In Search of Semantic Models for
Reconciling Futures and
Transactional Memory

Jingna Zeng, Paolo Romano, Luis Rodrigues,
Seif Haridi, Joao Barreto




TM and intra-transaction parallelism

* TM has greatly matured over last decade:
— hundreds of papers from academy and industry
— hardware support in mainstream processors

— integration in standard compilers

 Most literature assumes sequential execution of
operations within transactions

* Can TM be used to exploit parallelism within
transactions?



TM and parallel nesting

e Existing TMs that support intra-transaction
parallelism offer parallel nesting abstraction:

— fork-join semantics:
* forking thread blocks till completion of nested txs

* To the best of our knowledge, no TM provides
support for an alternative, more powerful
abstraction:

— the future abstraction



The Future abstraction

Fubure<T> £ = submit(task); // submit an asynchronous task
//do something else

T x = f.eval(); // pick up task’s result

future >
4
QontinuatioD !

f=submit(task) x=f.eval()




How to support Futures in TM?

e Basicidea — Transactional Future:
— allow transactions to submit/evaluate futures

— futures run as transactions that:

e can access shared variables
e can return some result value

— a future and its continuation appear as atomic units

e 2 key issues:

— which serialization orders should be allowed between
futures and continuations?

— how to define the boundaries of a continuation?



Transactional Futures Semantics:
a basic example

T
F W(X,X+1)
®
T wi(x,1) w(x,x+1) W(y,X)
o— o —o— - — - —o
submitFuture evaluateFuture

* |ntuitively we want to guarantee atomicity
between Tr and its continuation...



Transactional Futures Semantics:
a basic example

T
F W(X,X+1)
®
T wi(x,1) w(x,x+1) W(y,X)
o— o —o— - — - —o
submitFuture evaluateFuture

e ...but what are the expected serialization orders
between Tr and its continuation?



Transactional Futures Semantics:
a basic example

serialization point

T
F W(X,X+1)
@
m w(X,X+1) w(y,x)
o— o —o— — —o- —e
submitFuture evaluateFuture

e ...but what are the expected serialization orders
between Tr and its continuation?

— before T¢'s continuation: strongly ordered



Transactional Futures Semantics:
a basic example

serialization point

T . . o .
F wixx+1) serialization point
°
T wix, w(x,x+1) W(y,X)
o— o —o— — o —e
submitFuture evaluateruture

e ..but what are the expected serialization orders
between Tr and its continuation?
— before T¢'s continuation: strongly ordered
— either before or after Tr’'s continuation: weakly ordered




How to support Futures in TM?

 Basic idea — Transactional Future:
— allow transactions to submit/evaluate futures

— futures run as transactions that:

e can access shared variables
e can return some result value

— a future and its continuation appear as atomic units

e 2 key issues:

— which serialization orders should be allowed between
futures and continuations?

— how to define the boundaries of a continuation?



How to define continuations?

 The Future abstraction enables parallel
computations with complex dependency
graphs, e.g.:
— submitting futures from within continuations

— escaping transactional futures
* within the same top-level transaction, or
* submitted and evaluated in different top-level transact.

* Pro: great flexibility for expert programmers
* Con: non-trivial to define continuations



Submission of a future
by a continuation

TF1 r(x) wiy,x+1)
o o

r(n)

rly)

rz) wiz,z+y)
& @

continuation of Tr, continuation of T
F2

T



Escaping transactional future

TF2 r(x) rly)
s 2 . 4
Try_ ) J wixx4)
T0
K wiy.y |
o r(ok) W(cko) 00) . W(n0n1)

Here T, returns the reference of T, to TO,
in order to allow TO to evaluate T,

13



Escaping transactional future

Logic underlying definition of T, continuation:
Sequence of causally-related operations that leads
from Tg,’s submission to its evaluation

Tr2 ) )

L 2 &
Teq rin) w(X,X4)
T: ) wikko) wly.yp) wnng)

Continuation of T, spans two transactional futures!
T, should observe both writes on x and y or none!

14



Transactional future escaping
from its top-level transaction

T¢ is used as a communication means between T1 and T2.

o

T1 r(x) W(z,24) ‘ Q VYY)

SUDMRLILNE | Sy ~read-after{write

S a r(x) w(z,zz)
T2 o—eo—8—9o—o
evaluateFuture

v

T1 writes T.’s reference in variable x and commits.
This allows a different top-level transaction, e.g. T2, to
evaluate T




Transactional future escaping
from its top-level transaction

Logic underlying definition of T, continuation:
Sequence of causally-related operations that leads from
T¢'s submission to its evaluation

F oy @
—® L

™ Y wiz.z4) ‘ Wi wiyya)

SUDMALILIG read-after{write

r(x) w(z,zz)

b
evaluateFuture

 Using the above rationale, a continuation can span two or more top-
level transactions =2 strongly atomic continuation

* Constrain T;’s continuation within the top-level tx that submitted T,
=» weakly atomic continuation 16




How to formalize these concepts?

* Via the Future Serialization Graph:

— similar in spirit to transaction serialization graph

— but aimed to:

1.

allow for rigorous definition of futures and their
continuations

. capture ordering relations between futures and

continuations



Future Serialization Graph

Vertexes:

V1B : all ops since tx begin to first {commit, abort, submit, eval}

V1&: all ops since subm. of a future to first {commit, abort, submit, eval}
V1t all ops since evaluation of a future to first {commit, abort, submit, eval}

Ve B
Te
A= )

\

/
&

V1B Vo E

i () @

Ve C
TF

18



Future Serialization Graph

Edges:
V1-2>V2, for each vertex V1, V2 in FSG s.t. :
V1 and V2 are executed by the same thread t and t executes V1 before V2

Vr B
N
)
~—7
V1B Vr E
(> ) r——()
Vr C



Future Serialization Graph

Edges:

For each transactional future T:

V> = V.8 : submission of a future precedes its execution
(where V;> is the vertex in FSG containing T’s submission)

V;8 = V;E : evaluation of a future follows its execution

V. B
(

VB / ~ \ Vr E

(> >()

Ve C
TF

20



Future Serialization Graph

Edges:
For each strongly ordered transactional future T:

* V2> V.C: future precedes its continuation

Vo B
TF
52\

o)
VB / T \ vy E
== ()0

Ve C
TF

21



FSG+

Extension of FSG to include read-after-write

dependencies:
e captures causal relations among transactions that

communicate futures’ references via shared variables

V- B
TE

TF r('y) r(.z)

V. S)V74B
T r(x) wiz,z¢) Wﬁ:ﬂ\ww
submitFuture > _read-afterfwrite
~

~

Do | wizzy) ~
o—e—8— o~ o .>_ V+ B
T2 read-after-write™ 4 T2

evaluateFuture
(O~

22




Strongly Atomic Continuations

* Strongly atomic continuation of a tx future Tg:
— set of vertexes that connect V¢ to Vit in FSG+

V+ B
T TF
F
w(z‘z+1) V7 S)
X Vo E
VTB TF
T wiy,X
w(x,1) (yx) .
submitFuture evaluateFuture

evaluateFuture

write




Weakly Atomic Continuations

* Weakly atomic continuation of a tx future T4:
— set of vertexes in FSG+ that connect Vr;© to V.
— constraint to the top-level tx that submitted T

F oy
—» .

To1 r(z() W(§Z1) w(x.f) w(y,yi)

. I .
submitFuture > _read-afterfwrite
~

~

Do) | wizzp)
T2 o——8—0o—o

~
) >
evaluateFuture read-after- Sal2

i g W




Using the FSG+

e The FSG+ defines the transactional futures
semantics by restricting the admissible
serialization orders of transactions

e ...but can also be used by a graph-based
concurrency control algorithm to ensure the
desired semantics



Using the FSG+

* Intuition:
— Enforce aciclicity of the FSG+ extended with the
conflicts developed among transaction

* One important subtlety:

— FSG+ can associate multiple vertexes to transactions
and to futures/continuations:

e if a conflictis developed from/to futures/transactions/
continuations that include multiple vertexes in the FSG+

=» add edges from/to all of the vertexes that they include



Summary

e Futures represent a powerful abstraction to:
— exploit intra-transaction parallelism

— enable new synchronization and communication
patterns for transactional programming

* First attempt to define semantics of futures in a

transactional context:
— graph-based specification of alternative properties
for:

e serialization orders between futures and continuations
e definition of continuations



Open research questions

Is the current formalization complete?
Can alternative formalisms be used?

Which are the theoretical costs/complexity of
the various semantics?

Can these semantics be implemented
efficiently in a practical system?



Thank you.
Questions?



Backup Slides



Inclusion of an operation in a
transaction

 An operation op is included in a transaction T if there
is a path in the FSG:

— from the vertex associated with the begin of T

— to the vertex associated with the commit/abort of T
— that passes via the vertex associated with op

e Atransaction T includes:
— all and only the operations issued by T,

— by any non-escaping future submitted by T,

— and, recursively, by T’s futures



Atomicity between top level transactions

Let op be an operation included in a top-level transaction T

Assume op develops a data dependency to/from an operation
op’ included in a different top-level transaction T’

Add a data dependency edge from all the vertexes included in T
to/from all the vertexes included in T’




Atomicity between futures and continuations

* Let op be an operation included in a transactional future T
* Assume op develops a data dependency to/from an operation
op’ included in the continuationof T

 Add a data dependency edge from all the vertexes included in T
to/from all the vertexes included in the continuation of T




