
In	 Search	 of	 Seman-c	 Models	 for	 	
Reconciling	 Futures	 and	
Transac-onal	 Memory	

Jingna	 Zeng,	 Paolo	 Romano,	 Luís	 Rodrigues,	
	 Seif	 Haridi,	 João	 Barreto	

	
	

TM	 and	 intra-‐transac-on	 parallelism	

•  TM	 has	 greatly	 matured	 over	 last	 decade:	
–  hundreds	 of	 papers	 from	 academy	 and	 industry	
–  hardware	 support	 in	 mainstream	 processors	
–  integra-on	 in	 standard	 compilers	

•  Most	 literature	 assumes	 sequen-al	 execu-on	 of	
opera-ons	 within	 transac-ons	
	

•  Can	 TM	 be	 used	 to	 exploit	 parallelism	 within	
transac-ons?	

TM	 and	 parallel	 nes-ng	

•  Exis-ng	 TMs	 that	 support	 intra-‐transac-on	
parallelism	 offer	 parallel	 nes)ng	 abstrac-on:	
–  fork-‐join	 seman-cs:	

•  forking	 thread	 blocks	 -ll	 comple-on	 of	 nested	 txs	

•  To	 the	 best	 of	 our	 knowledge,	 no	 TM	 provides	
support	 for	 an	 alterna-ve,	 more	 powerful	
abstrac-on:	
–  the	 future	 abstrac-on	

The	 Future	 abstrac-on	

4	

•  Well-‐known	 abstrac-on	 to	 manage	 asynchronous	
parallel	 computa-ons:	
–  promise	 to	 deliver	 the	 result	 of	 some	 computa-on	
–  eval()	 used	 to	 retrieve	 computa-on’s	 result	

•  possibly	 blocking	 -ll	 the	 result	 is	 computed	

–  unlike	 parallel	 nes-ng	 does	 not	 block	 “submiVer”	 while	
parallel	 computa-on	 takes	 place	

•  code	 executed	 in	 parallel	 with	 the	 future	 is	 called	 connuaon	
f=submit(task)	 x=f.eval()	

future	

con-nua-on	

How	 to	 support	 Futures	 in	 TM?	

•  Basic	 idea	 –	 Transac)onal	 Future:	
–  allow	 transac-ons	 to	 submit/evaluate	 futures	
–  futures	 run	 as	 transac-ons	 that:	

•  can	 access	 shared	 variables	
•  can	 return	 some	 result	 value	

–  a	 future	 and	 its	 con-nua-on	 appear	 as	 atomic	 units	
	

•  2	 key	 issues:	 	
– which	 serializa-on	 orders	 should	 be	 allowed	 between	
futures	 and	 con-nua-ons?	

–  how	 to	 define	 the	 boundaries	 of	 a	 con-nua-on?	

Transac-onal	 Futures	 Seman-cs:	
a	 basic	 example	

•  Intui-vely	 we	 want	 to	 guarantee	 atomicity	
between	 TF	 and	 its	 con-nua-on…	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

Transac-onal	 Futures	 Seman-cs:	
a	 basic	 example	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

•  …but	 what	 are	 the	 expected	 serializa-on	 orders	
between	 TF	 and	 its	 con-nua-on?	
	

Transac-onal	 Futures	 Seman-cs:	
a	 basic	 example	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serializa-on	 point	

•  …but	 what	 are	 the	 expected	 serializa-on	 orders	
between	 TF	 and	 its	 con-nua-on?	
–  before	 TF’s	 con-nua-on:	 strongly	 ordered	

Transac-onal	 Futures	 Seman-cs:	
a	 basic	 example	

•  …but	 what	 are	 the	 expected	 serializa-on	 orders	
between	 TF	 and	 its	 con-nua-on?	
–  before	 TF’s	 con-nua-on:	 strongly	 ordered	
–  either	 before	 or	 a`er	 TF’s	 con-nua-on:	 weakly	 ordered	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serializa-on	 point	 serializa-on	 point	

How	 to	 support	 Futures	 in	 TM?	

•  Basic	 idea	 –	 Transac)onal	 Future:	
–  allow	 transac-ons	 to	 submit/evaluate	 futures	
–  futures	 run	 as	 transac-ons	 that:	

•  can	 access	 shared	 variables	
•  can	 return	 some	 result	 value	

–  a	 future	 and	 its	 con-nua-on	 appear	 as	 atomic	 units	
	

•  2	 key	 issues:	 	
– which	 serializa-on	 orders	 should	 be	 allowed	 between	
futures	 and	 con-nua-ons?	

–  how	 to	 define	 the	 boundaries	 of	 a	 con-nua-on?	

How	 to	 define	 con-nua-ons?	

•  The	 Future	 abstrac-on	 enables	 parallel	
computa-ons	 with	 complex	 dependency	
graphs,	 e.g.:	
– submiang	 futures	 from	 within	 con-nua-ons	
– escaping	 transac-onal	 futures	

•  within	 the	 same	 top-‐level	 transac-on,	 or	
•  submiVed	 and	 evaluated	 in	 different	 top-‐level	 transact.	

•  Pro:	 great	 flexibility	 for	 expert	 programmers	
•  Con:	 non-‐trivial	 to	 define	 con-nua-ons	

Submission	 of	 a	 future	 	
by	 a	 con-nua-on	

con-nua-on	 of	 TF1	 con-nua-on	 of	 TF2	

13	

Escaping	 transac-onal	 future	

Here	 TF1	 returns	 the	 reference	 of	 TF2	 to	 T0,	
	 in	 order	 to	 allow	 T0	 to	 evaluate	 TF2	

14	

Escaping	 transac-onal	 future	

•  Con-nua-on	 of	 TF2	 spans	 two	 transac-onal	 futures!	
•  TF2	 should	 observe	 both	 writes	 on	 x	 and	 y	 or	 none!	

Logic	 underlying	 defini-on	 of	 TF2	 con-nua-on:	
Sequence	 of	 causally-‐related	 opera-ons	 that	 leads	

from	 	 TF2’s	 submission	 to	 its	 evalua-on	

15	

Transac-onal	 future	 escaping	
from	 its	 top-‐level	 transac-on	

T1	 writes	 TF’s	 reference	 in	 variable	 x	 and	 commits.	 	
This	 allows	 a	 different	 top-‐level	 transac-on,	 e.g.	 T2,	 to	

evaluate	 TF.	

TF	 is	 used	 as	 a	 communica-on	 means	 between	 T1	 and	 T2.	

read-‐a`er-‐write	

16	

Transac-onal	 future	 escaping	
from	 its	 top-‐level	 transac-on	
Logic	 underlying	 defini-on	 of	 TF	 con-nua-on:	

Sequence	 of	 causally-‐related	 opera-ons	 that	 leads	 from	 	
TF’s	 submission	 to	 its	 evalua-on	

read-‐a`er-‐write	

•  Using	 the	 above	 ra-onale,	 a	 con-nua-on	 can	 span	 two	 or	 more	 top-‐
level	 transac-ons	 è	 strongly	 atomic	 con)nua)on	

•  Constrain	 TF’s	 con-nua-on	 within	 the	 top-‐level	 tx	 that	 submiVed	 TF	 	
è	 weakly	 atomic	 con)nua)on	

How	 to	 formalize	 these	 concepts?	

•  Via	 the	 Future	 Serializa-on	 Graph:	
– similar	 in	 spirit	 to	 transac-on	 serializa-on	 graph	
– but	 aimed	 to:	
1.  allow	 for	 rigorous	 defini-on	 of	 futures	 and	 their	

con-nua-ons	
2.  capture	 ordering	 rela-ons	 between	 futures	 and	

con-nua-ons	

Future	 Serializa-on	 Graph	
Vertexes:	
VTB	 	 :	 	 all	 ops	 since	 tx	 begin	 to	 first	 {commit,	 abort,	 submit,	 eval}	
VTC::	 	 all	 ops	 since	 subm.	 of	 a	 future	 to	 first	 {commit,	 abort,	 submit,	 eval}	
VTE:	 all	 ops	 since	 evalua-on	 of	 a	 future	 to	 first	 {commit,	 abort,	 submit,	 eval}	

18	

Future	 Serializa-on	 Graph	
Edges:	
V1àV2	 ,	 for	 each	 vertex	 V1,	 V2	 in	 FSG	 s.t.	 :	
•  V1	 and	 V2	 are	 executed	 by	 the	 same	 thread	 t	 and	 t	 executes	 V1	 before	 V2	

Future	 Serializa-on	 Graph	
Edges:	
For	 each	 transac-onal	 future	 T	 :	
•  VT

S	 à	 VT
B	 :	 submission	 of	 a	 future	 precedes	 its	 execu-on	

	 	 	 	 	 (where	 VT
S	 is	 the	 vertex	 in	 FSG	 containing	 T’s	 submission)	

•  VT
B	 à	 VT

E	 :	 evalua-on	 of	 a	 future	 follows	 its	 execu-on	

20	

Future	 Serializa-on	 Graph	
Edges:	
For	 each	 strongly	 ordered	 transac-onal	 future	 T	 :	
•  VT

B	 à	 VT
C	 :	 future	 precedes	 its	 con-nua-on	

21	

22	

FSG+	 	
Extension	 of	 FSG	 to	 include	 read-‐a`er-‐write	
dependencies:	
•  captures	 causal	 rela-ons	 among	 transac-ons	 that	
communicate	 futures’	 references	 via	 shared	 variables	

read-‐a`er-‐write	

read-‐a`er-‐write	

Strongly	 Atomic	 Con-nua-ons	

•  Strongly	 atomic	 con-nua-on	 of	 a	 tx	 future	 TF:	
– set	 of	 vertexes	 that	 connect	 VTF

C to VTF
E in	 FSG+	 	

read-‐a`er-‐write	

read-‐a`er-‐
write	

Weakly	 Atomic	 Con-nua-ons	

•  Weakly	 atomic	 con-nua-on	 of	 a	 tx	 future	 TF:	
– set	 of	 vertexes	 in	 FSG+	 that	 connect	 VTF

C to VTF
E

– constraint	 to	 the	 top-‐level	 tx	 that	 submiVed	 TF	 	

read-‐a`er-‐write	

read-‐a`er-‐
write	

Using	 the	 FSG+	

•  The	 FSG+	 defines	 the	 transac-onal	 futures	
seman-cs	 by	 restric-ng	 the	 admissible	
serializa-on	 orders	 of	 transac-ons	

•  …but	 can	 also	 be	 used	 by	 a	 graph-‐based	
concurrency	 control	 algorithm	 to	 ensure	 the	
desired	 seman-cs	

Using	 the	 FSG+	

•  Intui-on:	
–  Enforce	 aciclicity	 of	 the	 FSG+	 extended	 with	 the	
conflicts	 developed	 among	 transac-on	 	

•  One	 important	 subtlety:	
–  FSG+	 can	 associate	 mul-ple	 vertexes	 to	 transac-ons	
and	 to	 futures/con-nua-ons:	

•  if	 	 a	 conflict	 is	 developed	 from/to	 futures/transac-ons/
con-nua-ons	 that	 include	 mul-ple	 vertexes	 in	 the	 FSG+	 	

è	 add	 edges	 from/to	 all	 of	 the	 vertexes	 that	 they	 include	

Summary	

•  Futures	 represent	 a	 powerful	 abstrac-on	 to:	
–  exploit	 intra-‐transac-on	 parallelism	
–  enable	 new	 synchroniza-on	 and	 communica-on	
paVerns	 for	 transac-onal	 programming	

•  First	 aVempt	 to	 define	 seman-cs	 of	 futures	 in	 a	
transac-onal	 context:	
–  graph-‐based	 specifica-on	 of	 alterna-ve	 proper-es	
for:	

•  serializa-on	 orders	 between	 futures	 and	 	 con-nua-ons	
•  defini-on	 of	 con-nua-ons	

Open	 research	 ques-ons	

•  Is	 the	 current	 formaliza-on	 complete?	 	
•  Can	 alterna-ve	 formalisms	 be	 used?	
•  Which	 are	 the	 theore-cal	 costs/complexity	 of	
the	 various	 seman-cs?	 	

•  Can	 these	 seman-cs	 be	 implemented	
efficiently	 in	 a	 prac-cal	 system?	

Thank you.
Questions?

Backup Slides

Inclusion of an operation in a
transaction

•  An	 opera-on	 op	 is	 included	 in	 a	 transac-on	 T	 if	 there	
is	 a	 path	 in	 the	 FSG:	
–  from	 the	 vertex	 associated	 with	 the	 begin	 of	 T	
–  	 to	 the	 vertex	 associated	 with	 the	 commit/abort	 of	 T	 	
–  that	 passes	 via	 the	 vertex	 associated	 with	 op	

•  A	 transac-on	 T	 includes:	
–  	 all	 and	 only	 the	 opera-ons	 issued	 by	 T,	
–  	 by	 any	 non-‐escaping	 future	 submiVed	 by	 T,	
– and,	 recursively,	 by	 T	 ’s	 futures	 	

Atomicity	 between	 top	 level	 transac-ons	 	

•  Let	 op	 be	 an	 opera-on	 included	 in	 a	 top-‐level	 transac-on	 T	
•  Assume	 op	 develops	 a	 data	 dependency	 to/from	 an	 opera-on	

op’	 included	 in	 a	 different	 top-‐level	 transac-on	 T’	
•  Add	 a	 data	 dependency	 edge	 from	 all	 the	 vertexes	 included	 in	 T	

to/from	 all	 the	 vertexes	 included	 in	 T’	

VT’	

Atomicity	 between	 futures	 and	 con-nua-ons	

•  Let	 op	 be	 an	 opera-on	 included	 in	 a	 transac-onal	 future	 T	
•  Assume	 op	 develops	 a	 data	 dependency	 to/from	 an	 opera-on	

op’	 included	 in	 the	 con-nua-on	 of	 T	
•  Add	 a	 data	 dependency	 edge	 from	 all	 the	 vertexes	 included	 in	 T	

to/from	 all	 the	 vertexes	 included	 in	 the	 con-nua-on	 of	 T	

read-‐a`er-‐write	

VT1
B	

