
In	  Search	  of	  Seman-c	  Models	  for	  	  
Reconciling	  Futures	  and	  
Transac-onal	  Memory	  

Jingna	  Zeng,	  Paolo	  Romano,	  Luís	  Rodrigues,	  
	  Seif	  Haridi,	  João	  Barreto	  

	  
	  



TM	  and	  intra-‐transac-on	  parallelism	  

•  TM	  has	  greatly	  matured	  over	  last	  decade:	  
–  hundreds	  of	  papers	  from	  academy	  and	  industry	  
–  hardware	  support	  in	  mainstream	  processors	  
–  integra-on	  in	  standard	  compilers	  

•  Most	  literature	  assumes	  sequen-al	  execu-on	  of	  
opera-ons	  within	  transac-ons	  
	  

•  Can	  TM	  be	  used	  to	  exploit	  parallelism	  within	  
transac-ons?	  



TM	  and	  parallel	  nes-ng	  

•  Exis-ng	  TMs	  that	  support	  intra-‐transac-on	  
parallelism	  offer	  parallel	  nes)ng	  abstrac-on:	  
–  fork-‐join	  seman-cs:	  

•  forking	  thread	  blocks	  -ll	  comple-on	  of	  nested	  txs	  

•  To	  the	  best	  of	  our	  knowledge,	  no	  TM	  provides	  
support	  for	  an	  alterna-ve,	  more	  powerful	  
abstrac-on:	  
–  the	  future	  abstrac-on	  



The	  Future	  abstrac-on	  

4	  

•  Well-‐known	  abstrac-on	  to	  manage	  asynchronous	  
parallel	  computa-ons:	  
–  promise	  to	  deliver	  the	  result	  of	  some	  computa-on	  
–  eval()	  used	  to	  retrieve	  computa-on’s	  result	  

•  possibly	  blocking	  -ll	  the	  result	  is	  computed	  

–  unlike	  parallel	  nes-ng	  does	  not	  block	  “submiVer”	  while	  
parallel	  computa-on	  takes	  place	  

•  code	  executed	  in	  parallel	  with	  the	  future	  is	  called	  con$nua$on	  
f=submit(task)	   x=f.eval()	  

future	  

con-nua-on	  



How	  to	  support	  Futures	  in	  TM?	  

•  Basic	  idea	  –	  Transac)onal	  Future:	  
–  allow	  transac-ons	  to	  submit/evaluate	  futures	  
–  futures	  run	  as	  transac-ons	  that:	  

•  can	  access	  shared	  variables	  
•  can	  return	  some	  result	  value	  

–  a	  future	  and	  its	  con-nua-on	  appear	  as	  atomic	  units	  
	  

•  2	  key	  issues:	  	  
– which	  serializa-on	  orders	  should	  be	  allowed	  between	  
futures	  and	  con-nua-ons?	  

–  how	  to	  define	  the	  boundaries	  of	  a	  con-nua-on?	  



Transac-onal	  Futures	  Seman-cs:	  
a	  basic	  example	  

•  Intui-vely	  we	  want	  to	  guarantee	  atomicity	  
between	  TF	  and	  its	  con-nua-on…	  

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.
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Fig. 1: A Simple Example of Transac-
tional Futures
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2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
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formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e
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F

is evaluated. Importantly, note that our model
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2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
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formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F
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2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2

serializa-on	  point	  

•  …but	  what	  are	  the	  expected	  serializa-on	  orders	  
between	  TF	  and	  its	  con-nua-on?	  
–  before	  TF’s	  con-nua-on:	  strongly	  ordered	  



Transac-onal	  Futures	  Seman-cs:	  
a	  basic	  example	  

•  …but	  what	  are	  the	  expected	  serializa-on	  orders	  
between	  TF	  and	  its	  con-nua-on?	  
–  before	  TF’s	  con-nua-on:	  strongly	  ordered	  
–  either	  before	  or	  a`er	  TF’s	  con-nua-on:	  weakly	  ordered	  

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T
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is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T
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2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
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How	  to	  support	  Futures	  in	  TM?	  

•  Basic	  idea	  –	  Transac)onal	  Future:	  
–  allow	  transac-ons	  to	  submit/evaluate	  futures	  
–  futures	  run	  as	  transac-ons	  that:	  

•  can	  access	  shared	  variables	  
•  can	  return	  some	  result	  value	  

–  a	  future	  and	  its	  con-nua-on	  appear	  as	  atomic	  units	  
	  

•  2	  key	  issues:	  	  
– which	  serializa-on	  orders	  should	  be	  allowed	  between	  
futures	  and	  con-nua-ons?	  

–  how	  to	  define	  the	  boundaries	  of	  a	  con-nua-on?	  



How	  to	  define	  con-nua-ons?	  

•  The	  Future	  abstrac-on	  enables	  parallel	  
computa-ons	  with	  complex	  dependency	  
graphs,	  e.g.:	  
– submiang	  futures	  from	  within	  con-nua-ons	  
– escaping	  transac-onal	  futures	  

•  within	  the	  same	  top-‐level	  transac-on,	  or	  
•  submiVed	  and	  evaluated	  in	  different	  top-‐level	  transact.	  

•  Pro:	  great	  flexibility	  for	  expert	  programmers	  
•  Con:	  non-‐trivial	  to	  define	  con-nua-ons	  



Submission	  of	  a	  future	  	  
by	  a	  con-nua-on	  

con-nua-on	  of	  TF1	   con-nua-on	  of	  TF2	  
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Escaping	  transac-onal	  future	  

Here	  TF1	  returns	  the	  reference	  of	  TF2	  to	  T0,	  
	  in	  order	  to	  allow	  T0	  to	  evaluate	  TF2	  



14	  

Escaping	  transac-onal	  future	  

•  Con-nua-on	  of	  TF2	  spans	  two	  transac-onal	  futures!	  
•  TF2	  should	  observe	  both	  writes	  on	  x	  and	  y	  or	  none!	  

Logic	  underlying	  defini-on	  of	  TF2	  con-nua-on:	  
Sequence	  of	  causally-‐related	  opera-ons	  that	  leads	  

from	  	  TF2’s	  submission	  to	  its	  evalua-on	  
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Transac-onal	  future	  escaping	  
from	  its	  top-‐level	  transac-on	  

T1	  writes	  TF’s	  reference	  in	  variable	  x	  and	  commits.	  	  
This	  allows	  a	  different	  top-‐level	  transac-on,	  e.g.	  T2,	  to	  

evaluate	  TF.	  

TF	  is	  used	  as	  a	  communica-on	  means	  between	  T1	  and	  T2.	  

read-‐a`er-‐write	  
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Transac-onal	  future	  escaping	  
from	  its	  top-‐level	  transac-on	  
Logic	  underlying	  defini-on	  of	  TF	  con-nua-on:	  

Sequence	  of	  causally-‐related	  opera-ons	  that	  leads	  from	  	  
TF’s	  submission	  to	  its	  evalua-on	  

read-‐a`er-‐write	  

•  Using	  the	  above	  ra-onale,	  a	  con-nua-on	  can	  span	  two	  or	  more	  top-‐
level	  transac-ons	  è	  strongly	  atomic	  con)nua)on	  

•  Constrain	  TF’s	  con-nua-on	  within	  the	  top-‐level	  tx	  that	  submiVed	  TF	  	  
è	  weakly	  atomic	  con)nua)on	  



How	  to	  formalize	  these	  concepts?	  

•  Via	  the	  Future	  Serializa-on	  Graph:	  
– similar	  in	  spirit	  to	  transac-on	  serializa-on	  graph	  
– but	  aimed	  to:	  
1.  allow	  for	  rigorous	  defini-on	  of	  futures	  and	  their	  

con-nua-ons	  
2.  capture	  ordering	  rela-ons	  between	  futures	  and	  

con-nua-ons	  



Future	  Serializa-on	  Graph	  
Vertexes:	  
VTB	  	  :	  	  all	  ops	  since	  tx	  begin	  to	  first	  {commit,	  abort,	  submit,	  eval}	  
VTC::	  	  all	  ops	  since	  subm.	  of	  a	  future	  to	  first	  {commit,	  abort,	  submit,	  eval}	  
VTE:	  all	  ops	  since	  evalua-on	  of	  a	  future	  to	  first	  {commit,	  abort,	  submit,	  eval}	  
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Future	  Serializa-on	  Graph	  
Edges:	  
V1àV2	  ,	  for	  each	  vertex	  V1,	  V2	  in	  FSG	  s.t.	  :	  
•  V1	  and	  V2	  are	  executed	  by	  the	  same	  thread	  t	  and	  t	  executes	  V1	  before	  V2	  



Future	  Serializa-on	  Graph	  
Edges:	  
For	  each	  transac-onal	  future	  T	  :	  
•  VT

S	  à	  VT
B	  :	  submission	  of	  a	  future	  precedes	  its	  execu-on	  

	   	   	   	  	  (where	  VT
S	  is	  the	  vertex	  in	  FSG	  containing	  T’s	  submission)	  

•  VT
B	  à	  VT

E	  :	  evalua-on	  of	  a	  future	  follows	  its	  execu-on	  
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Future	  Serializa-on	  Graph	  
Edges:	  
For	  each	  strongly	  ordered	  transac-onal	  future	  T	  :	  
•  VT

B	  à	  VT
C	  :	  future	  precedes	  its	  con-nua-on	  
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FSG+	  	  
Extension	  of	  FSG	  to	  include	  read-‐a`er-‐write	  
dependencies:	  
•  captures	  causal	  rela-ons	  among	  transac-ons	  that	  
communicate	  futures’	  references	  via	  shared	  variables	  

read-‐a`er-‐write	  

read-‐a`er-‐write	  



Strongly	  Atomic	  Con-nua-ons	  

•  Strongly	  atomic	  con-nua-on	  of	  a	  tx	  future	  TF:	  
– set	  of	  vertexes	  that	  connect	  VTF

C  to VTF
E in	  FSG+	  	  

read-‐a`er-‐write	  

read-‐a`er-‐
write	  



Weakly	  Atomic	  Con-nua-ons	  

•  Weakly	  atomic	  con-nua-on	  of	  a	  tx	  future	  TF:	  
– set	  of	  vertexes	  in	  FSG+	  that	  connect	  VTF

C  to VTF
E

– constraint	  to	  the	  top-‐level	  tx	  that	  submiVed	  TF	  	  

read-‐a`er-‐write	  

read-‐a`er-‐
write	  



Using	  the	  FSG+	  

•  The	  FSG+	  defines	  the	  transac-onal	  futures	  
seman-cs	  by	  restric-ng	  the	  admissible	  
serializa-on	  orders	  of	  transac-ons	  

•  …but	  can	  also	  be	  used	  by	  a	  graph-‐based	  
concurrency	  control	  algorithm	  to	  ensure	  the	  
desired	  seman-cs	  



Using	  the	  FSG+	  

•  Intui-on:	  
–  Enforce	  aciclicity	  of	  the	  FSG+	  extended	  with	  the	  
conflicts	  developed	  among	  transac-on	  	  

•  One	  important	  subtlety:	  
–  FSG+	  can	  associate	  mul-ple	  vertexes	  to	  transac-ons	  
and	  to	  futures/con-nua-ons:	  

•  if	  	  a	  conflict	  is	  developed	  from/to	  futures/transac-ons/
con-nua-ons	  that	  include	  mul-ple	  vertexes	  in	  the	  FSG+	  	  

è	  add	  edges	  from/to	  all	  of	  the	  vertexes	  that	  they	  include	  



Summary	  

•  Futures	  represent	  a	  powerful	  abstrac-on	  to:	  
–  exploit	  intra-‐transac-on	  parallelism	  
–  enable	  new	  synchroniza-on	  and	  communica-on	  
paVerns	  for	  transac-onal	  programming	  

•  First	  aVempt	  to	  define	  seman-cs	  of	  futures	  in	  a	  
transac-onal	  context:	  
–  graph-‐based	  specifica-on	  of	  alterna-ve	  proper-es	  
for:	  

•  serializa-on	  orders	  between	  futures	  and	  	  con-nua-ons	  
•  defini-on	  of	  con-nua-ons	  



Open	  research	  ques-ons	  

•  Is	  the	  current	  formaliza-on	  complete?	  	  
•  Can	  alterna-ve	  formalisms	  be	  used?	  
•  Which	  are	  the	  theore-cal	  costs/complexity	  of	  
the	  various	  seman-cs?	  	  

•  Can	  these	  seman-cs	  be	  implemented	  
efficiently	  in	  a	  prac-cal	  system?	  



Thank you. 
Questions? 



Backup Slides 



Inclusion of an operation in a 
transaction 

•  An	  opera-on	  op	  is	  included	  in	  a	  transac-on	  T	  if	  there	  
is	  a	  path	  in	  the	  FSG:	  
–  from	  the	  vertex	  associated	  with	  the	  begin	  of	  T	  
–  	  to	  the	  vertex	  associated	  with	  the	  commit/abort	  of	  T	  	  
–  that	  passes	  via	  the	  vertex	  associated	  with	  op	  

•  A	  transac-on	  T	  includes:	  
–  	  all	  and	  only	  the	  opera-ons	  issued	  by	  T,	  
–  	  by	  any	  non-‐escaping	  future	  submiVed	  by	  T,	  
– and,	  recursively,	  by	  T	  ’s	  futures	  	  



Atomicity	  between	  top	  level	  transac-ons	  	  

•  Let	  op	  be	  an	  opera-on	  included	  in	  a	  top-‐level	  transac-on	  T	  
•  Assume	  op	  develops	  a	  data	  dependency	  to/from	  an	  opera-on	  

op’	  included	  in	  a	  different	  top-‐level	  transac-on	  T’	  
•  Add	  a	  data	  dependency	  edge	  from	  all	  the	  vertexes	  included	  in	  T	  

to/from	  all	  the	  vertexes	  included	  in	  T’	  

VT’	  



Atomicity	  between	  futures	  and	  con-nua-ons	  

•  Let	  op	  be	  an	  opera-on	  included	  in	  a	  transac-onal	  future	  T	  
•  Assume	  op	  develops	  a	  data	  dependency	  to/from	  an	  opera-on	  

op’	  included	  in	  the	  con-nua-on	  of	  T	  
•  Add	  a	  data	  dependency	  edge	  from	  all	  the	  vertexes	  included	  in	  T	  

to/from	  all	  the	  vertexes	  included	  in	  the	  con-nua-on	  of	  T	  

read-‐a`er-‐write	  

VT1
B	  


