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Abstract

Software Transactional Memory (STM) systems’ performance can be strongly affected by the way
transaction parallelism, and its actual degree, is reflected into conflicting data accesses. We illustrate
an approach for STM performance prediction, which is based on exploiting Markov Chain formalisms to
determine the effects on performance (particularly on throughput) by the scheduling of STM transactions.
We focus on the scenario where the scheduling rule relies on either temporarily blocking or not an issued
transaction depending on the current number of already running transactions. Our model can be used
for optimization purposes, e.g., via adaptive scheduling policies aimed at dynamically changing the maxi-
mum number of transactions admitted for concurrent execution. Experimental data are also provided for
validating our performance prediction approach.

1 Introduction

In Software Transactional Memory (STM) systems, performance can be strongly affected by the conflict (hence
abort) rate of transactions running in parallel. This issue can be addressed using either a transaction scheduler
[1] or a thread scheduler [2], which is in charge of temporarily blocking a transaction/thread depending on some
specific conditions. Scheduling policies can exploit either system performance prediction schemes or heuristics.
The approach proposed in [3] focuses on a performance prediction schemes based on measuring the speed-up
of an STM application running with different numbers of threads. Then, a performance prediction function
is instantiated by interpolating collected measurements. In [2], the authors devise a machine learning-based
approach for predicting the scalability of an STM application as a function of the number of running threads.
An analytical model-based approach has been described in [4]. Examples of heuristic-based schemes include
the following ones. In [5], the authors propose a hill-climbing heuristic scheme, which dynamically increases
or decreases the number of concurrent threads. Some heuristic-based pro-active scheduling schemes have
been described in [6, 1, 7]. Basically, these schemes delay the execution of some transaction when the conflict
probability is estimated to be high. Specifically, the work in [6] presents a control algorithm that dynamically
changes the number of threads executing transactions on the basis of the observed transaction conflict rate.
In [1], transactions are serialized when the conflict rate exceeds a given threshold. In [7], a specific transaction
is serialized when its probability of conflicting with already running transactions is predicted to be higher
than a given threshold value.

However, the presented approaches show some drawbacks. Performance model-based approaches, such as
the ones presented in [2, 3, 4], require a priory analysis phases, during which an STM application has to be
observed while running with different workload profiles and/or different system configurations (in terms of,
e.g., number of concurrent transactions/threads). Heuristic-based schemes, such as [6, 1, 7, 5], require the user
to configure various parameters, such as conflict rate thresholds, or transaction abort probability thresholds,
based on which the scheduler takes decisions. We note that, there are no conflict rate values and/or transaction
abort values for which all STM applications can be expected to provide the best throughput. Additionally,
since the workload profile of an application can change during the application execution, specific values of
some thresholds could be optimal for some phases of the application execution, while they could be unsuitable
for other phases.

To cope with the above-mentioned issues, we developed an effective and lightweight performance prediction
approach, which exploits a Markov Chain-based [8] performance model for STM systems. With our approach,
we aim at enabling transaction scheduling what-if analysis by providing a performance model whose input
parameters can be measured on-the-fly while observing an STM system running. Particularly, by observing the
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system running with a fixed transaction scheduling configuration, in terms of maximum number of admitted
concurrent transactions, our scheme can predict the system throughput if the scheduling configuration would
change (i.e. lower or higher transaction concurrency levels would be allowed). The scheme does not uses any
configuration parameter that needs to be set by the user, except the length of the time window during which
the system has to be observed (so that the model can be instantiated). This length can simply be expressed
in terms of number of consecutive committed transactions. Ultimately, our scheme can be easily used for
run-time optimization of transaction scheduling. We show the feasibility of our approach via an experimental
study that we conducted using a real instantiation of an STM system with a benchmark application.

We illustrate our modelling approach in Section 2 and we present the results of the experimental (valida-
tion) study in Section 3.

2 Markov Chain-based STM Performance Model

In this section, we present the Markov Chain-based performance model of the STM system. We initially
provide a description of the target STM environment, thus providing the reference system model for our
analysis, then we focus on the derivation of the performance model.

2.1 Target STM Model

We assume an STM system where a number N of concurrent threads are run. A thread can execute either
transactional code or non-transactional code (ntc) blocks. A transaction commits if no conflicts with other
concurrent transactions occur, otherwise, it is aborted and a new run of the same transaction is executed.
Upon the start of a new transaction along any thread, it gets blocked by the transaction scheduling logic
(namely it enters a waiting state) in case there are m transactions (with m ≤ N) that are already within their
running phase. When one of the m running transaction commits, a waiting transaction, if any, is unblocked
by the scheduler, thus being allowed to proceed along its execution path.

2.2 Performance Model Derivation

Our performance model of the STM system leverages a Continuous Time Markov Chain (CTMC) [8] with N
states. A state k of the CTMC represents a system state when there are k threads executing transactions,
where k accounts for both already running and blocked transactions. Consequently, when the system resides
in state k there are N − k threads executing ntc blocks. A transition from state k to k + 1 occurs upon the
startup of a transaction along any thread. A transition from the state k to the state k − 1 occurs upon the
commit of whichever running transaction. We denote the average time for executing some ntc block as tntc.
Thus, the transaction inter-arrival rate along any thread is λ = 1

tntc
. Consequently, denoting with λk the

transition rate from a state k to the state k + 1, we have

λk = (N − k) · λ (1)

As for the transition rate from a state k to the state k − 1, it depends on k and m (we remark that m
represents the maximum number of concurrent transactions allowed to run – hence not being blocked –
by the scheduler). Denoting with tk the average transaction execution time when there are k executing
transactions, the transaction execution rate in the state k is equal to µk = 1

tk
. Accordingly, for any states

k ≤ m, since exactly k transactions are running (i.e. none is blocked), the transition rate from the state k to
the state k − 1 is

γk = k · µk (2)

Conversely, for any state k > m, the transactions actually running are m, while the remaining k − m
transactions are blocked. Consequently, for all states such that k > m, the transition rate from the state k
to the state k − 1 is

γk = m · µk (3)

The CTMC implementing this model is represented in Figure 1. Clearly, the underlying implicit assumption
allowing us to rely on Markov Chains is that the parameters used in the equations, which express latency
values related to state transitions (e.g. the latency for executing some ntc block) are exponentially distributed.
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Figure 1: Markov Chain representation of the evolution of the STM system state.

Transaction execution time. Now we focus on the average transaction execution time tk. We note that tk
is affected by the number of times a transaction is aborted (i.e. re-started) in the state k before successfully
committing. We refer to as wasted time, which we denote as wt,k, the average time to execute all aborted
runs of a transaction (including the time to execute the abort operations) in the state k. Further, we refer
to as useful time, which we denote as ut,k, the average time to execute the last run of a transaction (i.e. the
successfully committing run). Thus, tk = wt,k + ut,k. Further, we note that the wasted time wt,k is equal to
the product between the average time wr

t,k to execute a transaction run that gets aborted and the average
number of times rk a transaction gets aborted, i.e.:

wt,k = wr
t,k · rk (4)

Assuming that, for a given state k, an abort event of a transaction is independent of previous abort events of
the same transaction, the probability distribution of the number of runs of a transaction before successfully
committing follows a geometric distribution. Thus, if pk is the transaction abort probability in the state k,
we have

rk =
pk

1− pk
(5)

As a final observation, we note that we can assume that all abort probabilities pk for k > m are equal to pm,
because in all states with k > m, there are always m running transactions.

Throughput. Based on the CTMC that we described above, the system throughput thrm when the sched-
uler admits at most m running transactions can be estimated through the CTMC stationary probability
distribution. Specifically, if qk is the stationary probability of the state k, we have

thrm =

N∑
i=1

qk · γk (6)

3 Experimental Evaluation

In this section, we present some experimental results for evaluating the accuracy of our performance model.
Additionally, we illustrate how the model can be used to perform what-if analysis while varying the maximum
number of transactions admitted to concurrently run by the scheduler. We executed experiments using
applications of the STAMP benchmark[9] running on TinySTM [10]. Due to space constraints, we only show
results for the Intruder application. The experiments have been executed running the application with 8
threads on a 8-cores HP ProLiant server, equipped with 2GHz AMD Opteron 6128 processors, 64 GB of
RAM and the Linux operating system (kernel version 2.7.32-5-amd64).

Model accuracy. During the execution of the application, periodically (each 1000 executed transactions)
the following measurements were taken for each k: 1) the average useful time of a transaction (ut,k), 2) the
average time to execute an aborted run of a transaction (wr

t,k), 3) the abort probability of a transaction (pk)
and 4) the average time for executing a ntc block (tntc). After each measurement period, the throughput
of the application has been estimated via the presented performance model. In the left graph of Figure 2,
we show a comparison between the estimated throughput and the measured throughput along the whole
execution of the application while the transaction scheduler was admitting at most 4 running transactions
(i.e. m = 4). The average relative error we observed is equal to 8.9%.
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Figure 2: Predicted and measured throughput for different configurations of the scheduler.

What-if analysis. Now, we show how the proposed model, using measurements taken while running the
application with a given number of admitted transactions, say x, can be used for predicting the system
throughput when a different number of transactions are admitted, say x′. By construction of the model, this
can be done using the values of parameters ut,k, wr

t,k, pk and tntc measured when running the application with
x admitted transactions, and setting m = x′ in all model equations. However, we note that, for predicting
the system throughput in the cases where x′ > x, the transaction abort probabilities {pk : x < k ≤ x′} have
to be estimated (in fact, they can not be measured if the system has been observed when admitting no more
then x transactions). We describe in the appendix the approach that we used for calculating the above set of
abort probabilities.

We used measurements taken while running the application with m = 4 to predict, for each measurement
period, the throughput for m = 2 and m = 5, respectively. In the right graph of Figure 2, we plot the
predicted throughput and the measured throughput. The average prediction error that we observed was 8.8%
for m = 2 and 9.2% for m = 5. These results support the accuracy of our analysis. They also indicate that
the presented model could be effectively used at run-time for tuning the scheduler configuration. This could
be done by periodically estimating the value of m for which the predicted throughput is maximized. We plain
to explore this possibility in future work.

4 Conclusions

We presented a Markov Chain-based performance model for STM systems. The model aims at estimating
the system throughput in presence of a scheduler which limits the number of admitted running transactions
in order to prevent performance degradation. Particularly, the model can be instantiated on-the-fly and does
not require the user to configure any parameter, except the length of the system observation window. We
provided some experimental results for evaluating the model accuracy. Also, we showed that, by observing
the system running with a given number of admitted transactions, the model can be used to perform what-if
analysis while changing such a number. Experimental results show that the proposed modeling approach is
likely suited to support run-time configuration of the transaction scheduler component within the STM, an
issue we plan to cope with in future work. Additionally, we plan to investigate the viability of our modeling
approach in Hardware Transactional Memory contexts.
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5 Appendix

We calculated pk, in the case x < k, through the measured abort probability px according to the following
approach. We note that, when there are x running transactions in the system, a transaction can conflict with
any of the other x− 1 running transactions. As a consequence, if pa is the abort probability of a transaction
when there is only another running transaction, the probability that no conflicts occur for a transaction when
there are x running transactions (i.e. the probability that no conflicts occur with the other x − 1 running
transactions) is equal to (1− pa)x−1. Thus, the following equation holds:

px = 1− (1− pa)x−1. (7)

Solving by pa the above equation, we have:

pa = 1− (1− px)
1

x−1 . (8)

Now, if we know the transaction abort probability px for a generic state x, we can calculate pa using equation
8. Finally, we can calculate pk for any k 6= x (thus for any k > x) using k in place of x in equation 7.
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