
LogSI-HTM: Log Based Snapshot Isolation in Hardware

Transactional Memory

Lois Orosa and Rodolfo Azevedo

Institute of Computing, University of Campinas (UNICAMP)
{lois.orosa,rodolfo}@ic.unicamp.br

Abstract

In this paper we propose an early idea about a new hardware transactional memory system
that implements snapshot isolation (SI) using logs. With this scheme, we avoid specific costly
hardware resources (multiversion memory) to keep the snapshots, and maintain the advantages
of snapshot isolation (low abort rates). In our proposal, the aborting process is slower than
the related works, but as the abort rate is enormously reduced with SI, the performance lost
should be minimal.

1 Introduction

Transactional memory systems with snapshot isolation make a snapshot of the valid shared memory
data before starting any transaction, and each transaction works with that data until commit time.
The most attractive feature of this implementation is that read-write conflicts do not cause a
transaction to abort, as the transactions are logically reordered by reading the appropriate version
of the data to not break the atomicity and consistency.

Therefore, under the aforementioned system, the abort process has to be activated only when
two transactions have write-write conflicts. In the STAMP benchmarks, from 75% to 90% of
the transactional aborts are caused by read-write conflicts [1], which shows the potential of this
approach.

In SI, transactions always read data from a snapshot of data valid at the beginning of the
transaction. Future updates made by other committed transactions are not visible.

However, snapshot isolation is not serializable because of the write skew anomaly. A write skew
occurs if there exists an invariant whose component variables span multiple concurrent transactions
and the transactions have disjoint write sets. There are some proposals in the literature to solve
this problem [1, 2], but it is not the focus of this paper.

In this work we propose an alternative snapshot isolation proposal in hardware transactional
memory that presents a different approach with low overhead compared with the state of the art.

2 Related work: SI-TM

The first work proposing a hardware snapshot isolation was SI-TM [1]. For supporting memory
snapshots, the authors introduce a new memory subsystem (implemented in the last level cache)
that incorporates timestamps to store multiple versions of the same data. It supports the generation
of new data versions on the flight, and introduces a hardware memory overhead from 12.5% to
50% (depending on the specific configuration and the implemented optimizations).

SI-TM implements lazy conflict detection, performing validation (look for write-write conflicts)
at commit time. SI-TM further improves on existing lazy systems by introducing a new validation
technique based on timestamps. This technique enables local commits, as transactions can validate
their write set by comparing it against the state of main memory instead of broadcasting it to the
other cores in the system.

1



In SI-TM, every transaction obtains unique start and end timestamps which are used by the
Multiversion Memory (MVM) to locate the correct version. On a non-transactional read access,
the MVM returns the newest version. Non-transactional writes modify the most current version in
place. SI-TM provides architectural support for version management and allocation of shared data.
Therefore, the main memory is partitioned into conventional memory and multiversion memory.

To address write skews, the authors of SI-TM also developed a best-effort technique based on
dynamic code analysis which resulted in a tool that is able to handle large applications. The tool
is implemented using PIN and instruments transactional memory applications at runtime.

3 Our proposal: LogSI-HTM

The baseline of LogSI-HTM has many elements in common with LogTM-SE [3]. LogTM-SE is
an eager hardware transactional memory system that keeps the old versions of the data in a per-
thread log, and tracks the conflicting addresses with Bloom Filters (leveraging the cache coherence
protocol). At transaction commits, the log is discarded, and the Bloom filters are cleared. At
transaction aborts, the old versions are copied to their place, and the log and Bloom filters are
cleared.

LogSI-HTM takes from LogTM-SE the per-thread log for old versions of data, and conflict
detection with Bloom filters (and leveraging the cache coherence protocol). Many of the hardware
additions of LogSI-HTM are shared with LogTM-SE (including log pointer, log base, a Wtx bit
per cache line, etc. See LogTM-SE[3] paper for more details).

For emulating the memory snapshots required in each transaction, LogSI-HTM keeps the old
versions of data in a per-thread log until are not useful anymore by any transaction. Unlike
LogTM-SE, our proposal associates a timestamp with each log, corresponding to the commit of
the transaction. Furthermore, the all logs are shared among all the cores (read only) to access to
the old version of data (according to their snapshots). Moreover, unlike LogTM-SE, the log is not
cleared until there is not any in-flight transaction that could potentially use that version of the
data.

The key point of our approach is that the system can emulate a snapshot of the memory by
just accessing the old versions of data kept in the logs.

3.1 The Details

Each transaction has a timestamp associated with the beginning of the transaction. Furthermore,
during the transaction, LogSI-HTM tracks the write-set with a Bloom filter , and unlike the original
LogTM-SE, LogSI-HTM does not need to track transactional reads.

There are two new hardware elements in LogSI-HTM compared with the LogTM-SE. The first
is a new OV Bloom filter, that keeps the addresses of the write sets of the transactions that
commit while the current transaction was in flight. This Bloom filter is checked to test out if the
transaction has to access the old data maintained in a log. We could reuse the read set Bloom filter
of the original LogTM-SE to implement this OV Bloom filter. In case a transaction receives several
write-sets from different committed transactions, they are merged into a unique OV Bloom filter.
The second component is a hardware structure that maintains the log pointers and timestamps
associated with all the write sets maintained in the OV Bloom filter.

To illustrate the behavior of LogSI-HTM, we will use the examples of Figure 1a and Figure 1c.
Figure 1a shows two transactions (Tx1 and Tx2), the first writing the addr A, and the second
reading also the addr A (the subindexes represents the different versions of the content of A along
the time). Similarly, Figure 1c represents an example with 4 transactions, Tx1 and Tx2 writing in
A, and Tx3 and Tx4 reading from A. In both figures Log-Tx-1 and Log-Tx-2 represent the content
of the log at the end of the transaction. Also, OV-Tx1 and OV-Tx2 represent the OV Bloom
Filters.

When a transaction commits, the log with the old versions of data is not discarded and it is
associated with all the on-flight transactions at that moment. The last associated transaction to
finish is in charge of clearing this log. This is an easy and effective way to do garbage collection of
the old version no longer needed. In the example of Figure 1a, the log of transaction Tx1 is deleted

2



Tx1 Tx2

WR(A )

Log-Tx-1

A

1

0

RD(A )0

OV-Tx1

delete Log-Tx-1

(a) Example with 2 transactions without
aborts. Commit order: Tx1, Tx2 . Logical
order: Tx2, Tx1.

Tx1 Tx3

WR(A )

Log-Tx-1

A

1

0

RD(A )0

OV-Tx1

delete Log-Tx-1

WR(A )2

Log-Tx-2

A1

Tx2

OV-Tx2

delete Log-Tx-2

RD(A )0

(b) Example with 3 transactions without aborts.
Commit order: Tx1, Tx2, Tx3 . Logical order: Tx3,
Tx1, Tx2.

Tx1 Tx2

WR(A )

Log-Tx-1

A

1

0

WR(A )2

OV-Tx1

Tx3

RD(A )0

RD(A )0

OV-Tx1

RD(A )0
RD(A )1

Tx4

delete Log-Tx-1
delete Log-Tx-2

Abort!!

(c) Example with 4 transactions with one w-w conflict. Commit order: Tx1, Tx4, Tx3.
Logical order: Tx3, Tx1, Tx4.

Figure 1: Examples for illustrating the algorithm.

by Tx2 when it commits. Furthermore, a committed transaction sends several informations to all
the on-flight transactions: the write-set (content of the Bloom filter), a pointer to its log and the
timestamp. The in-flight transactions save the write-set of the committed transaction in the OV
Bloom filter, as well as the log pointer and the timestamp.

In each transactional read, the OV Bloom filter is checked. If there is no match in the OV
Bloom filter, the read is performed as usually. If there is a match, it means that the transaction
should read the value from one of the logs pointed by their log pointers (from already committed
transactions). In Figure 1a, it is the case of Tx2 when reads address A: the address is in its OV
Bloom filter, and therefore it has to read an old value from Log-Tx-1.

In case there are different versions of the same data in different logs, it just pick the one with
the lower timestamp (to ensure that it is getting the right version of the data). The example
of the Figure 1b illustrates why: at the time of the second read in Tx3, the transaction has the
information of two logs, and it has to choose the older log to keep coherent with the first read
made by the transaction. If the situation was different, and Tx3 only performed the second read,
both values of A0 would be correct.

Furthermore, if there is a running remote transaction that already wrote to the same address,
the cache coherence protocol detects this situation (in the same way that LogTM-SE [3]), and
instead of aborting (like in LogTM-SE), the remote core sends a response informing about the
address of the old value saved in its log. This is necessary because the system implements eager
version management, which implies that the speculative data is saved in place. In the traditional
LogTM-SE this situation would cause an abort, but do not in snapshot isolation. In Figure 1c,
it is the case of the read in transaction Tx4 after the write in Tx2. As this could be a potential

3



source of slowdown, we propose an optimization in Section 3.2.
In each transactional write, the OV Bloom filter is also checked. If there is a match (w-w

conflict), the transaction has to abort to preserve the atomicity of the transactions. It is the case
of Tx2 in Figure 1c.

Unlike SI-TM [1], our LogSI-HTM performs the conflict detection eagerly, because a write-write
conflict almost always should cause an abort. Delaying the conflict detection until commit time
(lazy conflict detection) would not result in any advantage for avoiding write-write conflicts (unlike
read-write conflicts with a lazy conflict detection). However, there are some situations where we
could avoid the abort in non critical conflicts, including false sharing, silent stores and write-write
conflicts without intermittent reads [4].

3.2 Performance Considerations

As LogSI-HTM has so many elements in common with LogTM-SE, it also shares the same char-
acteristics: the commits are fast (the speculative data are already in place at commit time), and
the aborts are slow (the old data is in the log, and it has to be restored by software). However,
as demonstrated in [1], the aborts are reduced enormously with snapshot isolation, as the most of
the conflicts are read-write conflicts.

Other fonts of slowdown are when a read has to be done from a log instead of memory (the
address is in the local OV Bloom filter, or the cache coherence protocol detects a read-write
conflict). In this case, the system has the pointer to the log, but not the pointer to the specific
data. Finding the specific data in the log efficiently will require efficient log organization and search
algorithms.

To alleviate the read latency in this situation, we propose to use a translation table that
correlates the data address with the old data of a specific version. This hardware table should be
maintained locally (and updated in each transactional write), and sent to the in-flight transactions
when commit. Usually the write set is not very big, but this table has to be of limited sized, and
the data that is not in that table has to be software accessed (slower).

4 Conclusions and Future Work

In this paper we propose an implementation of snapshot isolation in hardware transactional memory
with the next contributions:

• We propose an alternative implementation to the lazy SI-TM [1]: an eager conflict detection
and eager version manager snapshot isolation transactional memory system.

• Our proposal does not require a special multiversion memory for keeping several versions of
the data (simplification of the hardware).

• The garbage collection mechanism (to discard the old data when it is not needed anymore)
is simple and effective.

As this is an early work, the future work is still extensive:

• Simulate our proposal in a cycle-accurate simulator.

• Evaluate the performance worries exposed in Section 3.2.

• In case they constitute a performance problem, propose new optimizations, protocols and/or
hardware support (Section 3.2).

• Propose hardware alternatives to solve the problem of the write skew anomalies.

Acknowledgments

This work was supported by grants 2014/03840-2 and 2013/08293-7, São Paulo Research Founda-
tion (FAPESP).

4



References

[1] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P. Stevenson, “Si-tm: Reducing
transactional memory abort rates through snapshot isolation,” in Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 383–398. [Online].
Available: http://doi.acm.org/10.1145/2541940.2541952

[2] R. J. Dias, J. M. Lourenço, and N. M. Preguiça, “Efficient and correct transactional memory
programs combining snapshot isolation and static analysis,” in 3rd USENIX Conference on
Hot Topics in Parallelism (HotPar 2011). Usenix Association, 2011.

[3] L. Yen, J. Bobba, M. R. Marty, K. E. Moore, H. Volos, M. D. Hill, M. M. Swift, and D. A.
Wood, “Logtm-se: Decoupling hardware transactional memory from caches,” in Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture,
ser. HPCA ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp. 261–272. [Online].
Available: http://dx.doi.org/10.1109/HPCA.2007.346204

[4] M. Waliullah and P. Stenstrom, “Classification and elimination of conflicts in hardware transac-
tional memory systems,” in Computer Architecture and High Performance Computing (SBAC-
PAD), 2011 23rd International Symposium on, Oct 2011, pp. 96–103.

5


