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TM	
  and	
  intra-­‐transac-on	
  parallelism	
  

•  TM	
  has	
  greatly	
  matured	
  over	
  last	
  decade:	
  
–  hundreds	
  of	
  papers	
  from	
  academy	
  and	
  industry	
  
–  hardware	
  support	
  in	
  mainstream	
  processors	
  
–  integra-on	
  in	
  standard	
  compilers	
  

•  Most	
  literature	
  assumes	
  sequen-al	
  execu-on	
  of	
  
opera-ons	
  within	
  transac-ons	
  
	
  

•  Can	
  TM	
  be	
  used	
  to	
  exploit	
  parallelism	
  within	
  
transac-ons?	
  



TM	
  and	
  parallel	
  nes-ng	
  

•  Exis-ng	
  TMs	
  that	
  support	
  intra-­‐transac-on	
  
parallelism	
  offer	
  parallel	
  nes)ng	
  abstrac-on:	
  
–  fork-­‐join	
  seman-cs:	
  

•  forking	
  thread	
  blocks	
  -ll	
  comple-on	
  of	
  nested	
  txs	
  

•  To	
  the	
  best	
  of	
  our	
  knowledge,	
  no	
  TM	
  provides	
  
support	
  for	
  an	
  alterna-ve,	
  more	
  powerful	
  
abstrac-on:	
  
–  the	
  future	
  abstrac-on	
  



The	
  Future	
  abstrac-on	
  

4	
  

•  Well-­‐known	
  abstrac-on	
  to	
  manage	
  asynchronous	
  
parallel	
  computa-ons:	
  
–  promise	
  to	
  deliver	
  the	
  result	
  of	
  some	
  computa-on	
  
–  eval()	
  used	
  to	
  retrieve	
  computa-on’s	
  result	
  

•  possibly	
  blocking	
  -ll	
  the	
  result	
  is	
  computed	
  

–  unlike	
  parallel	
  nes-ng	
  does	
  not	
  block	
  “submiVer”	
  while	
  
parallel	
  computa-on	
  takes	
  place	
  

•  code	
  executed	
  in	
  parallel	
  with	
  the	
  future	
  is	
  called	
  con$nua$on	
  
f=submit(task)	
   x=f.eval()	
  

future	
  

con-nua-on	
  



How	
  to	
  support	
  Futures	
  in	
  TM?	
  

•  Basic	
  idea	
  –	
  Transac)onal	
  Future:	
  
–  allow	
  transac-ons	
  to	
  submit/evaluate	
  futures	
  
–  futures	
  run	
  as	
  transac-ons	
  that:	
  

•  can	
  access	
  shared	
  variables	
  
•  can	
  return	
  some	
  result	
  value	
  

–  a	
  future	
  and	
  its	
  con-nua-on	
  appear	
  as	
  atomic	
  units	
  
	
  

•  2	
  key	
  issues:	
  	
  
– which	
  serializa-on	
  orders	
  should	
  be	
  allowed	
  between	
  
futures	
  and	
  con-nua-ons?	
  

–  how	
  to	
  define	
  the	
  boundaries	
  of	
  a	
  con-nua-on?	
  



Transac-onal	
  Futures	
  Seman-cs:	
  
a	
  basic	
  example	
  

•  Intui-vely	
  we	
  want	
  to	
  guarantee	
  atomicity	
  
between	
  TF	
  and	
  its	
  con-nua-on…	
  

formulate any assumption on the domain of the values returned by transactions nor on the logic used to determine them (e.g., it
may be non-deterministic).

Second, we allow transactions to issue, besides reads and writes, two additional operations: submit and evaluate. These two
primitives allow, respectively, for submitting and evaluating transactional futures, i.e., transactions encapsulated in a future that
can run in parallel with the thread that submitted them. We consider in our model, future submitting and evaluating can only be
done in a transaction. The submit operation takes as input a transaction T , activates a parallel thread in which it runs T , and
returns a future object f 2 F . The returned future object f can be passed as input parameter to the operation evaluate. This
primitive blocks until the transaction associated with the future f has completed its execution, and returns the value generated by
the transaction. As typical TM environments, we assume that if a transaction fails due to conflict, it is re-executed automatically.
This implies that if an evaluate primitive associated with transaction T returns, then T has either been committed (possibly after
several failures due to conflicts and subsequent re-executions) or T has aborted due to an explicit decision of the program to
abort T (via the abort operation).

Transactions activated by threads which do not run in the context of a future are denoted top-level transactions. It is easy
to see that our transaction execution model supports an arbitrary deep nesting of calls to transactional futures in a top-level
transaction. Also, a transactional future T

F

can be uniquely associated with one top-level transaction T

s

within whose context
T

F

is submitted, and with one top-level transaction T

e

within whose context T
F

is evaluated. Importantly, note that our model
does not require transactional futures to be evaluated by the same transaction/thread that submit them, i.e. possibly T

s

6= T

e

.

submitFuture evaluateFuture
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Fig. 1: A Simple Example of Transac-
tional Futures
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Fig. 6: FSG+ of the History in Fig. 4

2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
In Search of Semantic Models for Reconciling Futures and Transactional Memory — Page 2
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2.1 A Basic Example

Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
F

). However, in
some cases other serializations may also be meaningful.
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Figure 1 illustrates a simple example usage of transactional futures, which allows us to set the ground in our search for the
expectable semantics when integrating futures and transactions. The top-level transaction T first writes value 1 to variable X

and then submits a transactional future T

F

, which reads and increments X by 1. In parallel with T

F

, i.e., before evaluating it,
transaction T also reads and increments X by 1. Finally, after evaluating T

F

, T reads X and writes its value to variable Y .
Given the simplicity of this scenario, it is intuitive to define both which sets of operations should be executed atomically and

which are their admissible serialization orders, i.e., the read and write operations by T

F

should be serialized all before or all after
the operations executed by thread running T after the creation of of T

F

and before its evaluation. We call this subsequence of
operations of T the continuation of T

F

, and denote it as C(T
F

).
In this example, serialization orders T

F

! C(T
F

) and C(T
F

) ! T

F

provide the same outcome, because the operations
executed by T

F

and C(T
F

) commute. Clearly this may not the case in general, e.g., if T
F

had to write X = 10 ·X instead of
X + 1, different serializations would provide different outcomes. In cases where the serialization order of T

F

and C(T
F

) is
relevant, it is desirable to allow programmers to specify additional restrictions on the serialization order of transactional futures
and of their continuations. In this sense, in order to ensure equivalence with a sequential version of the program (not using
futures), a simple solution is to impose the serialization of the operations issued by T

F

before the ones by C(T
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). However, in
some cases other serializations may also be meaningful.
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•  …but	
  what	
  are	
  the	
  expected	
  serializa-on	
  orders	
  
between	
  TF	
  and	
  its	
  con-nua-on?	
  
–  before	
  TF’s	
  con-nua-on:	
  strongly	
  ordered	
  
–  either	
  before	
  or	
  a`er	
  TF’s	
  con-nua-on:	
  weakly	
  ordered	
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, i.e., before evaluating it,
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  support	
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•  Basic	
  idea	
  –	
  Transac)onal	
  Future:	
  
–  allow	
  transac-ons	
  to	
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  futures	
  
–  futures	
  run	
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  transac-ons	
  that:	
  

•  can	
  access	
  shared	
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  some	
  result	
  value	
  

–  a	
  future	
  and	
  its	
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•  2	
  key	
  issues:	
  	
  
– which	
  serializa-on	
  orders	
  should	
  be	
  allowed	
  between	
  
futures	
  and	
  con-nua-ons?	
  

–  how	
  to	
  define	
  the	
  boundaries	
  of	
  a	
  con-nua-on?	
  



How	
  to	
  define	
  con-nua-ons?	
  

•  The	
  Future	
  abstrac-on	
  enables	
  parallel	
  
computa-ons	
  with	
  complex	
  dependency	
  
graphs,	
  e.g.:	
  
– submiang	
  futures	
  from	
  within	
  con-nua-ons	
  
– escaping	
  transac-onal	
  futures	
  

•  within	
  the	
  same	
  top-­‐level	
  transac-on,	
  or	
  
•  submiVed	
  and	
  evaluated	
  in	
  different	
  top-­‐level	
  transact.	
  

•  Pro:	
  great	
  flexibility	
  for	
  expert	
  programmers	
  
•  Con:	
  non-­‐trivial	
  to	
  define	
  con-nua-ons	
  



Submission	
  of	
  a	
  future	
  	
  
by	
  a	
  con-nua-on	
  

con-nua-on	
  of	
  TF1	
   con-nua-on	
  of	
  TF2	
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Escaping	
  transac-onal	
  future	
  

Here	
  TF1	
  returns	
  the	
  reference	
  of	
  TF2	
  to	
  T0,	
  
	
  in	
  order	
  to	
  allow	
  T0	
  to	
  evaluate	
  TF2	
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Escaping	
  transac-onal	
  future	
  

•  Con-nua-on	
  of	
  TF2	
  spans	
  two	
  transac-onal	
  futures!	
  
•  TF2	
  should	
  observe	
  both	
  writes	
  on	
  x	
  and	
  y	
  or	
  none!	
  

Logic	
  underlying	
  defini-on	
  of	
  TF2	
  con-nua-on:	
  
Sequence	
  of	
  causally-­‐related	
  opera-ons	
  that	
  leads	
  

from	
  	
  TF2’s	
  submission	
  to	
  its	
  evalua-on	
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Transac-onal	
  future	
  escaping	
  
from	
  its	
  top-­‐level	
  transac-on	
  

T1	
  writes	
  TF’s	
  reference	
  in	
  variable	
  x	
  and	
  commits.	
  	
  
This	
  allows	
  a	
  different	
  top-­‐level	
  transac-on,	
  e.g.	
  T2,	
  to	
  

evaluate	
  TF.	
  

TF	
  is	
  used	
  as	
  a	
  communica-on	
  means	
  between	
  T1	
  and	
  T2.	
  

read-­‐a`er-­‐write	
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Transac-onal	
  future	
  escaping	
  
from	
  its	
  top-­‐level	
  transac-on	
  
Logic	
  underlying	
  defini-on	
  of	
  TF	
  con-nua-on:	
  

Sequence	
  of	
  causally-­‐related	
  opera-ons	
  that	
  leads	
  from	
  	
  
TF’s	
  submission	
  to	
  its	
  evalua-on	
  

read-­‐a`er-­‐write	
  

•  Using	
  the	
  above	
  ra-onale,	
  a	
  con-nua-on	
  can	
  span	
  two	
  or	
  more	
  top-­‐
level	
  transac-ons	
  è	
  strongly	
  atomic	
  con)nua)on	
  

•  Constrain	
  TF’s	
  con-nua-on	
  within	
  the	
  top-­‐level	
  tx	
  that	
  submiVed	
  TF	
  	
  
è	
  weakly	
  atomic	
  con)nua)on	
  



How	
  to	
  formalize	
  these	
  concepts?	
  

•  Via	
  the	
  Future	
  Serializa-on	
  Graph:	
  
– similar	
  in	
  spirit	
  to	
  transac-on	
  serializa-on	
  graph	
  
– but	
  aimed	
  to:	
  
1.  allow	
  for	
  rigorous	
  defini-on	
  of	
  futures	
  and	
  their	
  

con-nua-ons	
  
2.  capture	
  ordering	
  rela-ons	
  between	
  futures	
  and	
  

con-nua-ons	
  



Future	
  Serializa-on	
  Graph	
  
Vertexes:	
  
VTB	
  	
  :	
  	
  all	
  ops	
  since	
  tx	
  begin	
  to	
  first	
  {commit,	
  abort,	
  submit,	
  eval}	
  
VTC::	
  	
  all	
  ops	
  since	
  subm.	
  of	
  a	
  future	
  to	
  first	
  {commit,	
  abort,	
  submit,	
  eval}	
  
VTE:	
  all	
  ops	
  since	
  evalua-on	
  of	
  a	
  future	
  to	
  first	
  {commit,	
  abort,	
  submit,	
  eval}	
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Future	
  Serializa-on	
  Graph	
  
Edges:	
  
V1àV2	
  ,	
  for	
  each	
  vertex	
  V1,	
  V2	
  in	
  FSG	
  s.t.	
  :	
  
•  V1	
  and	
  V2	
  are	
  executed	
  by	
  the	
  same	
  thread	
  t	
  and	
  t	
  executes	
  V1	
  before	
  V2	
  



Future	
  Serializa-on	
  Graph	
  
Edges:	
  
For	
  each	
  transac-onal	
  future	
  T	
  :	
  
•  VT

S	
  à	
  VT
B	
  :	
  submission	
  of	
  a	
  future	
  precedes	
  its	
  execu-on	
  

	
   	
   	
   	
  	
  (where	
  VT
S	
  is	
  the	
  vertex	
  in	
  FSG	
  containing	
  T’s	
  submission)	
  

•  VT
B	
  à	
  VT

E	
  :	
  evalua-on	
  of	
  a	
  future	
  follows	
  its	
  execu-on	
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Future	
  Serializa-on	
  Graph	
  
Edges:	
  
For	
  each	
  strongly	
  ordered	
  transac-onal	
  future	
  T	
  :	
  
•  VT

B	
  à	
  VT
C	
  :	
  future	
  precedes	
  its	
  con-nua-on	
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FSG+	
  	
  
Extension	
  of	
  FSG	
  to	
  include	
  read-­‐a`er-­‐write	
  
dependencies:	
  
•  captures	
  causal	
  rela-ons	
  among	
  transac-ons	
  that	
  
communicate	
  futures’	
  references	
  via	
  shared	
  variables	
  

read-­‐a`er-­‐write	
  

read-­‐a`er-­‐write	
  



Strongly	
  Atomic	
  Con-nua-ons	
  

•  Strongly	
  atomic	
  con-nua-on	
  of	
  a	
  tx	
  future	
  TF:	
  
– set	
  of	
  vertexes	
  that	
  connect	
  VTF

C  to VTF
E in	
  FSG+	
  	
  

read-­‐a`er-­‐write	
  

read-­‐a`er-­‐
write	
  



Weakly	
  Atomic	
  Con-nua-ons	
  

•  Weakly	
  atomic	
  con-nua-on	
  of	
  a	
  tx	
  future	
  TF:	
  
– set	
  of	
  vertexes	
  in	
  FSG+	
  that	
  connect	
  VTF

C  to VTF
E

– constraint	
  to	
  the	
  top-­‐level	
  tx	
  that	
  submiVed	
  TF	
  	
  

read-­‐a`er-­‐write	
  

read-­‐a`er-­‐
write	
  



Using	
  the	
  FSG+	
  

•  The	
  FSG+	
  defines	
  the	
  transac-onal	
  futures	
  
seman-cs	
  by	
  restric-ng	
  the	
  admissible	
  
serializa-on	
  orders	
  of	
  transac-ons	
  

•  …but	
  can	
  also	
  be	
  used	
  by	
  a	
  graph-­‐based	
  
concurrency	
  control	
  algorithm	
  to	
  ensure	
  the	
  
desired	
  seman-cs	
  



Using	
  the	
  FSG+	
  

•  Intui-on:	
  
–  Enforce	
  aciclicity	
  of	
  the	
  FSG+	
  extended	
  with	
  the	
  
conflicts	
  developed	
  among	
  transac-on	
  	
  

•  One	
  important	
  subtlety:	
  
–  FSG+	
  can	
  associate	
  mul-ple	
  vertexes	
  to	
  transac-ons	
  
and	
  to	
  futures/con-nua-ons:	
  

•  if	
  	
  a	
  conflict	
  is	
  developed	
  from/to	
  futures/transac-ons/
con-nua-ons	
  that	
  include	
  mul-ple	
  vertexes	
  in	
  the	
  FSG+	
  	
  

è	
  add	
  edges	
  from/to	
  all	
  of	
  the	
  vertexes	
  that	
  they	
  include	
  



Summary	
  

•  Futures	
  represent	
  a	
  powerful	
  abstrac-on	
  to:	
  
–  exploit	
  intra-­‐transac-on	
  parallelism	
  
–  enable	
  new	
  synchroniza-on	
  and	
  communica-on	
  
paVerns	
  for	
  transac-onal	
  programming	
  

•  First	
  aVempt	
  to	
  define	
  seman-cs	
  of	
  futures	
  in	
  a	
  
transac-onal	
  context:	
  
–  graph-­‐based	
  specifica-on	
  of	
  alterna-ve	
  proper-es	
  
for:	
  

•  serializa-on	
  orders	
  between	
  futures	
  and	
  	
  con-nua-ons	
  
•  defini-on	
  of	
  con-nua-ons	
  



Open	
  research	
  ques-ons	
  

•  Is	
  the	
  current	
  formaliza-on	
  complete?	
  	
  
•  Can	
  alterna-ve	
  formalisms	
  be	
  used?	
  
•  Which	
  are	
  the	
  theore-cal	
  costs/complexity	
  of	
  
the	
  various	
  seman-cs?	
  	
  

•  Can	
  these	
  seman-cs	
  be	
  implemented	
  
efficiently	
  in	
  a	
  prac-cal	
  system?	
  



Thank you. 
Questions? 



Backup Slides 



Inclusion of an operation in a 
transaction 

•  An	
  opera-on	
  op	
  is	
  included	
  in	
  a	
  transac-on	
  T	
  if	
  there	
  
is	
  a	
  path	
  in	
  the	
  FSG:	
  
–  from	
  the	
  vertex	
  associated	
  with	
  the	
  begin	
  of	
  T	
  
–  	
  to	
  the	
  vertex	
  associated	
  with	
  the	
  commit/abort	
  of	
  T	
  	
  
–  that	
  passes	
  via	
  the	
  vertex	
  associated	
  with	
  op	
  

•  A	
  transac-on	
  T	
  includes:	
  
–  	
  all	
  and	
  only	
  the	
  opera-ons	
  issued	
  by	
  T,	
  
–  	
  by	
  any	
  non-­‐escaping	
  future	
  submiVed	
  by	
  T,	
  
– and,	
  recursively,	
  by	
  T	
  ’s	
  futures	
  	
  



Atomicity	
  between	
  top	
  level	
  transac-ons	
  	
  

•  Let	
  op	
  be	
  an	
  opera-on	
  included	
  in	
  a	
  top-­‐level	
  transac-on	
  T	
  
•  Assume	
  op	
  develops	
  a	
  data	
  dependency	
  to/from	
  an	
  opera-on	
  

op’	
  included	
  in	
  a	
  different	
  top-­‐level	
  transac-on	
  T’	
  
•  Add	
  a	
  data	
  dependency	
  edge	
  from	
  all	
  the	
  vertexes	
  included	
  in	
  T	
  

to/from	
  all	
  the	
  vertexes	
  included	
  in	
  T’	
  

VT’	
  



Atomicity	
  between	
  futures	
  and	
  con-nua-ons	
  

•  Let	
  op	
  be	
  an	
  opera-on	
  included	
  in	
  a	
  transac-onal	
  future	
  T	
  
•  Assume	
  op	
  develops	
  a	
  data	
  dependency	
  to/from	
  an	
  opera-on	
  

op’	
  included	
  in	
  the	
  con-nua-on	
  of	
  T	
  
•  Add	
  a	
  data	
  dependency	
  edge	
  from	
  all	
  the	
  vertexes	
  included	
  in	
  T	
  

to/from	
  all	
  the	
  vertexes	
  included	
  in	
  the	
  con-nua-on	
  of	
  T	
  

read-­‐a`er-­‐write	
  

VT1
B	
  


