution of Transactions
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Transaction concurrency 
level too low:

performance is
penalized due to limitation of 

parallelism and underutilization of 
hardware resources

Transaction concurrency 
level too high:

loss of performance due
to high data contention causing 

abort and re-run of 
transactions.

Optimal
transaction 

concurrency level
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The workload profile may 
change during the execution of 
the application

optimal concurrency level: 10

Application execution phase 1

optimal concurrency level: 6 optimal concurrency level: 14

The optimal concurrency level depends on: 

- transaction/workload profile (transaction length, data access 
distribution, read/write ratio, ...)
- hardware architecture

Identifying the optimal concurrency level ...

the optimal concurrency level 
may change during the 
execution of the application

Application execution phase 2 Application execution phase 3
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Transaction Scheduling

Transaction Scheduling: Transactions are blocked or allowed to

run depending on some scheduling policy

The workload profile may 
change during the 

execution of the application

Adaptive scheduling 
approach: the scheduler 
takes decisions on basis 
of run-time observations
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Transaction Scheduling in TM

Transaction 
Scheduling policies

Based on system
performance prediction models

Heuristic-based 
approaches

•  Analytical model-based approaches [1]
•  Parametric system performance models [2]
•  Machine learning-based approaches [3]
•  Interpolating functions [4]

• Hill-climbing [5]
• Pro-active transaction 

scheduling: serializing 
transactions when the abort 
probability is (estimated to 
be) high [6,7,8]
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Pros: the ability of predicting the system throughput for different 
system configurations allows at run-time to quickly “jump” to the 
best scheduler configuration

Cons: these approaches require a priori analysis phases (e.g. 
training phases), during which various parameters have to be 
measured while running the application with different workload 
profiles and/or different scheduler configurations (in terms of, e.g., 
number of admitted transactions).

Pros and Cons of Performance Prediction-based Approaches
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Pros:  no a priori analysis phases of the application are required

Cons: 

• the optimal solution is not guaranteed
• time to converge
• the user has to configure some parameters (e.g. conflict 

rate/abort probability thresholds) on the basis of which the 
scheduler takes decisions

Pros and Cons of Heuristic-based Approaches
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Application configuration:
Intruder - input: -a10 -l128 -n262144

Yada - input: -a15 -i yada/inputs/ttimeu1000000.2

Hardware configuration:
16-cores HP ProLiant server, equipped with 2GHz 
AMD Opteron 6128 processors, 64 GB of
RAM and the Linux operating system (kernel version 
2.7.32-5-amd64).

Effects of Different Thresholds of Scheduling Algorithms

References:
Shrink [7]
ATS [8]
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Getting the best of the two worlds ...

A system performance model ...

• for predicting the system throughput depending on the concurrency 
level, ...

• that can be instantiated on-the-fly (no a priori observation phases  
required), …

• easy to be re-configured when the workload profile changes, ... 

 and

• that does not require a “skilled” user for setting up the optimal 
scheduler configuration.
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• N running threads 

• each thread can execute both transactions or non-transactional code (ntc) 
blocks. 

• a transaction is aborted and restarted upon conflict

• Transaction scheduling policy:

• the scheduler accepts at most m (with m ≤ N) concurrent transactions 
(other transactions are blocked) 

• a blocked transaction is allowed to run when another running transaction 
commits.

Target System Model
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• state k of the CTMC represents a state of the system when there are k 
threads executing transactions (both running or blocked transactions)

 →when the system is in state k there are N-k threads executing ntc blocks.

A lightweight Markov Chain-based Performance Prediction Model

Continuous-time homogeneous Markov Chain (CTMC) with N states (finite 
state space)

Modelling the system behaviour through a set of states and states transitions
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• A transition from state k to k+1 occurs when a threads starts a new transaction 

• A transition from state k to state k-1 occurs upon the commit of whichever 
running transaction

A lightweight Markov Chain-based Performance Prediction Model
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 t
ntc:

: average execution time of ntc blocks → 

inter-arrival rate of transactions along any thread:

→ transition rate from state k to k+1:

A lightweight Markov Chain-based Performance Prediction Model
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t
k:
: average transaction execution time when there are k executing

transactions →

A lightweight Markov Chain-based Performance Prediction Model

transaction execution rate of a thread for state k:
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• for any state k ≤ m, since exactly k transactions are running (i.e. none is

blocked), the transition rate from state k to state k − 1 is

• for any state k > m, the there are m running transactions (the other k − m 
transactions are blocked →

for all states such that k > m, the transition rate from the state k to the 
state k − 1 is

A lightweight Markov Chain-based Performance Prediction Model
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Transaction execution time when the system is in state k:

Average time to execute all 
aborted runs (wasted time) of a 

transaction
Average time to execute the 

last  run of a transaction 
(useful time), i.e. the run that 

successfully commits

average time to 
execute an aborted 

transaction run

average number of 
aborts (or re-runs) 

of a transaction : transaction abort 
probability for the state k

A lightweight Markov Chain-based Performance Prediction Model
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A lightweight Markov Chain-based Performance Prediction Model

{    :0<=k<N} stationary probability vector of the CTMC

System throughput thr
m
 when the scheduler admits at most m running 

transactions:
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Model Instantiation and What-if Analysis

Model Instantiation
To instantiate the model, values of parameters         ,         ,         and        have 
to be known. 
They can be can be measured, for each k, by observing the system running 
with a fixed scheduler configuration (i.e., admitting at most m concurrent 
transactions)

What-if Analysis
Once above parameters have been measured, we can use the model for 
predicting the system throughput for different scheduler configurations (i.e. 
for different values of m). This can be done by modifying the value of m of the 
CTMC and solving the model.



Sapienza University of Rome                                                                   HPDCS Research Group

Experimental Evaluation: model validation with STAMP and TinySTM

Model validation

- 8 threads
- scheduler configuration: m=4
- observation period: 1000 executed 
transactions

Average Relative Prediction Error:

Intruder: 8.9%

Yada 2.5%

Vacation 2.7%
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Throughput prediction for m=2 and m=5 
based on system observation for m=4

Average Relative Prediction Error:

Intruder: 8.8% (m=2), 9.2% (m=5)

Yada: 7.2% (m=2), 5.9 % (m=5) 

Vacation: 2.6% (m=2), 1.9% (m=5) 

What-if Analysis with STAMP and TinySTM

What-if Analysis
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What-if Analysis with STAMP and TinySTM
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