
Implementing

Reliable Broadcast Protocols

in Appia

A Brief Tutorial

V1.1

Nuno Carvalho
Universidade de Lisboa

nunomrc@di.fc.ul.pt

Lúıs Rodrigues
Universidade de Lisboa

ler@di.fc.ul.pt

3rd November 2003

Abstract

This tutorial is a companion of the book Abstractions for Dis-
tributed Programming, by Rachid Guerraoui and Lúıs Rodrigues [1].
It illustrates how some of the broadcast abstractions presented in the
book can be implemented in practice. The implementation uses the
Appia system, a framework for protocol composition and execution [3].
All the code presented in this tutorial can be downloaded from the
Appia site: http://appia.di.fc.ul.pt.

1



Contents

1 Introduction 4
1.1 Abstractions Covered by the Tutorial . . . . . . . . . . . . . . 4
1.2 Underlying Abstractions . . . . . . . . . . . . . . . . . . . . . 4
1.3 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Structure of the Document . . . . . . . . . . . . . . . . . . . 5

2 Running the Test Application 6

3 A Brief Overview of Appia 8

4 Links 9
4.1 Perfect Point to Point Links . . . . . . . . . . . . . . . . . . . 9
4.2 Unreliable Point to Point Links . . . . . . . . . . . . . . . . . 9

5 Best-Effort Broadcast 10
5.1 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Introduction to the Algorithm . . . . . . . . . . . . . . . . . . 10
5.3 Description of the Protocol . . . . . . . . . . . . . . . . . . . 11

6 Perfect Failure Detector 13
6.1 Description of the protocol . . . . . . . . . . . . . . . . . . . 13

7 Lazy Reliable Broadcast 15
7.1 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7.2 Introduction to the Algorithm . . . . . . . . . . . . . . . . . . 15
7.3 Description of the protocol . . . . . . . . . . . . . . . . . . . 15
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Uniform Reliable Broadcast 19
8.1 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2 Introduction to the Algorithm . . . . . . . . . . . . . . . . . . 19
8.3 Description of the protocol . . . . . . . . . . . . . . . . . . . 19
8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Indulgent Uniform Reliable Broadcast 23
9.1 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9.2 Introduction to the Algorithm . . . . . . . . . . . . . . . . . . 23
9.3 Description of the protocol . . . . . . . . . . . . . . . . . . . 23
9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

10 Probabilistic Reliable Broadcast 25
10.1 Hands-On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10.2 Introduction to the Algorithm . . . . . . . . . . . . . . . . . . 25

2



10.3 Description of the protocol . . . . . . . . . . . . . . . . . . . 25
10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11 Conclusions and Further Work 29

3



1 Introduction

Many distributed applications are no longer structured using a basic client-
server model, where interactions are only among two entities. On the con-
trary, multi-participant applications, where data items need to be dissemi-
nated to a group of nodes are becoming more and more common.

The broadcast primitives addressed in this tutorial aim at simplifying the
task of building such multi-participant applications. By using a broadcast
abstraction, a node may disseminate a value among a set of processes with
a single protocol invocation. The details of how the message is actually
disseminated, and how reliability is ensured in the presence of faults, are
encapsulated by the broadcast abstraction.

This tutorial is a companion of the book Abstractions for Distributed
Programming, by Rachid Guerraoui and Lúıs Rodrigues [1]. It illustrates
how some of the broadcast abstractions presented in the book can be imple-
mented in practice.

The implementation uses the Appia system, a framework for protocol
composition and execution [3]. For self containment, the tutorial makes an
extremely brief introduction to Appia. However, the reader may find useful
to read additional information about Appia in [2].

All the code presented in this tutorial can be downloaded from the Ap-
pia site: http://appia.di.fc.ul.pt. The complete Appia distribution is
available from the same site. Both the Appia kernel and the examples pre-
sented here are written in the Java programming language. Therefore, all
you need to run and experiment the examples is a Java Virtual Machine
(JDK 1.4.1 and higher).

1.1 Abstractions Covered by the Tutorial

This document describes the implementation of the following reliable broad-
cast protocols from [1]:

• Lazy Reliable Broadcast;

• Uniform Reliable Broadcast;

• Indulgent Uniform Reliable Broadcast;

• Probabilistic Broadcast.

1.2 Underlying Abstractions

The protocols described here are based on some other underlying abstrac-
tions, namely: Perfect Point to Point Links, Unreliable Point to Point
Links, Best Effort Broadcast, and Perfect Failure Detector. Although we
will not discuss in detail the implementation of all these abstractions, for

4



self-containment we will also offer a brief introduction to the Appia protocols
that implement them. In particular, the protocols presented in this tutorial
make use of the following Appia protocols: TcpComplete, UdpSimple, and PFD

(for Perfect Failure Detector).

1.3 Hands-On

The reader is encouraged to execute and test the implementations described
in this tutorial (which can be downloaded from the Appia site). To simplify
this task, the software distribution also includes a test application, that
allows the user to launch several processes and, from any of these processes,
broadcast messages to the whole group.

1.4 Structure of the Document

The remaining of the document is structured as follows. Section 2 explains
how to run the test application. Section 3 offers a quick introduction to
Appia. Section 4 describes the protocol used to implement the Link ab-
straction. The Best Effort Broadcast protocol is described in Section 5 and
the implementation of a Perfect Failure Detector is given in Section 6. The
Lazy Reliable Broadcast protocol is then described in Section 7, the Uniform
Reliable Broadcast in Section 8, the Indulgent Uniform Reliable Broadcast
in Section 9, and the Probabilistic Reliable Broadcast in Section 10. Finally,
Section 11 concludes the tutorial.

5



2 Running the Test Application

All the implementations covered by this tutorial may be experimented us-
ing the same application, called SampleAppl. An optional parameter in the
command line allows the user to select which protocol stack the application
will use. The general format of the command line is the following:

java applications/SampleAppl -f <cf> -n <rank> -qos <prot>

The cf parameter is the name of a text file with the information about
the set of processes, namely the total number N of processes in the system
and, for each of these processes, its “rank” and “endpoint”. The rank is a
unique logical identifier of each process (an integer from 0 to N − 1). The
“endpoint” is just the host name or IP address and the port number of the
process. This information is used by low-level protocols (such as TCP or
UDP) to establish the links among the processes. The configuration file has
the following format:

<number_of_processes>

<rank> <host_name> <port>

...

<rank> <host_name> <port>

For example, the following configuration file could be used to define a
group of three processes, all running in the local machine:

3

0 localhost 25000

1 localhost 25100

2 localhost 25200

The rank parameter identifies the rank of the process being launched
(and implicitly, the address to be used by the process, taken from the con-
figuration file).

The prot parameter specifies which broadcast abstraction is used by the
application. One of the following values can be selected:

beb to use Best Effort Broadcast protocol;

rb to use Lazy Reliable Broadcast protocol;

urb to use Uniform Reliable Broadcast protocol;

iurb to use Indulgent Uniform Reliable Broadcast protocol; and

pb <fanout> <maxrounds> to use the Probabilistic Broadcast proto-
col with a specified fanout and maximum number of message rounds.

6



After all processes are launched, a message can be sent from one process
to the other processes just by typing a bcast <string> in the command
line and pressing the Enter key. The application also accepts another com-
mand, the startpfd command, which is introduced later in the text.

7



3 A Brief Overview of Appia

Appia is a protocol composition and execution framework that has been
implemented in the Java programming language. Appia’s composition model
is based on three fundamental abstractions: layers, sessions, and events:

• Layers are singleton entities, responsible for declaring the protocol
behavior. A stack of layers defines what is called in Appia a QoS
(Quality of Service). The QoS specifies which protocols must act on
the messages and the order they must be traversed.

• Sessions are protocol instances that maintain the state required to
execute the protocol. Channels are stacks of sessions. Each channel is
defined on behalf of a QoS. The set of sessions composing a channel
must respect the set of layers used in the corresponding QoS. Typically,
the top of the stack is an application layer and the bottom of the stack
is a layer that interfaces the network.

• Events are data structures used by sessions to exchange information.
The framework supports an open event model, that is, the set of events
supported is not defined a priori, and can be extended by the program-
mer. The framework ensures that events exchanged between two ses-
sions in the same channel are delivered respecting FIFO order. Events
may flow in the stack in both directions: upwards (from the network
to the application) or downwards.

To exchange information between two different processes, Appia uses a
specific event: the SendableEvent. This event has two additional fields, the
source and dest that are used to indicate the source and destination endpoints.
A SendableEvent also has a Message fielda, which contains the information
that will be sent to the communication link.

To build an Appia protocol, two classes must be created: a Layer and
a Session. The Layer contains static information about the events that the
protocol will accept, require and provide. The Session has the state of the
protocol. An event is delivered to a protocol (or Session) in the handle(Event

e) method. When a protocol wants to send an event to the next protocol, it
must call the go() method of the event.

Appia provides also a set of common utility services to simplify the
task of protocol development, such as the management of data buffers for
messages (with methods to add, extract and inspect headers), management
of timers, automatic generation of events to initialize the channels, etc.

More information about Appia can be found in the Appia home page
(http://appia.di.fc.ul.pt) and in the following reports [3, 2].

8



4 Links

This section briefly describe the Appia protocols that implement the Perfect
Point to Point Links and Unreliable Point to Point Links abstractions. These
protocols glue the remaining Appia protocols with the operating system
services that give access to the network (typically, TCP or UDP sockets).

4.1 Perfect Point to Point Links

The Perfect Point to Point Links abstraction is implemented in Appia by
the TcpComplete protocol. As its name implies, this implementation is based
on the TCP protocol, more precisely, it uses TCP sockets as communication
channels. When a TcpComplete session receives a SendableEvent with the down

direction (i.e., a transmission request) it extracts the message from the event
and pushes it to the TCP socket. When a message is received from a TCP
socket, a SendableEvent is created with the up direction.

A TcpComplete session automatically establishes a TCP connection when
requested to send a message to a given destination for the first time. There-
fore, a single session implements multiple point-to-point links.

It should be noted that, in pure asynchronous systems, this implementa-
tion is just an approximation of the Perfect Point-to-Point Link abstraction.
In fact, TCP includes acknowledgements and retransmission mechanisms (to
recover from omissions in the network). However, if the other endpoint is
unresponsive, TCP breaks the connection, assuming that the corresponding
node has crashed. Therefore, TCP makes synchronous assumptions about
the system and fails to deliver the messages when it erroneously “suspects”
correct processes.

4.2 Unreliable Point to Point Links

The Unreliable Point to Point Links abstraction is implemented in Appia
by the UdpSimple protocol. The UdpSimple protocol uses UDP sockets as
unreliable communication channels. The way SendableEvents are handled by
an UdpSimple session is similar to the TcpComplete session described above.
The only difference is that UDP sockets are used instead.

9



5 Best-Effort Broadcast

A protocol implementing the Best-Effort Broadcast abstraction is used to
simplify the task of implementing Reliable Broadcast. We now describe a
simple implementation of Best-Effort Broadcast in Appia. The protocol uses
multiple Perfect Point-to-Point Links to disseminate a message to a set of
processes.

5.1 Hands-On

To run the test application and experiment the dissemination of messages
among a set of processes using Best-Effort Broadcast, type the following
command:

java applications/SampleAppl -f <cf> -n <rank> -qos beb

This command will start a local process with the specified rank (the address
and port of the process are specified in the file cf). Issue this command in a
different shell (and optionally a different machine, depending on the content
of file cf) for each member of the multicast group.

5.2 Introduction to the Algorithm

The algorithm to implement Best-Effort broadcast is very simple. Figure 1
illustrates the algorithm. When the application sends a message, a copy of
the message is sent to every member of the group, including to the sender
itself. To support the transmission of messages, the Best-Effort Broadcast
uses Perfect Point-to-Point Links. On the recipient side, when the node
receives a message, forwards it to the application (or to the above protocol);
this is defined as delivering the message.

Implements:
BestEffortBroadcast (beb).

Uses:
PerfectPointToPointLinks (pp2p).

upon event 〈 bebBroadcast, m 〉 do
forall pi ∈ Π do // Π is the set of all system processes

trigger 〈 pp2pSend, pi,m 〉;

upon event 〈 pp2pDeliver, pi,m 〉 do
trigger 〈 bebDeliver, pi,m 〉;

Figure 1: Best-Effort Broadcast algorithm.

10



5.3 Description of the Protocol

The communication stack used to illustrate the protocol is the following:

Application

Best-Effort Broadcast

Perfect Point-to-Point Links

The implementation of this algorithm closely follows the algorithm of
Figure 1. As shown in Listing 1, this protocol only handles three classes
of events, namely the ProcessInitEvent, used to initialize the set of processes
that participate in the broadcast (this event is triggered by the application
after reading the configuration file), the ChannelInit event, that is automat-
ically triggered by the runtime when a new channel is created, and the
SendableEvent. This last event is associated with transmission requests (if
the event flows in the stack downwards) or the reception of events from the
layer below (if the event flows upwards). Note that the code in these listing
has been simplified. In particular, all exception handling code was deleted
from the listings for clarity (but is included in the real code distributed with
the tutorial).

The only method that requires some coding is the bebBroadcast() method,
which is in charge of sending a series of point-to-point messages to all mem-
bers of the group. This is performed by executing the following instructions
for each member of the group: i) the event being sent is “cloned” (this
effectively copies the data to be sent to a new event); ii) the source and
destination address of the point-to-point message are set; iii) the event is
forwarded to the layer below. There is a single exception to this procedure:
if the destination process is the sender itself, the event is immediately deliv-
ered to the upper layer. The method to process messages received from the
the layer below is very simple: it just forwards the message up.

Listing 1: Best-effort broadcast implementation.

public class BEBSession extends Session {

private ProcessSet processes;

public BEBSession(Layer layer) {
super(layer);

}

public void handle(Event event){
if (event instanceof ChannelInit)

handleChannelInit((ChannelInit)event);
else if (event instanceof ProcessInitEvent)

handleProcessInitEvent((ProcessInitEvent) event);
else if (event instanceof SendableEvent){

if (event.getDir()==Direction.DOWN)
// UPON event from the above protocol (or application)
bebBroadcast((SendableEvent) event);

else

11



// UPON event from the bottom protocol (or perfect point2point links)
pp2pDeliver((SendableEvent) event);

}
}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();

}

private void handleChannelInit(ChannelInit init) {
init .go();

}

private void bebBroadcast(SendableEvent event) {
SampleProcess[] processArray = this.processes.getAllProcesses();
SendableEvent sendingEvent = null;
for(int i=0 ; i<processArray.length ; i++){

// source and destination for data message
sendingEvent = (SendableEvent) event.cloneEvent();
sendingEvent.source = processes.getSelfProcess (). getInetWithPort();
sendingEvent.dest = processArray[i].getInetWithPort();
// set the event fields
sendingEvent.setSource(this); // the session that created the event
if ( i == processes.getSelfRank())

sendingEvent.setDir(Direction.UP);
sendingEvent.init ();
sendingEvent.go();

}
}

private void pp2pDeliver(SendableEvent event) {
event.go();

}
}

12



6 Perfect Failure Detector

This abstraction permits the notification of crashed processes. When a pro-
cess crash, the remaining processes will be notified and will do some pro-
cessing to ensure the reliability properties.

6.1 Description of the protocol

In this case, the Perfect Failure Detector (PFD) is only used with Per-
fect Point to Point Links (PP2PL), which are builded using TCP channels.
When a TCP socket is closed, the protocol that implements PP2PL sends
an event to the Appia channel. This event is accepted by the PFD proto-
col, which sends a Crash event to notify other layers. The implementation
of this notification is shown in Listing 2. The protocols that need a PFD
declare that will accept the Crash event and will process it, as shown in the
implementation of the reliable broadcast protocols, which are described in
the next Section.

To notify other layers of a closed socket, the PP2PL protocol must first
create the corresponding TCP sockets. The way the PP2PL is implemented,
these sockets are open on-demand, i.e., when there is the need to send/re-
ceive something from a remote peer. To ensure that these sockets are cre-
ated, the PFD session send a message to all other processes when it is
started.

Note that the PFD abstraction assumes that all processes are started
before it starts operating. Therefore, the user must start all processes before
activating the perfect failure detector. Otherwise, the detector may detect
as failed processes that have not yet been launched. In order to start the
perfect failure detector from the test application, must issue the pfdstart

request on the command line.

Listing 2: Perfect failure detector implementation.

public class PerfectFailureDetectorSession extends Session {
private Channel channel;
private ProcessSet processes;
private boolean started;

public PerfectFailureDetectorSession(Layer layer) {
super(layer);
started = false;
}

public void handle(Event event) {
if (event instanceof TcpUndeliveredEvent)

notifyCrash((TcpUndeliveredEvent) event);
else if (event instanceof ChannelInit)

handleChannelInit((ChannelInit) event);
else if (event instanceof ProcessInitEvent)

handleProcessInit((ProcessInitEvent) event);
else if (event instanceof PFDStartEvent)

handlePFDStart((PFDStartEvent) event);

13



}

private void handleChannelInit(ChannelInit init) {
channel = init .getChannel();
init .go();

}

private void handleProcessInit(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();
}

private void handlePFDStart(PFDStartEvent event) {
started = true;
event.go();
CreateChannelsEvent createChannels =

new CreateChannelsEvent(channel,Direction.DOWN,this);
createChannels.go();
}

private void notifyCrash(TcpUndeliveredEvent event) {
if (started){

SampleProcess p = processes.getProcess((InetWithPort) event.who);
if (p.isCorrect ()) {

p.setCorrect(false );
Crash crash =

new Crash(channel,Direction.UP,this,p.getProcessNumber());
crash.go();
}
}
}
}

14



7 Lazy Reliable Broadcast

The Best-Effort reliable protocol presented in Section 5 does not ensure
reliability when the sender crashes. The Lazy Reliable Broadcast solves
this problem by having other processes to forward messages on behalf of a
crashed sender.

7.1 Hands-On

To run the test application and experiment the dissemination of messages
among a set of processes using Lazy Reliable Broadcast, type the following
command:

java applications/SampleAppl -f <cf> -n <rank> -qos rb

This command will start a local process with the specified rank (the address
and port of the process are specified in the file cf). Issue this command
in a different shell (and optionally a different machine, depending on the
content of file cf) for each member of the multicast group. Do not forget to
initiate the PFD at every processes by issuing the pfdstart request on the
command line.

7.2 Introduction to the Algorithm

The Lazy Reliable Broadcast algorithm is depicted in Figure 2. In this
algorithm, when the broadcast of a message is requested, the message is
sent using the Best Effort Broadcast (BEB). If the sender does not crash,
BEB will ensure the message delivery to all members of the group (including
itself). When a message is received for the first time, it is delivered and a
copy stored in a log. If duplicates are received due to retransmissions, these
are simply discarded. When a process detects that some other process f has
failed, it retransmits all messages received from f .

7.3 Description of the protocol

The communication stack used to illustrate the protocol is the following:

Application

Reliable Broadcast

Perfect Failure Detector

Best Effort Broadcast

Perfect Point to Point Links

The implementation of this algorithm, shown in Listing 3, closely fol-
lows the algorithm of Figure 2. The protocol accepts four events, namely
the ProcessInitEvent, used to initialize the set of processes that participate in

15



Implements:
ReliableBroadcast (rb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

upon event 〈 Init 〉 do
delivered := ∅;
correct := Π;
∀pi∈Π : from[pi] := ∅;

upon event 〈 rbBroadcast, m 〉 do
trigger 〈 bebBroadcast, [ Data, self, m ] 〉;

upon event 〈 bebDeliver, pi, [ Data, sm, m ] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 rbDeliver, sm,m 〉;
from[pi] := from[pi] ∪ { [ sm, m ] }
if pi 6∈ correct then

trigger 〈 bebBroadcast, [ Data, sm, m ] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \ {pi}
forall [sm,m] ∈ from[pi]: do

trigger 〈 bebBroadcast, [ Data, sm, m ] 〉;

Figure 2: Lazy Reliable Broadcast algorithm.

the broadcast (this event is triggered by the application after reading the
configuration file), the ChannelInit event, that is automatically triggered by
the runtime when a new channel is created, the Crash event, triggered by
the PFD when a node crashes, and the SendableEvent. This last event is
associated with transmission requests (if the event flows in the stack down-
wards) or the reception of events from the layer below (if the event flows
upwards). Note that the code in these listing has been simplified. In par-
ticular, all exception handling code was deleted from the listings for clarity
(but is included in the real code distributed with the tutorial).

In order to detect duplicates, each message needs to be uniquely identi-
fied. In this implementation, the protocol use the rank of the sender of the
message and a sequence number. This information needs to be pushed into
the message header when a message is sent, and then popped again when
the message is received. Note that during the retransmission phase, it is
possible for the same message, with the same identifier, to be broadcast by
different processes.

In the protocol, to broadcast a message consists only in pushing the mes-
sage identifier and forward the request to the Best-Effort layer. To receive

16



the message consists in popping the message identifier, check for duplicates,
and to log and deliver the message when it is received for the first time.
Upon a crash notification, all messages from the crashed node are broad-
cast again. Note that when a node receives a message for the first time,
if the sender is already detected to be crashed, the message is immediately
retransmitted.

Listing 3: Lazy reliable broadcast implementation.

public class RBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList[] from;
private LinkedList delivered;

public RBSession(Layer layer) {
super(layer);
seqNumber = 0;

}

public void handle(Event event){
// (...)

}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();

}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();
from = new LinkedList[processes.getSize()];
for (int i=0; i<from.length; i++)

from[i ] = new LinkedList();
}

private void rbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
((ExtendedMessage)event.getMessage()).pushObject(msgID);
bebBroadcast(event);

}

private void bebDeliver(SendableEvent event) {
MessageID msgID = (MessageID) ((ExtendedMessage)event.getMessage()).peekObject();
if ( ! delivered .contains(msgID) ){

delivered .add(msgID);
SendableEvent cloned = (SendableEvent) event.cloneEvent();
((ExtendedMessage)event.getMessage()).popObject();
event.go();
SampleProcess pi = processes.getProcess((InetWithPort) event.source);
int piNumber = pi.getProcessNumber();
from[piNumber].add(event);
if ( ! pi . isCorrect () ){

SendableEvent retransmit = (SendableEvent) cloned.cloneEvent();
bebBroadcast(retransmit);

}
}

17



}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();

}

private void handleCrash(Crash crash) {
int pi = crash.getCrashedProcess();
System.out.println(”Process ”+pi+” failed.”);
processes .getProcess(pi ). setCorrect(false );
SendableEvent event = null;
ListIterator it = from[pi ]. listIterator ();
while(it.hasNext()){

event = (SendableEvent) it.next();
bebBroadcast(event);

}
}

}

7.4 Exercises

Exercise 7.1 This implementation of the Reliable Broadcast Algorithm has
a delivered set that is never garbage collected. Modify the implementation to
remove messages that no longer need to be maintained in the delivered set.

Exercise 7.2 Perform a similar optimization with the from variable.

18



8 Uniform Reliable Broadcast

The protocol described in this section offers stronger properties than the
previous protocol. It ensures uniform reliability, that is, no process delivers
a message without being sure that all correct processes will also be able to
deliver that message. For this purpose, delivery of a message is delayed until
an acknowledgement is received from every correct process.

8.1 Hands-On

To run the test application and experiment the dissemination of messages
among a set of processes using Uniform Reliable Broadcast, type the follow-
ing command:

java applications/SampleAppl -f <cf> -n <rank> -qos urb

This command will start a local process with the specified rank (the address
and port of the process are specified in the file cf). Issue this command
in a different shell (and optionally a different machine, depending on the
content of file cf) for each member of the multicast group. Do not forget to
initiate the PFD at every processes by issuing the pfdstart request on the
command line.

8.2 Introduction to the Algorithm

Figure 3 shows how the algorithm works. When the protocol sends a mes-
sage, adds it to a list of forwarded messages. When the protocol receives a
message, resends it, if it does not belong to the forward list. So, all processes
forward the received messages using the Best Effort Broadcast protocol. By
retransmitting a message, a process is implicitly acknowledging that it has
received and stored the message. When the message has been forwarded by
all correct processes, it can be safely delivered to the application.

8.3 Description of the protocol

The communication stack used to illustrate the protocol is the following:

Application

Uniform Reliable Broadcast

Perfect Failure Detector

Best Effort Broadcast

Perfect Point to Point Links

The implementation of this protocol is shown in Listing 4. Note that
the code in these listing has been simplified. In particular, all exception

19



Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).

function canDeliver(m) returns boolean is
return (correct ⊂ ackm) ∧ (m 6∈ delivered);

upon event 〈 Init 〉 do
delivered := forward := ∅;
correct := Π;
ackm := ∅, ∀m;

upon event 〈 urbBroadcast, m 〉 do
forward := forward ∪ {m}
trigger 〈 bebBroadcast, [ Data, self, m ] 〉;

upon event 〈 bebDeliver, pi, [ Data, sm, m ] 〉 do
ackm := ackm ∪ {pi}
if m 6∈ forward do

forward := forward ∪ {m};
trigger 〈 bebBroadcast, [ Data, sm, m ] 〉;

upon event 〈 crash, pi 〉 do
correct := correct \{pi};

upon (canDeliver(m)) do
delivered := delivered ∪ {m};
trigger 〈 urbDeliver, sm,m 〉;

Figure 3: All ack uniform reliable broadcast algorithm.

handling code was deleted from the listings for clarity (but is included in
the real code distributed with the tutorial).

The protocol uses two variables received and delivered to register which
messages have already been received and delivered respectively. These vari-
ables only store message identifiers. When a message is received for the first
time, it is forwarded as specified in the algorithm. To keep track on who
has already acknowledged (forwarded) a given message a hash table is used.
There is an entry in the hash table for each message. This entry keeps the
data message itself (for future delivery) and a record of who has forwarded
the message.

When a message has been forwarded by every correct process it can be
delivered. This is checked every time a new event is handled (as both the
reception of messages and the crash of processes may trigger the delivery of
pending messages).

Listing 4: All ack uniform reliable broadcast implementation.

20



public class URBSession extends Session {
private ProcessSet processes;
private int seqNumber;
private LinkedList received, delivered ;
private Hashtable ack;

public URBSession(Layer layer) {
super(layer);
}

public void handle(Event event) {
// (...)
urbTryDeliver();
}

private void urbTryDeliver() {
Iterator it = ack.values (). iterator ();
MessageEntry entry=null;
while( it .hasNext() ){

entry = (MessageEntry) it.next();
if (canDeliver(entry)){

delivered .add(entry.messageID);
urbDeliver(entry.event , entry.messageID.process);
}
}
}

private boolean canDeliver(MessageEntry entry) {
int procSize = processes.getSize ();
for(int i=0; i<procSize; i++)

if (processes .getProcess(i ). isCorrect() && (! entry.acks[ i ]) )
return false;

return ( ! delivered .contains(entry.messageID) );
}

private void handleChannelInit(ChannelInit init) {
init .go();
received = new LinkedList();
delivered = new LinkedList();
ack = new Hashtable();
}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
event.go();
}

private void urbBroadcast(SendableEvent event) {
SampleProcess self = processes.getSelfProcess ();
MessageID msgID = new MessageID(self.getProcessNumber(),seqNumber);
seqNumber++;
received .add(msgID);
((ExtendedMessage) event.getMessage()).pushObject(msgID);
event.go ();
}

private void bebDeliver(SendableEvent event) {
SendableEvent clone = (SendableEvent) event.cloneEvent();
MessageID msgID = (MessageID) ((ExtendedMessage) clone.getMessage()).popObject();
addAck(clone,msgID);

21



if ( ! received .contains(msgID) ){
received .add(msgID);
bebBroadcast(event);
}
}

private void bebBroadcast(SendableEvent event) {
event.setDir(Direction.DOWN);
event.setSource(this);
event. init ();
event.go();
}

private void urbDeliver(SendableEvent event, int sender) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(sender).getInetWithPort();
event. init ();
event.go();
}

private void handleCrash(Crash crash) {
int crashedProcess = crash.getCrashedProcess();
System.out.println(”Process ”+crashedProcess+” failed.”);
processes .getProcess(crashedProcess).setCorrect(false );
}

private void addAck(SendableEvent event, MessageID msgID){
int pi = processes.getProcess((InetWithPort)event.source).getProcessNumber();
MessageEntry entry = (MessageEntry) ack.get(msgID);
if (entry == null){

entry = new MessageEntry(event, msgID, processes.getSize());
ack.put(msgID,entry);
}
entry.acks[pi] = true;
}
}

8.4 Exercises

Exercise 8.1 Modify the implementation to keep track just of the last mes-
sage sent from each process, in the received and delivered variables.

Exercise 8.2 Change the protocol to exchange acknowledgements when the
sender is correct and only retransmit the payload of a message when the
sender is detected to have crashed (just like in the Lazy protocol of Section 7).

22



9 Indulgent Uniform Reliable Broadcast

This protocol provides uniform reliability without requiring the availability
of a perfect failure detector. Instead, it only allows a minority of processes
to crash. In such case, a message can be delivered as soon as an acknowl-
edgment is received from a majority of processes.

9.1 Hands-On

To run the test application and experiment the dissemination of messages
among a set of processes using Indulgent Uniform Reliable Broadcast, type
the following command:

java applications/SampleAppl -f <cf> -n <rank> -qos iurb

This command will start a local process with the specified rank (the address
and port of the process are specified in the file cf). Issue this command in a
different shell (and optionally a different machine, depending on the content
of file cf) for each member of the multicast group.

9.2 Introduction to the Algorithm

The algorithm is very similar to the algorithm of Figure 3. The only differ-
ence is in the condition that allows messages to be delivered, as depicted in
Figure 4. This change also allows the protocol to execute without the avail-
ability of a perfect failure detector as long as only a minority of processes
are allowed to crash.

9.3 Description of the protocol

The communication stack used to illustrate the protocol is the following
(note that a Perfect Failure Detector is no longer required):

Implements:
UniformReliableBroadcast (urb).

Uses:
BestEffortBroadcast (beb).

function canDeliver(m) returns boolean is
return (|ackm| > N/2) ∧ (m 6∈ delivered);

// Except for the function above, same as Algorithm 3.

Figure 4: Majority ack uniform reliable broadcast algorithm.

23



Application

Indulgent Uniform Reliable Broadcast

Best Effort Broadcast

Perfect Point to Point Links

The protocol works in the same way as the protocol presented in Sec-
tion 8, but without being aware of crashed processes. Besides that, the only
difference from the previous implementation is the canDeliver() method,
which can be shown in Listing 5.

Listing 5: Indulgent Uniform reliable broadcast implementation.

public class IURBSession extends Session {

private boolean canDeliver(MessageEntry entry) {
int N = processes.getSize (), numAcks = 0;
for(int i=0; i<N; i++)

if (entry.acks[ i ])
numAcks++;

return (numAcks > (N/2)) && ( ! delivered.contains(entry.messageID) );
}

// Except for the method above, and for the handling of the crash event, same
// as the previous protocol

}

9.4 Exercises

Exercise 9.1 Note that if a process does not acknowledge a message, copies
of that message may have to be stored for a long period (in fact, if a process
crashes, copies need to be stored forever). Try to devise a scheme to ensure
that no more than N/2+1 copies of each message are preserved in the system
(that is, not all members should be required to keep a copy of every message).

24



10 Probabilistic Reliable Broadcast

Probabilistic reliable broadcast uses an algorithm quite different from the
ones presented in previous sections. Instead of ensuring reliability in a de-
terministic manner, it offers reliability only with high probability. The most
important advantage of this protocol is that it scales much better, i.e., using
this approach it is possible to broadcast messages to thousands of nodes.

10.1 Hands-On

To run the test application and experiment the dissemination of messages
among a set of processes using Probabilistic Broadcast, type the following
command:

java applications/SampleAppl -f <cf> -n <rank> -qos pb <fanout>

<maxrounds>

This command will start a local process with the specified rank (the address
and port of the process are specified in the file cf). Issue this command in a
different shell (and optionally a different machine, depending on the content
of file cf) for each member of the multicast group.

10.2 Introduction to the Algorithm

The probabilistic algorithm is illustrated in Figure 5. The message dissemi-
nation is initiated by gossiping it to fanout members of the group, selected
at random. When the message is received, it is gossiped again, to another
fanout random members. This procedure is executed maxrounds times. If
fanout and maxrounds are chosen carefully, all processes will receive and
deliver the message with high probability.

10.3 Description of the protocol

This protocol is based on probabilities and is used to broadcast messages
in large groups. Instead of creating Perfect Point to Point Links, it use
Unreliable Point to Point Links (UP2PL) to send messages just for a subset
of the group. The communication stack used to illustrate the protocol is the
following:

Application

Probabilistic Broadcast

Unreliable Point to Point Links

The protocol has two configurable parameters:

fanout is the number of processes for which the message will be gossiped;

25



Implements:
ProbabilisticBroadcast (pb).

Uses:
unreliablePointToPointLinks (up2p).

upon event 〈 Init 〉 do
delivered := ∅;

function pick-targets (fanout) returns set of processes do
targets := ∅;
while | targets | < fanout do

candidate := random (Π);
if candidate 6∈ targets ∧ candidate 6= self then

targets := targets ∪ { candidate };
return targets;

procedure gossip (msg) do
forall t ∈ pick-targets (fanout) do

trigger 〈 up2pSend, t, msg 〉;

upon event 〈 pbBroadcast, m 〉 do
gossip ([ Gossip, sm, m, maxrounds−1 ]);

upon event 〈 up2pDeliver, pi, [ Gossip, sm, m, r ] 〉 do
if m 6∈ delivered then

delivered := delivered ∪ {m}
trigger 〈 pbDeliver, sm,m 〉;

if r > 0 then gossip ([ Gossip, sm, m, r − 1 ]);

Figure 5: Probabilistic broadcast algorithm.

maxrounds is the maximum number of rounds that the message will be
retransmitted.

The implementation of this protocol is shown on Listing 6. The gossip()

method invokes the pickTargets() method to choose the processes which the
message is going to be sent and sends the message to those targets. The pick-

Targets() method chooses targets randomly from the set of processes. Each
message carries its identification (as previous reliable broadcast protocols)
and the remaining number of rounds (when the message is gossiped again,
the number of rounds is decremented).

Listing 6: Probabilistic broadcast implementation.

public class PBSession extends Session {

private LinkedList delivered;
private ProcessSet processes;
private int fanout, maxRounds, seqNumber;

public PBSession(Layer layer) {
super(layer);

26



PBLayer pbLayer = (PBLayer) layer;
fanout = pbLayer.getFanout();
maxRounds = pbLayer.getMaxRounds();
seqNumber = 0;
}

public void handle(Event event){
// (...)
}

private void handleChannelInit(ChannelInit init) {
init .go();
delivered = new LinkedList();
}

private void handleProcessInitEvent(ProcessInitEvent event) {
processes = event.getProcessSet();
fanout = Math.min (fanout, processes.getSize ());
event.go();
}

private void pbBroadcast(SendableEvent event) {
MessageID msgID = new MessageID(processes.getSelfRank(),seqNumber);
seqNumber++;
gossip(event , msgID, maxRounds−1);
}

private void up2pDeliver(SendableEvent event) {
SampleProcess pi = processes.getProcess((InetWithPort)event.source);
int round = ((ExtendedMessage) event.getMessage()).popInt();
MessageID msgID = (MessageID) ((ExtendedMessage) event.getMessage()).popObject();
if ( ! delivered .contains(msgID) ){

delivered .add(msgID);
SendableEvent clone = null;
clone = (SendableEvent) event.cloneEvent();
pbDeliver(clone,msgID);
}
if (round > 0)

gossip(event,msgID,round−1);
}

private void gossip(SendableEvent event, MessageID msgID, int round){
int [] targets = pickTargets();
for(int i=0; i<fanout; i++){

SendableEvent clone = (SendableEvent) event.cloneEvent();
((ExtendedMessage) clone.getMessage()).pushObject(msgID);
((ExtendedMessage) clone.getMessage()).pushInt(round);
up2pSend(clone,targets[i ]);
}

}

private int [] pickTargets() {
Random random = new Random(System.currentTimeMillis());
LinkedList targets = new LinkedList();
Integer candidate = null;
while(targets.size () < fanout){

candidate = new Integer(random.nextInt(processes.getSize()));
if ( ( ! targets .contains(candidate) ) && (candidate.intValue() != processes.getSelfRank()) )

targets .add(candidate);
}
int [] targetArray = new int[fanout];
ListIterator it = targets . listIterator ();

27



for(int i=0; (i<targetArray.length) && it.hasNext(); i++)
targetArray[i ] = ((Integer) it .next()). intValue();

return targetArray;
}

private void up2pSend(SendableEvent event, int dest) {
event.setDir(Direction.DOWN);
event.setSource(this);
event.dest = processes.getProcess(dest).getInetWithPort();
event. init ();
event.go();
}

private void pbDeliver(SendableEvent event, MessageID msgID) {
event.setDir(Direction.UP);
event.setSource(this);
event.source = processes.getProcess(msgID.process).getInetWithPort();
event. init ();
event.go();
}
}

10.4 Exercises

Exercise 10.1 The up2pDeliver() method perform two different functions: i)
delivers the message to the application (if it was not delivered yet) and ii)
gossips the message to other processes. Change the code such that a node
gossip just when it receives a message for the first time. Discuss the impact
of the changes.

Exercise 10.2 Change the code to limit i) the number of messages each
node can store; ii) the maximum throughput (messages per unit of time) of
each node.

28



11 Conclusions and Further Work

This tutorial offers an introduction to the Appia implementation of several of
the algorithms presented in [1]. The book also covers the problem of reliable
broadcast in a setting where processes can crash and recover. We invite the
reader to build an Appia stack to implement such abstractions.

The reader is also invited to compare the protocols provided in this tuto-
rial with the protocols used by the group communication protocols included
in the Appia distribution.

29



References

[1] Rachid Guerraoui and Luis Rodrigues. Abstractions for Distributed Pro-
gramming. (in preparation).

[2] H. Miranda, A. Pinto, and L. Rodrigues. The Appia tutorial.

[3] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol
kernel supporting multiple coordinated channels. In Proceedings of the
21st International Conference on Distributed Computing Systems, pages
707–710, Phoenix, Arizona, April 2001. IEEE.

30


