
In	
 Search	
 of	
 Seman-c	
 Models	
 for	
 	

Reconciling	
 Futures	
 and	

Transac-onal	
 Memory	

Jingna	
 Zeng,	
 Paolo	
 Romano,	
 Luís	
 Rodrigues,	

	
 Seif	
 Haridi,	
 João	
 Barreto	

	

	

TM	
 and	
 intra-­‐transac-on	
 parallelism	

•  TM	
 has	
 greatly	
 matured	
 over	
 last	
 decade:	

–  hundreds	
 of	
 papers	
 from	
 academy	
 and	
 industry	

–  hardware	
 support	
 in	
 mainstream	
 processors	

–  integra-on	
 in	
 standard	
 compilers	

•  Most	
 literature	
 assumes	
 sequen-al	
 execu-on	
 of	

opera-ons	
 within	
 transac-ons	

	

•  Can	
 TM	
 be	
 used	
 to	
 exploit	
 parallelism	
 within	

transac-ons?	

TM	
 and	
 parallel	
 nes-ng	

•  Exis-ng	
 TMs	
 that	
 support	
 intra-­‐transac-on	

parallelism	
 offer	
 parallel	
 nes)ng	
 abstrac-on:	

–  fork-­‐join	
 seman-cs:	

•  forking	
 thread	
 blocks	
 -ll	
 comple-on	
 of	
 nested	
 txs	

•  To	
 the	
 best	
 of	
 our	
 knowledge,	
 no	
 TM	
 provides	

support	
 for	
 an	
 alterna-ve,	
 more	
 powerful	

abstrac-on:	

–  the	
 future	
 abstrac-on	

The	
 Future	
 abstrac-on	

4	

•  Well-­‐known	
 abstrac-on	
 to	
 manage	
 asynchronous	

parallel	
 computa-ons:	

–  promise	
 to	
 deliver	
 the	
 result	
 of	
 some	
 computa-on	

–  eval()	
 used	
 to	
 retrieve	
 computa-on’s	
 result	

•  possibly	
 blocking	
 -ll	
 the	
 result	
 is	
 computed	

–  unlike	
 parallel	
 nes-ng	
 does	
 not	
 block	
 “submiVer”	
 while	

parallel	
 computa-on	
 takes	
 place	

•  code	
 executed	
 in	
 parallel	
 with	
 the	
 future	
 is	
 called	
 connuaon	

f=submit(task)	
 x=f.eval()	

future	

con-nua-on	

How	
 to	
 support	
 Futures	
 in	
 TM?	

•  Basic	
 idea	
 –	
 Transac)onal	
 Future:	

–  allow	
 transac-ons	
 to	
 submit/evaluate	
 futures	

–  futures	
 run	
 as	
 transac-ons	
 that:	

•  can	
 access	
 shared	
 variables	

•  can	
 return	
 some	
 result	
 value	

–  a	
 future	
 and	
 its	
 con-nua-on	
 appear	
 as	
 atomic	
 units	

	

•  2	
 key	
 issues:	
 	

– which	
 serializa-on	
 orders	
 should	
 be	
 allowed	
 between	

futures	
 and	
 con-nua-ons?	

–  how	
 to	
 define	
 the	
 boundaries	
 of	
 a	
 con-nua-on?	

Transac-onal	
 Futures	
 Seman-cs:	

a	
 basic	
 example	

•  Intui-vely	
 we	
 want	
 to	
 guarantee	
 atomicity	

between	
 TF	
 and	
 its	
 con-nua-on…	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

Transac-onal	
 Futures	
 Seman-cs:	

a	
 basic	
 example	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

•  …but	
 what	
 are	
 the	
 expected	
 serializa-on	
 orders	

between	
 TF	
 and	
 its	
 con-nua-on?	

	

Transac-onal	
 Futures	
 Seman-cs:	

a	
 basic	
 example	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serializa-on	
 point	

•  …but	
 what	
 are	
 the	
 expected	
 serializa-on	
 orders	

between	
 TF	
 and	
 its	
 con-nua-on?	

–  before	
 TF’s	
 con-nua-on:	
 strongly	
 ordered	

Transac-onal	
 Futures	
 Seman-cs:	

a	
 basic	
 example	

•  …but	
 what	
 are	
 the	
 expected	
 serializa-on	
 orders	

between	
 TF	
 and	
 its	
 con-nua-on?	

–  before	
 TF’s	
 con-nua-on:	
 strongly	
 ordered	

–  either	
 before	
 or	
 a`er	
 TF’s	
 con-nua-on:	
 weakly	
 ordered	

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture

T

TF

w(x,1) w(x,x+1)

w(x,x+1)

w(y,x)

Fig. 1: A Simple Example of Transac-
tional Futures

T0

TF1

TF2

w(x,x0) w(y,y0) w(z,z0)

r(y) r(z)

r(x) r(y)

Fig. 2: Concurrent Computation not
Supported by Parallel Nesting

T0

TF1

TF2

w(x,x1)

w(y,y0)

r(x) r(y)

r(k) w(k,k0)

r(n)

w(n,n1)

Fig. 3: Escaping Transactional Future
within same Top-level Transaction

submitFuture

evaluateFuture

T1

T2

TF

w(x,f) w(y,y1)

r(x)

r(x) w(z,z1)

r(y) r(z)

w(z,z2)

Fig. 4: Top-level Transactions Commu-
nicate via an Escaping Transactional
Future

VTB

VTF
B

VTF
C

VTF
Estrong(VTF

S)

Fig. 5: FSG of the History in Fig. 1

VT1B

VTF
C

VTF
B

VT2B VTF
E

(VTF
S)

Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serializa-on	
 point	
 serializa-on	
 point	

How	
 to	
 support	
 Futures	
 in	
 TM?	

•  Basic	
 idea	
 –	
 Transac)onal	
 Future:	

–  allow	
 transac-ons	
 to	
 submit/evaluate	
 futures	

–  futures	
 run	
 as	
 transac-ons	
 that:	

•  can	
 access	
 shared	
 variables	

•  can	
 return	
 some	
 result	
 value	

–  a	
 future	
 and	
 its	
 con-nua-on	
 appear	
 as	
 atomic	
 units	

	

•  2	
 key	
 issues:	
 	

– which	
 serializa-on	
 orders	
 should	
 be	
 allowed	
 between	

futures	
 and	
 con-nua-ons?	

–  how	
 to	
 define	
 the	
 boundaries	
 of	
 a	
 con-nua-on?	

How	
 to	
 define	
 con-nua-ons?	

•  The	
 Future	
 abstrac-on	
 enables	
 parallel	

computa-ons	
 with	
 complex	
 dependency	

graphs,	
 e.g.:	

– submiang	
 futures	
 from	
 within	
 con-nua-ons	

– escaping	
 transac-onal	
 futures	

•  within	
 the	
 same	
 top-­‐level	
 transac-on,	
 or	

•  submiVed	
 and	
 evaluated	
 in	
 different	
 top-­‐level	
 transact.	

•  Pro:	
 great	
 flexibility	
 for	
 expert	
 programmers	

•  Con:	
 non-­‐trivial	
 to	
 define	
 con-nua-ons	

Submission	
 of	
 a	
 future	
 	

by	
 a	
 con-nua-on	

con-nua-on	
 of	
 TF1	
 con-nua-on	
 of	
 TF2	

13	

Escaping	
 transac-onal	
 future	

Here	
 TF1	
 returns	
 the	
 reference	
 of	
 TF2	
 to	
 T0,	

	
 in	
 order	
 to	
 allow	
 T0	
 to	
 evaluate	
 TF2	

14	

Escaping	
 transac-onal	
 future	

•  Con-nua-on	
 of	
 TF2	
 spans	
 two	
 transac-onal	
 futures!	

•  TF2	
 should	
 observe	
 both	
 writes	
 on	
 x	
 and	
 y	
 or	
 none!	

Logic	
 underlying	
 defini-on	
 of	
 TF2	
 con-nua-on:	

Sequence	
 of	
 causally-­‐related	
 opera-ons	
 that	
 leads	

from	
 	
 TF2’s	
 submission	
 to	
 its	
 evalua-on	

15	

Transac-onal	
 future	
 escaping	

from	
 its	
 top-­‐level	
 transac-on	

T1	
 writes	
 TF’s	
 reference	
 in	
 variable	
 x	
 and	
 commits.	
 	

This	
 allows	
 a	
 different	
 top-­‐level	
 transac-on,	
 e.g.	
 T2,	
 to	

evaluate	
 TF.	

TF	
 is	
 used	
 as	
 a	
 communica-on	
 means	
 between	
 T1	
 and	
 T2.	

read-­‐a`er-­‐write	

16	

Transac-onal	
 future	
 escaping	

from	
 its	
 top-­‐level	
 transac-on	

Logic	
 underlying	
 defini-on	
 of	
 TF	
 con-nua-on:	

Sequence	
 of	
 causally-­‐related	
 opera-ons	
 that	
 leads	
 from	
 	

TF’s	
 submission	
 to	
 its	
 evalua-on	

read-­‐a`er-­‐write	

•  Using	
 the	
 above	
 ra-onale,	
 a	
 con-nua-on	
 can	
 span	
 two	
 or	
 more	
 top-­‐
level	
 transac-ons	
 è	
 strongly	
 atomic	
 con)nua)on	

•  Constrain	
 TF’s	
 con-nua-on	
 within	
 the	
 top-­‐level	
 tx	
 that	
 submiVed	
 TF	
 	

è	
 weakly	
 atomic	
 con)nua)on	

How	
 to	
 formalize	
 these	
 concepts?	

•  Via	
 the	
 Future	
 Serializa-on	
 Graph:	

– similar	
 in	
 spirit	
 to	
 transac-on	
 serializa-on	
 graph	

– but	
 aimed	
 to:	

1.  allow	
 for	
 rigorous	
 defini-on	
 of	
 futures	
 and	
 their	

con-nua-ons	

2.  capture	
 ordering	
 rela-ons	
 between	
 futures	
 and	

con-nua-ons	

Future	
 Serializa-on	
 Graph	

Vertexes:	

VTB	
 	
 :	
 	
 all	
 ops	
 since	
 tx	
 begin	
 to	
 first	
 {commit,	
 abort,	
 submit,	
 eval}	

VTC::	
 	
 all	
 ops	
 since	
 subm.	
 of	
 a	
 future	
 to	
 first	
 {commit,	
 abort,	
 submit,	
 eval}	

VTE:	
 all	
 ops	
 since	
 evalua-on	
 of	
 a	
 future	
 to	
 first	
 {commit,	
 abort,	
 submit,	
 eval}	

18	

Future	
 Serializa-on	
 Graph	

Edges:	

V1àV2	
 ,	
 for	
 each	
 vertex	
 V1,	
 V2	
 in	
 FSG	
 s.t.	
 :	

•  V1	
 and	
 V2	
 are	
 executed	
 by	
 the	
 same	
 thread	
 t	
 and	
 t	
 executes	
 V1	
 before	
 V2	

Future	
 Serializa-on	
 Graph	

Edges:	

For	
 each	
 transac-onal	
 future	
 T	
 :	

•  VT

S	
 à	
 VT
B	
 :	
 submission	
 of	
 a	
 future	
 precedes	
 its	
 execu-on	

	
 	
 	
 	
 	
 (where	
 VT
S	
 is	
 the	
 vertex	
 in	
 FSG	
 containing	
 T’s	
 submission)	

•  VT
B	
 à	
 VT

E	
 :	
 evalua-on	
 of	
 a	
 future	
 follows	
 its	
 execu-on	

20	

Future	
 Serializa-on	
 Graph	

Edges:	

For	
 each	
 strongly	
 ordered	
 transac-onal	
 future	
 T	
 :	

•  VT

B	
 à	
 VT
C	
 :	
 future	
 precedes	
 its	
 con-nua-on	

21	

22	

FSG+	
 	

Extension	
 of	
 FSG	
 to	
 include	
 read-­‐a`er-­‐write	

dependencies:	

•  captures	
 causal	
 rela-ons	
 among	
 transac-ons	
 that	

communicate	
 futures’	
 references	
 via	
 shared	
 variables	

read-­‐a`er-­‐write	

read-­‐a`er-­‐write	

Strongly	
 Atomic	
 Con-nua-ons	

•  Strongly	
 atomic	
 con-nua-on	
 of	
 a	
 tx	
 future	
 TF:	

– set	
 of	
 vertexes	
 that	
 connect	
 VTF

C to VTF
E in	
 FSG+	
 	

read-­‐a`er-­‐write	

read-­‐a`er-­‐
write	

Weakly	
 Atomic	
 Con-nua-ons	

•  Weakly	
 atomic	
 con-nua-on	
 of	
 a	
 tx	
 future	
 TF:	

– set	
 of	
 vertexes	
 in	
 FSG+	
 that	
 connect	
 VTF

C to VTF
E

– constraint	
 to	
 the	
 top-­‐level	
 tx	
 that	
 submiVed	
 TF	
 	

read-­‐a`er-­‐write	

read-­‐a`er-­‐
write	

Using	
 the	
 FSG+	

•  The	
 FSG+	
 defines	
 the	
 transac-onal	
 futures	

seman-cs	
 by	
 restric-ng	
 the	
 admissible	

serializa-on	
 orders	
 of	
 transac-ons	

•  …but	
 can	
 also	
 be	
 used	
 by	
 a	
 graph-­‐based	

concurrency	
 control	
 algorithm	
 to	
 ensure	
 the	

desired	
 seman-cs	

Using	
 the	
 FSG+	

•  Intui-on:	

–  Enforce	
 aciclicity	
 of	
 the	
 FSG+	
 extended	
 with	
 the	

conflicts	
 developed	
 among	
 transac-on	
 	

•  One	
 important	
 subtlety:	

–  FSG+	
 can	
 associate	
 mul-ple	
 vertexes	
 to	
 transac-ons	

and	
 to	
 futures/con-nua-ons:	

•  if	
 	
 a	
 conflict	
 is	
 developed	
 from/to	
 futures/transac-ons/
con-nua-ons	
 that	
 include	
 mul-ple	
 vertexes	
 in	
 the	
 FSG+	
 	

è	
 add	
 edges	
 from/to	
 all	
 of	
 the	
 vertexes	
 that	
 they	
 include	

Summary	

•  Futures	
 represent	
 a	
 powerful	
 abstrac-on	
 to:	

–  exploit	
 intra-­‐transac-on	
 parallelism	

–  enable	
 new	
 synchroniza-on	
 and	
 communica-on	

paVerns	
 for	
 transac-onal	
 programming	

•  First	
 aVempt	
 to	
 define	
 seman-cs	
 of	
 futures	
 in	
 a	

transac-onal	
 context:	

–  graph-­‐based	
 specifica-on	
 of	
 alterna-ve	
 proper-es	

for:	

•  serializa-on	
 orders	
 between	
 futures	
 and	
 	
 con-nua-ons	

•  defini-on	
 of	
 con-nua-ons	

Open	
 research	
 ques-ons	

•  Is	
 the	
 current	
 formaliza-on	
 complete?	
 	

•  Can	
 alterna-ve	
 formalisms	
 be	
 used?	

•  Which	
 are	
 the	
 theore-cal	
 costs/complexity	
 of	

the	
 various	
 seman-cs?	
 	

•  Can	
 these	
 seman-cs	
 be	
 implemented	

efficiently	
 in	
 a	
 prac-cal	
 system?	

Thank you.
Questions?

Backup Slides

Inclusion of an operation in a
transaction

•  An	
 opera-on	
 op	
 is	
 included	
 in	
 a	
 transac-on	
 T	
 if	
 there	

is	
 a	
 path	
 in	
 the	
 FSG:	

–  from	
 the	
 vertex	
 associated	
 with	
 the	
 begin	
 of	
 T	

–  	
 to	
 the	
 vertex	
 associated	
 with	
 the	
 commit/abort	
 of	
 T	
 	

–  that	
 passes	
 via	
 the	
 vertex	
 associated	
 with	
 op	

•  A	
 transac-on	
 T	
 includes:	

–  	
 all	
 and	
 only	
 the	
 opera-ons	
 issued	
 by	
 T,	

–  	
 by	
 any	
 non-­‐escaping	
 future	
 submiVed	
 by	
 T,	

– and,	
 recursively,	
 by	
 T	
 ’s	
 futures	
 	

Atomicity	
 between	
 top	
 level	
 transac-ons	
 	

•  Let	
 op	
 be	
 an	
 opera-on	
 included	
 in	
 a	
 top-­‐level	
 transac-on	
 T	

•  Assume	
 op	
 develops	
 a	
 data	
 dependency	
 to/from	
 an	
 opera-on	

op’	
 included	
 in	
 a	
 different	
 top-­‐level	
 transac-on	
 T’	

•  Add	
 a	
 data	
 dependency	
 edge	
 from	
 all	
 the	
 vertexes	
 included	
 in	
 T	

to/from	
 all	
 the	
 vertexes	
 included	
 in	
 T’	

VT’	

Atomicity	
 between	
 futures	
 and	
 con-nua-ons	

•  Let	
 op	
 be	
 an	
 opera-on	
 included	
 in	
 a	
 transac-onal	
 future	
 T	

•  Assume	
 op	
 develops	
 a	
 data	
 dependency	
 to/from	
 an	
 opera-on	

op’	
 included	
 in	
 the	
 con-nua-on	
 of	
 T	

•  Add	
 a	
 data	
 dependency	
 edge	
 from	
 all	
 the	
 vertexes	
 included	
 in	
 T	

to/from	
 all	
 the	
 vertexes	
 included	
 in	
 the	
 con-nua-on	
 of	
 T	

read-­‐a`er-­‐write	

VT1
B	

